spa.c revision 287745
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30/*
31 * SPA: Storage Pool Allocator
32 *
33 * This file contains all the routines used when modifying on-disk SPA state.
34 * This includes opening, importing, destroying, exporting a pool, and syncing a
35 * pool.
36 */
37
38#include <sys/zfs_context.h>
39#include <sys/fm/fs/zfs.h>
40#include <sys/spa_impl.h>
41#include <sys/zio.h>
42#include <sys/zio_checksum.h>
43#include <sys/dmu.h>
44#include <sys/dmu_tx.h>
45#include <sys/zap.h>
46#include <sys/zil.h>
47#include <sys/ddt.h>
48#include <sys/vdev_impl.h>
49#include <sys/metaslab.h>
50#include <sys/metaslab_impl.h>
51#include <sys/uberblock_impl.h>
52#include <sys/txg.h>
53#include <sys/avl.h>
54#include <sys/dmu_traverse.h>
55#include <sys/dmu_objset.h>
56#include <sys/unique.h>
57#include <sys/dsl_pool.h>
58#include <sys/dsl_dataset.h>
59#include <sys/dsl_dir.h>
60#include <sys/dsl_prop.h>
61#include <sys/dsl_synctask.h>
62#include <sys/fs/zfs.h>
63#include <sys/arc.h>
64#include <sys/callb.h>
65#include <sys/spa_boot.h>
66#include <sys/zfs_ioctl.h>
67#include <sys/dsl_scan.h>
68#include <sys/dmu_send.h>
69#include <sys/dsl_destroy.h>
70#include <sys/dsl_userhold.h>
71#include <sys/zfeature.h>
72#include <sys/zvol.h>
73#include <sys/trim_map.h>
74
75#ifdef	_KERNEL
76#include <sys/callb.h>
77#include <sys/cpupart.h>
78#include <sys/zone.h>
79#endif	/* _KERNEL */
80
81#include "zfs_prop.h"
82#include "zfs_comutil.h"
83
84/* Check hostid on import? */
85static int check_hostid = 1;
86
87/*
88 * The interval, in seconds, at which failed configuration cache file writes
89 * should be retried.
90 */
91static int zfs_ccw_retry_interval = 300;
92
93SYSCTL_DECL(_vfs_zfs);
94SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
95    "Check hostid on import?");
96TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
98    &zfs_ccw_retry_interval, 0,
99    "Configuration cache file write, retry after failure, interval (seconds)");
100
101typedef enum zti_modes {
102	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
103	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
104	ZTI_MODE_NULL,			/* don't create a taskq */
105	ZTI_NMODES
106} zti_modes_t;
107
108#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
109#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
110#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
111
112#define	ZTI_N(n)	ZTI_P(n, 1)
113#define	ZTI_ONE		ZTI_N(1)
114
115typedef struct zio_taskq_info {
116	zti_modes_t zti_mode;
117	uint_t zti_value;
118	uint_t zti_count;
119} zio_taskq_info_t;
120
121static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
122	"issue", "issue_high", "intr", "intr_high"
123};
124
125/*
126 * This table defines the taskq settings for each ZFS I/O type. When
127 * initializing a pool, we use this table to create an appropriately sized
128 * taskq. Some operations are low volume and therefore have a small, static
129 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
130 * macros. Other operations process a large amount of data; the ZTI_BATCH
131 * macro causes us to create a taskq oriented for throughput. Some operations
132 * are so high frequency and short-lived that the taskq itself can become a a
133 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
134 * additional degree of parallelism specified by the number of threads per-
135 * taskq and the number of taskqs; when dispatching an event in this case, the
136 * particular taskq is chosen at random.
137 *
138 * The different taskq priorities are to handle the different contexts (issue
139 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
140 * need to be handled with minimum delay.
141 */
142const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
143	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
145	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
146	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
147	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
148	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
149	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
150};
151
152static void spa_sync_version(void *arg, dmu_tx_t *tx);
153static void spa_sync_props(void *arg, dmu_tx_t *tx);
154static boolean_t spa_has_active_shared_spare(spa_t *spa);
155static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
156    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
157    char **ereport);
158static void spa_vdev_resilver_done(spa_t *spa);
159
160uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
161#ifdef PSRSET_BIND
162id_t		zio_taskq_psrset_bind = PS_NONE;
163#endif
164#ifdef SYSDC
165boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
166#endif
167uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
168
169boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
170extern int	zfs_sync_pass_deferred_free;
171
172#ifndef illumos
173extern void spa_deadman(void *arg);
174#endif
175
176/*
177 * This (illegal) pool name is used when temporarily importing a spa_t in order
178 * to get the vdev stats associated with the imported devices.
179 */
180#define	TRYIMPORT_NAME	"$import"
181
182/*
183 * ==========================================================================
184 * SPA properties routines
185 * ==========================================================================
186 */
187
188/*
189 * Add a (source=src, propname=propval) list to an nvlist.
190 */
191static void
192spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
193    uint64_t intval, zprop_source_t src)
194{
195	const char *propname = zpool_prop_to_name(prop);
196	nvlist_t *propval;
197
198	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
199	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
200
201	if (strval != NULL)
202		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
203	else
204		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
205
206	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
207	nvlist_free(propval);
208}
209
210/*
211 * Get property values from the spa configuration.
212 */
213static void
214spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
215{
216	vdev_t *rvd = spa->spa_root_vdev;
217	dsl_pool_t *pool = spa->spa_dsl_pool;
218	uint64_t size, alloc, cap, version;
219	zprop_source_t src = ZPROP_SRC_NONE;
220	spa_config_dirent_t *dp;
221	metaslab_class_t *mc = spa_normal_class(spa);
222
223	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
224
225	if (rvd != NULL) {
226		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
227		size = metaslab_class_get_space(spa_normal_class(spa));
228		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
232		    size - alloc, src);
233
234		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
235		    metaslab_class_fragmentation(mc), src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
237		    metaslab_class_expandable_space(mc), src);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
239		    (spa_mode(spa) == FREAD), src);
240
241		cap = (size == 0) ? 0 : (alloc * 100 / size);
242		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
243
244		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
245		    ddt_get_pool_dedup_ratio(spa), src);
246
247		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
248		    rvd->vdev_state, src);
249
250		version = spa_version(spa);
251		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
252			src = ZPROP_SRC_DEFAULT;
253		else
254			src = ZPROP_SRC_LOCAL;
255		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
256	}
257
258	if (pool != NULL) {
259		/*
260		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
261		 * when opening pools before this version freedir will be NULL.
262		 */
263		if (pool->dp_free_dir != NULL) {
264			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
265			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
266			    src);
267		} else {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
269			    NULL, 0, src);
270		}
271
272		if (pool->dp_leak_dir != NULL) {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
274			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
275			    src);
276		} else {
277			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
278			    NULL, 0, src);
279		}
280	}
281
282	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
283
284	if (spa->spa_comment != NULL) {
285		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
286		    0, ZPROP_SRC_LOCAL);
287	}
288
289	if (spa->spa_root != NULL)
290		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
291		    0, ZPROP_SRC_LOCAL);
292
293	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
294		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
296	} else {
297		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
299	}
300
301	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
302		if (dp->scd_path == NULL) {
303			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
304			    "none", 0, ZPROP_SRC_LOCAL);
305		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
306			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
308		}
309	}
310}
311
312/*
313 * Get zpool property values.
314 */
315int
316spa_prop_get(spa_t *spa, nvlist_t **nvp)
317{
318	objset_t *mos = spa->spa_meta_objset;
319	zap_cursor_t zc;
320	zap_attribute_t za;
321	int err;
322
323	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
324
325	mutex_enter(&spa->spa_props_lock);
326
327	/*
328	 * Get properties from the spa config.
329	 */
330	spa_prop_get_config(spa, nvp);
331
332	/* If no pool property object, no more prop to get. */
333	if (mos == NULL || spa->spa_pool_props_object == 0) {
334		mutex_exit(&spa->spa_props_lock);
335		return (0);
336	}
337
338	/*
339	 * Get properties from the MOS pool property object.
340	 */
341	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
342	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
343	    zap_cursor_advance(&zc)) {
344		uint64_t intval = 0;
345		char *strval = NULL;
346		zprop_source_t src = ZPROP_SRC_DEFAULT;
347		zpool_prop_t prop;
348
349		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
350			continue;
351
352		switch (za.za_integer_length) {
353		case 8:
354			/* integer property */
355			if (za.za_first_integer !=
356			    zpool_prop_default_numeric(prop))
357				src = ZPROP_SRC_LOCAL;
358
359			if (prop == ZPOOL_PROP_BOOTFS) {
360				dsl_pool_t *dp;
361				dsl_dataset_t *ds = NULL;
362
363				dp = spa_get_dsl(spa);
364				dsl_pool_config_enter(dp, FTAG);
365				if (err = dsl_dataset_hold_obj(dp,
366				    za.za_first_integer, FTAG, &ds)) {
367					dsl_pool_config_exit(dp, FTAG);
368					break;
369				}
370
371				strval = kmem_alloc(
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
373				    KM_SLEEP);
374				dsl_dataset_name(ds, strval);
375				dsl_dataset_rele(ds, FTAG);
376				dsl_pool_config_exit(dp, FTAG);
377			} else {
378				strval = NULL;
379				intval = za.za_first_integer;
380			}
381
382			spa_prop_add_list(*nvp, prop, strval, intval, src);
383
384			if (strval != NULL)
385				kmem_free(strval,
386				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
387
388			break;
389
390		case 1:
391			/* string property */
392			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
393			err = zap_lookup(mos, spa->spa_pool_props_object,
394			    za.za_name, 1, za.za_num_integers, strval);
395			if (err) {
396				kmem_free(strval, za.za_num_integers);
397				break;
398			}
399			spa_prop_add_list(*nvp, prop, strval, 0, src);
400			kmem_free(strval, za.za_num_integers);
401			break;
402
403		default:
404			break;
405		}
406	}
407	zap_cursor_fini(&zc);
408	mutex_exit(&spa->spa_props_lock);
409out:
410	if (err && err != ENOENT) {
411		nvlist_free(*nvp);
412		*nvp = NULL;
413		return (err);
414	}
415
416	return (0);
417}
418
419/*
420 * Validate the given pool properties nvlist and modify the list
421 * for the property values to be set.
422 */
423static int
424spa_prop_validate(spa_t *spa, nvlist_t *props)
425{
426	nvpair_t *elem;
427	int error = 0, reset_bootfs = 0;
428	uint64_t objnum = 0;
429	boolean_t has_feature = B_FALSE;
430
431	elem = NULL;
432	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
433		uint64_t intval;
434		char *strval, *slash, *check, *fname;
435		const char *propname = nvpair_name(elem);
436		zpool_prop_t prop = zpool_name_to_prop(propname);
437
438		switch (prop) {
439		case ZPROP_INVAL:
440			if (!zpool_prop_feature(propname)) {
441				error = SET_ERROR(EINVAL);
442				break;
443			}
444
445			/*
446			 * Sanitize the input.
447			 */
448			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
449				error = SET_ERROR(EINVAL);
450				break;
451			}
452
453			if (nvpair_value_uint64(elem, &intval) != 0) {
454				error = SET_ERROR(EINVAL);
455				break;
456			}
457
458			if (intval != 0) {
459				error = SET_ERROR(EINVAL);
460				break;
461			}
462
463			fname = strchr(propname, '@') + 1;
464			if (zfeature_lookup_name(fname, NULL) != 0) {
465				error = SET_ERROR(EINVAL);
466				break;
467			}
468
469			has_feature = B_TRUE;
470			break;
471
472		case ZPOOL_PROP_VERSION:
473			error = nvpair_value_uint64(elem, &intval);
474			if (!error &&
475			    (intval < spa_version(spa) ||
476			    intval > SPA_VERSION_BEFORE_FEATURES ||
477			    has_feature))
478				error = SET_ERROR(EINVAL);
479			break;
480
481		case ZPOOL_PROP_DELEGATION:
482		case ZPOOL_PROP_AUTOREPLACE:
483		case ZPOOL_PROP_LISTSNAPS:
484		case ZPOOL_PROP_AUTOEXPAND:
485			error = nvpair_value_uint64(elem, &intval);
486			if (!error && intval > 1)
487				error = SET_ERROR(EINVAL);
488			break;
489
490		case ZPOOL_PROP_BOOTFS:
491			/*
492			 * If the pool version is less than SPA_VERSION_BOOTFS,
493			 * or the pool is still being created (version == 0),
494			 * the bootfs property cannot be set.
495			 */
496			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
497				error = SET_ERROR(ENOTSUP);
498				break;
499			}
500
501			/*
502			 * Make sure the vdev config is bootable
503			 */
504			if (!vdev_is_bootable(spa->spa_root_vdev)) {
505				error = SET_ERROR(ENOTSUP);
506				break;
507			}
508
509			reset_bootfs = 1;
510
511			error = nvpair_value_string(elem, &strval);
512
513			if (!error) {
514				objset_t *os;
515				uint64_t propval;
516
517				if (strval == NULL || strval[0] == '\0') {
518					objnum = zpool_prop_default_numeric(
519					    ZPOOL_PROP_BOOTFS);
520					break;
521				}
522
523				if (error = dmu_objset_hold(strval, FTAG, &os))
524					break;
525
526				/*
527				 * Must be ZPL, and its property settings
528				 * must be supported by GRUB (compression
529				 * is not gzip, and large blocks are not used).
530				 */
531
532				if (dmu_objset_type(os) != DMU_OST_ZFS) {
533					error = SET_ERROR(ENOTSUP);
534				} else if ((error =
535				    dsl_prop_get_int_ds(dmu_objset_ds(os),
536				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
537				    &propval)) == 0 &&
538				    !BOOTFS_COMPRESS_VALID(propval)) {
539					error = SET_ERROR(ENOTSUP);
540				} else if ((error =
541				    dsl_prop_get_int_ds(dmu_objset_ds(os),
542				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
543				    &propval)) == 0 &&
544				    propval > SPA_OLD_MAXBLOCKSIZE) {
545					error = SET_ERROR(ENOTSUP);
546				} else {
547					objnum = dmu_objset_id(os);
548				}
549				dmu_objset_rele(os, FTAG);
550			}
551			break;
552
553		case ZPOOL_PROP_FAILUREMODE:
554			error = nvpair_value_uint64(elem, &intval);
555			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
556			    intval > ZIO_FAILURE_MODE_PANIC))
557				error = SET_ERROR(EINVAL);
558
559			/*
560			 * This is a special case which only occurs when
561			 * the pool has completely failed. This allows
562			 * the user to change the in-core failmode property
563			 * without syncing it out to disk (I/Os might
564			 * currently be blocked). We do this by returning
565			 * EIO to the caller (spa_prop_set) to trick it
566			 * into thinking we encountered a property validation
567			 * error.
568			 */
569			if (!error && spa_suspended(spa)) {
570				spa->spa_failmode = intval;
571				error = SET_ERROR(EIO);
572			}
573			break;
574
575		case ZPOOL_PROP_CACHEFILE:
576			if ((error = nvpair_value_string(elem, &strval)) != 0)
577				break;
578
579			if (strval[0] == '\0')
580				break;
581
582			if (strcmp(strval, "none") == 0)
583				break;
584
585			if (strval[0] != '/') {
586				error = SET_ERROR(EINVAL);
587				break;
588			}
589
590			slash = strrchr(strval, '/');
591			ASSERT(slash != NULL);
592
593			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
594			    strcmp(slash, "/..") == 0)
595				error = SET_ERROR(EINVAL);
596			break;
597
598		case ZPOOL_PROP_COMMENT:
599			if ((error = nvpair_value_string(elem, &strval)) != 0)
600				break;
601			for (check = strval; *check != '\0'; check++) {
602				/*
603				 * The kernel doesn't have an easy isprint()
604				 * check.  For this kernel check, we merely
605				 * check ASCII apart from DEL.  Fix this if
606				 * there is an easy-to-use kernel isprint().
607				 */
608				if (*check >= 0x7f) {
609					error = SET_ERROR(EINVAL);
610					break;
611				}
612				check++;
613			}
614			if (strlen(strval) > ZPROP_MAX_COMMENT)
615				error = E2BIG;
616			break;
617
618		case ZPOOL_PROP_DEDUPDITTO:
619			if (spa_version(spa) < SPA_VERSION_DEDUP)
620				error = SET_ERROR(ENOTSUP);
621			else
622				error = nvpair_value_uint64(elem, &intval);
623			if (error == 0 &&
624			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
625				error = SET_ERROR(EINVAL);
626			break;
627		}
628
629		if (error)
630			break;
631	}
632
633	if (!error && reset_bootfs) {
634		error = nvlist_remove(props,
635		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
636
637		if (!error) {
638			error = nvlist_add_uint64(props,
639			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
640		}
641	}
642
643	return (error);
644}
645
646void
647spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
648{
649	char *cachefile;
650	spa_config_dirent_t *dp;
651
652	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
653	    &cachefile) != 0)
654		return;
655
656	dp = kmem_alloc(sizeof (spa_config_dirent_t),
657	    KM_SLEEP);
658
659	if (cachefile[0] == '\0')
660		dp->scd_path = spa_strdup(spa_config_path);
661	else if (strcmp(cachefile, "none") == 0)
662		dp->scd_path = NULL;
663	else
664		dp->scd_path = spa_strdup(cachefile);
665
666	list_insert_head(&spa->spa_config_list, dp);
667	if (need_sync)
668		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
669}
670
671int
672spa_prop_set(spa_t *spa, nvlist_t *nvp)
673{
674	int error;
675	nvpair_t *elem = NULL;
676	boolean_t need_sync = B_FALSE;
677
678	if ((error = spa_prop_validate(spa, nvp)) != 0)
679		return (error);
680
681	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
682		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
683
684		if (prop == ZPOOL_PROP_CACHEFILE ||
685		    prop == ZPOOL_PROP_ALTROOT ||
686		    prop == ZPOOL_PROP_READONLY)
687			continue;
688
689		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
690			uint64_t ver;
691
692			if (prop == ZPOOL_PROP_VERSION) {
693				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
694			} else {
695				ASSERT(zpool_prop_feature(nvpair_name(elem)));
696				ver = SPA_VERSION_FEATURES;
697				need_sync = B_TRUE;
698			}
699
700			/* Save time if the version is already set. */
701			if (ver == spa_version(spa))
702				continue;
703
704			/*
705			 * In addition to the pool directory object, we might
706			 * create the pool properties object, the features for
707			 * read object, the features for write object, or the
708			 * feature descriptions object.
709			 */
710			error = dsl_sync_task(spa->spa_name, NULL,
711			    spa_sync_version, &ver,
712			    6, ZFS_SPACE_CHECK_RESERVED);
713			if (error)
714				return (error);
715			continue;
716		}
717
718		need_sync = B_TRUE;
719		break;
720	}
721
722	if (need_sync) {
723		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
724		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
725	}
726
727	return (0);
728}
729
730/*
731 * If the bootfs property value is dsobj, clear it.
732 */
733void
734spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
735{
736	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
737		VERIFY(zap_remove(spa->spa_meta_objset,
738		    spa->spa_pool_props_object,
739		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
740		spa->spa_bootfs = 0;
741	}
742}
743
744/*ARGSUSED*/
745static int
746spa_change_guid_check(void *arg, dmu_tx_t *tx)
747{
748	uint64_t *newguid = arg;
749	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750	vdev_t *rvd = spa->spa_root_vdev;
751	uint64_t vdev_state;
752
753	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
754	vdev_state = rvd->vdev_state;
755	spa_config_exit(spa, SCL_STATE, FTAG);
756
757	if (vdev_state != VDEV_STATE_HEALTHY)
758		return (SET_ERROR(ENXIO));
759
760	ASSERT3U(spa_guid(spa), !=, *newguid);
761
762	return (0);
763}
764
765static void
766spa_change_guid_sync(void *arg, dmu_tx_t *tx)
767{
768	uint64_t *newguid = arg;
769	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
770	uint64_t oldguid;
771	vdev_t *rvd = spa->spa_root_vdev;
772
773	oldguid = spa_guid(spa);
774
775	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
776	rvd->vdev_guid = *newguid;
777	rvd->vdev_guid_sum += (*newguid - oldguid);
778	vdev_config_dirty(rvd);
779	spa_config_exit(spa, SCL_STATE, FTAG);
780
781	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
782	    oldguid, *newguid);
783}
784
785/*
786 * Change the GUID for the pool.  This is done so that we can later
787 * re-import a pool built from a clone of our own vdevs.  We will modify
788 * the root vdev's guid, our own pool guid, and then mark all of our
789 * vdevs dirty.  Note that we must make sure that all our vdevs are
790 * online when we do this, or else any vdevs that weren't present
791 * would be orphaned from our pool.  We are also going to issue a
792 * sysevent to update any watchers.
793 */
794int
795spa_change_guid(spa_t *spa)
796{
797	int error;
798	uint64_t guid;
799
800	mutex_enter(&spa->spa_vdev_top_lock);
801	mutex_enter(&spa_namespace_lock);
802	guid = spa_generate_guid(NULL);
803
804	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
805	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
806
807	if (error == 0) {
808		spa_config_sync(spa, B_FALSE, B_TRUE);
809		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
810	}
811
812	mutex_exit(&spa_namespace_lock);
813	mutex_exit(&spa->spa_vdev_top_lock);
814
815	return (error);
816}
817
818/*
819 * ==========================================================================
820 * SPA state manipulation (open/create/destroy/import/export)
821 * ==========================================================================
822 */
823
824static int
825spa_error_entry_compare(const void *a, const void *b)
826{
827	spa_error_entry_t *sa = (spa_error_entry_t *)a;
828	spa_error_entry_t *sb = (spa_error_entry_t *)b;
829	int ret;
830
831	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
832	    sizeof (zbookmark_phys_t));
833
834	if (ret < 0)
835		return (-1);
836	else if (ret > 0)
837		return (1);
838	else
839		return (0);
840}
841
842/*
843 * Utility function which retrieves copies of the current logs and
844 * re-initializes them in the process.
845 */
846void
847spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
848{
849	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
850
851	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
852	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
853
854	avl_create(&spa->spa_errlist_scrub,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857	avl_create(&spa->spa_errlist_last,
858	    spa_error_entry_compare, sizeof (spa_error_entry_t),
859	    offsetof(spa_error_entry_t, se_avl));
860}
861
862static void
863spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
864{
865	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
866	enum zti_modes mode = ztip->zti_mode;
867	uint_t value = ztip->zti_value;
868	uint_t count = ztip->zti_count;
869	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
870	char name[32];
871	uint_t flags = 0;
872	boolean_t batch = B_FALSE;
873
874	if (mode == ZTI_MODE_NULL) {
875		tqs->stqs_count = 0;
876		tqs->stqs_taskq = NULL;
877		return;
878	}
879
880	ASSERT3U(count, >, 0);
881
882	tqs->stqs_count = count;
883	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
884
885	switch (mode) {
886	case ZTI_MODE_FIXED:
887		ASSERT3U(value, >=, 1);
888		value = MAX(value, 1);
889		break;
890
891	case ZTI_MODE_BATCH:
892		batch = B_TRUE;
893		flags |= TASKQ_THREADS_CPU_PCT;
894		value = zio_taskq_batch_pct;
895		break;
896
897	default:
898		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
899		    "spa_activate()",
900		    zio_type_name[t], zio_taskq_types[q], mode, value);
901		break;
902	}
903
904	for (uint_t i = 0; i < count; i++) {
905		taskq_t *tq;
906
907		if (count > 1) {
908			(void) snprintf(name, sizeof (name), "%s_%s_%u",
909			    zio_type_name[t], zio_taskq_types[q], i);
910		} else {
911			(void) snprintf(name, sizeof (name), "%s_%s",
912			    zio_type_name[t], zio_taskq_types[q]);
913		}
914
915#ifdef SYSDC
916		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
917			if (batch)
918				flags |= TASKQ_DC_BATCH;
919
920			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
921			    spa->spa_proc, zio_taskq_basedc, flags);
922		} else {
923#endif
924			pri_t pri = maxclsyspri;
925			/*
926			 * The write issue taskq can be extremely CPU
927			 * intensive.  Run it at slightly lower priority
928			 * than the other taskqs.
929			 */
930			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
931				pri--;
932
933			tq = taskq_create_proc(name, value, pri, 50,
934			    INT_MAX, spa->spa_proc, flags);
935#ifdef SYSDC
936		}
937#endif
938
939		tqs->stqs_taskq[i] = tq;
940	}
941}
942
943static void
944spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945{
946	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947
948	if (tqs->stqs_taskq == NULL) {
949		ASSERT0(tqs->stqs_count);
950		return;
951	}
952
953	for (uint_t i = 0; i < tqs->stqs_count; i++) {
954		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
955		taskq_destroy(tqs->stqs_taskq[i]);
956	}
957
958	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
959	tqs->stqs_taskq = NULL;
960}
961
962/*
963 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
964 * Note that a type may have multiple discrete taskqs to avoid lock contention
965 * on the taskq itself. In that case we choose which taskq at random by using
966 * the low bits of gethrtime().
