spa.c revision 307113
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
97    "Check hostid on import?");
98TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
99SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
100    &zfs_ccw_retry_interval, 0,
101    "Configuration cache file write, retry after failure, interval (seconds)");
102
103typedef enum zti_modes {
104	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106	ZTI_MODE_NULL,			/* don't create a taskq */
107	ZTI_NMODES
108} zti_modes_t;
109
110#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113
114#define	ZTI_N(n)	ZTI_P(n, 1)
115#define	ZTI_ONE		ZTI_N(1)
116
117typedef struct zio_taskq_info {
118	zti_modes_t zti_mode;
119	uint_t zti_value;
120	uint_t zti_count;
121} zio_taskq_info_t;
122
123static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124	"issue", "issue_high", "intr", "intr_high"
125};
126
127/*
128 * This table defines the taskq settings for each ZFS I/O type. When
129 * initializing a pool, we use this table to create an appropriately sized
130 * taskq. Some operations are low volume and therefore have a small, static
131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132 * macros. Other operations process a large amount of data; the ZTI_BATCH
133 * macro causes us to create a taskq oriented for throughput. Some operations
134 * are so high frequency and short-lived that the taskq itself can become a a
135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136 * additional degree of parallelism specified by the number of threads per-
137 * taskq and the number of taskqs; when dispatching an event in this case, the
138 * particular taskq is chosen at random.
139 *
140 * The different taskq priorities are to handle the different contexts (issue
141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142 * need to be handled with minimum delay.
143 */
144const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152};
153
154static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
155static void spa_event_post(sysevent_t *ev);
156static void spa_sync_version(void *arg, dmu_tx_t *tx);
157static void spa_sync_props(void *arg, dmu_tx_t *tx);
158static boolean_t spa_has_active_shared_spare(spa_t *spa);
159static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
160    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
161    char **ereport);
162static void spa_vdev_resilver_done(spa_t *spa);
163
164uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
165#ifdef PSRSET_BIND
166id_t		zio_taskq_psrset_bind = PS_NONE;
167#endif
168#ifdef SYSDC
169boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
170#endif
171uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
172
173boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
174extern int	zfs_sync_pass_deferred_free;
175
176#ifndef illumos
177extern void spa_deadman(void *arg);
178#endif
179
180/*
181 * This (illegal) pool name is used when temporarily importing a spa_t in order
182 * to get the vdev stats associated with the imported devices.
183 */
184#define	TRYIMPORT_NAME	"$import"
185
186/*
187 * ==========================================================================
188 * SPA properties routines
189 * ==========================================================================
190 */
191
192/*
193 * Add a (source=src, propname=propval) list to an nvlist.
194 */
195static void
196spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
197    uint64_t intval, zprop_source_t src)
198{
199	const char *propname = zpool_prop_to_name(prop);
200	nvlist_t *propval;
201
202	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
203	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
204
205	if (strval != NULL)
206		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
207	else
208		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
209
210	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
211	nvlist_free(propval);
212}
213
214/*
215 * Get property values from the spa configuration.
216 */
217static void
218spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
219{
220	vdev_t *rvd = spa->spa_root_vdev;
221	dsl_pool_t *pool = spa->spa_dsl_pool;
222	uint64_t size, alloc, cap, version;
223	zprop_source_t src = ZPROP_SRC_NONE;
224	spa_config_dirent_t *dp;
225	metaslab_class_t *mc = spa_normal_class(spa);
226
227	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
228
229	if (rvd != NULL) {
230		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
231		size = metaslab_class_get_space(spa_normal_class(spa));
232		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
236		    size - alloc, src);
237
238		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
239		    metaslab_class_fragmentation(mc), src);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
241		    metaslab_class_expandable_space(mc), src);
242		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
243		    (spa_mode(spa) == FREAD), src);
244
245		cap = (size == 0) ? 0 : (alloc * 100 / size);
246		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
247
248		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
249		    ddt_get_pool_dedup_ratio(spa), src);
250
251		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
252		    rvd->vdev_state, src);
253
254		version = spa_version(spa);
255		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
256			src = ZPROP_SRC_DEFAULT;
257		else
258			src = ZPROP_SRC_LOCAL;
259		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
260	}
261
262	if (pool != NULL) {
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (pool->dp_free_dir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
270			    src);
271		} else {
272			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
273			    NULL, 0, src);
274		}
275
276		if (pool->dp_leak_dir != NULL) {
277			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
278			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
279			    src);
280		} else {
281			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
282			    NULL, 0, src);
283		}
284	}
285
286	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
287
288	if (spa->spa_comment != NULL) {
289		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
290		    0, ZPROP_SRC_LOCAL);
291	}
292
293	if (spa->spa_root != NULL)
294		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
295		    0, ZPROP_SRC_LOCAL);
296
297	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
298		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
299		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
300	} else {
301		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
302		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
303	}
304
305	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
306		if (dp->scd_path == NULL) {
307			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
308			    "none", 0, ZPROP_SRC_LOCAL);
309		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
310			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
311			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
312		}
313	}
314}
315
316/*
317 * Get zpool property values.
318 */
319int
320spa_prop_get(spa_t *spa, nvlist_t **nvp)
321{
322	objset_t *mos = spa->spa_meta_objset;
323	zap_cursor_t zc;
324	zap_attribute_t za;
325	int err;
326
327	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
328
329	mutex_enter(&spa->spa_props_lock);
330
331	/*
332	 * Get properties from the spa config.
333	 */
334	spa_prop_get_config(spa, nvp);
335
336	/* If no pool property object, no more prop to get. */
337	if (mos == NULL || spa->spa_pool_props_object == 0) {
338		mutex_exit(&spa->spa_props_lock);
339		return (0);
340	}
341
342	/*
343	 * Get properties from the MOS pool property object.
344	 */
345	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
346	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
347	    zap_cursor_advance(&zc)) {
348		uint64_t intval = 0;
349		char *strval = NULL;
350		zprop_source_t src = ZPROP_SRC_DEFAULT;
351		zpool_prop_t prop;
352
353		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
354			continue;
355
356		switch (za.za_integer_length) {
357		case 8:
358			/* integer property */
359			if (za.za_first_integer !=
360			    zpool_prop_default_numeric(prop))
361				src = ZPROP_SRC_LOCAL;
362
363			if (prop == ZPOOL_PROP_BOOTFS) {
364				dsl_pool_t *dp;
365				dsl_dataset_t *ds = NULL;
366
367				dp = spa_get_dsl(spa);
368				dsl_pool_config_enter(dp, FTAG);
369				if (err = dsl_dataset_hold_obj(dp,
370				    za.za_first_integer, FTAG, &ds)) {
371					dsl_pool_config_exit(dp, FTAG);
372					break;
373				}
374
375				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
376				    KM_SLEEP);
377				dsl_dataset_name(ds, strval);
378				dsl_dataset_rele(ds, FTAG);
379				dsl_pool_config_exit(dp, FTAG);
380			} else {
381				strval = NULL;
382				intval = za.za_first_integer;
383			}
384
385			spa_prop_add_list(*nvp, prop, strval, intval, src);
386
387			if (strval != NULL)
388				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
389
390			break;
391
392		case 1:
393			/* string property */
394			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
395			err = zap_lookup(mos, spa->spa_pool_props_object,
396			    za.za_name, 1, za.za_num_integers, strval);
397			if (err) {
398				kmem_free(strval, za.za_num_integers);
399				break;
400			}
401			spa_prop_add_list(*nvp, prop, strval, 0, src);
402			kmem_free(strval, za.za_num_integers);
403			break;
404
405		default:
406			break;
407		}
408	}
409	zap_cursor_fini(&zc);
410	mutex_exit(&spa->spa_props_lock);
411out:
412	if (err && err != ENOENT) {
413		nvlist_free(*nvp);
414		*nvp = NULL;
415		return (err);
416	}
417
418	return (0);
419}
420
421/*
422 * Validate the given pool properties nvlist and modify the list
423 * for the property values to be set.
424 */
425static int
426spa_prop_validate(spa_t *spa, nvlist_t *props)
427{
428	nvpair_t *elem;
429	int error = 0, reset_bootfs = 0;
430	uint64_t objnum = 0;
431	boolean_t has_feature = B_FALSE;
432
433	elem = NULL;
434	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
435		uint64_t intval;
436		char *strval, *slash, *check, *fname;
437		const char *propname = nvpair_name(elem);
438		zpool_prop_t prop = zpool_name_to_prop(propname);
439
440		switch (prop) {
441		case ZPROP_INVAL:
442			if (!zpool_prop_feature(propname)) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			/*
448			 * Sanitize the input.
449			 */
450			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (nvpair_value_uint64(elem, &intval) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			if (intval != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			fname = strchr(propname, '@') + 1;
466			if (zfeature_lookup_name(fname, NULL) != 0) {
467				error = SET_ERROR(EINVAL);
468				break;
469			}
470
471			has_feature = B_TRUE;
472			break;
473
474		case ZPOOL_PROP_VERSION:
475			error = nvpair_value_uint64(elem, &intval);
476			if (!error &&
477			    (intval < spa_version(spa) ||
478			    intval > SPA_VERSION_BEFORE_FEATURES ||
479			    has_feature))
480				error = SET_ERROR(EINVAL);
481			break;
482
483		case ZPOOL_PROP_DELEGATION:
484		case ZPOOL_PROP_AUTOREPLACE:
485		case ZPOOL_PROP_LISTSNAPS:
486		case ZPOOL_PROP_AUTOEXPAND:
487			error = nvpair_value_uint64(elem, &intval);
488			if (!error && intval > 1)
489				error = SET_ERROR(EINVAL);
490			break;
491
492		case ZPOOL_PROP_BOOTFS:
493			/*
494			 * If the pool version is less than SPA_VERSION_BOOTFS,
495			 * or the pool is still being created (version == 0),
496			 * the bootfs property cannot be set.
497			 */
498			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			/*
504			 * Make sure the vdev config is bootable
505			 */
506			if (!vdev_is_bootable(spa->spa_root_vdev)) {
507				error = SET_ERROR(ENOTSUP);
508				break;
509			}
510
511			reset_bootfs = 1;
512
513			error = nvpair_value_string(elem, &strval);
514
515			if (!error) {
516				objset_t *os;
517				uint64_t propval;
518
519				if (strval == NULL || strval[0] == '\0') {
520					objnum = zpool_prop_default_numeric(
521					    ZPOOL_PROP_BOOTFS);
522					break;
523				}
524
525				if (error = dmu_objset_hold(strval, FTAG, &os))
526					break;
527
528				/*
529				 * Must be ZPL, and its property settings
530				 * must be supported by GRUB (compression
531				 * is not gzip, and large blocks are not used).
532				 */
533
534				if (dmu_objset_type(os) != DMU_OST_ZFS) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
539				    &propval)) == 0 &&
540				    !BOOTFS_COMPRESS_VALID(propval)) {
541					error = SET_ERROR(ENOTSUP);
542				} else if ((error =
543				    dsl_prop_get_int_ds(dmu_objset_ds(os),
544				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
545				    &propval)) == 0 &&
546				    propval > SPA_OLD_MAXBLOCKSIZE) {
547					error = SET_ERROR(ENOTSUP);
548				} else {
549					objnum = dmu_objset_id(os);
550				}
551				dmu_objset_rele(os, FTAG);
552			}
553			break;
554
555		case ZPOOL_PROP_FAILUREMODE:
556			error = nvpair_value_uint64(elem, &intval);
557			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
558			    intval > ZIO_FAILURE_MODE_PANIC))
559				error = SET_ERROR(EINVAL);
560
561			/*
562			 * This is a special case which only occurs when
563			 * the pool has completely failed. This allows
564			 * the user to change the in-core failmode property
565			 * without syncing it out to disk (I/Os might
566			 * currently be blocked). We do this by returning
567			 * EIO to the caller (spa_prop_set) to trick it
568			 * into thinking we encountered a property validation
569			 * error.
570			 */
571			if (!error && spa_suspended(spa)) {
572				spa->spa_failmode = intval;
573				error = SET_ERROR(EIO);
574			}
575			break;
576
577		case ZPOOL_PROP_CACHEFILE:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580
581			if (strval[0] == '\0')
582				break;
583
584			if (strcmp(strval, "none") == 0)
585				break;
586
587			if (strval[0] != '/') {
588				error = SET_ERROR(EINVAL);
589				break;
590			}
591
592			slash = strrchr(strval, '/');
593			ASSERT(slash != NULL);
594
595			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
596			    strcmp(slash, "/..") == 0)
597				error = SET_ERROR(EINVAL);
598			break;
599
600		case ZPOOL_PROP_COMMENT:
601			if ((error = nvpair_value_string(elem, &strval)) != 0)
602				break;
603			for (check = strval; *check != '\0'; check++) {
604				/*
605				 * The kernel doesn't have an easy isprint()
606				 * check.  For this kernel check, we merely
607				 * check ASCII apart from DEL.  Fix this if
608				 * there is an easy-to-use kernel isprint().
609				 */
610				if (*check >= 0x7f) {
611					error = SET_ERROR(EINVAL);
612					break;
613				}
614			}
615			if (strlen(strval) > ZPROP_MAX_COMMENT)
616				error = E2BIG;
617			break;
618
619		case ZPOOL_PROP_DEDUPDITTO:
620			if (spa_version(spa) < SPA_VERSION_DEDUP)
621				error = SET_ERROR(ENOTSUP);
622			else
623				error = nvpair_value_uint64(elem, &intval);
624			if (error == 0 &&
625			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
626				error = SET_ERROR(EINVAL);
627			break;
628		}
629
630		if (error)
631			break;
632	}
633
634	if (!error && reset_bootfs) {
635		error = nvlist_remove(props,
636		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
637
638		if (!error) {
639			error = nvlist_add_uint64(props,
640			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
641		}
642	}
643
644	return (error);
645}
646
647void
648spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
649{
650	char *cachefile;
651	spa_config_dirent_t *dp;
652
653	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
654	    &cachefile) != 0)
655		return;
656
657	dp = kmem_alloc(sizeof (spa_config_dirent_t),
658	    KM_SLEEP);
659
660	if (cachefile[0] == '\0')
661		dp->scd_path = spa_strdup(spa_config_path);
662	else if (strcmp(cachefile, "none") == 0)
663		dp->scd_path = NULL;
664	else
665		dp->scd_path = spa_strdup(cachefile);
666
667	list_insert_head(&spa->spa_config_list, dp);
668	if (need_sync)
669		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
670}
671
672int
673spa_prop_set(spa_t *spa, nvlist_t *nvp)
674{
675	int error;
676	nvpair_t *elem = NULL;
677	boolean_t need_sync = B_FALSE;
678
679	if ((error = spa_prop_validate(spa, nvp)) != 0)
680		return (error);
681
682	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
683		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
684
685		if (prop == ZPOOL_PROP_CACHEFILE ||
686		    prop == ZPOOL_PROP_ALTROOT ||
687		    prop == ZPOOL_PROP_READONLY)
688			continue;
689
690		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
691			uint64_t ver;
692
693			if (prop == ZPOOL_PROP_VERSION) {
694				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
695			} else {
696				ASSERT(zpool_prop_feature(nvpair_name(elem)));
697				ver = SPA_VERSION_FEATURES;
698				need_sync = B_TRUE;
699			}
700
701			/* Save time if the version is already set. */
702			if (ver == spa_version(spa))
703				continue;
704
705			/*
706			 * In addition to the pool directory object, we might
707			 * create the pool properties object, the features for
708			 * read object, the features for write object, or the
709			 * feature descriptions object.
710			 */
711			error = dsl_sync_task(spa->spa_name, NULL,
712			    spa_sync_version, &ver,
713			    6, ZFS_SPACE_CHECK_RESERVED);
714			if (error)
715				return (error);
716			continue;
717		}
718
719		need_sync = B_TRUE;
720		break;
721	}
722
723	if (need_sync) {
724		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
725		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
726	}
727
728	return (0);
729}
730
731/*
732 * If the bootfs property value is dsobj, clear it.
733 */
734void
735spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
736{
737	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
738		VERIFY(zap_remove(spa->spa_meta_objset,
739		    spa->spa_pool_props_object,
740		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
741		spa->spa_bootfs = 0;
742	}
743}
744
745/*ARGSUSED*/
746static int
747spa_change_guid_check(void *arg, dmu_tx_t *tx)
748{
749	uint64_t *newguid = arg;
750	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751	vdev_t *rvd = spa->spa_root_vdev;
752	uint64_t vdev_state;
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	vdev_state = rvd->vdev_state;
756	spa_config_exit(spa, SCL_STATE, FTAG);
757
758	if (vdev_state != VDEV_STATE_HEALTHY)
759		return (SET_ERROR(ENXIO));
760
761	ASSERT3U(spa_guid(spa), !=, *newguid);
762
763	return (0);
764}
765
766static void
767spa_change_guid_sync(void *arg, dmu_tx_t *tx)
768{
769	uint64_t *newguid = arg;
770	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
771	uint64_t oldguid;
772	vdev_t *rvd = spa->spa_root_vdev;
773
774	oldguid = spa_guid(spa);
775
776	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
777	rvd->vdev_guid = *newguid;
778	rvd->vdev_guid_sum += (*newguid - oldguid);
779	vdev_config_dirty(rvd);
780	spa_config_exit(spa, SCL_STATE, FTAG);
781
782	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
783	    oldguid, *newguid);
784}
785
786/*
787 * Change the GUID for the pool.  This is done so that we can later
788 * re-import a pool built from a clone of our own vdevs.  We will modify
789 * the root vdev's guid, our own pool guid, and then mark all of our
790 * vdevs dirty.  Note that we must make sure that all our vdevs are
791 * online when we do this, or else any vdevs that weren't present
792 * would be orphaned from our pool.  We are also going to issue a
793 * sysevent to update any watchers.
794 */
795int
796spa_change_guid(spa_t *spa)
797{
798	int error;
799	uint64_t guid;
800
801	mutex_enter(&spa->spa_vdev_top_lock);
802	mutex_enter(&spa_namespace_lock);
803	guid = spa_generate_guid(NULL);
804
805	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
806	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
807
808	if (error == 0) {
809		spa_config_sync(spa, B_FALSE, B_TRUE);
810		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
811	}
812
813	mutex_exit(&spa_namespace_lock);
814	mutex_exit(&spa->spa_vdev_top_lock);
815
816	return (error);
817}
818
819/*
820 * ==========================================================================
821 * SPA state manipulation (open/create/destroy/import/export)
822 * ==========================================================================
823 */
824
825static int
826spa_error_entry_compare(const void *a, const void *b)
827{
828	spa_error_entry_t *sa = (spa_error_entry_t *)a;
829	spa_error_entry_t *sb = (spa_error_entry_t *)b;
830	int ret;
831
832	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
833	    sizeof (zbookmark_phys_t));
834
835	if (ret < 0)
836		return (-1);
837	else if (ret > 0)
838		return (1);
839	else
840		return (0);
841}
842
843/*
844 * Utility function which retrieves copies of the current logs and
845 * re-initializes them in the process.
846 */
847void
848spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
849{
850	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
851
852	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
853	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
854
855	avl_create(&spa->spa_errlist_scrub,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858	avl_create(&spa->spa_errlist_last,
859	    spa_error_entry_compare, sizeof (spa_error_entry_t),
860	    offsetof(spa_error_entry_t, se_avl));
861}
862
863static void
864spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
865{
866	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867	enum zti_modes mode = ztip->zti_mode;
868	uint_t value = ztip->zti_value;
869	uint_t count = ztip->zti_count;
870	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
871	char name[32];
872	uint_t flags = 0;
873	boolean_t batch = B_FALSE;
874
875	if (mode == ZTI_MODE_NULL) {
876		tqs->stqs_count = 0;
877		tqs->stqs_taskq = NULL;
878		return;
879	}
880
881	ASSERT3U(count, >, 0);
882
883	tqs->stqs_count = count;
884	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
885
886	switch (mode) {
887	case ZTI_MODE_FIXED:
888		ASSERT3U(value, >=, 1);
889		value = MAX(value, 1);
890		break;
891
892	case ZTI_MODE_BATCH:
893		batch = B_TRUE;
894		flags |= TASKQ_THREADS_CPU_PCT;
895		value = zio_taskq_batch_pct;
896		break;
897
898	default:
899		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
900		    "spa_activate()",
901		    zio_type_name[t], zio_taskq_types[q], mode, value);
902		break;
903	}
904
905	for (uint_t i = 0; i < count; i++) {
906		taskq_t *tq;
907
908		if (count > 1) {
909			(void) snprintf(name, sizeof (name), "%s_%s_%u",
910			    zio_type_name[t], zio_taskq_types[q], i);
911		} else {
912			(void) snprintf(name, sizeof (name), "%s_%s",
913			    zio_type_name[t], zio_taskq_types[q]);
914		}
915
916#ifdef SYSDC
917		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
918			if (batch)
919				flags |= TASKQ_DC_BATCH;
920
921			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
922			    spa->spa_proc, zio_taskq_basedc, flags);
923		} else {
924#endif
925			pri_t pri = maxclsyspri;
926			/*
927			 * The write issue taskq can be extremely CPU
928			 * intensive.  Run it at slightly lower priority
929			 * than the other taskqs.
930			 */
931			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
932				pri++;
933
934			tq = taskq_create_proc(name, value, pri, 50,
935			    INT_MAX, spa->spa_proc, flags);
936#ifdef SYSDC
937		}
938#endif
939
940		tqs->stqs_taskq[i] = tq;
941	}
942}
943
944static void
945spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948
949	if (tqs->stqs_taskq == NULL) {
950		ASSERT0(tqs->stqs_count);
951		return;
952	}
953
954	for (uint_t i = 0; i < tqs->stqs_count; i++) {
955		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
956		taskq_destroy(tqs->stqs_taskq[i]);
957	}
958
959	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
960	tqs->stqs_taskq = NULL;
961}
962
963/*
964 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
965 * Note that a type may have multiple discrete taskqs to avoid lock contention
966 * on the taskq itself. In that case we choose which taskq at random by using
967 * the low bits of gethrtime().
968 */
969void
970spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
971    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
972{
973	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
974	taskq_t *tq;
975
976	ASSERT3P(tqs->stqs_taskq, !=, NULL);
977	ASSERT3U(tqs->stqs_count, !=, 0);
978
979	if (tqs->stqs_count == 1) {
980		tq = tqs->stqs_taskq[0];
981	} else {
982#ifdef _KERNEL
983		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
984#else
985		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
986#endif
987	}
988
989	taskq_dispatch_ent(tq, func, arg, flags, ent);
990}
991
992static void
993spa_create_zio_taskqs(spa_t *spa)
994{
995	for (int t = 0; t < ZIO_TYPES; t++) {
996		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
997			spa_taskqs_init(spa, t, q);
998		}
999	}
1000}
1001
1002#ifdef _KERNEL
1003#ifdef SPA_PROCESS
1004static void
1005spa_thread(void *arg)
1006{
1007	callb_cpr_t cprinfo;
1008
1009	spa_t *spa = arg;
1010	user_t *pu = PTOU(curproc);
1011
1012	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1013	    spa->spa_name);
1014
1015	ASSERT(curproc != &p0);
1016	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1017	    "zpool-%s", spa->spa_name);
1018	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1019
1020#ifdef PSRSET_BIND
1021	/* bind this thread to the requested psrset */
1022	if (zio_taskq_psrset_bind != PS_NONE) {
1023		pool_lock();
1024		mutex_enter(&cpu_lock);
1025		mutex_enter(&pidlock);
1026		mutex_enter(&curproc->p_lock);
1027
1028		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1029		    0, NULL, NULL) == 0)  {
1030			curthread->t_bind_pset = zio_taskq_psrset_bind;
1031		} else {
1032			cmn_err(CE_WARN,
1033			    "Couldn't bind process for zfs pool \"%s\" to "
1034			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1035		}
1036
1037		mutex_exit(&curproc->p_lock);
1038		mutex_exit(&pidlock);
1039		mutex_exit(&cpu_lock);
1040		pool_unlock();
1041	}
1042#endif
1043
1044#ifdef SYSDC
1045	if (zio_taskq_sysdc) {
1046		sysdc_thread_enter(curthread, 100, 0);
1047	}
1048#endif
1049
1050	spa->spa_proc = curproc;
1051	spa->spa_did = curthread->t_did;
1052
1053	spa_create_zio_taskqs(spa);
1054
1055	mutex_enter(&spa->spa_proc_lock);
1056	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1057
1058	spa->spa_proc_state = SPA_PROC_ACTIVE;
1059	cv_broadcast(&spa->spa_proc_cv);
1060
1061	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1062	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1063		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1064	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1065
1066	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1067	spa->spa_proc_state = SPA_PROC_GONE;
1068	spa->spa_proc = &p0;
1069	cv_broadcast(&spa->spa_proc_cv);
1070	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1071
1072	mutex_enter(&curproc->p_lock);
1073	lwp_exit();
1074}
1075#endif	/* SPA_PROCESS */
1076#endif
1077
1078/*
1079 * Activate an uninitialized pool.
