spa.c revision 286705
11638Srgrimes/*
21638Srgrimes * CDDL HEADER START
31638Srgrimes *
41638Srgrimes * The contents of this file are subject to the terms of the
51638Srgrimes * Common Development and Distribution License (the "License").
61638Srgrimes * You may not use this file except in compliance with the License.
71638Srgrimes *
81638Srgrimes * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
91638Srgrimes * or http://www.opensolaris.org/os/licensing.
101638Srgrimes * See the License for the specific language governing permissions
111638Srgrimes * and limitations under the License.
121638Srgrimes *
131638Srgrimes * When distributing Covered Code, include this CDDL HEADER in each
141638Srgrimes * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
151638Srgrimes * If applicable, add the following below this CDDL HEADER, with the
161638Srgrimes * fields enclosed by brackets "[]" replaced with your own identifying
171638Srgrimes * information: Portions Copyright [yyyy] [name of copyright owner]
181638Srgrimes *
191638Srgrimes * CDDL HEADER END
201638Srgrimes */
211638Srgrimes
221638Srgrimes/*
231638Srgrimes * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
241638Srgrimes * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
251638Srgrimes * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
261638Srgrimes * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
271638Srgrimes * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
281638Srgrimes */
291638Srgrimes
301638Srgrimes/*
311638Srgrimes * SPA: Storage Pool Allocator
321638Srgrimes *
3350476Speter * This file contains all the routines used when modifying on-disk SPA state.
341638Srgrimes * This includes opening, importing, destroying, exporting a pool, and syncing a
351638Srgrimes * pool.
361638Srgrimes */
3779538Sru
381638Srgrimes#include <sys/zfs_context.h>
391638Srgrimes#include <sys/fm/fs/zfs.h>
401638Srgrimes#include <sys/spa_impl.h>
411638Srgrimes#include <sys/zio.h>
421638Srgrimes#include <sys/zio_checksum.h>
431638Srgrimes#include <sys/dmu.h>
441638Srgrimes#include <sys/dmu_tx.h>
451638Srgrimes#include <sys/zap.h>
4622830Sjmg#include <sys/zil.h>
4722830Sjmg#include <sys/ddt.h>
4822830Sjmg#include <sys/vdev_impl.h>
491638Srgrimes#include <sys/metaslab.h>
501638Srgrimes#include <sys/metaslab_impl.h>
511638Srgrimes#include <sys/uberblock_impl.h>
521638Srgrimes#include <sys/txg.h>
531638Srgrimes#include <sys/avl.h>
5422830Sjmg#include <sys/dmu_traverse.h>
5522830Sjmg#include <sys/dmu_objset.h>
5622830Sjmg#include <sys/unique.h>
5722830Sjmg#include <sys/dsl_pool.h>
5822830Sjmg#include <sys/dsl_dataset.h>
5922830Sjmg#include <sys/dsl_dir.h>
601638Srgrimes#include <sys/dsl_prop.h>
611638Srgrimes#include <sys/dsl_synctask.h>
621638Srgrimes#include <sys/fs/zfs.h>
631638Srgrimes#include <sys/arc.h>
6422830Sjmg#include <sys/callb.h>
6522830Sjmg#include <sys/spa_boot.h>
6622830Sjmg#include <sys/zfs_ioctl.h>
6722830Sjmg#include <sys/dsl_scan.h>
681638Srgrimes#include <sys/dmu_send.h>
691638Srgrimes#include <sys/dsl_destroy.h>
701638Srgrimes#include <sys/dsl_userhold.h>
711638Srgrimes#include <sys/zfeature.h>
721638Srgrimes#include <sys/zvol.h>
731638Srgrimes#include <sys/trim_map.h>
7471895Sru
7571895Sru#ifdef	_KERNEL
761638Srgrimes#include <sys/callb.h>
771638Srgrimes#include <sys/cpupart.h>
781638Srgrimes#include <sys/zone.h>
791638Srgrimes#endif	/* _KERNEL */
801638Srgrimes
811638Srgrimes#include "zfs_prop.h"
821638Srgrimes#include "zfs_comutil.h"
831638Srgrimes
8481251Sru/* Check hostid on import? */
851638Srgrimesstatic int check_hostid = 1;
861638Srgrimes
871638Srgrimes/*
8857665Snik * The interval, in seconds, at which failed configuration cache file writes
891638Srgrimes * should be retried.
901638Srgrimes */
911638Srgrimesstatic int zfs_ccw_retry_interval = 300;
921638Srgrimes
931638SrgrimesSYSCTL_DECL(_vfs_zfs);
941638SrgrimesSYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
951638Srgrimes    "Check hostid on import?");
961638SrgrimesTUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
971638SrgrimesSYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
9879727Sschweikh    &zfs_ccw_retry_interval, 0,
9922830Sjmg    "Configuration cache file write, retry after failure, interval (seconds)");
100131530Sru
101131530Srutypedef enum zti_modes {
10222830Sjmg	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
10381251Sru	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
10481251Sru	ZTI_MODE_NULL,			/* don't create a taskq */
1051638Srgrimes	ZTI_NMODES
1061638Srgrimes} zti_modes_t;
1071638Srgrimes
1081638Srgrimes#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
1091638Srgrimes#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
1101638Srgrimes#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
1111638Srgrimes
11222830Sjmg#define	ZTI_N(n)	ZTI_P(n, 1)
11322830Sjmg#define	ZTI_ONE		ZTI_N(1)
1141638Srgrimes
1151638Srgrimestypedef struct zio_taskq_info {
1161638Srgrimes	zti_modes_t zti_mode;
1171638Srgrimes	uint_t zti_value;
1181638Srgrimes	uint_t zti_count;
1191638Srgrimes} zio_taskq_info_t;
1201638Srgrimes
1211638Srgrimesstatic const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
12222830Sjmg	"issue", "issue_high", "intr", "intr_high"
12379727Sschweikh};
12422830Sjmg
12522830Sjmg/*
12622830Sjmg * This table defines the taskq settings for each ZFS I/O type. When
12779727Sschweikh * initializing a pool, we use this table to create an appropriately sized
12822830Sjmg * taskq. Some operations are low volume and therefore have a small, static
12922830Sjmg * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
1301638Srgrimes * macros. Other operations process a large amount of data; the ZTI_BATCH
1311638Srgrimes * macro causes us to create a taskq oriented for throughput. Some operations
13222830Sjmg * are so high frequency and short-lived that the taskq itself can become a a
13357695Ssheldonh * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
13457695Ssheldonh * additional degree of parallelism specified by the number of threads per-
1351638Srgrimes * taskq and the number of taskqs; when dispatching an event in this case, the
1361638Srgrimes * particular taskq is chosen at random.
1371638Srgrimes *
1381638Srgrimes * The different taskq priorities are to handle the different contexts (issue
1391638Srgrimes * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
1401638Srgrimes * need to be handled with minimum delay.
1411638Srgrimes */
1421638Srgrimesconst zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
1431638Srgrimes	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
1441638Srgrimes	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
14522830Sjmg	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
14622830Sjmg	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
1471638Srgrimes	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
1481638Srgrimes	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
1491638Srgrimes	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
1501638Srgrimes};
1511638Srgrimes
1521638Srgrimesstatic void spa_sync_version(void *arg, dmu_tx_t *tx);
1531638Srgrimesstatic void spa_sync_props(void *arg, dmu_tx_t *tx);
1541638Srgrimesstatic boolean_t spa_has_active_shared_spare(spa_t *spa);
1551638Srgrimesstatic int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
15621635Swosch    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
15721635Swosch    char **ereport);
15821635Swoschstatic void spa_vdev_resilver_done(spa_t *spa);
15921635Swosch
1601638Srgrimesuint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
1611638Srgrimes#ifdef PSRSET_BIND
1621638Srgrimesid_t		zio_taskq_psrset_bind = PS_NONE;
1631638Srgrimes#endif
1641638Srgrimes#ifdef SYSDC
1651638Srgrimesboolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
16668962Sru#endif
1671638Srgrimesuint_t		zio_taskq_basedc = 80;		/* base duty cycle */
1681638Srgrimes
169boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
170extern int	zfs_sync_pass_deferred_free;
171
172#ifndef illumos
173extern void spa_deadman(void *arg);
174#endif
175
176/*
177 * This (illegal) pool name is used when temporarily importing a spa_t in order
178 * to get the vdev stats associated with the imported devices.
179 */
180#define	TRYIMPORT_NAME	"$import"
181
182/*
183 * ==========================================================================
184 * SPA properties routines
185 * ==========================================================================
186 */
187
188/*
189 * Add a (source=src, propname=propval) list to an nvlist.
190 */
191static void
192spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
193    uint64_t intval, zprop_source_t src)
194{
195	const char *propname = zpool_prop_to_name(prop);
196	nvlist_t *propval;
197
198	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
199	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
200
201	if (strval != NULL)
202		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
203	else
204		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
205
206	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
207	nvlist_free(propval);
208}
209
210/*
211 * Get property values from the spa configuration.
212 */
213static void
214spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
215{
216	vdev_t *rvd = spa->spa_root_vdev;
217	dsl_pool_t *pool = spa->spa_dsl_pool;
218	uint64_t size, alloc, cap, version;
219	zprop_source_t src = ZPROP_SRC_NONE;
220	spa_config_dirent_t *dp;
221	metaslab_class_t *mc = spa_normal_class(spa);
222
223	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
224
225	if (rvd != NULL) {
226		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
227		size = metaslab_class_get_space(spa_normal_class(spa));
228		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
232		    size - alloc, src);
233
234		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
235		    metaslab_class_fragmentation(mc), src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
237		    metaslab_class_expandable_space(mc), src);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
239		    (spa_mode(spa) == FREAD), src);
240
241		cap = (size == 0) ? 0 : (alloc * 100 / size);
242		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
243
244		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
245		    ddt_get_pool_dedup_ratio(spa), src);
246
247		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
248		    rvd->vdev_state, src);
249
250		version = spa_version(spa);
251		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
252			src = ZPROP_SRC_DEFAULT;
253		else
254			src = ZPROP_SRC_LOCAL;
255		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
256	}
257
258	if (pool != NULL) {
259		/*
260		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
261		 * when opening pools before this version freedir will be NULL.
262		 */
263		if (pool->dp_free_dir != NULL) {
264			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
265			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
266			    src);
267		} else {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
269			    NULL, 0, src);
270		}
271
272		if (pool->dp_leak_dir != NULL) {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
274			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
275			    src);
276		} else {
277			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
278			    NULL, 0, src);
279		}
280	}
281
282	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
283
284	if (spa->spa_comment != NULL) {
285		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
286		    0, ZPROP_SRC_LOCAL);
287	}
288
289	if (spa->spa_root != NULL)
290		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
291		    0, ZPROP_SRC_LOCAL);
292
293	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
294		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
296	} else {
297		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
299	}
300
301	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
302		if (dp->scd_path == NULL) {
303			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
304			    "none", 0, ZPROP_SRC_LOCAL);
305		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
306			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
308		}
309	}
310}
311
312/*
313 * Get zpool property values.
314 */
315int
316spa_prop_get(spa_t *spa, nvlist_t **nvp)
317{
318	objset_t *mos = spa->spa_meta_objset;
319	zap_cursor_t zc;
320	zap_attribute_t za;
321	int err;
322
323	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
324
325	mutex_enter(&spa->spa_props_lock);
326
327	/*
328	 * Get properties from the spa config.
329	 */
330	spa_prop_get_config(spa, nvp);
331
332	/* If no pool property object, no more prop to get. */
333	if (mos == NULL || spa->spa_pool_props_object == 0) {
334		mutex_exit(&spa->spa_props_lock);
335		return (0);
336	}
337
338	/*
339	 * Get properties from the MOS pool property object.
340	 */
341	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
342	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
343	    zap_cursor_advance(&zc)) {
344		uint64_t intval = 0;
345		char *strval = NULL;
346		zprop_source_t src = ZPROP_SRC_DEFAULT;
347		zpool_prop_t prop;
348
349		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
350			continue;
351
352		switch (za.za_integer_length) {
353		case 8:
354			/* integer property */
355			if (za.za_first_integer !=
356			    zpool_prop_default_numeric(prop))
357				src = ZPROP_SRC_LOCAL;
358
359			if (prop == ZPOOL_PROP_BOOTFS) {
360				dsl_pool_t *dp;
361				dsl_dataset_t *ds = NULL;
362
363				dp = spa_get_dsl(spa);
364				dsl_pool_config_enter(dp, FTAG);
365				if (err = dsl_dataset_hold_obj(dp,
366				    za.za_first_integer, FTAG, &ds)) {
367					dsl_pool_config_exit(dp, FTAG);
368					break;
369				}
370
371				strval = kmem_alloc(
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
373				    KM_SLEEP);
374				dsl_dataset_name(ds, strval);
375				dsl_dataset_rele(ds, FTAG);
376				dsl_pool_config_exit(dp, FTAG);
377			} else {
378				strval = NULL;
379				intval = za.za_first_integer;
380			}
381
382			spa_prop_add_list(*nvp, prop, strval, intval, src);
383
384			if (strval != NULL)
385				kmem_free(strval,
386				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
387
388			break;
389
390		case 1:
391			/* string property */
392			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
393			err = zap_lookup(mos, spa->spa_pool_props_object,
394			    za.za_name, 1, za.za_num_integers, strval);
395			if (err) {
396				kmem_free(strval, za.za_num_integers);
397				break;
398			}
399			spa_prop_add_list(*nvp, prop, strval, 0, src);
400			kmem_free(strval, za.za_num_integers);
401			break;
402
403		default:
404			break;
405		}
406	}
407	zap_cursor_fini(&zc);
408	mutex_exit(&spa->spa_props_lock);
409out:
410	if (err && err != ENOENT) {
411		nvlist_free(*nvp);
412		*nvp = NULL;
413		return (err);
414	}
415
416	return (0);
417}
418
419/*
420 * Validate the given pool properties nvlist and modify the list
421 * for the property values to be set.
422 */
423static int
424spa_prop_validate(spa_t *spa, nvlist_t *props)
425{
426	nvpair_t *elem;
427	int error = 0, reset_bootfs = 0;
428	uint64_t objnum = 0;
429	boolean_t has_feature = B_FALSE;
430
431	elem = NULL;
432	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
433		uint64_t intval;
434		char *strval, *slash, *check, *fname;
435		const char *propname = nvpair_name(elem);
436		zpool_prop_t prop = zpool_name_to_prop(propname);
437
438		switch (prop) {
439		case ZPROP_INVAL:
440			if (!zpool_prop_feature(propname)) {
441				error = SET_ERROR(EINVAL);
442				break;
443			}
444
445			/*
446			 * Sanitize the input.
447			 */
448			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
449				error = SET_ERROR(EINVAL);
450				break;
451			}
452
453			if (nvpair_value_uint64(elem, &intval) != 0) {
454				error = SET_ERROR(EINVAL);
455				break;
456			}
457
458			if (intval != 0) {
459				error = SET_ERROR(EINVAL);
460				break;
461			}
462
463			fname = strchr(propname, '@') + 1;
464			if (zfeature_lookup_name(fname, NULL) != 0) {
465				error = SET_ERROR(EINVAL);
466				break;
467			}
468
469			has_feature = B_TRUE;
470			break;
471
472		case ZPOOL_PROP_VERSION:
473			error = nvpair_value_uint64(elem, &intval);
474			if (!error &&
475			    (intval < spa_version(spa) ||
476			    intval > SPA_VERSION_BEFORE_FEATURES ||
477			    has_feature))
478				error = SET_ERROR(EINVAL);
479			break;
480
481		case ZPOOL_PROP_DELEGATION:
482		case ZPOOL_PROP_AUTOREPLACE:
483		case ZPOOL_PROP_LISTSNAPS:
484		case ZPOOL_PROP_AUTOEXPAND:
485			error = nvpair_value_uint64(elem, &intval);
486			if (!error && intval > 1)
487				error = SET_ERROR(EINVAL);
488			break;
489
490		case ZPOOL_PROP_BOOTFS:
491			/*
492			 * If the pool version is less than SPA_VERSION_BOOTFS,
493			 * or the pool is still being created (version == 0),
494			 * the bootfs property cannot be set.
495			 */
496			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
497				error = SET_ERROR(ENOTSUP);
498				break;
499			}
500
501			/*
502			 * Make sure the vdev config is bootable
503			 */
504			if (!vdev_is_bootable(spa->spa_root_vdev)) {
505				error = SET_ERROR(ENOTSUP);
506				break;
507			}
508
509			reset_bootfs = 1;
510
511			error = nvpair_value_string(elem, &strval);
512
513			if (!error) {
514				objset_t *os;
515				uint64_t propval;
516
517				if (strval == NULL || strval[0] == '\0') {
518					objnum = zpool_prop_default_numeric(
519					    ZPOOL_PROP_BOOTFS);
520					break;
521				}
522
523				if (error = dmu_objset_hold(strval, FTAG, &os))
524					break;
525
526				/*
527				 * Must be ZPL, and its property settings
528				 * must be supported by GRUB (compression
529				 * is not gzip, and large blocks are not used).
530				 */
531
532				if (dmu_objset_type(os) != DMU_OST_ZFS) {
533					error = SET_ERROR(ENOTSUP);
534				} else if ((error =
535				    dsl_prop_get_int_ds(dmu_objset_ds(os),
536				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
537				    &propval)) == 0 &&
538				    !BOOTFS_COMPRESS_VALID(propval)) {
539					error = SET_ERROR(ENOTSUP);
540				} else if ((error =
541				    dsl_prop_get_int_ds(dmu_objset_ds(os),
542				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
543				    &propval)) == 0 &&
544				    propval > SPA_OLD_MAXBLOCKSIZE) {
545					error = SET_ERROR(ENOTSUP);
546				} else {
547					objnum = dmu_objset_id(os);
548				}
549				dmu_objset_rele(os, FTAG);
550			}
551			break;
552
553		case ZPOOL_PROP_FAILUREMODE:
554			error = nvpair_value_uint64(elem, &intval);
555			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
556			    intval > ZIO_FAILURE_MODE_PANIC))
557				error = SET_ERROR(EINVAL);
558
559			/*
560			 * This is a special case which only occurs when
561			 * the pool has completely failed. This allows
562			 * the user to change the in-core failmode property
563			 * without syncing it out to disk (I/Os might
564			 * currently be blocked). We do this by returning
565			 * EIO to the caller (spa_prop_set) to trick it
566			 * into thinking we encountered a property validation
567			 * error.
568			 */
569			if (!error && spa_suspended(spa)) {
570				spa->spa_failmode = intval;
571				error = SET_ERROR(EIO);
572			}
573			break;
574
575		case ZPOOL_PROP_CACHEFILE:
576			if ((error = nvpair_value_string(elem, &strval)) != 0)
577				break;
578
579			if (strval[0] == '\0')
580				break;
581
582			if (strcmp(strval, "none") == 0)
583				break;
584
585			if (strval[0] != '/') {
586				error = SET_ERROR(EINVAL);
587				break;
588			}
589
590			slash = strrchr(strval, '/');
591			ASSERT(slash != NULL);
592
593			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
594			    strcmp(slash, "/..") == 0)
595				error = SET_ERROR(EINVAL);
596			break;
597
598		case ZPOOL_PROP_COMMENT:
599			if ((error = nvpair_value_string(elem, &strval)) != 0)
600				break;
601			for (check = strval; *check != '\0'; check++) {
602				/*
603				 * The kernel doesn't have an easy isprint()
604				 * check.  For this kernel check, we merely
605				 * check ASCII apart from DEL.  Fix this if
606				 * there is an easy-to-use kernel isprint().
607				 */
608				if (*check >= 0x7f) {
609					error = SET_ERROR(EINVAL);
610					break;
611				}
612				check++;
613			}
614			if (strlen(strval) > ZPROP_MAX_COMMENT)
615				error = E2BIG;
616			break;
617
618		case ZPOOL_PROP_DEDUPDITTO:
619			if (spa_version(spa) < SPA_VERSION_DEDUP)
620				error = SET_ERROR(ENOTSUP);
621			else
622				error = nvpair_value_uint64(elem, &intval);
623			if (error == 0 &&
624			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
625				error = SET_ERROR(EINVAL);
626			break;
627		}
628
629		if (error)
630			break;
631	}
632
633	if (!error && reset_bootfs) {
634		error = nvlist_remove(props,
635		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
636
637		if (!error) {
638			error = nvlist_add_uint64(props,
639			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
640		}
641	}
642
643	return (error);
644}
645
646void
647spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
648{
649	char *cachefile;
650	spa_config_dirent_t *dp;
651
652	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
653	    &cachefile) != 0)
654		return;
655
656	dp = kmem_alloc(sizeof (spa_config_dirent_t),
657	    KM_SLEEP);
658
659	if (cachefile[0] == '\0')
660		dp->scd_path = spa_strdup(spa_config_path);
661	else if (strcmp(cachefile, "none") == 0)
662		dp->scd_path = NULL;
663	else
664		dp->scd_path = spa_strdup(cachefile);
665
666	list_insert_head(&spa->spa_config_list, dp);
667	if (need_sync)
668		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
669}
670
671int
672spa_prop_set(spa_t *spa, nvlist_t *nvp)
673{
674	int error;
675	nvpair_t *elem = NULL;
676	boolean_t need_sync = B_FALSE;
677
678	if ((error = spa_prop_validate(spa, nvp)) != 0)
679		return (error);
680
681	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
682		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
683
684		if (prop == ZPOOL_PROP_CACHEFILE ||
685		    prop == ZPOOL_PROP_ALTROOT ||
686		    prop == ZPOOL_PROP_READONLY)
687			continue;
688
689		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
690			uint64_t ver;
691
692			if (prop == ZPOOL_PROP_VERSION) {
693				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
694			} else {
695				ASSERT(zpool_prop_feature(nvpair_name(elem)));
696				ver = SPA_VERSION_FEATURES;
697				need_sync = B_TRUE;
698			}
699
700			/* Save time if the version is already set. */
701			if (ver == spa_version(spa))
702				continue;
703
704			/*
705			 * In addition to the pool directory object, we might
706			 * create the pool properties object, the features for
707			 * read object, the features for write object, or the
708			 * feature descriptions object.
709			 */
710			error = dsl_sync_task(spa->spa_name, NULL,
711			    spa_sync_version, &ver,
712			    6, ZFS_SPACE_CHECK_RESERVED);
713			if (error)
714				return (error);
715			continue;
716		}
717
718		need_sync = B_TRUE;
719		break;
720	}
721
722	if (need_sync) {
723		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
724		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
725	}
726
727	return (0);
728}
729
730/*
731 * If the bootfs property value is dsobj, clear it.