967 */
968void
969spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
970    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
971{
972	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973	taskq_t *tq;
974
975	ASSERT3P(tqs->stqs_taskq, !=, NULL);
976	ASSERT3U(tqs->stqs_count, !=, 0);
977
978	if (tqs->stqs_count == 1) {
979		tq = tqs->stqs_taskq[0];
980	} else {
981#ifdef _KERNEL
982		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
983#else
984		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
985#endif
986	}
987
988	taskq_dispatch_ent(tq, func, arg, flags, ent);
989}
990
991static void
992spa_create_zio_taskqs(spa_t *spa)
993{
994	for (int t = 0; t < ZIO_TYPES; t++) {
995		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
996			spa_taskqs_init(spa, t, q);
997		}
998	}
999}
1000
1001#ifdef _KERNEL
1002#ifdef SPA_PROCESS
1003static void
1004spa_thread(void *arg)
1005{
1006	callb_cpr_t cprinfo;
1007
1008	spa_t *spa = arg;
1009	user_t *pu = PTOU(curproc);
1010
1011	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1012	    spa->spa_name);
1013
1014	ASSERT(curproc != &p0);
1015	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1016	    "zpool-%s", spa->spa_name);
1017	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1018
1019#ifdef PSRSET_BIND
1020	/* bind this thread to the requested psrset */
1021	if (zio_taskq_psrset_bind != PS_NONE) {
1022		pool_lock();
1023		mutex_enter(&cpu_lock);
1024		mutex_enter(&pidlock);
1025		mutex_enter(&curproc->p_lock);
1026
1027		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1028		    0, NULL, NULL) == 0)  {
1029			curthread->t_bind_pset = zio_taskq_psrset_bind;
1030		} else {
1031			cmn_err(CE_WARN,
1032			    "Couldn't bind process for zfs pool \"%s\" to "
1033			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1034		}
1035
1036		mutex_exit(&curproc->p_lock);
1037		mutex_exit(&pidlock);
1038		mutex_exit(&cpu_lock);
1039		pool_unlock();
1040	}
1041#endif
1042
1043#ifdef SYSDC
1044	if (zio_taskq_sysdc) {
1045		sysdc_thread_enter(curthread, 100, 0);
1046	}
1047#endif
1048
1049	spa->spa_proc = curproc;
1050	spa->spa_did = curthread->t_did;
1051
1052	spa_create_zio_taskqs(spa);
1053
1054	mutex_enter(&spa->spa_proc_lock);
1055	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1056
1057	spa->spa_proc_state = SPA_PROC_ACTIVE;
1058	cv_broadcast(&spa->spa_proc_cv);
1059
1060	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1061	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1062		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1063	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1064
1065	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1066	spa->spa_proc_state = SPA_PROC_GONE;
1067	spa->spa_proc = &p0;
1068	cv_broadcast(&spa->spa_proc_cv);
1069	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1070
1071	mutex_enter(&curproc->p_lock);
1072	lwp_exit();
1073}
1074#endif	/* SPA_PROCESS */
1075#endif
1076
1077/*
1078 * Activate an uninitialized pool.
1079 */
1080static void
1081spa_activate(spa_t *spa, int mode)
1082{
1083	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1084
1085	spa->spa_state = POOL_STATE_ACTIVE;
1086	spa->spa_mode = mode;
1087
1088	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090
1091	/* Try to create a covering process */
1092	mutex_enter(&spa->spa_proc_lock);
1093	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1094	ASSERT(spa->spa_proc == &p0);
1095	spa->spa_did = 0;
1096
1097#ifdef SPA_PROCESS
1098	/* Only create a process if we're going to be around a while. */
1099	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1100		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1101		    NULL, 0) == 0) {
1102			spa->spa_proc_state = SPA_PROC_CREATED;
1103			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1104				cv_wait(&spa->spa_proc_cv,
1105				    &spa->spa_proc_lock);
1106			}
1107			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1108			ASSERT(spa->spa_proc != &p0);
1109			ASSERT(spa->spa_did != 0);
1110		} else {
1111#ifdef _KERNEL
1112			cmn_err(CE_WARN,
1113			    "Couldn't create process for zfs pool \"%s\"\n",
1114			    spa->spa_name);
1115#endif
1116		}
1117	}
1118#endif	/* SPA_PROCESS */
1119	mutex_exit(&spa->spa_proc_lock);
1120
1121	/* If we didn't create a process, we need to create our taskqs. */
1122	ASSERT(spa->spa_proc == &p0);
1123	if (spa->spa_proc == &p0) {
1124		spa_create_zio_taskqs(spa);
1125	}
1126
1127	/*
1128	 * Start TRIM thread.
1129	 */
1130	trim_thread_create(spa);
1131
1132	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1133	    offsetof(vdev_t, vdev_config_dirty_node));
1134	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1135	    offsetof(objset_t, os_evicting_node));
1136	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1137	    offsetof(vdev_t, vdev_state_dirty_node));
1138
1139	txg_list_create(&spa->spa_vdev_txg_list,
1140	    offsetof(struct vdev, vdev_txg_node));
1141
1142	avl_create(&spa->spa_errlist_scrub,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145	avl_create(&spa->spa_errlist_last,
1146	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1147	    offsetof(spa_error_entry_t, se_avl));
1148}
1149
1150/*
1151 * Opposite of spa_activate().
1152 */
1153static void
1154spa_deactivate(spa_t *spa)
1155{
1156	ASSERT(spa->spa_sync_on == B_FALSE);
1157	ASSERT(spa->spa_dsl_pool == NULL);
1158	ASSERT(spa->spa_root_vdev == NULL);
1159	ASSERT(spa->spa_async_zio_root == NULL);
1160	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1161
1162	/*
1163	 * Stop TRIM thread in case spa_unload() wasn't called directly
1164	 * before spa_deactivate().
1165	 */
1166	trim_thread_destroy(spa);
1167
1168	spa_evicting_os_wait(spa);
1169
1170	txg_list_destroy(&spa->spa_vdev_txg_list);
1171
1172	list_destroy(&spa->spa_config_dirty_list);
1173	list_destroy(&spa->spa_evicting_os_list);
1174	list_destroy(&spa->spa_state_dirty_list);
1175
1176	for (int t = 0; t < ZIO_TYPES; t++) {
1177		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1178			spa_taskqs_fini(spa, t, q);
1179		}
1180	}
1181
1182	metaslab_class_destroy(spa->spa_normal_class);
1183	spa->spa_normal_class = NULL;
1184
1185	metaslab_class_destroy(spa->spa_log_class);
1186	spa->spa_log_class = NULL;
1187
1188	/*
1189	 * If this was part of an import or the open otherwise failed, we may
1190	 * still have errors left in the queues.  Empty them just in case.
1191	 */
1192	spa_errlog_drain(spa);
1193
1194	avl_destroy(&spa->spa_errlist_scrub);
1195	avl_destroy(&spa->spa_errlist_last);
1196
1197	spa->spa_state = POOL_STATE_UNINITIALIZED;
1198
1199	mutex_enter(&spa->spa_proc_lock);
1200	if (spa->spa_proc_state != SPA_PROC_NONE) {
1201		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1202		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1203		cv_broadcast(&spa->spa_proc_cv);
1204		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1205			ASSERT(spa->spa_proc != &p0);
1206			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1207		}
1208		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1209		spa->spa_proc_state = SPA_PROC_NONE;
1210	}
1211	ASSERT(spa->spa_proc == &p0);
1212	mutex_exit(&spa->spa_proc_lock);
1213
1214#ifdef SPA_PROCESS
1215	/*
1216	 * We want to make sure spa_thread() has actually exited the ZFS
1217	 * module, so that the module can't be unloaded out from underneath
1218	 * it.
1219	 */
1220	if (spa->spa_did != 0) {
1221		thread_join(spa->spa_did);
1222		spa->spa_did = 0;
1223	}
1224#endif	/* SPA_PROCESS */
1225}
1226
1227/*
1228 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1229 * will create all the necessary vdevs in the appropriate layout, with each vdev
1230 * in the CLOSED state.  This will prep the pool before open/creation/import.
1231 * All vdev validation is done by the vdev_alloc() routine.
1232 */
1233static int
1234spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1235    uint_t id, int atype)
1236{
1237	nvlist_t **child;
1238	uint_t children;
1239	int error;
1240
1241	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1242		return (error);
1243
1244	if ((*vdp)->vdev_ops->vdev_op_leaf)
1245		return (0);
1246
1247	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1248	    &child, &children);
1249
1250	if (error == ENOENT)
1251		return (0);
1252
1253	if (error) {
1254		vdev_free(*vdp);
1255		*vdp = NULL;
1256		return (SET_ERROR(EINVAL));
1257	}
1258
1259	for (int c = 0; c < children; c++) {
1260		vdev_t *vd;
1261		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1262		    atype)) != 0) {
1263			vdev_free(*vdp);
1264			*vdp = NULL;
1265			return (error);
1266		}
1267	}
1268
1269	ASSERT(*vdp != NULL);
1270
1271	return (0);
1272}
1273
1274/*
1275 * Opposite of spa_load().
1276 */
1277static void
1278spa_unload(spa_t *spa)
1279{
1280	int i;
1281
1282	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1283
1284	/*
1285	 * Stop TRIM thread.
1286	 */
1287	trim_thread_destroy(spa);
1288
1289	/*
1290	 * Stop async tasks.
1291	 */
1292	spa_async_suspend(spa);
1293
1294	/*
1295	 * Stop syncing.
1296	 */
1297	if (spa->spa_sync_on) {
1298		txg_sync_stop(spa->spa_dsl_pool);
1299		spa->spa_sync_on = B_FALSE;
1300	}
1301
1302	/*
1303	 * Wait for any outstanding async I/O to complete.
1304	 */
1305	if (spa->spa_async_zio_root != NULL) {
1306		for (int i = 0; i < max_ncpus; i++)
1307			(void) zio_wait(spa->spa_async_zio_root[i]);
1308		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1309		spa->spa_async_zio_root = NULL;
1310	}
1311
1312	bpobj_close(&spa->spa_deferred_bpobj);
1313
1314	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1315
1316	/*
1317	 * Close all vdevs.
1318	 */
1319	if (spa->spa_root_vdev)
1320		vdev_free(spa->spa_root_vdev);
1321	ASSERT(spa->spa_root_vdev == NULL);
1322
1323	/*
1324	 * Close the dsl pool.
1325	 */
1326	if (spa->spa_dsl_pool) {
1327		dsl_pool_close(spa->spa_dsl_pool);
1328		spa->spa_dsl_pool = NULL;
1329		spa->spa_meta_objset = NULL;
1330	}
1331
1332	ddt_unload(spa);
1333
1334
1335	/*
1336	 * Drop and purge level 2 cache
1337	 */
1338	spa_l2cache_drop(spa);
1339
1340	for (i = 0; i < spa->spa_spares.sav_count; i++)
1341		vdev_free(spa->spa_spares.sav_vdevs[i]);
1342	if (spa->spa_spares.sav_vdevs) {
1343		kmem_free(spa->spa_spares.sav_vdevs,
1344		    spa->spa_spares.sav_count * sizeof (void *));
1345		spa->spa_spares.sav_vdevs = NULL;
1346	}
1347	if (spa->spa_spares.sav_config) {
1348		nvlist_free(spa->spa_spares.sav_config);
1349		spa->spa_spares.sav_config = NULL;
1350	}
1351	spa->spa_spares.sav_count = 0;
1352
1353	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1354		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1355		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1356	}
1357	if (spa->spa_l2cache.sav_vdevs) {
1358		kmem_free(spa->spa_l2cache.sav_vdevs,
1359		    spa->spa_l2cache.sav_count * sizeof (void *));
1360		spa->spa_l2cache.sav_vdevs = NULL;
1361	}
1362	if (spa->spa_l2cache.sav_config) {
1363		nvlist_free(spa->spa_l2cache.sav_config);
1364		spa->spa_l2cache.sav_config = NULL;
1365	}
1366	spa->spa_l2cache.sav_count = 0;
1367
1368	spa->spa_async_suspended = 0;
1369
1370	if (spa->spa_comment != NULL) {
1371		spa_strfree(spa->spa_comment);
1372		spa->spa_comment = NULL;
1373	}
1374
1375	spa_config_exit(spa, SCL_ALL, FTAG);
1376}
1377
1378/*
1379 * Load (or re-load) the current list of vdevs describing the active spares for
1380 * this pool.  When this is called, we have some form of basic information in
1381 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1382 * then re-generate a more complete list including status information.
1383 */
1384static void
1385spa_load_spares(spa_t *spa)
1386{
1387	nvlist_t **spares;
1388	uint_t nspares;
1389	int i;
1390	vdev_t *vd, *tvd;
1391
1392	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1393
1394	/*
1395	 * First, close and free any existing spare vdevs.
1396	 */
1397	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1398		vd = spa->spa_spares.sav_vdevs[i];
1399
1400		/* Undo the call to spa_activate() below */
1401		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1402		    B_FALSE)) != NULL && tvd->vdev_isspare)
1403			spa_spare_remove(tvd);
1404		vdev_close(vd);
1405		vdev_free(vd);
1406	}
1407
1408	if (spa->spa_spares.sav_vdevs)
1409		kmem_free(spa->spa_spares.sav_vdevs,
1410		    spa->spa_spares.sav_count * sizeof (void *));
1411
1412	if (spa->spa_spares.sav_config == NULL)
1413		nspares = 0;
1414	else
1415		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1416		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1417
1418	spa->spa_spares.sav_count = (int)nspares;
1419	spa->spa_spares.sav_vdevs = NULL;
1420
1421	if (nspares == 0)
1422		return;
1423
1424	/*
1425	 * Construct the array of vdevs, opening them to get status in the
1426	 * process.   For each spare, there is potentially two different vdev_t
1427	 * structures associated with it: one in the list of spares (used only
1428	 * for basic validation purposes) and one in the active vdev
1429	 * configuration (if it's spared in).  During this phase we open and
1430	 * validate each vdev on the spare list.  If the vdev also exists in the
1431	 * active configuration, then we also mark this vdev as an active spare.
1432	 */
1433	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1434	    KM_SLEEP);
1435	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1437		    VDEV_ALLOC_SPARE) == 0);
1438		ASSERT(vd != NULL);
1439
1440		spa->spa_spares.sav_vdevs[i] = vd;
1441
1442		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1443		    B_FALSE)) != NULL) {
1444			if (!tvd->vdev_isspare)
1445				spa_spare_add(tvd);
1446
1447			/*
1448			 * We only mark the spare active if we were successfully
1449			 * able to load the vdev.  Otherwise, importing a pool
1450			 * with a bad active spare would result in strange
1451			 * behavior, because multiple pool would think the spare
1452			 * is actively in use.
1453			 *
1454			 * There is a vulnerability here to an equally bizarre
1455			 * circumstance, where a dead active spare is later
1456			 * brought back to life (onlined or otherwise).  Given
1457			 * the rarity of this scenario, and the extra complexity
1458			 * it adds, we ignore the possibility.
1459			 */
1460			if (!vdev_is_dead(tvd))
1461				spa_spare_activate(tvd);
1462		}
1463
1464		vd->vdev_top = vd;
1465		vd->vdev_aux = &spa->spa_spares;
1466
1467		if (vdev_open(vd) != 0)
1468			continue;
1469
1470		if (vdev_validate_aux(vd) == 0)
1471			spa_spare_add(vd);
1472	}
1473
1474	/*
1475	 * Recompute the stashed list of spares, with status information
1476	 * this time.
1477	 */
1478	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1479	    DATA_TYPE_NVLIST_ARRAY) == 0);
1480
1481	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1482	    KM_SLEEP);
1483	for (i = 0; i < spa->spa_spares.sav_count; i++)
1484		spares[i] = vdev_config_generate(spa,
1485		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1486	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1487	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		nvlist_free(spares[i]);
1490	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1491}
1492
1493/*
1494 * Load (or re-load) the current list of vdevs describing the active l2cache for
1495 * this pool.  When this is called, we have some form of basic information in
1496 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1497 * then re-generate a more complete list including status information.
1498 * Devices which are already active have their details maintained, and are
1499 * not re-opened.
1500 */
1501static void
1502spa_load_l2cache(spa_t *spa)
1503{
1504	nvlist_t **l2cache;
1505	uint_t nl2cache;
1506	int i, j, oldnvdevs;
1507	uint64_t guid;
1508	vdev_t *vd, **oldvdevs, **newvdevs;
1509	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1510
1511	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1512
1513	if (sav->sav_config != NULL) {
1514		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1515		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1516		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1517	} else {
1518		nl2cache = 0;
1519		newvdevs = NULL;
1520	}
1521
1522	oldvdevs = sav->sav_vdevs;
1523	oldnvdevs = sav->sav_count;
1524	sav->sav_vdevs = NULL;
1525	sav->sav_count = 0;
1526
1527	/*
1528	 * Process new nvlist of vdevs.
1529	 */
1530	for (i = 0; i < nl2cache; i++) {
1531		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1532		    &guid) == 0);
1533
1534		newvdevs[i] = NULL;
1535		for (j = 0; j < oldnvdevs; j++) {
1536			vd = oldvdevs[j];
1537			if (vd != NULL && guid == vd->vdev_guid) {
1538				/*
1539				 * Retain previous vdev for add/remove ops.
1540				 */
1541				newvdevs[i] = vd;
1542				oldvdevs[j] = NULL;
1543				break;
1544			}
1545		}
1546
1547		if (newvdevs[i] == NULL) {
1548			/*
1549			 * Create new vdev
1550			 */
1551			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1552			    VDEV_ALLOC_L2CACHE) == 0);
1553			ASSERT(vd != NULL);
1554			newvdevs[i] = vd;
1555
1556			/*
1557			 * Commit this vdev as an l2cache device,
1558			 * even if it fails to open.
1559			 */
1560			spa_l2cache_add(vd);
1561
1562			vd->vdev_top = vd;
1563			vd->vdev_aux = sav;
1564
1565			spa_l2cache_activate(vd);
1566
1567			if (vdev_open(vd) != 0)
1568				continue;
1569
1570			(void) vdev_validate_aux(vd);
1571
1572			if (!vdev_is_dead(vd))
1573				l2arc_add_vdev(spa, vd);
1574		}
1575	}
1576
1577	/*
1578	 * Purge vdevs that were dropped
1579	 */
1580	for (i = 0; i < oldnvdevs; i++) {
1581		uint64_t pool;
1582
1583		vd = oldvdevs[i];
1584		if (vd != NULL) {
1585			ASSERT(vd->vdev_isl2cache);
1586
1587			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1588			    pool != 0ULL && l2arc_vdev_present(vd))
1589				l2arc_remove_vdev(vd);
1590			vdev_clear_stats(vd);
1591			vdev_free(vd);
1592		}
1593	}
1594
1595	if (oldvdevs)
1596		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1597
1598	if (sav->sav_config == NULL)
1599		goto out;
1600
1601	sav->sav_vdevs = newvdevs;
1602	sav->sav_count = (int)nl2cache;
1603
1604	/*
1605	 * Recompute the stashed list of l2cache devices, with status
1606	 * information this time.
1607	 */
1608	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1609	    DATA_TYPE_NVLIST_ARRAY) == 0);
1610
1611	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1612	for (i = 0; i < sav->sav_count; i++)
1613		l2cache[i] = vdev_config_generate(spa,
1614		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1615	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1616	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1617out:
1618	for (i = 0; i < sav->sav_count; i++)
1619		nvlist_free(l2cache[i]);
1620	if (sav->sav_count)
1621		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1622}
1623
1624static int
1625load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1626{
1627	dmu_buf_t *db;
1628	char *packed = NULL;
1629	size_t nvsize = 0;
1630	int error;
1631	*value = NULL;
1632
1633	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1634	if (error != 0)
1635		return (error);
1636
1637	nvsize = *(uint64_t *)db->db_data;
1638	dmu_buf_rele(db, FTAG);
1639
1640	packed = kmem_alloc(nvsize, KM_SLEEP);
1641	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1642	    DMU_READ_PREFETCH);
1643	if (error == 0)
1644		error = nvlist_unpack(packed, nvsize, value, 0);
1645	kmem_free(packed, nvsize);
1646
1647	return (error);
1648}
1649
1650/*
1651 * Checks to see if the given vdev could not be opened, in which case we post a
1652 * sysevent to notify the autoreplace code that the device has been removed.
1653 */
1654static void
1655spa_check_removed(vdev_t *vd)
1656{
1657	for (int c = 0; c < vd->vdev_children; c++)
1658		spa_check_removed(vd->vdev_child[c]);
1659
1660	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1661	    !vd->vdev_ishole) {
1662		zfs_post_autoreplace(vd->vdev_spa, vd);
1663		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1664	}
1665}
1666
1667/*
1668 * Validate the current config against the MOS config
1669 */
1670static boolean_t
1671spa_config_valid(spa_t *spa, nvlist_t *config)
1672{
1673	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1674	nvlist_t *nv;
1675
1676	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1677
1678	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1679	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1680
1681	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1682
1683	/*
1684	 * If we're doing a normal import, then build up any additional
1685	 * diagnostic information about missing devices in this config.
1686	 * We'll pass this up to the user for further processing.
1687	 */
1688	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1689		nvlist_t **child, *nv;
1690		uint64_t idx = 0;
1691
1692		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1693		    KM_SLEEP);
1694		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1695
1696		for (int c = 0; c < rvd->vdev_children; c++) {
1697			vdev_t *tvd = rvd->vdev_child[c];
1698			vdev_t *mtvd  = mrvd->vdev_child[c];
1699
1700			if (tvd->vdev_ops == &vdev_missing_ops &&
1701			    mtvd->vdev_ops != &vdev_missing_ops &&
1702			    mtvd->vdev_islog)
1703				child[idx++] = vdev_config_generate(spa, mtvd,
1704				    B_FALSE, 0);
1705		}
1706
1707		if (idx) {
1708			VERIFY(nvlist_add_nvlist_array(nv,
1709			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1710			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1711			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1712
1713			for (int i = 0; i < idx; i++)
1714				nvlist_free(child[i]);
1715		}
1716		nvlist_free(nv);
1717		kmem_free(child, rvd->vdev_children * sizeof (char **));
1718	}
1719
1720	/*
1721	 * Compare the root vdev tree with the information we have
1722	 * from the MOS config (mrvd). Check each top-level vdev
1723	 * with the corresponding MOS config top-level (mtvd).
1724	 */
1725	for (int c = 0; c < rvd->vdev_children; c++) {
1726		vdev_t *tvd = rvd->vdev_child[c];
1727		vdev_t *mtvd  = mrvd->vdev_child[c];
1728
1729		/*
1730		 * Resolve any "missing" vdevs in the current configuration.
1731		 * If we find that the MOS config has more accurate information
1732		 * about the top-level vdev then use that vdev instead.
1733		 */
1734		if (tvd->vdev_ops == &vdev_missing_ops &&
1735		    mtvd->vdev_ops != &vdev_missing_ops) {
1736
1737			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1738				continue;
1739
1740			/*
1741			 * Device specific actions.
1742			 */
1743			if (mtvd->vdev_islog) {
1744				spa_set_log_state(spa, SPA_LOG_CLEAR);
1745			} else {
1746				/*
1747				 * XXX - once we have 'readonly' pool
1748				 * support we should be able to handle
1749				 * missing data devices by transitioning
1750				 * the pool to readonly.
1751				 */
1752				continue;
1753			}
1754
1755			/*
1756			 * Swap the missing vdev with the data we were
1757			 * able to obtain from the MOS config.
1758			 */
1759			vdev_remove_child(rvd, tvd);
1760			vdev_remove_child(mrvd, mtvd);
1761
1762			vdev_add_child(rvd, mtvd);
1763			vdev_add_child(mrvd, tvd);
1764
1765			spa_config_exit(spa, SCL_ALL, FTAG);
1766			vdev_load(mtvd);
1767			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1768
1769			vdev_reopen(rvd);
1770		} else if (mtvd->vdev_islog) {
1771			/*
1772			 * Load the slog device's state from the MOS config
1773			 * since it's possible that the label does not
1774			 * contain the most up-to-date information.
1775			 */
1776			vdev_load_log_state(tvd, mtvd);
1777			vdev_reopen(tvd);
1778		}
1779	}
1780	vdev_free(mrvd);
1781	spa_config_exit(spa, SCL_ALL, FTAG);
1782
1783	/*
1784	 * Ensure we were able to validate the config.