1080 */
1081static void
1082spa_activate(spa_t *spa, int mode)
1083{
1084	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1085
1086	spa->spa_state = POOL_STATE_ACTIVE;
1087	spa->spa_mode = mode;
1088
1089	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091
1092	/* Try to create a covering process */
1093	mutex_enter(&spa->spa_proc_lock);
1094	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1095	ASSERT(spa->spa_proc == &p0);
1096	spa->spa_did = 0;
1097
1098#ifdef SPA_PROCESS
1099	/* Only create a process if we're going to be around a while. */
1100	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1101		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1102		    NULL, 0) == 0) {
1103			spa->spa_proc_state = SPA_PROC_CREATED;
1104			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1105				cv_wait(&spa->spa_proc_cv,
1106				    &spa->spa_proc_lock);
1107			}
1108			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1109			ASSERT(spa->spa_proc != &p0);
1110			ASSERT(spa->spa_did != 0);
1111		} else {
1112#ifdef _KERNEL
1113			cmn_err(CE_WARN,
1114			    "Couldn't create process for zfs pool \"%s\"\n",
1115			    spa->spa_name);
1116#endif
1117		}
1118	}
1119#endif	/* SPA_PROCESS */
1120	mutex_exit(&spa->spa_proc_lock);
1121
1122	/* If we didn't create a process, we need to create our taskqs. */
1123	ASSERT(spa->spa_proc == &p0);
1124	if (spa->spa_proc == &p0) {
1125		spa_create_zio_taskqs(spa);
1126	}
1127
1128	/*
1129	 * Start TRIM thread.
1130	 */
1131	trim_thread_create(spa);
1132
1133	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_config_dirty_node));
1135	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1136	    offsetof(objset_t, os_evicting_node));
1137	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1138	    offsetof(vdev_t, vdev_state_dirty_node));
1139
1140	txg_list_create(&spa->spa_vdev_txg_list,
1141	    offsetof(struct vdev, vdev_txg_node));
1142
1143	avl_create(&spa->spa_errlist_scrub,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146	avl_create(&spa->spa_errlist_last,
1147	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1148	    offsetof(spa_error_entry_t, se_avl));
1149}
1150
1151/*
1152 * Opposite of spa_activate().
1153 */
1154static void
1155spa_deactivate(spa_t *spa)
1156{
1157	ASSERT(spa->spa_sync_on == B_FALSE);
1158	ASSERT(spa->spa_dsl_pool == NULL);
1159	ASSERT(spa->spa_root_vdev == NULL);
1160	ASSERT(spa->spa_async_zio_root == NULL);
1161	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1162
1163	/*
1164	 * Stop TRIM thread in case spa_unload() wasn't called directly
1165	 * before spa_deactivate().
1166	 */
1167	trim_thread_destroy(spa);
1168
1169	spa_evicting_os_wait(spa);
1170
1171	txg_list_destroy(&spa->spa_vdev_txg_list);
1172
1173	list_destroy(&spa->spa_config_dirty_list);
1174	list_destroy(&spa->spa_evicting_os_list);
1175	list_destroy(&spa->spa_state_dirty_list);
1176
1177	for (int t = 0; t < ZIO_TYPES; t++) {
1178		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1179			spa_taskqs_fini(spa, t, q);
1180		}
1181	}
1182
1183	metaslab_class_destroy(spa->spa_normal_class);
1184	spa->spa_normal_class = NULL;
1185
1186	metaslab_class_destroy(spa->spa_log_class);
1187	spa->spa_log_class = NULL;
1188
1189	/*
1190	 * If this was part of an import or the open otherwise failed, we may
1191	 * still have errors left in the queues.  Empty them just in case.
1192	 */
1193	spa_errlog_drain(spa);
1194
1195	avl_destroy(&spa->spa_errlist_scrub);
1196	avl_destroy(&spa->spa_errlist_last);
1197
1198	spa->spa_state = POOL_STATE_UNINITIALIZED;
1199
1200	mutex_enter(&spa->spa_proc_lock);
1201	if (spa->spa_proc_state != SPA_PROC_NONE) {
1202		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1203		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1204		cv_broadcast(&spa->spa_proc_cv);
1205		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1206			ASSERT(spa->spa_proc != &p0);
1207			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1208		}
1209		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1210		spa->spa_proc_state = SPA_PROC_NONE;
1211	}
1212	ASSERT(spa->spa_proc == &p0);
1213	mutex_exit(&spa->spa_proc_lock);
1214
1215#ifdef SPA_PROCESS
1216	/*
1217	 * We want to make sure spa_thread() has actually exited the ZFS
1218	 * module, so that the module can't be unloaded out from underneath
1219	 * it.
1220	 */
1221	if (spa->spa_did != 0) {
1222		thread_join(spa->spa_did);
1223		spa->spa_did = 0;
1224	}
1225#endif	/* SPA_PROCESS */
1226}
1227
1228/*
1229 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1230 * will create all the necessary vdevs in the appropriate layout, with each vdev
1231 * in the CLOSED state.  This will prep the pool before open/creation/import.
1232 * All vdev validation is done by the vdev_alloc() routine.
1233 */
1234static int
1235spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1236    uint_t id, int atype)
1237{
1238	nvlist_t **child;
1239	uint_t children;
1240	int error;
1241
1242	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1243		return (error);
1244
1245	if ((*vdp)->vdev_ops->vdev_op_leaf)
1246		return (0);
1247
1248	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1249	    &child, &children);
1250
1251	if (error == ENOENT)
1252		return (0);
1253
1254	if (error) {
1255		vdev_free(*vdp);
1256		*vdp = NULL;
1257		return (SET_ERROR(EINVAL));
1258	}
1259
1260	for (int c = 0; c < children; c++) {
1261		vdev_t *vd;
1262		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1263		    atype)) != 0) {
1264			vdev_free(*vdp);
1265			*vdp = NULL;
1266			return (error);
1267		}
1268	}
1269
1270	ASSERT(*vdp != NULL);
1271
1272	return (0);
1273}
1274
1275/*
1276 * Opposite of spa_load().
1277 */
1278static void
1279spa_unload(spa_t *spa)
1280{
1281	int i;
1282
1283	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1284
1285	/*
1286	 * Stop TRIM thread.
1287	 */
1288	trim_thread_destroy(spa);
1289
1290	/*
1291	 * Stop async tasks.
1292	 */
1293	spa_async_suspend(spa);
1294
1295	/*
1296	 * Stop syncing.
1297	 */
1298	if (spa->spa_sync_on) {
1299		txg_sync_stop(spa->spa_dsl_pool);
1300		spa->spa_sync_on = B_FALSE;
1301	}
1302
1303	/*
1304	 * Wait for any outstanding async I/O to complete.
1305	 */
1306	if (spa->spa_async_zio_root != NULL) {
1307		for (int i = 0; i < max_ncpus; i++)
1308			(void) zio_wait(spa->spa_async_zio_root[i]);
1309		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1310		spa->spa_async_zio_root = NULL;
1311	}
1312
1313	bpobj_close(&spa->spa_deferred_bpobj);
1314
1315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316
1317	/*
1318	 * Close all vdevs.
1319	 */
1320	if (spa->spa_root_vdev)
1321		vdev_free(spa->spa_root_vdev);
1322	ASSERT(spa->spa_root_vdev == NULL);
1323
1324	/*
1325	 * Close the dsl pool.
1326	 */
1327	if (spa->spa_dsl_pool) {
1328		dsl_pool_close(spa->spa_dsl_pool);
1329		spa->spa_dsl_pool = NULL;
1330		spa->spa_meta_objset = NULL;
1331	}
1332
1333	ddt_unload(spa);
1334
1335
1336	/*
1337	 * Drop and purge level 2 cache
1338	 */
1339	spa_l2cache_drop(spa);
1340
1341	for (i = 0; i < spa->spa_spares.sav_count; i++)
1342		vdev_free(spa->spa_spares.sav_vdevs[i]);
1343	if (spa->spa_spares.sav_vdevs) {
1344		kmem_free(spa->spa_spares.sav_vdevs,
1345		    spa->spa_spares.sav_count * sizeof (void *));
1346		spa->spa_spares.sav_vdevs = NULL;
1347	}
1348	if (spa->spa_spares.sav_config) {
1349		nvlist_free(spa->spa_spares.sav_config);
1350		spa->spa_spares.sav_config = NULL;
1351	}
1352	spa->spa_spares.sav_count = 0;
1353
1354	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1355		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1356		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1357	}
1358	if (spa->spa_l2cache.sav_vdevs) {
1359		kmem_free(spa->spa_l2cache.sav_vdevs,
1360		    spa->spa_l2cache.sav_count * sizeof (void *));
1361		spa->spa_l2cache.sav_vdevs = NULL;
1362	}
1363	if (spa->spa_l2cache.sav_config) {
1364		nvlist_free(spa->spa_l2cache.sav_config);
1365		spa->spa_l2cache.sav_config = NULL;
1366	}
1367	spa->spa_l2cache.sav_count = 0;
1368
1369	spa->spa_async_suspended = 0;
1370
1371	if (spa->spa_comment != NULL) {
1372		spa_strfree(spa->spa_comment);
1373		spa->spa_comment = NULL;
1374	}
1375
1376	spa_config_exit(spa, SCL_ALL, FTAG);
1377}
1378
1379/*
1380 * Load (or re-load) the current list of vdevs describing the active spares for
1381 * this pool.  When this is called, we have some form of basic information in
1382 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1383 * then re-generate a more complete list including status information.
1384 */
1385static void
1386spa_load_spares(spa_t *spa)
1387{
1388	nvlist_t **spares;
1389	uint_t nspares;
1390	int i;
1391	vdev_t *vd, *tvd;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	/*
1396	 * First, close and free any existing spare vdevs.
1397	 */
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		vd = spa->spa_spares.sav_vdevs[i];
1400
1401		/* Undo the call to spa_activate() below */
1402		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1403		    B_FALSE)) != NULL && tvd->vdev_isspare)
1404			spa_spare_remove(tvd);
1405		vdev_close(vd);
1406		vdev_free(vd);
1407	}
1408
1409	if (spa->spa_spares.sav_vdevs)
1410		kmem_free(spa->spa_spares.sav_vdevs,
1411		    spa->spa_spares.sav_count * sizeof (void *));
1412
1413	if (spa->spa_spares.sav_config == NULL)
1414		nspares = 0;
1415	else
1416		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1417		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1418
1419	spa->spa_spares.sav_count = (int)nspares;
1420	spa->spa_spares.sav_vdevs = NULL;
1421
1422	if (nspares == 0)
1423		return;
1424
1425	/*
1426	 * Construct the array of vdevs, opening them to get status in the
1427	 * process.   For each spare, there is potentially two different vdev_t
1428	 * structures associated with it: one in the list of spares (used only
1429	 * for basic validation purposes) and one in the active vdev
1430	 * configuration (if it's spared in).  During this phase we open and
1431	 * validate each vdev on the spare list.  If the vdev also exists in the
1432	 * active configuration, then we also mark this vdev as an active spare.
1433	 */
1434	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1435	    KM_SLEEP);
1436	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1437		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1438		    VDEV_ALLOC_SPARE) == 0);
1439		ASSERT(vd != NULL);
1440
1441		spa->spa_spares.sav_vdevs[i] = vd;
1442
1443		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1444		    B_FALSE)) != NULL) {
1445			if (!tvd->vdev_isspare)
1446				spa_spare_add(tvd);
1447
1448			/*
1449			 * We only mark the spare active if we were successfully
1450			 * able to load the vdev.  Otherwise, importing a pool
1451			 * with a bad active spare would result in strange
1452			 * behavior, because multiple pool would think the spare
1453			 * is actively in use.
1454			 *
1455			 * There is a vulnerability here to an equally bizarre
1456			 * circumstance, where a dead active spare is later
1457			 * brought back to life (onlined or otherwise).  Given
1458			 * the rarity of this scenario, and the extra complexity
1459			 * it adds, we ignore the possibility.
1460			 */
1461			if (!vdev_is_dead(tvd))
1462				spa_spare_activate(tvd);
1463		}
1464
1465		vd->vdev_top = vd;
1466		vd->vdev_aux = &spa->spa_spares;
1467
1468		if (vdev_open(vd) != 0)
1469			continue;
1470
1471		if (vdev_validate_aux(vd) == 0)
1472			spa_spare_add(vd);
1473	}
1474
1475	/*
1476	 * Recompute the stashed list of spares, with status information
1477	 * this time.
1478	 */
1479	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1483	    KM_SLEEP);
1484	for (i = 0; i < spa->spa_spares.sav_count; i++)
1485		spares[i] = vdev_config_generate(spa,
1486		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1487	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1488	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1489	for (i = 0; i < spa->spa_spares.sav_count; i++)
1490		nvlist_free(spares[i]);
1491	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1492}
1493
1494/*
1495 * Load (or re-load) the current list of vdevs describing the active l2cache for
1496 * this pool.  When this is called, we have some form of basic information in
1497 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1498 * then re-generate a more complete list including status information.
1499 * Devices which are already active have their details maintained, and are
1500 * not re-opened.
1501 */
1502static void
1503spa_load_l2cache(spa_t *spa)
1504{
1505	nvlist_t **l2cache;
1506	uint_t nl2cache;
1507	int i, j, oldnvdevs;
1508	uint64_t guid;
1509	vdev_t *vd, **oldvdevs, **newvdevs;
1510	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1511
1512	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1513
1514	if (sav->sav_config != NULL) {
1515		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1516		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1517		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1518	} else {
1519		nl2cache = 0;
1520		newvdevs = NULL;
1521	}
1522
1523	oldvdevs = sav->sav_vdevs;
1524	oldnvdevs = sav->sav_count;
1525	sav->sav_vdevs = NULL;
1526	sav->sav_count = 0;
1527
1528	/*
1529	 * Process new nvlist of vdevs.
1530	 */
1531	for (i = 0; i < nl2cache; i++) {
1532		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1533		    &guid) == 0);
1534
1535		newvdevs[i] = NULL;
1536		for (j = 0; j < oldnvdevs; j++) {
1537			vd = oldvdevs[j];
1538			if (vd != NULL && guid == vd->vdev_guid) {
1539				/*
1540				 * Retain previous vdev for add/remove ops.
1541				 */
1542				newvdevs[i] = vd;
1543				oldvdevs[j] = NULL;
1544				break;
1545			}
1546		}
1547
1548		if (newvdevs[i] == NULL) {
1549			/*
1550			 * Create new vdev
1551			 */
1552			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1553			    VDEV_ALLOC_L2CACHE) == 0);
1554			ASSERT(vd != NULL);
1555			newvdevs[i] = vd;
1556
1557			/*
1558			 * Commit this vdev as an l2cache device,
1559			 * even if it fails to open.
1560			 */
1561			spa_l2cache_add(vd);
1562
1563			vd->vdev_top = vd;
1564			vd->vdev_aux = sav;
1565
1566			spa_l2cache_activate(vd);
1567
1568			if (vdev_open(vd) != 0)
1569				continue;
1570
1571			(void) vdev_validate_aux(vd);
1572
1573			if (!vdev_is_dead(vd))
1574				l2arc_add_vdev(spa, vd);
1575		}
1576	}
1577
1578	/*
1579	 * Purge vdevs that were dropped
1580	 */
1581	for (i = 0; i < oldnvdevs; i++) {
1582		uint64_t pool;
1583
1584		vd = oldvdevs[i];
1585		if (vd != NULL) {
1586			ASSERT(vd->vdev_isl2cache);
1587
1588			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1589			    pool != 0ULL && l2arc_vdev_present(vd))
1590				l2arc_remove_vdev(vd);
1591			vdev_clear_stats(vd);
1592			vdev_free(vd);
1593		}
1594	}
1595
1596	if (oldvdevs)
1597		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1598
1599	if (sav->sav_config == NULL)
1600		goto out;
1601
1602	sav->sav_vdevs = newvdevs;
1603	sav->sav_count = (int)nl2cache;
1604
1605	/*
1606	 * Recompute the stashed list of l2cache devices, with status
1607	 * information this time.
1608	 */
1609	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1610	    DATA_TYPE_NVLIST_ARRAY) == 0);
1611
1612	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1613	for (i = 0; i < sav->sav_count; i++)
1614		l2cache[i] = vdev_config_generate(spa,
1615		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1616	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1617	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1618out:
1619	for (i = 0; i < sav->sav_count; i++)
1620		nvlist_free(l2cache[i]);
1621	if (sav->sav_count)
1622		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1623}
1624
1625static int
1626load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1627{
1628	dmu_buf_t *db;
1629	char *packed = NULL;
1630	size_t nvsize = 0;
1631	int error;
1632	*value = NULL;
1633
1634	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1635	if (error != 0)
1636		return (error);
1637
1638	nvsize = *(uint64_t *)db->db_data;
1639	dmu_buf_rele(db, FTAG);
1640
1641	packed = kmem_alloc(nvsize, KM_SLEEP);
1642	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1643	    DMU_READ_PREFETCH);
1644	if (error == 0)
1645		error = nvlist_unpack(packed, nvsize, value, 0);
1646	kmem_free(packed, nvsize);
1647
1648	return (error);
1649}
1650
1651/*
1652 * Checks to see if the given vdev could not be opened, in which case we post a
1653 * sysevent to notify the autoreplace code that the device has been removed.
1654 */
1655static void
1656spa_check_removed(vdev_t *vd)
1657{
1658	for (int c = 0; c < vd->vdev_children; c++)
1659		spa_check_removed(vd->vdev_child[c]);
1660
1661	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1662	    !vd->vdev_ishole) {
1663		zfs_post_autoreplace(vd->vdev_spa, vd);
1664		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1665	}
1666}
1667
1668static void
1669spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1670{
1671	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1672
1673	vd->vdev_top_zap = mvd->vdev_top_zap;
1674	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1675
1676	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1677		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1678	}
1679}
1680
1681/*
1682 * Validate the current config against the MOS config
1683 */
1684static boolean_t
1685spa_config_valid(spa_t *spa, nvlist_t *config)
1686{
1687	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1688	nvlist_t *nv;
1689
1690	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1691
1692	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1693	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1694
1695	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1696
1697	/*
1698	 * If we're doing a normal import, then build up any additional
1699	 * diagnostic information about missing devices in this config.
1700	 * We'll pass this up to the user for further processing.
1701	 */
1702	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1703		nvlist_t **child, *nv;
1704		uint64_t idx = 0;
1705
1706		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1707		    KM_SLEEP);
1708		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1709
1710		for (int c = 0; c < rvd->vdev_children; c++) {
1711			vdev_t *tvd = rvd->vdev_child[c];
1712			vdev_t *mtvd  = mrvd->vdev_child[c];
1713
1714			if (tvd->vdev_ops == &vdev_missing_ops &&
1715			    mtvd->vdev_ops != &vdev_missing_ops &&
1716			    mtvd->vdev_islog)
1717				child[idx++] = vdev_config_generate(spa, mtvd,
1718				    B_FALSE, 0);
1719		}
1720
1721		if (idx) {
1722			VERIFY(nvlist_add_nvlist_array(nv,
1723			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1724			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1725			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1726
1727			for (int i = 0; i < idx; i++)
1728				nvlist_free(child[i]);
1729		}
1730		nvlist_free(nv);
1731		kmem_free(child, rvd->vdev_children * sizeof (char **));
1732	}
1733
1734	/*
1735	 * Compare the root vdev tree with the information we have
1736	 * from the MOS config (mrvd). Check each top-level vdev
1737	 * with the corresponding MOS config top-level (mtvd).
1738	 */
1739	for (int c = 0; c < rvd->vdev_children; c++) {
1740		vdev_t *tvd = rvd->vdev_child[c];
1741		vdev_t *mtvd  = mrvd->vdev_child[c];
1742
1743		/*
1744		 * Resolve any "missing" vdevs in the current configuration.
1745		 * If we find that the MOS config has more accurate information
1746		 * about the top-level vdev then use that vdev instead.
1747		 */
1748		if (tvd->vdev_ops == &vdev_missing_ops &&
1749		    mtvd->vdev_ops != &vdev_missing_ops) {
1750
1751			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1752				continue;
1753
1754			/*
1755			 * Device specific actions.
1756			 */
1757			if (mtvd->vdev_islog) {
1758				spa_set_log_state(spa, SPA_LOG_CLEAR);
1759			} else {
1760				/*
1761				 * XXX - once we have 'readonly' pool
1762				 * support we should be able to handle
1763				 * missing data devices by transitioning
1764				 * the pool to readonly.
1765				 */
1766				continue;
1767			}
1768
1769			/*
1770			 * Swap the missing vdev with the data we were
1771			 * able to obtain from the MOS config.
1772			 */
1773			vdev_remove_child(rvd, tvd);
1774			vdev_remove_child(mrvd, mtvd);
1775
1776			vdev_add_child(rvd, mtvd);
1777			vdev_add_child(mrvd, tvd);
1778
1779			spa_config_exit(spa, SCL_ALL, FTAG);
1780			vdev_load(mtvd);
1781			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1782
1783			vdev_reopen(rvd);
1784		} else {
1785			if (mtvd->vdev_islog) {
1786				/*
1787				 * Load the slog device's state from the MOS
1788				 * config since it's possible that the label
1789				 * does not contain the most up-to-date
1790				 * information.
1791				 */
1792				vdev_load_log_state(tvd, mtvd);
1793				vdev_reopen(tvd);
1794			}
1795
1796			/*
1797			 * Per-vdev ZAP info is stored exclusively in the MOS.
1798			 */
1799			spa_config_valid_zaps(tvd, mtvd);
1800		}
1801	}
1802
1803	vdev_free(mrvd);
1804	spa_config_exit(spa, SCL_ALL, FTAG);
1805
1806	/*
1807	 * Ensure we were able to validate the config.
1808	 */
1809	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1810}
1811
1812/*
1813 * Check for missing log devices
1814 */
1815static boolean_t
1816spa_check_logs(spa_t *spa)
1817{
1818	boolean_t rv = B_FALSE;
1819	dsl_pool_t *dp = spa_get_dsl(spa);
1820
1821	switch (spa->spa_log_state) {
1822	case SPA_LOG_MISSING:
1823		/* need to recheck in case slog has been restored */
1824	case SPA_LOG_UNKNOWN:
1825		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1826		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1827		if (rv)
1828			spa_set_log_state(spa, SPA_LOG_MISSING);
1829		break;
1830	}
1831	return (rv);
1832}
1833
1834static boolean_t
1835spa_passivate_log(spa_t *spa)
1836{
1837	vdev_t *rvd = spa->spa_root_vdev;
1838	boolean_t slog_found = B_FALSE;
1839
1840	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1841
1842	if (!spa_has_slogs(spa))
1843		return (B_FALSE);
1844
1845	for (int c = 0; c < rvd->vdev_children; c++) {
1846		vdev_t *tvd = rvd->vdev_child[c];
1847		metaslab_group_t *mg = tvd->vdev_mg;
1848
1849		if (tvd->vdev_islog) {
1850			metaslab_group_passivate(mg);
1851			slog_found = B_TRUE;
1852		}
1853	}
1854
1855	return (slog_found);
1856}
1857
1858static void
1859spa_activate_log(spa_t *spa)
1860{
1861	vdev_t *rvd = spa->spa_root_vdev;
1862
1863	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1864
1865	for (int c = 0; c < rvd->vdev_children; c++) {
1866		vdev_t *tvd = rvd->vdev_child[c];
1867		metaslab_group_t *mg = tvd->vdev_mg;
1868
1869		if (tvd->vdev_islog)
1870			metaslab_group_activate(mg);
1871	}
1872}
1873
1874int
1875spa_offline_log(spa_t *spa)
1876{
1877	int error;
1878
1879	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1880	    NULL, DS_FIND_CHILDREN);
1881	if (error == 0) {
1882		/*
1883		 * We successfully offlined the log device, sync out the
1884		 * current txg so that the "stubby" block can be removed
1885		 * by zil_sync().
1886		 */
1887		txg_wait_synced(spa->spa_dsl_pool, 0);
1888	}
1889	return (error);
1890}
1891
1892static void
1893spa_aux_check_removed(spa_aux_vdev_t *sav)
1894{
1895	int i;
1896
1897	for (i = 0; i < sav->sav_count; i++)
1898		spa_check_removed(sav->sav_vdevs[i]);
1899}
1900
1901void
1902spa_claim_notify(zio_t *zio)
1903{
1904	spa_t *spa = zio->io_spa;
1905
1906	if (zio->io_error)
1907		return;
1908
1909	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1910	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1911		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1912	mutex_exit(&spa->spa_props_lock);
1913}
1914
1915typedef struct spa_load_error {
1916	uint64_t	sle_meta_count;
1917	uint64_t	sle_data_count;
1918} spa_load_error_t;
1919
1920static void
1921spa_load_verify_done(zio_t *zio)
1922{
1923	blkptr_t *bp = zio->io_bp;
1924	spa_load_error_t *sle = zio->io_private;
1925	dmu_object_type_t type = BP_GET_TYPE(bp);
1926	int error = zio->io_error;
1927	spa_t *spa = zio->io_spa;
1928
1929	if (error) {
1930		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1931		    type != DMU_OT_INTENT_LOG)
1932			atomic_inc_64(&sle->sle_meta_count);
1933		else
1934			atomic_inc_64(&sle->sle_data_count);
1935	}
1936	zio_data_buf_free(zio->io_data, zio->io_size);
1937
1938	mutex_enter(&spa->spa_scrub_lock);
1939	spa->spa_scrub_inflight--;
1940	cv_broadcast(&spa->spa_scrub_io_cv);
1941	mutex_exit(&spa->spa_scrub_lock);
1942}
1943
1944/*
1945 * Maximum number of concurrent scrub i/os to create while verifying
1946 * a pool while importing it.
1947 */
1948int spa_load_verify_maxinflight = 10000;
1949boolean_t spa_load_verify_metadata = B_TRUE;
1950boolean_t spa_load_verify_data = B_TRUE;
1951
1952SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1953    &spa_load_verify_maxinflight, 0,
1954    "Maximum number of concurrent scrub I/Os to create while verifying a "
1955    "pool while importing it");
1956
1957SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1958    &spa_load_verify_metadata, 0,
1959    "Check metadata on import?");
1960
1961SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1962    &spa_load_verify_data, 0,
1963    "Check user data on import?");
1964
1965/*ARGSUSED*/
1966static int
1967spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1968    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1969{
1970	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1971		return (0);
1972	/*
1973	 * Note: normally this routine will not be called if
1974	 * spa_load_verify_metadata is not set.  However, it may be useful
1975	 * to manually set the flag after the traversal has begun.