732 */
733void
734spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
735{
736	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
737		VERIFY(zap_remove(spa->spa_meta_objset,
738		    spa->spa_pool_props_object,
739		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
740		spa->spa_bootfs = 0;
741	}
742}
743
744/*ARGSUSED*/
745static int
746spa_change_guid_check(void *arg, dmu_tx_t *tx)
747{
748	uint64_t *newguid = arg;
749	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750	vdev_t *rvd = spa->spa_root_vdev;
751	uint64_t vdev_state;
752
753	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
754	vdev_state = rvd->vdev_state;
755	spa_config_exit(spa, SCL_STATE, FTAG);
756
757	if (vdev_state != VDEV_STATE_HEALTHY)
758		return (SET_ERROR(ENXIO));
759
760	ASSERT3U(spa_guid(spa), !=, *newguid);
761
762	return (0);
763}
764
765static void
766spa_change_guid_sync(void *arg, dmu_tx_t *tx)
767{
768	uint64_t *newguid = arg;
769	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
770	uint64_t oldguid;
771	vdev_t *rvd = spa->spa_root_vdev;
772
773	oldguid = spa_guid(spa);
774
775	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
776	rvd->vdev_guid = *newguid;
777	rvd->vdev_guid_sum += (*newguid - oldguid);
778	vdev_config_dirty(rvd);
779	spa_config_exit(spa, SCL_STATE, FTAG);
780
781	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
782	    oldguid, *newguid);
783}
784
785/*
786 * Change the GUID for the pool.  This is done so that we can later
787 * re-import a pool built from a clone of our own vdevs.  We will modify
788 * the root vdev's guid, our own pool guid, and then mark all of our
789 * vdevs dirty.  Note that we must make sure that all our vdevs are
790 * online when we do this, or else any vdevs that weren't present
791 * would be orphaned from our pool.  We are also going to issue a
792 * sysevent to update any watchers.
793 */
794int
795spa_change_guid(spa_t *spa)
796{
797	int error;
798	uint64_t guid;
799
800	mutex_enter(&spa->spa_vdev_top_lock);
801	mutex_enter(&spa_namespace_lock);
802	guid = spa_generate_guid(NULL);
803
804	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
805	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
806
807	if (error == 0) {
808		spa_config_sync(spa, B_FALSE, B_TRUE);
809		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
810	}
811
812	mutex_exit(&spa_namespace_lock);
813	mutex_exit(&spa->spa_vdev_top_lock);
814
815	return (error);
816}
817
818/*
819 * ==========================================================================
820 * SPA state manipulation (open/create/destroy/import/export)
821 * ==========================================================================
822 */
823
824static int
825spa_error_entry_compare(const void *a, const void *b)
826{
827	spa_error_entry_t *sa = (spa_error_entry_t *)a;
828	spa_error_entry_t *sb = (spa_error_entry_t *)b;
829	int ret;
830
831	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
832	    sizeof (zbookmark_phys_t));
833
834	if (ret < 0)
835		return (-1);
836	else if (ret > 0)
837		return (1);
838	else
839		return (0);
840}
841
842/*
843 * Utility function which retrieves copies of the current logs and
844 * re-initializes them in the process.
845 */
846void
847spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
848{
849	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
850
851	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
852	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
853
854	avl_create(&spa->spa_errlist_scrub,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857	avl_create(&spa->spa_errlist_last,
858	    spa_error_entry_compare, sizeof (spa_error_entry_t),
859	    offsetof(spa_error_entry_t, se_avl));
860}
861
862static void
863spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
864{
865	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
866	enum zti_modes mode = ztip->zti_mode;
867	uint_t value = ztip->zti_value;
868	uint_t count = ztip->zti_count;
869	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
870	char name[32];
871	uint_t flags = 0;
872	boolean_t batch = B_FALSE;
873
874	if (mode == ZTI_MODE_NULL) {
875		tqs->stqs_count = 0;
876		tqs->stqs_taskq = NULL;
877		return;
878	}
879
880	ASSERT3U(count, >, 0);
881
882	tqs->stqs_count = count;
883	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
884
885	switch (mode) {
886	case ZTI_MODE_FIXED:
887		ASSERT3U(value, >=, 1);
888		value = MAX(value, 1);
889		break;
890
891	case ZTI_MODE_BATCH:
892		batch = B_TRUE;
893		flags |= TASKQ_THREADS_CPU_PCT;
894		value = zio_taskq_batch_pct;
895		break;
896
897	default:
898		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
899		    "spa_activate()",
900		    zio_type_name[t], zio_taskq_types[q], mode, value);
901		break;
902	}
903
904	for (uint_t i = 0; i < count; i++) {
905		taskq_t *tq;
906
907		if (count > 1) {
908			(void) snprintf(name, sizeof (name), "%s_%s_%u",
909			    zio_type_name[t], zio_taskq_types[q], i);
910		} else {
911			(void) snprintf(name, sizeof (name), "%s_%s",
912			    zio_type_name[t], zio_taskq_types[q]);
913		}
914
915#ifdef SYSDC
916		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
917			if (batch)
918				flags |= TASKQ_DC_BATCH;
919
920			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
921			    spa->spa_proc, zio_taskq_basedc, flags);
922		} else {
923#endif
924			pri_t pri = maxclsyspri;
925			/*
926			 * The write issue taskq can be extremely CPU
927			 * intensive.  Run it at slightly lower priority
928			 * than the other taskqs.
929			 */
930			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
931				pri--;
932
933			tq = taskq_create_proc(name, value, pri, 50,
934			    INT_MAX, spa->spa_proc, flags);
935#ifdef SYSDC
936		}
937#endif
938
939		tqs->stqs_taskq[i] = tq;
940	}
941}
942
943static void
944spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945{
946	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947
948	if (tqs->stqs_taskq == NULL) {
949		ASSERT0(tqs->stqs_count);
950		return;
951	}
952
953	for (uint_t i = 0; i < tqs->stqs_count; i++) {
954		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
955		taskq_destroy(tqs->stqs_taskq[i]);
956	}
957
958	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
959	tqs->stqs_taskq = NULL;
960}
961
962/*
963 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
964 * Note that a type may have multiple discrete taskqs to avoid lock contention
965 * on the taskq itself. In that case we choose which taskq at random by using
966 * the low bits of gethrtime().
967 */
968void
969spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
970    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
971{
972	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973	taskq_t *tq;
974
975	ASSERT3P(tqs->stqs_taskq, !=, NULL);
976	ASSERT3U(tqs->stqs_count, !=, 0);
977
978	if (tqs->stqs_count == 1) {
979		tq = tqs->stqs_taskq[0];
980	} else {
981#ifdef _KERNEL
982		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
983#else
984		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
985#endif
986	}
987
988	taskq_dispatch_ent(tq, func, arg, flags, ent);
989}
990
991static void
992spa_create_zio_taskqs(spa_t *spa)
993{
994	for (int t = 0; t < ZIO_TYPES; t++) {
995		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
996			spa_taskqs_init(spa, t, q);
997		}
998	}
999}
1000
1001#ifdef _KERNEL
1002#ifdef SPA_PROCESS
1003static void
1004spa_thread(void *arg)
1005{
1006	callb_cpr_t cprinfo;
1007
1008	spa_t *spa = arg;
1009	user_t *pu = PTOU(curproc);
1010
1011	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1012	    spa->spa_name);
1013
1014	ASSERT(curproc != &p0);
1015	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1016	    "zpool-%s", spa->spa_name);
1017	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1018
1019#ifdef PSRSET_BIND
1020	/* bind this thread to the requested psrset */
1021	if (zio_taskq_psrset_bind != PS_NONE) {
1022		pool_lock();
1023		mutex_enter(&cpu_lock);
1024		mutex_enter(&pidlock);
1025		mutex_enter(&curproc->p_lock);
1026
1027		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1028		    0, NULL, NULL) == 0)  {
1029			curthread->t_bind_pset = zio_taskq_psrset_bind;
1030		} else {
1031			cmn_err(CE_WARN,
1032			    "Couldn't bind process for zfs pool \"%s\" to "
1033			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1034		}
1035
1036		mutex_exit(&curproc->p_lock);
1037		mutex_exit(&pidlock);
1038		mutex_exit(&cpu_lock);
1039		pool_unlock();
1040	}
1041#endif
1042
1043#ifdef SYSDC
1044	if (zio_taskq_sysdc) {
1045		sysdc_thread_enter(curthread, 100, 0);
1046	}
1047#endif
1048
1049	spa->spa_proc = curproc;
1050	spa->spa_did = curthread->t_did;
1051
1052	spa_create_zio_taskqs(spa);
1053
1054	mutex_enter(&spa->spa_proc_lock);
1055	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1056
1057	spa->spa_proc_state = SPA_PROC_ACTIVE;
1058	cv_broadcast(&spa->spa_proc_cv);
1059
1060	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1061	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1062		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1063	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1064
1065	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1066	spa->spa_proc_state = SPA_PROC_GONE;
1067	spa->spa_proc = &p0;
1068	cv_broadcast(&spa->spa_proc_cv);
1069	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1070
1071	mutex_enter(&curproc->p_lock);
1072	lwp_exit();
1073}
1074#endif	/* SPA_PROCESS */
1075#endif
1076
1077/*
1078 * Activate an uninitialized pool.
1079 */
1080static void
1081spa_activate(spa_t *spa, int mode)
1082{
1083	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1084
1085	spa->spa_state = POOL_STATE_ACTIVE;
1086	spa->spa_mode = mode;
1087
1088	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090
1091	/* Try to create a covering process */
1092	mutex_enter(&spa->spa_proc_lock);
1093	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1094	ASSERT(spa->spa_proc == &p0);
1095	spa->spa_did = 0;
1096
1097#ifdef SPA_PROCESS
1098	/* Only create a process if we're going to be around a while. */
1099	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1100		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1101		    NULL, 0) == 0) {
1102			spa->spa_proc_state = SPA_PROC_CREATED;
1103			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1104				cv_wait(&spa->spa_proc_cv,
1105				    &spa->spa_proc_lock);
1106			}
1107			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1108			ASSERT(spa->spa_proc != &p0);
1109			ASSERT(spa->spa_did != 0);
1110		} else {
1111#ifdef _KERNEL
1112			cmn_err(CE_WARN,
1113			    "Couldn't create process for zfs pool \"%s\"\n",
1114			    spa->spa_name);
1115#endif
1116		}
1117	}
1118#endif	/* SPA_PROCESS */
1119	mutex_exit(&spa->spa_proc_lock);
1120
1121	/* If we didn't create a process, we need to create our taskqs. */
1122	ASSERT(spa->spa_proc == &p0);
1123	if (spa->spa_proc == &p0) {
1124		spa_create_zio_taskqs(spa);
1125	}
1126
1127	/*
1128	 * Start TRIM thread.
1129	 */
1130	trim_thread_create(spa);
1131
1132	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1133	    offsetof(vdev_t, vdev_config_dirty_node));
1134	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1135	    offsetof(objset_t, os_evicting_node));
1136	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1137	    offsetof(vdev_t, vdev_state_dirty_node));
1138
1139	txg_list_create(&spa->spa_vdev_txg_list,
1140	    offsetof(struct vdev, vdev_txg_node));
1141
1142	avl_create(&spa->spa_errlist_scrub,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145	avl_create(&spa->spa_errlist_last,
1146	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1147	    offsetof(spa_error_entry_t, se_avl));
1148}
1149
1150/*
1151 * Opposite of spa_activate().
1152 */
1153static void
1154spa_deactivate(spa_t *spa)
1155{
1156	ASSERT(spa->spa_sync_on == B_FALSE);
1157	ASSERT(spa->spa_dsl_pool == NULL);
1158	ASSERT(spa->spa_root_vdev == NULL);
1159	ASSERT(spa->spa_async_zio_root == NULL);
1160	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1161
1162	/*
1163	 * Stop TRIM thread in case spa_unload() wasn't called directly
1164	 * before spa_deactivate().
1165	 */
1166	trim_thread_destroy(spa);
1167
1168	spa_evicting_os_wait(spa);
1169
1170	txg_list_destroy(&spa->spa_vdev_txg_list);
1171
1172	list_destroy(&spa->spa_config_dirty_list);
1173	list_destroy(&spa->spa_evicting_os_list);
1174	list_destroy(&spa->spa_state_dirty_list);
1175
1176	for (int t = 0; t < ZIO_TYPES; t++) {
1177		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1178			spa_taskqs_fini(spa, t, q);
1179		}
1180	}
1181
1182	metaslab_class_destroy(spa->spa_normal_class);
1183	spa->spa_normal_class = NULL;
1184
1185	metaslab_class_destroy(spa->spa_log_class);
1186	spa->spa_log_class = NULL;
1187
1188	/*
1189	 * If this was part of an import or the open otherwise failed, we may
1190	 * still have errors left in the queues.  Empty them just in case.
1191	 */
1192	spa_errlog_drain(spa);
1193
1194	avl_destroy(&spa->spa_errlist_scrub);
1195	avl_destroy(&spa->spa_errlist_last);
1196
1197	spa->spa_state = POOL_STATE_UNINITIALIZED;
1198
1199	mutex_enter(&spa->spa_proc_lock);
1200	if (spa->spa_proc_state != SPA_PROC_NONE) {
1201		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1202		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1203		cv_broadcast(&spa->spa_proc_cv);
1204		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1205			ASSERT(spa->spa_proc != &p0);
1206			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1207		}
1208		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1209		spa->spa_proc_state = SPA_PROC_NONE;
1210	}
1211	ASSERT(spa->spa_proc == &p0);
1212	mutex_exit(&spa->spa_proc_lock);
1213
1214#ifdef SPA_PROCESS
1215	/*
1216	 * We want to make sure spa_thread() has actually exited the ZFS
1217	 * module, so that the module can't be unloaded out from underneath
1218	 * it.
1219	 */
1220	if (spa->spa_did != 0) {
1221		thread_join(spa->spa_did);
1222		spa->spa_did = 0;
1223	}
1224#endif	/* SPA_PROCESS */
1225}
1226
1227/*
1228 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1229 * will create all the necessary vdevs in the appropriate layout, with each vdev
1230 * in the CLOSED state.  This will prep the pool before open/creation/import.
1231 * All vdev validation is done by the vdev_alloc() routine.
1232 */
1233static int
1234spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1235    uint_t id, int atype)
1236{
1237	nvlist_t **child;
1238	uint_t children;
1239	int error;
1240
1241	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1242		return (error);
1243
1244	if ((*vdp)->vdev_ops->vdev_op_leaf)
1245		return (0);
1246
1247	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1248	    &child, &children);
1249
1250	if (error == ENOENT)
1251		return (0);
1252
1253	if (error) {
1254		vdev_free(*vdp);
1255		*vdp = NULL;
1256		return (SET_ERROR(EINVAL));
1257	}
1258
1259	for (int c = 0; c < children; c++) {
1260		vdev_t *vd;
1261		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1262		    atype)) != 0) {
1263			vdev_free(*vdp);
1264			*vdp = NULL;
1265			return (error);
1266		}
1267	}
1268
1269	ASSERT(*vdp != NULL);
1270
1271	return (0);
1272}
1273
1274/*
1275 * Opposite of spa_load().
1276 */
1277static void
1278spa_unload(spa_t *spa)
1279{
1280	int i;
1281
1282	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1283
1284	/*
1285	 * Stop TRIM thread.
1286	 */
1287	trim_thread_destroy(spa);
1288
1289	/*
1290	 * Stop async tasks.
1291	 */
1292	spa_async_suspend(spa);
1293
1294	/*
1295	 * Stop syncing.
1296	 */
1297	if (spa->spa_sync_on) {
1298		txg_sync_stop(spa->spa_dsl_pool);
1299		spa->spa_sync_on = B_FALSE;
1300	}
1301
1302	/*
1303	 * Wait for any outstanding async I/O to complete.
1304	 */
1305	if (spa->spa_async_zio_root != NULL) {
1306		for (int i = 0; i < max_ncpus; i++)
1307			(void) zio_wait(spa->spa_async_zio_root[i]);
1308		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1309		spa->spa_async_zio_root = NULL;
1310	}
1311
1312	bpobj_close(&spa->spa_deferred_bpobj);
1313
1314	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1315
1316	/*
1317	 * Close all vdevs.
1318	 */
1319	if (spa->spa_root_vdev)
1320		vdev_free(spa->spa_root_vdev);
1321	ASSERT(spa->spa_root_vdev == NULL);
1322
1323	/*
1324	 * Close the dsl pool.
1325	 */
1326	if (spa->spa_dsl_pool) {
1327		dsl_pool_close(spa->spa_dsl_pool);
1328		spa->spa_dsl_pool = NULL;
1329		spa->spa_meta_objset = NULL;
1330	}
1331
1332	ddt_unload(spa);
1333
1334
1335	/*
1336	 * Drop and purge level 2 cache
1337	 */
1338	spa_l2cache_drop(spa);
1339
1340	for (i = 0; i < spa->spa_spares.sav_count; i++)
1341		vdev_free(spa->spa_spares.sav_vdevs[i]);
1342	if (spa->spa_spares.sav_vdevs) {
1343		kmem_free(spa->spa_spares.sav_vdevs,
1344		    spa->spa_spares.sav_count * sizeof (void *));
1345		spa->spa_spares.sav_vdevs = NULL;
1346	}
1347	if (spa->spa_spares.sav_config) {
1348		nvlist_free(spa->spa_spares.sav_config);
1349		spa->spa_spares.sav_config = NULL;
1350	}
1351	spa->spa_spares.sav_count = 0;
1352
1353	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1354		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1355		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1356	}
1357	if (spa->spa_l2cache.sav_vdevs) {
1358		kmem_free(spa->spa_l2cache.sav_vdevs,
1359		    spa->spa_l2cache.sav_count * sizeof (void *));
1360		spa->spa_l2cache.sav_vdevs = NULL;
1361	}
1362	if (spa->spa_l2cache.sav_config) {
1363		nvlist_free(spa->spa_l2cache.sav_config);
1364		spa->spa_l2cache.sav_config = NULL;
1365	}
1366	spa->spa_l2cache.sav_count = 0;
1367
1368	spa->spa_async_suspended = 0;
1369
1370	if (spa->spa_comment != NULL) {
1371		spa_strfree(spa->spa_comment);
1372		spa->spa_comment = NULL;
1373	}
1374
1375	spa_config_exit(spa, SCL_ALL, FTAG);
1376}
1377
1378/*
1379 * Load (or re-load) the current list of vdevs describing the active spares for
1380 * this pool.  When this is called, we have some form of basic information in
1381 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1382 * then re-generate a more complete list including status information.
1383 */
1384static void
1385spa_load_spares(spa_t *spa)
1386{
1387	nvlist_t **spares;
1388	uint_t nspares;
1389	int i;
1390	vdev_t *vd, *tvd;
1391
1392	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1393
1394	/*
1395	 * First, close and free any existing spare vdevs.
1396	 */
1397	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1398		vd = spa->spa_spares.sav_vdevs[i];
1399
1400		/* Undo the call to spa_activate() below */
1401		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1402		    B_FALSE)) != NULL && tvd->vdev_isspare)
1403			spa_spare_remove(tvd);
1404		vdev_close(vd);
1405		vdev_free(vd);
1406	}
1407
1408	if (spa->spa_spares.sav_vdevs)
1409		kmem_free(spa->spa_spares.sav_vdevs,
1410		    spa->spa_spares.sav_count * sizeof (void *));
1411
1412	if (spa->spa_spares.sav_config == NULL)
1413		nspares = 0;
1414	else
1415		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1416		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1417
1418	spa->spa_spares.sav_count = (int)nspares;
1419	spa->spa_spares.sav_vdevs = NULL;
1420
1421	if (nspares == 0)
1422		return;
1423
1424	/*
1425	 * Construct the array of vdevs, opening them to get status in the
1426	 * process.   For each spare, there is potentially two different vdev_t
1427	 * structures associated with it: one in the list of spares (used only
1428	 * for basic validation purposes) and one in the active vdev
1429	 * configuration (if it's spared in).  During this phase we open and
1430	 * validate each vdev on the spare list.  If the vdev also exists in the
1431	 * active configuration, then we also mark this vdev as an active spare.
1432	 */
1433	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1434	    KM_SLEEP);
1435	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1437		    VDEV_ALLOC_SPARE) == 0);
1438		ASSERT(vd != NULL);
1439
1440		spa->spa_spares.sav_vdevs[i] = vd;
1441
1442		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1443		    B_FALSE)) != NULL) {
1444			if (!tvd->vdev_isspare)
1445				spa_spare_add(tvd);
1446
1447			/*
1448			 * We only mark the spare active if we were successfully
1449			 * able to load the vdev.  Otherwise, importing a pool
1450			 * with a bad active spare would result in strange
1451			 * behavior, because multiple pool would think the spare
1452			 * is actively in use.
1453			 *
1454			 * There is a vulnerability here to an equally bizarre
1455			 * circumstance, where a dead active spare is later
1456			 * brought back to life (onlined or otherwise).  Given
1457			 * the rarity of this scenario, and the extra complexity
1458			 * it adds, we ignore the possibility.
1459			 */
1460			if (!vdev_is_dead(tvd))
1461				spa_spare_activate(tvd);
1462		}
1463
1464		vd->vdev_top = vd;
1465		vd->vdev_aux = &spa->spa_spares;
1466
1467		if (vdev_open(vd) != 0)
1468			continue;
1469
1470		if (vdev_validate_aux(vd) == 0)
1471			spa_spare_add(vd);
1472	}
1473
1474	/*
1475	 * Recompute the stashed list of spares, with status information
1476	 * this time.
1477	 */
1478	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1479	    DATA_TYPE_NVLIST_ARRAY) == 0);
1480
1481	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1482	    KM_SLEEP);
1483	for (i = 0; i < spa->spa_spares.sav_count; i++)
1484		spares[i] = vdev_config_generate(spa,
1485		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1486	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1487	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		nvlist_free(spares[i]);
1490	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1491}
1492
1493/*
1494 * Load (or re-load) the current list of vdevs describing the active l2cache for
1495 * this pool.  When this is called, we have some form of basic information in
1496 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1497 * then re-generate a more complete list including status information.
1498 * Devices which are already active have their details maintained, and are
1499 * not re-opened.
1500 */
1501static void
1502spa_load_l2cache(spa_t *spa)
1503{
1504	nvlist_t **l2cache;
1505	uint_t nl2cache;
1506	int i, j, oldnvdevs;
1507	uint64_t guid;
1508	vdev_t *vd, **oldvdevs, **newvdevs;
1509	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1510
1511	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1512
1513	if (sav->sav_config != NULL) {
1514		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1515		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1516		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1517	} else {
1518		nl2cache = 0;
1519		newvdevs = NULL;
1520	}
1521
1522	oldvdevs = sav->sav_vdevs;
1523	oldnvdevs = sav->sav_count;
1524	sav->sav_vdevs = NULL;
1525	sav->sav_count = 0;
1526
1527	/*
1528	 * Process new nvlist of vdevs.