1785	 */
1786	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1787}
1788
1789/*
1790 * Check for missing log devices
1791 */
1792static boolean_t
1793spa_check_logs(spa_t *spa)
1794{
1795	boolean_t rv = B_FALSE;
1796	dsl_pool_t *dp = spa_get_dsl(spa);
1797
1798	switch (spa->spa_log_state) {
1799	case SPA_LOG_MISSING:
1800		/* need to recheck in case slog has been restored */
1801	case SPA_LOG_UNKNOWN:
1802		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1803		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1804		if (rv)
1805			spa_set_log_state(spa, SPA_LOG_MISSING);
1806		break;
1807	}
1808	return (rv);
1809}
1810
1811static boolean_t
1812spa_passivate_log(spa_t *spa)
1813{
1814	vdev_t *rvd = spa->spa_root_vdev;
1815	boolean_t slog_found = B_FALSE;
1816
1817	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1818
1819	if (!spa_has_slogs(spa))
1820		return (B_FALSE);
1821
1822	for (int c = 0; c < rvd->vdev_children; c++) {
1823		vdev_t *tvd = rvd->vdev_child[c];
1824		metaslab_group_t *mg = tvd->vdev_mg;
1825
1826		if (tvd->vdev_islog) {
1827			metaslab_group_passivate(mg);
1828			slog_found = B_TRUE;
1829		}
1830	}
1831
1832	return (slog_found);
1833}
1834
1835static void
1836spa_activate_log(spa_t *spa)
1837{
1838	vdev_t *rvd = spa->spa_root_vdev;
1839
1840	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1841
1842	for (int c = 0; c < rvd->vdev_children; c++) {
1843		vdev_t *tvd = rvd->vdev_child[c];
1844		metaslab_group_t *mg = tvd->vdev_mg;
1845
1846		if (tvd->vdev_islog)
1847			metaslab_group_activate(mg);
1848	}
1849}
1850
1851int
1852spa_offline_log(spa_t *spa)
1853{
1854	int error;
1855
1856	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1857	    NULL, DS_FIND_CHILDREN);
1858	if (error == 0) {
1859		/*
1860		 * We successfully offlined the log device, sync out the
1861		 * current txg so that the "stubby" block can be removed
1862		 * by zil_sync().
1863		 */
1864		txg_wait_synced(spa->spa_dsl_pool, 0);
1865	}
1866	return (error);
1867}
1868
1869static void
1870spa_aux_check_removed(spa_aux_vdev_t *sav)
1871{
1872	int i;
1873
1874	for (i = 0; i < sav->sav_count; i++)
1875		spa_check_removed(sav->sav_vdevs[i]);
1876}
1877
1878void
1879spa_claim_notify(zio_t *zio)
1880{
1881	spa_t *spa = zio->io_spa;
1882
1883	if (zio->io_error)
1884		return;
1885
1886	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1887	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1888		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1889	mutex_exit(&spa->spa_props_lock);
1890}
1891
1892typedef struct spa_load_error {
1893	uint64_t	sle_meta_count;
1894	uint64_t	sle_data_count;
1895} spa_load_error_t;
1896
1897static void
1898spa_load_verify_done(zio_t *zio)
1899{
1900	blkptr_t *bp = zio->io_bp;
1901	spa_load_error_t *sle = zio->io_private;
1902	dmu_object_type_t type = BP_GET_TYPE(bp);
1903	int error = zio->io_error;
1904	spa_t *spa = zio->io_spa;
1905
1906	if (error) {
1907		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1908		    type != DMU_OT_INTENT_LOG)
1909			atomic_inc_64(&sle->sle_meta_count);
1910		else
1911			atomic_inc_64(&sle->sle_data_count);
1912	}
1913	zio_data_buf_free(zio->io_data, zio->io_size);
1914
1915	mutex_enter(&spa->spa_scrub_lock);
1916	spa->spa_scrub_inflight--;
1917	cv_broadcast(&spa->spa_scrub_io_cv);
1918	mutex_exit(&spa->spa_scrub_lock);
1919}
1920
1921/*
1922 * Maximum number of concurrent scrub i/os to create while verifying
1923 * a pool while importing it.
1924 */
1925int spa_load_verify_maxinflight = 10000;
1926boolean_t spa_load_verify_metadata = B_TRUE;
1927boolean_t spa_load_verify_data = B_TRUE;
1928
1929SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1930    &spa_load_verify_maxinflight, 0,
1931    "Maximum number of concurrent scrub I/Os to create while verifying a "
1932    "pool while importing it");
1933
1934SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1935    &spa_load_verify_metadata, 0,
1936    "Check metadata on import?");
1937
1938SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1939    &spa_load_verify_data, 0,
1940    "Check user data on import?");
1941
1942/*ARGSUSED*/
1943static int
1944spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1945    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1946{
1947	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1948		return (0);
1949	/*
1950	 * Note: normally this routine will not be called if
1951	 * spa_load_verify_metadata is not set.  However, it may be useful
1952	 * to manually set the flag after the traversal has begun.
1953	 */
1954	if (!spa_load_verify_metadata)
1955		return (0);
1956	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1957		return (0);
1958
1959	zio_t *rio = arg;
1960	size_t size = BP_GET_PSIZE(bp);
1961	void *data = zio_data_buf_alloc(size);
1962
1963	mutex_enter(&spa->spa_scrub_lock);
1964	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1965		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1966	spa->spa_scrub_inflight++;
1967	mutex_exit(&spa->spa_scrub_lock);
1968
1969	zio_nowait(zio_read(rio, spa, bp, data, size,
1970	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1971	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1972	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1973	return (0);
1974}
1975
1976static int
1977spa_load_verify(spa_t *spa)
1978{
1979	zio_t *rio;
1980	spa_load_error_t sle = { 0 };
1981	zpool_rewind_policy_t policy;
1982	boolean_t verify_ok = B_FALSE;
1983	int error = 0;
1984
1985	zpool_get_rewind_policy(spa->spa_config, &policy);
1986
1987	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1988		return (0);
1989
1990	rio = zio_root(spa, NULL, &sle,
1991	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1992
1993	if (spa_load_verify_metadata) {
1994		error = traverse_pool(spa, spa->spa_verify_min_txg,
1995		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1996		    spa_load_verify_cb, rio);
1997	}
1998
1999	(void) zio_wait(rio);
2000
2001	spa->spa_load_meta_errors = sle.sle_meta_count;
2002	spa->spa_load_data_errors = sle.sle_data_count;
2003
2004	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2005	    sle.sle_data_count <= policy.zrp_maxdata) {
2006		int64_t loss = 0;
2007
2008		verify_ok = B_TRUE;
2009		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2010		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2011
2012		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2013		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2014		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2015		VERIFY(nvlist_add_int64(spa->spa_load_info,
2016		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2017		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2018		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2019	} else {
2020		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2021	}
2022
2023	if (error) {
2024		if (error != ENXIO && error != EIO)
2025			error = SET_ERROR(EIO);
2026		return (error);
2027	}
2028
2029	return (verify_ok ? 0 : EIO);
2030}
2031
2032/*
2033 * Find a value in the pool props object.
2034 */
2035static void
2036spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2037{
2038	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2039	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2040}
2041
2042/*
2043 * Find a value in the pool directory object.
2044 */
2045static int
2046spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2047{
2048	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2049	    name, sizeof (uint64_t), 1, val));
2050}
2051
2052static int
2053spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2054{
2055	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2056	return (err);
2057}
2058
2059/*
2060 * Fix up config after a partly-completed split.  This is done with the
2061 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2062 * pool have that entry in their config, but only the splitting one contains
2063 * a list of all the guids of the vdevs that are being split off.
2064 *
2065 * This function determines what to do with that list: either rejoin
2066 * all the disks to the pool, or complete the splitting process.  To attempt
2067 * the rejoin, each disk that is offlined is marked online again, and
2068 * we do a reopen() call.  If the vdev label for every disk that was
2069 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2070 * then we call vdev_split() on each disk, and complete the split.
2071 *
2072 * Otherwise we leave the config alone, with all the vdevs in place in
2073 * the original pool.
2074 */
2075static void
2076spa_try_repair(spa_t *spa, nvlist_t *config)
2077{
2078	uint_t extracted;
2079	uint64_t *glist;
2080	uint_t i, gcount;
2081	nvlist_t *nvl;
2082	vdev_t **vd;
2083	boolean_t attempt_reopen;
2084
2085	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2086		return;
2087
2088	/* check that the config is complete */
2089	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2090	    &glist, &gcount) != 0)
2091		return;
2092
2093	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2094
2095	/* attempt to online all the vdevs & validate */
2096	attempt_reopen = B_TRUE;
2097	for (i = 0; i < gcount; i++) {
2098		if (glist[i] == 0)	/* vdev is hole */
2099			continue;
2100
2101		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2102		if (vd[i] == NULL) {
2103			/*
2104			 * Don't bother attempting to reopen the disks;
2105			 * just do the split.
2106			 */
2107			attempt_reopen = B_FALSE;
2108		} else {
2109			/* attempt to re-online it */
2110			vd[i]->vdev_offline = B_FALSE;
2111		}
2112	}
2113
2114	if (attempt_reopen) {
2115		vdev_reopen(spa->spa_root_vdev);
2116
2117		/* check each device to see what state it's in */
2118		for (extracted = 0, i = 0; i < gcount; i++) {
2119			if (vd[i] != NULL &&
2120			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2121				break;
2122			++extracted;
2123		}
2124	}
2125
2126	/*
2127	 * If every disk has been moved to the new pool, or if we never
2128	 * even attempted to look at them, then we split them off for
2129	 * good.
2130	 */
2131	if (!attempt_reopen || gcount == extracted) {
2132		for (i = 0; i < gcount; i++)
2133			if (vd[i] != NULL)
2134				vdev_split(vd[i]);
2135		vdev_reopen(spa->spa_root_vdev);
2136	}
2137
2138	kmem_free(vd, gcount * sizeof (vdev_t *));
2139}
2140
2141static int
2142spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2143    boolean_t mosconfig)
2144{
2145	nvlist_t *config = spa->spa_config;
2146	char *ereport = FM_EREPORT_ZFS_POOL;
2147	char *comment;
2148	int error;
2149	uint64_t pool_guid;
2150	nvlist_t *nvl;
2151
2152	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2153		return (SET_ERROR(EINVAL));
2154
2155	ASSERT(spa->spa_comment == NULL);
2156	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2157		spa->spa_comment = spa_strdup(comment);
2158
2159	/*
2160	 * Versioning wasn't explicitly added to the label until later, so if
2161	 * it's not present treat it as the initial version.
2162	 */
2163	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2164	    &spa->spa_ubsync.ub_version) != 0)
2165		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2166
2167	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2168	    &spa->spa_config_txg);
2169
2170	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2171	    spa_guid_exists(pool_guid, 0)) {
2172		error = SET_ERROR(EEXIST);
2173	} else {
2174		spa->spa_config_guid = pool_guid;
2175
2176		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2177		    &nvl) == 0) {
2178			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2179			    KM_SLEEP) == 0);
2180		}
2181
2182		nvlist_free(spa->spa_load_info);
2183		spa->spa_load_info = fnvlist_alloc();
2184
2185		gethrestime(&spa->spa_loaded_ts);
2186		error = spa_load_impl(spa, pool_guid, config, state, type,
2187		    mosconfig, &ereport);
2188	}
2189
2190	/*
2191	 * Don't count references from objsets that are already closed
2192	 * and are making their way through the eviction process.
2193	 */
2194	spa_evicting_os_wait(spa);
2195	spa->spa_minref = refcount_count(&spa->spa_refcount);
2196	if (error) {
2197		if (error != EEXIST) {
2198			spa->spa_loaded_ts.tv_sec = 0;
2199			spa->spa_loaded_ts.tv_nsec = 0;
2200		}
2201		if (error != EBADF) {
2202			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2203		}
2204	}
2205	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2206	spa->spa_ena = 0;
2207
2208	return (error);
2209}
2210
2211/*
2212 * Load an existing storage pool, using the pool's builtin spa_config as a
2213 * source of configuration information.
2214 */
2215static int
2216spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2217    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2218    char **ereport)
2219{
2220	int error = 0;
2221	nvlist_t *nvroot = NULL;
2222	nvlist_t *label;
2223	vdev_t *rvd;
2224	uberblock_t *ub = &spa->spa_uberblock;
2225	uint64_t children, config_cache_txg = spa->spa_config_txg;
2226	int orig_mode = spa->spa_mode;
2227	int parse;
2228	uint64_t obj;
2229	boolean_t missing_feat_write = B_FALSE;
2230
2231	/*
2232	 * If this is an untrusted config, access the pool in read-only mode.
2233	 * This prevents things like resilvering recently removed devices.
2234	 */
2235	if (!mosconfig)
2236		spa->spa_mode = FREAD;
2237
2238	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2239
2240	spa->spa_load_state = state;
2241
2242	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2243		return (SET_ERROR(EINVAL));
2244
2245	parse = (type == SPA_IMPORT_EXISTING ?
2246	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2247
2248	/*
2249	 * Create "The Godfather" zio to hold all async IOs
2250	 */
2251	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2252	    KM_SLEEP);
2253	for (int i = 0; i < max_ncpus; i++) {
2254		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2255		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2256		    ZIO_FLAG_GODFATHER);
2257	}
2258
2259	/*
2260	 * Parse the configuration into a vdev tree.  We explicitly set the
2261	 * value that will be returned by spa_version() since parsing the
2262	 * configuration requires knowing the version number.
2263	 */
2264	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2265	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2266	spa_config_exit(spa, SCL_ALL, FTAG);
2267
2268	if (error != 0)
2269		return (error);
2270
2271	ASSERT(spa->spa_root_vdev == rvd);
2272	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2273	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2274
2275	if (type != SPA_IMPORT_ASSEMBLE) {
2276		ASSERT(spa_guid(spa) == pool_guid);
2277	}
2278
2279	/*
2280	 * Try to open all vdevs, loading each label in the process.
2281	 */
2282	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2283	error = vdev_open(rvd);
2284	spa_config_exit(spa, SCL_ALL, FTAG);
2285	if (error != 0)
2286		return (error);
2287
2288	/*
2289	 * We need to validate the vdev labels against the configuration that
2290	 * we have in hand, which is dependent on the setting of mosconfig. If
2291	 * mosconfig is true then we're validating the vdev labels based on
2292	 * that config.  Otherwise, we're validating against the cached config
2293	 * (zpool.cache) that was read when we loaded the zfs module, and then
2294	 * later we will recursively call spa_load() and validate against
2295	 * the vdev config.
2296	 *
2297	 * If we're assembling a new pool that's been split off from an
2298	 * existing pool, the labels haven't yet been updated so we skip
2299	 * validation for now.
2300	 */
2301	if (type != SPA_IMPORT_ASSEMBLE) {
2302		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2303		error = vdev_validate(rvd, mosconfig);
2304		spa_config_exit(spa, SCL_ALL, FTAG);
2305
2306		if (error != 0)
2307			return (error);
2308
2309		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2310			return (SET_ERROR(ENXIO));
2311	}
2312
2313	/*
2314	 * Find the best uberblock.
2315	 */
2316	vdev_uberblock_load(rvd, ub, &label);
2317
2318	/*
2319	 * If we weren't able to find a single valid uberblock, return failure.
2320	 */
2321	if (ub->ub_txg == 0) {
2322		nvlist_free(label);
2323		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2324	}
2325
2326	/*
2327	 * If the pool has an unsupported version we can't open it.
2328	 */
2329	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2330		nvlist_free(label);
2331		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2332	}
2333
2334	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2335		nvlist_t *features;
2336
2337		/*
2338		 * If we weren't able to find what's necessary for reading the
2339		 * MOS in the label, return failure.
2340		 */
2341		if (label == NULL || nvlist_lookup_nvlist(label,
2342		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2343			nvlist_free(label);
2344			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2345			    ENXIO));
2346		}
2347
2348		/*
2349		 * Update our in-core representation with the definitive values
2350		 * from the label.
2351		 */
2352		nvlist_free(spa->spa_label_features);
2353		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2354	}
2355
2356	nvlist_free(label);
2357
2358	/*
2359	 * Look through entries in the label nvlist's features_for_read. If
2360	 * there is a feature listed there which we don't understand then we
2361	 * cannot open a pool.
2362	 */
2363	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2364		nvlist_t *unsup_feat;
2365
2366		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2367		    0);
2368
2369		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2370		    NULL); nvp != NULL;
2371		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2372			if (!zfeature_is_supported(nvpair_name(nvp))) {
2373				VERIFY(nvlist_add_string(unsup_feat,
2374				    nvpair_name(nvp), "") == 0);
2375			}
2376		}
2377
2378		if (!nvlist_empty(unsup_feat)) {
2379			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2380			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2381			nvlist_free(unsup_feat);
2382			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2383			    ENOTSUP));
2384		}
2385
2386		nvlist_free(unsup_feat);
2387	}
2388
2389	/*
2390	 * If the vdev guid sum doesn't match the uberblock, we have an
2391	 * incomplete configuration.  We first check to see if the pool
2392	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2393	 * If it is, defer the vdev_guid_sum check till later so we
2394	 * can handle missing vdevs.
2395	 */
2396	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2397	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2398	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2399		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2400
2401	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2402		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2403		spa_try_repair(spa, config);
2404		spa_config_exit(spa, SCL_ALL, FTAG);
2405		nvlist_free(spa->spa_config_splitting);
2406		spa->spa_config_splitting = NULL;
2407	}
2408
2409	/*
2410	 * Initialize internal SPA structures.
2411	 */
2412	spa->spa_state = POOL_STATE_ACTIVE;
2413	spa->spa_ubsync = spa->spa_uberblock;
2414	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2415	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2416	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2417	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2418	spa->spa_claim_max_txg = spa->spa_first_txg;
2419	spa->spa_prev_software_version = ub->ub_software_version;
2420
2421	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2422	if (error)
2423		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2424	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2425
2426	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2427		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428
2429	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2430		boolean_t missing_feat_read = B_FALSE;
2431		nvlist_t *unsup_feat, *enabled_feat;
2432
2433		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2434		    &spa->spa_feat_for_read_obj) != 0) {
2435			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436		}
2437
2438		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2439		    &spa->spa_feat_for_write_obj) != 0) {
2440			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441		}
2442
2443		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2444		    &spa->spa_feat_desc_obj) != 0) {
2445			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2446		}
2447
2448		enabled_feat = fnvlist_alloc();
2449		unsup_feat = fnvlist_alloc();
2450
2451		if (!spa_features_check(spa, B_FALSE,
2452		    unsup_feat, enabled_feat))
2453			missing_feat_read = B_TRUE;
2454
2455		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2456			if (!spa_features_check(spa, B_TRUE,
2457			    unsup_feat, enabled_feat)) {
2458				missing_feat_write = B_TRUE;
2459			}
2460		}
2461
2462		fnvlist_add_nvlist(spa->spa_load_info,
2463		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2464
2465		if (!nvlist_empty(unsup_feat)) {
2466			fnvlist_add_nvlist(spa->spa_load_info,
2467			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2468		}
2469
2470		fnvlist_free(enabled_feat);
2471		fnvlist_free(unsup_feat);
2472
2473		if (!missing_feat_read) {
2474			fnvlist_add_boolean(spa->spa_load_info,
2475			    ZPOOL_CONFIG_CAN_RDONLY);
2476		}
2477
2478		/*
2479		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2480		 * twofold: to determine whether the pool is available for
2481		 * import in read-write mode and (if it is not) whether the
2482		 * pool is available for import in read-only mode. If the pool
2483		 * is available for import in read-write mode, it is displayed
2484		 * as available in userland; if it is not available for import
2485		 * in read-only mode, it is displayed as unavailable in
2486		 * userland. If the pool is available for import in read-only
2487		 * mode but not read-write mode, it is displayed as unavailable
2488		 * in userland with a special note that the pool is actually
2489		 * available for open in read-only mode.
2490		 *
2491		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2492		 * missing a feature for write, we must first determine whether
2493		 * the pool can be opened read-only before returning to
2494		 * userland in order to know whether to display the
2495		 * abovementioned note.
2496		 */
2497		if (missing_feat_read || (missing_feat_write &&
2498		    spa_writeable(spa))) {
2499			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2500			    ENOTSUP));
2501		}
2502
2503		/*
2504		 * Load refcounts for ZFS features from disk into an in-memory
2505		 * cache during SPA initialization.
2506		 */
2507		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2508			uint64_t refcount;
2509
2510			error = feature_get_refcount_from_disk(spa,
2511			    &spa_feature_table[i], &refcount);
2512			if (error == 0) {
2513				spa->spa_feat_refcount_cache[i] = refcount;
2514			} else if (error == ENOTSUP) {
2515				spa->spa_feat_refcount_cache[i] =
2516				    SPA_FEATURE_DISABLED;
2517			} else {
2518				return (spa_vdev_err(rvd,
2519				    VDEV_AUX_CORRUPT_DATA, EIO));
2520			}
2521		}
2522	}
2523
2524	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2525		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2526		    &spa->spa_feat_enabled_txg_obj) != 0)
2527			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528	}
2529
2530	spa->spa_is_initializing = B_TRUE;
2531	error = dsl_pool_open(spa->spa_dsl_pool);
2532	spa->spa_is_initializing = B_FALSE;
2533	if (error != 0)
2534		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535
2536	if (!mosconfig) {
2537		uint64_t hostid;
2538		nvlist_t *policy = NULL, *nvconfig;
2539
2540		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2541			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2542
2543		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2544		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2545			char *hostname;
2546			unsigned long myhostid = 0;
2547
2548			VERIFY(nvlist_lookup_string(nvconfig,
2549			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2550
2551#ifdef	_KERNEL
2552			myhostid = zone_get_hostid(NULL);
2553#else	/* _KERNEL */
2554			/*
2555			 * We're emulating the system's hostid in userland, so
2556			 * we can't use zone_get_hostid().
2557			 */
2558			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2559#endif	/* _KERNEL */
2560			if (check_hostid && hostid != 0 && myhostid != 0 &&
2561			    hostid != myhostid) {
2562				nvlist_free(nvconfig);
2563				cmn_err(CE_WARN, "pool '%s' could not be "
2564				    "loaded as it was last accessed by "
2565				    "another system (host: %s hostid: 0x%lx). "
2566				    "See: http://illumos.org/msg/ZFS-8000-EY",
2567				    spa_name(spa), hostname,
2568				    (unsigned long)hostid);
2569				return (SET_ERROR(EBADF));
2570			}
2571		}
2572		if (nvlist_lookup_nvlist(spa->spa_config,
2573		    ZPOOL_REWIND_POLICY, &policy) == 0)
2574			VERIFY(nvlist_add_nvlist(nvconfig,
2575			    ZPOOL_REWIND_POLICY, policy) == 0);
2576
2577		spa_config_set(spa, nvconfig);
2578		spa_unload(spa);
2579		spa_deactivate(spa);
2580		spa_activate(spa, orig_mode);
2581
2582		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2583	}
2584
2585	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2586		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2588	if (error != 0)
2589		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590
2591	/*
2592	 * Load the bit that tells us to use the new accounting function
2593	 * (raid-z deflation).  If we have an older pool, this will not
2594	 * be present.
2595	 */
2596	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2597	if (error != 0 && error != ENOENT)
2598		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2599
2600	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2601	    &spa->spa_creation_version);
2602	if (error != 0 && error != ENOENT)
2603		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605	/*
2606	 * Load the persistent error log.  If we have an older pool, this will
2607	 * not be present.
2608	 */
2609	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2610	if (error != 0 && error != ENOENT)
2611		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2612
2613	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2614	    &spa->spa_errlog_scrub);
2615	if (error != 0 && error != ENOENT)
2616		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2617
2618	/*
2619	 * Load the history object.  If we have an older pool, this
2620	 * will not be present.
2621	 */
2622	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2623	if (error != 0 && error != ENOENT)
2624		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2625
2626	/*
2627	 * If we're assembling the pool from the split-off vdevs of
2628	 * an existing pool, we don't want to attach the spares & cache
2629	 * devices.
2630	 */
2631
2632	/*
2633	 * Load any hot spares for this pool.
2634	 */
2635	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2636	if (error != 0 && error != ENOENT)
2637		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2638	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2639		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2640		if (load_nvlist(spa, spa->spa_spares.sav_object,
2641		    &spa->spa_spares.sav_config) != 0)
2642			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643
2644		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2645		spa_load_spares(spa);
2646		spa_config_exit(spa, SCL_ALL, FTAG);
2647	} else if (error == 0) {
2648		spa->spa_spares.sav_sync = B_TRUE;
2649	}
2650
2651	/*
2652	 * Load any level 2 ARC devices for this pool.
2653	 */
2654	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2655	    &spa->spa_l2cache.sav_object);
2656	if (error != 0 && error != ENOENT)
2657		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2658	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2659		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2660		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2661		    &spa->spa_l2cache.sav_config) != 0)
2662			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2663
2664		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2665		spa_load_l2cache(spa);
2666		spa_config_exit(spa, SCL_ALL, FTAG);
2667	} else if (error == 0) {
2668		spa->spa_l2cache.sav_sync = B_TRUE;
2669	}
2670
2671	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2672
2673	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2674	if (error && error != ENOENT)
2675		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2676
2677	if (error == 0) {
2678		uint64_t autoreplace;
2679
2680		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2681		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2682		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2683		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2684		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2685		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2686		    &spa->spa_dedup_ditto);
2687
2688		spa->spa_autoreplace = (autoreplace != 0);
2689	}
2690
2691	/*
2692	 * If the 'autoreplace' property is set, then post a resource notifying
2693	 * the ZFS DE that it should not issue any faults for unopenable
2694	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2695	 * unopenable vdevs so that the normal autoreplace handler can take
2696	 * over.
2697	 */
2698	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2699		spa_check_removed(spa->spa_root_vdev);
2700		/*
2701		 * For the import case, this is done in spa_import(), because
2702		 * at this point we're using the spare definitions from
2703		 * the MOS config, not necessarily from the userland config.