1976	 */
1977	if (!spa_load_verify_metadata)
1978		return (0);
1979	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1980		return (0);
1981
1982	zio_t *rio = arg;
1983	size_t size = BP_GET_PSIZE(bp);
1984	void *data = zio_data_buf_alloc(size);
1985
1986	mutex_enter(&spa->spa_scrub_lock);
1987	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1988		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1989	spa->spa_scrub_inflight++;
1990	mutex_exit(&spa->spa_scrub_lock);
1991
1992	zio_nowait(zio_read(rio, spa, bp, data, size,
1993	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1994	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1995	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1996	return (0);
1997}
1998
1999/* ARGSUSED */
2000int
2001verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2002{
2003	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2004		return (SET_ERROR(ENAMETOOLONG));
2005
2006	return (0);
2007}
2008
2009static int
2010spa_load_verify(spa_t *spa)
2011{
2012	zio_t *rio;
2013	spa_load_error_t sle = { 0 };
2014	zpool_rewind_policy_t policy;
2015	boolean_t verify_ok = B_FALSE;
2016	int error = 0;
2017
2018	zpool_get_rewind_policy(spa->spa_config, &policy);
2019
2020	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2021		return (0);
2022
2023	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2024	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2025	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2026	    DS_FIND_CHILDREN);
2027	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2028	if (error != 0)
2029		return (error);
2030
2031	rio = zio_root(spa, NULL, &sle,
2032	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2033
2034	if (spa_load_verify_metadata) {
2035		error = traverse_pool(spa, spa->spa_verify_min_txg,
2036		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2037		    spa_load_verify_cb, rio);
2038	}
2039
2040	(void) zio_wait(rio);
2041
2042	spa->spa_load_meta_errors = sle.sle_meta_count;
2043	spa->spa_load_data_errors = sle.sle_data_count;
2044
2045	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2046	    sle.sle_data_count <= policy.zrp_maxdata) {
2047		int64_t loss = 0;
2048
2049		verify_ok = B_TRUE;
2050		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2051		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2052
2053		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2054		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2055		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2056		VERIFY(nvlist_add_int64(spa->spa_load_info,
2057		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2058		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2059		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2060	} else {
2061		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2062	}
2063
2064	if (error) {
2065		if (error != ENXIO && error != EIO)
2066			error = SET_ERROR(EIO);
2067		return (error);
2068	}
2069
2070	return (verify_ok ? 0 : EIO);
2071}
2072
2073/*
2074 * Find a value in the pool props object.
2075 */
2076static void
2077spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2078{
2079	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2080	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2081}
2082
2083/*
2084 * Find a value in the pool directory object.
2085 */
2086static int
2087spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2088{
2089	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2090	    name, sizeof (uint64_t), 1, val));
2091}
2092
2093static int
2094spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2095{
2096	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2097	return (err);
2098}
2099
2100/*
2101 * Fix up config after a partly-completed split.  This is done with the
2102 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2103 * pool have that entry in their config, but only the splitting one contains
2104 * a list of all the guids of the vdevs that are being split off.
2105 *
2106 * This function determines what to do with that list: either rejoin
2107 * all the disks to the pool, or complete the splitting process.  To attempt
2108 * the rejoin, each disk that is offlined is marked online again, and
2109 * we do a reopen() call.  If the vdev label for every disk that was
2110 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2111 * then we call vdev_split() on each disk, and complete the split.
2112 *
2113 * Otherwise we leave the config alone, with all the vdevs in place in
2114 * the original pool.
2115 */
2116static void
2117spa_try_repair(spa_t *spa, nvlist_t *config)
2118{
2119	uint_t extracted;
2120	uint64_t *glist;
2121	uint_t i, gcount;
2122	nvlist_t *nvl;
2123	vdev_t **vd;
2124	boolean_t attempt_reopen;
2125
2126	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2127		return;
2128
2129	/* check that the config is complete */
2130	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2131	    &glist, &gcount) != 0)
2132		return;
2133
2134	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2135
2136	/* attempt to online all the vdevs & validate */
2137	attempt_reopen = B_TRUE;
2138	for (i = 0; i < gcount; i++) {
2139		if (glist[i] == 0)	/* vdev is hole */
2140			continue;
2141
2142		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2143		if (vd[i] == NULL) {
2144			/*
2145			 * Don't bother attempting to reopen the disks;
2146			 * just do the split.
2147			 */
2148			attempt_reopen = B_FALSE;
2149		} else {
2150			/* attempt to re-online it */
2151			vd[i]->vdev_offline = B_FALSE;
2152		}
2153	}
2154
2155	if (attempt_reopen) {
2156		vdev_reopen(spa->spa_root_vdev);
2157
2158		/* check each device to see what state it's in */
2159		for (extracted = 0, i = 0; i < gcount; i++) {
2160			if (vd[i] != NULL &&
2161			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2162				break;
2163			++extracted;
2164		}
2165	}
2166
2167	/*
2168	 * If every disk has been moved to the new pool, or if we never
2169	 * even attempted to look at them, then we split them off for
2170	 * good.
2171	 */
2172	if (!attempt_reopen || gcount == extracted) {
2173		for (i = 0; i < gcount; i++)
2174			if (vd[i] != NULL)
2175				vdev_split(vd[i]);
2176		vdev_reopen(spa->spa_root_vdev);
2177	}
2178
2179	kmem_free(vd, gcount * sizeof (vdev_t *));
2180}
2181
2182static int
2183spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2184    boolean_t mosconfig)
2185{
2186	nvlist_t *config = spa->spa_config;
2187	char *ereport = FM_EREPORT_ZFS_POOL;
2188	char *comment;
2189	int error;
2190	uint64_t pool_guid;
2191	nvlist_t *nvl;
2192
2193	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2194		return (SET_ERROR(EINVAL));
2195
2196	ASSERT(spa->spa_comment == NULL);
2197	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2198		spa->spa_comment = spa_strdup(comment);
2199
2200	/*
2201	 * Versioning wasn't explicitly added to the label until later, so if
2202	 * it's not present treat it as the initial version.
2203	 */
2204	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2205	    &spa->spa_ubsync.ub_version) != 0)
2206		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2207
2208	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2209	    &spa->spa_config_txg);
2210
2211	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2212	    spa_guid_exists(pool_guid, 0)) {
2213		error = SET_ERROR(EEXIST);
2214	} else {
2215		spa->spa_config_guid = pool_guid;
2216
2217		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2218		    &nvl) == 0) {
2219			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2220			    KM_SLEEP) == 0);
2221		}
2222
2223		nvlist_free(spa->spa_load_info);
2224		spa->spa_load_info = fnvlist_alloc();
2225
2226		gethrestime(&spa->spa_loaded_ts);
2227		error = spa_load_impl(spa, pool_guid, config, state, type,
2228		    mosconfig, &ereport);
2229	}
2230
2231	/*
2232	 * Don't count references from objsets that are already closed
2233	 * and are making their way through the eviction process.
2234	 */
2235	spa_evicting_os_wait(spa);
2236	spa->spa_minref = refcount_count(&spa->spa_refcount);
2237	if (error) {
2238		if (error != EEXIST) {
2239			spa->spa_loaded_ts.tv_sec = 0;
2240			spa->spa_loaded_ts.tv_nsec = 0;
2241		}
2242		if (error != EBADF) {
2243			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2244		}
2245	}
2246	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2247	spa->spa_ena = 0;
2248
2249	return (error);
2250}
2251
2252/*
2253 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2254 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2255 * spa's per-vdev ZAP list.
2256 */
2257static uint64_t
2258vdev_count_verify_zaps(vdev_t *vd)
2259{
2260	spa_t *spa = vd->vdev_spa;
2261	uint64_t total = 0;
2262	if (vd->vdev_top_zap != 0) {
2263		total++;
2264		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2265		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2266	}
2267	if (vd->vdev_leaf_zap != 0) {
2268		total++;
2269		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2270		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2271	}
2272
2273	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2274		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2275	}
2276
2277	return (total);
2278}
2279
2280/*
2281 * Load an existing storage pool, using the pool's builtin spa_config as a
2282 * source of configuration information.
2283 */
2284static int
2285spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2286    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2287    char **ereport)
2288{
2289	int error = 0;
2290	nvlist_t *nvroot = NULL;
2291	nvlist_t *label;
2292	vdev_t *rvd;
2293	uberblock_t *ub = &spa->spa_uberblock;
2294	uint64_t children, config_cache_txg = spa->spa_config_txg;
2295	int orig_mode = spa->spa_mode;
2296	int parse;
2297	uint64_t obj;
2298	boolean_t missing_feat_write = B_FALSE;
2299
2300	/*
2301	 * If this is an untrusted config, access the pool in read-only mode.
2302	 * This prevents things like resilvering recently removed devices.
2303	 */
2304	if (!mosconfig)
2305		spa->spa_mode = FREAD;
2306
2307	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2308
2309	spa->spa_load_state = state;
2310
2311	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2312		return (SET_ERROR(EINVAL));
2313
2314	parse = (type == SPA_IMPORT_EXISTING ?
2315	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2316
2317	/*
2318	 * Create "The Godfather" zio to hold all async IOs
2319	 */
2320	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2321	    KM_SLEEP);
2322	for (int i = 0; i < max_ncpus; i++) {
2323		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2324		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2325		    ZIO_FLAG_GODFATHER);
2326	}
2327
2328	/*
2329	 * Parse the configuration into a vdev tree.  We explicitly set the
2330	 * value that will be returned by spa_version() since parsing the
2331	 * configuration requires knowing the version number.
2332	 */
2333	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2334	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2335	spa_config_exit(spa, SCL_ALL, FTAG);
2336
2337	if (error != 0)
2338		return (error);
2339
2340	ASSERT(spa->spa_root_vdev == rvd);
2341	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2342	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2343
2344	if (type != SPA_IMPORT_ASSEMBLE) {
2345		ASSERT(spa_guid(spa) == pool_guid);
2346	}
2347
2348	/*
2349	 * Try to open all vdevs, loading each label in the process.
2350	 */
2351	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2352	error = vdev_open(rvd);
2353	spa_config_exit(spa, SCL_ALL, FTAG);
2354	if (error != 0)
2355		return (error);
2356
2357	/*
2358	 * We need to validate the vdev labels against the configuration that
2359	 * we have in hand, which is dependent on the setting of mosconfig. If
2360	 * mosconfig is true then we're validating the vdev labels based on
2361	 * that config.  Otherwise, we're validating against the cached config
2362	 * (zpool.cache) that was read when we loaded the zfs module, and then
2363	 * later we will recursively call spa_load() and validate against
2364	 * the vdev config.
2365	 *
2366	 * If we're assembling a new pool that's been split off from an
2367	 * existing pool, the labels haven't yet been updated so we skip
2368	 * validation for now.
2369	 */
2370	if (type != SPA_IMPORT_ASSEMBLE) {
2371		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2372		error = vdev_validate(rvd, mosconfig);
2373		spa_config_exit(spa, SCL_ALL, FTAG);
2374
2375		if (error != 0)
2376			return (error);
2377
2378		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2379			return (SET_ERROR(ENXIO));
2380	}
2381
2382	/*
2383	 * Find the best uberblock.
2384	 */
2385	vdev_uberblock_load(rvd, ub, &label);
2386
2387	/*
2388	 * If we weren't able to find a single valid uberblock, return failure.
2389	 */
2390	if (ub->ub_txg == 0) {
2391		nvlist_free(label);
2392		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2393	}
2394
2395	/*
2396	 * If the pool has an unsupported version we can't open it.
2397	 */
2398	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2399		nvlist_free(label);
2400		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2401	}
2402
2403	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2404		nvlist_t *features;
2405
2406		/*
2407		 * If we weren't able to find what's necessary for reading the
2408		 * MOS in the label, return failure.
2409		 */
2410		if (label == NULL || nvlist_lookup_nvlist(label,
2411		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2412			nvlist_free(label);
2413			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2414			    ENXIO));
2415		}
2416
2417		/*
2418		 * Update our in-core representation with the definitive values
2419		 * from the label.
2420		 */
2421		nvlist_free(spa->spa_label_features);
2422		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2423	}
2424
2425	nvlist_free(label);
2426
2427	/*
2428	 * Look through entries in the label nvlist's features_for_read. If
2429	 * there is a feature listed there which we don't understand then we
2430	 * cannot open a pool.
2431	 */
2432	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2433		nvlist_t *unsup_feat;
2434
2435		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2436		    0);
2437
2438		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2439		    NULL); nvp != NULL;
2440		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2441			if (!zfeature_is_supported(nvpair_name(nvp))) {
2442				VERIFY(nvlist_add_string(unsup_feat,
2443				    nvpair_name(nvp), "") == 0);
2444			}
2445		}
2446
2447		if (!nvlist_empty(unsup_feat)) {
2448			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2449			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2450			nvlist_free(unsup_feat);
2451			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2452			    ENOTSUP));
2453		}
2454
2455		nvlist_free(unsup_feat);
2456	}
2457
2458	/*
2459	 * If the vdev guid sum doesn't match the uberblock, we have an
2460	 * incomplete configuration.  We first check to see if the pool
2461	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2462	 * If it is, defer the vdev_guid_sum check till later so we
2463	 * can handle missing vdevs.
2464	 */
2465	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2466	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2467	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2468		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2469
2470	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2471		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2472		spa_try_repair(spa, config);
2473		spa_config_exit(spa, SCL_ALL, FTAG);
2474		nvlist_free(spa->spa_config_splitting);
2475		spa->spa_config_splitting = NULL;
2476	}
2477
2478	/*
2479	 * Initialize internal SPA structures.
2480	 */
2481	spa->spa_state = POOL_STATE_ACTIVE;
2482	spa->spa_ubsync = spa->spa_uberblock;
2483	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2484	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2485	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2486	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2487	spa->spa_claim_max_txg = spa->spa_first_txg;
2488	spa->spa_prev_software_version = ub->ub_software_version;
2489
2490	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2491	if (error)
2492		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2493	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2494
2495	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2496		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2497
2498	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2499		boolean_t missing_feat_read = B_FALSE;
2500		nvlist_t *unsup_feat, *enabled_feat;
2501
2502		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2503		    &spa->spa_feat_for_read_obj) != 0) {
2504			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2505		}
2506
2507		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2508		    &spa->spa_feat_for_write_obj) != 0) {
2509			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2510		}
2511
2512		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2513		    &spa->spa_feat_desc_obj) != 0) {
2514			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515		}
2516
2517		enabled_feat = fnvlist_alloc();
2518		unsup_feat = fnvlist_alloc();
2519
2520		if (!spa_features_check(spa, B_FALSE,
2521		    unsup_feat, enabled_feat))
2522			missing_feat_read = B_TRUE;
2523
2524		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2525			if (!spa_features_check(spa, B_TRUE,
2526			    unsup_feat, enabled_feat)) {
2527				missing_feat_write = B_TRUE;
2528			}
2529		}
2530
2531		fnvlist_add_nvlist(spa->spa_load_info,
2532		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2533
2534		if (!nvlist_empty(unsup_feat)) {
2535			fnvlist_add_nvlist(spa->spa_load_info,
2536			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2537		}
2538
2539		fnvlist_free(enabled_feat);
2540		fnvlist_free(unsup_feat);
2541
2542		if (!missing_feat_read) {
2543			fnvlist_add_boolean(spa->spa_load_info,
2544			    ZPOOL_CONFIG_CAN_RDONLY);
2545		}
2546
2547		/*
2548		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2549		 * twofold: to determine whether the pool is available for
2550		 * import in read-write mode and (if it is not) whether the
2551		 * pool is available for import in read-only mode. If the pool
2552		 * is available for import in read-write mode, it is displayed
2553		 * as available in userland; if it is not available for import
2554		 * in read-only mode, it is displayed as unavailable in
2555		 * userland. If the pool is available for import in read-only
2556		 * mode but not read-write mode, it is displayed as unavailable
2557		 * in userland with a special note that the pool is actually
2558		 * available for open in read-only mode.
2559		 *
2560		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2561		 * missing a feature for write, we must first determine whether
2562		 * the pool can be opened read-only before returning to
2563		 * userland in order to know whether to display the
2564		 * abovementioned note.
2565		 */
2566		if (missing_feat_read || (missing_feat_write &&
2567		    spa_writeable(spa))) {
2568			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2569			    ENOTSUP));
2570		}
2571
2572		/*
2573		 * Load refcounts for ZFS features from disk into an in-memory
2574		 * cache during SPA initialization.
2575		 */
2576		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2577			uint64_t refcount;
2578
2579			error = feature_get_refcount_from_disk(spa,
2580			    &spa_feature_table[i], &refcount);
2581			if (error == 0) {
2582				spa->spa_feat_refcount_cache[i] = refcount;
2583			} else if (error == ENOTSUP) {
2584				spa->spa_feat_refcount_cache[i] =
2585				    SPA_FEATURE_DISABLED;
2586			} else {
2587				return (spa_vdev_err(rvd,
2588				    VDEV_AUX_CORRUPT_DATA, EIO));
2589			}
2590		}
2591	}
2592
2593	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2594		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2595		    &spa->spa_feat_enabled_txg_obj) != 0)
2596			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597	}
2598
2599	spa->spa_is_initializing = B_TRUE;
2600	error = dsl_pool_open(spa->spa_dsl_pool);
2601	spa->spa_is_initializing = B_FALSE;
2602	if (error != 0)
2603		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605	if (!mosconfig) {
2606		uint64_t hostid;
2607		nvlist_t *policy = NULL, *nvconfig;
2608
2609		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2610			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2611
2612		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2613		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2614			char *hostname;
2615			unsigned long myhostid = 0;
2616
2617			VERIFY(nvlist_lookup_string(nvconfig,
2618			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2619
2620#ifdef	_KERNEL
2621			myhostid = zone_get_hostid(NULL);
2622#else	/* _KERNEL */
2623			/*
2624			 * We're emulating the system's hostid in userland, so
2625			 * we can't use zone_get_hostid().
2626			 */
2627			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2628#endif	/* _KERNEL */
2629			if (check_hostid && hostid != 0 && myhostid != 0 &&
2630			    hostid != myhostid) {
2631				nvlist_free(nvconfig);
2632				cmn_err(CE_WARN, "pool '%s' could not be "
2633				    "loaded as it was last accessed by "
2634				    "another system (host: %s hostid: 0x%lx). "
2635				    "See: http://illumos.org/msg/ZFS-8000-EY",
2636				    spa_name(spa), hostname,
2637				    (unsigned long)hostid);
2638				return (SET_ERROR(EBADF));
2639			}
2640		}
2641		if (nvlist_lookup_nvlist(spa->spa_config,
2642		    ZPOOL_REWIND_POLICY, &policy) == 0)
2643			VERIFY(nvlist_add_nvlist(nvconfig,
2644			    ZPOOL_REWIND_POLICY, policy) == 0);
2645
2646		spa_config_set(spa, nvconfig);
2647		spa_unload(spa);
2648		spa_deactivate(spa);
2649		spa_activate(spa, orig_mode);
2650
2651		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2652	}
2653
2654	/* Grab the secret checksum salt from the MOS. */
2655	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2656	    DMU_POOL_CHECKSUM_SALT, 1,
2657	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2658	    spa->spa_cksum_salt.zcs_bytes);
2659	if (error == ENOENT) {
2660		/* Generate a new salt for subsequent use */
2661		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2662		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2663	} else if (error != 0) {
2664		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2665	}
2666
2667	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2668		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2669	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2670	if (error != 0)
2671		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672
2673	/*
2674	 * Load the bit that tells us to use the new accounting function
2675	 * (raid-z deflation).  If we have an older pool, this will not
2676	 * be present.
2677	 */
2678	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2679	if (error != 0 && error != ENOENT)
2680		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2681
2682	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2683	    &spa->spa_creation_version);
2684	if (error != 0 && error != ENOENT)
2685		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2686
2687	/*
2688	 * Load the persistent error log.  If we have an older pool, this will
2689	 * not be present.
2690	 */
2691	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2692	if (error != 0 && error != ENOENT)
2693		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694
2695	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2696	    &spa->spa_errlog_scrub);
2697	if (error != 0 && error != ENOENT)
2698		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2699
2700	/*
2701	 * Load the history object.  If we have an older pool, this
2702	 * will not be present.
2703	 */
2704	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2705	if (error != 0 && error != ENOENT)
2706		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2707
2708	/*
2709	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2710	 * be present; in this case, defer its creation to a later time to
2711	 * avoid dirtying the MOS this early / out of sync context. See
2712	 * spa_sync_config_object.
2713	 */
2714
2715	/* The sentinel is only available in the MOS config. */
2716	nvlist_t *mos_config;
2717	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2718		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2719
2720	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2721	    &spa->spa_all_vdev_zaps);
2722
2723	if (error != ENOENT && error != 0) {
2724		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2725	} else if (error == 0 && !nvlist_exists(mos_config,
2726	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2727		/*
2728		 * An older version of ZFS overwrote the sentinel value, so
2729		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2730		 * destruction to later; see spa_sync_config_object.
2731		 */
2732		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2733		/*
2734		 * We're assuming that no vdevs have had their ZAPs created
2735		 * before this. Better be sure of it.
2736		 */
2737		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2738	}
2739	nvlist_free(mos_config);
2740
2741	/*
2742	 * If we're assembling the pool from the split-off vdevs of
2743	 * an existing pool, we don't want to attach the spares & cache
2744	 * devices.
2745	 */
2746
2747	/*
2748	 * Load any hot spares for this pool.
2749	 */
2750	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2751	if (error != 0 && error != ENOENT)
2752		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2753	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2754		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2755		if (load_nvlist(spa, spa->spa_spares.sav_object,
2756		    &spa->spa_spares.sav_config) != 0)
2757			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2758
2759		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2760		spa_load_spares(spa);
2761		spa_config_exit(spa, SCL_ALL, FTAG);
2762	} else if (error == 0) {
2763		spa->spa_spares.sav_sync = B_TRUE;
2764	}
2765
2766	/*
2767	 * Load any level 2 ARC devices for this pool.
2768	 */
2769	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2770	    &spa->spa_l2cache.sav_object);
2771	if (error != 0 && error != ENOENT)
2772		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2773	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2774		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2775		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2776		    &spa->spa_l2cache.sav_config) != 0)
2777			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2778
2779		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2780		spa_load_l2cache(spa);
2781		spa_config_exit(spa, SCL_ALL, FTAG);
2782	} else if (error == 0) {
2783		spa->spa_l2cache.sav_sync = B_TRUE;
2784	}
2785
2786	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2787
2788	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2789	if (error && error != ENOENT)
2790		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2791
2792	if (error == 0) {
2793		uint64_t autoreplace;
2794
2795		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2796		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2797		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2798		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2799		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2800		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2801		    &spa->spa_dedup_ditto);
2802
2803		spa->spa_autoreplace = (autoreplace != 0);
2804	}
2805
2806	/*
2807	 * If the 'autoreplace' property is set, then post a resource notifying
2808	 * the ZFS DE that it should not issue any faults for unopenable
2809	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2810	 * unopenable vdevs so that the normal autoreplace handler can take
2811	 * over.
2812	 */
2813	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2814		spa_check_removed(spa->spa_root_vdev);
2815		/*
2816		 * For the import case, this is done in spa_import(), because
2817		 * at this point we're using the spare definitions from
2818		 * the MOS config, not necessarily from the userland config.
2819		 */
2820		if (state != SPA_LOAD_IMPORT) {
2821			spa_aux_check_removed(&spa->spa_spares);
2822			spa_aux_check_removed(&spa->spa_l2cache);
2823		}
2824	}
2825
2826	/*
2827	 * Load the vdev state for all toplevel vdevs.
2828	 */
2829	vdev_load(rvd);
2830
2831	/*
2832	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2833	 */
2834	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2835	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2836	spa_config_exit(spa, SCL_ALL, FTAG);
2837
2838	/*
2839	 * Load the DDTs (dedup tables).
2840	 */
2841	error = ddt_load(spa);
2842	if (error != 0)
2843		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2844
2845	spa_update_dspace(spa);
2846
2847	/*
2848	 * Validate the config, using the MOS config to fill in any
2849	 * information which might be missing.  If we fail to validate
2850	 * the config then declare the pool unfit for use. If we're
2851	 * assembling a pool from a split, the log is not transferred
2852	 * over.
2853	 */
2854	if (type != SPA_IMPORT_ASSEMBLE) {
2855		nvlist_t *nvconfig;
2856
2857		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2858			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2859
2860		if (!spa_config_valid(spa, nvconfig)) {
2861			nvlist_free(nvconfig);
2862			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2863			    ENXIO));
2864		}
2865		nvlist_free(nvconfig);
2866
2867		/*
2868		 * Now that we've validated the config, check the state of the
2869		 * root vdev.  If it can't be opened, it indicates one or
2870		 * more toplevel vdevs are faulted.
2871		 */
2872		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2873			return (SET_ERROR(ENXIO));
2874
2875		if (spa_writeable(spa) && spa_check_logs(spa)) {
2876			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2877			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2878		}
2879	}
2880
2881	if (missing_feat_write) {
2882		ASSERT(state == SPA_LOAD_TRYIMPORT);
2883
2884		/*
2885		 * At this point, we know that we can open the pool in
2886		 * read-only mode but not read-write mode. We now have enough
2887		 * information and can return to userland.
2888		 */
2889		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2890	}
2891
2892	/*
2893	 * We've successfully opened the pool, verify that we're ready
2894	 * to start pushing transactions.