1529	 */
1530	for (i = 0; i < nl2cache; i++) {
1531		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1532		    &guid) == 0);
1533
1534		newvdevs[i] = NULL;
1535		for (j = 0; j < oldnvdevs; j++) {
1536			vd = oldvdevs[j];
1537			if (vd != NULL && guid == vd->vdev_guid) {
1538				/*
1539				 * Retain previous vdev for add/remove ops.
1540				 */
1541				newvdevs[i] = vd;
1542				oldvdevs[j] = NULL;
1543				break;
1544			}
1545		}
1546
1547		if (newvdevs[i] == NULL) {
1548			/*
1549			 * Create new vdev
1550			 */
1551			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1552			    VDEV_ALLOC_L2CACHE) == 0);
1553			ASSERT(vd != NULL);
1554			newvdevs[i] = vd;
1555
1556			/*
1557			 * Commit this vdev as an l2cache device,
1558			 * even if it fails to open.
1559			 */
1560			spa_l2cache_add(vd);
1561
1562			vd->vdev_top = vd;
1563			vd->vdev_aux = sav;
1564
1565			spa_l2cache_activate(vd);
1566
1567			if (vdev_open(vd) != 0)
1568				continue;
1569
1570			(void) vdev_validate_aux(vd);
1571
1572			if (!vdev_is_dead(vd))
1573				l2arc_add_vdev(spa, vd);
1574		}
1575	}
1576
1577	/*
1578	 * Purge vdevs that were dropped
1579	 */
1580	for (i = 0; i < oldnvdevs; i++) {
1581		uint64_t pool;
1582
1583		vd = oldvdevs[i];
1584		if (vd != NULL) {
1585			ASSERT(vd->vdev_isl2cache);
1586
1587			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1588			    pool != 0ULL && l2arc_vdev_present(vd))
1589				l2arc_remove_vdev(vd);
1590			vdev_clear_stats(vd);
1591			vdev_free(vd);
1592		}
1593	}
1594
1595	if (oldvdevs)
1596		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1597
1598	if (sav->sav_config == NULL)
1599		goto out;
1600
1601	sav->sav_vdevs = newvdevs;
1602	sav->sav_count = (int)nl2cache;
1603
1604	/*
1605	 * Recompute the stashed list of l2cache devices, with status
1606	 * information this time.
1607	 */
1608	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1609	    DATA_TYPE_NVLIST_ARRAY) == 0);
1610
1611	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1612	for (i = 0; i < sav->sav_count; i++)
1613		l2cache[i] = vdev_config_generate(spa,
1614		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1615	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1616	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1617out:
1618	for (i = 0; i < sav->sav_count; i++)
1619		nvlist_free(l2cache[i]);
1620	if (sav->sav_count)
1621		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1622}
1623
1624static int
1625load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1626{
1627	dmu_buf_t *db;
1628	char *packed = NULL;
1629	size_t nvsize = 0;
1630	int error;
1631	*value = NULL;
1632
1633	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1634	if (error != 0)
1635		return (error);
1636	nvsize = *(uint64_t *)db->db_data;
1637	dmu_buf_rele(db, FTAG);
1638
1639	packed = kmem_alloc(nvsize, KM_SLEEP);
1640	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1641	    DMU_READ_PREFETCH);
1642	if (error == 0)
1643		error = nvlist_unpack(packed, nvsize, value, 0);
1644	kmem_free(packed, nvsize);
1645
1646	return (error);
1647}
1648
1649/*
1650 * Checks to see if the given vdev could not be opened, in which case we post a
1651 * sysevent to notify the autoreplace code that the device has been removed.
1652 */
1653static void
1654spa_check_removed(vdev_t *vd)
1655{
1656	for (int c = 0; c < vd->vdev_children; c++)
1657		spa_check_removed(vd->vdev_child[c]);
1658
1659	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1660	    !vd->vdev_ishole) {
1661		zfs_post_autoreplace(vd->vdev_spa, vd);
1662		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1663	}
1664}
1665
1666/*
1667 * Validate the current config against the MOS config
1668 */
1669static boolean_t
1670spa_config_valid(spa_t *spa, nvlist_t *config)
1671{
1672	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1673	nvlist_t *nv;
1674
1675	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1676
1677	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1678	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1679
1680	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1681
1682	/*
1683	 * If we're doing a normal import, then build up any additional
1684	 * diagnostic information about missing devices in this config.
1685	 * We'll pass this up to the user for further processing.
1686	 */
1687	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1688		nvlist_t **child, *nv;
1689		uint64_t idx = 0;
1690
1691		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1692		    KM_SLEEP);
1693		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1694
1695		for (int c = 0; c < rvd->vdev_children; c++) {
1696			vdev_t *tvd = rvd->vdev_child[c];
1697			vdev_t *mtvd  = mrvd->vdev_child[c];
1698
1699			if (tvd->vdev_ops == &vdev_missing_ops &&
1700			    mtvd->vdev_ops != &vdev_missing_ops &&
1701			    mtvd->vdev_islog)
1702				child[idx++] = vdev_config_generate(spa, mtvd,
1703				    B_FALSE, 0);
1704		}
1705
1706		if (idx) {
1707			VERIFY(nvlist_add_nvlist_array(nv,
1708			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1709			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1710			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1711
1712			for (int i = 0; i < idx; i++)
1713				nvlist_free(child[i]);
1714		}
1715		nvlist_free(nv);
1716		kmem_free(child, rvd->vdev_children * sizeof (char **));
1717	}
1718
1719	/*
1720	 * Compare the root vdev tree with the information we have
1721	 * from the MOS config (mrvd). Check each top-level vdev
1722	 * with the corresponding MOS config top-level (mtvd).
1723	 */
1724	for (int c = 0; c < rvd->vdev_children; c++) {
1725		vdev_t *tvd = rvd->vdev_child[c];
1726		vdev_t *mtvd  = mrvd->vdev_child[c];
1727
1728		/*
1729		 * Resolve any "missing" vdevs in the current configuration.
1730		 * If we find that the MOS config has more accurate information
1731		 * about the top-level vdev then use that vdev instead.
1732		 */
1733		if (tvd->vdev_ops == &vdev_missing_ops &&
1734		    mtvd->vdev_ops != &vdev_missing_ops) {
1735
1736			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1737				continue;
1738
1739			/*
1740			 * Device specific actions.
1741			 */
1742			if (mtvd->vdev_islog) {
1743				spa_set_log_state(spa, SPA_LOG_CLEAR);
1744			} else {
1745				/*
1746				 * XXX - once we have 'readonly' pool
1747				 * support we should be able to handle
1748				 * missing data devices by transitioning
1749				 * the pool to readonly.
1750				 */
1751				continue;
1752			}
1753
1754			/*
1755			 * Swap the missing vdev with the data we were
1756			 * able to obtain from the MOS config.
1757			 */
1758			vdev_remove_child(rvd, tvd);
1759			vdev_remove_child(mrvd, mtvd);
1760
1761			vdev_add_child(rvd, mtvd);
1762			vdev_add_child(mrvd, tvd);
1763
1764			spa_config_exit(spa, SCL_ALL, FTAG);
1765			vdev_load(mtvd);
1766			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1767
1768			vdev_reopen(rvd);
1769		} else if (mtvd->vdev_islog) {
1770			/*
1771			 * Load the slog device's state from the MOS config
1772			 * since it's possible that the label does not
1773			 * contain the most up-to-date information.
1774			 */
1775			vdev_load_log_state(tvd, mtvd);
1776			vdev_reopen(tvd);
1777		}
1778	}
1779	vdev_free(mrvd);
1780	spa_config_exit(spa, SCL_ALL, FTAG);
1781
1782	/*
1783	 * Ensure we were able to validate the config.
1784	 */
1785	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1786}
1787
1788/*
1789 * Check for missing log devices
1790 */
1791static boolean_t
1792spa_check_logs(spa_t *spa)
1793{
1794	boolean_t rv = B_FALSE;
1795	dsl_pool_t *dp = spa_get_dsl(spa);
1796
1797	switch (spa->spa_log_state) {
1798	case SPA_LOG_MISSING:
1799		/* need to recheck in case slog has been restored */
1800	case SPA_LOG_UNKNOWN:
1801		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1802		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1803		if (rv)
1804			spa_set_log_state(spa, SPA_LOG_MISSING);
1805		break;
1806	}
1807	return (rv);
1808}
1809
1810static boolean_t
1811spa_passivate_log(spa_t *spa)
1812{
1813	vdev_t *rvd = spa->spa_root_vdev;
1814	boolean_t slog_found = B_FALSE;
1815
1816	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1817
1818	if (!spa_has_slogs(spa))
1819		return (B_FALSE);
1820
1821	for (int c = 0; c < rvd->vdev_children; c++) {
1822		vdev_t *tvd = rvd->vdev_child[c];
1823		metaslab_group_t *mg = tvd->vdev_mg;
1824
1825		if (tvd->vdev_islog) {
1826			metaslab_group_passivate(mg);
1827			slog_found = B_TRUE;
1828		}
1829	}
1830
1831	return (slog_found);
1832}
1833
1834static void
1835spa_activate_log(spa_t *spa)
1836{
1837	vdev_t *rvd = spa->spa_root_vdev;
1838
1839	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1840
1841	for (int c = 0; c < rvd->vdev_children; c++) {
1842		vdev_t *tvd = rvd->vdev_child[c];
1843		metaslab_group_t *mg = tvd->vdev_mg;
1844
1845		if (tvd->vdev_islog)
1846			metaslab_group_activate(mg);
1847	}
1848}
1849
1850int
1851spa_offline_log(spa_t *spa)
1852{
1853	int error;
1854
1855	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1856	    NULL, DS_FIND_CHILDREN);
1857	if (error == 0) {
1858		/*
1859		 * We successfully offlined the log device, sync out the
1860		 * current txg so that the "stubby" block can be removed
1861		 * by zil_sync().
1862		 */
1863		txg_wait_synced(spa->spa_dsl_pool, 0);
1864	}
1865	return (error);
1866}
1867
1868static void
1869spa_aux_check_removed(spa_aux_vdev_t *sav)
1870{
1871	int i;
1872
1873	for (i = 0; i < sav->sav_count; i++)
1874		spa_check_removed(sav->sav_vdevs[i]);
1875}
1876
1877void
1878spa_claim_notify(zio_t *zio)
1879{
1880	spa_t *spa = zio->io_spa;
1881
1882	if (zio->io_error)
1883		return;
1884
1885	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1886	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1887		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1888	mutex_exit(&spa->spa_props_lock);
1889}
1890
1891typedef struct spa_load_error {
1892	uint64_t	sle_meta_count;
1893	uint64_t	sle_data_count;
1894} spa_load_error_t;
1895
1896static void
1897spa_load_verify_done(zio_t *zio)
1898{
1899	blkptr_t *bp = zio->io_bp;
1900	spa_load_error_t *sle = zio->io_private;
1901	dmu_object_type_t type = BP_GET_TYPE(bp);
1902	int error = zio->io_error;
1903	spa_t *spa = zio->io_spa;
1904
1905	if (error) {
1906		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1907		    type != DMU_OT_INTENT_LOG)
1908			atomic_inc_64(&sle->sle_meta_count);
1909		else
1910			atomic_inc_64(&sle->sle_data_count);
1911	}
1912	zio_data_buf_free(zio->io_data, zio->io_size);
1913
1914	mutex_enter(&spa->spa_scrub_lock);
1915	spa->spa_scrub_inflight--;
1916	cv_broadcast(&spa->spa_scrub_io_cv);
1917	mutex_exit(&spa->spa_scrub_lock);
1918}
1919
1920/*
1921 * Maximum number of concurrent scrub i/os to create while verifying
1922 * a pool while importing it.
1923 */
1924int spa_load_verify_maxinflight = 10000;
1925boolean_t spa_load_verify_metadata = B_TRUE;
1926boolean_t spa_load_verify_data = B_TRUE;
1927
1928SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1929    &spa_load_verify_maxinflight, 0,
1930    "Maximum number of concurrent scrub I/Os to create while verifying a "
1931    "pool while importing it");
1932
1933SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1934    &spa_load_verify_metadata, 0,
1935    "Check metadata on import?");
1936
1937SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1938    &spa_load_verify_data, 0,
1939    "Check user data on import?");
1940
1941/*ARGSUSED*/
1942static int
1943spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1944    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1945{
1946	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1947		return (0);
1948	/*
1949	 * Note: normally this routine will not be called if
1950	 * spa_load_verify_metadata is not set.  However, it may be useful
1951	 * to manually set the flag after the traversal has begun.
1952	 */
1953	if (!spa_load_verify_metadata)
1954		return (0);
1955	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1956		return (0);
1957
1958	zio_t *rio = arg;
1959	size_t size = BP_GET_PSIZE(bp);
1960	void *data = zio_data_buf_alloc(size);
1961
1962	mutex_enter(&spa->spa_scrub_lock);
1963	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1964		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1965	spa->spa_scrub_inflight++;
1966	mutex_exit(&spa->spa_scrub_lock);
1967
1968	zio_nowait(zio_read(rio, spa, bp, data, size,
1969	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1970	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1971	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1972	return (0);
1973}
1974
1975static int
1976spa_load_verify(spa_t *spa)
1977{
1978	zio_t *rio;
1979	spa_load_error_t sle = { 0 };
1980	zpool_rewind_policy_t policy;
1981	boolean_t verify_ok = B_FALSE;
1982	int error = 0;
1983
1984	zpool_get_rewind_policy(spa->spa_config, &policy);
1985
1986	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1987		return (0);
1988
1989	rio = zio_root(spa, NULL, &sle,
1990	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1991
1992	if (spa_load_verify_metadata) {
1993		error = traverse_pool(spa, spa->spa_verify_min_txg,
1994		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1995		    spa_load_verify_cb, rio);
1996	}
1997
1998	(void) zio_wait(rio);
1999
2000	spa->spa_load_meta_errors = sle.sle_meta_count;
2001	spa->spa_load_data_errors = sle.sle_data_count;
2002
2003	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2004	    sle.sle_data_count <= policy.zrp_maxdata) {
2005		int64_t loss = 0;
2006
2007		verify_ok = B_TRUE;
2008		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2009		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2010
2011		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2012		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2013		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2014		VERIFY(nvlist_add_int64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2016		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2017		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2018	} else {
2019		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2020	}
2021
2022	if (error) {
2023		if (error != ENXIO && error != EIO)
2024			error = SET_ERROR(EIO);
2025		return (error);
2026	}
2027
2028	return (verify_ok ? 0 : EIO);
2029}
2030
2031/*
2032 * Find a value in the pool props object.
2033 */
2034static void
2035spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2036{
2037	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2038	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2039}
2040
2041/*
2042 * Find a value in the pool directory object.
2043 */
2044static int
2045spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2046{
2047	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2048	    name, sizeof (uint64_t), 1, val));
2049}
2050
2051static int
2052spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2053{
2054	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2055	return (err);
2056}
2057
2058/*
2059 * Fix up config after a partly-completed split.  This is done with the
2060 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2061 * pool have that entry in their config, but only the splitting one contains
2062 * a list of all the guids of the vdevs that are being split off.
2063 *
2064 * This function determines what to do with that list: either rejoin
2065 * all the disks to the pool, or complete the splitting process.  To attempt
2066 * the rejoin, each disk that is offlined is marked online again, and
2067 * we do a reopen() call.  If the vdev label for every disk that was
2068 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2069 * then we call vdev_split() on each disk, and complete the split.
2070 *
2071 * Otherwise we leave the config alone, with all the vdevs in place in
2072 * the original pool.
2073 */
2074static void
2075spa_try_repair(spa_t *spa, nvlist_t *config)
2076{
2077	uint_t extracted;
2078	uint64_t *glist;
2079	uint_t i, gcount;
2080	nvlist_t *nvl;
2081	vdev_t **vd;
2082	boolean_t attempt_reopen;
2083
2084	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2085		return;
2086
2087	/* check that the config is complete */
2088	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2089	    &glist, &gcount) != 0)
2090		return;
2091
2092	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2093
2094	/* attempt to online all the vdevs & validate */
2095	attempt_reopen = B_TRUE;
2096	for (i = 0; i < gcount; i++) {
2097		if (glist[i] == 0)	/* vdev is hole */
2098			continue;
2099
2100		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2101		if (vd[i] == NULL) {
2102			/*
2103			 * Don't bother attempting to reopen the disks;
2104			 * just do the split.
2105			 */
2106			attempt_reopen = B_FALSE;
2107		} else {
2108			/* attempt to re-online it */
2109			vd[i]->vdev_offline = B_FALSE;
2110		}
2111	}
2112
2113	if (attempt_reopen) {
2114		vdev_reopen(spa->spa_root_vdev);
2115
2116		/* check each device to see what state it's in */
2117		for (extracted = 0, i = 0; i < gcount; i++) {
2118			if (vd[i] != NULL &&
2119			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2120				break;
2121			++extracted;
2122		}
2123	}
2124
2125	/*
2126	 * If every disk has been moved to the new pool, or if we never
2127	 * even attempted to look at them, then we split them off for
2128	 * good.
2129	 */
2130	if (!attempt_reopen || gcount == extracted) {
2131		for (i = 0; i < gcount; i++)
2132			if (vd[i] != NULL)
2133				vdev_split(vd[i]);
2134		vdev_reopen(spa->spa_root_vdev);
2135	}
2136
2137	kmem_free(vd, gcount * sizeof (vdev_t *));
2138}
2139
2140static int
2141spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2142    boolean_t mosconfig)
2143{
2144	nvlist_t *config = spa->spa_config;
2145	char *ereport = FM_EREPORT_ZFS_POOL;
2146	char *comment;
2147	int error;
2148	uint64_t pool_guid;
2149	nvlist_t *nvl;
2150
2151	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2152		return (SET_ERROR(EINVAL));
2153
2154	ASSERT(spa->spa_comment == NULL);
2155	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2156		spa->spa_comment = spa_strdup(comment);
2157
2158	/*
2159	 * Versioning wasn't explicitly added to the label until later, so if
2160	 * it's not present treat it as the initial version.
2161	 */
2162	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2163	    &spa->spa_ubsync.ub_version) != 0)
2164		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2165
2166	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2167	    &spa->spa_config_txg);
2168
2169	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2170	    spa_guid_exists(pool_guid, 0)) {
2171		error = SET_ERROR(EEXIST);
2172	} else {
2173		spa->spa_config_guid = pool_guid;
2174
2175		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2176		    &nvl) == 0) {
2177			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2178			    KM_SLEEP) == 0);
2179		}
2180
2181		nvlist_free(spa->spa_load_info);
2182		spa->spa_load_info = fnvlist_alloc();
2183
2184		gethrestime(&spa->spa_loaded_ts);
2185		error = spa_load_impl(spa, pool_guid, config, state, type,
2186		    mosconfig, &ereport);
2187	}
2188
2189	/*
2190	 * Don't count references from objsets that are already closed
2191	 * and are making their way through the eviction process.
2192	 */
2193	spa_evicting_os_wait(spa);
2194	spa->spa_minref = refcount_count(&spa->spa_refcount);
2195	if (error) {
2196		if (error != EEXIST) {
2197			spa->spa_loaded_ts.tv_sec = 0;
2198			spa->spa_loaded_ts.tv_nsec = 0;
2199		}
2200		if (error != EBADF) {
2201			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2202		}
2203	}
2204	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2205	spa->spa_ena = 0;
2206
2207	return (error);
2208}
2209
2210/*
2211 * Load an existing storage pool, using the pool's builtin spa_config as a
2212 * source of configuration information.
2213 */
2214static int
2215spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2216    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2217    char **ereport)
2218{
2219	int error = 0;
2220	nvlist_t *nvroot = NULL;
2221	nvlist_t *label;
2222	vdev_t *rvd;
2223	uberblock_t *ub = &spa->spa_uberblock;
2224	uint64_t children, config_cache_txg = spa->spa_config_txg;
2225	int orig_mode = spa->spa_mode;
2226	int parse;
2227	uint64_t obj;
2228	boolean_t missing_feat_write = B_FALSE;
2229
2230	/*
2231	 * If this is an untrusted config, access the pool in read-only mode.
2232	 * This prevents things like resilvering recently removed devices.
2233	 */
2234	if (!mosconfig)
2235		spa->spa_mode = FREAD;
2236
2237	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2238
2239	spa->spa_load_state = state;
2240
2241	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2242		return (SET_ERROR(EINVAL));
2243
2244	parse = (type == SPA_IMPORT_EXISTING ?
2245	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2246
2247	/*
2248	 * Create "The Godfather" zio to hold all async IOs
2249	 */
2250	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2251	    KM_SLEEP);
2252	for (int i = 0; i < max_ncpus; i++) {
2253		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2254		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2255		    ZIO_FLAG_GODFATHER);
2256	}
2257
2258	/*
2259	 * Parse the configuration into a vdev tree.  We explicitly set the
2260	 * value that will be returned by spa_version() since parsing the
2261	 * configuration requires knowing the version number.
2262	 */
2263	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2264	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2265	spa_config_exit(spa, SCL_ALL, FTAG);
2266
2267	if (error != 0)
2268		return (error);
2269
2270	ASSERT(spa->spa_root_vdev == rvd);
2271	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2272	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2273
2274	if (type != SPA_IMPORT_ASSEMBLE) {
2275		ASSERT(spa_guid(spa) == pool_guid);
2276	}
2277
2278	/*
2279	 * Try to open all vdevs, loading each label in the process.
2280	 */
2281	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2282	error = vdev_open(rvd);
2283	spa_config_exit(spa, SCL_ALL, FTAG);
2284	if (error != 0)
2285		return (error);
2286
2287	/*
2288	 * We need to validate the vdev labels against the configuration that
2289	 * we have in hand, which is dependent on the setting of mosconfig. If
2290	 * mosconfig is true then we're validating the vdev labels based on
2291	 * that config.  Otherwise, we're validating against the cached config
2292	 * (zpool.cache) that was read when we loaded the zfs module, and then
2293	 * later we will recursively call spa_load() and validate against
2294	 * the vdev config.
2295	 *
2296	 * If we're assembling a new pool that's been split off from an
2297	 * existing pool, the labels haven't yet been updated so we skip
2298	 * validation for now.
2299	 */
2300	if (type != SPA_IMPORT_ASSEMBLE) {
2301		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2302		error = vdev_validate(rvd, mosconfig);
2303		spa_config_exit(spa, SCL_ALL, FTAG);
2304
2305		if (error != 0)
2306			return (error);
2307
2308		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2309			return (SET_ERROR(ENXIO));
2310	}
2311
2312	/*
2313	 * Find the best uberblock.
2314	 */
2315	vdev_uberblock_load(rvd, ub, &label);
2316
2317	/*
2318	 * If we weren't able to find a single valid uberblock, return failure.
2319	 */
2320	if (ub->ub_txg == 0) {
2321		nvlist_free(label);
2322		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2323	}
2324
2325	/*
2326	 * If the pool has an unsupported version we can't open it.