2704		 */
2705		if (state != SPA_LOAD_IMPORT) {
2706			spa_aux_check_removed(&spa->spa_spares);
2707			spa_aux_check_removed(&spa->spa_l2cache);
2708		}
2709	}
2710
2711	/*
2712	 * Load the vdev state for all toplevel vdevs.
2713	 */
2714	vdev_load(rvd);
2715
2716	/*
2717	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2718	 */
2719	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2720	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2721	spa_config_exit(spa, SCL_ALL, FTAG);
2722
2723	/*
2724	 * Load the DDTs (dedup tables).
2725	 */
2726	error = ddt_load(spa);
2727	if (error != 0)
2728		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2729
2730	spa_update_dspace(spa);
2731
2732	/*
2733	 * Validate the config, using the MOS config to fill in any
2734	 * information which might be missing.  If we fail to validate
2735	 * the config then declare the pool unfit for use. If we're
2736	 * assembling a pool from a split, the log is not transferred
2737	 * over.
2738	 */
2739	if (type != SPA_IMPORT_ASSEMBLE) {
2740		nvlist_t *nvconfig;
2741
2742		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2743			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2744
2745		if (!spa_config_valid(spa, nvconfig)) {
2746			nvlist_free(nvconfig);
2747			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2748			    ENXIO));
2749		}
2750		nvlist_free(nvconfig);
2751
2752		/*
2753		 * Now that we've validated the config, check the state of the
2754		 * root vdev.  If it can't be opened, it indicates one or
2755		 * more toplevel vdevs are faulted.
2756		 */
2757		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2758			return (SET_ERROR(ENXIO));
2759
2760		if (spa_writeable(spa) && spa_check_logs(spa)) {
2761			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2762			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2763		}
2764	}
2765
2766	if (missing_feat_write) {
2767		ASSERT(state == SPA_LOAD_TRYIMPORT);
2768
2769		/*
2770		 * At this point, we know that we can open the pool in
2771		 * read-only mode but not read-write mode. We now have enough
2772		 * information and can return to userland.
2773		 */
2774		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2775	}
2776
2777	/*
2778	 * We've successfully opened the pool, verify that we're ready
2779	 * to start pushing transactions.
2780	 */
2781	if (state != SPA_LOAD_TRYIMPORT) {
2782		if (error = spa_load_verify(spa))
2783			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2784			    error));
2785	}
2786
2787	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2788	    spa->spa_load_max_txg == UINT64_MAX)) {
2789		dmu_tx_t *tx;
2790		int need_update = B_FALSE;
2791		dsl_pool_t *dp = spa_get_dsl(spa);
2792
2793		ASSERT(state != SPA_LOAD_TRYIMPORT);
2794
2795		/*
2796		 * Claim log blocks that haven't been committed yet.
2797		 * This must all happen in a single txg.
2798		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2799		 * invoked from zil_claim_log_block()'s i/o done callback.
2800		 * Price of rollback is that we abandon the log.
2801		 */
2802		spa->spa_claiming = B_TRUE;
2803
2804		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2805		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2806		    zil_claim, tx, DS_FIND_CHILDREN);
2807		dmu_tx_commit(tx);
2808
2809		spa->spa_claiming = B_FALSE;
2810
2811		spa_set_log_state(spa, SPA_LOG_GOOD);
2812		spa->spa_sync_on = B_TRUE;
2813		txg_sync_start(spa->spa_dsl_pool);
2814
2815		/*
2816		 * Wait for all claims to sync.  We sync up to the highest
2817		 * claimed log block birth time so that claimed log blocks
2818		 * don't appear to be from the future.  spa_claim_max_txg
2819		 * will have been set for us by either zil_check_log_chain()
2820		 * (invoked from spa_check_logs()) or zil_claim() above.
2821		 */
2822		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2823
2824		/*
2825		 * If the config cache is stale, or we have uninitialized
2826		 * metaslabs (see spa_vdev_add()), then update the config.
2827		 *
2828		 * If this is a verbatim import, trust the current
2829		 * in-core spa_config and update the disk labels.
2830		 */
2831		if (config_cache_txg != spa->spa_config_txg ||
2832		    state == SPA_LOAD_IMPORT ||
2833		    state == SPA_LOAD_RECOVER ||
2834		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2835			need_update = B_TRUE;
2836
2837		for (int c = 0; c < rvd->vdev_children; c++)
2838			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2839				need_update = B_TRUE;
2840
2841		/*
2842		 * Update the config cache asychronously in case we're the
2843		 * root pool, in which case the config cache isn't writable yet.
2844		 */
2845		if (need_update)
2846			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2847
2848		/*
2849		 * Check all DTLs to see if anything needs resilvering.
2850		 */
2851		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2852		    vdev_resilver_needed(rvd, NULL, NULL))
2853			spa_async_request(spa, SPA_ASYNC_RESILVER);
2854
2855		/*
2856		 * Log the fact that we booted up (so that we can detect if
2857		 * we rebooted in the middle of an operation).
2858		 */
2859		spa_history_log_version(spa, "open");
2860
2861		/*
2862		 * Delete any inconsistent datasets.
2863		 */
2864		(void) dmu_objset_find(spa_name(spa),
2865		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2866
2867		/*
2868		 * Clean up any stale temporary dataset userrefs.
2869		 */
2870		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2871	}
2872
2873	return (0);
2874}
2875
2876static int
2877spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2878{
2879	int mode = spa->spa_mode;
2880
2881	spa_unload(spa);
2882	spa_deactivate(spa);
2883
2884	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2885
2886	spa_activate(spa, mode);
2887	spa_async_suspend(spa);
2888
2889	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2890}
2891
2892/*
2893 * If spa_load() fails this function will try loading prior txg's. If
2894 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2895 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2896 * function will not rewind the pool and will return the same error as
2897 * spa_load().
2898 */
2899static int
2900spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2901    uint64_t max_request, int rewind_flags)
2902{
2903	nvlist_t *loadinfo = NULL;
2904	nvlist_t *config = NULL;
2905	int load_error, rewind_error;
2906	uint64_t safe_rewind_txg;
2907	uint64_t min_txg;
2908
2909	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2910		spa->spa_load_max_txg = spa->spa_load_txg;
2911		spa_set_log_state(spa, SPA_LOG_CLEAR);
2912	} else {
2913		spa->spa_load_max_txg = max_request;
2914		if (max_request != UINT64_MAX)
2915			spa->spa_extreme_rewind = B_TRUE;
2916	}
2917
2918	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2919	    mosconfig);
2920	if (load_error == 0)
2921		return (0);
2922
2923	if (spa->spa_root_vdev != NULL)
2924		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2925
2926	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2927	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2928
2929	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2930		nvlist_free(config);
2931		return (load_error);
2932	}
2933
2934	if (state == SPA_LOAD_RECOVER) {
2935		/* Price of rolling back is discarding txgs, including log */
2936		spa_set_log_state(spa, SPA_LOG_CLEAR);
2937	} else {
2938		/*
2939		 * If we aren't rolling back save the load info from our first
2940		 * import attempt so that we can restore it after attempting
2941		 * to rewind.
2942		 */
2943		loadinfo = spa->spa_load_info;
2944		spa->spa_load_info = fnvlist_alloc();
2945	}
2946
2947	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2948	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2949	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2950	    TXG_INITIAL : safe_rewind_txg;
2951
2952	/*
2953	 * Continue as long as we're finding errors, we're still within
2954	 * the acceptable rewind range, and we're still finding uberblocks
2955	 */
2956	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2957	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2958		if (spa->spa_load_max_txg < safe_rewind_txg)
2959			spa->spa_extreme_rewind = B_TRUE;
2960		rewind_error = spa_load_retry(spa, state, mosconfig);
2961	}
2962
2963	spa->spa_extreme_rewind = B_FALSE;
2964	spa->spa_load_max_txg = UINT64_MAX;
2965
2966	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2967		spa_config_set(spa, config);
2968
2969	if (state == SPA_LOAD_RECOVER) {
2970		ASSERT3P(loadinfo, ==, NULL);
2971		return (rewind_error);
2972	} else {
2973		/* Store the rewind info as part of the initial load info */
2974		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2975		    spa->spa_load_info);
2976
2977		/* Restore the initial load info */
2978		fnvlist_free(spa->spa_load_info);
2979		spa->spa_load_info = loadinfo;
2980
2981		return (load_error);
2982	}
2983}
2984
2985/*
2986 * Pool Open/Import
2987 *
2988 * The import case is identical to an open except that the configuration is sent
2989 * down from userland, instead of grabbed from the configuration cache.  For the
2990 * case of an open, the pool configuration will exist in the
2991 * POOL_STATE_UNINITIALIZED state.
2992 *
2993 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2994 * the same time open the pool, without having to keep around the spa_t in some
2995 * ambiguous state.
2996 */
2997static int
2998spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2999    nvlist_t **config)
3000{
3001	spa_t *spa;
3002	spa_load_state_t state = SPA_LOAD_OPEN;
3003	int error;
3004	int locked = B_FALSE;
3005	int firstopen = B_FALSE;
3006
3007	*spapp = NULL;
3008
3009	/*
3010	 * As disgusting as this is, we need to support recursive calls to this
3011	 * function because dsl_dir_open() is called during spa_load(), and ends
3012	 * up calling spa_open() again.  The real fix is to figure out how to
3013	 * avoid dsl_dir_open() calling this in the first place.
3014	 */
3015	if (mutex_owner(&spa_namespace_lock) != curthread) {
3016		mutex_enter(&spa_namespace_lock);
3017		locked = B_TRUE;
3018	}
3019
3020	if ((spa = spa_lookup(pool)) == NULL) {
3021		if (locked)
3022			mutex_exit(&spa_namespace_lock);
3023		return (SET_ERROR(ENOENT));
3024	}
3025
3026	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3027		zpool_rewind_policy_t policy;
3028
3029		firstopen = B_TRUE;
3030
3031		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3032		    &policy);
3033		if (policy.zrp_request & ZPOOL_DO_REWIND)
3034			state = SPA_LOAD_RECOVER;
3035
3036		spa_activate(spa, spa_mode_global);
3037
3038		if (state != SPA_LOAD_RECOVER)
3039			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3040
3041		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3042		    policy.zrp_request);
3043
3044		if (error == EBADF) {
3045			/*
3046			 * If vdev_validate() returns failure (indicated by
3047			 * EBADF), it indicates that one of the vdevs indicates
3048			 * that the pool has been exported or destroyed.  If
3049			 * this is the case, the config cache is out of sync and
3050			 * we should remove the pool from the namespace.
3051			 */
3052			spa_unload(spa);
3053			spa_deactivate(spa);
3054			spa_config_sync(spa, B_TRUE, B_TRUE);
3055			spa_remove(spa);
3056			if (locked)
3057				mutex_exit(&spa_namespace_lock);
3058			return (SET_ERROR(ENOENT));
3059		}
3060
3061		if (error) {
3062			/*
3063			 * We can't open the pool, but we still have useful
3064			 * information: the state of each vdev after the
3065			 * attempted vdev_open().  Return this to the user.
3066			 */
3067			if (config != NULL && spa->spa_config) {
3068				VERIFY(nvlist_dup(spa->spa_config, config,
3069				    KM_SLEEP) == 0);
3070				VERIFY(nvlist_add_nvlist(*config,
3071				    ZPOOL_CONFIG_LOAD_INFO,
3072				    spa->spa_load_info) == 0);
3073			}
3074			spa_unload(spa);
3075			spa_deactivate(spa);
3076			spa->spa_last_open_failed = error;
3077			if (locked)
3078				mutex_exit(&spa_namespace_lock);
3079			*spapp = NULL;
3080			return (error);
3081		}
3082	}
3083
3084	spa_open_ref(spa, tag);
3085
3086	if (config != NULL)
3087		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3088
3089	/*
3090	 * If we've recovered the pool, pass back any information we
3091	 * gathered while doing the load.
3092	 */
3093	if (state == SPA_LOAD_RECOVER) {
3094		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3095		    spa->spa_load_info) == 0);
3096	}
3097
3098	if (locked) {
3099		spa->spa_last_open_failed = 0;
3100		spa->spa_last_ubsync_txg = 0;
3101		spa->spa_load_txg = 0;
3102		mutex_exit(&spa_namespace_lock);
3103#ifdef __FreeBSD__
3104#ifdef _KERNEL
3105		if (firstopen)
3106			zvol_create_minors(spa->spa_name);
3107#endif
3108#endif
3109	}
3110
3111	*spapp = spa;
3112
3113	return (0);
3114}
3115
3116int
3117spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3118    nvlist_t **config)
3119{
3120	return (spa_open_common(name, spapp, tag, policy, config));
3121}
3122
3123int
3124spa_open(const char *name, spa_t **spapp, void *tag)
3125{
3126	return (spa_open_common(name, spapp, tag, NULL, NULL));
3127}
3128
3129/*
3130 * Lookup the given spa_t, incrementing the inject count in the process,
3131 * preventing it from being exported or destroyed.
3132 */
3133spa_t *
3134spa_inject_addref(char *name)
3135{
3136	spa_t *spa;
3137
3138	mutex_enter(&spa_namespace_lock);
3139	if ((spa = spa_lookup(name)) == NULL) {
3140		mutex_exit(&spa_namespace_lock);
3141		return (NULL);
3142	}
3143	spa->spa_inject_ref++;
3144	mutex_exit(&spa_namespace_lock);
3145
3146	return (spa);
3147}
3148
3149void
3150spa_inject_delref(spa_t *spa)
3151{
3152	mutex_enter(&spa_namespace_lock);
3153	spa->spa_inject_ref--;
3154	mutex_exit(&spa_namespace_lock);
3155}
3156
3157/*
3158 * Add spares device information to the nvlist.
3159 */
3160static void
3161spa_add_spares(spa_t *spa, nvlist_t *config)
3162{
3163	nvlist_t **spares;
3164	uint_t i, nspares;
3165	nvlist_t *nvroot;
3166	uint64_t guid;
3167	vdev_stat_t *vs;
3168	uint_t vsc;
3169	uint64_t pool;
3170
3171	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3172
3173	if (spa->spa_spares.sav_count == 0)
3174		return;
3175
3176	VERIFY(nvlist_lookup_nvlist(config,
3177	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3178	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3179	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3180	if (nspares != 0) {
3181		VERIFY(nvlist_add_nvlist_array(nvroot,
3182		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3183		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3184		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3185
3186		/*
3187		 * Go through and find any spares which have since been
3188		 * repurposed as an active spare.  If this is the case, update
3189		 * their status appropriately.
3190		 */
3191		for (i = 0; i < nspares; i++) {
3192			VERIFY(nvlist_lookup_uint64(spares[i],
3193			    ZPOOL_CONFIG_GUID, &guid) == 0);
3194			if (spa_spare_exists(guid, &pool, NULL) &&
3195			    pool != 0ULL) {
3196				VERIFY(nvlist_lookup_uint64_array(
3197				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3198				    (uint64_t **)&vs, &vsc) == 0);
3199				vs->vs_state = VDEV_STATE_CANT_OPEN;
3200				vs->vs_aux = VDEV_AUX_SPARED;
3201			}
3202		}
3203	}
3204}
3205
3206/*
3207 * Add l2cache device information to the nvlist, including vdev stats.
3208 */
3209static void
3210spa_add_l2cache(spa_t *spa, nvlist_t *config)
3211{
3212	nvlist_t **l2cache;
3213	uint_t i, j, nl2cache;
3214	nvlist_t *nvroot;
3215	uint64_t guid;
3216	vdev_t *vd;
3217	vdev_stat_t *vs;
3218	uint_t vsc;
3219
3220	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3221
3222	if (spa->spa_l2cache.sav_count == 0)
3223		return;
3224
3225	VERIFY(nvlist_lookup_nvlist(config,
3226	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3227	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3228	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3229	if (nl2cache != 0) {
3230		VERIFY(nvlist_add_nvlist_array(nvroot,
3231		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3232		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3233		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3234
3235		/*
3236		 * Update level 2 cache device stats.
3237		 */
3238
3239		for (i = 0; i < nl2cache; i++) {
3240			VERIFY(nvlist_lookup_uint64(l2cache[i],
3241			    ZPOOL_CONFIG_GUID, &guid) == 0);
3242
3243			vd = NULL;
3244			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3245				if (guid ==
3246				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3247					vd = spa->spa_l2cache.sav_vdevs[j];
3248					break;
3249				}
3250			}
3251			ASSERT(vd != NULL);
3252
3253			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3254			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3255			    == 0);
3256			vdev_get_stats(vd, vs);
3257		}
3258	}
3259}
3260
3261static void
3262spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3263{
3264	nvlist_t *features;
3265	zap_cursor_t zc;
3266	zap_attribute_t za;
3267
3268	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3269	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3270
3271	/* We may be unable to read features if pool is suspended. */
3272	if (spa_suspended(spa))
3273		goto out;
3274
3275	if (spa->spa_feat_for_read_obj != 0) {
3276		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3277		    spa->spa_feat_for_read_obj);
3278		    zap_cursor_retrieve(&zc, &za) == 0;
3279		    zap_cursor_advance(&zc)) {
3280			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3281			    za.za_num_integers == 1);
3282			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3283			    za.za_first_integer));
3284		}
3285		zap_cursor_fini(&zc);
3286	}
3287
3288	if (spa->spa_feat_for_write_obj != 0) {
3289		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3290		    spa->spa_feat_for_write_obj);
3291		    zap_cursor_retrieve(&zc, &za) == 0;
3292		    zap_cursor_advance(&zc)) {
3293			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3294			    za.za_num_integers == 1);
3295			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3296			    za.za_first_integer));
3297		}
3298		zap_cursor_fini(&zc);
3299	}
3300
3301out:
3302	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3303	    features) == 0);
3304	nvlist_free(features);
3305}
3306
3307int
3308spa_get_stats(const char *name, nvlist_t **config,
3309    char *altroot, size_t buflen)
3310{
3311	int error;
3312	spa_t *spa;
3313
3314	*config = NULL;
3315	error = spa_open_common(name, &spa, FTAG, NULL, config);
3316
3317	if (spa != NULL) {
3318		/*
3319		 * This still leaves a window of inconsistency where the spares
3320		 * or l2cache devices could change and the config would be
3321		 * self-inconsistent.
3322		 */
3323		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3324
3325		if (*config != NULL) {
3326			uint64_t loadtimes[2];
3327
3328			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3329			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3330			VERIFY(nvlist_add_uint64_array(*config,
3331			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3332
3333			VERIFY(nvlist_add_uint64(*config,
3334			    ZPOOL_CONFIG_ERRCOUNT,
3335			    spa_get_errlog_size(spa)) == 0);
3336
3337			if (spa_suspended(spa))
3338				VERIFY(nvlist_add_uint64(*config,
3339				    ZPOOL_CONFIG_SUSPENDED,
3340				    spa->spa_failmode) == 0);
3341
3342			spa_add_spares(spa, *config);
3343			spa_add_l2cache(spa, *config);
3344			spa_add_feature_stats(spa, *config);
3345		}
3346	}
3347
3348	/*
3349	 * We want to get the alternate root even for faulted pools, so we cheat
3350	 * and call spa_lookup() directly.
3351	 */
3352	if (altroot) {
3353		if (spa == NULL) {
3354			mutex_enter(&spa_namespace_lock);
3355			spa = spa_lookup(name);
3356			if (spa)
3357				spa_altroot(spa, altroot, buflen);
3358			else
3359				altroot[0] = '\0';
3360			spa = NULL;
3361			mutex_exit(&spa_namespace_lock);
3362		} else {
3363			spa_altroot(spa, altroot, buflen);
3364		}
3365	}
3366
3367	if (spa != NULL) {
3368		spa_config_exit(spa, SCL_CONFIG, FTAG);
3369		spa_close(spa, FTAG);
3370	}
3371
3372	return (error);
3373}
3374
3375/*
3376 * Validate that the auxiliary device array is well formed.  We must have an
3377 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3378 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3379 * specified, as long as they are well-formed.
3380 */
3381static int
3382spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3383    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3384    vdev_labeltype_t label)
3385{
3386	nvlist_t **dev;
3387	uint_t i, ndev;
3388	vdev_t *vd;
3389	int error;
3390
3391	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3392
3393	/*
3394	 * It's acceptable to have no devs specified.
3395	 */
3396	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3397		return (0);
3398
3399	if (ndev == 0)
3400		return (SET_ERROR(EINVAL));
3401
3402	/*
3403	 * Make sure the pool is formatted with a version that supports this
3404	 * device type.
3405	 */
3406	if (spa_version(spa) < version)
3407		return (SET_ERROR(ENOTSUP));
3408
3409	/*
3410	 * Set the pending device list so we correctly handle device in-use
3411	 * checking.
3412	 */
3413	sav->sav_pending = dev;
3414	sav->sav_npending = ndev;
3415
3416	for (i = 0; i < ndev; i++) {
3417		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3418		    mode)) != 0)
3419			goto out;
3420
3421		if (!vd->vdev_ops->vdev_op_leaf) {
3422			vdev_free(vd);
3423			error = SET_ERROR(EINVAL);
3424			goto out;
3425		}
3426
3427		/*
3428		 * The L2ARC currently only supports disk devices in
3429		 * kernel context.  For user-level testing, we allow it.
3430		 */
3431#ifdef _KERNEL
3432		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3433		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3434			error = SET_ERROR(ENOTBLK);
3435			vdev_free(vd);
3436			goto out;
3437		}
3438#endif
3439		vd->vdev_top = vd;
3440
3441		if ((error = vdev_open(vd)) == 0 &&
3442		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3443			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3444			    vd->vdev_guid) == 0);
3445		}
3446
3447		vdev_free(vd);
3448
3449		if (error &&
3450		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3451			goto out;
3452		else
3453			error = 0;
3454	}
3455
3456out:
3457	sav->sav_pending = NULL;
3458	sav->sav_npending = 0;
3459	return (error);
3460}
3461
3462static int
3463spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3464{
3465	int error;
3466
3467	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3468
3469	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3470	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3471	    VDEV_LABEL_SPARE)) != 0) {
3472		return (error);
3473	}
3474
3475	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3476	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3477	    VDEV_LABEL_L2CACHE));
3478}
3479
3480static void
3481spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3482    const char *config)
3483{
3484	int i;
3485
3486	if (sav->sav_config != NULL) {
3487		nvlist_t **olddevs;
3488		uint_t oldndevs;
3489		nvlist_t **newdevs;
3490
3491		/*
3492		 * Generate new dev list by concatentating with the
3493		 * current dev list.
3494		 */
3495		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3496		    &olddevs, &oldndevs) == 0);
3497
3498		newdevs = kmem_alloc(sizeof (void *) *
3499		    (ndevs + oldndevs), KM_SLEEP);
3500		for (i = 0; i < oldndevs; i++)
3501			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3502			    KM_SLEEP) == 0);
3503		for (i = 0; i < ndevs; i++)
3504			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3505			    KM_SLEEP) == 0);
3506
3507		VERIFY(nvlist_remove(sav->sav_config, config,
3508		    DATA_TYPE_NVLIST_ARRAY) == 0);
3509
3510		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3511		    config, newdevs, ndevs + oldndevs) == 0);
3512		for (i = 0; i < oldndevs + ndevs; i++)
3513			nvlist_free(newdevs[i]);
3514		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3515	} else {
3516		/*
3517		 * Generate a new dev list.
3518		 */
3519		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3520		    KM_SLEEP) == 0);
3521		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3522		    devs, ndevs) == 0);
3523	}
3524}
3525
3526/*
3527 * Stop and drop level 2 ARC devices
3528 */
3529void
3530spa_l2cache_drop(spa_t *spa)
3531{
3532	vdev_t *vd;
3533	int i;
3534	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3535
3536	for (i = 0; i < sav->sav_count; i++) {
3537		uint64_t pool;
3538
3539		vd = sav->sav_vdevs[i];
3540		ASSERT(vd != NULL);
3541
3542		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3543		    pool != 0ULL && l2arc_vdev_present(vd))
3544			l2arc_remove_vdev(vd);
3545	}
3546}
3547
3548/*
3549 * Pool Creation
3550 */
3551int
3552spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3553    nvlist_t *zplprops)
3554{
3555	spa_t *spa;
3556	char *altroot = NULL;
3557	vdev_t *rvd;
3558	dsl_pool_t *dp;
3559	dmu_tx_t *tx;
3560	int error = 0;
3561	uint64_t txg = TXG_INITIAL;
3562	nvlist_t **spares, **l2cache;
3563	uint_t nspares, nl2cache;
3564	uint64_t version, obj;
3565	boolean_t has_features;
3566
3567	/*
3568	 * If this pool already exists, return failure.
3569	 */
3570	mutex_enter(&spa_namespace_lock);
3571	if (spa_lookup(pool) != NULL) {
3572		mutex_exit(&spa_namespace_lock);
3573		return (SET_ERROR(EEXIST));
3574	}
3575
3576	/*
3577	 * Allocate a new spa_t structure.