2895	 */
2896	if (state != SPA_LOAD_TRYIMPORT) {
2897		if (error = spa_load_verify(spa))
2898			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2899			    error));
2900	}
2901
2902	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2903	    spa->spa_load_max_txg == UINT64_MAX)) {
2904		dmu_tx_t *tx;
2905		int need_update = B_FALSE;
2906		dsl_pool_t *dp = spa_get_dsl(spa);
2907
2908		ASSERT(state != SPA_LOAD_TRYIMPORT);
2909
2910		/*
2911		 * Claim log blocks that haven't been committed yet.
2912		 * This must all happen in a single txg.
2913		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2914		 * invoked from zil_claim_log_block()'s i/o done callback.
2915		 * Price of rollback is that we abandon the log.
2916		 */
2917		spa->spa_claiming = B_TRUE;
2918
2919		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2920		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2921		    zil_claim, tx, DS_FIND_CHILDREN);
2922		dmu_tx_commit(tx);
2923
2924		spa->spa_claiming = B_FALSE;
2925
2926		spa_set_log_state(spa, SPA_LOG_GOOD);
2927		spa->spa_sync_on = B_TRUE;
2928		txg_sync_start(spa->spa_dsl_pool);
2929
2930		/*
2931		 * Wait for all claims to sync.  We sync up to the highest
2932		 * claimed log block birth time so that claimed log blocks
2933		 * don't appear to be from the future.  spa_claim_max_txg
2934		 * will have been set for us by either zil_check_log_chain()
2935		 * (invoked from spa_check_logs()) or zil_claim() above.
2936		 */
2937		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2938
2939		/*
2940		 * If the config cache is stale, or we have uninitialized
2941		 * metaslabs (see spa_vdev_add()), then update the config.
2942		 *
2943		 * If this is a verbatim import, trust the current
2944		 * in-core spa_config and update the disk labels.
2945		 */
2946		if (config_cache_txg != spa->spa_config_txg ||
2947		    state == SPA_LOAD_IMPORT ||
2948		    state == SPA_LOAD_RECOVER ||
2949		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2950			need_update = B_TRUE;
2951
2952		for (int c = 0; c < rvd->vdev_children; c++)
2953			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2954				need_update = B_TRUE;
2955
2956		/*
2957		 * Update the config cache asychronously in case we're the
2958		 * root pool, in which case the config cache isn't writable yet.
2959		 */
2960		if (need_update)
2961			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2962
2963		/*
2964		 * Check all DTLs to see if anything needs resilvering.
2965		 */
2966		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2967		    vdev_resilver_needed(rvd, NULL, NULL))
2968			spa_async_request(spa, SPA_ASYNC_RESILVER);
2969
2970		/*
2971		 * Log the fact that we booted up (so that we can detect if
2972		 * we rebooted in the middle of an operation).
2973		 */
2974		spa_history_log_version(spa, "open");
2975
2976		/*
2977		 * Delete any inconsistent datasets.
2978		 */
2979		(void) dmu_objset_find(spa_name(spa),
2980		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2981
2982		/*
2983		 * Clean up any stale temporary dataset userrefs.
2984		 */
2985		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2986	}
2987
2988	return (0);
2989}
2990
2991static int
2992spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2993{
2994	int mode = spa->spa_mode;
2995
2996	spa_unload(spa);
2997	spa_deactivate(spa);
2998
2999	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3000
3001	spa_activate(spa, mode);
3002	spa_async_suspend(spa);
3003
3004	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3005}
3006
3007/*
3008 * If spa_load() fails this function will try loading prior txg's. If
3009 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3010 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3011 * function will not rewind the pool and will return the same error as
3012 * spa_load().
3013 */
3014static int
3015spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3016    uint64_t max_request, int rewind_flags)
3017{
3018	nvlist_t *loadinfo = NULL;
3019	nvlist_t *config = NULL;
3020	int load_error, rewind_error;
3021	uint64_t safe_rewind_txg;
3022	uint64_t min_txg;
3023
3024	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3025		spa->spa_load_max_txg = spa->spa_load_txg;
3026		spa_set_log_state(spa, SPA_LOG_CLEAR);
3027	} else {
3028		spa->spa_load_max_txg = max_request;
3029		if (max_request != UINT64_MAX)
3030			spa->spa_extreme_rewind = B_TRUE;
3031	}
3032
3033	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3034	    mosconfig);
3035	if (load_error == 0)
3036		return (0);
3037
3038	if (spa->spa_root_vdev != NULL)
3039		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3040
3041	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3042	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3043
3044	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3045		nvlist_free(config);
3046		return (load_error);
3047	}
3048
3049	if (state == SPA_LOAD_RECOVER) {
3050		/* Price of rolling back is discarding txgs, including log */
3051		spa_set_log_state(spa, SPA_LOG_CLEAR);
3052	} else {
3053		/*
3054		 * If we aren't rolling back save the load info from our first
3055		 * import attempt so that we can restore it after attempting
3056		 * to rewind.
3057		 */
3058		loadinfo = spa->spa_load_info;
3059		spa->spa_load_info = fnvlist_alloc();
3060	}
3061
3062	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3063	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3064	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3065	    TXG_INITIAL : safe_rewind_txg;
3066
3067	/*
3068	 * Continue as long as we're finding errors, we're still within
3069	 * the acceptable rewind range, and we're still finding uberblocks
3070	 */
3071	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3072	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3073		if (spa->spa_load_max_txg < safe_rewind_txg)
3074			spa->spa_extreme_rewind = B_TRUE;
3075		rewind_error = spa_load_retry(spa, state, mosconfig);
3076	}
3077
3078	spa->spa_extreme_rewind = B_FALSE;
3079	spa->spa_load_max_txg = UINT64_MAX;
3080
3081	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3082		spa_config_set(spa, config);
3083
3084	if (state == SPA_LOAD_RECOVER) {
3085		ASSERT3P(loadinfo, ==, NULL);
3086		return (rewind_error);
3087	} else {
3088		/* Store the rewind info as part of the initial load info */
3089		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3090		    spa->spa_load_info);
3091
3092		/* Restore the initial load info */
3093		fnvlist_free(spa->spa_load_info);
3094		spa->spa_load_info = loadinfo;
3095
3096		return (load_error);
3097	}
3098}
3099
3100/*
3101 * Pool Open/Import
3102 *
3103 * The import case is identical to an open except that the configuration is sent
3104 * down from userland, instead of grabbed from the configuration cache.  For the
3105 * case of an open, the pool configuration will exist in the
3106 * POOL_STATE_UNINITIALIZED state.
3107 *
3108 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3109 * the same time open the pool, without having to keep around the spa_t in some
3110 * ambiguous state.
3111 */
3112static int
3113spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3114    nvlist_t **config)
3115{
3116	spa_t *spa;
3117	spa_load_state_t state = SPA_LOAD_OPEN;
3118	int error;
3119	int locked = B_FALSE;
3120	int firstopen = B_FALSE;
3121
3122	*spapp = NULL;
3123
3124	/*
3125	 * As disgusting as this is, we need to support recursive calls to this
3126	 * function because dsl_dir_open() is called during spa_load(), and ends
3127	 * up calling spa_open() again.  The real fix is to figure out how to
3128	 * avoid dsl_dir_open() calling this in the first place.
3129	 */
3130	if (mutex_owner(&spa_namespace_lock) != curthread) {
3131		mutex_enter(&spa_namespace_lock);
3132		locked = B_TRUE;
3133	}
3134
3135	if ((spa = spa_lookup(pool)) == NULL) {
3136		if (locked)
3137			mutex_exit(&spa_namespace_lock);
3138		return (SET_ERROR(ENOENT));
3139	}
3140
3141	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3142		zpool_rewind_policy_t policy;
3143
3144		firstopen = B_TRUE;
3145
3146		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3147		    &policy);
3148		if (policy.zrp_request & ZPOOL_DO_REWIND)
3149			state = SPA_LOAD_RECOVER;
3150
3151		spa_activate(spa, spa_mode_global);
3152
3153		if (state != SPA_LOAD_RECOVER)
3154			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3155
3156		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3157		    policy.zrp_request);
3158
3159		if (error == EBADF) {
3160			/*
3161			 * If vdev_validate() returns failure (indicated by
3162			 * EBADF), it indicates that one of the vdevs indicates
3163			 * that the pool has been exported or destroyed.  If
3164			 * this is the case, the config cache is out of sync and
3165			 * we should remove the pool from the namespace.
3166			 */
3167			spa_unload(spa);
3168			spa_deactivate(spa);
3169			spa_config_sync(spa, B_TRUE, B_TRUE);
3170			spa_remove(spa);
3171			if (locked)
3172				mutex_exit(&spa_namespace_lock);
3173			return (SET_ERROR(ENOENT));
3174		}
3175
3176		if (error) {
3177			/*
3178			 * We can't open the pool, but we still have useful
3179			 * information: the state of each vdev after the
3180			 * attempted vdev_open().  Return this to the user.
3181			 */
3182			if (config != NULL && spa->spa_config) {
3183				VERIFY(nvlist_dup(spa->spa_config, config,
3184				    KM_SLEEP) == 0);
3185				VERIFY(nvlist_add_nvlist(*config,
3186				    ZPOOL_CONFIG_LOAD_INFO,
3187				    spa->spa_load_info) == 0);
3188			}
3189			spa_unload(spa);
3190			spa_deactivate(spa);
3191			spa->spa_last_open_failed = error;
3192			if (locked)
3193				mutex_exit(&spa_namespace_lock);
3194			*spapp = NULL;
3195			return (error);
3196		}
3197	}
3198
3199	spa_open_ref(spa, tag);
3200
3201	if (config != NULL)
3202		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3203
3204	/*
3205	 * If we've recovered the pool, pass back any information we
3206	 * gathered while doing the load.
3207	 */
3208	if (state == SPA_LOAD_RECOVER) {
3209		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3210		    spa->spa_load_info) == 0);
3211	}
3212
3213	if (locked) {
3214		spa->spa_last_open_failed = 0;
3215		spa->spa_last_ubsync_txg = 0;
3216		spa->spa_load_txg = 0;
3217		mutex_exit(&spa_namespace_lock);
3218#ifdef __FreeBSD__
3219#ifdef _KERNEL
3220		if (firstopen)
3221			zvol_create_minors(spa->spa_name);
3222#endif
3223#endif
3224	}
3225
3226	*spapp = spa;
3227
3228	return (0);
3229}
3230
3231int
3232spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3233    nvlist_t **config)
3234{
3235	return (spa_open_common(name, spapp, tag, policy, config));
3236}
3237
3238int
3239spa_open(const char *name, spa_t **spapp, void *tag)
3240{
3241	return (spa_open_common(name, spapp, tag, NULL, NULL));
3242}
3243
3244/*
3245 * Lookup the given spa_t, incrementing the inject count in the process,
3246 * preventing it from being exported or destroyed.
3247 */
3248spa_t *
3249spa_inject_addref(char *name)
3250{
3251	spa_t *spa;
3252
3253	mutex_enter(&spa_namespace_lock);
3254	if ((spa = spa_lookup(name)) == NULL) {
3255		mutex_exit(&spa_namespace_lock);
3256		return (NULL);
3257	}
3258	spa->spa_inject_ref++;
3259	mutex_exit(&spa_namespace_lock);
3260
3261	return (spa);
3262}
3263
3264void
3265spa_inject_delref(spa_t *spa)
3266{
3267	mutex_enter(&spa_namespace_lock);
3268	spa->spa_inject_ref--;
3269	mutex_exit(&spa_namespace_lock);
3270}
3271
3272/*
3273 * Add spares device information to the nvlist.
3274 */
3275static void
3276spa_add_spares(spa_t *spa, nvlist_t *config)
3277{
3278	nvlist_t **spares;
3279	uint_t i, nspares;
3280	nvlist_t *nvroot;
3281	uint64_t guid;
3282	vdev_stat_t *vs;
3283	uint_t vsc;
3284	uint64_t pool;
3285
3286	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3287
3288	if (spa->spa_spares.sav_count == 0)
3289		return;
3290
3291	VERIFY(nvlist_lookup_nvlist(config,
3292	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3293	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3294	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3295	if (nspares != 0) {
3296		VERIFY(nvlist_add_nvlist_array(nvroot,
3297		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3298		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3299		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3300
3301		/*
3302		 * Go through and find any spares which have since been
3303		 * repurposed as an active spare.  If this is the case, update
3304		 * their status appropriately.
3305		 */
3306		for (i = 0; i < nspares; i++) {
3307			VERIFY(nvlist_lookup_uint64(spares[i],
3308			    ZPOOL_CONFIG_GUID, &guid) == 0);
3309			if (spa_spare_exists(guid, &pool, NULL) &&
3310			    pool != 0ULL) {
3311				VERIFY(nvlist_lookup_uint64_array(
3312				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3313				    (uint64_t **)&vs, &vsc) == 0);
3314				vs->vs_state = VDEV_STATE_CANT_OPEN;
3315				vs->vs_aux = VDEV_AUX_SPARED;
3316			}
3317		}
3318	}
3319}
3320
3321/*
3322 * Add l2cache device information to the nvlist, including vdev stats.
3323 */
3324static void
3325spa_add_l2cache(spa_t *spa, nvlist_t *config)
3326{
3327	nvlist_t **l2cache;
3328	uint_t i, j, nl2cache;
3329	nvlist_t *nvroot;
3330	uint64_t guid;
3331	vdev_t *vd;
3332	vdev_stat_t *vs;
3333	uint_t vsc;
3334
3335	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3336
3337	if (spa->spa_l2cache.sav_count == 0)
3338		return;
3339
3340	VERIFY(nvlist_lookup_nvlist(config,
3341	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3342	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3343	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3344	if (nl2cache != 0) {
3345		VERIFY(nvlist_add_nvlist_array(nvroot,
3346		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3347		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3348		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3349
3350		/*
3351		 * Update level 2 cache device stats.
3352		 */
3353
3354		for (i = 0; i < nl2cache; i++) {
3355			VERIFY(nvlist_lookup_uint64(l2cache[i],
3356			    ZPOOL_CONFIG_GUID, &guid) == 0);
3357
3358			vd = NULL;
3359			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3360				if (guid ==
3361				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3362					vd = spa->spa_l2cache.sav_vdevs[j];
3363					break;
3364				}
3365			}
3366			ASSERT(vd != NULL);
3367
3368			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3369			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3370			    == 0);
3371			vdev_get_stats(vd, vs);
3372		}
3373	}
3374}
3375
3376static void
3377spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3378{
3379	nvlist_t *features;
3380	zap_cursor_t zc;
3381	zap_attribute_t za;
3382
3383	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3384	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3385
3386	/* We may be unable to read features if pool is suspended. */
3387	if (spa_suspended(spa))
3388		goto out;
3389
3390	if (spa->spa_feat_for_read_obj != 0) {
3391		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3392		    spa->spa_feat_for_read_obj);
3393		    zap_cursor_retrieve(&zc, &za) == 0;
3394		    zap_cursor_advance(&zc)) {
3395			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3396			    za.za_num_integers == 1);
3397			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3398			    za.za_first_integer));
3399		}
3400		zap_cursor_fini(&zc);
3401	}
3402
3403	if (spa->spa_feat_for_write_obj != 0) {
3404		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3405		    spa->spa_feat_for_write_obj);
3406		    zap_cursor_retrieve(&zc, &za) == 0;
3407		    zap_cursor_advance(&zc)) {
3408			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3409			    za.za_num_integers == 1);
3410			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3411			    za.za_first_integer));
3412		}
3413		zap_cursor_fini(&zc);
3414	}
3415
3416out:
3417	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3418	    features) == 0);
3419	nvlist_free(features);
3420}
3421
3422int
3423spa_get_stats(const char *name, nvlist_t **config,
3424    char *altroot, size_t buflen)
3425{
3426	int error;
3427	spa_t *spa;
3428
3429	*config = NULL;
3430	error = spa_open_common(name, &spa, FTAG, NULL, config);
3431
3432	if (spa != NULL) {
3433		/*
3434		 * This still leaves a window of inconsistency where the spares
3435		 * or l2cache devices could change and the config would be
3436		 * self-inconsistent.
3437		 */
3438		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3439
3440		if (*config != NULL) {
3441			uint64_t loadtimes[2];
3442
3443			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3444			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3445			VERIFY(nvlist_add_uint64_array(*config,
3446			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3447
3448			VERIFY(nvlist_add_uint64(*config,
3449			    ZPOOL_CONFIG_ERRCOUNT,
3450			    spa_get_errlog_size(spa)) == 0);
3451
3452			if (spa_suspended(spa))
3453				VERIFY(nvlist_add_uint64(*config,
3454				    ZPOOL_CONFIG_SUSPENDED,
3455				    spa->spa_failmode) == 0);
3456
3457			spa_add_spares(spa, *config);
3458			spa_add_l2cache(spa, *config);
3459			spa_add_feature_stats(spa, *config);
3460		}
3461	}
3462
3463	/*
3464	 * We want to get the alternate root even for faulted pools, so we cheat
3465	 * and call spa_lookup() directly.
3466	 */
3467	if (altroot) {
3468		if (spa == NULL) {
3469			mutex_enter(&spa_namespace_lock);
3470			spa = spa_lookup(name);
3471			if (spa)
3472				spa_altroot(spa, altroot, buflen);
3473			else
3474				altroot[0] = '\0';
3475			spa = NULL;
3476			mutex_exit(&spa_namespace_lock);
3477		} else {
3478			spa_altroot(spa, altroot, buflen);
3479		}
3480	}
3481
3482	if (spa != NULL) {
3483		spa_config_exit(spa, SCL_CONFIG, FTAG);
3484		spa_close(spa, FTAG);
3485	}
3486
3487	return (error);
3488}
3489
3490/*
3491 * Validate that the auxiliary device array is well formed.  We must have an
3492 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3493 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3494 * specified, as long as they are well-formed.
3495 */
3496static int
3497spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3498    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3499    vdev_labeltype_t label)
3500{
3501	nvlist_t **dev;
3502	uint_t i, ndev;
3503	vdev_t *vd;
3504	int error;
3505
3506	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3507
3508	/*
3509	 * It's acceptable to have no devs specified.
3510	 */
3511	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3512		return (0);
3513
3514	if (ndev == 0)
3515		return (SET_ERROR(EINVAL));
3516
3517	/*
3518	 * Make sure the pool is formatted with a version that supports this
3519	 * device type.
3520	 */
3521	if (spa_version(spa) < version)
3522		return (SET_ERROR(ENOTSUP));
3523
3524	/*
3525	 * Set the pending device list so we correctly handle device in-use
3526	 * checking.
3527	 */
3528	sav->sav_pending = dev;
3529	sav->sav_npending = ndev;
3530
3531	for (i = 0; i < ndev; i++) {
3532		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3533		    mode)) != 0)
3534			goto out;
3535
3536		if (!vd->vdev_ops->vdev_op_leaf) {
3537			vdev_free(vd);
3538			error = SET_ERROR(EINVAL);
3539			goto out;
3540		}
3541
3542		/*
3543		 * The L2ARC currently only supports disk devices in
3544		 * kernel context.  For user-level testing, we allow it.
3545		 */
3546#ifdef _KERNEL
3547		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3548		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3549			error = SET_ERROR(ENOTBLK);
3550			vdev_free(vd);
3551			goto out;
3552		}
3553#endif
3554		vd->vdev_top = vd;
3555
3556		if ((error = vdev_open(vd)) == 0 &&
3557		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3558			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3559			    vd->vdev_guid) == 0);
3560		}
3561
3562		vdev_free(vd);
3563
3564		if (error &&
3565		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3566			goto out;
3567		else
3568			error = 0;
3569	}
3570
3571out:
3572	sav->sav_pending = NULL;
3573	sav->sav_npending = 0;
3574	return (error);
3575}
3576
3577static int
3578spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3579{
3580	int error;
3581
3582	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3583
3584	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3585	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3586	    VDEV_LABEL_SPARE)) != 0) {
3587		return (error);
3588	}
3589
3590	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3591	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3592	    VDEV_LABEL_L2CACHE));
3593}
3594
3595static void
3596spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3597    const char *config)
3598{
3599	int i;
3600
3601	if (sav->sav_config != NULL) {
3602		nvlist_t **olddevs;
3603		uint_t oldndevs;
3604		nvlist_t **newdevs;
3605
3606		/*
3607		 * Generate new dev list by concatentating with the
3608		 * current dev list.
3609		 */
3610		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3611		    &olddevs, &oldndevs) == 0);
3612
3613		newdevs = kmem_alloc(sizeof (void *) *
3614		    (ndevs + oldndevs), KM_SLEEP);
3615		for (i = 0; i < oldndevs; i++)
3616			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3617			    KM_SLEEP) == 0);
3618		for (i = 0; i < ndevs; i++)
3619			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3620			    KM_SLEEP) == 0);
3621
3622		VERIFY(nvlist_remove(sav->sav_config, config,
3623		    DATA_TYPE_NVLIST_ARRAY) == 0);
3624
3625		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3626		    config, newdevs, ndevs + oldndevs) == 0);
3627		for (i = 0; i < oldndevs + ndevs; i++)
3628			nvlist_free(newdevs[i]);
3629		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3630	} else {
3631		/*
3632		 * Generate a new dev list.
3633		 */
3634		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3635		    KM_SLEEP) == 0);
3636		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3637		    devs, ndevs) == 0);
3638	}
3639}
3640
3641/*
3642 * Stop and drop level 2 ARC devices
3643 */
3644void
3645spa_l2cache_drop(spa_t *spa)
3646{
3647	vdev_t *vd;
3648	int i;
3649	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3650
3651	for (i = 0; i < sav->sav_count; i++) {
3652		uint64_t pool;
3653
3654		vd = sav->sav_vdevs[i];
3655		ASSERT(vd != NULL);
3656
3657		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3658		    pool != 0ULL && l2arc_vdev_present(vd))
3659			l2arc_remove_vdev(vd);
3660	}
3661}
3662
3663/*
3664 * Pool Creation
3665 */
3666int
3667spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3668    nvlist_t *zplprops)
3669{
3670	spa_t *spa;
3671	char *altroot = NULL;
3672	vdev_t *rvd;
3673	dsl_pool_t *dp;
3674	dmu_tx_t *tx;
3675	int error = 0;
3676	uint64_t txg = TXG_INITIAL;
3677	nvlist_t **spares, **l2cache;
3678	uint_t nspares, nl2cache;
3679	uint64_t version, obj;
3680	boolean_t has_features;
3681
3682	/*
3683	 * If this pool already exists, return failure.
3684	 */
3685	mutex_enter(&spa_namespace_lock);
3686	if (spa_lookup(pool) != NULL) {
3687		mutex_exit(&spa_namespace_lock);
3688		return (SET_ERROR(EEXIST));
3689	}
3690
3691	/*
3692	 * Allocate a new spa_t structure.
3693	 */
3694	(void) nvlist_lookup_string(props,
3695	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3696	spa = spa_add(pool, NULL, altroot);
3697	spa_activate(spa, spa_mode_global);
3698
3699	if (props && (error = spa_prop_validate(spa, props))) {
3700		spa_deactivate(spa);
3701		spa_remove(spa);
3702		mutex_exit(&spa_namespace_lock);
3703		return (error);
3704	}
3705
3706	has_features = B_FALSE;
3707	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3708	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3709		if (zpool_prop_feature(nvpair_name(elem)))
3710			has_features = B_TRUE;
3711	}
3712
3713	if (has_features || nvlist_lookup_uint64(props,
3714	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3715		version = SPA_VERSION;
3716	}
3717	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3718
3719	spa->spa_first_txg = txg;
3720	spa->spa_uberblock.ub_txg = txg - 1;
3721	spa->spa_uberblock.ub_version = version;
3722	spa->spa_ubsync = spa->spa_uberblock;
3723
3724	/*
3725	 * Create "The Godfather" zio to hold all async IOs
3726	 */
3727	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3728	    KM_SLEEP);
3729	for (int i = 0; i < max_ncpus; i++) {
3730		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3731		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3732		    ZIO_FLAG_GODFATHER);
3733	}
3734
3735	/*
3736	 * Create the root vdev.
3737	 */
3738	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739
3740	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3741
3742	ASSERT(error != 0 || rvd != NULL);
3743	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3744
3745	if (error == 0 && !zfs_allocatable_devs(nvroot))
3746		error = SET_ERROR(EINVAL);
3747
3748	if (error == 0 &&
3749	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3750	    (error = spa_validate_aux(spa, nvroot, txg,
3751	    VDEV_ALLOC_ADD)) == 0) {
3752		for (int c = 0; c < rvd->vdev_children; c++) {
3753			vdev_ashift_optimize(rvd->vdev_child[c]);
3754			vdev_metaslab_set_size(rvd->vdev_child[c]);
3755			vdev_expand(rvd->vdev_child[c], txg);
3756		}
3757	}
3758
3759	spa_config_exit(spa, SCL_ALL, FTAG);
3760
3761	if (error != 0) {
3762		spa_unload(spa);
3763		spa_deactivate(spa);
3764		spa_remove(spa);
3765		mutex_exit(&spa_namespace_lock);
3766		return (error);
3767	}
3768
3769	/*
3770	 * Get the list of spares, if specified.
3771	 */
3772	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3773	    &spares, &nspares) == 0) {
3774		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3775		    KM_SLEEP) == 0);
3776		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3777		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3778		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3779		spa_load_spares(spa);
3780		spa_config_exit(spa, SCL_ALL, FTAG);
3781		spa->spa_spares.sav_sync = B_TRUE;
3782	}
3783
3784	/*
3785	 * Get the list of level 2 cache devices, if specified.