2327	 */
2328	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2329		nvlist_free(label);
2330		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2331	}
2332
2333	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2334		nvlist_t *features;
2335
2336		/*
2337		 * If we weren't able to find what's necessary for reading the
2338		 * MOS in the label, return failure.
2339		 */
2340		if (label == NULL || nvlist_lookup_nvlist(label,
2341		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2342			nvlist_free(label);
2343			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2344			    ENXIO));
2345		}
2346
2347		/*
2348		 * Update our in-core representation with the definitive values
2349		 * from the label.
2350		 */
2351		nvlist_free(spa->spa_label_features);
2352		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2353	}
2354
2355	nvlist_free(label);
2356
2357	/*
2358	 * Look through entries in the label nvlist's features_for_read. If
2359	 * there is a feature listed there which we don't understand then we
2360	 * cannot open a pool.
2361	 */
2362	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2363		nvlist_t *unsup_feat;
2364
2365		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2366		    0);
2367
2368		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2369		    NULL); nvp != NULL;
2370		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2371			if (!zfeature_is_supported(nvpair_name(nvp))) {
2372				VERIFY(nvlist_add_string(unsup_feat,
2373				    nvpair_name(nvp), "") == 0);
2374			}
2375		}
2376
2377		if (!nvlist_empty(unsup_feat)) {
2378			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2379			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2380			nvlist_free(unsup_feat);
2381			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2382			    ENOTSUP));
2383		}
2384
2385		nvlist_free(unsup_feat);
2386	}
2387
2388	/*
2389	 * If the vdev guid sum doesn't match the uberblock, we have an
2390	 * incomplete configuration.  We first check to see if the pool
2391	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2392	 * If it is, defer the vdev_guid_sum check till later so we
2393	 * can handle missing vdevs.
2394	 */
2395	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2396	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2397	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2398		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2399
2400	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2401		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2402		spa_try_repair(spa, config);
2403		spa_config_exit(spa, SCL_ALL, FTAG);
2404		nvlist_free(spa->spa_config_splitting);
2405		spa->spa_config_splitting = NULL;
2406	}
2407
2408	/*
2409	 * Initialize internal SPA structures.
2410	 */
2411	spa->spa_state = POOL_STATE_ACTIVE;
2412	spa->spa_ubsync = spa->spa_uberblock;
2413	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2414	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2415	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2416	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2417	spa->spa_claim_max_txg = spa->spa_first_txg;
2418	spa->spa_prev_software_version = ub->ub_software_version;
2419
2420	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2421	if (error)
2422		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2423	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2424
2425	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2426		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427
2428	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2429		boolean_t missing_feat_read = B_FALSE;
2430		nvlist_t *unsup_feat, *enabled_feat;
2431
2432		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2433		    &spa->spa_feat_for_read_obj) != 0) {
2434			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2435		}
2436
2437		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2438		    &spa->spa_feat_for_write_obj) != 0) {
2439			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440		}
2441
2442		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2443		    &spa->spa_feat_desc_obj) != 0) {
2444			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445		}
2446
2447		enabled_feat = fnvlist_alloc();
2448		unsup_feat = fnvlist_alloc();
2449
2450		if (!spa_features_check(spa, B_FALSE,
2451		    unsup_feat, enabled_feat))
2452			missing_feat_read = B_TRUE;
2453
2454		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2455			if (!spa_features_check(spa, B_TRUE,
2456			    unsup_feat, enabled_feat)) {
2457				missing_feat_write = B_TRUE;
2458			}
2459		}
2460
2461		fnvlist_add_nvlist(spa->spa_load_info,
2462		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2463
2464		if (!nvlist_empty(unsup_feat)) {
2465			fnvlist_add_nvlist(spa->spa_load_info,
2466			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2467		}
2468
2469		fnvlist_free(enabled_feat);
2470		fnvlist_free(unsup_feat);
2471
2472		if (!missing_feat_read) {
2473			fnvlist_add_boolean(spa->spa_load_info,
2474			    ZPOOL_CONFIG_CAN_RDONLY);
2475		}
2476
2477		/*
2478		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2479		 * twofold: to determine whether the pool is available for
2480		 * import in read-write mode and (if it is not) whether the
2481		 * pool is available for import in read-only mode. If the pool
2482		 * is available for import in read-write mode, it is displayed
2483		 * as available in userland; if it is not available for import
2484		 * in read-only mode, it is displayed as unavailable in
2485		 * userland. If the pool is available for import in read-only
2486		 * mode but not read-write mode, it is displayed as unavailable
2487		 * in userland with a special note that the pool is actually
2488		 * available for open in read-only mode.
2489		 *
2490		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2491		 * missing a feature for write, we must first determine whether
2492		 * the pool can be opened read-only before returning to
2493		 * userland in order to know whether to display the
2494		 * abovementioned note.
2495		 */
2496		if (missing_feat_read || (missing_feat_write &&
2497		    spa_writeable(spa))) {
2498			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2499			    ENOTSUP));
2500		}
2501
2502		/*
2503		 * Load refcounts for ZFS features from disk into an in-memory
2504		 * cache during SPA initialization.
2505		 */
2506		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2507			uint64_t refcount;
2508
2509			error = feature_get_refcount_from_disk(spa,
2510			    &spa_feature_table[i], &refcount);
2511			if (error == 0) {
2512				spa->spa_feat_refcount_cache[i] = refcount;
2513			} else if (error == ENOTSUP) {
2514				spa->spa_feat_refcount_cache[i] =
2515				    SPA_FEATURE_DISABLED;
2516			} else {
2517				return (spa_vdev_err(rvd,
2518				    VDEV_AUX_CORRUPT_DATA, EIO));
2519			}
2520		}
2521	}
2522
2523	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2524		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2525		    &spa->spa_feat_enabled_txg_obj) != 0)
2526			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527	}
2528
2529	spa->spa_is_initializing = B_TRUE;
2530	error = dsl_pool_open(spa->spa_dsl_pool);
2531	spa->spa_is_initializing = B_FALSE;
2532	if (error != 0)
2533		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534
2535	if (!mosconfig) {
2536		uint64_t hostid;
2537		nvlist_t *policy = NULL, *nvconfig;
2538
2539		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2540			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541
2542		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2543		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2544			char *hostname;
2545			unsigned long myhostid = 0;
2546
2547			VERIFY(nvlist_lookup_string(nvconfig,
2548			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2549
2550#ifdef	_KERNEL
2551			myhostid = zone_get_hostid(NULL);
2552#else	/* _KERNEL */
2553			/*
2554			 * We're emulating the system's hostid in userland, so
2555			 * we can't use zone_get_hostid().
2556			 */
2557			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2558#endif	/* _KERNEL */
2559			if (check_hostid && hostid != 0 && myhostid != 0 &&
2560			    hostid != myhostid) {
2561				nvlist_free(nvconfig);
2562				cmn_err(CE_WARN, "pool '%s' could not be "
2563				    "loaded as it was last accessed by "
2564				    "another system (host: %s hostid: 0x%lx). "
2565				    "See: http://illumos.org/msg/ZFS-8000-EY",
2566				    spa_name(spa), hostname,
2567				    (unsigned long)hostid);
2568				return (SET_ERROR(EBADF));
2569			}
2570		}
2571		if (nvlist_lookup_nvlist(spa->spa_config,
2572		    ZPOOL_REWIND_POLICY, &policy) == 0)
2573			VERIFY(nvlist_add_nvlist(nvconfig,
2574			    ZPOOL_REWIND_POLICY, policy) == 0);
2575
2576		spa_config_set(spa, nvconfig);
2577		spa_unload(spa);
2578		spa_deactivate(spa);
2579		spa_activate(spa, orig_mode);
2580
2581		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2582	}
2583
2584	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2585		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2587	if (error != 0)
2588		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2589
2590	/*
2591	 * Load the bit that tells us to use the new accounting function
2592	 * (raid-z deflation).  If we have an older pool, this will not
2593	 * be present.
2594	 */
2595	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2596	if (error != 0 && error != ENOENT)
2597		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598
2599	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2600	    &spa->spa_creation_version);
2601	if (error != 0 && error != ENOENT)
2602		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604	/*
2605	 * Load the persistent error log.  If we have an older pool, this will
2606	 * not be present.
2607	 */
2608	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2609	if (error != 0 && error != ENOENT)
2610		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2611
2612	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2613	    &spa->spa_errlog_scrub);
2614	if (error != 0 && error != ENOENT)
2615		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2616
2617	/*
2618	 * Load the history object.  If we have an older pool, this
2619	 * will not be present.
2620	 */
2621	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2622	if (error != 0 && error != ENOENT)
2623		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2624
2625	/*
2626	 * If we're assembling the pool from the split-off vdevs of
2627	 * an existing pool, we don't want to attach the spares & cache
2628	 * devices.
2629	 */
2630
2631	/*
2632	 * Load any hot spares for this pool.
2633	 */
2634	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2635	if (error != 0 && error != ENOENT)
2636		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2637	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2638		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2639		if (load_nvlist(spa, spa->spa_spares.sav_object,
2640		    &spa->spa_spares.sav_config) != 0)
2641			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2642
2643		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2644		spa_load_spares(spa);
2645		spa_config_exit(spa, SCL_ALL, FTAG);
2646	} else if (error == 0) {
2647		spa->spa_spares.sav_sync = B_TRUE;
2648	}
2649
2650	/*
2651	 * Load any level 2 ARC devices for this pool.
2652	 */
2653	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2654	    &spa->spa_l2cache.sav_object);
2655	if (error != 0 && error != ENOENT)
2656		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2658		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2659		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2660		    &spa->spa_l2cache.sav_config) != 0)
2661			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2662
2663		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2664		spa_load_l2cache(spa);
2665		spa_config_exit(spa, SCL_ALL, FTAG);
2666	} else if (error == 0) {
2667		spa->spa_l2cache.sav_sync = B_TRUE;
2668	}
2669
2670	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2671
2672	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2673	if (error && error != ENOENT)
2674		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2675
2676	if (error == 0) {
2677		uint64_t autoreplace;
2678
2679		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2680		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2681		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2682		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2683		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2684		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2685		    &spa->spa_dedup_ditto);
2686
2687		spa->spa_autoreplace = (autoreplace != 0);
2688	}
2689
2690	/*
2691	 * If the 'autoreplace' property is set, then post a resource notifying
2692	 * the ZFS DE that it should not issue any faults for unopenable
2693	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2694	 * unopenable vdevs so that the normal autoreplace handler can take
2695	 * over.
2696	 */
2697	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2698		spa_check_removed(spa->spa_root_vdev);
2699		/*
2700		 * For the import case, this is done in spa_import(), because
2701		 * at this point we're using the spare definitions from
2702		 * the MOS config, not necessarily from the userland config.
2703		 */
2704		if (state != SPA_LOAD_IMPORT) {
2705			spa_aux_check_removed(&spa->spa_spares);
2706			spa_aux_check_removed(&spa->spa_l2cache);
2707		}
2708	}
2709
2710	/*
2711	 * Load the vdev state for all toplevel vdevs.
2712	 */
2713	vdev_load(rvd);
2714
2715	/*
2716	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2717	 */
2718	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2719	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2720	spa_config_exit(spa, SCL_ALL, FTAG);
2721
2722	/*
2723	 * Load the DDTs (dedup tables).
2724	 */
2725	error = ddt_load(spa);
2726	if (error != 0)
2727		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2728
2729	spa_update_dspace(spa);
2730
2731	/*
2732	 * Validate the config, using the MOS config to fill in any
2733	 * information which might be missing.  If we fail to validate
2734	 * the config then declare the pool unfit for use. If we're
2735	 * assembling a pool from a split, the log is not transferred
2736	 * over.
2737	 */
2738	if (type != SPA_IMPORT_ASSEMBLE) {
2739		nvlist_t *nvconfig;
2740
2741		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2742			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2743
2744		if (!spa_config_valid(spa, nvconfig)) {
2745			nvlist_free(nvconfig);
2746			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2747			    ENXIO));
2748		}
2749		nvlist_free(nvconfig);
2750
2751		/*
2752		 * Now that we've validated the config, check the state of the
2753		 * root vdev.  If it can't be opened, it indicates one or
2754		 * more toplevel vdevs are faulted.
2755		 */
2756		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2757			return (SET_ERROR(ENXIO));
2758
2759		if (spa_writeable(spa) && spa_check_logs(spa)) {
2760			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2761			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2762		}
2763	}
2764
2765	if (missing_feat_write) {
2766		ASSERT(state == SPA_LOAD_TRYIMPORT);
2767
2768		/*
2769		 * At this point, we know that we can open the pool in
2770		 * read-only mode but not read-write mode. We now have enough
2771		 * information and can return to userland.
2772		 */
2773		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2774	}
2775
2776	/*
2777	 * We've successfully opened the pool, verify that we're ready
2778	 * to start pushing transactions.
2779	 */
2780	if (state != SPA_LOAD_TRYIMPORT) {
2781		if (error = spa_load_verify(spa))
2782			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2783			    error));
2784	}
2785
2786	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2787	    spa->spa_load_max_txg == UINT64_MAX)) {
2788		dmu_tx_t *tx;
2789		int need_update = B_FALSE;
2790		dsl_pool_t *dp = spa_get_dsl(spa);
2791
2792		ASSERT(state != SPA_LOAD_TRYIMPORT);
2793
2794		/*
2795		 * Claim log blocks that haven't been committed yet.
2796		 * This must all happen in a single txg.
2797		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2798		 * invoked from zil_claim_log_block()'s i/o done callback.
2799		 * Price of rollback is that we abandon the log.
2800		 */
2801		spa->spa_claiming = B_TRUE;
2802
2803		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2804		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2805		    zil_claim, tx, DS_FIND_CHILDREN);
2806		dmu_tx_commit(tx);
2807
2808		spa->spa_claiming = B_FALSE;
2809
2810		spa_set_log_state(spa, SPA_LOG_GOOD);
2811		spa->spa_sync_on = B_TRUE;
2812		txg_sync_start(spa->spa_dsl_pool);
2813
2814		/*
2815		 * Wait for all claims to sync.  We sync up to the highest
2816		 * claimed log block birth time so that claimed log blocks
2817		 * don't appear to be from the future.  spa_claim_max_txg
2818		 * will have been set for us by either zil_check_log_chain()
2819		 * (invoked from spa_check_logs()) or zil_claim() above.
2820		 */
2821		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2822
2823		/*
2824		 * If the config cache is stale, or we have uninitialized
2825		 * metaslabs (see spa_vdev_add()), then update the config.
2826		 *
2827		 * If this is a verbatim import, trust the current
2828		 * in-core spa_config and update the disk labels.
2829		 */
2830		if (config_cache_txg != spa->spa_config_txg ||
2831		    state == SPA_LOAD_IMPORT ||
2832		    state == SPA_LOAD_RECOVER ||
2833		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2834			need_update = B_TRUE;
2835
2836		for (int c = 0; c < rvd->vdev_children; c++)
2837			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2838				need_update = B_TRUE;
2839
2840		/*
2841		 * Update the config cache asychronously in case we're the
2842		 * root pool, in which case the config cache isn't writable yet.
2843		 */
2844		if (need_update)
2845			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2846
2847		/*
2848		 * Check all DTLs to see if anything needs resilvering.
2849		 */
2850		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2851		    vdev_resilver_needed(rvd, NULL, NULL))
2852			spa_async_request(spa, SPA_ASYNC_RESILVER);
2853
2854		/*
2855		 * Log the fact that we booted up (so that we can detect if
2856		 * we rebooted in the middle of an operation).
2857		 */
2858		spa_history_log_version(spa, "open");
2859
2860		/*
2861		 * Delete any inconsistent datasets.
2862		 */
2863		(void) dmu_objset_find(spa_name(spa),
2864		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2865
2866		/*
2867		 * Clean up any stale temporary dataset userrefs.
2868		 */
2869		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2870	}
2871
2872	return (0);
2873}
2874
2875static int
2876spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2877{
2878	int mode = spa->spa_mode;
2879
2880	spa_unload(spa);
2881	spa_deactivate(spa);
2882
2883	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2884
2885	spa_activate(spa, mode);
2886	spa_async_suspend(spa);
2887
2888	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2889}
2890
2891/*
2892 * If spa_load() fails this function will try loading prior txg's. If
2893 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2894 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2895 * function will not rewind the pool and will return the same error as
2896 * spa_load().
2897 */
2898static int
2899spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2900    uint64_t max_request, int rewind_flags)
2901{
2902	nvlist_t *loadinfo = NULL;
2903	nvlist_t *config = NULL;
2904	int load_error, rewind_error;
2905	uint64_t safe_rewind_txg;
2906	uint64_t min_txg;
2907
2908	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2909		spa->spa_load_max_txg = spa->spa_load_txg;
2910		spa_set_log_state(spa, SPA_LOG_CLEAR);
2911	} else {
2912		spa->spa_load_max_txg = max_request;
2913		if (max_request != UINT64_MAX)
2914			spa->spa_extreme_rewind = B_TRUE;
2915	}
2916
2917	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2918	    mosconfig);
2919	if (load_error == 0)
2920		return (0);
2921
2922	if (spa->spa_root_vdev != NULL)
2923		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2924
2925	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2926	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2927
2928	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2929		nvlist_free(config);
2930		return (load_error);
2931	}
2932
2933	if (state == SPA_LOAD_RECOVER) {
2934		/* Price of rolling back is discarding txgs, including log */
2935		spa_set_log_state(spa, SPA_LOG_CLEAR);
2936	} else {
2937		/*
2938		 * If we aren't rolling back save the load info from our first
2939		 * import attempt so that we can restore it after attempting
2940		 * to rewind.
2941		 */
2942		loadinfo = spa->spa_load_info;
2943		spa->spa_load_info = fnvlist_alloc();
2944	}
2945
2946	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2947	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2948	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2949	    TXG_INITIAL : safe_rewind_txg;
2950
2951	/*
2952	 * Continue as long as we're finding errors, we're still within
2953	 * the acceptable rewind range, and we're still finding uberblocks
2954	 */
2955	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2956	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2957		if (spa->spa_load_max_txg < safe_rewind_txg)
2958			spa->spa_extreme_rewind = B_TRUE;
2959		rewind_error = spa_load_retry(spa, state, mosconfig);
2960	}
2961
2962	spa->spa_extreme_rewind = B_FALSE;
2963	spa->spa_load_max_txg = UINT64_MAX;
2964
2965	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2966		spa_config_set(spa, config);
2967
2968	if (state == SPA_LOAD_RECOVER) {
2969		ASSERT3P(loadinfo, ==, NULL);
2970		return (rewind_error);
2971	} else {
2972		/* Store the rewind info as part of the initial load info */
2973		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2974		    spa->spa_load_info);
2975
2976		/* Restore the initial load info */
2977		fnvlist_free(spa->spa_load_info);
2978		spa->spa_load_info = loadinfo;
2979
2980		return (load_error);
2981	}
2982}
2983
2984/*
2985 * Pool Open/Import
2986 *
2987 * The import case is identical to an open except that the configuration is sent
2988 * down from userland, instead of grabbed from the configuration cache.  For the
2989 * case of an open, the pool configuration will exist in the
2990 * POOL_STATE_UNINITIALIZED state.
2991 *
2992 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2993 * the same time open the pool, without having to keep around the spa_t in some
2994 * ambiguous state.
2995 */
2996static int
2997spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2998    nvlist_t **config)
2999{
3000	spa_t *spa;
3001	spa_load_state_t state = SPA_LOAD_OPEN;
3002	int error;
3003	int locked = B_FALSE;
3004	int firstopen = B_FALSE;
3005
3006	*spapp = NULL;
3007
3008	/*
3009	 * As disgusting as this is, we need to support recursive calls to this
3010	 * function because dsl_dir_open() is called during spa_load(), and ends
3011	 * up calling spa_open() again.  The real fix is to figure out how to
3012	 * avoid dsl_dir_open() calling this in the first place.
3013	 */
3014	if (mutex_owner(&spa_namespace_lock) != curthread) {
3015		mutex_enter(&spa_namespace_lock);
3016		locked = B_TRUE;
3017	}
3018
3019	if ((spa = spa_lookup(pool)) == NULL) {
3020		if (locked)
3021			mutex_exit(&spa_namespace_lock);
3022		return (SET_ERROR(ENOENT));
3023	}
3024
3025	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3026		zpool_rewind_policy_t policy;
3027
3028		firstopen = B_TRUE;
3029
3030		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3031		    &policy);
3032		if (policy.zrp_request & ZPOOL_DO_REWIND)
3033			state = SPA_LOAD_RECOVER;
3034
3035		spa_activate(spa, spa_mode_global);
3036
3037		if (state != SPA_LOAD_RECOVER)
3038			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3039
3040		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3041		    policy.zrp_request);
3042
3043		if (error == EBADF) {
3044			/*
3045			 * If vdev_validate() returns failure (indicated by
3046			 * EBADF), it indicates that one of the vdevs indicates
3047			 * that the pool has been exported or destroyed.  If
3048			 * this is the case, the config cache is out of sync and
3049			 * we should remove the pool from the namespace.
3050			 */
3051			spa_unload(spa);
3052			spa_deactivate(spa);
3053			spa_config_sync(spa, B_TRUE, B_TRUE);
3054			spa_remove(spa);
3055			if (locked)
3056				mutex_exit(&spa_namespace_lock);
3057			return (SET_ERROR(ENOENT));
3058		}
3059
3060		if (error) {
3061			/*
3062			 * We can't open the pool, but we still have useful
3063			 * information: the state of each vdev after the
3064			 * attempted vdev_open().  Return this to the user.
3065			 */
3066			if (config != NULL && spa->spa_config) {
3067				VERIFY(nvlist_dup(spa->spa_config, config,
3068				    KM_SLEEP) == 0);
3069				VERIFY(nvlist_add_nvlist(*config,
3070				    ZPOOL_CONFIG_LOAD_INFO,
3071				    spa->spa_load_info) == 0);
3072			}
3073			spa_unload(spa);
3074			spa_deactivate(spa);
3075			spa->spa_last_open_failed = error;
3076			if (locked)
3077				mutex_exit(&spa_namespace_lock);
3078			*spapp = NULL;
3079			return (error);
3080		}
3081	}
3082
3083	spa_open_ref(spa, tag);
3084
3085	if (config != NULL)
3086		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3087
3088	/*
3089	 * If we've recovered the pool, pass back any information we
3090	 * gathered while doing the load.