3578	 */
3579	(void) nvlist_lookup_string(props,
3580	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3581	spa = spa_add(pool, NULL, altroot);
3582	spa_activate(spa, spa_mode_global);
3583
3584	if (props && (error = spa_prop_validate(spa, props))) {
3585		spa_deactivate(spa);
3586		spa_remove(spa);
3587		mutex_exit(&spa_namespace_lock);
3588		return (error);
3589	}
3590
3591	has_features = B_FALSE;
3592	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3593	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3594		if (zpool_prop_feature(nvpair_name(elem)))
3595			has_features = B_TRUE;
3596	}
3597
3598	if (has_features || nvlist_lookup_uint64(props,
3599	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3600		version = SPA_VERSION;
3601	}
3602	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3603
3604	spa->spa_first_txg = txg;
3605	spa->spa_uberblock.ub_txg = txg - 1;
3606	spa->spa_uberblock.ub_version = version;
3607	spa->spa_ubsync = spa->spa_uberblock;
3608
3609	/*
3610	 * Create "The Godfather" zio to hold all async IOs
3611	 */
3612	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3613	    KM_SLEEP);
3614	for (int i = 0; i < max_ncpus; i++) {
3615		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3616		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3617		    ZIO_FLAG_GODFATHER);
3618	}
3619
3620	/*
3621	 * Create the root vdev.
3622	 */
3623	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3624
3625	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3626
3627	ASSERT(error != 0 || rvd != NULL);
3628	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3629
3630	if (error == 0 && !zfs_allocatable_devs(nvroot))
3631		error = SET_ERROR(EINVAL);
3632
3633	if (error == 0 &&
3634	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3635	    (error = spa_validate_aux(spa, nvroot, txg,
3636	    VDEV_ALLOC_ADD)) == 0) {
3637		for (int c = 0; c < rvd->vdev_children; c++) {
3638			vdev_ashift_optimize(rvd->vdev_child[c]);
3639			vdev_metaslab_set_size(rvd->vdev_child[c]);
3640			vdev_expand(rvd->vdev_child[c], txg);
3641		}
3642	}
3643
3644	spa_config_exit(spa, SCL_ALL, FTAG);
3645
3646	if (error != 0) {
3647		spa_unload(spa);
3648		spa_deactivate(spa);
3649		spa_remove(spa);
3650		mutex_exit(&spa_namespace_lock);
3651		return (error);
3652	}
3653
3654	/*
3655	 * Get the list of spares, if specified.
3656	 */
3657	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3658	    &spares, &nspares) == 0) {
3659		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3660		    KM_SLEEP) == 0);
3661		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3662		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3663		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3664		spa_load_spares(spa);
3665		spa_config_exit(spa, SCL_ALL, FTAG);
3666		spa->spa_spares.sav_sync = B_TRUE;
3667	}
3668
3669	/*
3670	 * Get the list of level 2 cache devices, if specified.
3671	 */
3672	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3673	    &l2cache, &nl2cache) == 0) {
3674		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3675		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3676		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3677		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3678		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3679		spa_load_l2cache(spa);
3680		spa_config_exit(spa, SCL_ALL, FTAG);
3681		spa->spa_l2cache.sav_sync = B_TRUE;
3682	}
3683
3684	spa->spa_is_initializing = B_TRUE;
3685	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3686	spa->spa_meta_objset = dp->dp_meta_objset;
3687	spa->spa_is_initializing = B_FALSE;
3688
3689	/*
3690	 * Create DDTs (dedup tables).
3691	 */
3692	ddt_create(spa);
3693
3694	spa_update_dspace(spa);
3695
3696	tx = dmu_tx_create_assigned(dp, txg);
3697
3698	/*
3699	 * Create the pool config object.
3700	 */
3701	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3702	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3703	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3704
3705	if (zap_add(spa->spa_meta_objset,
3706	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3707	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3708		cmn_err(CE_PANIC, "failed to add pool config");
3709	}
3710
3711	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3712		spa_feature_create_zap_objects(spa, tx);
3713
3714	if (zap_add(spa->spa_meta_objset,
3715	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3716	    sizeof (uint64_t), 1, &version, tx) != 0) {
3717		cmn_err(CE_PANIC, "failed to add pool version");
3718	}
3719
3720	/* Newly created pools with the right version are always deflated. */
3721	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3722		spa->spa_deflate = TRUE;
3723		if (zap_add(spa->spa_meta_objset,
3724		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3725		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3726			cmn_err(CE_PANIC, "failed to add deflate");
3727		}
3728	}
3729
3730	/*
3731	 * Create the deferred-free bpobj.  Turn off compression
3732	 * because sync-to-convergence takes longer if the blocksize
3733	 * keeps changing.
3734	 */
3735	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3736	dmu_object_set_compress(spa->spa_meta_objset, obj,
3737	    ZIO_COMPRESS_OFF, tx);
3738	if (zap_add(spa->spa_meta_objset,
3739	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3740	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3741		cmn_err(CE_PANIC, "failed to add bpobj");
3742	}
3743	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3744	    spa->spa_meta_objset, obj));
3745
3746	/*
3747	 * Create the pool's history object.
3748	 */
3749	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3750		spa_history_create_obj(spa, tx);
3751
3752	/*
3753	 * Set pool properties.
3754	 */
3755	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3756	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3757	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3758	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3759
3760	if (props != NULL) {
3761		spa_configfile_set(spa, props, B_FALSE);
3762		spa_sync_props(props, tx);
3763	}
3764
3765	dmu_tx_commit(tx);
3766
3767	spa->spa_sync_on = B_TRUE;
3768	txg_sync_start(spa->spa_dsl_pool);
3769
3770	/*
3771	 * We explicitly wait for the first transaction to complete so that our
3772	 * bean counters are appropriately updated.
3773	 */
3774	txg_wait_synced(spa->spa_dsl_pool, txg);
3775
3776	spa_config_sync(spa, B_FALSE, B_TRUE);
3777	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3778
3779	spa_history_log_version(spa, "create");
3780
3781	/*
3782	 * Don't count references from objsets that are already closed
3783	 * and are making their way through the eviction process.
3784	 */
3785	spa_evicting_os_wait(spa);
3786	spa->spa_minref = refcount_count(&spa->spa_refcount);
3787
3788	mutex_exit(&spa_namespace_lock);
3789
3790	return (0);
3791}
3792
3793#ifdef _KERNEL
3794#ifdef illumos
3795/*
3796 * Get the root pool information from the root disk, then import the root pool
3797 * during the system boot up time.
3798 */
3799extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3800
3801static nvlist_t *
3802spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3803{
3804	nvlist_t *config;
3805	nvlist_t *nvtop, *nvroot;
3806	uint64_t pgid;
3807
3808	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3809		return (NULL);
3810
3811	/*
3812	 * Add this top-level vdev to the child array.
3813	 */
3814	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3815	    &nvtop) == 0);
3816	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3817	    &pgid) == 0);
3818	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3819
3820	/*
3821	 * Put this pool's top-level vdevs into a root vdev.
3822	 */
3823	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3824	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3825	    VDEV_TYPE_ROOT) == 0);
3826	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3827	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3828	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3829	    &nvtop, 1) == 0);
3830
3831	/*
3832	 * Replace the existing vdev_tree with the new root vdev in
3833	 * this pool's configuration (remove the old, add the new).
3834	 */
3835	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3836	nvlist_free(nvroot);
3837	return (config);
3838}
3839
3840/*
3841 * Walk the vdev tree and see if we can find a device with "better"
3842 * configuration. A configuration is "better" if the label on that
3843 * device has a more recent txg.
3844 */
3845static void
3846spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3847{
3848	for (int c = 0; c < vd->vdev_children; c++)
3849		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3850
3851	if (vd->vdev_ops->vdev_op_leaf) {
3852		nvlist_t *label;
3853		uint64_t label_txg;
3854
3855		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3856		    &label) != 0)
3857			return;
3858
3859		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3860		    &label_txg) == 0);
3861
3862		/*
3863		 * Do we have a better boot device?
3864		 */
3865		if (label_txg > *txg) {
3866			*txg = label_txg;
3867			*avd = vd;
3868		}
3869		nvlist_free(label);
3870	}
3871}
3872
3873/*
3874 * Import a root pool.
3875 *
3876 * For x86. devpath_list will consist of devid and/or physpath name of
3877 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3878 * The GRUB "findroot" command will return the vdev we should boot.
3879 *
3880 * For Sparc, devpath_list consists the physpath name of the booting device
3881 * no matter the rootpool is a single device pool or a mirrored pool.
3882 * e.g.
3883 *	"/pci@1f,0/ide@d/disk@0,0:a"
3884 */
3885int
3886spa_import_rootpool(char *devpath, char *devid)
3887{
3888	spa_t *spa;
3889	vdev_t *rvd, *bvd, *avd = NULL;
3890	nvlist_t *config, *nvtop;
3891	uint64_t guid, txg;
3892	char *pname;
3893	int error;
3894
3895	/*
3896	 * Read the label from the boot device and generate a configuration.
3897	 */
3898	config = spa_generate_rootconf(devpath, devid, &guid);
3899#if defined(_OBP) && defined(_KERNEL)
3900	if (config == NULL) {
3901		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3902			/* iscsi boot */
3903			get_iscsi_bootpath_phy(devpath);
3904			config = spa_generate_rootconf(devpath, devid, &guid);
3905		}
3906	}
3907#endif
3908	if (config == NULL) {
3909		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3910		    devpath);
3911		return (SET_ERROR(EIO));
3912	}
3913
3914	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3915	    &pname) == 0);
3916	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3917
3918	mutex_enter(&spa_namespace_lock);
3919	if ((spa = spa_lookup(pname)) != NULL) {
3920		/*
3921		 * Remove the existing root pool from the namespace so that we
3922		 * can replace it with the correct config we just read in.
3923		 */
3924		spa_remove(spa);
3925	}
3926
3927	spa = spa_add(pname, config, NULL);
3928	spa->spa_is_root = B_TRUE;
3929	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3930
3931	/*
3932	 * Build up a vdev tree based on the boot device's label config.
3933	 */
3934	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3935	    &nvtop) == 0);
3936	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3937	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3938	    VDEV_ALLOC_ROOTPOOL);
3939	spa_config_exit(spa, SCL_ALL, FTAG);
3940	if (error) {
3941		mutex_exit(&spa_namespace_lock);
3942		nvlist_free(config);
3943		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3944		    pname);
3945		return (error);
3946	}
3947
3948	/*
3949	 * Get the boot vdev.
3950	 */
3951	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3952		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3953		    (u_longlong_t)guid);
3954		error = SET_ERROR(ENOENT);
3955		goto out;
3956	}
3957
3958	/*
3959	 * Determine if there is a better boot device.
3960	 */
3961	avd = bvd;
3962	spa_alt_rootvdev(rvd, &avd, &txg);
3963	if (avd != bvd) {
3964		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3965		    "try booting from '%s'", avd->vdev_path);
3966		error = SET_ERROR(EINVAL);
3967		goto out;
3968	}
3969
3970	/*
3971	 * If the boot device is part of a spare vdev then ensure that
3972	 * we're booting off the active spare.
3973	 */
3974	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3975	    !bvd->vdev_isspare) {
3976		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3977		    "try booting from '%s'",
3978		    bvd->vdev_parent->
3979		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3980		error = SET_ERROR(EINVAL);
3981		goto out;
3982	}
3983
3984	error = 0;
3985out:
3986	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3987	vdev_free(rvd);
3988	spa_config_exit(spa, SCL_ALL, FTAG);
3989	mutex_exit(&spa_namespace_lock);
3990
3991	nvlist_free(config);
3992	return (error);
3993}
3994
3995#else	/* !illumos */
3996
3997extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3998    uint64_t *count);
3999
4000static nvlist_t *
4001spa_generate_rootconf(const char *name)
4002{
4003	nvlist_t **configs, **tops;
4004	nvlist_t *config;
4005	nvlist_t *best_cfg, *nvtop, *nvroot;
4006	uint64_t *holes;
4007	uint64_t best_txg;
4008	uint64_t nchildren;
4009	uint64_t pgid;
4010	uint64_t count;
4011	uint64_t i;
4012	uint_t   nholes;
4013
4014	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4015		return (NULL);
4016
4017	ASSERT3U(count, !=, 0);
4018	best_txg = 0;
4019	for (i = 0; i < count; i++) {
4020		uint64_t txg;
4021
4022		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4023		    &txg) == 0);
4024		if (txg > best_txg) {
4025			best_txg = txg;
4026			best_cfg = configs[i];
4027		}
4028	}
4029
4030	nchildren = 1;
4031	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4032	holes = NULL;
4033	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4034	    &holes, &nholes);
4035
4036	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4037	for (i = 0; i < nchildren; i++) {
4038		if (i >= count)
4039			break;
4040		if (configs[i] == NULL)
4041			continue;
4042		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4043		    &nvtop) == 0);
4044		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4045	}
4046	for (i = 0; holes != NULL && i < nholes; i++) {
4047		if (i >= nchildren)
4048			continue;
4049		if (tops[holes[i]] != NULL)
4050			continue;
4051		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4052		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4053		    VDEV_TYPE_HOLE) == 0);
4054		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4055		    holes[i]) == 0);
4056		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4057		    0) == 0);
4058	}
4059	for (i = 0; i < nchildren; i++) {
4060		if (tops[i] != NULL)
4061			continue;
4062		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4063		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4064		    VDEV_TYPE_MISSING) == 0);
4065		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4066		    i) == 0);
4067		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4068		    0) == 0);
4069	}
4070
4071	/*
4072	 * Create pool config based on the best vdev config.
4073	 */
4074	nvlist_dup(best_cfg, &config, KM_SLEEP);
4075
4076	/*
4077	 * Put this pool's top-level vdevs into a root vdev.
4078	 */
4079	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4080	    &pgid) == 0);
4081	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4082	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4083	    VDEV_TYPE_ROOT) == 0);
4084	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4085	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4086	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4087	    tops, nchildren) == 0);
4088
4089	/*
4090	 * Replace the existing vdev_tree with the new root vdev in
4091	 * this pool's configuration (remove the old, add the new).
4092	 */
4093	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4094
4095	/*
4096	 * Drop vdev config elements that should not be present at pool level.
4097	 */
4098	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4099	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4100
4101	for (i = 0; i < count; i++)
4102		nvlist_free(configs[i]);
4103	kmem_free(configs, count * sizeof(void *));
4104	for (i = 0; i < nchildren; i++)
4105		nvlist_free(tops[i]);
4106	kmem_free(tops, nchildren * sizeof(void *));
4107	nvlist_free(nvroot);
4108	return (config);
4109}
4110
4111int
4112spa_import_rootpool(const char *name)
4113{
4114	spa_t *spa;
4115	vdev_t *rvd, *bvd, *avd = NULL;
4116	nvlist_t *config, *nvtop;
4117	uint64_t txg;
4118	char *pname;
4119	int error;
4120
4121	/*
4122	 * Read the label from the boot device and generate a configuration.
4123	 */
4124	config = spa_generate_rootconf(name);
4125
4126	mutex_enter(&spa_namespace_lock);
4127	if (config != NULL) {
4128		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4129		    &pname) == 0 && strcmp(name, pname) == 0);
4130		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4131		    == 0);
4132
4133		if ((spa = spa_lookup(pname)) != NULL) {
4134			/*
4135			 * Remove the existing root pool from the namespace so
4136			 * that we can replace it with the correct config
4137			 * we just read in.
4138			 */
4139			spa_remove(spa);
4140		}
4141		spa = spa_add(pname, config, NULL);
4142
4143		/*
4144		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4145		 * via spa_version().
4146		 */
4147		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4148		    &spa->spa_ubsync.ub_version) != 0)
4149			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4150	} else if ((spa = spa_lookup(name)) == NULL) {
4151		mutex_exit(&spa_namespace_lock);
4152		nvlist_free(config);
4153		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4154		    name);
4155		return (EIO);
4156	} else {
4157		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4158	}
4159	spa->spa_is_root = B_TRUE;
4160	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4161
4162	/*
4163	 * Build up a vdev tree based on the boot device's label config.
4164	 */
4165	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4166	    &nvtop) == 0);
4167	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4168	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4169	    VDEV_ALLOC_ROOTPOOL);
4170	spa_config_exit(spa, SCL_ALL, FTAG);
4171	if (error) {
4172		mutex_exit(&spa_namespace_lock);
4173		nvlist_free(config);
4174		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4175		    pname);
4176		return (error);
4177	}
4178
4179	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4180	vdev_free(rvd);
4181	spa_config_exit(spa, SCL_ALL, FTAG);
4182	mutex_exit(&spa_namespace_lock);
4183
4184	nvlist_free(config);
4185	return (0);
4186}
4187
4188#endif	/* illumos */
4189#endif	/* _KERNEL */
4190
4191/*
4192 * Import a non-root pool into the system.
4193 */
4194int
4195spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4196{
4197	spa_t *spa;
4198	char *altroot = NULL;
4199	spa_load_state_t state = SPA_LOAD_IMPORT;
4200	zpool_rewind_policy_t policy;
4201	uint64_t mode = spa_mode_global;
4202	uint64_t readonly = B_FALSE;
4203	int error;
4204	nvlist_t *nvroot;
4205	nvlist_t **spares, **l2cache;
4206	uint_t nspares, nl2cache;
4207
4208	/*
4209	 * If a pool with this name exists, return failure.
4210	 */
4211	mutex_enter(&spa_namespace_lock);
4212	if (spa_lookup(pool) != NULL) {
4213		mutex_exit(&spa_namespace_lock);
4214		return (SET_ERROR(EEXIST));
4215	}
4216
4217	/*
4218	 * Create and initialize the spa structure.
4219	 */
4220	(void) nvlist_lookup_string(props,
4221	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4222	(void) nvlist_lookup_uint64(props,
4223	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4224	if (readonly)
4225		mode = FREAD;
4226	spa = spa_add(pool, config, altroot);
4227	spa->spa_import_flags = flags;
4228
4229	/*
4230	 * Verbatim import - Take a pool and insert it into the namespace
4231	 * as if it had been loaded at boot.
4232	 */
4233	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4234		if (props != NULL)
4235			spa_configfile_set(spa, props, B_FALSE);
4236
4237		spa_config_sync(spa, B_FALSE, B_TRUE);
4238		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4239
4240		mutex_exit(&spa_namespace_lock);
4241		return (0);
4242	}
4243
4244	spa_activate(spa, mode);
4245
4246	/*
4247	 * Don't start async tasks until we know everything is healthy.
4248	 */
4249	spa_async_suspend(spa);
4250
4251	zpool_get_rewind_policy(config, &policy);
4252	if (policy.zrp_request & ZPOOL_DO_REWIND)
4253		state = SPA_LOAD_RECOVER;
4254
4255	/*
4256	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4257	 * because the user-supplied config is actually the one to trust when
4258	 * doing an import.
4259	 */
4260	if (state != SPA_LOAD_RECOVER)
4261		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4262
4263	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4264	    policy.zrp_request);
4265
4266	/*
4267	 * Propagate anything learned while loading the pool and pass it
4268	 * back to caller (i.e. rewind info, missing devices, etc).
4269	 */
4270	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4271	    spa->spa_load_info) == 0);
4272
4273	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4274	/*
4275	 * Toss any existing sparelist, as it doesn't have any validity
4276	 * anymore, and conflicts with spa_has_spare().
4277	 */
4278	if (spa->spa_spares.sav_config) {
4279		nvlist_free(spa->spa_spares.sav_config);
4280		spa->spa_spares.sav_config = NULL;
4281		spa_load_spares(spa);
4282	}
4283	if (spa->spa_l2cache.sav_config) {
4284		nvlist_free(spa->spa_l2cache.sav_config);
4285		spa->spa_l2cache.sav_config = NULL;
4286		spa_load_l2cache(spa);
4287	}
4288
4289	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4290	    &nvroot) == 0);
4291	if (error == 0)
4292		error = spa_validate_aux(spa, nvroot, -1ULL,
4293		    VDEV_ALLOC_SPARE);
4294	if (error == 0)
4295		error = spa_validate_aux(spa, nvroot, -1ULL,
4296		    VDEV_ALLOC_L2CACHE);
4297	spa_config_exit(spa, SCL_ALL, FTAG);
4298
4299	if (props != NULL)
4300		spa_configfile_set(spa, props, B_FALSE);
4301
4302	if (error != 0 || (props && spa_writeable(spa) &&
4303	    (error = spa_prop_set(spa, props)))) {
4304		spa_unload(spa);
4305		spa_deactivate(spa);
4306		spa_remove(spa);
4307		mutex_exit(&spa_namespace_lock);
4308		return (error);
4309	}
4310
4311	spa_async_resume(spa);
4312
4313	/*
4314	 * Override any spares and level 2 cache devices as specified by
4315	 * the user, as these may have correct device names/devids, etc.
4316	 */
4317	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4318	    &spares, &nspares) == 0) {
4319		if (spa->spa_spares.sav_config)
4320			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4321			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4322		else
4323			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4324			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4325		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4326		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4327		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4328		spa_load_spares(spa);
4329		spa_config_exit(spa, SCL_ALL, FTAG);
4330		spa->spa_spares.sav_sync = B_TRUE;
4331	}
4332	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4333	    &l2cache, &nl2cache) == 0) {
4334		if (spa->spa_l2cache.sav_config)
4335			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4336			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4337		else
4338			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4339			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4340		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4341		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4342		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4343		spa_load_l2cache(spa);
4344		spa_config_exit(spa, SCL_ALL, FTAG);
4345		spa->spa_l2cache.sav_sync = B_TRUE;
4346	}
4347
4348	/*
4349	 * Check for any removed devices.
4350	 */
4351	if (spa->spa_autoreplace) {
4352		spa_aux_check_removed(&spa->spa_spares);
4353		spa_aux_check_removed(&spa->spa_l2cache);
4354	}
4355
4356	if (spa_writeable(spa)) {
4357		/*
4358		 * Update the config cache to include the newly-imported pool.
4359		 */
4360		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4361	}
4362
4363	/*
4364	 * It's possible that the pool was expanded while it was exported.
4365	 * We kick off an async task to handle this for us.
4366	 */
4367	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4368
4369	spa_history_log_version(spa, "import");
4370
4371	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4372
4373	mutex_exit(&spa_namespace_lock);
4374
4375#ifdef __FreeBSD__
4376#ifdef _KERNEL
4377	zvol_create_minors(pool);
4378#endif
4379#endif
4380	return (0);
4381}
4382
4383nvlist_t *
4384spa_tryimport(nvlist_t *tryconfig)
4385{
4386	nvlist_t *config = NULL;
4387	char *poolname;
4388	spa_t *spa;
4389	uint64_t state;
4390	int error;
4391
4392	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4393		return (NULL);
4394
4395	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4396		return (NULL);
4397
4398	/*
4399	 * Create and initialize the spa structure.
4400	 */
4401	mutex_enter(&spa_namespace_lock);
4402	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4403	spa_activate(spa, FREAD);
4404
4405	/*
4406	 * Pass off the heavy lifting to spa_load().
4407	 * Pass TRUE for mosconfig because the user-supplied config
4408	 * is actually the one to trust when doing an import.
4409	 */
4410	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4411
4412	/*
4413	 * If 'tryconfig' was at least parsable, return the current config.
4414	 */
4415	if (spa->spa_root_vdev != NULL) {
4416		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4417		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4418		    poolname) == 0);
4419		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4420		    state) == 0);
4421		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4422		    spa->spa_uberblock.ub_timestamp) == 0);
4423		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4424		    spa->spa_load_info) == 0);
4425
4426		/*
4427		 * If the bootfs property exists on this pool then we
4428		 * copy it out so that external consumers can tell which
4429		 * pools are bootable.
4430		 */
4431		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4432			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4433
4434			/*
4435			 * We have to play games with the name since the
4436			 * pool was opened as TRYIMPORT_NAME.
4437			 */
4438			if (dsl_dsobj_to_dsname(spa_name(spa),
4439			    spa->spa_bootfs, tmpname) == 0) {
4440				char *cp;
4441				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4442
4443				cp = strchr(tmpname, '/');
4444				if (cp == NULL) {
4445					(void) strlcpy(dsname, tmpname,
4446					    MAXPATHLEN);
4447				} else {
4448					(void) snprintf(dsname, MAXPATHLEN,
4449					    "%s/%s", poolname, ++cp);
4450				}
4451				VERIFY(nvlist_add_string(config,
4452				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4453				kmem_free(dsname, MAXPATHLEN);
4454			}
4455			kmem_free(tmpname, MAXPATHLEN);
4456		}
4457
4458		/*
4459		 * Add the list of hot spares and level 2 cache devices.
4460		 */
4461		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4462		spa_add_spares(spa, config);
4463		spa_add_l2cache(spa, config);
4464		spa_config_exit(spa, SCL_CONFIG, FTAG);
4465	}
4466
4467	spa_unload(spa);
4468	spa_deactivate(spa);
4469	spa_remove(spa);
4470	mutex_exit(&spa_namespace_lock);
4471
4472	return (config);
4473}
4474
4475/*
4476 * Pool export/destroy
4477 *
4478 * The act of destroying or exporting a pool is very simple.  We make sure there
4479 * is no more pending I/O and any references to the pool are gone.  Then, we
4480 * update the pool state and sync all the labels to disk, removing the
4481 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4482 * we don't sync the labels or remove the configuration cache.