3786	 */
3787	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3788	    &l2cache, &nl2cache) == 0) {
3789		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3790		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3791		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3792		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3793		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3794		spa_load_l2cache(spa);
3795		spa_config_exit(spa, SCL_ALL, FTAG);
3796		spa->spa_l2cache.sav_sync = B_TRUE;
3797	}
3798
3799	spa->spa_is_initializing = B_TRUE;
3800	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3801	spa->spa_meta_objset = dp->dp_meta_objset;
3802	spa->spa_is_initializing = B_FALSE;
3803
3804	/*
3805	 * Create DDTs (dedup tables).
3806	 */
3807	ddt_create(spa);
3808
3809	spa_update_dspace(spa);
3810
3811	tx = dmu_tx_create_assigned(dp, txg);
3812
3813	/*
3814	 * Create the pool config object.
3815	 */
3816	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3817	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3818	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3819
3820	if (zap_add(spa->spa_meta_objset,
3821	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3822	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3823		cmn_err(CE_PANIC, "failed to add pool config");
3824	}
3825
3826	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3827		spa_feature_create_zap_objects(spa, tx);
3828
3829	if (zap_add(spa->spa_meta_objset,
3830	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3831	    sizeof (uint64_t), 1, &version, tx) != 0) {
3832		cmn_err(CE_PANIC, "failed to add pool version");
3833	}
3834
3835	/* Newly created pools with the right version are always deflated. */
3836	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3837		spa->spa_deflate = TRUE;
3838		if (zap_add(spa->spa_meta_objset,
3839		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3840		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3841			cmn_err(CE_PANIC, "failed to add deflate");
3842		}
3843	}
3844
3845	/*
3846	 * Create the deferred-free bpobj.  Turn off compression
3847	 * because sync-to-convergence takes longer if the blocksize
3848	 * keeps changing.
3849	 */
3850	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3851	dmu_object_set_compress(spa->spa_meta_objset, obj,
3852	    ZIO_COMPRESS_OFF, tx);
3853	if (zap_add(spa->spa_meta_objset,
3854	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3855	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3856		cmn_err(CE_PANIC, "failed to add bpobj");
3857	}
3858	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3859	    spa->spa_meta_objset, obj));
3860
3861	/*
3862	 * Create the pool's history object.
3863	 */
3864	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3865		spa_history_create_obj(spa, tx);
3866
3867	/*
3868	 * Generate some random noise for salted checksums to operate on.
3869	 */
3870	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3871	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3872
3873	/*
3874	 * Set pool properties.
3875	 */
3876	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3877	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3878	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3879	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3880
3881	if (props != NULL) {
3882		spa_configfile_set(spa, props, B_FALSE);
3883		spa_sync_props(props, tx);
3884	}
3885
3886	dmu_tx_commit(tx);
3887
3888	spa->spa_sync_on = B_TRUE;
3889	txg_sync_start(spa->spa_dsl_pool);
3890
3891	/*
3892	 * We explicitly wait for the first transaction to complete so that our
3893	 * bean counters are appropriately updated.
3894	 */
3895	txg_wait_synced(spa->spa_dsl_pool, txg);
3896
3897	spa_config_sync(spa, B_FALSE, B_TRUE);
3898	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3899
3900	spa_history_log_version(spa, "create");
3901
3902	/*
3903	 * Don't count references from objsets that are already closed
3904	 * and are making their way through the eviction process.
3905	 */
3906	spa_evicting_os_wait(spa);
3907	spa->spa_minref = refcount_count(&spa->spa_refcount);
3908
3909	mutex_exit(&spa_namespace_lock);
3910
3911	return (0);
3912}
3913
3914#ifdef _KERNEL
3915#ifdef illumos
3916/*
3917 * Get the root pool information from the root disk, then import the root pool
3918 * during the system boot up time.
3919 */
3920extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3921
3922static nvlist_t *
3923spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3924{
3925	nvlist_t *config;
3926	nvlist_t *nvtop, *nvroot;
3927	uint64_t pgid;
3928
3929	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3930		return (NULL);
3931
3932	/*
3933	 * Add this top-level vdev to the child array.
3934	 */
3935	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3936	    &nvtop) == 0);
3937	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3938	    &pgid) == 0);
3939	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3940
3941	/*
3942	 * Put this pool's top-level vdevs into a root vdev.
3943	 */
3944	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3945	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3946	    VDEV_TYPE_ROOT) == 0);
3947	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3948	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3949	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3950	    &nvtop, 1) == 0);
3951
3952	/*
3953	 * Replace the existing vdev_tree with the new root vdev in
3954	 * this pool's configuration (remove the old, add the new).
3955	 */
3956	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3957	nvlist_free(nvroot);
3958	return (config);
3959}
3960
3961/*
3962 * Walk the vdev tree and see if we can find a device with "better"
3963 * configuration. A configuration is "better" if the label on that
3964 * device has a more recent txg.
3965 */
3966static void
3967spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3968{
3969	for (int c = 0; c < vd->vdev_children; c++)
3970		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3971
3972	if (vd->vdev_ops->vdev_op_leaf) {
3973		nvlist_t *label;
3974		uint64_t label_txg;
3975
3976		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3977		    &label) != 0)
3978			return;
3979
3980		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3981		    &label_txg) == 0);
3982
3983		/*
3984		 * Do we have a better boot device?
3985		 */
3986		if (label_txg > *txg) {
3987			*txg = label_txg;
3988			*avd = vd;
3989		}
3990		nvlist_free(label);
3991	}
3992}
3993
3994/*
3995 * Import a root pool.
3996 *
3997 * For x86. devpath_list will consist of devid and/or physpath name of
3998 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3999 * The GRUB "findroot" command will return the vdev we should boot.
4000 *
4001 * For Sparc, devpath_list consists the physpath name of the booting device
4002 * no matter the rootpool is a single device pool or a mirrored pool.
4003 * e.g.
4004 *	"/pci@1f,0/ide@d/disk@0,0:a"
4005 */
4006int
4007spa_import_rootpool(char *devpath, char *devid)
4008{
4009	spa_t *spa;
4010	vdev_t *rvd, *bvd, *avd = NULL;
4011	nvlist_t *config, *nvtop;
4012	uint64_t guid, txg;
4013	char *pname;
4014	int error;
4015
4016	/*
4017	 * Read the label from the boot device and generate a configuration.
4018	 */
4019	config = spa_generate_rootconf(devpath, devid, &guid);
4020#if defined(_OBP) && defined(_KERNEL)
4021	if (config == NULL) {
4022		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4023			/* iscsi boot */
4024			get_iscsi_bootpath_phy(devpath);
4025			config = spa_generate_rootconf(devpath, devid, &guid);
4026		}
4027	}
4028#endif
4029	if (config == NULL) {
4030		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4031		    devpath);
4032		return (SET_ERROR(EIO));
4033	}
4034
4035	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4036	    &pname) == 0);
4037	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4038
4039	mutex_enter(&spa_namespace_lock);
4040	if ((spa = spa_lookup(pname)) != NULL) {
4041		/*
4042		 * Remove the existing root pool from the namespace so that we
4043		 * can replace it with the correct config we just read in.
4044		 */
4045		spa_remove(spa);
4046	}
4047
4048	spa = spa_add(pname, config, NULL);
4049	spa->spa_is_root = B_TRUE;
4050	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4051
4052	/*
4053	 * Build up a vdev tree based on the boot device's label config.
4054	 */
4055	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4056	    &nvtop) == 0);
4057	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4058	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4059	    VDEV_ALLOC_ROOTPOOL);
4060	spa_config_exit(spa, SCL_ALL, FTAG);
4061	if (error) {
4062		mutex_exit(&spa_namespace_lock);
4063		nvlist_free(config);
4064		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4065		    pname);
4066		return (error);
4067	}
4068
4069	/*
4070	 * Get the boot vdev.
4071	 */
4072	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4073		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4074		    (u_longlong_t)guid);
4075		error = SET_ERROR(ENOENT);
4076		goto out;
4077	}
4078
4079	/*
4080	 * Determine if there is a better boot device.
4081	 */
4082	avd = bvd;
4083	spa_alt_rootvdev(rvd, &avd, &txg);
4084	if (avd != bvd) {
4085		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4086		    "try booting from '%s'", avd->vdev_path);
4087		error = SET_ERROR(EINVAL);
4088		goto out;
4089	}
4090
4091	/*
4092	 * If the boot device is part of a spare vdev then ensure that
4093	 * we're booting off the active spare.
4094	 */
4095	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4096	    !bvd->vdev_isspare) {
4097		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4098		    "try booting from '%s'",
4099		    bvd->vdev_parent->
4100		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4101		error = SET_ERROR(EINVAL);
4102		goto out;
4103	}
4104
4105	error = 0;
4106out:
4107	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4108	vdev_free(rvd);
4109	spa_config_exit(spa, SCL_ALL, FTAG);
4110	mutex_exit(&spa_namespace_lock);
4111
4112	nvlist_free(config);
4113	return (error);
4114}
4115
4116#else	/* !illumos */
4117
4118extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4119    uint64_t *count);
4120
4121static nvlist_t *
4122spa_generate_rootconf(const char *name)
4123{
4124	nvlist_t **configs, **tops;
4125	nvlist_t *config;
4126	nvlist_t *best_cfg, *nvtop, *nvroot;
4127	uint64_t *holes;
4128	uint64_t best_txg;
4129	uint64_t nchildren;
4130	uint64_t pgid;
4131	uint64_t count;
4132	uint64_t i;
4133	uint_t   nholes;
4134
4135	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4136		return (NULL);
4137
4138	ASSERT3U(count, !=, 0);
4139	best_txg = 0;
4140	for (i = 0; i < count; i++) {
4141		uint64_t txg;
4142
4143		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4144		    &txg) == 0);
4145		if (txg > best_txg) {
4146			best_txg = txg;
4147			best_cfg = configs[i];
4148		}
4149	}
4150
4151	nchildren = 1;
4152	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4153	holes = NULL;
4154	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4155	    &holes, &nholes);
4156
4157	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4158	for (i = 0; i < nchildren; i++) {
4159		if (i >= count)
4160			break;
4161		if (configs[i] == NULL)
4162			continue;
4163		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4164		    &nvtop) == 0);
4165		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4166	}
4167	for (i = 0; holes != NULL && i < nholes; i++) {
4168		if (i >= nchildren)
4169			continue;
4170		if (tops[holes[i]] != NULL)
4171			continue;
4172		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4173		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4174		    VDEV_TYPE_HOLE) == 0);
4175		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4176		    holes[i]) == 0);
4177		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4178		    0) == 0);
4179	}
4180	for (i = 0; i < nchildren; i++) {
4181		if (tops[i] != NULL)
4182			continue;
4183		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4184		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4185		    VDEV_TYPE_MISSING) == 0);
4186		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4187		    i) == 0);
4188		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4189		    0) == 0);
4190	}
4191
4192	/*
4193	 * Create pool config based on the best vdev config.
4194	 */
4195	nvlist_dup(best_cfg, &config, KM_SLEEP);
4196
4197	/*
4198	 * Put this pool's top-level vdevs into a root vdev.
4199	 */
4200	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4201	    &pgid) == 0);
4202	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4203	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4204	    VDEV_TYPE_ROOT) == 0);
4205	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4206	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4207	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4208	    tops, nchildren) == 0);
4209
4210	/*
4211	 * Replace the existing vdev_tree with the new root vdev in
4212	 * this pool's configuration (remove the old, add the new).
4213	 */
4214	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4215
4216	/*
4217	 * Drop vdev config elements that should not be present at pool level.
4218	 */
4219	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4220	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4221
4222	for (i = 0; i < count; i++)
4223		nvlist_free(configs[i]);
4224	kmem_free(configs, count * sizeof(void *));
4225	for (i = 0; i < nchildren; i++)
4226		nvlist_free(tops[i]);
4227	kmem_free(tops, nchildren * sizeof(void *));
4228	nvlist_free(nvroot);
4229	return (config);
4230}
4231
4232int
4233spa_import_rootpool(const char *name)
4234{
4235	spa_t *spa;
4236	vdev_t *rvd, *bvd, *avd = NULL;
4237	nvlist_t *config, *nvtop;
4238	uint64_t txg;
4239	char *pname;
4240	int error;
4241
4242	/*
4243	 * Read the label from the boot device and generate a configuration.
4244	 */
4245	config = spa_generate_rootconf(name);
4246
4247	mutex_enter(&spa_namespace_lock);
4248	if (config != NULL) {
4249		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4250		    &pname) == 0 && strcmp(name, pname) == 0);
4251		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4252		    == 0);
4253
4254		if ((spa = spa_lookup(pname)) != NULL) {
4255			/*
4256			 * Remove the existing root pool from the namespace so
4257			 * that we can replace it with the correct config
4258			 * we just read in.
4259			 */
4260			spa_remove(spa);
4261		}
4262		spa = spa_add(pname, config, NULL);
4263
4264		/*
4265		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4266		 * via spa_version().
4267		 */
4268		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4269		    &spa->spa_ubsync.ub_version) != 0)
4270			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4271	} else if ((spa = spa_lookup(name)) == NULL) {
4272		mutex_exit(&spa_namespace_lock);
4273		nvlist_free(config);
4274		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4275		    name);
4276		return (EIO);
4277	} else {
4278		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4279	}
4280	spa->spa_is_root = B_TRUE;
4281	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4282
4283	/*
4284	 * Build up a vdev tree based on the boot device's label config.
4285	 */
4286	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4287	    &nvtop) == 0);
4288	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4289	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4290	    VDEV_ALLOC_ROOTPOOL);
4291	spa_config_exit(spa, SCL_ALL, FTAG);
4292	if (error) {
4293		mutex_exit(&spa_namespace_lock);
4294		nvlist_free(config);
4295		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4296		    pname);
4297		return (error);
4298	}
4299
4300	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4301	vdev_free(rvd);
4302	spa_config_exit(spa, SCL_ALL, FTAG);
4303	mutex_exit(&spa_namespace_lock);
4304
4305	nvlist_free(config);
4306	return (0);
4307}
4308
4309#endif	/* illumos */
4310#endif	/* _KERNEL */
4311
4312/*
4313 * Import a non-root pool into the system.
4314 */
4315int
4316spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4317{
4318	spa_t *spa;
4319	char *altroot = NULL;
4320	spa_load_state_t state = SPA_LOAD_IMPORT;
4321	zpool_rewind_policy_t policy;
4322	uint64_t mode = spa_mode_global;
4323	uint64_t readonly = B_FALSE;
4324	int error;
4325	nvlist_t *nvroot;
4326	nvlist_t **spares, **l2cache;
4327	uint_t nspares, nl2cache;
4328
4329	/*
4330	 * If a pool with this name exists, return failure.
4331	 */
4332	mutex_enter(&spa_namespace_lock);
4333	if (spa_lookup(pool) != NULL) {
4334		mutex_exit(&spa_namespace_lock);
4335		return (SET_ERROR(EEXIST));
4336	}
4337
4338	/*
4339	 * Create and initialize the spa structure.
4340	 */
4341	(void) nvlist_lookup_string(props,
4342	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4343	(void) nvlist_lookup_uint64(props,
4344	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4345	if (readonly)
4346		mode = FREAD;
4347	spa = spa_add(pool, config, altroot);
4348	spa->spa_import_flags = flags;
4349
4350	/*
4351	 * Verbatim import - Take a pool and insert it into the namespace
4352	 * as if it had been loaded at boot.
4353	 */
4354	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4355		if (props != NULL)
4356			spa_configfile_set(spa, props, B_FALSE);
4357
4358		spa_config_sync(spa, B_FALSE, B_TRUE);
4359		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4360
4361		mutex_exit(&spa_namespace_lock);
4362		return (0);
4363	}
4364
4365	spa_activate(spa, mode);
4366
4367	/*
4368	 * Don't start async tasks until we know everything is healthy.
4369	 */
4370	spa_async_suspend(spa);
4371
4372	zpool_get_rewind_policy(config, &policy);
4373	if (policy.zrp_request & ZPOOL_DO_REWIND)
4374		state = SPA_LOAD_RECOVER;
4375
4376	/*
4377	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4378	 * because the user-supplied config is actually the one to trust when
4379	 * doing an import.
4380	 */
4381	if (state != SPA_LOAD_RECOVER)
4382		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4383
4384	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4385	    policy.zrp_request);
4386
4387	/*
4388	 * Propagate anything learned while loading the pool and pass it
4389	 * back to caller (i.e. rewind info, missing devices, etc).
4390	 */
4391	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4392	    spa->spa_load_info) == 0);
4393
4394	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4395	/*
4396	 * Toss any existing sparelist, as it doesn't have any validity
4397	 * anymore, and conflicts with spa_has_spare().
4398	 */
4399	if (spa->spa_spares.sav_config) {
4400		nvlist_free(spa->spa_spares.sav_config);
4401		spa->spa_spares.sav_config = NULL;
4402		spa_load_spares(spa);
4403	}
4404	if (spa->spa_l2cache.sav_config) {
4405		nvlist_free(spa->spa_l2cache.sav_config);
4406		spa->spa_l2cache.sav_config = NULL;
4407		spa_load_l2cache(spa);
4408	}
4409
4410	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4411	    &nvroot) == 0);
4412	if (error == 0)
4413		error = spa_validate_aux(spa, nvroot, -1ULL,
4414		    VDEV_ALLOC_SPARE);
4415	if (error == 0)
4416		error = spa_validate_aux(spa, nvroot, -1ULL,
4417		    VDEV_ALLOC_L2CACHE);
4418	spa_config_exit(spa, SCL_ALL, FTAG);
4419
4420	if (props != NULL)
4421		spa_configfile_set(spa, props, B_FALSE);
4422
4423	if (error != 0 || (props && spa_writeable(spa) &&
4424	    (error = spa_prop_set(spa, props)))) {
4425		spa_unload(spa);
4426		spa_deactivate(spa);
4427		spa_remove(spa);
4428		mutex_exit(&spa_namespace_lock);
4429		return (error);
4430	}
4431
4432	spa_async_resume(spa);
4433
4434	/*
4435	 * Override any spares and level 2 cache devices as specified by
4436	 * the user, as these may have correct device names/devids, etc.
4437	 */
4438	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4439	    &spares, &nspares) == 0) {
4440		if (spa->spa_spares.sav_config)
4441			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4442			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4443		else
4444			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4445			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4446		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4447		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4448		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4449		spa_load_spares(spa);
4450		spa_config_exit(spa, SCL_ALL, FTAG);
4451		spa->spa_spares.sav_sync = B_TRUE;
4452	}
4453	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4454	    &l2cache, &nl2cache) == 0) {
4455		if (spa->spa_l2cache.sav_config)
4456			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4457			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4458		else
4459			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4460			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4461		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4462		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4463		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4464		spa_load_l2cache(spa);
4465		spa_config_exit(spa, SCL_ALL, FTAG);
4466		spa->spa_l2cache.sav_sync = B_TRUE;
4467	}
4468
4469	/*
4470	 * Check for any removed devices.
4471	 */
4472	if (spa->spa_autoreplace) {
4473		spa_aux_check_removed(&spa->spa_spares);
4474		spa_aux_check_removed(&spa->spa_l2cache);
4475	}
4476
4477	if (spa_writeable(spa)) {
4478		/*
4479		 * Update the config cache to include the newly-imported pool.
4480		 */
4481		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4482	}
4483
4484	/*
4485	 * It's possible that the pool was expanded while it was exported.
4486	 * We kick off an async task to handle this for us.
4487	 */
4488	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4489
4490	spa_history_log_version(spa, "import");
4491
4492	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4493
4494	mutex_exit(&spa_namespace_lock);
4495
4496#ifdef __FreeBSD__
4497#ifdef _KERNEL
4498	zvol_create_minors(pool);
4499#endif
4500#endif
4501	return (0);
4502}
4503
4504nvlist_t *
4505spa_tryimport(nvlist_t *tryconfig)
4506{
4507	nvlist_t *config = NULL;
4508	char *poolname;
4509	spa_t *spa;
4510	uint64_t state;
4511	int error;
4512
4513	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4514		return (NULL);
4515
4516	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4517		return (NULL);
4518
4519	/*
4520	 * Create and initialize the spa structure.
4521	 */
4522	mutex_enter(&spa_namespace_lock);
4523	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4524	spa_activate(spa, FREAD);
4525
4526	/*
4527	 * Pass off the heavy lifting to spa_load().
4528	 * Pass TRUE for mosconfig because the user-supplied config
4529	 * is actually the one to trust when doing an import.
4530	 */
4531	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4532
4533	/*
4534	 * If 'tryconfig' was at least parsable, return the current config.
4535	 */
4536	if (spa->spa_root_vdev != NULL) {
4537		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4538		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4539		    poolname) == 0);
4540		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4541		    state) == 0);
4542		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4543		    spa->spa_uberblock.ub_timestamp) == 0);
4544		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4545		    spa->spa_load_info) == 0);
4546
4547		/*
4548		 * If the bootfs property exists on this pool then we
4549		 * copy it out so that external consumers can tell which
4550		 * pools are bootable.
4551		 */
4552		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4553			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4554
4555			/*
4556			 * We have to play games with the name since the
4557			 * pool was opened as TRYIMPORT_NAME.
4558			 */
4559			if (dsl_dsobj_to_dsname(spa_name(spa),
4560			    spa->spa_bootfs, tmpname) == 0) {
4561				char *cp;
4562				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4563
4564				cp = strchr(tmpname, '/');
4565				if (cp == NULL) {
4566					(void) strlcpy(dsname, tmpname,
4567					    MAXPATHLEN);
4568				} else {
4569					(void) snprintf(dsname, MAXPATHLEN,
4570					    "%s/%s", poolname, ++cp);
4571				}
4572				VERIFY(nvlist_add_string(config,
4573				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4574				kmem_free(dsname, MAXPATHLEN);
4575			}
4576			kmem_free(tmpname, MAXPATHLEN);
4577		}
4578
4579		/*
4580		 * Add the list of hot spares and level 2 cache devices.
4581		 */
4582		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4583		spa_add_spares(spa, config);
4584		spa_add_l2cache(spa, config);
4585		spa_config_exit(spa, SCL_CONFIG, FTAG);
4586	}
4587
4588	spa_unload(spa);
4589	spa_deactivate(spa);
4590	spa_remove(spa);
4591	mutex_exit(&spa_namespace_lock);
4592
4593	return (config);
4594}
4595
4596/*
4597 * Pool export/destroy
4598 *
4599 * The act of destroying or exporting a pool is very simple.  We make sure there
4600 * is no more pending I/O and any references to the pool are gone.  Then, we
4601 * update the pool state and sync all the labels to disk, removing the
4602 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4603 * we don't sync the labels or remove the configuration cache.
4604 */
4605static int
4606spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4607    boolean_t force, boolean_t hardforce)
4608{
4609	spa_t *spa;
4610
4611	if (oldconfig)
4612		*oldconfig = NULL;
4613
4614	if (!(spa_mode_global & FWRITE))
4615		return (SET_ERROR(EROFS));
4616
4617	mutex_enter(&spa_namespace_lock);
4618	if ((spa = spa_lookup(pool)) == NULL) {
4619		mutex_exit(&spa_namespace_lock);
4620		return (SET_ERROR(ENOENT));
4621	}
4622
4623	/*
4624	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4625	 * reacquire the namespace lock, and see if we can export.
4626	 */
4627	spa_open_ref(spa, FTAG);
4628	mutex_exit(&spa_namespace_lock);
4629	spa_async_suspend(spa);
4630	mutex_enter(&spa_namespace_lock);
4631	spa_close(spa, FTAG);
4632
4633	/*
4634	 * The pool will be in core if it's openable,
4635	 * in which case we can modify its state.
4636	 */
4637	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4638		/*
4639		 * Objsets may be open only because they're dirty, so we
4640		 * have to force it to sync before checking spa_refcnt.
4641		 */
4642		txg_wait_synced(spa->spa_dsl_pool, 0);
4643		spa_evicting_os_wait(spa);
4644
4645		/*
4646		 * A pool cannot be exported or destroyed if there are active
4647		 * references.  If we are resetting a pool, allow references by
4648		 * fault injection handlers.
4649		 */
4650		if (!spa_refcount_zero(spa) ||
4651		    (spa->spa_inject_ref != 0 &&
4652		    new_state != POOL_STATE_UNINITIALIZED)) {
4653			spa_async_resume(spa);
4654			mutex_exit(&spa_namespace_lock);
4655			return (SET_ERROR(EBUSY));
4656		}
4657
4658		/*
4659		 * A pool cannot be exported if it has an active shared spare.
4660		 * This is to prevent other pools stealing the active spare
4661		 * from an exported pool. At user's own will, such pool can
4662		 * be forcedly exported.
4663		 */
4664		if (!force && new_state == POOL_STATE_EXPORTED &&
4665		    spa_has_active_shared_spare(spa)) {
4666			spa_async_resume(spa);
4667			mutex_exit(&spa_namespace_lock);
4668			return (SET_ERROR(EXDEV));
4669		}
4670
4671		/*
4672		 * We want this to be reflected on every label,
4673		 * so mark them all dirty.  spa_unload() will do the
4674		 * final sync that pushes these changes out.
4675		 */
4676		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4677			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4678			spa->spa_state = new_state;
4679			spa->spa_final_txg = spa_last_synced_txg(spa) +
4680			    TXG_DEFER_SIZE + 1;
4681			vdev_config_dirty(spa->spa_root_vdev);
4682			spa_config_exit(spa, SCL_ALL, FTAG);
4683		}
4684	}
4685
4686	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4687
4688	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4689		spa_unload(spa);
4690		spa_deactivate(spa);
4691	}
4692
4693	if (oldconfig && spa->spa_config)
4694		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4695
4696	if (new_state != POOL_STATE_UNINITIALIZED) {
4697		if (!hardforce)
4698			spa_config_sync(spa, B_TRUE, B_TRUE);
4699		spa_remove(spa);
4700	}
4701	mutex_exit(&spa_namespace_lock);
4702
4703	return (0);
4704}
4705
4706/*
4707 * Destroy a storage pool.