3091	 */
3092	if (state == SPA_LOAD_RECOVER) {
3093		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3094		    spa->spa_load_info) == 0);
3095	}
3096
3097	if (locked) {
3098		spa->spa_last_open_failed = 0;
3099		spa->spa_last_ubsync_txg = 0;
3100		spa->spa_load_txg = 0;
3101		mutex_exit(&spa_namespace_lock);
3102#ifdef __FreeBSD__
3103#ifdef _KERNEL
3104		if (firstopen)
3105			zvol_create_minors(spa->spa_name);
3106#endif
3107#endif
3108	}
3109
3110	*spapp = spa;
3111
3112	return (0);
3113}
3114
3115int
3116spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3117    nvlist_t **config)
3118{
3119	return (spa_open_common(name, spapp, tag, policy, config));
3120}
3121
3122int
3123spa_open(const char *name, spa_t **spapp, void *tag)
3124{
3125	return (spa_open_common(name, spapp, tag, NULL, NULL));
3126}
3127
3128/*
3129 * Lookup the given spa_t, incrementing the inject count in the process,
3130 * preventing it from being exported or destroyed.
3131 */
3132spa_t *
3133spa_inject_addref(char *name)
3134{
3135	spa_t *spa;
3136
3137	mutex_enter(&spa_namespace_lock);
3138	if ((spa = spa_lookup(name)) == NULL) {
3139		mutex_exit(&spa_namespace_lock);
3140		return (NULL);
3141	}
3142	spa->spa_inject_ref++;
3143	mutex_exit(&spa_namespace_lock);
3144
3145	return (spa);
3146}
3147
3148void
3149spa_inject_delref(spa_t *spa)
3150{
3151	mutex_enter(&spa_namespace_lock);
3152	spa->spa_inject_ref--;
3153	mutex_exit(&spa_namespace_lock);
3154}
3155
3156/*
3157 * Add spares device information to the nvlist.
3158 */
3159static void
3160spa_add_spares(spa_t *spa, nvlist_t *config)
3161{
3162	nvlist_t **spares;
3163	uint_t i, nspares;
3164	nvlist_t *nvroot;
3165	uint64_t guid;
3166	vdev_stat_t *vs;
3167	uint_t vsc;
3168	uint64_t pool;
3169
3170	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3171
3172	if (spa->spa_spares.sav_count == 0)
3173		return;
3174
3175	VERIFY(nvlist_lookup_nvlist(config,
3176	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3177	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3178	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3179	if (nspares != 0) {
3180		VERIFY(nvlist_add_nvlist_array(nvroot,
3181		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3182		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3183		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3184
3185		/*
3186		 * Go through and find any spares which have since been
3187		 * repurposed as an active spare.  If this is the case, update
3188		 * their status appropriately.
3189		 */
3190		for (i = 0; i < nspares; i++) {
3191			VERIFY(nvlist_lookup_uint64(spares[i],
3192			    ZPOOL_CONFIG_GUID, &guid) == 0);
3193			if (spa_spare_exists(guid, &pool, NULL) &&
3194			    pool != 0ULL) {
3195				VERIFY(nvlist_lookup_uint64_array(
3196				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3197				    (uint64_t **)&vs, &vsc) == 0);
3198				vs->vs_state = VDEV_STATE_CANT_OPEN;
3199				vs->vs_aux = VDEV_AUX_SPARED;
3200			}
3201		}
3202	}
3203}
3204
3205/*
3206 * Add l2cache device information to the nvlist, including vdev stats.
3207 */
3208static void
3209spa_add_l2cache(spa_t *spa, nvlist_t *config)
3210{
3211	nvlist_t **l2cache;
3212	uint_t i, j, nl2cache;
3213	nvlist_t *nvroot;
3214	uint64_t guid;
3215	vdev_t *vd;
3216	vdev_stat_t *vs;
3217	uint_t vsc;
3218
3219	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3220
3221	if (spa->spa_l2cache.sav_count == 0)
3222		return;
3223
3224	VERIFY(nvlist_lookup_nvlist(config,
3225	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3226	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3227	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3228	if (nl2cache != 0) {
3229		VERIFY(nvlist_add_nvlist_array(nvroot,
3230		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3231		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3232		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3233
3234		/*
3235		 * Update level 2 cache device stats.
3236		 */
3237
3238		for (i = 0; i < nl2cache; i++) {
3239			VERIFY(nvlist_lookup_uint64(l2cache[i],
3240			    ZPOOL_CONFIG_GUID, &guid) == 0);
3241
3242			vd = NULL;
3243			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3244				if (guid ==
3245				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3246					vd = spa->spa_l2cache.sav_vdevs[j];
3247					break;
3248				}
3249			}
3250			ASSERT(vd != NULL);
3251
3252			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3253			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3254			    == 0);
3255			vdev_get_stats(vd, vs);
3256		}
3257	}
3258}
3259
3260static void
3261spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3262{
3263	nvlist_t *features;
3264	zap_cursor_t zc;
3265	zap_attribute_t za;
3266
3267	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3268	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3269
3270	/* We may be unable to read features if pool is suspended. */
3271	if (spa_suspended(spa))
3272		goto out;
3273
3274	if (spa->spa_feat_for_read_obj != 0) {
3275		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3276		    spa->spa_feat_for_read_obj);
3277		    zap_cursor_retrieve(&zc, &za) == 0;
3278		    zap_cursor_advance(&zc)) {
3279			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3280			    za.za_num_integers == 1);
3281			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3282			    za.za_first_integer));
3283		}
3284		zap_cursor_fini(&zc);
3285	}
3286
3287	if (spa->spa_feat_for_write_obj != 0) {
3288		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3289		    spa->spa_feat_for_write_obj);
3290		    zap_cursor_retrieve(&zc, &za) == 0;
3291		    zap_cursor_advance(&zc)) {
3292			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3293			    za.za_num_integers == 1);
3294			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3295			    za.za_first_integer));
3296		}
3297		zap_cursor_fini(&zc);
3298	}
3299
3300out:
3301	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3302	    features) == 0);
3303	nvlist_free(features);
3304}
3305
3306int
3307spa_get_stats(const char *name, nvlist_t **config,
3308    char *altroot, size_t buflen)
3309{
3310	int error;
3311	spa_t *spa;
3312
3313	*config = NULL;
3314	error = spa_open_common(name, &spa, FTAG, NULL, config);
3315
3316	if (spa != NULL) {
3317		/*
3318		 * This still leaves a window of inconsistency where the spares
3319		 * or l2cache devices could change and the config would be
3320		 * self-inconsistent.
3321		 */
3322		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3323
3324		if (*config != NULL) {
3325			uint64_t loadtimes[2];
3326
3327			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3328			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3329			VERIFY(nvlist_add_uint64_array(*config,
3330			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3331
3332			VERIFY(nvlist_add_uint64(*config,
3333			    ZPOOL_CONFIG_ERRCOUNT,
3334			    spa_get_errlog_size(spa)) == 0);
3335
3336			if (spa_suspended(spa))
3337				VERIFY(nvlist_add_uint64(*config,
3338				    ZPOOL_CONFIG_SUSPENDED,
3339				    spa->spa_failmode) == 0);
3340
3341			spa_add_spares(spa, *config);
3342			spa_add_l2cache(spa, *config);
3343			spa_add_feature_stats(spa, *config);
3344		}
3345	}
3346
3347	/*
3348	 * We want to get the alternate root even for faulted pools, so we cheat
3349	 * and call spa_lookup() directly.
3350	 */
3351	if (altroot) {
3352		if (spa == NULL) {
3353			mutex_enter(&spa_namespace_lock);
3354			spa = spa_lookup(name);
3355			if (spa)
3356				spa_altroot(spa, altroot, buflen);
3357			else
3358				altroot[0] = '\0';
3359			spa = NULL;
3360			mutex_exit(&spa_namespace_lock);
3361		} else {
3362			spa_altroot(spa, altroot, buflen);
3363		}
3364	}
3365
3366	if (spa != NULL) {
3367		spa_config_exit(spa, SCL_CONFIG, FTAG);
3368		spa_close(spa, FTAG);
3369	}
3370
3371	return (error);
3372}
3373
3374/*
3375 * Validate that the auxiliary device array is well formed.  We must have an
3376 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3377 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3378 * specified, as long as they are well-formed.
3379 */
3380static int
3381spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3382    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3383    vdev_labeltype_t label)
3384{
3385	nvlist_t **dev;
3386	uint_t i, ndev;
3387	vdev_t *vd;
3388	int error;
3389
3390	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3391
3392	/*
3393	 * It's acceptable to have no devs specified.
3394	 */
3395	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3396		return (0);
3397
3398	if (ndev == 0)
3399		return (SET_ERROR(EINVAL));
3400
3401	/*
3402	 * Make sure the pool is formatted with a version that supports this
3403	 * device type.
3404	 */
3405	if (spa_version(spa) < version)
3406		return (SET_ERROR(ENOTSUP));
3407
3408	/*
3409	 * Set the pending device list so we correctly handle device in-use
3410	 * checking.
3411	 */
3412	sav->sav_pending = dev;
3413	sav->sav_npending = ndev;
3414
3415	for (i = 0; i < ndev; i++) {
3416		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3417		    mode)) != 0)
3418			goto out;
3419
3420		if (!vd->vdev_ops->vdev_op_leaf) {
3421			vdev_free(vd);
3422			error = SET_ERROR(EINVAL);
3423			goto out;
3424		}
3425
3426		/*
3427		 * The L2ARC currently only supports disk devices in
3428		 * kernel context.  For user-level testing, we allow it.
3429		 */
3430#ifdef _KERNEL
3431		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3432		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3433			error = SET_ERROR(ENOTBLK);
3434			vdev_free(vd);
3435			goto out;
3436		}
3437#endif
3438		vd->vdev_top = vd;
3439
3440		if ((error = vdev_open(vd)) == 0 &&
3441		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3442			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3443			    vd->vdev_guid) == 0);
3444		}
3445
3446		vdev_free(vd);
3447
3448		if (error &&
3449		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3450			goto out;
3451		else
3452			error = 0;
3453	}
3454
3455out:
3456	sav->sav_pending = NULL;
3457	sav->sav_npending = 0;
3458	return (error);
3459}
3460
3461static int
3462spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3463{
3464	int error;
3465
3466	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3467
3468	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3469	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3470	    VDEV_LABEL_SPARE)) != 0) {
3471		return (error);
3472	}
3473
3474	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3475	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3476	    VDEV_LABEL_L2CACHE));
3477}
3478
3479static void
3480spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3481    const char *config)
3482{
3483	int i;
3484
3485	if (sav->sav_config != NULL) {
3486		nvlist_t **olddevs;
3487		uint_t oldndevs;
3488		nvlist_t **newdevs;
3489
3490		/*
3491		 * Generate new dev list by concatentating with the
3492		 * current dev list.
3493		 */
3494		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3495		    &olddevs, &oldndevs) == 0);
3496
3497		newdevs = kmem_alloc(sizeof (void *) *
3498		    (ndevs + oldndevs), KM_SLEEP);
3499		for (i = 0; i < oldndevs; i++)
3500			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3501			    KM_SLEEP) == 0);
3502		for (i = 0; i < ndevs; i++)
3503			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3504			    KM_SLEEP) == 0);
3505
3506		VERIFY(nvlist_remove(sav->sav_config, config,
3507		    DATA_TYPE_NVLIST_ARRAY) == 0);
3508
3509		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3510		    config, newdevs, ndevs + oldndevs) == 0);
3511		for (i = 0; i < oldndevs + ndevs; i++)
3512			nvlist_free(newdevs[i]);
3513		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3514	} else {
3515		/*
3516		 * Generate a new dev list.
3517		 */
3518		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3519		    KM_SLEEP) == 0);
3520		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3521		    devs, ndevs) == 0);
3522	}
3523}
3524
3525/*
3526 * Stop and drop level 2 ARC devices
3527 */
3528void
3529spa_l2cache_drop(spa_t *spa)
3530{
3531	vdev_t *vd;
3532	int i;
3533	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3534
3535	for (i = 0; i < sav->sav_count; i++) {
3536		uint64_t pool;
3537
3538		vd = sav->sav_vdevs[i];
3539		ASSERT(vd != NULL);
3540
3541		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3542		    pool != 0ULL && l2arc_vdev_present(vd))
3543			l2arc_remove_vdev(vd);
3544	}
3545}
3546
3547/*
3548 * Pool Creation
3549 */
3550int
3551spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3552    nvlist_t *zplprops)
3553{
3554	spa_t *spa;
3555	char *altroot = NULL;
3556	vdev_t *rvd;
3557	dsl_pool_t *dp;
3558	dmu_tx_t *tx;
3559	int error = 0;
3560	uint64_t txg = TXG_INITIAL;
3561	nvlist_t **spares, **l2cache;
3562	uint_t nspares, nl2cache;
3563	uint64_t version, obj;
3564	boolean_t has_features;
3565
3566	/*
3567	 * If this pool already exists, return failure.
3568	 */
3569	mutex_enter(&spa_namespace_lock);
3570	if (spa_lookup(pool) != NULL) {
3571		mutex_exit(&spa_namespace_lock);
3572		return (SET_ERROR(EEXIST));
3573	}
3574
3575	/*
3576	 * Allocate a new spa_t structure.
3577	 */
3578	(void) nvlist_lookup_string(props,
3579	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3580	spa = spa_add(pool, NULL, altroot);
3581	spa_activate(spa, spa_mode_global);
3582
3583	if (props && (error = spa_prop_validate(spa, props))) {
3584		spa_deactivate(spa);
3585		spa_remove(spa);
3586		mutex_exit(&spa_namespace_lock);
3587		return (error);
3588	}
3589
3590	has_features = B_FALSE;
3591	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3592	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3593		if (zpool_prop_feature(nvpair_name(elem)))
3594			has_features = B_TRUE;
3595	}
3596
3597	if (has_features || nvlist_lookup_uint64(props,
3598	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3599		version = SPA_VERSION;
3600	}
3601	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3602
3603	spa->spa_first_txg = txg;
3604	spa->spa_uberblock.ub_txg = txg - 1;
3605	spa->spa_uberblock.ub_version = version;
3606	spa->spa_ubsync = spa->spa_uberblock;
3607
3608	/*
3609	 * Create "The Godfather" zio to hold all async IOs
3610	 */
3611	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3612	    KM_SLEEP);
3613	for (int i = 0; i < max_ncpus; i++) {
3614		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3615		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3616		    ZIO_FLAG_GODFATHER);
3617	}
3618
3619	/*
3620	 * Create the root vdev.
3621	 */
3622	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3623
3624	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3625
3626	ASSERT(error != 0 || rvd != NULL);
3627	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3628
3629	if (error == 0 && !zfs_allocatable_devs(nvroot))
3630		error = SET_ERROR(EINVAL);
3631
3632	if (error == 0 &&
3633	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3634	    (error = spa_validate_aux(spa, nvroot, txg,
3635	    VDEV_ALLOC_ADD)) == 0) {
3636		for (int c = 0; c < rvd->vdev_children; c++) {
3637			vdev_ashift_optimize(rvd->vdev_child[c]);
3638			vdev_metaslab_set_size(rvd->vdev_child[c]);
3639			vdev_expand(rvd->vdev_child[c], txg);
3640		}
3641	}
3642
3643	spa_config_exit(spa, SCL_ALL, FTAG);
3644
3645	if (error != 0) {
3646		spa_unload(spa);
3647		spa_deactivate(spa);
3648		spa_remove(spa);
3649		mutex_exit(&spa_namespace_lock);
3650		return (error);
3651	}
3652
3653	/*
3654	 * Get the list of spares, if specified.
3655	 */
3656	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3657	    &spares, &nspares) == 0) {
3658		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3659		    KM_SLEEP) == 0);
3660		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3661		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3662		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3663		spa_load_spares(spa);
3664		spa_config_exit(spa, SCL_ALL, FTAG);
3665		spa->spa_spares.sav_sync = B_TRUE;
3666	}
3667
3668	/*
3669	 * Get the list of level 2 cache devices, if specified.
3670	 */
3671	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3672	    &l2cache, &nl2cache) == 0) {
3673		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3674		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3675		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3676		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3678		spa_load_l2cache(spa);
3679		spa_config_exit(spa, SCL_ALL, FTAG);
3680		spa->spa_l2cache.sav_sync = B_TRUE;
3681	}
3682
3683	spa->spa_is_initializing = B_TRUE;
3684	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3685	spa->spa_meta_objset = dp->dp_meta_objset;
3686	spa->spa_is_initializing = B_FALSE;
3687
3688	/*
3689	 * Create DDTs (dedup tables).
3690	 */
3691	ddt_create(spa);
3692
3693	spa_update_dspace(spa);
3694
3695	tx = dmu_tx_create_assigned(dp, txg);
3696
3697	/*
3698	 * Create the pool config object.
3699	 */
3700	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3701	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3702	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3703
3704	if (zap_add(spa->spa_meta_objset,
3705	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3706	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3707		cmn_err(CE_PANIC, "failed to add pool config");
3708	}
3709
3710	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3711		spa_feature_create_zap_objects(spa, tx);
3712
3713	if (zap_add(spa->spa_meta_objset,
3714	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3715	    sizeof (uint64_t), 1, &version, tx) != 0) {
3716		cmn_err(CE_PANIC, "failed to add pool version");
3717	}
3718
3719	/* Newly created pools with the right version are always deflated. */
3720	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3721		spa->spa_deflate = TRUE;
3722		if (zap_add(spa->spa_meta_objset,
3723		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3724		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3725			cmn_err(CE_PANIC, "failed to add deflate");
3726		}
3727	}
3728
3729	/*
3730	 * Create the deferred-free bpobj.  Turn off compression
3731	 * because sync-to-convergence takes longer if the blocksize
3732	 * keeps changing.
3733	 */
3734	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3735	dmu_object_set_compress(spa->spa_meta_objset, obj,
3736	    ZIO_COMPRESS_OFF, tx);
3737	if (zap_add(spa->spa_meta_objset,
3738	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3739	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3740		cmn_err(CE_PANIC, "failed to add bpobj");
3741	}
3742	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3743	    spa->spa_meta_objset, obj));
3744
3745	/*
3746	 * Create the pool's history object.
3747	 */
3748	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3749		spa_history_create_obj(spa, tx);
3750
3751	/*
3752	 * Set pool properties.
3753	 */
3754	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3755	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3756	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3757	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3758
3759	if (props != NULL) {
3760		spa_configfile_set(spa, props, B_FALSE);
3761		spa_sync_props(props, tx);
3762	}
3763
3764	dmu_tx_commit(tx);
3765
3766	spa->spa_sync_on = B_TRUE;
3767	txg_sync_start(spa->spa_dsl_pool);
3768
3769	/*
3770	 * We explicitly wait for the first transaction to complete so that our
3771	 * bean counters are appropriately updated.
3772	 */
3773	txg_wait_synced(spa->spa_dsl_pool, txg);
3774
3775	spa_config_sync(spa, B_FALSE, B_TRUE);
3776
3777	spa_history_log_version(spa, "create");
3778
3779	/*
3780	 * Don't count references from objsets that are already closed
3781	 * and are making their way through the eviction process.
3782	 */
3783	spa_evicting_os_wait(spa);
3784	spa->spa_minref = refcount_count(&spa->spa_refcount);
3785
3786	mutex_exit(&spa_namespace_lock);
3787
3788	return (0);
3789}
3790
3791#ifdef _KERNEL
3792#ifdef illumos
3793/*
3794 * Get the root pool information from the root disk, then import the root pool
3795 * during the system boot up time.
3796 */
3797extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3798
3799static nvlist_t *
3800spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3801{
3802	nvlist_t *config;
3803	nvlist_t *nvtop, *nvroot;
3804	uint64_t pgid;
3805
3806	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3807		return (NULL);
3808
3809	/*
3810	 * Add this top-level vdev to the child array.
3811	 */
3812	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3813	    &nvtop) == 0);
3814	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3815	    &pgid) == 0);
3816	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3817
3818	/*
3819	 * Put this pool's top-level vdevs into a root vdev.
3820	 */
3821	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3822	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3823	    VDEV_TYPE_ROOT) == 0);
3824	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3825	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3826	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3827	    &nvtop, 1) == 0);
3828
3829	/*
3830	 * Replace the existing vdev_tree with the new root vdev in
3831	 * this pool's configuration (remove the old, add the new).
3832	 */
3833	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3834	nvlist_free(nvroot);
3835	return (config);
3836}
3837
3838/*
3839 * Walk the vdev tree and see if we can find a device with "better"
3840 * configuration. A configuration is "better" if the label on that
3841 * device has a more recent txg.
3842 */
3843static void
3844spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3845{
3846	for (int c = 0; c < vd->vdev_children; c++)
3847		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3848
3849	if (vd->vdev_ops->vdev_op_leaf) {
3850		nvlist_t *label;
3851		uint64_t label_txg;
3852
3853		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3854		    &label) != 0)
3855			return;
3856
3857		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3858		    &label_txg) == 0);
3859
3860		/*
3861		 * Do we have a better boot device?
3862		 */
3863		if (label_txg > *txg) {
3864			*txg = label_txg;
3865			*avd = vd;
3866		}
3867		nvlist_free(label);
3868	}
3869}
3870
3871/*
3872 * Import a root pool.
3873 *
3874 * For x86. devpath_list will consist of devid and/or physpath name of
3875 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3876 * The GRUB "findroot" command will return the vdev we should boot.
3877 *
3878 * For Sparc, devpath_list consists the physpath name of the booting device
3879 * no matter the rootpool is a single device pool or a mirrored pool.
3880 * e.g.
3881 *	"/pci@1f,0/ide@d/disk@0,0:a"
3882 */
3883int
3884spa_import_rootpool(char *devpath, char *devid)
3885{
3886	spa_t *spa;
3887	vdev_t *rvd, *bvd, *avd = NULL;
3888	nvlist_t *config, *nvtop;
3889	uint64_t guid, txg;
3890	char *pname;
3891	int error;
3892
3893	/*
3894	 * Read the label from the boot device and generate a configuration.
3895	 */
3896	config = spa_generate_rootconf(devpath, devid, &guid);
3897#if defined(_OBP) && defined(_KERNEL)
3898	if (config == NULL) {
3899		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3900			/* iscsi boot */
3901			get_iscsi_bootpath_phy(devpath);
3902			config = spa_generate_rootconf(devpath, devid, &guid);
3903		}
3904	}
3905#endif
3906	if (config == NULL) {
3907		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3908		    devpath);
3909		return (SET_ERROR(EIO));
3910	}
3911
3912	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3913	    &pname) == 0);
3914	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3915
3916	mutex_enter(&spa_namespace_lock);
3917	if ((spa = spa_lookup(pname)) != NULL) {
3918		/*
3919		 * Remove the existing root pool from the namespace so that we
3920		 * can replace it with the correct config we just read in.
3921		 */
3922		spa_remove(spa);
3923	}
3924
3925	spa = spa_add(pname, config, NULL);
3926	spa->spa_is_root = B_TRUE;
3927	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3928
3929	/*
3930	 * Build up a vdev tree based on the boot device's label config.