4483 */
4484static int
4485spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4486    boolean_t force, boolean_t hardforce)
4487{
4488	spa_t *spa;
4489
4490	if (oldconfig)
4491		*oldconfig = NULL;
4492
4493	if (!(spa_mode_global & FWRITE))
4494		return (SET_ERROR(EROFS));
4495
4496	mutex_enter(&spa_namespace_lock);
4497	if ((spa = spa_lookup(pool)) == NULL) {
4498		mutex_exit(&spa_namespace_lock);
4499		return (SET_ERROR(ENOENT));
4500	}
4501
4502	/*
4503	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4504	 * reacquire the namespace lock, and see if we can export.
4505	 */
4506	spa_open_ref(spa, FTAG);
4507	mutex_exit(&spa_namespace_lock);
4508	spa_async_suspend(spa);
4509	mutex_enter(&spa_namespace_lock);
4510	spa_close(spa, FTAG);
4511
4512	/*
4513	 * The pool will be in core if it's openable,
4514	 * in which case we can modify its state.
4515	 */
4516	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4517		/*
4518		 * Objsets may be open only because they're dirty, so we
4519		 * have to force it to sync before checking spa_refcnt.
4520		 */
4521		txg_wait_synced(spa->spa_dsl_pool, 0);
4522		spa_evicting_os_wait(spa);
4523
4524		/*
4525		 * A pool cannot be exported or destroyed if there are active
4526		 * references.  If we are resetting a pool, allow references by
4527		 * fault injection handlers.
4528		 */
4529		if (!spa_refcount_zero(spa) ||
4530		    (spa->spa_inject_ref != 0 &&
4531		    new_state != POOL_STATE_UNINITIALIZED)) {
4532			spa_async_resume(spa);
4533			mutex_exit(&spa_namespace_lock);
4534			return (SET_ERROR(EBUSY));
4535		}
4536
4537		/*
4538		 * A pool cannot be exported if it has an active shared spare.
4539		 * This is to prevent other pools stealing the active spare
4540		 * from an exported pool. At user's own will, such pool can
4541		 * be forcedly exported.
4542		 */
4543		if (!force && new_state == POOL_STATE_EXPORTED &&
4544		    spa_has_active_shared_spare(spa)) {
4545			spa_async_resume(spa);
4546			mutex_exit(&spa_namespace_lock);
4547			return (SET_ERROR(EXDEV));
4548		}
4549
4550		/*
4551		 * We want this to be reflected on every label,
4552		 * so mark them all dirty.  spa_unload() will do the
4553		 * final sync that pushes these changes out.
4554		 */
4555		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4556			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4557			spa->spa_state = new_state;
4558			spa->spa_final_txg = spa_last_synced_txg(spa) +
4559			    TXG_DEFER_SIZE + 1;
4560			vdev_config_dirty(spa->spa_root_vdev);
4561			spa_config_exit(spa, SCL_ALL, FTAG);
4562		}
4563	}
4564
4565	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4566
4567	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4568		spa_unload(spa);
4569		spa_deactivate(spa);
4570	}
4571
4572	if (oldconfig && spa->spa_config)
4573		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4574
4575	if (new_state != POOL_STATE_UNINITIALIZED) {
4576		if (!hardforce)
4577			spa_config_sync(spa, B_TRUE, B_TRUE);
4578		spa_remove(spa);
4579	}
4580	mutex_exit(&spa_namespace_lock);
4581
4582	return (0);
4583}
4584
4585/*
4586 * Destroy a storage pool.
4587 */
4588int
4589spa_destroy(char *pool)
4590{
4591	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4592	    B_FALSE, B_FALSE));
4593}
4594
4595/*
4596 * Export a storage pool.
4597 */
4598int
4599spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4600    boolean_t hardforce)
4601{
4602	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4603	    force, hardforce));
4604}
4605
4606/*
4607 * Similar to spa_export(), this unloads the spa_t without actually removing it
4608 * from the namespace in any way.
4609 */
4610int
4611spa_reset(char *pool)
4612{
4613	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4614	    B_FALSE, B_FALSE));
4615}
4616
4617/*
4618 * ==========================================================================
4619 * Device manipulation
4620 * ==========================================================================
4621 */
4622
4623/*
4624 * Add a device to a storage pool.
4625 */
4626int
4627spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4628{
4629	uint64_t txg, id;
4630	int error;
4631	vdev_t *rvd = spa->spa_root_vdev;
4632	vdev_t *vd, *tvd;
4633	nvlist_t **spares, **l2cache;
4634	uint_t nspares, nl2cache;
4635
4636	ASSERT(spa_writeable(spa));
4637
4638	txg = spa_vdev_enter(spa);
4639
4640	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4641	    VDEV_ALLOC_ADD)) != 0)
4642		return (spa_vdev_exit(spa, NULL, txg, error));
4643
4644	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4645
4646	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4647	    &nspares) != 0)
4648		nspares = 0;
4649
4650	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4651	    &nl2cache) != 0)
4652		nl2cache = 0;
4653
4654	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4655		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4656
4657	if (vd->vdev_children != 0 &&
4658	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4659		return (spa_vdev_exit(spa, vd, txg, error));
4660
4661	/*
4662	 * We must validate the spares and l2cache devices after checking the
4663	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4664	 */
4665	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4666		return (spa_vdev_exit(spa, vd, txg, error));
4667
4668	/*
4669	 * Transfer each new top-level vdev from vd to rvd.
4670	 */
4671	for (int c = 0; c < vd->vdev_children; c++) {
4672
4673		/*
4674		 * Set the vdev id to the first hole, if one exists.
4675		 */
4676		for (id = 0; id < rvd->vdev_children; id++) {
4677			if (rvd->vdev_child[id]->vdev_ishole) {
4678				vdev_free(rvd->vdev_child[id]);
4679				break;
4680			}
4681		}
4682		tvd = vd->vdev_child[c];
4683		vdev_remove_child(vd, tvd);
4684		tvd->vdev_id = id;
4685		vdev_add_child(rvd, tvd);
4686		vdev_config_dirty(tvd);
4687	}
4688
4689	if (nspares != 0) {
4690		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4691		    ZPOOL_CONFIG_SPARES);
4692		spa_load_spares(spa);
4693		spa->spa_spares.sav_sync = B_TRUE;
4694	}
4695
4696	if (nl2cache != 0) {
4697		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4698		    ZPOOL_CONFIG_L2CACHE);
4699		spa_load_l2cache(spa);
4700		spa->spa_l2cache.sav_sync = B_TRUE;
4701	}
4702
4703	/*
4704	 * We have to be careful when adding new vdevs to an existing pool.
4705	 * If other threads start allocating from these vdevs before we
4706	 * sync the config cache, and we lose power, then upon reboot we may
4707	 * fail to open the pool because there are DVAs that the config cache
4708	 * can't translate.  Therefore, we first add the vdevs without
4709	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4710	 * and then let spa_config_update() initialize the new metaslabs.
4711	 *
4712	 * spa_load() checks for added-but-not-initialized vdevs, so that
4713	 * if we lose power at any point in this sequence, the remaining
4714	 * steps will be completed the next time we load the pool.
4715	 */
4716	(void) spa_vdev_exit(spa, vd, txg, 0);
4717
4718	mutex_enter(&spa_namespace_lock);
4719	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4720	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4721	mutex_exit(&spa_namespace_lock);
4722
4723	return (0);
4724}
4725
4726/*
4727 * Attach a device to a mirror.  The arguments are the path to any device
4728 * in the mirror, and the nvroot for the new device.  If the path specifies
4729 * a device that is not mirrored, we automatically insert the mirror vdev.
4730 *
4731 * If 'replacing' is specified, the new device is intended to replace the
4732 * existing device; in this case the two devices are made into their own
4733 * mirror using the 'replacing' vdev, which is functionally identical to
4734 * the mirror vdev (it actually reuses all the same ops) but has a few
4735 * extra rules: you can't attach to it after it's been created, and upon
4736 * completion of resilvering, the first disk (the one being replaced)
4737 * is automatically detached.
4738 */
4739int
4740spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4741{
4742	uint64_t txg, dtl_max_txg;
4743	vdev_t *rvd = spa->spa_root_vdev;
4744	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4745	vdev_ops_t *pvops;
4746	char *oldvdpath, *newvdpath;
4747	int newvd_isspare;
4748	int error;
4749
4750	ASSERT(spa_writeable(spa));
4751
4752	txg = spa_vdev_enter(spa);
4753
4754	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4755
4756	if (oldvd == NULL)
4757		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4758
4759	if (!oldvd->vdev_ops->vdev_op_leaf)
4760		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4761
4762	pvd = oldvd->vdev_parent;
4763
4764	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4765	    VDEV_ALLOC_ATTACH)) != 0)
4766		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4767
4768	if (newrootvd->vdev_children != 1)
4769		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4770
4771	newvd = newrootvd->vdev_child[0];
4772
4773	if (!newvd->vdev_ops->vdev_op_leaf)
4774		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4775
4776	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4777		return (spa_vdev_exit(spa, newrootvd, txg, error));
4778
4779	/*
4780	 * Spares can't replace logs
4781	 */
4782	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4783		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4784
4785	if (!replacing) {
4786		/*
4787		 * For attach, the only allowable parent is a mirror or the root
4788		 * vdev.
4789		 */
4790		if (pvd->vdev_ops != &vdev_mirror_ops &&
4791		    pvd->vdev_ops != &vdev_root_ops)
4792			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4793
4794		pvops = &vdev_mirror_ops;
4795	} else {
4796		/*
4797		 * Active hot spares can only be replaced by inactive hot
4798		 * spares.
4799		 */
4800		if (pvd->vdev_ops == &vdev_spare_ops &&
4801		    oldvd->vdev_isspare &&
4802		    !spa_has_spare(spa, newvd->vdev_guid))
4803			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4804
4805		/*
4806		 * If the source is a hot spare, and the parent isn't already a
4807		 * spare, then we want to create a new hot spare.  Otherwise, we
4808		 * want to create a replacing vdev.  The user is not allowed to
4809		 * attach to a spared vdev child unless the 'isspare' state is
4810		 * the same (spare replaces spare, non-spare replaces
4811		 * non-spare).
4812		 */
4813		if (pvd->vdev_ops == &vdev_replacing_ops &&
4814		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4815			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4816		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4817		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4818			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4819		}
4820
4821		if (newvd->vdev_isspare)
4822			pvops = &vdev_spare_ops;
4823		else
4824			pvops = &vdev_replacing_ops;
4825	}
4826
4827	/*
4828	 * Make sure the new device is big enough.
4829	 */
4830	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4831		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4832
4833	/*
4834	 * The new device cannot have a higher alignment requirement
4835	 * than the top-level vdev.
4836	 */
4837	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4838		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4839
4840	/*
4841	 * If this is an in-place replacement, update oldvd's path and devid
4842	 * to make it distinguishable from newvd, and unopenable from now on.
4843	 */
4844	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4845		spa_strfree(oldvd->vdev_path);
4846		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4847		    KM_SLEEP);
4848		(void) sprintf(oldvd->vdev_path, "%s/%s",
4849		    newvd->vdev_path, "old");
4850		if (oldvd->vdev_devid != NULL) {
4851			spa_strfree(oldvd->vdev_devid);
4852			oldvd->vdev_devid = NULL;
4853		}
4854	}
4855
4856	/* mark the device being resilvered */
4857	newvd->vdev_resilver_txg = txg;
4858
4859	/*
4860	 * If the parent is not a mirror, or if we're replacing, insert the new
4861	 * mirror/replacing/spare vdev above oldvd.
4862	 */
4863	if (pvd->vdev_ops != pvops)
4864		pvd = vdev_add_parent(oldvd, pvops);
4865
4866	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4867	ASSERT(pvd->vdev_ops == pvops);
4868	ASSERT(oldvd->vdev_parent == pvd);
4869
4870	/*
4871	 * Extract the new device from its root and add it to pvd.
4872	 */
4873	vdev_remove_child(newrootvd, newvd);
4874	newvd->vdev_id = pvd->vdev_children;
4875	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4876	vdev_add_child(pvd, newvd);
4877
4878	tvd = newvd->vdev_top;
4879	ASSERT(pvd->vdev_top == tvd);
4880	ASSERT(tvd->vdev_parent == rvd);
4881
4882	vdev_config_dirty(tvd);
4883
4884	/*
4885	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4886	 * for any dmu_sync-ed blocks.  It will propagate upward when
4887	 * spa_vdev_exit() calls vdev_dtl_reassess().
4888	 */
4889	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4890
4891	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4892	    dtl_max_txg - TXG_INITIAL);
4893
4894	if (newvd->vdev_isspare) {
4895		spa_spare_activate(newvd);
4896		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4897	}
4898
4899	oldvdpath = spa_strdup(oldvd->vdev_path);
4900	newvdpath = spa_strdup(newvd->vdev_path);
4901	newvd_isspare = newvd->vdev_isspare;
4902
4903	/*
4904	 * Mark newvd's DTL dirty in this txg.
4905	 */
4906	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4907
4908	/*
4909	 * Schedule the resilver to restart in the future. We do this to
4910	 * ensure that dmu_sync-ed blocks have been stitched into the
4911	 * respective datasets.
4912	 */
4913	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4914
4915	if (spa->spa_bootfs)
4916		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4917
4918	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4919
4920	/*
4921	 * Commit the config
4922	 */
4923	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4924
4925	spa_history_log_internal(spa, "vdev attach", NULL,
4926	    "%s vdev=%s %s vdev=%s",
4927	    replacing && newvd_isspare ? "spare in" :
4928	    replacing ? "replace" : "attach", newvdpath,
4929	    replacing ? "for" : "to", oldvdpath);
4930
4931	spa_strfree(oldvdpath);
4932	spa_strfree(newvdpath);
4933
4934	return (0);
4935}
4936
4937/*
4938 * Detach a device from a mirror or replacing vdev.
4939 *
4940 * If 'replace_done' is specified, only detach if the parent
4941 * is a replacing vdev.
4942 */
4943int
4944spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4945{
4946	uint64_t txg;
4947	int error;
4948	vdev_t *rvd = spa->spa_root_vdev;
4949	vdev_t *vd, *pvd, *cvd, *tvd;
4950	boolean_t unspare = B_FALSE;
4951	uint64_t unspare_guid = 0;
4952	char *vdpath;
4953
4954	ASSERT(spa_writeable(spa));
4955
4956	txg = spa_vdev_enter(spa);
4957
4958	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4959
4960	if (vd == NULL)
4961		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4962
4963	if (!vd->vdev_ops->vdev_op_leaf)
4964		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4965
4966	pvd = vd->vdev_parent;
4967
4968	/*
4969	 * If the parent/child relationship is not as expected, don't do it.
4970	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4971	 * vdev that's replacing B with C.  The user's intent in replacing
4972	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4973	 * the replace by detaching C, the expected behavior is to end up
4974	 * M(A,B).  But suppose that right after deciding to detach C,
4975	 * the replacement of B completes.  We would have M(A,C), and then
4976	 * ask to detach C, which would leave us with just A -- not what
4977	 * the user wanted.  To prevent this, we make sure that the
4978	 * parent/child relationship hasn't changed -- in this example,
4979	 * that C's parent is still the replacing vdev R.
4980	 */
4981	if (pvd->vdev_guid != pguid && pguid != 0)
4982		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4983
4984	/*
4985	 * Only 'replacing' or 'spare' vdevs can be replaced.
4986	 */
4987	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4988	    pvd->vdev_ops != &vdev_spare_ops)
4989		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4990
4991	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4992	    spa_version(spa) >= SPA_VERSION_SPARES);
4993
4994	/*
4995	 * Only mirror, replacing, and spare vdevs support detach.
4996	 */
4997	if (pvd->vdev_ops != &vdev_replacing_ops &&
4998	    pvd->vdev_ops != &vdev_mirror_ops &&
4999	    pvd->vdev_ops != &vdev_spare_ops)
5000		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5001
5002	/*
5003	 * If this device has the only valid copy of some data,
5004	 * we cannot safely detach it.
5005	 */
5006	if (vdev_dtl_required(vd))
5007		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5008
5009	ASSERT(pvd->vdev_children >= 2);
5010
5011	/*
5012	 * If we are detaching the second disk from a replacing vdev, then
5013	 * check to see if we changed the original vdev's path to have "/old"
5014	 * at the end in spa_vdev_attach().  If so, undo that change now.
5015	 */
5016	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5017	    vd->vdev_path != NULL) {
5018		size_t len = strlen(vd->vdev_path);
5019
5020		for (int c = 0; c < pvd->vdev_children; c++) {
5021			cvd = pvd->vdev_child[c];
5022
5023			if (cvd == vd || cvd->vdev_path == NULL)
5024				continue;
5025
5026			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5027			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5028				spa_strfree(cvd->vdev_path);
5029				cvd->vdev_path = spa_strdup(vd->vdev_path);
5030				break;
5031			}
5032		}
5033	}
5034
5035	/*
5036	 * If we are detaching the original disk from a spare, then it implies
5037	 * that the spare should become a real disk, and be removed from the
5038	 * active spare list for the pool.
5039	 */
5040	if (pvd->vdev_ops == &vdev_spare_ops &&
5041	    vd->vdev_id == 0 &&
5042	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5043		unspare = B_TRUE;
5044
5045	/*
5046	 * Erase the disk labels so the disk can be used for other things.
5047	 * This must be done after all other error cases are handled,
5048	 * but before we disembowel vd (so we can still do I/O to it).
5049	 * But if we can't do it, don't treat the error as fatal --
5050	 * it may be that the unwritability of the disk is the reason
5051	 * it's being detached!
5052	 */
5053	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5054
5055	/*
5056	 * Remove vd from its parent and compact the parent's children.
5057	 */
5058	vdev_remove_child(pvd, vd);
5059	vdev_compact_children(pvd);
5060
5061	/*
5062	 * Remember one of the remaining children so we can get tvd below.
5063	 */
5064	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5065
5066	/*
5067	 * If we need to remove the remaining child from the list of hot spares,
5068	 * do it now, marking the vdev as no longer a spare in the process.
5069	 * We must do this before vdev_remove_parent(), because that can
5070	 * change the GUID if it creates a new toplevel GUID.  For a similar
5071	 * reason, we must remove the spare now, in the same txg as the detach;
5072	 * otherwise someone could attach a new sibling, change the GUID, and
5073	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5074	 */
5075	if (unspare) {
5076		ASSERT(cvd->vdev_isspare);
5077		spa_spare_remove(cvd);
5078		unspare_guid = cvd->vdev_guid;
5079		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5080		cvd->vdev_unspare = B_TRUE;
5081	}
5082
5083	/*
5084	 * If the parent mirror/replacing vdev only has one child,
5085	 * the parent is no longer needed.  Remove it from the tree.
5086	 */
5087	if (pvd->vdev_children == 1) {
5088		if (pvd->vdev_ops == &vdev_spare_ops)
5089			cvd->vdev_unspare = B_FALSE;
5090		vdev_remove_parent(cvd);
5091	}
5092
5093
5094	/*
5095	 * We don't set tvd until now because the parent we just removed
5096	 * may have been the previous top-level vdev.
5097	 */
5098	tvd = cvd->vdev_top;
5099	ASSERT(tvd->vdev_parent == rvd);
5100
5101	/*
5102	 * Reevaluate the parent vdev state.
5103	 */
5104	vdev_propagate_state(cvd);
5105
5106	/*
5107	 * If the 'autoexpand' property is set on the pool then automatically
5108	 * try to expand the size of the pool. For example if the device we
5109	 * just detached was smaller than the others, it may be possible to
5110	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5111	 * first so that we can obtain the updated sizes of the leaf vdevs.
5112	 */
5113	if (spa->spa_autoexpand) {
5114		vdev_reopen(tvd);
5115		vdev_expand(tvd, txg);
5116	}
5117
5118	vdev_config_dirty(tvd);
5119
5120	/*
5121	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5122	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5123	 * But first make sure we're not on any *other* txg's DTL list, to
5124	 * prevent vd from being accessed after it's freed.
5125	 */
5126	vdpath = spa_strdup(vd->vdev_path);
5127	for (int t = 0; t < TXG_SIZE; t++)
5128		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5129	vd->vdev_detached = B_TRUE;
5130	vdev_dirty(tvd, VDD_DTL, vd, txg);
5131
5132	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5133
5134	/* hang on to the spa before we release the lock */
5135	spa_open_ref(spa, FTAG);
5136
5137	error = spa_vdev_exit(spa, vd, txg, 0);
5138
5139	spa_history_log_internal(spa, "detach", NULL,
5140	    "vdev=%s", vdpath);
5141	spa_strfree(vdpath);
5142
5143	/*
5144	 * If this was the removal of the original device in a hot spare vdev,
5145	 * then we want to go through and remove the device from the hot spare
5146	 * list of every other pool.
5147	 */
5148	if (unspare) {
5149		spa_t *altspa = NULL;
5150
5151		mutex_enter(&spa_namespace_lock);
5152		while ((altspa = spa_next(altspa)) != NULL) {
5153			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5154			    altspa == spa)
5155				continue;
5156
5157			spa_open_ref(altspa, FTAG);
5158			mutex_exit(&spa_namespace_lock);
5159			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5160			mutex_enter(&spa_namespace_lock);
5161			spa_close(altspa, FTAG);
5162		}
5163		mutex_exit(&spa_namespace_lock);
5164
5165		/* search the rest of the vdevs for spares to remove */
5166		spa_vdev_resilver_done(spa);
5167	}
5168
5169	/* all done with the spa; OK to release */
5170	mutex_enter(&spa_namespace_lock);
5171	spa_close(spa, FTAG);
5172	mutex_exit(&spa_namespace_lock);
5173
5174	return (error);
5175}
5176
5177/*
5178 * Split a set of devices from their mirrors, and create a new pool from them.
5179 */
5180int
5181spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5182    nvlist_t *props, boolean_t exp)
5183{
5184	int error = 0;
5185	uint64_t txg, *glist;
5186	spa_t *newspa;
5187	uint_t c, children, lastlog;
5188	nvlist_t **child, *nvl, *tmp;
5189	dmu_tx_t *tx;
5190	char *altroot = NULL;
5191	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5192	boolean_t activate_slog;
5193
5194	ASSERT(spa_writeable(spa));
5195
5196	txg = spa_vdev_enter(spa);
5197
5198	/* clear the log and flush everything up to now */
5199	activate_slog = spa_passivate_log(spa);
5200	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5201	error = spa_offline_log(spa);
5202	txg = spa_vdev_config_enter(spa);
5203
5204	if (activate_slog)
5205		spa_activate_log(spa);
5206
5207	if (error != 0)
5208		return (spa_vdev_exit(spa, NULL, txg, error));
5209
5210	/* check new spa name before going any further */
5211	if (spa_lookup(newname) != NULL)
5212		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5213
5214	/*
5215	 * scan through all the children to ensure they're all mirrors
5216	 */
5217	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5218	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5219	    &children) != 0)
5220		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5221
5222	/* first, check to ensure we've got the right child count */
5223	rvd = spa->spa_root_vdev;
5224	lastlog = 0;
5225	for (c = 0; c < rvd->vdev_children; c++) {
5226		vdev_t *vd = rvd->vdev_child[c];
5227
5228		/* don't count the holes & logs as children */
5229		if (vd->vdev_islog || vd->vdev_ishole) {
5230			if (lastlog == 0)
5231				lastlog = c;
5232			continue;
5233		}
5234
5235		lastlog = 0;
5236	}
5237	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5238		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5239
5240	/* next, ensure no spare or cache devices are part of the split */
5241	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5242	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5243		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5244
5245	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5246	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5247
5248	/* then, loop over each vdev and validate it */
5249	for (c = 0; c < children; c++) {
5250		uint64_t is_hole = 0;
5251
5252		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5253		    &is_hole);
5254
5255		if (is_hole != 0) {
5256			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5257			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5258				continue;
5259			} else {
5260				error = SET_ERROR(EINVAL);
5261				break;
5262			}
5263		}
5264
5265		/* which disk is going to be split? */
5266		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5267		    &glist[c]) != 0) {
5268			error = SET_ERROR(EINVAL);
5269			break;
5270		}
5271
5272		/* look it up in the spa */
5273		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5274		if (vml[c] == NULL) {
5275			error = SET_ERROR(ENODEV);
5276			break;
5277		}
5278
5279		/* make sure there's nothing stopping the split */
5280		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5281		    vml[c]->vdev_islog ||
5282		    vml[c]->vdev_ishole ||
5283		    vml[c]->vdev_isspare ||
5284		    vml[c]->vdev_isl2cache ||
5285		    !vdev_writeable(vml[c]) ||
5286		    vml[c]->vdev_children != 0 ||
5287		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5288		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5289			error = SET_ERROR(EINVAL);
5290			break;
5291		}
5292
5293		if (vdev_dtl_required(vml[c])) {
5294			error = SET_ERROR(EBUSY);
5295			break;
5296		}
5297
5298		/* we need certain info from the top level */
5299		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5300		    vml[c]->vdev_top->vdev_ms_array) == 0);
5301		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5302		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5303		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5304		    vml[c]->vdev_top->vdev_asize) == 0);
5305		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5306		    vml[c]->vdev_top->vdev_ashift) == 0);
5307	}
5308
5309	if (error != 0) {
5310		kmem_free(vml, children * sizeof (vdev_t *));
5311		kmem_free(glist, children * sizeof (uint64_t));
5312		return (spa_vdev_exit(spa, NULL, txg, error));
5313	}
5314
5315	/* stop writers from using the disks */
5316	for (c = 0; c < children; c++) {
5317		if (vml[c] != NULL)
5318			vml[c]->vdev_offline = B_TRUE;
5319	}
5320	vdev_reopen(spa->spa_root_vdev);
5321
5322	/*
5323	 * Temporarily record the splitting vdevs in the spa config.  This
5324	 * will disappear once the config is regenerated.