4708 */
4709int
4710spa_destroy(char *pool)
4711{
4712	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4713	    B_FALSE, B_FALSE));
4714}
4715
4716/*
4717 * Export a storage pool.
4718 */
4719int
4720spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4721    boolean_t hardforce)
4722{
4723	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4724	    force, hardforce));
4725}
4726
4727/*
4728 * Similar to spa_export(), this unloads the spa_t without actually removing it
4729 * from the namespace in any way.
4730 */
4731int
4732spa_reset(char *pool)
4733{
4734	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4735	    B_FALSE, B_FALSE));
4736}
4737
4738/*
4739 * ==========================================================================
4740 * Device manipulation
4741 * ==========================================================================
4742 */
4743
4744/*
4745 * Add a device to a storage pool.
4746 */
4747int
4748spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4749{
4750	uint64_t txg, id;
4751	int error;
4752	vdev_t *rvd = spa->spa_root_vdev;
4753	vdev_t *vd, *tvd;
4754	nvlist_t **spares, **l2cache;
4755	uint_t nspares, nl2cache;
4756
4757	ASSERT(spa_writeable(spa));
4758
4759	txg = spa_vdev_enter(spa);
4760
4761	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4762	    VDEV_ALLOC_ADD)) != 0)
4763		return (spa_vdev_exit(spa, NULL, txg, error));
4764
4765	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4766
4767	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4768	    &nspares) != 0)
4769		nspares = 0;
4770
4771	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4772	    &nl2cache) != 0)
4773		nl2cache = 0;
4774
4775	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4776		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4777
4778	if (vd->vdev_children != 0 &&
4779	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4780		return (spa_vdev_exit(spa, vd, txg, error));
4781
4782	/*
4783	 * We must validate the spares and l2cache devices after checking the
4784	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4785	 */
4786	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4787		return (spa_vdev_exit(spa, vd, txg, error));
4788
4789	/*
4790	 * Transfer each new top-level vdev from vd to rvd.
4791	 */
4792	for (int c = 0; c < vd->vdev_children; c++) {
4793
4794		/*
4795		 * Set the vdev id to the first hole, if one exists.
4796		 */
4797		for (id = 0; id < rvd->vdev_children; id++) {
4798			if (rvd->vdev_child[id]->vdev_ishole) {
4799				vdev_free(rvd->vdev_child[id]);
4800				break;
4801			}
4802		}
4803		tvd = vd->vdev_child[c];
4804		vdev_remove_child(vd, tvd);
4805		tvd->vdev_id = id;
4806		vdev_add_child(rvd, tvd);
4807		vdev_config_dirty(tvd);
4808	}
4809
4810	if (nspares != 0) {
4811		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4812		    ZPOOL_CONFIG_SPARES);
4813		spa_load_spares(spa);
4814		spa->spa_spares.sav_sync = B_TRUE;
4815	}
4816
4817	if (nl2cache != 0) {
4818		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4819		    ZPOOL_CONFIG_L2CACHE);
4820		spa_load_l2cache(spa);
4821		spa->spa_l2cache.sav_sync = B_TRUE;
4822	}
4823
4824	/*
4825	 * We have to be careful when adding new vdevs to an existing pool.
4826	 * If other threads start allocating from these vdevs before we
4827	 * sync the config cache, and we lose power, then upon reboot we may
4828	 * fail to open the pool because there are DVAs that the config cache
4829	 * can't translate.  Therefore, we first add the vdevs without
4830	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4831	 * and then let spa_config_update() initialize the new metaslabs.
4832	 *
4833	 * spa_load() checks for added-but-not-initialized vdevs, so that
4834	 * if we lose power at any point in this sequence, the remaining
4835	 * steps will be completed the next time we load the pool.
4836	 */
4837	(void) spa_vdev_exit(spa, vd, txg, 0);
4838
4839	mutex_enter(&spa_namespace_lock);
4840	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4841	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4842	mutex_exit(&spa_namespace_lock);
4843
4844	return (0);
4845}
4846
4847/*
4848 * Attach a device to a mirror.  The arguments are the path to any device
4849 * in the mirror, and the nvroot for the new device.  If the path specifies
4850 * a device that is not mirrored, we automatically insert the mirror vdev.
4851 *
4852 * If 'replacing' is specified, the new device is intended to replace the
4853 * existing device; in this case the two devices are made into their own
4854 * mirror using the 'replacing' vdev, which is functionally identical to
4855 * the mirror vdev (it actually reuses all the same ops) but has a few
4856 * extra rules: you can't attach to it after it's been created, and upon
4857 * completion of resilvering, the first disk (the one being replaced)
4858 * is automatically detached.
4859 */
4860int
4861spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4862{
4863	uint64_t txg, dtl_max_txg;
4864	vdev_t *rvd = spa->spa_root_vdev;
4865	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4866	vdev_ops_t *pvops;
4867	char *oldvdpath, *newvdpath;
4868	int newvd_isspare;
4869	int error;
4870
4871	ASSERT(spa_writeable(spa));
4872
4873	txg = spa_vdev_enter(spa);
4874
4875	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4876
4877	if (oldvd == NULL)
4878		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4879
4880	if (!oldvd->vdev_ops->vdev_op_leaf)
4881		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4882
4883	pvd = oldvd->vdev_parent;
4884
4885	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4886	    VDEV_ALLOC_ATTACH)) != 0)
4887		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4888
4889	if (newrootvd->vdev_children != 1)
4890		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4891
4892	newvd = newrootvd->vdev_child[0];
4893
4894	if (!newvd->vdev_ops->vdev_op_leaf)
4895		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4896
4897	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4898		return (spa_vdev_exit(spa, newrootvd, txg, error));
4899
4900	/*
4901	 * Spares can't replace logs
4902	 */
4903	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4904		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4905
4906	if (!replacing) {
4907		/*
4908		 * For attach, the only allowable parent is a mirror or the root
4909		 * vdev.
4910		 */
4911		if (pvd->vdev_ops != &vdev_mirror_ops &&
4912		    pvd->vdev_ops != &vdev_root_ops)
4913			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4914
4915		pvops = &vdev_mirror_ops;
4916	} else {
4917		/*
4918		 * Active hot spares can only be replaced by inactive hot
4919		 * spares.
4920		 */
4921		if (pvd->vdev_ops == &vdev_spare_ops &&
4922		    oldvd->vdev_isspare &&
4923		    !spa_has_spare(spa, newvd->vdev_guid))
4924			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4925
4926		/*
4927		 * If the source is a hot spare, and the parent isn't already a
4928		 * spare, then we want to create a new hot spare.  Otherwise, we
4929		 * want to create a replacing vdev.  The user is not allowed to
4930		 * attach to a spared vdev child unless the 'isspare' state is
4931		 * the same (spare replaces spare, non-spare replaces
4932		 * non-spare).
4933		 */
4934		if (pvd->vdev_ops == &vdev_replacing_ops &&
4935		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4936			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4937		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4938		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4939			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4940		}
4941
4942		if (newvd->vdev_isspare)
4943			pvops = &vdev_spare_ops;
4944		else
4945			pvops = &vdev_replacing_ops;
4946	}
4947
4948	/*
4949	 * Make sure the new device is big enough.
4950	 */
4951	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4952		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4953
4954	/*
4955	 * The new device cannot have a higher alignment requirement
4956	 * than the top-level vdev.
4957	 */
4958	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4959		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4960
4961	/*
4962	 * If this is an in-place replacement, update oldvd's path and devid
4963	 * to make it distinguishable from newvd, and unopenable from now on.
4964	 */
4965	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4966		spa_strfree(oldvd->vdev_path);
4967		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4968		    KM_SLEEP);
4969		(void) sprintf(oldvd->vdev_path, "%s/%s",
4970		    newvd->vdev_path, "old");
4971		if (oldvd->vdev_devid != NULL) {
4972			spa_strfree(oldvd->vdev_devid);
4973			oldvd->vdev_devid = NULL;
4974		}
4975	}
4976
4977	/* mark the device being resilvered */
4978	newvd->vdev_resilver_txg = txg;
4979
4980	/*
4981	 * If the parent is not a mirror, or if we're replacing, insert the new
4982	 * mirror/replacing/spare vdev above oldvd.
4983	 */
4984	if (pvd->vdev_ops != pvops)
4985		pvd = vdev_add_parent(oldvd, pvops);
4986
4987	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4988	ASSERT(pvd->vdev_ops == pvops);
4989	ASSERT(oldvd->vdev_parent == pvd);
4990
4991	/*
4992	 * Extract the new device from its root and add it to pvd.
4993	 */
4994	vdev_remove_child(newrootvd, newvd);
4995	newvd->vdev_id = pvd->vdev_children;
4996	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4997	vdev_add_child(pvd, newvd);
4998
4999	tvd = newvd->vdev_top;
5000	ASSERT(pvd->vdev_top == tvd);
5001	ASSERT(tvd->vdev_parent == rvd);
5002
5003	vdev_config_dirty(tvd);
5004
5005	/*
5006	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5007	 * for any dmu_sync-ed blocks.  It will propagate upward when
5008	 * spa_vdev_exit() calls vdev_dtl_reassess().
5009	 */
5010	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5011
5012	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5013	    dtl_max_txg - TXG_INITIAL);
5014
5015	if (newvd->vdev_isspare) {
5016		spa_spare_activate(newvd);
5017		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
5018	}
5019
5020	oldvdpath = spa_strdup(oldvd->vdev_path);
5021	newvdpath = spa_strdup(newvd->vdev_path);
5022	newvd_isspare = newvd->vdev_isspare;
5023
5024	/*
5025	 * Mark newvd's DTL dirty in this txg.
5026	 */
5027	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5028
5029	/*
5030	 * Schedule the resilver to restart in the future. We do this to
5031	 * ensure that dmu_sync-ed blocks have been stitched into the
5032	 * respective datasets.
5033	 */
5034	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5035
5036	if (spa->spa_bootfs)
5037		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5038
5039	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
5040
5041	/*
5042	 * Commit the config
5043	 */
5044	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5045
5046	spa_history_log_internal(spa, "vdev attach", NULL,
5047	    "%s vdev=%s %s vdev=%s",
5048	    replacing && newvd_isspare ? "spare in" :
5049	    replacing ? "replace" : "attach", newvdpath,
5050	    replacing ? "for" : "to", oldvdpath);
5051
5052	spa_strfree(oldvdpath);
5053	spa_strfree(newvdpath);
5054
5055	return (0);
5056}
5057
5058/*
5059 * Detach a device from a mirror or replacing vdev.
5060 *
5061 * If 'replace_done' is specified, only detach if the parent
5062 * is a replacing vdev.
5063 */
5064int
5065spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5066{
5067	uint64_t txg;
5068	int error;
5069	vdev_t *rvd = spa->spa_root_vdev;
5070	vdev_t *vd, *pvd, *cvd, *tvd;
5071	boolean_t unspare = B_FALSE;
5072	uint64_t unspare_guid = 0;
5073	char *vdpath;
5074
5075	ASSERT(spa_writeable(spa));
5076
5077	txg = spa_vdev_enter(spa);
5078
5079	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5080
5081	if (vd == NULL)
5082		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5083
5084	if (!vd->vdev_ops->vdev_op_leaf)
5085		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5086
5087	pvd = vd->vdev_parent;
5088
5089	/*
5090	 * If the parent/child relationship is not as expected, don't do it.
5091	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5092	 * vdev that's replacing B with C.  The user's intent in replacing
5093	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5094	 * the replace by detaching C, the expected behavior is to end up
5095	 * M(A,B).  But suppose that right after deciding to detach C,
5096	 * the replacement of B completes.  We would have M(A,C), and then
5097	 * ask to detach C, which would leave us with just A -- not what
5098	 * the user wanted.  To prevent this, we make sure that the
5099	 * parent/child relationship hasn't changed -- in this example,
5100	 * that C's parent is still the replacing vdev R.
5101	 */
5102	if (pvd->vdev_guid != pguid && pguid != 0)
5103		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5104
5105	/*
5106	 * Only 'replacing' or 'spare' vdevs can be replaced.
5107	 */
5108	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5109	    pvd->vdev_ops != &vdev_spare_ops)
5110		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5111
5112	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5113	    spa_version(spa) >= SPA_VERSION_SPARES);
5114
5115	/*
5116	 * Only mirror, replacing, and spare vdevs support detach.
5117	 */
5118	if (pvd->vdev_ops != &vdev_replacing_ops &&
5119	    pvd->vdev_ops != &vdev_mirror_ops &&
5120	    pvd->vdev_ops != &vdev_spare_ops)
5121		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5122
5123	/*
5124	 * If this device has the only valid copy of some data,
5125	 * we cannot safely detach it.
5126	 */
5127	if (vdev_dtl_required(vd))
5128		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5129
5130	ASSERT(pvd->vdev_children >= 2);
5131
5132	/*
5133	 * If we are detaching the second disk from a replacing vdev, then
5134	 * check to see if we changed the original vdev's path to have "/old"
5135	 * at the end in spa_vdev_attach().  If so, undo that change now.
5136	 */
5137	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5138	    vd->vdev_path != NULL) {
5139		size_t len = strlen(vd->vdev_path);
5140
5141		for (int c = 0; c < pvd->vdev_children; c++) {
5142			cvd = pvd->vdev_child[c];
5143
5144			if (cvd == vd || cvd->vdev_path == NULL)
5145				continue;
5146
5147			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5148			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5149				spa_strfree(cvd->vdev_path);
5150				cvd->vdev_path = spa_strdup(vd->vdev_path);
5151				break;
5152			}
5153		}
5154	}
5155
5156	/*
5157	 * If we are detaching the original disk from a spare, then it implies
5158	 * that the spare should become a real disk, and be removed from the
5159	 * active spare list for the pool.
5160	 */
5161	if (pvd->vdev_ops == &vdev_spare_ops &&
5162	    vd->vdev_id == 0 &&
5163	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5164		unspare = B_TRUE;
5165
5166	/*
5167	 * Erase the disk labels so the disk can be used for other things.
5168	 * This must be done after all other error cases are handled,
5169	 * but before we disembowel vd (so we can still do I/O to it).
5170	 * But if we can't do it, don't treat the error as fatal --
5171	 * it may be that the unwritability of the disk is the reason
5172	 * it's being detached!
5173	 */
5174	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5175
5176	/*
5177	 * Remove vd from its parent and compact the parent's children.
5178	 */
5179	vdev_remove_child(pvd, vd);
5180	vdev_compact_children(pvd);
5181
5182	/*
5183	 * Remember one of the remaining children so we can get tvd below.
5184	 */
5185	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5186
5187	/*
5188	 * If we need to remove the remaining child from the list of hot spares,
5189	 * do it now, marking the vdev as no longer a spare in the process.
5190	 * We must do this before vdev_remove_parent(), because that can
5191	 * change the GUID if it creates a new toplevel GUID.  For a similar
5192	 * reason, we must remove the spare now, in the same txg as the detach;
5193	 * otherwise someone could attach a new sibling, change the GUID, and
5194	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5195	 */
5196	if (unspare) {
5197		ASSERT(cvd->vdev_isspare);
5198		spa_spare_remove(cvd);
5199		unspare_guid = cvd->vdev_guid;
5200		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5201		cvd->vdev_unspare = B_TRUE;
5202	}
5203
5204	/*
5205	 * If the parent mirror/replacing vdev only has one child,
5206	 * the parent is no longer needed.  Remove it from the tree.
5207	 */
5208	if (pvd->vdev_children == 1) {
5209		if (pvd->vdev_ops == &vdev_spare_ops)
5210			cvd->vdev_unspare = B_FALSE;
5211		vdev_remove_parent(cvd);
5212	}
5213
5214
5215	/*
5216	 * We don't set tvd until now because the parent we just removed
5217	 * may have been the previous top-level vdev.
5218	 */
5219	tvd = cvd->vdev_top;
5220	ASSERT(tvd->vdev_parent == rvd);
5221
5222	/*
5223	 * Reevaluate the parent vdev state.
5224	 */
5225	vdev_propagate_state(cvd);
5226
5227	/*
5228	 * If the 'autoexpand' property is set on the pool then automatically
5229	 * try to expand the size of the pool. For example if the device we
5230	 * just detached was smaller than the others, it may be possible to
5231	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5232	 * first so that we can obtain the updated sizes of the leaf vdevs.
5233	 */
5234	if (spa->spa_autoexpand) {
5235		vdev_reopen(tvd);
5236		vdev_expand(tvd, txg);
5237	}
5238
5239	vdev_config_dirty(tvd);
5240
5241	/*
5242	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5243	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5244	 * But first make sure we're not on any *other* txg's DTL list, to
5245	 * prevent vd from being accessed after it's freed.
5246	 */
5247	vdpath = spa_strdup(vd->vdev_path);
5248	for (int t = 0; t < TXG_SIZE; t++)
5249		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5250	vd->vdev_detached = B_TRUE;
5251	vdev_dirty(tvd, VDD_DTL, vd, txg);
5252
5253	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5254
5255	/* hang on to the spa before we release the lock */
5256	spa_open_ref(spa, FTAG);
5257
5258	error = spa_vdev_exit(spa, vd, txg, 0);
5259
5260	spa_history_log_internal(spa, "detach", NULL,
5261	    "vdev=%s", vdpath);
5262	spa_strfree(vdpath);
5263
5264	/*
5265	 * If this was the removal of the original device in a hot spare vdev,
5266	 * then we want to go through and remove the device from the hot spare
5267	 * list of every other pool.
5268	 */
5269	if (unspare) {
5270		spa_t *altspa = NULL;
5271
5272		mutex_enter(&spa_namespace_lock);
5273		while ((altspa = spa_next(altspa)) != NULL) {
5274			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5275			    altspa == spa)
5276				continue;
5277
5278			spa_open_ref(altspa, FTAG);
5279			mutex_exit(&spa_namespace_lock);
5280			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5281			mutex_enter(&spa_namespace_lock);
5282			spa_close(altspa, FTAG);
5283		}
5284		mutex_exit(&spa_namespace_lock);
5285
5286		/* search the rest of the vdevs for spares to remove */
5287		spa_vdev_resilver_done(spa);
5288	}
5289
5290	/* all done with the spa; OK to release */
5291	mutex_enter(&spa_namespace_lock);
5292	spa_close(spa, FTAG);
5293	mutex_exit(&spa_namespace_lock);
5294
5295	return (error);
5296}
5297
5298/*
5299 * Split a set of devices from their mirrors, and create a new pool from them.
5300 */
5301int
5302spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5303    nvlist_t *props, boolean_t exp)
5304{
5305	int error = 0;
5306	uint64_t txg, *glist;
5307	spa_t *newspa;
5308	uint_t c, children, lastlog;
5309	nvlist_t **child, *nvl, *tmp;
5310	dmu_tx_t *tx;
5311	char *altroot = NULL;
5312	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5313	boolean_t activate_slog;
5314
5315	ASSERT(spa_writeable(spa));
5316
5317	txg = spa_vdev_enter(spa);
5318
5319	/* clear the log and flush everything up to now */
5320	activate_slog = spa_passivate_log(spa);
5321	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5322	error = spa_offline_log(spa);
5323	txg = spa_vdev_config_enter(spa);
5324
5325	if (activate_slog)
5326		spa_activate_log(spa);
5327
5328	if (error != 0)
5329		return (spa_vdev_exit(spa, NULL, txg, error));
5330
5331	/* check new spa name before going any further */
5332	if (spa_lookup(newname) != NULL)
5333		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5334
5335	/*
5336	 * scan through all the children to ensure they're all mirrors
5337	 */
5338	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5339	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5340	    &children) != 0)
5341		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5342
5343	/* first, check to ensure we've got the right child count */
5344	rvd = spa->spa_root_vdev;
5345	lastlog = 0;
5346	for (c = 0; c < rvd->vdev_children; c++) {
5347		vdev_t *vd = rvd->vdev_child[c];
5348
5349		/* don't count the holes & logs as children */
5350		if (vd->vdev_islog || vd->vdev_ishole) {
5351			if (lastlog == 0)
5352				lastlog = c;
5353			continue;
5354		}
5355
5356		lastlog = 0;
5357	}
5358	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5359		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5360
5361	/* next, ensure no spare or cache devices are part of the split */
5362	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5363	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5364		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5365
5366	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5367	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5368
5369	/* then, loop over each vdev and validate it */
5370	for (c = 0; c < children; c++) {
5371		uint64_t is_hole = 0;
5372
5373		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5374		    &is_hole);
5375
5376		if (is_hole != 0) {
5377			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5378			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5379				continue;
5380			} else {
5381				error = SET_ERROR(EINVAL);
5382				break;
5383			}
5384		}
5385
5386		/* which disk is going to be split? */
5387		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5388		    &glist[c]) != 0) {
5389			error = SET_ERROR(EINVAL);
5390			break;
5391		}
5392
5393		/* look it up in the spa */
5394		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5395		if (vml[c] == NULL) {
5396			error = SET_ERROR(ENODEV);
5397			break;
5398		}
5399
5400		/* make sure there's nothing stopping the split */
5401		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5402		    vml[c]->vdev_islog ||
5403		    vml[c]->vdev_ishole ||
5404		    vml[c]->vdev_isspare ||
5405		    vml[c]->vdev_isl2cache ||
5406		    !vdev_writeable(vml[c]) ||
5407		    vml[c]->vdev_children != 0 ||
5408		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5409		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5410			error = SET_ERROR(EINVAL);
5411			break;
5412		}
5413
5414		if (vdev_dtl_required(vml[c])) {
5415			error = SET_ERROR(EBUSY);
5416			break;
5417		}
5418
5419		/* we need certain info from the top level */
5420		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5421		    vml[c]->vdev_top->vdev_ms_array) == 0);
5422		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5423		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5424		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5425		    vml[c]->vdev_top->vdev_asize) == 0);
5426		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5427		    vml[c]->vdev_top->vdev_ashift) == 0);
5428
5429		/* transfer per-vdev ZAPs */
5430		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5431		VERIFY0(nvlist_add_uint64(child[c],
5432		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5433
5434		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5435		VERIFY0(nvlist_add_uint64(child[c],
5436		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5437		    vml[c]->vdev_parent->vdev_top_zap));
5438	}
5439
5440	if (error != 0) {
5441		kmem_free(vml, children * sizeof (vdev_t *));
5442		kmem_free(glist, children * sizeof (uint64_t));
5443		return (spa_vdev_exit(spa, NULL, txg, error));
5444	}
5445
5446	/* stop writers from using the disks */
5447	for (c = 0; c < children; c++) {
5448		if (vml[c] != NULL)
5449			vml[c]->vdev_offline = B_TRUE;
5450	}
5451	vdev_reopen(spa->spa_root_vdev);
5452
5453	/*
5454	 * Temporarily record the splitting vdevs in the spa config.  This
5455	 * will disappear once the config is regenerated.
5456	 */
5457	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5458	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5459	    glist, children) == 0);
5460	kmem_free(glist, children * sizeof (uint64_t));
5461
5462	mutex_enter(&spa->spa_props_lock);
5463	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5464	    nvl) == 0);
5465	mutex_exit(&spa->spa_props_lock);
5466	spa->spa_config_splitting = nvl;
5467	vdev_config_dirty(spa->spa_root_vdev);
5468
5469	/* configure and create the new pool */
5470	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5471	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5472	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5473	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5474	    spa_version(spa)) == 0);
5475	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5476	    spa->spa_config_txg) == 0);
5477	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5478	    spa_generate_guid(NULL)) == 0);
5479	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5480	(void) nvlist_lookup_string(props,
5481	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5482
5483	/* add the new pool to the namespace */
5484	newspa = spa_add(newname, config, altroot);
5485	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5486	newspa->spa_config_txg = spa->spa_config_txg;
5487	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5488
5489	/* release the spa config lock, retaining the namespace lock */
5490	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5491
5492	if (zio_injection_enabled)
5493		zio_handle_panic_injection(spa, FTAG, 1);
5494
5495	spa_activate(newspa, spa_mode_global);
5496	spa_async_suspend(newspa);
5497
5498#ifndef illumos
5499	/* mark that we are creating new spa by splitting */
5500	newspa->spa_splitting_newspa = B_TRUE;
5501#endif
5502	/* create the new pool from the disks of the original pool */
5503	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5504#ifndef illumos
5505	newspa->spa_splitting_newspa = B_FALSE;
5506#endif
5507	if (error)
5508		goto out;
5509
5510	/* if that worked, generate a real config for the new pool */
5511	if (newspa->spa_root_vdev != NULL) {
5512		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5513		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5514		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5515		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5516		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5517		    B_TRUE));
5518	}
5519
5520	/* set the props */
5521	if (props != NULL) {
5522		spa_configfile_set(newspa, props, B_FALSE);
5523		error = spa_prop_set(newspa, props);
5524		if (error)
5525			goto out;
5526	}
5527
5528	/* flush everything */
5529	txg = spa_vdev_config_enter(newspa);
5530	vdev_config_dirty(newspa->spa_root_vdev);
5531	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5532
5533	if (zio_injection_enabled)
5534		zio_handle_panic_injection(spa, FTAG, 2);
5535
5536	spa_async_resume(newspa);
5537
5538	/* finally, update the original pool's config */
5539	txg = spa_vdev_config_enter(spa);
5540	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5541	error = dmu_tx_assign(tx, TXG_WAIT);
5542	if (error != 0)
5543		dmu_tx_abort(tx);
5544	for (c = 0; c < children; c++) {
5545		if (vml[c] != NULL) {
5546			vdev_split(vml[c]);
5547			if (error == 0)
5548				spa_history_log_internal(spa, "detach", tx,
5549				    "vdev=%s", vml[c]->vdev_path);
5550
5551			vdev_free(vml[c]);
5552		}
5553	}
5554	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5555	vdev_config_dirty(spa->spa_root_vdev);
5556	spa->spa_config_splitting = NULL;
5557	nvlist_free(nvl);
5558	if (error == 0)
5559		dmu_tx_commit(tx);
5560	(void) spa_vdev_exit(spa, NULL, txg, 0);
5561
5562	if (zio_injection_enabled)
5563		zio_handle_panic_injection(spa, FTAG, 3);
5564
5565	/* split is complete; log a history record */
5566	spa_history_log_internal(newspa, "split", NULL,
5567	    "from pool %s", spa_name(spa));
5568
5569	kmem_free(vml, children * sizeof (vdev_t *));
5570
5571	/* if we're not going to mount the filesystems in userland, export */
5572	if (exp)
5573		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5574		    B_FALSE, B_FALSE);
5575
5576	return (error);
5577
5578out:
5579	spa_unload(newspa);
5580	spa_deactivate(newspa);
5581	spa_remove(newspa);
5582
5583	txg = spa_vdev_config_enter(spa);
5584
5585	/* re-online all offlined disks */
5586	for (c = 0; c < children; c++) {
5587		if (vml[c] != NULL)
5588			vml[c]->vdev_offline = B_FALSE;
5589	}
5590	vdev_reopen(spa->spa_root_vdev);
5591
5592	nvlist_free(spa->spa_config_splitting);
5593	spa->spa_config_splitting = NULL;
5594	(void) spa_vdev_exit(spa, NULL, txg, error);
5595
5596	kmem_free(vml, children * sizeof (vdev_t *));
5597	return (error);
5598}
5599
5600static nvlist_t *
5601spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5602{
5603	for (int i = 0; i < count; i++) {
5604		uint64_t guid;
5605
5606		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5607		    &guid) == 0);
5608
5609		if (guid == target_guid)
5610			return (nvpp[i]);
5611	}
5612
5613	return (NULL);
5614}
5615
5616static void
5617spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5618	nvlist_t *dev_to_remove)
5619{
5620	nvlist_t **newdev = NULL;
5621
5622	if (count > 1)
5623		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5624
5625	for (int i = 0, j = 0; i < count; i++) {
5626		if (dev[i] == dev_to_remove)
5627			continue;
5628		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5629	}
5630
5631	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5632	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5633
5634	for (int i = 0; i < count - 1; i++)
5635		nvlist_free(newdev[i]);
5636
5637	if (count > 1)
5638		kmem_free(newdev, (count - 1) * sizeof (void *));
5639}
5640
5641/*
5642 * Evacuate the device.