3931	 */
3932	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3933	    &nvtop) == 0);
3934	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3935	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3936	    VDEV_ALLOC_ROOTPOOL);
3937	spa_config_exit(spa, SCL_ALL, FTAG);
3938	if (error) {
3939		mutex_exit(&spa_namespace_lock);
3940		nvlist_free(config);
3941		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3942		    pname);
3943		return (error);
3944	}
3945
3946	/*
3947	 * Get the boot vdev.
3948	 */
3949	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3950		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3951		    (u_longlong_t)guid);
3952		error = SET_ERROR(ENOENT);
3953		goto out;
3954	}
3955
3956	/*
3957	 * Determine if there is a better boot device.
3958	 */
3959	avd = bvd;
3960	spa_alt_rootvdev(rvd, &avd, &txg);
3961	if (avd != bvd) {
3962		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3963		    "try booting from '%s'", avd->vdev_path);
3964		error = SET_ERROR(EINVAL);
3965		goto out;
3966	}
3967
3968	/*
3969	 * If the boot device is part of a spare vdev then ensure that
3970	 * we're booting off the active spare.
3971	 */
3972	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3973	    !bvd->vdev_isspare) {
3974		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3975		    "try booting from '%s'",
3976		    bvd->vdev_parent->
3977		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3978		error = SET_ERROR(EINVAL);
3979		goto out;
3980	}
3981
3982	error = 0;
3983out:
3984	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3985	vdev_free(rvd);
3986	spa_config_exit(spa, SCL_ALL, FTAG);
3987	mutex_exit(&spa_namespace_lock);
3988
3989	nvlist_free(config);
3990	return (error);
3991}
3992
3993#else	/* !illumos */
3994
3995extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3996    uint64_t *count);
3997
3998static nvlist_t *
3999spa_generate_rootconf(const char *name)
4000{
4001	nvlist_t **configs, **tops;
4002	nvlist_t *config;
4003	nvlist_t *best_cfg, *nvtop, *nvroot;
4004	uint64_t *holes;
4005	uint64_t best_txg;
4006	uint64_t nchildren;
4007	uint64_t pgid;
4008	uint64_t count;
4009	uint64_t i;
4010	uint_t   nholes;
4011
4012	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4013		return (NULL);
4014
4015	ASSERT3U(count, !=, 0);
4016	best_txg = 0;
4017	for (i = 0; i < count; i++) {
4018		uint64_t txg;
4019
4020		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4021		    &txg) == 0);
4022		if (txg > best_txg) {
4023			best_txg = txg;
4024			best_cfg = configs[i];
4025		}
4026	}
4027
4028	nchildren = 1;
4029	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4030	holes = NULL;
4031	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4032	    &holes, &nholes);
4033
4034	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4035	for (i = 0; i < nchildren; i++) {
4036		if (i >= count)
4037			break;
4038		if (configs[i] == NULL)
4039			continue;
4040		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4041		    &nvtop) == 0);
4042		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4043	}
4044	for (i = 0; holes != NULL && i < nholes; i++) {
4045		if (i >= nchildren)
4046			continue;
4047		if (tops[holes[i]] != NULL)
4048			continue;
4049		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4050		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4051		    VDEV_TYPE_HOLE) == 0);
4052		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4053		    holes[i]) == 0);
4054		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4055		    0) == 0);
4056	}
4057	for (i = 0; i < nchildren; i++) {
4058		if (tops[i] != NULL)
4059			continue;
4060		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4061		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4062		    VDEV_TYPE_MISSING) == 0);
4063		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4064		    i) == 0);
4065		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4066		    0) == 0);
4067	}
4068
4069	/*
4070	 * Create pool config based on the best vdev config.
4071	 */
4072	nvlist_dup(best_cfg, &config, KM_SLEEP);
4073
4074	/*
4075	 * Put this pool's top-level vdevs into a root vdev.
4076	 */
4077	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4078	    &pgid) == 0);
4079	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4080	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4081	    VDEV_TYPE_ROOT) == 0);
4082	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4083	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4084	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4085	    tops, nchildren) == 0);
4086
4087	/*
4088	 * Replace the existing vdev_tree with the new root vdev in
4089	 * this pool's configuration (remove the old, add the new).
4090	 */
4091	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4092
4093	/*
4094	 * Drop vdev config elements that should not be present at pool level.
4095	 */
4096	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4097	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4098
4099	for (i = 0; i < count; i++)
4100		nvlist_free(configs[i]);
4101	kmem_free(configs, count * sizeof(void *));
4102	for (i = 0; i < nchildren; i++)
4103		nvlist_free(tops[i]);
4104	kmem_free(tops, nchildren * sizeof(void *));
4105	nvlist_free(nvroot);
4106	return (config);
4107}
4108
4109int
4110spa_import_rootpool(const char *name)
4111{
4112	spa_t *spa;
4113	vdev_t *rvd, *bvd, *avd = NULL;
4114	nvlist_t *config, *nvtop;
4115	uint64_t txg;
4116	char *pname;
4117	int error;
4118
4119	/*
4120	 * Read the label from the boot device and generate a configuration.
4121	 */
4122	config = spa_generate_rootconf(name);
4123
4124	mutex_enter(&spa_namespace_lock);
4125	if (config != NULL) {
4126		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4127		    &pname) == 0 && strcmp(name, pname) == 0);
4128		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4129		    == 0);
4130
4131		if ((spa = spa_lookup(pname)) != NULL) {
4132			/*
4133			 * Remove the existing root pool from the namespace so
4134			 * that we can replace it with the correct config
4135			 * we just read in.
4136			 */
4137			spa_remove(spa);
4138		}
4139		spa = spa_add(pname, config, NULL);
4140
4141		/*
4142		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4143		 * via spa_version().
4144		 */
4145		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4146		    &spa->spa_ubsync.ub_version) != 0)
4147			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4148	} else if ((spa = spa_lookup(name)) == NULL) {
4149		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4150		    name);
4151		return (EIO);
4152	} else {
4153		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4154	}
4155	spa->spa_is_root = B_TRUE;
4156	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4157
4158	/*
4159	 * Build up a vdev tree based on the boot device's label config.
4160	 */
4161	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4162	    &nvtop) == 0);
4163	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4164	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4165	    VDEV_ALLOC_ROOTPOOL);
4166	spa_config_exit(spa, SCL_ALL, FTAG);
4167	if (error) {
4168		mutex_exit(&spa_namespace_lock);
4169		nvlist_free(config);
4170		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4171		    pname);
4172		return (error);
4173	}
4174
4175	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4176	vdev_free(rvd);
4177	spa_config_exit(spa, SCL_ALL, FTAG);
4178	mutex_exit(&spa_namespace_lock);
4179
4180	nvlist_free(config);
4181	return (0);
4182}
4183
4184#endif	/* illumos */
4185#endif	/* _KERNEL */
4186
4187/*
4188 * Import a non-root pool into the system.
4189 */
4190int
4191spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4192{
4193	spa_t *spa;
4194	char *altroot = NULL;
4195	spa_load_state_t state = SPA_LOAD_IMPORT;
4196	zpool_rewind_policy_t policy;
4197	uint64_t mode = spa_mode_global;
4198	uint64_t readonly = B_FALSE;
4199	int error;
4200	nvlist_t *nvroot;
4201	nvlist_t **spares, **l2cache;
4202	uint_t nspares, nl2cache;
4203
4204	/*
4205	 * If a pool with this name exists, return failure.
4206	 */
4207	mutex_enter(&spa_namespace_lock);
4208	if (spa_lookup(pool) != NULL) {
4209		mutex_exit(&spa_namespace_lock);
4210		return (SET_ERROR(EEXIST));
4211	}
4212
4213	/*
4214	 * Create and initialize the spa structure.
4215	 */
4216	(void) nvlist_lookup_string(props,
4217	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4218	(void) nvlist_lookup_uint64(props,
4219	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4220	if (readonly)
4221		mode = FREAD;
4222	spa = spa_add(pool, config, altroot);
4223	spa->spa_import_flags = flags;
4224
4225	/*
4226	 * Verbatim import - Take a pool and insert it into the namespace
4227	 * as if it had been loaded at boot.
4228	 */
4229	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4230		if (props != NULL)
4231			spa_configfile_set(spa, props, B_FALSE);
4232
4233		spa_config_sync(spa, B_FALSE, B_TRUE);
4234
4235		mutex_exit(&spa_namespace_lock);
4236		return (0);
4237	}
4238
4239	spa_activate(spa, mode);
4240
4241	/*
4242	 * Don't start async tasks until we know everything is healthy.
4243	 */
4244	spa_async_suspend(spa);
4245
4246	zpool_get_rewind_policy(config, &policy);
4247	if (policy.zrp_request & ZPOOL_DO_REWIND)
4248		state = SPA_LOAD_RECOVER;
4249
4250	/*
4251	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4252	 * because the user-supplied config is actually the one to trust when
4253	 * doing an import.
4254	 */
4255	if (state != SPA_LOAD_RECOVER)
4256		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4257
4258	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4259	    policy.zrp_request);
4260
4261	/*
4262	 * Propagate anything learned while loading the pool and pass it
4263	 * back to caller (i.e. rewind info, missing devices, etc).
4264	 */
4265	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4266	    spa->spa_load_info) == 0);
4267
4268	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4269	/*
4270	 * Toss any existing sparelist, as it doesn't have any validity
4271	 * anymore, and conflicts with spa_has_spare().
4272	 */
4273	if (spa->spa_spares.sav_config) {
4274		nvlist_free(spa->spa_spares.sav_config);
4275		spa->spa_spares.sav_config = NULL;
4276		spa_load_spares(spa);
4277	}
4278	if (spa->spa_l2cache.sav_config) {
4279		nvlist_free(spa->spa_l2cache.sav_config);
4280		spa->spa_l2cache.sav_config = NULL;
4281		spa_load_l2cache(spa);
4282	}
4283
4284	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4285	    &nvroot) == 0);
4286	if (error == 0)
4287		error = spa_validate_aux(spa, nvroot, -1ULL,
4288		    VDEV_ALLOC_SPARE);
4289	if (error == 0)
4290		error = spa_validate_aux(spa, nvroot, -1ULL,
4291		    VDEV_ALLOC_L2CACHE);
4292	spa_config_exit(spa, SCL_ALL, FTAG);
4293
4294	if (props != NULL)
4295		spa_configfile_set(spa, props, B_FALSE);
4296
4297	if (error != 0 || (props && spa_writeable(spa) &&
4298	    (error = spa_prop_set(spa, props)))) {
4299		spa_unload(spa);
4300		spa_deactivate(spa);
4301		spa_remove(spa);
4302		mutex_exit(&spa_namespace_lock);
4303		return (error);
4304	}
4305
4306	spa_async_resume(spa);
4307
4308	/*
4309	 * Override any spares and level 2 cache devices as specified by
4310	 * the user, as these may have correct device names/devids, etc.
4311	 */
4312	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4313	    &spares, &nspares) == 0) {
4314		if (spa->spa_spares.sav_config)
4315			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4316			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4317		else
4318			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4319			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4320		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4321		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4322		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4323		spa_load_spares(spa);
4324		spa_config_exit(spa, SCL_ALL, FTAG);
4325		spa->spa_spares.sav_sync = B_TRUE;
4326	}
4327	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4328	    &l2cache, &nl2cache) == 0) {
4329		if (spa->spa_l2cache.sav_config)
4330			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4331			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4332		else
4333			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4334			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4335		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4336		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4337		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4338		spa_load_l2cache(spa);
4339		spa_config_exit(spa, SCL_ALL, FTAG);
4340		spa->spa_l2cache.sav_sync = B_TRUE;
4341	}
4342
4343	/*
4344	 * Check for any removed devices.
4345	 */
4346	if (spa->spa_autoreplace) {
4347		spa_aux_check_removed(&spa->spa_spares);
4348		spa_aux_check_removed(&spa->spa_l2cache);
4349	}
4350
4351	if (spa_writeable(spa)) {
4352		/*
4353		 * Update the config cache to include the newly-imported pool.
4354		 */
4355		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4356	}
4357
4358	/*
4359	 * It's possible that the pool was expanded while it was exported.
4360	 * We kick off an async task to handle this for us.
4361	 */
4362	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4363
4364	mutex_exit(&spa_namespace_lock);
4365	spa_history_log_version(spa, "import");
4366
4367#ifdef __FreeBSD__
4368#ifdef _KERNEL
4369	zvol_create_minors(pool);
4370#endif
4371#endif
4372	return (0);
4373}
4374
4375nvlist_t *
4376spa_tryimport(nvlist_t *tryconfig)
4377{
4378	nvlist_t *config = NULL;
4379	char *poolname;
4380	spa_t *spa;
4381	uint64_t state;
4382	int error;
4383
4384	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4385		return (NULL);
4386
4387	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4388		return (NULL);
4389
4390	/*
4391	 * Create and initialize the spa structure.
4392	 */
4393	mutex_enter(&spa_namespace_lock);
4394	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4395	spa_activate(spa, FREAD);
4396
4397	/*
4398	 * Pass off the heavy lifting to spa_load().
4399	 * Pass TRUE for mosconfig because the user-supplied config
4400	 * is actually the one to trust when doing an import.
4401	 */
4402	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4403
4404	/*
4405	 * If 'tryconfig' was at least parsable, return the current config.
4406	 */
4407	if (spa->spa_root_vdev != NULL) {
4408		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4409		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4410		    poolname) == 0);
4411		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4412		    state) == 0);
4413		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4414		    spa->spa_uberblock.ub_timestamp) == 0);
4415		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4416		    spa->spa_load_info) == 0);
4417
4418		/*
4419		 * If the bootfs property exists on this pool then we
4420		 * copy it out so that external consumers can tell which
4421		 * pools are bootable.
4422		 */
4423		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4424			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4425
4426			/*
4427			 * We have to play games with the name since the
4428			 * pool was opened as TRYIMPORT_NAME.
4429			 */
4430			if (dsl_dsobj_to_dsname(spa_name(spa),
4431			    spa->spa_bootfs, tmpname) == 0) {
4432				char *cp;
4433				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4434
4435				cp = strchr(tmpname, '/');
4436				if (cp == NULL) {
4437					(void) strlcpy(dsname, tmpname,
4438					    MAXPATHLEN);
4439				} else {
4440					(void) snprintf(dsname, MAXPATHLEN,
4441					    "%s/%s", poolname, ++cp);
4442				}
4443				VERIFY(nvlist_add_string(config,
4444				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4445				kmem_free(dsname, MAXPATHLEN);
4446			}
4447			kmem_free(tmpname, MAXPATHLEN);
4448		}
4449
4450		/*
4451		 * Add the list of hot spares and level 2 cache devices.
4452		 */
4453		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4454		spa_add_spares(spa, config);
4455		spa_add_l2cache(spa, config);
4456		spa_config_exit(spa, SCL_CONFIG, FTAG);
4457	}
4458
4459	spa_unload(spa);
4460	spa_deactivate(spa);
4461	spa_remove(spa);
4462	mutex_exit(&spa_namespace_lock);
4463
4464	return (config);
4465}
4466
4467/*
4468 * Pool export/destroy
4469 *
4470 * The act of destroying or exporting a pool is very simple.  We make sure there
4471 * is no more pending I/O and any references to the pool are gone.  Then, we
4472 * update the pool state and sync all the labels to disk, removing the
4473 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4474 * we don't sync the labels or remove the configuration cache.
4475 */
4476static int
4477spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4478    boolean_t force, boolean_t hardforce)
4479{
4480	spa_t *spa;
4481
4482	if (oldconfig)
4483		*oldconfig = NULL;
4484
4485	if (!(spa_mode_global & FWRITE))
4486		return (SET_ERROR(EROFS));
4487
4488	mutex_enter(&spa_namespace_lock);
4489	if ((spa = spa_lookup(pool)) == NULL) {
4490		mutex_exit(&spa_namespace_lock);
4491		return (SET_ERROR(ENOENT));
4492	}
4493
4494	/*
4495	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4496	 * reacquire the namespace lock, and see if we can export.
4497	 */
4498	spa_open_ref(spa, FTAG);
4499	mutex_exit(&spa_namespace_lock);
4500	spa_async_suspend(spa);
4501	mutex_enter(&spa_namespace_lock);
4502	spa_close(spa, FTAG);
4503
4504	/*
4505	 * The pool will be in core if it's openable,
4506	 * in which case we can modify its state.
4507	 */
4508	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4509		/*
4510		 * Objsets may be open only because they're dirty, so we
4511		 * have to force it to sync before checking spa_refcnt.
4512		 */
4513		txg_wait_synced(spa->spa_dsl_pool, 0);
4514		spa_evicting_os_wait(spa);
4515
4516		/*
4517		 * A pool cannot be exported or destroyed if there are active
4518		 * references.  If we are resetting a pool, allow references by
4519		 * fault injection handlers.
4520		 */
4521		if (!spa_refcount_zero(spa) ||
4522		    (spa->spa_inject_ref != 0 &&
4523		    new_state != POOL_STATE_UNINITIALIZED)) {
4524			spa_async_resume(spa);
4525			mutex_exit(&spa_namespace_lock);
4526			return (SET_ERROR(EBUSY));
4527		}
4528
4529		/*
4530		 * A pool cannot be exported if it has an active shared spare.
4531		 * This is to prevent other pools stealing the active spare
4532		 * from an exported pool. At user's own will, such pool can
4533		 * be forcedly exported.
4534		 */
4535		if (!force && new_state == POOL_STATE_EXPORTED &&
4536		    spa_has_active_shared_spare(spa)) {
4537			spa_async_resume(spa);
4538			mutex_exit(&spa_namespace_lock);
4539			return (SET_ERROR(EXDEV));
4540		}
4541
4542		/*
4543		 * We want this to be reflected on every label,
4544		 * so mark them all dirty.  spa_unload() will do the
4545		 * final sync that pushes these changes out.
4546		 */
4547		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4548			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4549			spa->spa_state = new_state;
4550			spa->spa_final_txg = spa_last_synced_txg(spa) +
4551			    TXG_DEFER_SIZE + 1;
4552			vdev_config_dirty(spa->spa_root_vdev);
4553			spa_config_exit(spa, SCL_ALL, FTAG);
4554		}
4555	}
4556
4557	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4558
4559	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4560		spa_unload(spa);
4561		spa_deactivate(spa);
4562	}
4563
4564	if (oldconfig && spa->spa_config)
4565		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4566
4567	if (new_state != POOL_STATE_UNINITIALIZED) {
4568		if (!hardforce)
4569			spa_config_sync(spa, B_TRUE, B_TRUE);
4570		spa_remove(spa);
4571	}
4572	mutex_exit(&spa_namespace_lock);
4573
4574	return (0);
4575}
4576
4577/*
4578 * Destroy a storage pool.
4579 */
4580int
4581spa_destroy(char *pool)
4582{
4583	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4584	    B_FALSE, B_FALSE));
4585}
4586
4587/*
4588 * Export a storage pool.
4589 */
4590int
4591spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4592    boolean_t hardforce)
4593{
4594	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4595	    force, hardforce));
4596}
4597
4598/*
4599 * Similar to spa_export(), this unloads the spa_t without actually removing it
4600 * from the namespace in any way.
4601 */
4602int
4603spa_reset(char *pool)
4604{
4605	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4606	    B_FALSE, B_FALSE));
4607}
4608
4609/*
4610 * ==========================================================================
4611 * Device manipulation
4612 * ==========================================================================
4613 */
4614
4615/*
4616 * Add a device to a storage pool.
4617 */
4618int
4619spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4620{
4621	uint64_t txg, id;
4622	int error;
4623	vdev_t *rvd = spa->spa_root_vdev;
4624	vdev_t *vd, *tvd;
4625	nvlist_t **spares, **l2cache;
4626	uint_t nspares, nl2cache;
4627
4628	ASSERT(spa_writeable(spa));
4629
4630	txg = spa_vdev_enter(spa);
4631
4632	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4633	    VDEV_ALLOC_ADD)) != 0)
4634		return (spa_vdev_exit(spa, NULL, txg, error));
4635
4636	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4637
4638	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4639	    &nspares) != 0)
4640		nspares = 0;
4641
4642	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4643	    &nl2cache) != 0)
4644		nl2cache = 0;
4645
4646	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4647		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4648
4649	if (vd->vdev_children != 0 &&
4650	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4651		return (spa_vdev_exit(spa, vd, txg, error));
4652
4653	/*
4654	 * We must validate the spares and l2cache devices after checking the
4655	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4656	 */
4657	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4658		return (spa_vdev_exit(spa, vd, txg, error));
4659
4660	/*
4661	 * Transfer each new top-level vdev from vd to rvd.
4662	 */
4663	for (int c = 0; c < vd->vdev_children; c++) {
4664
4665		/*
4666		 * Set the vdev id to the first hole, if one exists.
4667		 */
4668		for (id = 0; id < rvd->vdev_children; id++) {
4669			if (rvd->vdev_child[id]->vdev_ishole) {
4670				vdev_free(rvd->vdev_child[id]);
4671				break;
4672			}
4673		}
4674		tvd = vd->vdev_child[c];
4675		vdev_remove_child(vd, tvd);
4676		tvd->vdev_id = id;
4677		vdev_add_child(rvd, tvd);
4678		vdev_config_dirty(tvd);
4679	}
4680
4681	if (nspares != 0) {
4682		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4683		    ZPOOL_CONFIG_SPARES);
4684		spa_load_spares(spa);
4685		spa->spa_spares.sav_sync = B_TRUE;
4686	}
4687
4688	if (nl2cache != 0) {
4689		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4690		    ZPOOL_CONFIG_L2CACHE);
4691		spa_load_l2cache(spa);
4692		spa->spa_l2cache.sav_sync = B_TRUE;
4693	}
4694
4695	/*
4696	 * We have to be careful when adding new vdevs to an existing pool.
4697	 * If other threads start allocating from these vdevs before we
4698	 * sync the config cache, and we lose power, then upon reboot we may
4699	 * fail to open the pool because there are DVAs that the config cache
4700	 * can't translate.  Therefore, we first add the vdevs without
4701	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4702	 * and then let spa_config_update() initialize the new metaslabs.
4703	 *
4704	 * spa_load() checks for added-but-not-initialized vdevs, so that
4705	 * if we lose power at any point in this sequence, the remaining
4706	 * steps will be completed the next time we load the pool.
4707	 */
4708	(void) spa_vdev_exit(spa, vd, txg, 0);
4709
4710	mutex_enter(&spa_namespace_lock);
4711	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4712	mutex_exit(&spa_namespace_lock);
4713
4714	return (0);
4715}
4716
4717/*
4718 * Attach a device to a mirror.  The arguments are the path to any device
4719 * in the mirror, and the nvroot for the new device.  If the path specifies
4720 * a device that is not mirrored, we automatically insert the mirror vdev.