5325	 */
5326	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5327	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5328	    glist, children) == 0);
5329	kmem_free(glist, children * sizeof (uint64_t));
5330
5331	mutex_enter(&spa->spa_props_lock);
5332	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5333	    nvl) == 0);
5334	mutex_exit(&spa->spa_props_lock);
5335	spa->spa_config_splitting = nvl;
5336	vdev_config_dirty(spa->spa_root_vdev);
5337
5338	/* configure and create the new pool */
5339	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5340	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5341	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5342	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5343	    spa_version(spa)) == 0);
5344	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5345	    spa->spa_config_txg) == 0);
5346	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5347	    spa_generate_guid(NULL)) == 0);
5348	(void) nvlist_lookup_string(props,
5349	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5350
5351	/* add the new pool to the namespace */
5352	newspa = spa_add(newname, config, altroot);
5353	newspa->spa_config_txg = spa->spa_config_txg;
5354	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5355
5356	/* release the spa config lock, retaining the namespace lock */
5357	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5358
5359	if (zio_injection_enabled)
5360		zio_handle_panic_injection(spa, FTAG, 1);
5361
5362	spa_activate(newspa, spa_mode_global);
5363	spa_async_suspend(newspa);
5364
5365#ifndef illumos
5366	/* mark that we are creating new spa by splitting */
5367	newspa->spa_splitting_newspa = B_TRUE;
5368#endif
5369	/* create the new pool from the disks of the original pool */
5370	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5371#ifndef illumos
5372	newspa->spa_splitting_newspa = B_FALSE;
5373#endif
5374	if (error)
5375		goto out;
5376
5377	/* if that worked, generate a real config for the new pool */
5378	if (newspa->spa_root_vdev != NULL) {
5379		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5380		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5381		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5382		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5383		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5384		    B_TRUE));
5385	}
5386
5387	/* set the props */
5388	if (props != NULL) {
5389		spa_configfile_set(newspa, props, B_FALSE);
5390		error = spa_prop_set(newspa, props);
5391		if (error)
5392			goto out;
5393	}
5394
5395	/* flush everything */
5396	txg = spa_vdev_config_enter(newspa);
5397	vdev_config_dirty(newspa->spa_root_vdev);
5398	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5399
5400	if (zio_injection_enabled)
5401		zio_handle_panic_injection(spa, FTAG, 2);
5402
5403	spa_async_resume(newspa);
5404
5405	/* finally, update the original pool's config */
5406	txg = spa_vdev_config_enter(spa);
5407	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5408	error = dmu_tx_assign(tx, TXG_WAIT);
5409	if (error != 0)
5410		dmu_tx_abort(tx);
5411	for (c = 0; c < children; c++) {
5412		if (vml[c] != NULL) {
5413			vdev_split(vml[c]);
5414			if (error == 0)
5415				spa_history_log_internal(spa, "detach", tx,
5416				    "vdev=%s", vml[c]->vdev_path);
5417			vdev_free(vml[c]);
5418		}
5419	}
5420	vdev_config_dirty(spa->spa_root_vdev);
5421	spa->spa_config_splitting = NULL;
5422	nvlist_free(nvl);
5423	if (error == 0)
5424		dmu_tx_commit(tx);
5425	(void) spa_vdev_exit(spa, NULL, txg, 0);
5426
5427	if (zio_injection_enabled)
5428		zio_handle_panic_injection(spa, FTAG, 3);
5429
5430	/* split is complete; log a history record */
5431	spa_history_log_internal(newspa, "split", NULL,
5432	    "from pool %s", spa_name(spa));
5433
5434	kmem_free(vml, children * sizeof (vdev_t *));
5435
5436	/* if we're not going to mount the filesystems in userland, export */
5437	if (exp)
5438		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5439		    B_FALSE, B_FALSE);
5440
5441	return (error);
5442
5443out:
5444	spa_unload(newspa);
5445	spa_deactivate(newspa);
5446	spa_remove(newspa);
5447
5448	txg = spa_vdev_config_enter(spa);
5449
5450	/* re-online all offlined disks */
5451	for (c = 0; c < children; c++) {
5452		if (vml[c] != NULL)
5453			vml[c]->vdev_offline = B_FALSE;
5454	}
5455	vdev_reopen(spa->spa_root_vdev);
5456
5457	nvlist_free(spa->spa_config_splitting);
5458	spa->spa_config_splitting = NULL;
5459	(void) spa_vdev_exit(spa, NULL, txg, error);
5460
5461	kmem_free(vml, children * sizeof (vdev_t *));
5462	return (error);
5463}
5464
5465static nvlist_t *
5466spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5467{
5468	for (int i = 0; i < count; i++) {
5469		uint64_t guid;
5470
5471		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5472		    &guid) == 0);
5473
5474		if (guid == target_guid)
5475			return (nvpp[i]);
5476	}
5477
5478	return (NULL);
5479}
5480
5481static void
5482spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5483	nvlist_t *dev_to_remove)
5484{
5485	nvlist_t **newdev = NULL;
5486
5487	if (count > 1)
5488		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5489
5490	for (int i = 0, j = 0; i < count; i++) {
5491		if (dev[i] == dev_to_remove)
5492			continue;
5493		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5494	}
5495
5496	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5497	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5498
5499	for (int i = 0; i < count - 1; i++)
5500		nvlist_free(newdev[i]);
5501
5502	if (count > 1)
5503		kmem_free(newdev, (count - 1) * sizeof (void *));
5504}
5505
5506/*
5507 * Evacuate the device.
5508 */
5509static int
5510spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5511{
5512	uint64_t txg;
5513	int error = 0;
5514
5515	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5516	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5517	ASSERT(vd == vd->vdev_top);
5518
5519	/*
5520	 * Evacuate the device.  We don't hold the config lock as writer
5521	 * since we need to do I/O but we do keep the
5522	 * spa_namespace_lock held.  Once this completes the device
5523	 * should no longer have any blocks allocated on it.
5524	 */
5525	if (vd->vdev_islog) {
5526		if (vd->vdev_stat.vs_alloc != 0)
5527			error = spa_offline_log(spa);
5528	} else {
5529		error = SET_ERROR(ENOTSUP);
5530	}
5531
5532	if (error)
5533		return (error);
5534
5535	/*
5536	 * The evacuation succeeded.  Remove any remaining MOS metadata
5537	 * associated with this vdev, and wait for these changes to sync.
5538	 */
5539	ASSERT0(vd->vdev_stat.vs_alloc);
5540	txg = spa_vdev_config_enter(spa);
5541	vd->vdev_removing = B_TRUE;
5542	vdev_dirty_leaves(vd, VDD_DTL, txg);
5543	vdev_config_dirty(vd);
5544	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5545
5546	return (0);
5547}
5548
5549/*
5550 * Complete the removal by cleaning up the namespace.
5551 */
5552static void
5553spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5554{
5555	vdev_t *rvd = spa->spa_root_vdev;
5556	uint64_t id = vd->vdev_id;
5557	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5558
5559	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5560	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5561	ASSERT(vd == vd->vdev_top);
5562
5563	/*
5564	 * Only remove any devices which are empty.
5565	 */
5566	if (vd->vdev_stat.vs_alloc != 0)
5567		return;
5568
5569	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5570
5571	if (list_link_active(&vd->vdev_state_dirty_node))
5572		vdev_state_clean(vd);
5573	if (list_link_active(&vd->vdev_config_dirty_node))
5574		vdev_config_clean(vd);
5575
5576	vdev_free(vd);
5577
5578	if (last_vdev) {
5579		vdev_compact_children(rvd);
5580	} else {
5581		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5582		vdev_add_child(rvd, vd);
5583	}
5584	vdev_config_dirty(rvd);
5585
5586	/*
5587	 * Reassess the health of our root vdev.
5588	 */
5589	vdev_reopen(rvd);
5590}
5591
5592/*
5593 * Remove a device from the pool -
5594 *
5595 * Removing a device from the vdev namespace requires several steps
5596 * and can take a significant amount of time.  As a result we use
5597 * the spa_vdev_config_[enter/exit] functions which allow us to
5598 * grab and release the spa_config_lock while still holding the namespace
5599 * lock.  During each step the configuration is synced out.
5600 *
5601 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5602 * devices.
5603 */
5604int
5605spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5606{
5607	vdev_t *vd;
5608	metaslab_group_t *mg;
5609	nvlist_t **spares, **l2cache, *nv;
5610	uint64_t txg = 0;
5611	uint_t nspares, nl2cache;
5612	int error = 0;
5613	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5614
5615	ASSERT(spa_writeable(spa));
5616
5617	if (!locked)
5618		txg = spa_vdev_enter(spa);
5619
5620	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5621
5622	if (spa->spa_spares.sav_vdevs != NULL &&
5623	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5624	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5625	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5626		/*
5627		 * Only remove the hot spare if it's not currently in use
5628		 * in this pool.
5629		 */
5630		if (vd == NULL || unspare) {
5631			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5632			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5633			spa_load_spares(spa);
5634			spa->spa_spares.sav_sync = B_TRUE;
5635		} else {
5636			error = SET_ERROR(EBUSY);
5637		}
5638	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5639	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5640	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5641	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5642		/*
5643		 * Cache devices can always be removed.
5644		 */
5645		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5646		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5647		spa_load_l2cache(spa);
5648		spa->spa_l2cache.sav_sync = B_TRUE;
5649	} else if (vd != NULL && vd->vdev_islog) {
5650		ASSERT(!locked);
5651		ASSERT(vd == vd->vdev_top);
5652
5653		mg = vd->vdev_mg;
5654
5655		/*
5656		 * Stop allocating from this vdev.
5657		 */
5658		metaslab_group_passivate(mg);
5659
5660		/*
5661		 * Wait for the youngest allocations and frees to sync,
5662		 * and then wait for the deferral of those frees to finish.
5663		 */
5664		spa_vdev_config_exit(spa, NULL,
5665		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5666
5667		/*
5668		 * Attempt to evacuate the vdev.
5669		 */
5670		error = spa_vdev_remove_evacuate(spa, vd);
5671
5672		txg = spa_vdev_config_enter(spa);
5673
5674		/*
5675		 * If we couldn't evacuate the vdev, unwind.
5676		 */
5677		if (error) {
5678			metaslab_group_activate(mg);
5679			return (spa_vdev_exit(spa, NULL, txg, error));
5680		}
5681
5682		/*
5683		 * Clean up the vdev namespace.
5684		 */
5685		spa_vdev_remove_from_namespace(spa, vd);
5686
5687	} else if (vd != NULL) {
5688		/*
5689		 * Normal vdevs cannot be removed (yet).
5690		 */
5691		error = SET_ERROR(ENOTSUP);
5692	} else {
5693		/*
5694		 * There is no vdev of any kind with the specified guid.
5695		 */
5696		error = SET_ERROR(ENOENT);
5697	}
5698
5699	if (!locked)
5700		return (spa_vdev_exit(spa, NULL, txg, error));
5701
5702	return (error);
5703}
5704
5705/*
5706 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5707 * currently spared, so we can detach it.
5708 */
5709static vdev_t *
5710spa_vdev_resilver_done_hunt(vdev_t *vd)
5711{
5712	vdev_t *newvd, *oldvd;
5713
5714	for (int c = 0; c < vd->vdev_children; c++) {
5715		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5716		if (oldvd != NULL)
5717			return (oldvd);
5718	}
5719
5720	/*
5721	 * Check for a completed replacement.  We always consider the first
5722	 * vdev in the list to be the oldest vdev, and the last one to be
5723	 * the newest (see spa_vdev_attach() for how that works).  In
5724	 * the case where the newest vdev is faulted, we will not automatically
5725	 * remove it after a resilver completes.  This is OK as it will require
5726	 * user intervention to determine which disk the admin wishes to keep.
5727	 */
5728	if (vd->vdev_ops == &vdev_replacing_ops) {
5729		ASSERT(vd->vdev_children > 1);
5730
5731		newvd = vd->vdev_child[vd->vdev_children - 1];
5732		oldvd = vd->vdev_child[0];
5733
5734		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5735		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5736		    !vdev_dtl_required(oldvd))
5737			return (oldvd);
5738	}
5739
5740	/*
5741	 * Check for a completed resilver with the 'unspare' flag set.
5742	 */
5743	if (vd->vdev_ops == &vdev_spare_ops) {
5744		vdev_t *first = vd->vdev_child[0];
5745		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5746
5747		if (last->vdev_unspare) {
5748			oldvd = first;
5749			newvd = last;
5750		} else if (first->vdev_unspare) {
5751			oldvd = last;
5752			newvd = first;
5753		} else {
5754			oldvd = NULL;
5755		}
5756
5757		if (oldvd != NULL &&
5758		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5759		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5760		    !vdev_dtl_required(oldvd))
5761			return (oldvd);
5762
5763		/*
5764		 * If there are more than two spares attached to a disk,
5765		 * and those spares are not required, then we want to
5766		 * attempt to free them up now so that they can be used
5767		 * by other pools.  Once we're back down to a single
5768		 * disk+spare, we stop removing them.
5769		 */
5770		if (vd->vdev_children > 2) {
5771			newvd = vd->vdev_child[1];
5772
5773			if (newvd->vdev_isspare && last->vdev_isspare &&
5774			    vdev_dtl_empty(last, DTL_MISSING) &&
5775			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5776			    !vdev_dtl_required(newvd))
5777				return (newvd);
5778		}
5779	}
5780
5781	return (NULL);
5782}
5783
5784static void
5785spa_vdev_resilver_done(spa_t *spa)
5786{
5787	vdev_t *vd, *pvd, *ppvd;
5788	uint64_t guid, sguid, pguid, ppguid;
5789
5790	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5791
5792	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5793		pvd = vd->vdev_parent;
5794		ppvd = pvd->vdev_parent;
5795		guid = vd->vdev_guid;
5796		pguid = pvd->vdev_guid;
5797		ppguid = ppvd->vdev_guid;
5798		sguid = 0;
5799		/*
5800		 * If we have just finished replacing a hot spared device, then
5801		 * we need to detach the parent's first child (the original hot
5802		 * spare) as well.
5803		 */
5804		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5805		    ppvd->vdev_children == 2) {
5806			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5807			sguid = ppvd->vdev_child[1]->vdev_guid;
5808		}
5809		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5810
5811		spa_config_exit(spa, SCL_ALL, FTAG);
5812		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5813			return;
5814		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5815			return;
5816		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5817	}
5818
5819	spa_config_exit(spa, SCL_ALL, FTAG);
5820}
5821
5822/*
5823 * Update the stored path or FRU for this vdev.
5824 */
5825int
5826spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5827    boolean_t ispath)
5828{
5829	vdev_t *vd;
5830	boolean_t sync = B_FALSE;
5831
5832	ASSERT(spa_writeable(spa));
5833
5834	spa_vdev_state_enter(spa, SCL_ALL);
5835
5836	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5837		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5838
5839	if (!vd->vdev_ops->vdev_op_leaf)
5840		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5841
5842	if (ispath) {
5843		if (strcmp(value, vd->vdev_path) != 0) {
5844			spa_strfree(vd->vdev_path);
5845			vd->vdev_path = spa_strdup(value);
5846			sync = B_TRUE;
5847		}
5848	} else {
5849		if (vd->vdev_fru == NULL) {
5850			vd->vdev_fru = spa_strdup(value);
5851			sync = B_TRUE;
5852		} else if (strcmp(value, vd->vdev_fru) != 0) {
5853			spa_strfree(vd->vdev_fru);
5854			vd->vdev_fru = spa_strdup(value);
5855			sync = B_TRUE;
5856		}
5857	}
5858
5859	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5860}
5861
5862int
5863spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5864{
5865	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5866}
5867
5868int
5869spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5870{
5871	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5872}
5873
5874/*
5875 * ==========================================================================
5876 * SPA Scanning
5877 * ==========================================================================
5878 */
5879
5880int
5881spa_scan_stop(spa_t *spa)
5882{
5883	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5884	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5885		return (SET_ERROR(EBUSY));
5886	return (dsl_scan_cancel(spa->spa_dsl_pool));
5887}
5888
5889int
5890spa_scan(spa_t *spa, pool_scan_func_t func)
5891{
5892	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5893
5894	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5895		return (SET_ERROR(ENOTSUP));
5896
5897	/*
5898	 * If a resilver was requested, but there is no DTL on a
5899	 * writeable leaf device, we have nothing to do.
5900	 */
5901	if (func == POOL_SCAN_RESILVER &&
5902	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5903		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5904		return (0);
5905	}
5906
5907	return (dsl_scan(spa->spa_dsl_pool, func));
5908}
5909
5910/*
5911 * ==========================================================================
5912 * SPA async task processing
5913 * ==========================================================================
5914 */
5915
5916static void
5917spa_async_remove(spa_t *spa, vdev_t *vd)
5918{
5919	if (vd->vdev_remove_wanted) {
5920		vd->vdev_remove_wanted = B_FALSE;
5921		vd->vdev_delayed_close = B_FALSE;
5922		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5923
5924		/*
5925		 * We want to clear the stats, but we don't want to do a full
5926		 * vdev_clear() as that will cause us to throw away
5927		 * degraded/faulted state as well as attempt to reopen the
5928		 * device, all of which is a waste.
5929		 */
5930		vd->vdev_stat.vs_read_errors = 0;
5931		vd->vdev_stat.vs_write_errors = 0;
5932		vd->vdev_stat.vs_checksum_errors = 0;
5933
5934		vdev_state_dirty(vd->vdev_top);
5935	}
5936
5937	for (int c = 0; c < vd->vdev_children; c++)
5938		spa_async_remove(spa, vd->vdev_child[c]);
5939}
5940
5941static void
5942spa_async_probe(spa_t *spa, vdev_t *vd)
5943{
5944	if (vd->vdev_probe_wanted) {
5945		vd->vdev_probe_wanted = B_FALSE;
5946		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5947	}
5948
5949	for (int c = 0; c < vd->vdev_children; c++)
5950		spa_async_probe(spa, vd->vdev_child[c]);
5951}
5952
5953static void
5954spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5955{
5956	sysevent_id_t eid;
5957	nvlist_t *attr;
5958	char *physpath;
5959
5960	if (!spa->spa_autoexpand)
5961		return;
5962
5963	for (int c = 0; c < vd->vdev_children; c++) {
5964		vdev_t *cvd = vd->vdev_child[c];
5965		spa_async_autoexpand(spa, cvd);
5966	}
5967
5968	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5969		return;
5970
5971	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5972	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5973
5974	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5975	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5976
5977	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5978	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5979
5980	nvlist_free(attr);
5981	kmem_free(physpath, MAXPATHLEN);
5982}
5983
5984static void
5985spa_async_thread(void *arg)
5986{
5987	spa_t *spa = arg;
5988	int tasks;
5989
5990	ASSERT(spa->spa_sync_on);
5991
5992	mutex_enter(&spa->spa_async_lock);
5993	tasks = spa->spa_async_tasks;
5994	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5995	mutex_exit(&spa->spa_async_lock);
5996
5997	/*
5998	 * See if the config needs to be updated.
5999	 */
6000	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6001		uint64_t old_space, new_space;
6002
6003		mutex_enter(&spa_namespace_lock);
6004		old_space = metaslab_class_get_space(spa_normal_class(spa));
6005		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6006		new_space = metaslab_class_get_space(spa_normal_class(spa));
6007		mutex_exit(&spa_namespace_lock);
6008
6009		/*
6010		 * If the pool grew as a result of the config update,
6011		 * then log an internal history event.
6012		 */
6013		if (new_space != old_space) {
6014			spa_history_log_internal(spa, "vdev online", NULL,
6015			    "pool '%s' size: %llu(+%llu)",
6016			    spa_name(spa), new_space, new_space - old_space);
6017		}
6018	}
6019
6020	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6021		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6022		spa_async_autoexpand(spa, spa->spa_root_vdev);
6023		spa_config_exit(spa, SCL_CONFIG, FTAG);
6024	}
6025
6026	/*
6027	 * See if any devices need to be probed.
6028	 */
6029	if (tasks & SPA_ASYNC_PROBE) {
6030		spa_vdev_state_enter(spa, SCL_NONE);
6031		spa_async_probe(spa, spa->spa_root_vdev);
6032		(void) spa_vdev_state_exit(spa, NULL, 0);
6033	}
6034
6035	/*
6036	 * If any devices are done replacing, detach them.
6037	 */
6038	if (tasks & SPA_ASYNC_RESILVER_DONE)
6039		spa_vdev_resilver_done(spa);
6040
6041	/*
6042	 * Kick off a resilver.
6043	 */
6044	if (tasks & SPA_ASYNC_RESILVER)
6045		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6046
6047	/*
6048	 * Let the world know that we're done.
6049	 */
6050	mutex_enter(&spa->spa_async_lock);
6051	spa->spa_async_thread = NULL;
6052	cv_broadcast(&spa->spa_async_cv);
6053	mutex_exit(&spa->spa_async_lock);
6054	thread_exit();
6055}
6056
6057static void
6058spa_async_thread_vd(void *arg)
6059{
6060	spa_t *spa = arg;
6061	int tasks;
6062
6063	ASSERT(spa->spa_sync_on);
6064
6065	mutex_enter(&spa->spa_async_lock);
6066	tasks = spa->spa_async_tasks;
6067retry:
6068	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6069	mutex_exit(&spa->spa_async_lock);
6070
6071	/*
6072	 * See if any devices need to be marked REMOVED.
6073	 */
6074	if (tasks & SPA_ASYNC_REMOVE) {
6075		spa_vdev_state_enter(spa, SCL_NONE);
6076		spa_async_remove(spa, spa->spa_root_vdev);
6077		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6078			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6079		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6080			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6081		(void) spa_vdev_state_exit(spa, NULL, 0);
6082	}
6083
6084	/*
6085	 * Let the world know that we're done.
6086	 */
6087	mutex_enter(&spa->spa_async_lock);
6088	tasks = spa->spa_async_tasks;
6089	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6090		goto retry;
6091	spa->spa_async_thread_vd = NULL;
6092	cv_broadcast(&spa->spa_async_cv);
6093	mutex_exit(&spa->spa_async_lock);
6094	thread_exit();
6095}
6096
6097void
6098spa_async_suspend(spa_t *spa)
6099{
6100	mutex_enter(&spa->spa_async_lock);
6101	spa->spa_async_suspended++;
6102	while (spa->spa_async_thread != NULL &&
6103	    spa->spa_async_thread_vd != NULL)
6104		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6105	mutex_exit(&spa->spa_async_lock);
6106}
6107
6108void
6109spa_async_resume(spa_t *spa)
6110{
6111	mutex_enter(&spa->spa_async_lock);
6112	ASSERT(spa->spa_async_suspended != 0);
6113	spa->spa_async_suspended--;
6114	mutex_exit(&spa->spa_async_lock);
6115}
6116
6117static boolean_t
6118spa_async_tasks_pending(spa_t *spa)
6119{
6120	uint_t non_config_tasks;
6121	uint_t config_task;
6122	boolean_t config_task_suspended;
6123
6124	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6125	    SPA_ASYNC_REMOVE);
6126	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6127	if (spa->spa_ccw_fail_time == 0) {
6128		config_task_suspended = B_FALSE;
6129	} else {
6130		config_task_suspended =
6131		    (gethrtime() - spa->spa_ccw_fail_time) <
6132		    (zfs_ccw_retry_interval * NANOSEC);
6133	}
6134
6135	return (non_config_tasks || (config_task && !config_task_suspended));
6136}
6137
6138static void
6139spa_async_dispatch(spa_t *spa)
6140{
6141	mutex_enter(&spa->spa_async_lock);
6142	if (spa_async_tasks_pending(spa) &&
6143	    !spa->spa_async_suspended &&
6144	    spa->spa_async_thread == NULL &&
6145	    rootdir != NULL)
6146		spa->spa_async_thread = thread_create(NULL, 0,
6147		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6148	mutex_exit(&spa->spa_async_lock);
6149}
6150
6151static void
6152spa_async_dispatch_vd(spa_t *spa)
6153{
6154	mutex_enter(&spa->spa_async_lock);
6155	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6156	    !spa->spa_async_suspended &&
6157	    spa->spa_async_thread_vd == NULL &&
6158	    rootdir != NULL)
6159		spa->spa_async_thread_vd = thread_create(NULL, 0,
6160		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6161	mutex_exit(&spa->spa_async_lock);
6162}
6163
6164void
6165spa_async_request(spa_t *spa, int task)
6166{
6167	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6168	mutex_enter(&spa->spa_async_lock);
6169	spa->spa_async_tasks |= task;
6170	mutex_exit(&spa->spa_async_lock);
6171	spa_async_dispatch_vd(spa);
6172}
6173
6174/*
6175 * ==========================================================================
6176 * SPA syncing routines
6177 * ==========================================================================
6178 */
6179
6180static int
6181bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6182{
6183	bpobj_t *bpo = arg;
6184	bpobj_enqueue(bpo, bp, tx);
6185	return (0);
6186}
6187
6188static int
6189spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6190{
6191	zio_t *zio = arg;
6192
6193	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6194	    BP_GET_PSIZE(bp), zio->io_flags));
6195	return (0);
6196}
6197
6198/*
6199 * Note: this simple function is not inlined to make it easier to dtrace the
6200 * amount of time spent syncing frees.