5643 */
5644static int
5645spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5646{
5647	uint64_t txg;
5648	int error = 0;
5649
5650	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5651	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5652	ASSERT(vd == vd->vdev_top);
5653
5654	/*
5655	 * Evacuate the device.  We don't hold the config lock as writer
5656	 * since we need to do I/O but we do keep the
5657	 * spa_namespace_lock held.  Once this completes the device
5658	 * should no longer have any blocks allocated on it.
5659	 */
5660	if (vd->vdev_islog) {
5661		if (vd->vdev_stat.vs_alloc != 0)
5662			error = spa_offline_log(spa);
5663	} else {
5664		error = SET_ERROR(ENOTSUP);
5665	}
5666
5667	if (error)
5668		return (error);
5669
5670	/*
5671	 * The evacuation succeeded.  Remove any remaining MOS metadata
5672	 * associated with this vdev, and wait for these changes to sync.
5673	 */
5674	ASSERT0(vd->vdev_stat.vs_alloc);
5675	txg = spa_vdev_config_enter(spa);
5676	vd->vdev_removing = B_TRUE;
5677	vdev_dirty_leaves(vd, VDD_DTL, txg);
5678	vdev_config_dirty(vd);
5679	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5680
5681	return (0);
5682}
5683
5684/*
5685 * Complete the removal by cleaning up the namespace.
5686 */
5687static void
5688spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5689{
5690	vdev_t *rvd = spa->spa_root_vdev;
5691	uint64_t id = vd->vdev_id;
5692	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5693
5694	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5695	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5696	ASSERT(vd == vd->vdev_top);
5697
5698	/*
5699	 * Only remove any devices which are empty.
5700	 */
5701	if (vd->vdev_stat.vs_alloc != 0)
5702		return;
5703
5704	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5705
5706	if (list_link_active(&vd->vdev_state_dirty_node))
5707		vdev_state_clean(vd);
5708	if (list_link_active(&vd->vdev_config_dirty_node))
5709		vdev_config_clean(vd);
5710
5711	vdev_free(vd);
5712
5713	if (last_vdev) {
5714		vdev_compact_children(rvd);
5715	} else {
5716		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5717		vdev_add_child(rvd, vd);
5718	}
5719	vdev_config_dirty(rvd);
5720
5721	/*
5722	 * Reassess the health of our root vdev.
5723	 */
5724	vdev_reopen(rvd);
5725}
5726
5727/*
5728 * Remove a device from the pool -
5729 *
5730 * Removing a device from the vdev namespace requires several steps
5731 * and can take a significant amount of time.  As a result we use
5732 * the spa_vdev_config_[enter/exit] functions which allow us to
5733 * grab and release the spa_config_lock while still holding the namespace
5734 * lock.  During each step the configuration is synced out.
5735 *
5736 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5737 * devices.
5738 */
5739int
5740spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5741{
5742	vdev_t *vd;
5743	sysevent_t *ev = NULL;
5744	metaslab_group_t *mg;
5745	nvlist_t **spares, **l2cache, *nv;
5746	uint64_t txg = 0;
5747	uint_t nspares, nl2cache;
5748	int error = 0;
5749	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5750
5751	ASSERT(spa_writeable(spa));
5752
5753	if (!locked)
5754		txg = spa_vdev_enter(spa);
5755
5756	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5757
5758	if (spa->spa_spares.sav_vdevs != NULL &&
5759	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5760	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5761	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5762		/*
5763		 * Only remove the hot spare if it's not currently in use
5764		 * in this pool.
5765		 */
5766		if (vd == NULL || unspare) {
5767			if (vd == NULL)
5768				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5769			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5770			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5771			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5772			spa_load_spares(spa);
5773			spa->spa_spares.sav_sync = B_TRUE;
5774		} else {
5775			error = SET_ERROR(EBUSY);
5776		}
5777	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5778	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5779	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5780	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5781		/*
5782		 * Cache devices can always be removed.
5783		 */
5784		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5785		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5786		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5787		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5788		spa_load_l2cache(spa);
5789		spa->spa_l2cache.sav_sync = B_TRUE;
5790	} else if (vd != NULL && vd->vdev_islog) {
5791		ASSERT(!locked);
5792		ASSERT(vd == vd->vdev_top);
5793
5794		mg = vd->vdev_mg;
5795
5796		/*
5797		 * Stop allocating from this vdev.
5798		 */
5799		metaslab_group_passivate(mg);
5800
5801		/*
5802		 * Wait for the youngest allocations and frees to sync,
5803		 * and then wait for the deferral of those frees to finish.
5804		 */
5805		spa_vdev_config_exit(spa, NULL,
5806		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5807
5808		/*
5809		 * Attempt to evacuate the vdev.
5810		 */
5811		error = spa_vdev_remove_evacuate(spa, vd);
5812
5813		txg = spa_vdev_config_enter(spa);
5814
5815		/*
5816		 * If we couldn't evacuate the vdev, unwind.
5817		 */
5818		if (error) {
5819			metaslab_group_activate(mg);
5820			return (spa_vdev_exit(spa, NULL, txg, error));
5821		}
5822
5823		/*
5824		 * Clean up the vdev namespace.
5825		 */
5826		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5827		spa_vdev_remove_from_namespace(spa, vd);
5828
5829	} else if (vd != NULL) {
5830		/*
5831		 * Normal vdevs cannot be removed (yet).
5832		 */
5833		error = SET_ERROR(ENOTSUP);
5834	} else {
5835		/*
5836		 * There is no vdev of any kind with the specified guid.
5837		 */
5838		error = SET_ERROR(ENOENT);
5839	}
5840
5841	if (!locked)
5842		error = spa_vdev_exit(spa, NULL, txg, error);
5843
5844	if (ev)
5845		spa_event_post(ev);
5846
5847	return (error);
5848}
5849
5850/*
5851 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5852 * currently spared, so we can detach it.
5853 */
5854static vdev_t *
5855spa_vdev_resilver_done_hunt(vdev_t *vd)
5856{
5857	vdev_t *newvd, *oldvd;
5858
5859	for (int c = 0; c < vd->vdev_children; c++) {
5860		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5861		if (oldvd != NULL)
5862			return (oldvd);
5863	}
5864
5865	/*
5866	 * Check for a completed replacement.  We always consider the first
5867	 * vdev in the list to be the oldest vdev, and the last one to be
5868	 * the newest (see spa_vdev_attach() for how that works).  In
5869	 * the case where the newest vdev is faulted, we will not automatically
5870	 * remove it after a resilver completes.  This is OK as it will require
5871	 * user intervention to determine which disk the admin wishes to keep.
5872	 */
5873	if (vd->vdev_ops == &vdev_replacing_ops) {
5874		ASSERT(vd->vdev_children > 1);
5875
5876		newvd = vd->vdev_child[vd->vdev_children - 1];
5877		oldvd = vd->vdev_child[0];
5878
5879		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5880		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5881		    !vdev_dtl_required(oldvd))
5882			return (oldvd);
5883	}
5884
5885	/*
5886	 * Check for a completed resilver with the 'unspare' flag set.
5887	 */
5888	if (vd->vdev_ops == &vdev_spare_ops) {
5889		vdev_t *first = vd->vdev_child[0];
5890		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5891
5892		if (last->vdev_unspare) {
5893			oldvd = first;
5894			newvd = last;
5895		} else if (first->vdev_unspare) {
5896			oldvd = last;
5897			newvd = first;
5898		} else {
5899			oldvd = NULL;
5900		}
5901
5902		if (oldvd != NULL &&
5903		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5904		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5905		    !vdev_dtl_required(oldvd))
5906			return (oldvd);
5907
5908		/*
5909		 * If there are more than two spares attached to a disk,
5910		 * and those spares are not required, then we want to
5911		 * attempt to free them up now so that they can be used
5912		 * by other pools.  Once we're back down to a single
5913		 * disk+spare, we stop removing them.
5914		 */
5915		if (vd->vdev_children > 2) {
5916			newvd = vd->vdev_child[1];
5917
5918			if (newvd->vdev_isspare && last->vdev_isspare &&
5919			    vdev_dtl_empty(last, DTL_MISSING) &&
5920			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5921			    !vdev_dtl_required(newvd))
5922				return (newvd);
5923		}
5924	}
5925
5926	return (NULL);
5927}
5928
5929static void
5930spa_vdev_resilver_done(spa_t *spa)
5931{
5932	vdev_t *vd, *pvd, *ppvd;
5933	uint64_t guid, sguid, pguid, ppguid;
5934
5935	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5936
5937	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5938		pvd = vd->vdev_parent;
5939		ppvd = pvd->vdev_parent;
5940		guid = vd->vdev_guid;
5941		pguid = pvd->vdev_guid;
5942		ppguid = ppvd->vdev_guid;
5943		sguid = 0;
5944		/*
5945		 * If we have just finished replacing a hot spared device, then
5946		 * we need to detach the parent's first child (the original hot
5947		 * spare) as well.
5948		 */
5949		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5950		    ppvd->vdev_children == 2) {
5951			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5952			sguid = ppvd->vdev_child[1]->vdev_guid;
5953		}
5954		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5955
5956		spa_config_exit(spa, SCL_ALL, FTAG);
5957		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5958			return;
5959		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5960			return;
5961		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5962	}
5963
5964	spa_config_exit(spa, SCL_ALL, FTAG);
5965}
5966
5967/*
5968 * Update the stored path or FRU for this vdev.
5969 */
5970int
5971spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5972    boolean_t ispath)
5973{
5974	vdev_t *vd;
5975	boolean_t sync = B_FALSE;
5976
5977	ASSERT(spa_writeable(spa));
5978
5979	spa_vdev_state_enter(spa, SCL_ALL);
5980
5981	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5982		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5983
5984	if (!vd->vdev_ops->vdev_op_leaf)
5985		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5986
5987	if (ispath) {
5988		if (strcmp(value, vd->vdev_path) != 0) {
5989			spa_strfree(vd->vdev_path);
5990			vd->vdev_path = spa_strdup(value);
5991			sync = B_TRUE;
5992		}
5993	} else {
5994		if (vd->vdev_fru == NULL) {
5995			vd->vdev_fru = spa_strdup(value);
5996			sync = B_TRUE;
5997		} else if (strcmp(value, vd->vdev_fru) != 0) {
5998			spa_strfree(vd->vdev_fru);
5999			vd->vdev_fru = spa_strdup(value);
6000			sync = B_TRUE;
6001		}
6002	}
6003
6004	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6005}
6006
6007int
6008spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6009{
6010	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6011}
6012
6013int
6014spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6015{
6016	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6017}
6018
6019/*
6020 * ==========================================================================
6021 * SPA Scanning
6022 * ==========================================================================
6023 */
6024
6025int
6026spa_scan_stop(spa_t *spa)
6027{
6028	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6029	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6030		return (SET_ERROR(EBUSY));
6031	return (dsl_scan_cancel(spa->spa_dsl_pool));
6032}
6033
6034int
6035spa_scan(spa_t *spa, pool_scan_func_t func)
6036{
6037	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6038
6039	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6040		return (SET_ERROR(ENOTSUP));
6041
6042	/*
6043	 * If a resilver was requested, but there is no DTL on a
6044	 * writeable leaf device, we have nothing to do.
6045	 */
6046	if (func == POOL_SCAN_RESILVER &&
6047	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6048		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6049		return (0);
6050	}
6051
6052	return (dsl_scan(spa->spa_dsl_pool, func));
6053}
6054
6055/*
6056 * ==========================================================================
6057 * SPA async task processing
6058 * ==========================================================================
6059 */
6060
6061static void
6062spa_async_remove(spa_t *spa, vdev_t *vd)
6063{
6064	if (vd->vdev_remove_wanted) {
6065		vd->vdev_remove_wanted = B_FALSE;
6066		vd->vdev_delayed_close = B_FALSE;
6067		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6068
6069		/*
6070		 * We want to clear the stats, but we don't want to do a full
6071		 * vdev_clear() as that will cause us to throw away
6072		 * degraded/faulted state as well as attempt to reopen the
6073		 * device, all of which is a waste.
6074		 */
6075		vd->vdev_stat.vs_read_errors = 0;
6076		vd->vdev_stat.vs_write_errors = 0;
6077		vd->vdev_stat.vs_checksum_errors = 0;
6078
6079		vdev_state_dirty(vd->vdev_top);
6080		/* Tell userspace that the vdev is gone. */
6081		zfs_post_remove(spa, vd);
6082	}
6083
6084	for (int c = 0; c < vd->vdev_children; c++)
6085		spa_async_remove(spa, vd->vdev_child[c]);
6086}
6087
6088static void
6089spa_async_probe(spa_t *spa, vdev_t *vd)
6090{
6091	if (vd->vdev_probe_wanted) {
6092		vd->vdev_probe_wanted = B_FALSE;
6093		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6094	}
6095
6096	for (int c = 0; c < vd->vdev_children; c++)
6097		spa_async_probe(spa, vd->vdev_child[c]);
6098}
6099
6100static void
6101spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6102{
6103	sysevent_id_t eid;
6104	nvlist_t *attr;
6105	char *physpath;
6106
6107	if (!spa->spa_autoexpand)
6108		return;
6109
6110	for (int c = 0; c < vd->vdev_children; c++) {
6111		vdev_t *cvd = vd->vdev_child[c];
6112		spa_async_autoexpand(spa, cvd);
6113	}
6114
6115	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6116		return;
6117
6118	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6119	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6120
6121	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6122	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6123
6124	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6125	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6126
6127	nvlist_free(attr);
6128	kmem_free(physpath, MAXPATHLEN);
6129}
6130
6131static void
6132spa_async_thread(void *arg)
6133{
6134	spa_t *spa = arg;
6135	int tasks;
6136
6137	ASSERT(spa->spa_sync_on);
6138
6139	mutex_enter(&spa->spa_async_lock);
6140	tasks = spa->spa_async_tasks;
6141	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6142	mutex_exit(&spa->spa_async_lock);
6143
6144	/*
6145	 * See if the config needs to be updated.
6146	 */
6147	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6148		uint64_t old_space, new_space;
6149
6150		mutex_enter(&spa_namespace_lock);
6151		old_space = metaslab_class_get_space(spa_normal_class(spa));
6152		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6153		new_space = metaslab_class_get_space(spa_normal_class(spa));
6154		mutex_exit(&spa_namespace_lock);
6155
6156		/*
6157		 * If the pool grew as a result of the config update,
6158		 * then log an internal history event.
6159		 */
6160		if (new_space != old_space) {
6161			spa_history_log_internal(spa, "vdev online", NULL,
6162			    "pool '%s' size: %llu(+%llu)",
6163			    spa_name(spa), new_space, new_space - old_space);
6164		}
6165	}
6166
6167	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6168		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6169		spa_async_autoexpand(spa, spa->spa_root_vdev);
6170		spa_config_exit(spa, SCL_CONFIG, FTAG);
6171	}
6172
6173	/*
6174	 * See if any devices need to be probed.
6175	 */
6176	if (tasks & SPA_ASYNC_PROBE) {
6177		spa_vdev_state_enter(spa, SCL_NONE);
6178		spa_async_probe(spa, spa->spa_root_vdev);
6179		(void) spa_vdev_state_exit(spa, NULL, 0);
6180	}
6181
6182	/*
6183	 * If any devices are done replacing, detach them.
6184	 */
6185	if (tasks & SPA_ASYNC_RESILVER_DONE)
6186		spa_vdev_resilver_done(spa);
6187
6188	/*
6189	 * Kick off a resilver.
6190	 */
6191	if (tasks & SPA_ASYNC_RESILVER)
6192		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6193
6194	/*
6195	 * Let the world know that we're done.
6196	 */
6197	mutex_enter(&spa->spa_async_lock);
6198	spa->spa_async_thread = NULL;
6199	cv_broadcast(&spa->spa_async_cv);
6200	mutex_exit(&spa->spa_async_lock);
6201	thread_exit();
6202}
6203
6204static void
6205spa_async_thread_vd(void *arg)
6206{
6207	spa_t *spa = arg;
6208	int tasks;
6209
6210	ASSERT(spa->spa_sync_on);
6211
6212	mutex_enter(&spa->spa_async_lock);
6213	tasks = spa->spa_async_tasks;
6214retry:
6215	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6216	mutex_exit(&spa->spa_async_lock);
6217
6218	/*
6219	 * See if any devices need to be marked REMOVED.
6220	 */
6221	if (tasks & SPA_ASYNC_REMOVE) {
6222		spa_vdev_state_enter(spa, SCL_NONE);
6223		spa_async_remove(spa, spa->spa_root_vdev);
6224		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6225			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6226		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6227			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6228		(void) spa_vdev_state_exit(spa, NULL, 0);
6229	}
6230
6231	/*
6232	 * Let the world know that we're done.
6233	 */
6234	mutex_enter(&spa->spa_async_lock);
6235	tasks = spa->spa_async_tasks;
6236	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6237		goto retry;
6238	spa->spa_async_thread_vd = NULL;
6239	cv_broadcast(&spa->spa_async_cv);
6240	mutex_exit(&spa->spa_async_lock);
6241	thread_exit();
6242}
6243
6244void
6245spa_async_suspend(spa_t *spa)
6246{
6247	mutex_enter(&spa->spa_async_lock);
6248	spa->spa_async_suspended++;
6249	while (spa->spa_async_thread != NULL &&
6250	    spa->spa_async_thread_vd != NULL)
6251		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6252	mutex_exit(&spa->spa_async_lock);
6253}
6254
6255void
6256spa_async_resume(spa_t *spa)
6257{
6258	mutex_enter(&spa->spa_async_lock);
6259	ASSERT(spa->spa_async_suspended != 0);
6260	spa->spa_async_suspended--;
6261	mutex_exit(&spa->spa_async_lock);
6262}
6263
6264static boolean_t
6265spa_async_tasks_pending(spa_t *spa)
6266{
6267	uint_t non_config_tasks;
6268	uint_t config_task;
6269	boolean_t config_task_suspended;
6270
6271	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6272	    SPA_ASYNC_REMOVE);
6273	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6274	if (spa->spa_ccw_fail_time == 0) {
6275		config_task_suspended = B_FALSE;
6276	} else {
6277		config_task_suspended =
6278		    (gethrtime() - spa->spa_ccw_fail_time) <
6279		    (zfs_ccw_retry_interval * NANOSEC);
6280	}
6281
6282	return (non_config_tasks || (config_task && !config_task_suspended));
6283}
6284
6285static void
6286spa_async_dispatch(spa_t *spa)
6287{
6288	mutex_enter(&spa->spa_async_lock);
6289	if (spa_async_tasks_pending(spa) &&
6290	    !spa->spa_async_suspended &&
6291	    spa->spa_async_thread == NULL &&
6292	    rootdir != NULL)
6293		spa->spa_async_thread = thread_create(NULL, 0,
6294		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6295	mutex_exit(&spa->spa_async_lock);
6296}
6297
6298static void
6299spa_async_dispatch_vd(spa_t *spa)
6300{
6301	mutex_enter(&spa->spa_async_lock);
6302	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6303	    !spa->spa_async_suspended &&
6304	    spa->spa_async_thread_vd == NULL &&
6305	    rootdir != NULL)
6306		spa->spa_async_thread_vd = thread_create(NULL, 0,
6307		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6308	mutex_exit(&spa->spa_async_lock);
6309}
6310
6311void
6312spa_async_request(spa_t *spa, int task)
6313{
6314	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6315	mutex_enter(&spa->spa_async_lock);
6316	spa->spa_async_tasks |= task;
6317	mutex_exit(&spa->spa_async_lock);
6318	spa_async_dispatch_vd(spa);
6319}
6320
6321/*
6322 * ==========================================================================
6323 * SPA syncing routines
6324 * ==========================================================================
6325 */
6326
6327static int
6328bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6329{
6330	bpobj_t *bpo = arg;
6331	bpobj_enqueue(bpo, bp, tx);
6332	return (0);
6333}
6334
6335static int
6336spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6337{
6338	zio_t *zio = arg;
6339
6340	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6341	    BP_GET_PSIZE(bp), zio->io_flags));
6342	return (0);
6343}
6344
6345/*
6346 * Note: this simple function is not inlined to make it easier to dtrace the
6347 * amount of time spent syncing frees.
6348 */
6349static void
6350spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6351{
6352	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6353	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6354	VERIFY(zio_wait(zio) == 0);
6355}
6356
6357/*
6358 * Note: this simple function is not inlined to make it easier to dtrace the
6359 * amount of time spent syncing deferred frees.
6360 */
6361static void
6362spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6363{
6364	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6365	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6366	    spa_free_sync_cb, zio, tx), ==, 0);
6367	VERIFY0(zio_wait(zio));
6368}
6369
6370
6371static void
6372spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6373{
6374	char *packed = NULL;
6375	size_t bufsize;
6376	size_t nvsize = 0;
6377	dmu_buf_t *db;
6378
6379	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6380
6381	/*
6382	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6383	 * information.  This avoids the dmu_buf_will_dirty() path and
6384	 * saves us a pre-read to get data we don't actually care about.
6385	 */
6386	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6387	packed = kmem_alloc(bufsize, KM_SLEEP);
6388
6389	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6390	    KM_SLEEP) == 0);
6391	bzero(packed + nvsize, bufsize - nvsize);
6392
6393	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6394
6395	kmem_free(packed, bufsize);
6396
6397	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6398	dmu_buf_will_dirty(db, tx);
6399	*(uint64_t *)db->db_data = nvsize;
6400	dmu_buf_rele(db, FTAG);
6401}
6402
6403static void
6404spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6405    const char *config, const char *entry)
6406{
6407	nvlist_t *nvroot;
6408	nvlist_t **list;
6409	int i;
6410
6411	if (!sav->sav_sync)
6412		return;
6413
6414	/*
6415	 * Update the MOS nvlist describing the list of available devices.
6416	 * spa_validate_aux() will have already made sure this nvlist is
6417	 * valid and the vdevs are labeled appropriately.
6418	 */
6419	if (sav->sav_object == 0) {
6420		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6421		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6422		    sizeof (uint64_t), tx);
6423		VERIFY(zap_update(spa->spa_meta_objset,
6424		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6425		    &sav->sav_object, tx) == 0);
6426	}
6427
6428	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6429	if (sav->sav_count == 0) {
6430		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6431	} else {
6432		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6433		for (i = 0; i < sav->sav_count; i++)
6434			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6435			    B_FALSE, VDEV_CONFIG_L2CACHE);
6436		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6437		    sav->sav_count) == 0);
6438		for (i = 0; i < sav->sav_count; i++)
6439			nvlist_free(list[i]);
6440		kmem_free(list, sav->sav_count * sizeof (void *));
6441	}
6442
6443	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6444	nvlist_free(nvroot);
6445
6446	sav->sav_sync = B_FALSE;
6447}
6448
6449/*
6450 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6451 * The all-vdev ZAP must be empty.