4721 *
4722 * If 'replacing' is specified, the new device is intended to replace the
4723 * existing device; in this case the two devices are made into their own
4724 * mirror using the 'replacing' vdev, which is functionally identical to
4725 * the mirror vdev (it actually reuses all the same ops) but has a few
4726 * extra rules: you can't attach to it after it's been created, and upon
4727 * completion of resilvering, the first disk (the one being replaced)
4728 * is automatically detached.
4729 */
4730int
4731spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4732{
4733	uint64_t txg, dtl_max_txg;
4734	vdev_t *rvd = spa->spa_root_vdev;
4735	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4736	vdev_ops_t *pvops;
4737	char *oldvdpath, *newvdpath;
4738	int newvd_isspare;
4739	int error;
4740
4741	ASSERT(spa_writeable(spa));
4742
4743	txg = spa_vdev_enter(spa);
4744
4745	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4746
4747	if (oldvd == NULL)
4748		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4749
4750	if (!oldvd->vdev_ops->vdev_op_leaf)
4751		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4752
4753	pvd = oldvd->vdev_parent;
4754
4755	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4756	    VDEV_ALLOC_ATTACH)) != 0)
4757		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4758
4759	if (newrootvd->vdev_children != 1)
4760		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4761
4762	newvd = newrootvd->vdev_child[0];
4763
4764	if (!newvd->vdev_ops->vdev_op_leaf)
4765		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4766
4767	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4768		return (spa_vdev_exit(spa, newrootvd, txg, error));
4769
4770	/*
4771	 * Spares can't replace logs
4772	 */
4773	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4774		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4775
4776	if (!replacing) {
4777		/*
4778		 * For attach, the only allowable parent is a mirror or the root
4779		 * vdev.
4780		 */
4781		if (pvd->vdev_ops != &vdev_mirror_ops &&
4782		    pvd->vdev_ops != &vdev_root_ops)
4783			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4784
4785		pvops = &vdev_mirror_ops;
4786	} else {
4787		/*
4788		 * Active hot spares can only be replaced by inactive hot
4789		 * spares.
4790		 */
4791		if (pvd->vdev_ops == &vdev_spare_ops &&
4792		    oldvd->vdev_isspare &&
4793		    !spa_has_spare(spa, newvd->vdev_guid))
4794			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4795
4796		/*
4797		 * If the source is a hot spare, and the parent isn't already a
4798		 * spare, then we want to create a new hot spare.  Otherwise, we
4799		 * want to create a replacing vdev.  The user is not allowed to
4800		 * attach to a spared vdev child unless the 'isspare' state is
4801		 * the same (spare replaces spare, non-spare replaces
4802		 * non-spare).
4803		 */
4804		if (pvd->vdev_ops == &vdev_replacing_ops &&
4805		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4806			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4807		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4808		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4809			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4810		}
4811
4812		if (newvd->vdev_isspare)
4813			pvops = &vdev_spare_ops;
4814		else
4815			pvops = &vdev_replacing_ops;
4816	}
4817
4818	/*
4819	 * Make sure the new device is big enough.
4820	 */
4821	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4822		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4823
4824	/*
4825	 * The new device cannot have a higher alignment requirement
4826	 * than the top-level vdev.
4827	 */
4828	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4829		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4830
4831	/*
4832	 * If this is an in-place replacement, update oldvd's path and devid
4833	 * to make it distinguishable from newvd, and unopenable from now on.
4834	 */
4835	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4836		spa_strfree(oldvd->vdev_path);
4837		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4838		    KM_SLEEP);
4839		(void) sprintf(oldvd->vdev_path, "%s/%s",
4840		    newvd->vdev_path, "old");
4841		if (oldvd->vdev_devid != NULL) {
4842			spa_strfree(oldvd->vdev_devid);
4843			oldvd->vdev_devid = NULL;
4844		}
4845	}
4846
4847	/* mark the device being resilvered */
4848	newvd->vdev_resilver_txg = txg;
4849
4850	/*
4851	 * If the parent is not a mirror, or if we're replacing, insert the new
4852	 * mirror/replacing/spare vdev above oldvd.
4853	 */
4854	if (pvd->vdev_ops != pvops)
4855		pvd = vdev_add_parent(oldvd, pvops);
4856
4857	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4858	ASSERT(pvd->vdev_ops == pvops);
4859	ASSERT(oldvd->vdev_parent == pvd);
4860
4861	/*
4862	 * Extract the new device from its root and add it to pvd.
4863	 */
4864	vdev_remove_child(newrootvd, newvd);
4865	newvd->vdev_id = pvd->vdev_children;
4866	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4867	vdev_add_child(pvd, newvd);
4868
4869	tvd = newvd->vdev_top;
4870	ASSERT(pvd->vdev_top == tvd);
4871	ASSERT(tvd->vdev_parent == rvd);
4872
4873	vdev_config_dirty(tvd);
4874
4875	/*
4876	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4877	 * for any dmu_sync-ed blocks.  It will propagate upward when
4878	 * spa_vdev_exit() calls vdev_dtl_reassess().
4879	 */
4880	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4881
4882	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4883	    dtl_max_txg - TXG_INITIAL);
4884
4885	if (newvd->vdev_isspare) {
4886		spa_spare_activate(newvd);
4887		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4888	}
4889
4890	oldvdpath = spa_strdup(oldvd->vdev_path);
4891	newvdpath = spa_strdup(newvd->vdev_path);
4892	newvd_isspare = newvd->vdev_isspare;
4893
4894	/*
4895	 * Mark newvd's DTL dirty in this txg.
4896	 */
4897	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4898
4899	/*
4900	 * Schedule the resilver to restart in the future. We do this to
4901	 * ensure that dmu_sync-ed blocks have been stitched into the
4902	 * respective datasets.
4903	 */
4904	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4905
4906	/*
4907	 * Commit the config
4908	 */
4909	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4910
4911	spa_history_log_internal(spa, "vdev attach", NULL,
4912	    "%s vdev=%s %s vdev=%s",
4913	    replacing && newvd_isspare ? "spare in" :
4914	    replacing ? "replace" : "attach", newvdpath,
4915	    replacing ? "for" : "to", oldvdpath);
4916
4917	spa_strfree(oldvdpath);
4918	spa_strfree(newvdpath);
4919
4920	if (spa->spa_bootfs)
4921		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4922
4923	return (0);
4924}
4925
4926/*
4927 * Detach a device from a mirror or replacing vdev.
4928 *
4929 * If 'replace_done' is specified, only detach if the parent
4930 * is a replacing vdev.
4931 */
4932int
4933spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4934{
4935	uint64_t txg;
4936	int error;
4937	vdev_t *rvd = spa->spa_root_vdev;
4938	vdev_t *vd, *pvd, *cvd, *tvd;
4939	boolean_t unspare = B_FALSE;
4940	uint64_t unspare_guid = 0;
4941	char *vdpath;
4942
4943	ASSERT(spa_writeable(spa));
4944
4945	txg = spa_vdev_enter(spa);
4946
4947	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4948
4949	if (vd == NULL)
4950		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4951
4952	if (!vd->vdev_ops->vdev_op_leaf)
4953		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4954
4955	pvd = vd->vdev_parent;
4956
4957	/*
4958	 * If the parent/child relationship is not as expected, don't do it.
4959	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4960	 * vdev that's replacing B with C.  The user's intent in replacing
4961	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4962	 * the replace by detaching C, the expected behavior is to end up
4963	 * M(A,B).  But suppose that right after deciding to detach C,
4964	 * the replacement of B completes.  We would have M(A,C), and then
4965	 * ask to detach C, which would leave us with just A -- not what
4966	 * the user wanted.  To prevent this, we make sure that the
4967	 * parent/child relationship hasn't changed -- in this example,
4968	 * that C's parent is still the replacing vdev R.
4969	 */
4970	if (pvd->vdev_guid != pguid && pguid != 0)
4971		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4972
4973	/*
4974	 * Only 'replacing' or 'spare' vdevs can be replaced.
4975	 */
4976	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4977	    pvd->vdev_ops != &vdev_spare_ops)
4978		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4979
4980	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4981	    spa_version(spa) >= SPA_VERSION_SPARES);
4982
4983	/*
4984	 * Only mirror, replacing, and spare vdevs support detach.
4985	 */
4986	if (pvd->vdev_ops != &vdev_replacing_ops &&
4987	    pvd->vdev_ops != &vdev_mirror_ops &&
4988	    pvd->vdev_ops != &vdev_spare_ops)
4989		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4990
4991	/*
4992	 * If this device has the only valid copy of some data,
4993	 * we cannot safely detach it.
4994	 */
4995	if (vdev_dtl_required(vd))
4996		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4997
4998	ASSERT(pvd->vdev_children >= 2);
4999
5000	/*
5001	 * If we are detaching the second disk from a replacing vdev, then
5002	 * check to see if we changed the original vdev's path to have "/old"
5003	 * at the end in spa_vdev_attach().  If so, undo that change now.
5004	 */
5005	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5006	    vd->vdev_path != NULL) {
5007		size_t len = strlen(vd->vdev_path);
5008
5009		for (int c = 0; c < pvd->vdev_children; c++) {
5010			cvd = pvd->vdev_child[c];
5011
5012			if (cvd == vd || cvd->vdev_path == NULL)
5013				continue;
5014
5015			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5016			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5017				spa_strfree(cvd->vdev_path);
5018				cvd->vdev_path = spa_strdup(vd->vdev_path);
5019				break;
5020			}
5021		}
5022	}
5023
5024	/*
5025	 * If we are detaching the original disk from a spare, then it implies
5026	 * that the spare should become a real disk, and be removed from the
5027	 * active spare list for the pool.
5028	 */
5029	if (pvd->vdev_ops == &vdev_spare_ops &&
5030	    vd->vdev_id == 0 &&
5031	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5032		unspare = B_TRUE;
5033
5034	/*
5035	 * Erase the disk labels so the disk can be used for other things.
5036	 * This must be done after all other error cases are handled,
5037	 * but before we disembowel vd (so we can still do I/O to it).
5038	 * But if we can't do it, don't treat the error as fatal --
5039	 * it may be that the unwritability of the disk is the reason
5040	 * it's being detached!
5041	 */
5042	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5043
5044	/*
5045	 * Remove vd from its parent and compact the parent's children.
5046	 */
5047	vdev_remove_child(pvd, vd);
5048	vdev_compact_children(pvd);
5049
5050	/*
5051	 * Remember one of the remaining children so we can get tvd below.
5052	 */
5053	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5054
5055	/*
5056	 * If we need to remove the remaining child from the list of hot spares,
5057	 * do it now, marking the vdev as no longer a spare in the process.
5058	 * We must do this before vdev_remove_parent(), because that can
5059	 * change the GUID if it creates a new toplevel GUID.  For a similar
5060	 * reason, we must remove the spare now, in the same txg as the detach;
5061	 * otherwise someone could attach a new sibling, change the GUID, and
5062	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5063	 */
5064	if (unspare) {
5065		ASSERT(cvd->vdev_isspare);
5066		spa_spare_remove(cvd);
5067		unspare_guid = cvd->vdev_guid;
5068		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5069		cvd->vdev_unspare = B_TRUE;
5070	}
5071
5072	/*
5073	 * If the parent mirror/replacing vdev only has one child,
5074	 * the parent is no longer needed.  Remove it from the tree.
5075	 */
5076	if (pvd->vdev_children == 1) {
5077		if (pvd->vdev_ops == &vdev_spare_ops)
5078			cvd->vdev_unspare = B_FALSE;
5079		vdev_remove_parent(cvd);
5080	}
5081
5082
5083	/*
5084	 * We don't set tvd until now because the parent we just removed
5085	 * may have been the previous top-level vdev.
5086	 */
5087	tvd = cvd->vdev_top;
5088	ASSERT(tvd->vdev_parent == rvd);
5089
5090	/*
5091	 * Reevaluate the parent vdev state.
5092	 */
5093	vdev_propagate_state(cvd);
5094
5095	/*
5096	 * If the 'autoexpand' property is set on the pool then automatically
5097	 * try to expand the size of the pool. For example if the device we
5098	 * just detached was smaller than the others, it may be possible to
5099	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5100	 * first so that we can obtain the updated sizes of the leaf vdevs.
5101	 */
5102	if (spa->spa_autoexpand) {
5103		vdev_reopen(tvd);
5104		vdev_expand(tvd, txg);
5105	}
5106
5107	vdev_config_dirty(tvd);
5108
5109	/*
5110	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5111	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5112	 * But first make sure we're not on any *other* txg's DTL list, to
5113	 * prevent vd from being accessed after it's freed.
5114	 */
5115	vdpath = spa_strdup(vd->vdev_path);
5116	for (int t = 0; t < TXG_SIZE; t++)
5117		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5118	vd->vdev_detached = B_TRUE;
5119	vdev_dirty(tvd, VDD_DTL, vd, txg);
5120
5121	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5122
5123	/* hang on to the spa before we release the lock */
5124	spa_open_ref(spa, FTAG);
5125
5126	error = spa_vdev_exit(spa, vd, txg, 0);
5127
5128	spa_history_log_internal(spa, "detach", NULL,
5129	    "vdev=%s", vdpath);
5130	spa_strfree(vdpath);
5131
5132	/*
5133	 * If this was the removal of the original device in a hot spare vdev,
5134	 * then we want to go through and remove the device from the hot spare
5135	 * list of every other pool.
5136	 */
5137	if (unspare) {
5138		spa_t *altspa = NULL;
5139
5140		mutex_enter(&spa_namespace_lock);
5141		while ((altspa = spa_next(altspa)) != NULL) {
5142			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5143			    altspa == spa)
5144				continue;
5145
5146			spa_open_ref(altspa, FTAG);
5147			mutex_exit(&spa_namespace_lock);
5148			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5149			mutex_enter(&spa_namespace_lock);
5150			spa_close(altspa, FTAG);
5151		}
5152		mutex_exit(&spa_namespace_lock);
5153
5154		/* search the rest of the vdevs for spares to remove */
5155		spa_vdev_resilver_done(spa);
5156	}
5157
5158	/* all done with the spa; OK to release */
5159	mutex_enter(&spa_namespace_lock);
5160	spa_close(spa, FTAG);
5161	mutex_exit(&spa_namespace_lock);
5162
5163	return (error);
5164}
5165
5166/*
5167 * Split a set of devices from their mirrors, and create a new pool from them.
5168 */
5169int
5170spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5171    nvlist_t *props, boolean_t exp)
5172{
5173	int error = 0;
5174	uint64_t txg, *glist;
5175	spa_t *newspa;
5176	uint_t c, children, lastlog;
5177	nvlist_t **child, *nvl, *tmp;
5178	dmu_tx_t *tx;
5179	char *altroot = NULL;
5180	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5181	boolean_t activate_slog;
5182
5183	ASSERT(spa_writeable(spa));
5184
5185	txg = spa_vdev_enter(spa);
5186
5187	/* clear the log and flush everything up to now */
5188	activate_slog = spa_passivate_log(spa);
5189	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5190	error = spa_offline_log(spa);
5191	txg = spa_vdev_config_enter(spa);
5192
5193	if (activate_slog)
5194		spa_activate_log(spa);
5195
5196	if (error != 0)
5197		return (spa_vdev_exit(spa, NULL, txg, error));
5198
5199	/* check new spa name before going any further */
5200	if (spa_lookup(newname) != NULL)
5201		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5202
5203	/*
5204	 * scan through all the children to ensure they're all mirrors
5205	 */
5206	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5207	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5208	    &children) != 0)
5209		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5210
5211	/* first, check to ensure we've got the right child count */
5212	rvd = spa->spa_root_vdev;
5213	lastlog = 0;
5214	for (c = 0; c < rvd->vdev_children; c++) {
5215		vdev_t *vd = rvd->vdev_child[c];
5216
5217		/* don't count the holes & logs as children */
5218		if (vd->vdev_islog || vd->vdev_ishole) {
5219			if (lastlog == 0)
5220				lastlog = c;
5221			continue;
5222		}
5223
5224		lastlog = 0;
5225	}
5226	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5227		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5228
5229	/* next, ensure no spare or cache devices are part of the split */
5230	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5231	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5232		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5233
5234	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5235	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5236
5237	/* then, loop over each vdev and validate it */
5238	for (c = 0; c < children; c++) {
5239		uint64_t is_hole = 0;
5240
5241		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5242		    &is_hole);
5243
5244		if (is_hole != 0) {
5245			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5246			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5247				continue;
5248			} else {
5249				error = SET_ERROR(EINVAL);
5250				break;
5251			}
5252		}
5253
5254		/* which disk is going to be split? */
5255		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5256		    &glist[c]) != 0) {
5257			error = SET_ERROR(EINVAL);
5258			break;
5259		}
5260
5261		/* look it up in the spa */
5262		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5263		if (vml[c] == NULL) {
5264			error = SET_ERROR(ENODEV);
5265			break;
5266		}
5267
5268		/* make sure there's nothing stopping the split */
5269		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5270		    vml[c]->vdev_islog ||
5271		    vml[c]->vdev_ishole ||
5272		    vml[c]->vdev_isspare ||
5273		    vml[c]->vdev_isl2cache ||
5274		    !vdev_writeable(vml[c]) ||
5275		    vml[c]->vdev_children != 0 ||
5276		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5277		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5278			error = SET_ERROR(EINVAL);
5279			break;
5280		}
5281
5282		if (vdev_dtl_required(vml[c])) {
5283			error = SET_ERROR(EBUSY);
5284			break;
5285		}
5286
5287		/* we need certain info from the top level */
5288		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5289		    vml[c]->vdev_top->vdev_ms_array) == 0);
5290		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5291		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5292		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5293		    vml[c]->vdev_top->vdev_asize) == 0);
5294		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5295		    vml[c]->vdev_top->vdev_ashift) == 0);
5296	}
5297
5298	if (error != 0) {
5299		kmem_free(vml, children * sizeof (vdev_t *));
5300		kmem_free(glist, children * sizeof (uint64_t));
5301		return (spa_vdev_exit(spa, NULL, txg, error));
5302	}
5303
5304	/* stop writers from using the disks */
5305	for (c = 0; c < children; c++) {
5306		if (vml[c] != NULL)
5307			vml[c]->vdev_offline = B_TRUE;
5308	}
5309	vdev_reopen(spa->spa_root_vdev);
5310
5311	/*
5312	 * Temporarily record the splitting vdevs in the spa config.  This
5313	 * will disappear once the config is regenerated.
5314	 */
5315	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5316	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5317	    glist, children) == 0);
5318	kmem_free(glist, children * sizeof (uint64_t));
5319
5320	mutex_enter(&spa->spa_props_lock);
5321	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5322	    nvl) == 0);
5323	mutex_exit(&spa->spa_props_lock);
5324	spa->spa_config_splitting = nvl;
5325	vdev_config_dirty(spa->spa_root_vdev);
5326
5327	/* configure and create the new pool */
5328	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5329	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5330	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5331	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5332	    spa_version(spa)) == 0);
5333	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5334	    spa->spa_config_txg) == 0);
5335	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5336	    spa_generate_guid(NULL)) == 0);
5337	(void) nvlist_lookup_string(props,
5338	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5339
5340	/* add the new pool to the namespace */
5341	newspa = spa_add(newname, config, altroot);
5342	newspa->spa_config_txg = spa->spa_config_txg;
5343	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5344
5345	/* release the spa config lock, retaining the namespace lock */
5346	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5347
5348	if (zio_injection_enabled)
5349		zio_handle_panic_injection(spa, FTAG, 1);
5350
5351	spa_activate(newspa, spa_mode_global);
5352	spa_async_suspend(newspa);
5353
5354#ifndef illumos
5355	/* mark that we are creating new spa by splitting */
5356	newspa->spa_splitting_newspa = B_TRUE;
5357#endif
5358	/* create the new pool from the disks of the original pool */
5359	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5360#ifndef illumos
5361	newspa->spa_splitting_newspa = B_FALSE;
5362#endif
5363	if (error)
5364		goto out;
5365
5366	/* if that worked, generate a real config for the new pool */
5367	if (newspa->spa_root_vdev != NULL) {
5368		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5369		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5370		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5371		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5372		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5373		    B_TRUE));
5374	}
5375
5376	/* set the props */
5377	if (props != NULL) {
5378		spa_configfile_set(newspa, props, B_FALSE);
5379		error = spa_prop_set(newspa, props);
5380		if (error)
5381			goto out;
5382	}
5383
5384	/* flush everything */
5385	txg = spa_vdev_config_enter(newspa);
5386	vdev_config_dirty(newspa->spa_root_vdev);
5387	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5388
5389	if (zio_injection_enabled)
5390		zio_handle_panic_injection(spa, FTAG, 2);
5391
5392	spa_async_resume(newspa);
5393
5394	/* finally, update the original pool's config */
5395	txg = spa_vdev_config_enter(spa);
5396	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5397	error = dmu_tx_assign(tx, TXG_WAIT);
5398	if (error != 0)
5399		dmu_tx_abort(tx);
5400	for (c = 0; c < children; c++) {
5401		if (vml[c] != NULL) {
5402			vdev_split(vml[c]);
5403			if (error == 0)
5404				spa_history_log_internal(spa, "detach", tx,
5405				    "vdev=%s", vml[c]->vdev_path);
5406			vdev_free(vml[c]);
5407		}
5408	}
5409	vdev_config_dirty(spa->spa_root_vdev);
5410	spa->spa_config_splitting = NULL;
5411	nvlist_free(nvl);
5412	if (error == 0)
5413		dmu_tx_commit(tx);
5414	(void) spa_vdev_exit(spa, NULL, txg, 0);
5415
5416	if (zio_injection_enabled)
5417		zio_handle_panic_injection(spa, FTAG, 3);
5418
5419	/* split is complete; log a history record */
5420	spa_history_log_internal(newspa, "split", NULL,
5421	    "from pool %s", spa_name(spa));
5422
5423	kmem_free(vml, children * sizeof (vdev_t *));
5424
5425	/* if we're not going to mount the filesystems in userland, export */
5426	if (exp)
5427		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5428		    B_FALSE, B_FALSE);
5429
5430	return (error);
5431
5432out:
5433	spa_unload(newspa);
5434	spa_deactivate(newspa);
5435	spa_remove(newspa);
5436
5437	txg = spa_vdev_config_enter(spa);
5438
5439	/* re-online all offlined disks */
5440	for (c = 0; c < children; c++) {
5441		if (vml[c] != NULL)
5442			vml[c]->vdev_offline = B_FALSE;
5443	}
5444	vdev_reopen(spa->spa_root_vdev);
5445
5446	nvlist_free(spa->spa_config_splitting);
5447	spa->spa_config_splitting = NULL;
5448	(void) spa_vdev_exit(spa, NULL, txg, error);
5449
5450	kmem_free(vml, children * sizeof (vdev_t *));
5451	return (error);
5452}
5453
5454static nvlist_t *
5455spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5456{
5457	for (int i = 0; i < count; i++) {
5458		uint64_t guid;
5459
5460		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5461		    &guid) == 0);
5462
5463		if (guid == target_guid)
5464			return (nvpp[i]);
5465	}
5466
5467	return (NULL);
5468}
5469
5470static void
5471spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5472	nvlist_t *dev_to_remove)
5473{
5474	nvlist_t **newdev = NULL;
5475
5476	if (count > 1)
5477		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5478
5479	for (int i = 0, j = 0; i < count; i++) {
5480		if (dev[i] == dev_to_remove)
5481			continue;
5482		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5483	}
5484
5485	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5486	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5487
5488	for (int i = 0; i < count - 1; i++)
5489		nvlist_free(newdev[i]);
5490
5491	if (count > 1)
5492		kmem_free(newdev, (count - 1) * sizeof (void *));
5493}
5494
5495/*
5496 * Evacuate the device.