6201 */
6202static void
6203spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6204{
6205	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6206	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6207	VERIFY(zio_wait(zio) == 0);
6208}
6209
6210/*
6211 * Note: this simple function is not inlined to make it easier to dtrace the
6212 * amount of time spent syncing deferred frees.
6213 */
6214static void
6215spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6216{
6217	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6218	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6219	    spa_free_sync_cb, zio, tx), ==, 0);
6220	VERIFY0(zio_wait(zio));
6221}
6222
6223
6224static void
6225spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6226{
6227	char *packed = NULL;
6228	size_t bufsize;
6229	size_t nvsize = 0;
6230	dmu_buf_t *db;
6231
6232	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6233
6234	/*
6235	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6236	 * information.  This avoids the dmu_buf_will_dirty() path and
6237	 * saves us a pre-read to get data we don't actually care about.
6238	 */
6239	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6240	packed = kmem_alloc(bufsize, KM_SLEEP);
6241
6242	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6243	    KM_SLEEP) == 0);
6244	bzero(packed + nvsize, bufsize - nvsize);
6245
6246	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6247
6248	kmem_free(packed, bufsize);
6249
6250	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6251	dmu_buf_will_dirty(db, tx);
6252	*(uint64_t *)db->db_data = nvsize;
6253	dmu_buf_rele(db, FTAG);
6254}
6255
6256static void
6257spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6258    const char *config, const char *entry)
6259{
6260	nvlist_t *nvroot;
6261	nvlist_t **list;
6262	int i;
6263
6264	if (!sav->sav_sync)
6265		return;
6266
6267	/*
6268	 * Update the MOS nvlist describing the list of available devices.
6269	 * spa_validate_aux() will have already made sure this nvlist is
6270	 * valid and the vdevs are labeled appropriately.
6271	 */
6272	if (sav->sav_object == 0) {
6273		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6274		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6275		    sizeof (uint64_t), tx);
6276		VERIFY(zap_update(spa->spa_meta_objset,
6277		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6278		    &sav->sav_object, tx) == 0);
6279	}
6280
6281	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6282	if (sav->sav_count == 0) {
6283		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6284	} else {
6285		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6286		for (i = 0; i < sav->sav_count; i++)
6287			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6288			    B_FALSE, VDEV_CONFIG_L2CACHE);
6289		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6290		    sav->sav_count) == 0);
6291		for (i = 0; i < sav->sav_count; i++)
6292			nvlist_free(list[i]);
6293		kmem_free(list, sav->sav_count * sizeof (void *));
6294	}
6295
6296	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6297	nvlist_free(nvroot);
6298
6299	sav->sav_sync = B_FALSE;
6300}
6301
6302static void
6303spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6304{
6305	nvlist_t *config;
6306
6307	if (list_is_empty(&spa->spa_config_dirty_list))
6308		return;
6309
6310	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6311
6312	config = spa_config_generate(spa, spa->spa_root_vdev,
6313	    dmu_tx_get_txg(tx), B_FALSE);
6314
6315	/*
6316	 * If we're upgrading the spa version then make sure that
6317	 * the config object gets updated with the correct version.
6318	 */
6319	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6320		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6321		    spa->spa_uberblock.ub_version);
6322
6323	spa_config_exit(spa, SCL_STATE, FTAG);
6324
6325	if (spa->spa_config_syncing)
6326		nvlist_free(spa->spa_config_syncing);
6327	spa->spa_config_syncing = config;
6328
6329	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6330}
6331
6332static void
6333spa_sync_version(void *arg, dmu_tx_t *tx)
6334{
6335	uint64_t *versionp = arg;
6336	uint64_t version = *versionp;
6337	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6338
6339	/*
6340	 * Setting the version is special cased when first creating the pool.
6341	 */
6342	ASSERT(tx->tx_txg != TXG_INITIAL);
6343
6344	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6345	ASSERT(version >= spa_version(spa));
6346
6347	spa->spa_uberblock.ub_version = version;
6348	vdev_config_dirty(spa->spa_root_vdev);
6349	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6350}
6351
6352/*
6353 * Set zpool properties.
6354 */
6355static void
6356spa_sync_props(void *arg, dmu_tx_t *tx)
6357{
6358	nvlist_t *nvp = arg;
6359	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6360	objset_t *mos = spa->spa_meta_objset;
6361	nvpair_t *elem = NULL;
6362
6363	mutex_enter(&spa->spa_props_lock);
6364
6365	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6366		uint64_t intval;
6367		char *strval, *fname;
6368		zpool_prop_t prop;
6369		const char *propname;
6370		zprop_type_t proptype;
6371		spa_feature_t fid;
6372
6373		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6374		case ZPROP_INVAL:
6375			/*
6376			 * We checked this earlier in spa_prop_validate().
6377			 */
6378			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6379
6380			fname = strchr(nvpair_name(elem), '@') + 1;
6381			VERIFY0(zfeature_lookup_name(fname, &fid));
6382
6383			spa_feature_enable(spa, fid, tx);
6384			spa_history_log_internal(spa, "set", tx,
6385			    "%s=enabled", nvpair_name(elem));
6386			break;
6387
6388		case ZPOOL_PROP_VERSION:
6389			intval = fnvpair_value_uint64(elem);
6390			/*
6391			 * The version is synced seperatly before other
6392			 * properties and should be correct by now.
6393			 */
6394			ASSERT3U(spa_version(spa), >=, intval);
6395			break;
6396
6397		case ZPOOL_PROP_ALTROOT:
6398			/*
6399			 * 'altroot' is a non-persistent property. It should
6400			 * have been set temporarily at creation or import time.
6401			 */
6402			ASSERT(spa->spa_root != NULL);
6403			break;
6404
6405		case ZPOOL_PROP_READONLY:
6406		case ZPOOL_PROP_CACHEFILE:
6407			/*
6408			 * 'readonly' and 'cachefile' are also non-persisitent
6409			 * properties.
6410			 */
6411			break;
6412		case ZPOOL_PROP_COMMENT:
6413			strval = fnvpair_value_string(elem);
6414			if (spa->spa_comment != NULL)
6415				spa_strfree(spa->spa_comment);
6416			spa->spa_comment = spa_strdup(strval);
6417			/*
6418			 * We need to dirty the configuration on all the vdevs
6419			 * so that their labels get updated.  It's unnecessary
6420			 * to do this for pool creation since the vdev's
6421			 * configuratoin has already been dirtied.
6422			 */
6423			if (tx->tx_txg != TXG_INITIAL)
6424				vdev_config_dirty(spa->spa_root_vdev);
6425			spa_history_log_internal(spa, "set", tx,
6426			    "%s=%s", nvpair_name(elem), strval);
6427			break;
6428		default:
6429			/*
6430			 * Set pool property values in the poolprops mos object.
6431			 */
6432			if (spa->spa_pool_props_object == 0) {
6433				spa->spa_pool_props_object =
6434				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6435				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6436				    tx);
6437			}
6438
6439			/* normalize the property name */
6440			propname = zpool_prop_to_name(prop);
6441			proptype = zpool_prop_get_type(prop);
6442
6443			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6444				ASSERT(proptype == PROP_TYPE_STRING);
6445				strval = fnvpair_value_string(elem);
6446				VERIFY0(zap_update(mos,
6447				    spa->spa_pool_props_object, propname,
6448				    1, strlen(strval) + 1, strval, tx));
6449				spa_history_log_internal(spa, "set", tx,
6450				    "%s=%s", nvpair_name(elem), strval);
6451			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6452				intval = fnvpair_value_uint64(elem);
6453
6454				if (proptype == PROP_TYPE_INDEX) {
6455					const char *unused;
6456					VERIFY0(zpool_prop_index_to_string(
6457					    prop, intval, &unused));
6458				}
6459				VERIFY0(zap_update(mos,
6460				    spa->spa_pool_props_object, propname,
6461				    8, 1, &intval, tx));
6462				spa_history_log_internal(spa, "set", tx,
6463				    "%s=%lld", nvpair_name(elem), intval);
6464			} else {
6465				ASSERT(0); /* not allowed */
6466			}
6467
6468			switch (prop) {
6469			case ZPOOL_PROP_DELEGATION:
6470				spa->spa_delegation = intval;
6471				break;
6472			case ZPOOL_PROP_BOOTFS:
6473				spa->spa_bootfs = intval;
6474				break;
6475			case ZPOOL_PROP_FAILUREMODE:
6476				spa->spa_failmode = intval;
6477				break;
6478			case ZPOOL_PROP_AUTOEXPAND:
6479				spa->spa_autoexpand = intval;
6480				if (tx->tx_txg != TXG_INITIAL)
6481					spa_async_request(spa,
6482					    SPA_ASYNC_AUTOEXPAND);
6483				break;
6484			case ZPOOL_PROP_DEDUPDITTO:
6485				spa->spa_dedup_ditto = intval;
6486				break;
6487			default:
6488				break;
6489			}
6490		}
6491
6492	}
6493
6494	mutex_exit(&spa->spa_props_lock);
6495}
6496
6497/*
6498 * Perform one-time upgrade on-disk changes.  spa_version() does not
6499 * reflect the new version this txg, so there must be no changes this
6500 * txg to anything that the upgrade code depends on after it executes.
6501 * Therefore this must be called after dsl_pool_sync() does the sync
6502 * tasks.
6503 */
6504static void
6505spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6506{
6507	dsl_pool_t *dp = spa->spa_dsl_pool;
6508
6509	ASSERT(spa->spa_sync_pass == 1);
6510
6511	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6512
6513	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6514	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6515		dsl_pool_create_origin(dp, tx);
6516
6517		/* Keeping the origin open increases spa_minref */
6518		spa->spa_minref += 3;
6519	}
6520
6521	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6522	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6523		dsl_pool_upgrade_clones(dp, tx);
6524	}
6525
6526	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6527	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6528		dsl_pool_upgrade_dir_clones(dp, tx);
6529
6530		/* Keeping the freedir open increases spa_minref */
6531		spa->spa_minref += 3;
6532	}
6533
6534	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6535	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6536		spa_feature_create_zap_objects(spa, tx);
6537	}
6538
6539	/*
6540	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6541	 * when possibility to use lz4 compression for metadata was added
6542	 * Old pools that have this feature enabled must be upgraded to have
6543	 * this feature active
6544	 */
6545	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6546		boolean_t lz4_en = spa_feature_is_enabled(spa,
6547		    SPA_FEATURE_LZ4_COMPRESS);
6548		boolean_t lz4_ac = spa_feature_is_active(spa,
6549		    SPA_FEATURE_LZ4_COMPRESS);
6550
6551		if (lz4_en && !lz4_ac)
6552			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6553	}
6554	rrw_exit(&dp->dp_config_rwlock, FTAG);
6555}
6556
6557/*
6558 * Sync the specified transaction group.  New blocks may be dirtied as
6559 * part of the process, so we iterate until it converges.
6560 */
6561void
6562spa_sync(spa_t *spa, uint64_t txg)
6563{
6564	dsl_pool_t *dp = spa->spa_dsl_pool;
6565	objset_t *mos = spa->spa_meta_objset;
6566	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6567	vdev_t *rvd = spa->spa_root_vdev;
6568	vdev_t *vd;
6569	dmu_tx_t *tx;
6570	int error;
6571
6572	VERIFY(spa_writeable(spa));
6573
6574	/*
6575	 * Lock out configuration changes.
6576	 */
6577	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6578
6579	spa->spa_syncing_txg = txg;
6580	spa->spa_sync_pass = 0;
6581
6582	/*
6583	 * If there are any pending vdev state changes, convert them
6584	 * into config changes that go out with this transaction group.
6585	 */
6586	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6587	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6588		/*
6589		 * We need the write lock here because, for aux vdevs,
6590		 * calling vdev_config_dirty() modifies sav_config.
6591		 * This is ugly and will become unnecessary when we
6592		 * eliminate the aux vdev wart by integrating all vdevs
6593		 * into the root vdev tree.
6594		 */
6595		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6596		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6597		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6598			vdev_state_clean(vd);
6599			vdev_config_dirty(vd);
6600		}
6601		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6602		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6603	}
6604	spa_config_exit(spa, SCL_STATE, FTAG);
6605
6606	tx = dmu_tx_create_assigned(dp, txg);
6607
6608	spa->spa_sync_starttime = gethrtime();
6609#ifdef illumos
6610	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6611	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6612#else	/* !illumos */
6613#ifdef _KERNEL
6614	callout_reset(&spa->spa_deadman_cycid,
6615	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6616#endif
6617#endif	/* illumos */
6618
6619	/*
6620	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6621	 * set spa_deflate if we have no raid-z vdevs.
6622	 */
6623	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6624	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6625		int i;
6626
6627		for (i = 0; i < rvd->vdev_children; i++) {
6628			vd = rvd->vdev_child[i];
6629			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6630				break;
6631		}
6632		if (i == rvd->vdev_children) {
6633			spa->spa_deflate = TRUE;
6634			VERIFY(0 == zap_add(spa->spa_meta_objset,
6635			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6636			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6637		}
6638	}
6639
6640	/*
6641	 * Iterate to convergence.
6642	 */
6643	do {
6644		int pass = ++spa->spa_sync_pass;
6645
6646		spa_sync_config_object(spa, tx);
6647		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6648		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6649		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6650		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6651		spa_errlog_sync(spa, txg);
6652		dsl_pool_sync(dp, txg);
6653
6654		if (pass < zfs_sync_pass_deferred_free) {
6655			spa_sync_frees(spa, free_bpl, tx);
6656		} else {
6657			/*
6658			 * We can not defer frees in pass 1, because
6659			 * we sync the deferred frees later in pass 1.
6660			 */
6661			ASSERT3U(pass, >, 1);
6662			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6663			    &spa->spa_deferred_bpobj, tx);
6664		}
6665
6666		ddt_sync(spa, txg);
6667		dsl_scan_sync(dp, tx);
6668
6669		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6670			vdev_sync(vd, txg);
6671
6672		if (pass == 1) {
6673			spa_sync_upgrades(spa, tx);
6674			ASSERT3U(txg, >=,
6675			    spa->spa_uberblock.ub_rootbp.blk_birth);
6676			/*
6677			 * Note: We need to check if the MOS is dirty
6678			 * because we could have marked the MOS dirty
6679			 * without updating the uberblock (e.g. if we
6680			 * have sync tasks but no dirty user data).  We
6681			 * need to check the uberblock's rootbp because
6682			 * it is updated if we have synced out dirty
6683			 * data (though in this case the MOS will most
6684			 * likely also be dirty due to second order
6685			 * effects, we don't want to rely on that here).
6686			 */
6687			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6688			    !dmu_objset_is_dirty(mos, txg)) {
6689				/*
6690				 * Nothing changed on the first pass,
6691				 * therefore this TXG is a no-op.  Avoid
6692				 * syncing deferred frees, so that we
6693				 * can keep this TXG as a no-op.
6694				 */
6695				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6696				    txg));
6697				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6698				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6699				break;
6700			}
6701			spa_sync_deferred_frees(spa, tx);
6702		}
6703
6704	} while (dmu_objset_is_dirty(mos, txg));
6705
6706	/*
6707	 * Rewrite the vdev configuration (which includes the uberblock)
6708	 * to commit the transaction group.
6709	 *
6710	 * If there are no dirty vdevs, we sync the uberblock to a few
6711	 * random top-level vdevs that are known to be visible in the
6712	 * config cache (see spa_vdev_add() for a complete description).
6713	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6714	 */
6715	for (;;) {
6716		/*
6717		 * We hold SCL_STATE to prevent vdev open/close/etc.
6718		 * while we're attempting to write the vdev labels.
6719		 */
6720		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6721
6722		if (list_is_empty(&spa->spa_config_dirty_list)) {
6723			vdev_t *svd[SPA_DVAS_PER_BP];
6724			int svdcount = 0;
6725			int children = rvd->vdev_children;
6726			int c0 = spa_get_random(children);
6727
6728			for (int c = 0; c < children; c++) {
6729				vd = rvd->vdev_child[(c0 + c) % children];
6730				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6731					continue;
6732				svd[svdcount++] = vd;
6733				if (svdcount == SPA_DVAS_PER_BP)
6734					break;
6735			}
6736			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6737			if (error != 0)
6738				error = vdev_config_sync(svd, svdcount, txg,
6739				    B_TRUE);
6740		} else {
6741			error = vdev_config_sync(rvd->vdev_child,
6742			    rvd->vdev_children, txg, B_FALSE);
6743			if (error != 0)
6744				error = vdev_config_sync(rvd->vdev_child,
6745				    rvd->vdev_children, txg, B_TRUE);
6746		}
6747
6748		if (error == 0)
6749			spa->spa_last_synced_guid = rvd->vdev_guid;
6750
6751		spa_config_exit(spa, SCL_STATE, FTAG);
6752
6753		if (error == 0)
6754			break;
6755		zio_suspend(spa, NULL);
6756		zio_resume_wait(spa);
6757	}
6758	dmu_tx_commit(tx);
6759
6760#ifdef illumos
6761	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6762#else	/* !illumos */
6763#ifdef _KERNEL
6764	callout_drain(&spa->spa_deadman_cycid);
6765#endif
6766#endif	/* illumos */
6767
6768	/*
6769	 * Clear the dirty config list.
6770	 */
6771	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6772		vdev_config_clean(vd);
6773
6774	/*
6775	 * Now that the new config has synced transactionally,
6776	 * let it become visible to the config cache.
6777	 */
6778	if (spa->spa_config_syncing != NULL) {
6779		spa_config_set(spa, spa->spa_config_syncing);
6780		spa->spa_config_txg = txg;
6781		spa->spa_config_syncing = NULL;
6782	}
6783
6784	spa->spa_ubsync = spa->spa_uberblock;
6785
6786	dsl_pool_sync_done(dp, txg);
6787
6788	/*
6789	 * Update usable space statistics.
6790	 */
6791	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6792		vdev_sync_done(vd, txg);
6793
6794	spa_update_dspace(spa);
6795
6796	/*
6797	 * It had better be the case that we didn't dirty anything
6798	 * since vdev_config_sync().
6799	 */
6800	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6801	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6802	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6803
6804	spa->spa_sync_pass = 0;
6805
6806	spa_config_exit(spa, SCL_CONFIG, FTAG);
6807
6808	spa_handle_ignored_writes(spa);
6809
6810	/*
6811	 * If any async tasks have been requested, kick them off.
6812	 */
6813	spa_async_dispatch(spa);
6814	spa_async_dispatch_vd(spa);
6815}
6816
6817/*
6818 * Sync all pools.  We don't want to hold the namespace lock across these
6819 * operations, so we take a reference on the spa_t and drop the lock during the
6820 * sync.
6821 */
6822void
6823spa_sync_allpools(void)
6824{
6825	spa_t *spa = NULL;
6826	mutex_enter(&spa_namespace_lock);
6827	while ((spa = spa_next(spa)) != NULL) {
6828		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6829		    !spa_writeable(spa) || spa_suspended(spa))
6830			continue;
6831		spa_open_ref(spa, FTAG);
6832		mutex_exit(&spa_namespace_lock);
6833		txg_wait_synced(spa_get_dsl(spa), 0);
6834		mutex_enter(&spa_namespace_lock);
6835		spa_close(spa, FTAG);
6836	}
6837	mutex_exit(&spa_namespace_lock);
6838}
6839
6840/*
6841 * ==========================================================================
6842 * Miscellaneous routines
6843 * ==========================================================================
6844 */
6845
6846/*
6847 * Remove all pools in the system.
6848 */
6849void
6850spa_evict_all(void)
6851{
6852	spa_t *spa;
6853
6854	/*
6855	 * Remove all cached state.  All pools should be closed now,
6856	 * so every spa in the AVL tree should be unreferenced.
6857	 */
6858	mutex_enter(&spa_namespace_lock);
6859	while ((spa = spa_next(NULL)) != NULL) {
6860		/*
6861		 * Stop async tasks.  The async thread may need to detach
6862		 * a device that's been replaced, which requires grabbing
6863		 * spa_namespace_lock, so we must drop it here.
6864		 */
6865		spa_open_ref(spa, FTAG);
6866		mutex_exit(&spa_namespace_lock);
6867		spa_async_suspend(spa);
6868		mutex_enter(&spa_namespace_lock);
6869		spa_close(spa, FTAG);
6870
6871		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6872			spa_unload(spa);
6873			spa_deactivate(spa);
6874		}
6875		spa_remove(spa);
6876	}
6877	mutex_exit(&spa_namespace_lock);
6878}
6879
6880vdev_t *
6881spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6882{
6883	vdev_t *vd;
6884	int i;
6885
6886	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6887		return (vd);
6888
6889	if (aux) {
6890		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6891			vd = spa->spa_l2cache.sav_vdevs[i];
6892			if (vd->vdev_guid == guid)
6893				return (vd);
6894		}
6895
6896		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6897			vd = spa->spa_spares.sav_vdevs[i];
6898			if (vd->vdev_guid == guid)
6899				return (vd);
6900		}
6901	}
6902
6903	return (NULL);
6904}
6905
6906void
6907spa_upgrade(spa_t *spa, uint64_t version)
6908{
6909	ASSERT(spa_writeable(spa));
6910
6911	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6912
6913	/*
6914	 * This should only be called for a non-faulted pool, and since a
6915	 * future version would result in an unopenable pool, this shouldn't be
6916	 * possible.
6917	 */
6918	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6919	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6920
6921	spa->spa_uberblock.ub_version = version;
6922	vdev_config_dirty(spa->spa_root_vdev);
6923
6924	spa_config_exit(spa, SCL_ALL, FTAG);
6925
6926	txg_wait_synced(spa_get_dsl(spa), 0);
6927}
6928
6929boolean_t
6930spa_has_spare(spa_t *spa, uint64_t guid)
6931{
6932	int i;
6933	uint64_t spareguid;
6934	spa_aux_vdev_t *sav = &spa->spa_spares;
6935
6936	for (i = 0; i < sav->sav_count; i++)
6937		if (sav->sav_vdevs[i]->vdev_guid == guid)
6938			return (B_TRUE);
6939
6940	for (i = 0; i < sav->sav_npending; i++) {
6941		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6942		    &spareguid) == 0 && spareguid == guid)
6943			return (B_TRUE);
6944	}
6945
6946	return (B_FALSE);
6947}
6948
6949/*
6950 * Check if a pool has an active shared spare device.
6951 * Note: reference count of an active spare is 2, as a spare and as a replace
6952 */
6953static boolean_t
6954spa_has_active_shared_spare(spa_t *spa)
6955{
6956	int i, refcnt;
6957	uint64_t pool;
6958	spa_aux_vdev_t *sav = &spa->spa_spares;
6959
6960	for (i = 0; i < sav->sav_count; i++) {
6961		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6962		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6963		    refcnt > 2)
6964			return (B_TRUE);
6965	}
6966
6967	return (B_FALSE);
6968}
6969
6970/*
6971 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6972 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6973 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6974 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6975 * or zdb as real changes.
6976 */
6977void
6978spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6979{
6980#ifdef _KERNEL
6981	sysevent_t		*ev;
6982	sysevent_attr_list_t	*attr = NULL;
6983	sysevent_value_t	value;
6984	sysevent_id_t		eid;
6985
6986	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6987	    SE_SLEEP);
6988
6989	value.value_type = SE_DATA_TYPE_STRING;
6990	value.value.sv_string = spa_name(spa);
6991	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6992		goto done;
6993
6994	value.value_type = SE_DATA_TYPE_UINT64;
6995	value.value.sv_uint64 = spa_guid(spa);
6996	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6997		goto done;
6998
6999	if (vd) {
7000		value.value_type = SE_DATA_TYPE_UINT64;
7001		value.value.sv_uint64 = vd->vdev_guid;
7002		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7003		    SE_SLEEP) != 0)
7004			goto done;
7005
7006		if (vd->vdev_path) {
7007			value.value_type = SE_DATA_TYPE_STRING;
7008			value.value.sv_string = vd->vdev_path;
7009			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7010			    &value, SE_SLEEP) != 0)
7011				goto done;
7012		}
7013	}
7014
7015	if (sysevent_attach_attributes(ev, attr) != 0)
7016		goto done;
7017	attr = NULL;
7018
7019	(void) log_sysevent(ev, SE_SLEEP, &eid);
7020
7021done:
7022	if (attr)
7023		sysevent_free_attr(attr);
7024	sysevent_free(ev);
7025#endif
7026}
7027