6452 */
6453static void
6454spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6455{
6456	spa_t *spa = vd->vdev_spa;
6457	if (vd->vdev_top_zap != 0) {
6458		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6459		    vd->vdev_top_zap, tx));
6460	}
6461	if (vd->vdev_leaf_zap != 0) {
6462		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6463		    vd->vdev_leaf_zap, tx));
6464	}
6465	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6466		spa_avz_build(vd->vdev_child[i], avz, tx);
6467	}
6468}
6469
6470static void
6471spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6472{
6473	nvlist_t *config;
6474
6475	/*
6476	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6477	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6478	 * Similarly, if the pool is being assembled (e.g. after a split), we
6479	 * need to rebuild the AVZ although the config may not be dirty.
6480	 */
6481	if (list_is_empty(&spa->spa_config_dirty_list) &&
6482	    spa->spa_avz_action == AVZ_ACTION_NONE)
6483		return;
6484
6485	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6486
6487	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6488	    spa->spa_all_vdev_zaps != 0);
6489
6490	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6491		/* Make and build the new AVZ */
6492		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6493		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6494		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6495
6496		/* Diff old AVZ with new one */
6497		zap_cursor_t zc;
6498		zap_attribute_t za;
6499
6500		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6501		    spa->spa_all_vdev_zaps);
6502		    zap_cursor_retrieve(&zc, &za) == 0;
6503		    zap_cursor_advance(&zc)) {
6504			uint64_t vdzap = za.za_first_integer;
6505			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6506			    vdzap) == ENOENT) {
6507				/*
6508				 * ZAP is listed in old AVZ but not in new one;
6509				 * destroy it
6510				 */
6511				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6512				    tx));
6513			}
6514		}
6515
6516		zap_cursor_fini(&zc);
6517
6518		/* Destroy the old AVZ */
6519		VERIFY0(zap_destroy(spa->spa_meta_objset,
6520		    spa->spa_all_vdev_zaps, tx));
6521
6522		/* Replace the old AVZ in the dir obj with the new one */
6523		VERIFY0(zap_update(spa->spa_meta_objset,
6524		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6525		    sizeof (new_avz), 1, &new_avz, tx));
6526
6527		spa->spa_all_vdev_zaps = new_avz;
6528	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6529		zap_cursor_t zc;
6530		zap_attribute_t za;
6531
6532		/* Walk through the AVZ and destroy all listed ZAPs */
6533		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6534		    spa->spa_all_vdev_zaps);
6535		    zap_cursor_retrieve(&zc, &za) == 0;
6536		    zap_cursor_advance(&zc)) {
6537			uint64_t zap = za.za_first_integer;
6538			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6539		}
6540
6541		zap_cursor_fini(&zc);
6542
6543		/* Destroy and unlink the AVZ itself */
6544		VERIFY0(zap_destroy(spa->spa_meta_objset,
6545		    spa->spa_all_vdev_zaps, tx));
6546		VERIFY0(zap_remove(spa->spa_meta_objset,
6547		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6548		spa->spa_all_vdev_zaps = 0;
6549	}
6550
6551	if (spa->spa_all_vdev_zaps == 0) {
6552		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6553		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6554		    DMU_POOL_VDEV_ZAP_MAP, tx);
6555	}
6556	spa->spa_avz_action = AVZ_ACTION_NONE;
6557
6558	/* Create ZAPs for vdevs that don't have them. */
6559	vdev_construct_zaps(spa->spa_root_vdev, tx);
6560
6561	config = spa_config_generate(spa, spa->spa_root_vdev,
6562	    dmu_tx_get_txg(tx), B_FALSE);
6563
6564	/*
6565	 * If we're upgrading the spa version then make sure that
6566	 * the config object gets updated with the correct version.
6567	 */
6568	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6569		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6570		    spa->spa_uberblock.ub_version);
6571
6572	spa_config_exit(spa, SCL_STATE, FTAG);
6573
6574	nvlist_free(spa->spa_config_syncing);
6575	spa->spa_config_syncing = config;
6576
6577	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6578}
6579
6580static void
6581spa_sync_version(void *arg, dmu_tx_t *tx)
6582{
6583	uint64_t *versionp = arg;
6584	uint64_t version = *versionp;
6585	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6586
6587	/*
6588	 * Setting the version is special cased when first creating the pool.
6589	 */
6590	ASSERT(tx->tx_txg != TXG_INITIAL);
6591
6592	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6593	ASSERT(version >= spa_version(spa));
6594
6595	spa->spa_uberblock.ub_version = version;
6596	vdev_config_dirty(spa->spa_root_vdev);
6597	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6598}
6599
6600/*
6601 * Set zpool properties.
6602 */
6603static void
6604spa_sync_props(void *arg, dmu_tx_t *tx)
6605{
6606	nvlist_t *nvp = arg;
6607	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6608	objset_t *mos = spa->spa_meta_objset;
6609	nvpair_t *elem = NULL;
6610
6611	mutex_enter(&spa->spa_props_lock);
6612
6613	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6614		uint64_t intval;
6615		char *strval, *fname;
6616		zpool_prop_t prop;
6617		const char *propname;
6618		zprop_type_t proptype;
6619		spa_feature_t fid;
6620
6621		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6622		case ZPROP_INVAL:
6623			/*
6624			 * We checked this earlier in spa_prop_validate().
6625			 */
6626			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6627
6628			fname = strchr(nvpair_name(elem), '@') + 1;
6629			VERIFY0(zfeature_lookup_name(fname, &fid));
6630
6631			spa_feature_enable(spa, fid, tx);
6632			spa_history_log_internal(spa, "set", tx,
6633			    "%s=enabled", nvpair_name(elem));
6634			break;
6635
6636		case ZPOOL_PROP_VERSION:
6637			intval = fnvpair_value_uint64(elem);
6638			/*
6639			 * The version is synced seperatly before other
6640			 * properties and should be correct by now.
6641			 */
6642			ASSERT3U(spa_version(spa), >=, intval);
6643			break;
6644
6645		case ZPOOL_PROP_ALTROOT:
6646			/*
6647			 * 'altroot' is a non-persistent property. It should
6648			 * have been set temporarily at creation or import time.
6649			 */
6650			ASSERT(spa->spa_root != NULL);
6651			break;
6652
6653		case ZPOOL_PROP_READONLY:
6654		case ZPOOL_PROP_CACHEFILE:
6655			/*
6656			 * 'readonly' and 'cachefile' are also non-persisitent
6657			 * properties.
6658			 */
6659			break;
6660		case ZPOOL_PROP_COMMENT:
6661			strval = fnvpair_value_string(elem);
6662			if (spa->spa_comment != NULL)
6663				spa_strfree(spa->spa_comment);
6664			spa->spa_comment = spa_strdup(strval);
6665			/*
6666			 * We need to dirty the configuration on all the vdevs
6667			 * so that their labels get updated.  It's unnecessary
6668			 * to do this for pool creation since the vdev's
6669			 * configuratoin has already been dirtied.
6670			 */
6671			if (tx->tx_txg != TXG_INITIAL)
6672				vdev_config_dirty(spa->spa_root_vdev);
6673			spa_history_log_internal(spa, "set", tx,
6674			    "%s=%s", nvpair_name(elem), strval);
6675			break;
6676		default:
6677			/*
6678			 * Set pool property values in the poolprops mos object.
6679			 */
6680			if (spa->spa_pool_props_object == 0) {
6681				spa->spa_pool_props_object =
6682				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6683				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6684				    tx);
6685			}
6686
6687			/* normalize the property name */
6688			propname = zpool_prop_to_name(prop);
6689			proptype = zpool_prop_get_type(prop);
6690
6691			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6692				ASSERT(proptype == PROP_TYPE_STRING);
6693				strval = fnvpair_value_string(elem);
6694				VERIFY0(zap_update(mos,
6695				    spa->spa_pool_props_object, propname,
6696				    1, strlen(strval) + 1, strval, tx));
6697				spa_history_log_internal(spa, "set", tx,
6698				    "%s=%s", nvpair_name(elem), strval);
6699			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6700				intval = fnvpair_value_uint64(elem);
6701
6702				if (proptype == PROP_TYPE_INDEX) {
6703					const char *unused;
6704					VERIFY0(zpool_prop_index_to_string(
6705					    prop, intval, &unused));
6706				}
6707				VERIFY0(zap_update(mos,
6708				    spa->spa_pool_props_object, propname,
6709				    8, 1, &intval, tx));
6710				spa_history_log_internal(spa, "set", tx,
6711				    "%s=%lld", nvpair_name(elem), intval);
6712			} else {
6713				ASSERT(0); /* not allowed */
6714			}
6715
6716			switch (prop) {
6717			case ZPOOL_PROP_DELEGATION:
6718				spa->spa_delegation = intval;
6719				break;
6720			case ZPOOL_PROP_BOOTFS:
6721				spa->spa_bootfs = intval;
6722				break;
6723			case ZPOOL_PROP_FAILUREMODE:
6724				spa->spa_failmode = intval;
6725				break;
6726			case ZPOOL_PROP_AUTOEXPAND:
6727				spa->spa_autoexpand = intval;
6728				if (tx->tx_txg != TXG_INITIAL)
6729					spa_async_request(spa,
6730					    SPA_ASYNC_AUTOEXPAND);
6731				break;
6732			case ZPOOL_PROP_DEDUPDITTO:
6733				spa->spa_dedup_ditto = intval;
6734				break;
6735			default:
6736				break;
6737			}
6738		}
6739
6740	}
6741
6742	mutex_exit(&spa->spa_props_lock);
6743}
6744
6745/*
6746 * Perform one-time upgrade on-disk changes.  spa_version() does not
6747 * reflect the new version this txg, so there must be no changes this
6748 * txg to anything that the upgrade code depends on after it executes.
6749 * Therefore this must be called after dsl_pool_sync() does the sync
6750 * tasks.
6751 */
6752static void
6753spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6754{
6755	dsl_pool_t *dp = spa->spa_dsl_pool;
6756
6757	ASSERT(spa->spa_sync_pass == 1);
6758
6759	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6760
6761	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6762	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6763		dsl_pool_create_origin(dp, tx);
6764
6765		/* Keeping the origin open increases spa_minref */
6766		spa->spa_minref += 3;
6767	}
6768
6769	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6770	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6771		dsl_pool_upgrade_clones(dp, tx);
6772	}
6773
6774	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6775	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6776		dsl_pool_upgrade_dir_clones(dp, tx);
6777
6778		/* Keeping the freedir open increases spa_minref */
6779		spa->spa_minref += 3;
6780	}
6781
6782	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6783	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6784		spa_feature_create_zap_objects(spa, tx);
6785	}
6786
6787	/*
6788	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6789	 * when possibility to use lz4 compression for metadata was added
6790	 * Old pools that have this feature enabled must be upgraded to have
6791	 * this feature active
6792	 */
6793	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6794		boolean_t lz4_en = spa_feature_is_enabled(spa,
6795		    SPA_FEATURE_LZ4_COMPRESS);
6796		boolean_t lz4_ac = spa_feature_is_active(spa,
6797		    SPA_FEATURE_LZ4_COMPRESS);
6798
6799		if (lz4_en && !lz4_ac)
6800			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6801	}
6802
6803	/*
6804	 * If we haven't written the salt, do so now.  Note that the
6805	 * feature may not be activated yet, but that's fine since
6806	 * the presence of this ZAP entry is backwards compatible.
6807	 */
6808	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6809	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6810		VERIFY0(zap_add(spa->spa_meta_objset,
6811		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6812		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6813		    spa->spa_cksum_salt.zcs_bytes, tx));
6814	}
6815
6816	rrw_exit(&dp->dp_config_rwlock, FTAG);
6817}
6818
6819/*
6820 * Sync the specified transaction group.  New blocks may be dirtied as
6821 * part of the process, so we iterate until it converges.
6822 */
6823void
6824spa_sync(spa_t *spa, uint64_t txg)
6825{
6826	dsl_pool_t *dp = spa->spa_dsl_pool;
6827	objset_t *mos = spa->spa_meta_objset;
6828	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6829	vdev_t *rvd = spa->spa_root_vdev;
6830	vdev_t *vd;
6831	dmu_tx_t *tx;
6832	int error;
6833
6834	VERIFY(spa_writeable(spa));
6835
6836	/*
6837	 * Lock out configuration changes.
6838	 */
6839	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6840
6841	spa->spa_syncing_txg = txg;
6842	spa->spa_sync_pass = 0;
6843
6844	/*
6845	 * If there are any pending vdev state changes, convert them
6846	 * into config changes that go out with this transaction group.
6847	 */
6848	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6849	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6850		/*
6851		 * We need the write lock here because, for aux vdevs,
6852		 * calling vdev_config_dirty() modifies sav_config.
6853		 * This is ugly and will become unnecessary when we
6854		 * eliminate the aux vdev wart by integrating all vdevs
6855		 * into the root vdev tree.
6856		 */
6857		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6858		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6859		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6860			vdev_state_clean(vd);
6861			vdev_config_dirty(vd);
6862		}
6863		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6864		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6865	}
6866	spa_config_exit(spa, SCL_STATE, FTAG);
6867
6868	tx = dmu_tx_create_assigned(dp, txg);
6869
6870	spa->spa_sync_starttime = gethrtime();
6871#ifdef illumos
6872	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6873	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6874#else	/* !illumos */
6875#ifdef _KERNEL
6876	callout_reset(&spa->spa_deadman_cycid,
6877	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6878#endif
6879#endif	/* illumos */
6880
6881	/*
6882	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6883	 * set spa_deflate if we have no raid-z vdevs.
6884	 */
6885	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6886	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6887		int i;
6888
6889		for (i = 0; i < rvd->vdev_children; i++) {
6890			vd = rvd->vdev_child[i];
6891			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6892				break;
6893		}
6894		if (i == rvd->vdev_children) {
6895			spa->spa_deflate = TRUE;
6896			VERIFY(0 == zap_add(spa->spa_meta_objset,
6897			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6898			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6899		}
6900	}
6901
6902	/*
6903	 * Iterate to convergence.
6904	 */
6905	do {
6906		int pass = ++spa->spa_sync_pass;
6907
6908		spa_sync_config_object(spa, tx);
6909		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6910		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6911		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6912		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6913		spa_errlog_sync(spa, txg);
6914		dsl_pool_sync(dp, txg);
6915
6916		if (pass < zfs_sync_pass_deferred_free) {
6917			spa_sync_frees(spa, free_bpl, tx);
6918		} else {
6919			/*
6920			 * We can not defer frees in pass 1, because
6921			 * we sync the deferred frees later in pass 1.
6922			 */
6923			ASSERT3U(pass, >, 1);
6924			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6925			    &spa->spa_deferred_bpobj, tx);
6926		}
6927
6928		ddt_sync(spa, txg);
6929		dsl_scan_sync(dp, tx);
6930
6931		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6932			vdev_sync(vd, txg);
6933
6934		if (pass == 1) {
6935			spa_sync_upgrades(spa, tx);
6936			ASSERT3U(txg, >=,
6937			    spa->spa_uberblock.ub_rootbp.blk_birth);
6938			/*
6939			 * Note: We need to check if the MOS is dirty
6940			 * because we could have marked the MOS dirty
6941			 * without updating the uberblock (e.g. if we
6942			 * have sync tasks but no dirty user data).  We
6943			 * need to check the uberblock's rootbp because
6944			 * it is updated if we have synced out dirty
6945			 * data (though in this case the MOS will most
6946			 * likely also be dirty due to second order
6947			 * effects, we don't want to rely on that here).
6948			 */
6949			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6950			    !dmu_objset_is_dirty(mos, txg)) {
6951				/*
6952				 * Nothing changed on the first pass,
6953				 * therefore this TXG is a no-op.  Avoid
6954				 * syncing deferred frees, so that we
6955				 * can keep this TXG as a no-op.
6956				 */
6957				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6958				    txg));
6959				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6960				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6961				break;
6962			}
6963			spa_sync_deferred_frees(spa, tx);
6964		}
6965
6966	} while (dmu_objset_is_dirty(mos, txg));
6967
6968	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6969		/*
6970		 * Make sure that the number of ZAPs for all the vdevs matches
6971		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6972		 * called if the config is dirty; otherwise there may be
6973		 * outstanding AVZ operations that weren't completed in
6974		 * spa_sync_config_object.
6975		 */
6976		uint64_t all_vdev_zap_entry_count;
6977		ASSERT0(zap_count(spa->spa_meta_objset,
6978		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6979		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6980		    all_vdev_zap_entry_count);
6981	}
6982
6983	/*
6984	 * Rewrite the vdev configuration (which includes the uberblock)
6985	 * to commit the transaction group.
6986	 *
6987	 * If there are no dirty vdevs, we sync the uberblock to a few
6988	 * random top-level vdevs that are known to be visible in the
6989	 * config cache (see spa_vdev_add() for a complete description).
6990	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6991	 */
6992	for (;;) {
6993		/*
6994		 * We hold SCL_STATE to prevent vdev open/close/etc.
6995		 * while we're attempting to write the vdev labels.
6996		 */
6997		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6998
6999		if (list_is_empty(&spa->spa_config_dirty_list)) {
7000			vdev_t *svd[SPA_DVAS_PER_BP];
7001			int svdcount = 0;
7002			int children = rvd->vdev_children;
7003			int c0 = spa_get_random(children);
7004
7005			for (int c = 0; c < children; c++) {
7006				vd = rvd->vdev_child[(c0 + c) % children];
7007				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
7008					continue;
7009				svd[svdcount++] = vd;
7010				if (svdcount == SPA_DVAS_PER_BP)
7011					break;
7012			}
7013			error = vdev_config_sync(svd, svdcount, txg);
7014		} else {
7015			error = vdev_config_sync(rvd->vdev_child,
7016			    rvd->vdev_children, txg);
7017		}
7018
7019		if (error == 0)
7020			spa->spa_last_synced_guid = rvd->vdev_guid;
7021
7022		spa_config_exit(spa, SCL_STATE, FTAG);
7023
7024		if (error == 0)
7025			break;
7026		zio_suspend(spa, NULL);
7027		zio_resume_wait(spa);
7028	}
7029	dmu_tx_commit(tx);
7030
7031#ifdef illumos
7032	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7033#else	/* !illumos */
7034#ifdef _KERNEL
7035	callout_drain(&spa->spa_deadman_cycid);
7036#endif
7037#endif	/* illumos */
7038
7039	/*
7040	 * Clear the dirty config list.
7041	 */
7042	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7043		vdev_config_clean(vd);
7044
7045	/*
7046	 * Now that the new config has synced transactionally,
7047	 * let it become visible to the config cache.
7048	 */
7049	if (spa->spa_config_syncing != NULL) {
7050		spa_config_set(spa, spa->spa_config_syncing);
7051		spa->spa_config_txg = txg;
7052		spa->spa_config_syncing = NULL;
7053	}
7054
7055	spa->spa_ubsync = spa->spa_uberblock;
7056
7057	dsl_pool_sync_done(dp, txg);
7058
7059	/*
7060	 * Update usable space statistics.
7061	 */
7062	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7063		vdev_sync_done(vd, txg);
7064
7065	spa_update_dspace(spa);
7066
7067	/*
7068	 * It had better be the case that we didn't dirty anything
7069	 * since vdev_config_sync().
7070	 */
7071	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7072	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7073	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7074
7075	spa->spa_sync_pass = 0;
7076
7077	spa_config_exit(spa, SCL_CONFIG, FTAG);
7078
7079	spa_handle_ignored_writes(spa);
7080
7081	/*
7082	 * If any async tasks have been requested, kick them off.
7083	 */
7084	spa_async_dispatch(spa);
7085	spa_async_dispatch_vd(spa);
7086}
7087
7088/*
7089 * Sync all pools.  We don't want to hold the namespace lock across these
7090 * operations, so we take a reference on the spa_t and drop the lock during the
7091 * sync.
7092 */
7093void
7094spa_sync_allpools(void)
7095{
7096	spa_t *spa = NULL;
7097	mutex_enter(&spa_namespace_lock);
7098	while ((spa = spa_next(spa)) != NULL) {
7099		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7100		    !spa_writeable(spa) || spa_suspended(spa))
7101			continue;
7102		spa_open_ref(spa, FTAG);
7103		mutex_exit(&spa_namespace_lock);
7104		txg_wait_synced(spa_get_dsl(spa), 0);
7105		mutex_enter(&spa_namespace_lock);
7106		spa_close(spa, FTAG);
7107	}
7108	mutex_exit(&spa_namespace_lock);
7109}
7110
7111/*
7112 * ==========================================================================
7113 * Miscellaneous routines
7114 * ==========================================================================
7115 */
7116
7117/*
7118 * Remove all pools in the system.
7119 */
7120void
7121spa_evict_all(void)
7122{
7123	spa_t *spa;
7124
7125	/*
7126	 * Remove all cached state.  All pools should be closed now,
7127	 * so every spa in the AVL tree should be unreferenced.
7128	 */
7129	mutex_enter(&spa_namespace_lock);
7130	while ((spa = spa_next(NULL)) != NULL) {
7131		/*
7132		 * Stop async tasks.  The async thread may need to detach
7133		 * a device that's been replaced, which requires grabbing
7134		 * spa_namespace_lock, so we must drop it here.
7135		 */
7136		spa_open_ref(spa, FTAG);
7137		mutex_exit(&spa_namespace_lock);
7138		spa_async_suspend(spa);
7139		mutex_enter(&spa_namespace_lock);
7140		spa_close(spa, FTAG);
7141
7142		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7143			spa_unload(spa);
7144			spa_deactivate(spa);
7145		}
7146		spa_remove(spa);
7147	}
7148	mutex_exit(&spa_namespace_lock);
7149}
7150
7151vdev_t *
7152spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7153{
7154	vdev_t *vd;
7155	int i;
7156
7157	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7158		return (vd);
7159
7160	if (aux) {
7161		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7162			vd = spa->spa_l2cache.sav_vdevs[i];
7163			if (vd->vdev_guid == guid)
7164				return (vd);
7165		}
7166
7167		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7168			vd = spa->spa_spares.sav_vdevs[i];
7169			if (vd->vdev_guid == guid)
7170				return (vd);
7171		}
7172	}
7173
7174	return (NULL);
7175}
7176
7177void
7178spa_upgrade(spa_t *spa, uint64_t version)
7179{
7180	ASSERT(spa_writeable(spa));
7181
7182	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7183
7184	/*
7185	 * This should only be called for a non-faulted pool, and since a
7186	 * future version would result in an unopenable pool, this shouldn't be
7187	 * possible.
7188	 */
7189	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7190	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7191
7192	spa->spa_uberblock.ub_version = version;
7193	vdev_config_dirty(spa->spa_root_vdev);
7194
7195	spa_config_exit(spa, SCL_ALL, FTAG);
7196
7197	txg_wait_synced(spa_get_dsl(spa), 0);
7198}
7199
7200boolean_t
7201spa_has_spare(spa_t *spa, uint64_t guid)
7202{
7203	int i;
7204	uint64_t spareguid;
7205	spa_aux_vdev_t *sav = &spa->spa_spares;
7206
7207	for (i = 0; i < sav->sav_count; i++)
7208		if (sav->sav_vdevs[i]->vdev_guid == guid)
7209			return (B_TRUE);
7210
7211	for (i = 0; i < sav->sav_npending; i++) {
7212		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7213		    &spareguid) == 0 && spareguid == guid)
7214			return (B_TRUE);
7215	}
7216
7217	return (B_FALSE);
7218}
7219
7220/*
7221 * Check if a pool has an active shared spare device.
7222 * Note: reference count of an active spare is 2, as a spare and as a replace
7223 */
7224static boolean_t
7225spa_has_active_shared_spare(spa_t *spa)
7226{
7227	int i, refcnt;
7228	uint64_t pool;
7229	spa_aux_vdev_t *sav = &spa->spa_spares;
7230
7231	for (i = 0; i < sav->sav_count; i++) {
7232		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7233		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7234		    refcnt > 2)
7235			return (B_TRUE);
7236	}
7237
7238	return (B_FALSE);
7239}
7240
7241static sysevent_t *
7242spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7243{
7244	sysevent_t		*ev = NULL;
7245#ifdef _KERNEL
7246	sysevent_attr_list_t	*attr = NULL;
7247	sysevent_value_t	value;
7248
7249	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7250	    SE_SLEEP);
7251	ASSERT(ev != NULL);
7252
7253	value.value_type = SE_DATA_TYPE_STRING;
7254	value.value.sv_string = spa_name(spa);
7255	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7256		goto done;
7257
7258	value.value_type = SE_DATA_TYPE_UINT64;
7259	value.value.sv_uint64 = spa_guid(spa);
7260	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7261		goto done;
7262
7263	if (vd) {
7264		value.value_type = SE_DATA_TYPE_UINT64;
7265		value.value.sv_uint64 = vd->vdev_guid;
7266		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7267		    SE_SLEEP) != 0)
7268			goto done;
7269
7270		if (vd->vdev_path) {
7271			value.value_type = SE_DATA_TYPE_STRING;
7272			value.value.sv_string = vd->vdev_path;
7273			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7274			    &value, SE_SLEEP) != 0)
7275				goto done;
7276		}
7277	}
7278
7279	if (sysevent_attach_attributes(ev, attr) != 0)
7280		goto done;
7281	attr = NULL;
7282
7283done:
7284	if (attr)
7285		sysevent_free_attr(attr);
7286
7287#endif
7288	return (ev);
7289}
7290
7291static void
7292spa_event_post(sysevent_t *ev)
7293{
7294#ifdef _KERNEL
7295	sysevent_id_t		eid;
7296
7297	(void) log_sysevent(ev, SE_SLEEP, &eid);
7298	sysevent_free(ev);
7299#endif
7300}
7301
7302/*
7303 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7304 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7305 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7306 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7307 * or zdb as real changes.
7308 */
7309void
7310spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7311{
7312	spa_event_post(spa_event_create(spa, vd, name));
7313}
7314