5497 */
5498static int
5499spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5500{
5501	uint64_t txg;
5502	int error = 0;
5503
5504	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5505	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5506	ASSERT(vd == vd->vdev_top);
5507
5508	/*
5509	 * Evacuate the device.  We don't hold the config lock as writer
5510	 * since we need to do I/O but we do keep the
5511	 * spa_namespace_lock held.  Once this completes the device
5512	 * should no longer have any blocks allocated on it.
5513	 */
5514	if (vd->vdev_islog) {
5515		if (vd->vdev_stat.vs_alloc != 0)
5516			error = spa_offline_log(spa);
5517	} else {
5518		error = SET_ERROR(ENOTSUP);
5519	}
5520
5521	if (error)
5522		return (error);
5523
5524	/*
5525	 * The evacuation succeeded.  Remove any remaining MOS metadata
5526	 * associated with this vdev, and wait for these changes to sync.
5527	 */
5528	ASSERT0(vd->vdev_stat.vs_alloc);
5529	txg = spa_vdev_config_enter(spa);
5530	vd->vdev_removing = B_TRUE;
5531	vdev_dirty_leaves(vd, VDD_DTL, txg);
5532	vdev_config_dirty(vd);
5533	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5534
5535	return (0);
5536}
5537
5538/*
5539 * Complete the removal by cleaning up the namespace.
5540 */
5541static void
5542spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5543{
5544	vdev_t *rvd = spa->spa_root_vdev;
5545	uint64_t id = vd->vdev_id;
5546	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5547
5548	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5549	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5550	ASSERT(vd == vd->vdev_top);
5551
5552	/*
5553	 * Only remove any devices which are empty.
5554	 */
5555	if (vd->vdev_stat.vs_alloc != 0)
5556		return;
5557
5558	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5559
5560	if (list_link_active(&vd->vdev_state_dirty_node))
5561		vdev_state_clean(vd);
5562	if (list_link_active(&vd->vdev_config_dirty_node))
5563		vdev_config_clean(vd);
5564
5565	vdev_free(vd);
5566
5567	if (last_vdev) {
5568		vdev_compact_children(rvd);
5569	} else {
5570		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5571		vdev_add_child(rvd, vd);
5572	}
5573	vdev_config_dirty(rvd);
5574
5575	/*
5576	 * Reassess the health of our root vdev.
5577	 */
5578	vdev_reopen(rvd);
5579}
5580
5581/*
5582 * Remove a device from the pool -
5583 *
5584 * Removing a device from the vdev namespace requires several steps
5585 * and can take a significant amount of time.  As a result we use
5586 * the spa_vdev_config_[enter/exit] functions which allow us to
5587 * grab and release the spa_config_lock while still holding the namespace
5588 * lock.  During each step the configuration is synced out.
5589 *
5590 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5591 * devices.
5592 */
5593int
5594spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5595{
5596	vdev_t *vd;
5597	metaslab_group_t *mg;
5598	nvlist_t **spares, **l2cache, *nv;
5599	uint64_t txg = 0;
5600	uint_t nspares, nl2cache;
5601	int error = 0;
5602	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5603
5604	ASSERT(spa_writeable(spa));
5605
5606	if (!locked)
5607		txg = spa_vdev_enter(spa);
5608
5609	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5610
5611	if (spa->spa_spares.sav_vdevs != NULL &&
5612	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5613	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5614	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5615		/*
5616		 * Only remove the hot spare if it's not currently in use
5617		 * in this pool.
5618		 */
5619		if (vd == NULL || unspare) {
5620			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5621			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5622			spa_load_spares(spa);
5623			spa->spa_spares.sav_sync = B_TRUE;
5624		} else {
5625			error = SET_ERROR(EBUSY);
5626		}
5627	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5628	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5629	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5630	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5631		/*
5632		 * Cache devices can always be removed.
5633		 */
5634		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5635		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5636		spa_load_l2cache(spa);
5637		spa->spa_l2cache.sav_sync = B_TRUE;
5638	} else if (vd != NULL && vd->vdev_islog) {
5639		ASSERT(!locked);
5640		ASSERT(vd == vd->vdev_top);
5641
5642		mg = vd->vdev_mg;
5643
5644		/*
5645		 * Stop allocating from this vdev.
5646		 */
5647		metaslab_group_passivate(mg);
5648
5649		/*
5650		 * Wait for the youngest allocations and frees to sync,
5651		 * and then wait for the deferral of those frees to finish.
5652		 */
5653		spa_vdev_config_exit(spa, NULL,
5654		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5655
5656		/*
5657		 * Attempt to evacuate the vdev.
5658		 */
5659		error = spa_vdev_remove_evacuate(spa, vd);
5660
5661		txg = spa_vdev_config_enter(spa);
5662
5663		/*
5664		 * If we couldn't evacuate the vdev, unwind.
5665		 */
5666		if (error) {
5667			metaslab_group_activate(mg);
5668			return (spa_vdev_exit(spa, NULL, txg, error));
5669		}
5670
5671		/*
5672		 * Clean up the vdev namespace.
5673		 */
5674		spa_vdev_remove_from_namespace(spa, vd);
5675
5676	} else if (vd != NULL) {
5677		/*
5678		 * Normal vdevs cannot be removed (yet).
5679		 */
5680		error = SET_ERROR(ENOTSUP);
5681	} else {
5682		/*
5683		 * There is no vdev of any kind with the specified guid.
5684		 */
5685		error = SET_ERROR(ENOENT);
5686	}
5687
5688	if (!locked)
5689		return (spa_vdev_exit(spa, NULL, txg, error));
5690
5691	return (error);
5692}
5693
5694/*
5695 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5696 * currently spared, so we can detach it.
5697 */
5698static vdev_t *
5699spa_vdev_resilver_done_hunt(vdev_t *vd)
5700{
5701	vdev_t *newvd, *oldvd;
5702
5703	for (int c = 0; c < vd->vdev_children; c++) {
5704		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5705		if (oldvd != NULL)
5706			return (oldvd);
5707	}
5708
5709	/*
5710	 * Check for a completed replacement.  We always consider the first
5711	 * vdev in the list to be the oldest vdev, and the last one to be
5712	 * the newest (see spa_vdev_attach() for how that works).  In
5713	 * the case where the newest vdev is faulted, we will not automatically
5714	 * remove it after a resilver completes.  This is OK as it will require
5715	 * user intervention to determine which disk the admin wishes to keep.
5716	 */
5717	if (vd->vdev_ops == &vdev_replacing_ops) {
5718		ASSERT(vd->vdev_children > 1);
5719
5720		newvd = vd->vdev_child[vd->vdev_children - 1];
5721		oldvd = vd->vdev_child[0];
5722
5723		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5724		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5725		    !vdev_dtl_required(oldvd))
5726			return (oldvd);
5727	}
5728
5729	/*
5730	 * Check for a completed resilver with the 'unspare' flag set.
5731	 */
5732	if (vd->vdev_ops == &vdev_spare_ops) {
5733		vdev_t *first = vd->vdev_child[0];
5734		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5735
5736		if (last->vdev_unspare) {
5737			oldvd = first;
5738			newvd = last;
5739		} else if (first->vdev_unspare) {
5740			oldvd = last;
5741			newvd = first;
5742		} else {
5743			oldvd = NULL;
5744		}
5745
5746		if (oldvd != NULL &&
5747		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5748		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5749		    !vdev_dtl_required(oldvd))
5750			return (oldvd);
5751
5752		/*
5753		 * If there are more than two spares attached to a disk,
5754		 * and those spares are not required, then we want to
5755		 * attempt to free them up now so that they can be used
5756		 * by other pools.  Once we're back down to a single
5757		 * disk+spare, we stop removing them.
5758		 */
5759		if (vd->vdev_children > 2) {
5760			newvd = vd->vdev_child[1];
5761
5762			if (newvd->vdev_isspare && last->vdev_isspare &&
5763			    vdev_dtl_empty(last, DTL_MISSING) &&
5764			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5765			    !vdev_dtl_required(newvd))
5766				return (newvd);
5767		}
5768	}
5769
5770	return (NULL);
5771}
5772
5773static void
5774spa_vdev_resilver_done(spa_t *spa)
5775{
5776	vdev_t *vd, *pvd, *ppvd;
5777	uint64_t guid, sguid, pguid, ppguid;
5778
5779	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5780
5781	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5782		pvd = vd->vdev_parent;
5783		ppvd = pvd->vdev_parent;
5784		guid = vd->vdev_guid;
5785		pguid = pvd->vdev_guid;
5786		ppguid = ppvd->vdev_guid;
5787		sguid = 0;
5788		/*
5789		 * If we have just finished replacing a hot spared device, then
5790		 * we need to detach the parent's first child (the original hot
5791		 * spare) as well.
5792		 */
5793		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5794		    ppvd->vdev_children == 2) {
5795			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5796			sguid = ppvd->vdev_child[1]->vdev_guid;
5797		}
5798		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5799
5800		spa_config_exit(spa, SCL_ALL, FTAG);
5801		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5802			return;
5803		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5804			return;
5805		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5806	}
5807
5808	spa_config_exit(spa, SCL_ALL, FTAG);
5809}
5810
5811/*
5812 * Update the stored path or FRU for this vdev.
5813 */
5814int
5815spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5816    boolean_t ispath)
5817{
5818	vdev_t *vd;
5819	boolean_t sync = B_FALSE;
5820
5821	ASSERT(spa_writeable(spa));
5822
5823	spa_vdev_state_enter(spa, SCL_ALL);
5824
5825	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5826		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5827
5828	if (!vd->vdev_ops->vdev_op_leaf)
5829		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5830
5831	if (ispath) {
5832		if (strcmp(value, vd->vdev_path) != 0) {
5833			spa_strfree(vd->vdev_path);
5834			vd->vdev_path = spa_strdup(value);
5835			sync = B_TRUE;
5836		}
5837	} else {
5838		if (vd->vdev_fru == NULL) {
5839			vd->vdev_fru = spa_strdup(value);
5840			sync = B_TRUE;
5841		} else if (strcmp(value, vd->vdev_fru) != 0) {
5842			spa_strfree(vd->vdev_fru);
5843			vd->vdev_fru = spa_strdup(value);
5844			sync = B_TRUE;
5845		}
5846	}
5847
5848	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5849}
5850
5851int
5852spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5853{
5854	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5855}
5856
5857int
5858spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5859{
5860	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5861}
5862
5863/*
5864 * ==========================================================================
5865 * SPA Scanning
5866 * ==========================================================================
5867 */
5868
5869int
5870spa_scan_stop(spa_t *spa)
5871{
5872	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5873	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5874		return (SET_ERROR(EBUSY));
5875	return (dsl_scan_cancel(spa->spa_dsl_pool));
5876}
5877
5878int
5879spa_scan(spa_t *spa, pool_scan_func_t func)
5880{
5881	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5882
5883	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5884		return (SET_ERROR(ENOTSUP));
5885
5886	/*
5887	 * If a resilver was requested, but there is no DTL on a
5888	 * writeable leaf device, we have nothing to do.
5889	 */
5890	if (func == POOL_SCAN_RESILVER &&
5891	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5892		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5893		return (0);
5894	}
5895
5896	return (dsl_scan(spa->spa_dsl_pool, func));
5897}
5898
5899/*
5900 * ==========================================================================
5901 * SPA async task processing
5902 * ==========================================================================
5903 */
5904
5905static void
5906spa_async_remove(spa_t *spa, vdev_t *vd)
5907{
5908	if (vd->vdev_remove_wanted) {
5909		vd->vdev_remove_wanted = B_FALSE;
5910		vd->vdev_delayed_close = B_FALSE;
5911		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5912
5913		/*
5914		 * We want to clear the stats, but we don't want to do a full
5915		 * vdev_clear() as that will cause us to throw away
5916		 * degraded/faulted state as well as attempt to reopen the
5917		 * device, all of which is a waste.
5918		 */
5919		vd->vdev_stat.vs_read_errors = 0;
5920		vd->vdev_stat.vs_write_errors = 0;
5921		vd->vdev_stat.vs_checksum_errors = 0;
5922
5923		vdev_state_dirty(vd->vdev_top);
5924	}
5925
5926	for (int c = 0; c < vd->vdev_children; c++)
5927		spa_async_remove(spa, vd->vdev_child[c]);
5928}
5929
5930static void
5931spa_async_probe(spa_t *spa, vdev_t *vd)
5932{
5933	if (vd->vdev_probe_wanted) {
5934		vd->vdev_probe_wanted = B_FALSE;
5935		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5936	}
5937
5938	for (int c = 0; c < vd->vdev_children; c++)
5939		spa_async_probe(spa, vd->vdev_child[c]);
5940}
5941
5942static void
5943spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5944{
5945	sysevent_id_t eid;
5946	nvlist_t *attr;
5947	char *physpath;
5948
5949	if (!spa->spa_autoexpand)
5950		return;
5951
5952	for (int c = 0; c < vd->vdev_children; c++) {
5953		vdev_t *cvd = vd->vdev_child[c];
5954		spa_async_autoexpand(spa, cvd);
5955	}
5956
5957	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5958		return;
5959
5960	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5961	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5962
5963	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5964	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5965
5966	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5967	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5968
5969	nvlist_free(attr);
5970	kmem_free(physpath, MAXPATHLEN);
5971}
5972
5973static void
5974spa_async_thread(void *arg)
5975{
5976	spa_t *spa = arg;
5977	int tasks;
5978
5979	ASSERT(spa->spa_sync_on);
5980
5981	mutex_enter(&spa->spa_async_lock);
5982	tasks = spa->spa_async_tasks;
5983	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5984	mutex_exit(&spa->spa_async_lock);
5985
5986	/*
5987	 * See if the config needs to be updated.
5988	 */
5989	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5990		uint64_t old_space, new_space;
5991
5992		mutex_enter(&spa_namespace_lock);
5993		old_space = metaslab_class_get_space(spa_normal_class(spa));
5994		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5995		new_space = metaslab_class_get_space(spa_normal_class(spa));
5996		mutex_exit(&spa_namespace_lock);
5997
5998		/*
5999		 * If the pool grew as a result of the config update,
6000		 * then log an internal history event.
6001		 */
6002		if (new_space != old_space) {
6003			spa_history_log_internal(spa, "vdev online", NULL,
6004			    "pool '%s' size: %llu(+%llu)",
6005			    spa_name(spa), new_space, new_space - old_space);
6006		}
6007	}
6008
6009	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6010		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6011		spa_async_autoexpand(spa, spa->spa_root_vdev);
6012		spa_config_exit(spa, SCL_CONFIG, FTAG);
6013	}
6014
6015	/*
6016	 * See if any devices need to be probed.
6017	 */
6018	if (tasks & SPA_ASYNC_PROBE) {
6019		spa_vdev_state_enter(spa, SCL_NONE);
6020		spa_async_probe(spa, spa->spa_root_vdev);
6021		(void) spa_vdev_state_exit(spa, NULL, 0);
6022	}
6023
6024	/*
6025	 * If any devices are done replacing, detach them.
6026	 */
6027	if (tasks & SPA_ASYNC_RESILVER_DONE)
6028		spa_vdev_resilver_done(spa);
6029
6030	/*
6031	 * Kick off a resilver.
6032	 */
6033	if (tasks & SPA_ASYNC_RESILVER)
6034		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6035
6036	/*
6037	 * Let the world know that we're done.
6038	 */
6039	mutex_enter(&spa->spa_async_lock);
6040	spa->spa_async_thread = NULL;
6041	cv_broadcast(&spa->spa_async_cv);
6042	mutex_exit(&spa->spa_async_lock);
6043	thread_exit();
6044}
6045
6046static void
6047spa_async_thread_vd(void *arg)
6048{
6049	spa_t *spa = arg;
6050	int tasks;
6051
6052	ASSERT(spa->spa_sync_on);
6053
6054	mutex_enter(&spa->spa_async_lock);
6055	tasks = spa->spa_async_tasks;
6056retry:
6057	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6058	mutex_exit(&spa->spa_async_lock);
6059
6060	/*
6061	 * See if any devices need to be marked REMOVED.
6062	 */
6063	if (tasks & SPA_ASYNC_REMOVE) {
6064		spa_vdev_state_enter(spa, SCL_NONE);
6065		spa_async_remove(spa, spa->spa_root_vdev);
6066		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6067			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6068		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6069			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6070		(void) spa_vdev_state_exit(spa, NULL, 0);
6071	}
6072
6073	/*
6074	 * Let the world know that we're done.
6075	 */
6076	mutex_enter(&spa->spa_async_lock);
6077	tasks = spa->spa_async_tasks;
6078	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6079		goto retry;
6080	spa->spa_async_thread_vd = NULL;
6081	cv_broadcast(&spa->spa_async_cv);
6082	mutex_exit(&spa->spa_async_lock);
6083	thread_exit();
6084}
6085
6086void
6087spa_async_suspend(spa_t *spa)
6088{
6089	mutex_enter(&spa->spa_async_lock);
6090	spa->spa_async_suspended++;
6091	while (spa->spa_async_thread != NULL &&
6092	    spa->spa_async_thread_vd != NULL)
6093		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6094	mutex_exit(&spa->spa_async_lock);
6095}
6096
6097void
6098spa_async_resume(spa_t *spa)
6099{
6100	mutex_enter(&spa->spa_async_lock);
6101	ASSERT(spa->spa_async_suspended != 0);
6102	spa->spa_async_suspended--;
6103	mutex_exit(&spa->spa_async_lock);
6104}
6105
6106static boolean_t
6107spa_async_tasks_pending(spa_t *spa)
6108{
6109	uint_t non_config_tasks;
6110	uint_t config_task;
6111	boolean_t config_task_suspended;
6112
6113	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6114	    SPA_ASYNC_REMOVE);
6115	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6116	if (spa->spa_ccw_fail_time == 0) {
6117		config_task_suspended = B_FALSE;
6118	} else {
6119		config_task_suspended =
6120		    (gethrtime() - spa->spa_ccw_fail_time) <
6121		    (zfs_ccw_retry_interval * NANOSEC);
6122	}
6123
6124	return (non_config_tasks || (config_task && !config_task_suspended));
6125}
6126
6127static void
6128spa_async_dispatch(spa_t *spa)
6129{
6130	mutex_enter(&spa->spa_async_lock);
6131	if (spa_async_tasks_pending(spa) &&
6132	    !spa->spa_async_suspended &&
6133	    spa->spa_async_thread == NULL &&
6134	    rootdir != NULL)
6135		spa->spa_async_thread = thread_create(NULL, 0,
6136		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6137	mutex_exit(&spa->spa_async_lock);
6138}
6139
6140static void
6141spa_async_dispatch_vd(spa_t *spa)
6142{
6143	mutex_enter(&spa->spa_async_lock);
6144	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6145	    !spa->spa_async_suspended &&
6146	    spa->spa_async_thread_vd == NULL &&
6147	    rootdir != NULL)
6148		spa->spa_async_thread_vd = thread_create(NULL, 0,
6149		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6150	mutex_exit(&spa->spa_async_lock);
6151}
6152
6153void
6154spa_async_request(spa_t *spa, int task)
6155{
6156	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6157	mutex_enter(&spa->spa_async_lock);
6158	spa->spa_async_tasks |= task;
6159	mutex_exit(&spa->spa_async_lock);
6160	spa_async_dispatch_vd(spa);
6161}
6162
6163/*
6164 * ==========================================================================
6165 * SPA syncing routines
6166 * ==========================================================================
6167 */
6168
6169static int
6170bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6171{
6172	bpobj_t *bpo = arg;
6173	bpobj_enqueue(bpo, bp, tx);
6174	return (0);
6175}
6176
6177static int
6178spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6179{
6180	zio_t *zio = arg;
6181
6182	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6183	    BP_GET_PSIZE(bp), zio->io_flags));
6184	return (0);
6185}
6186
6187/*
6188 * Note: this simple function is not inlined to make it easier to dtrace the
6189 * amount of time spent syncing frees.
6190 */
6191static void
6192spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6193{
6194	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6195	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6196	VERIFY(zio_wait(zio) == 0);
6197}
6198
6199/*
6200 * Note: this simple function is not inlined to make it easier to dtrace the
6201 * amount of time spent syncing deferred frees.
6202 */
6203static void
6204spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6205{
6206	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6207	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6208	    spa_free_sync_cb, zio, tx), ==, 0);
6209	VERIFY0(zio_wait(zio));
6210}
6211
6212
6213static void
6214spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6215{
6216	char *packed = NULL;
6217	size_t bufsize;
6218	size_t nvsize = 0;
6219	dmu_buf_t *db;
6220
6221	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6222
6223	/*
6224	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6225	 * information.  This avoids the dmu_buf_will_dirty() path and
6226	 * saves us a pre-read to get data we don't actually care about.
6227	 */
6228	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6229	packed = kmem_alloc(bufsize, KM_SLEEP);
6230
6231	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6232	    KM_SLEEP) == 0);
6233	bzero(packed + nvsize, bufsize - nvsize);
6234
6235	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6236
6237	kmem_free(packed, bufsize);
6238
6239	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6240	dmu_buf_will_dirty(db, tx);
6241	*(uint64_t *)db->db_data = nvsize;
6242	dmu_buf_rele(db, FTAG);
6243}
6244
6245static void
6246spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6247    const char *config, const char *entry)
6248{
6249	nvlist_t *nvroot;
6250	nvlist_t **list;
6251	int i;
6252
6253	if (!sav->sav_sync)
6254		return;
6255
6256	/*
6257	 * Update the MOS nvlist describing the list of available devices.
6258	 * spa_validate_aux() will have already made sure this nvlist is
6259	 * valid and the vdevs are labeled appropriately.
6260	 */
6261	if (sav->sav_object == 0) {
6262		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6263		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6264		    sizeof (uint64_t), tx);
6265		VERIFY(zap_update(spa->spa_meta_objset,
6266		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6267		    &sav->sav_object, tx) == 0);
6268	}
6269
6270	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6271	if (sav->sav_count == 0) {
6272		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6273	} else {
6274		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6275		for (i = 0; i < sav->sav_count; i++)
6276			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6277			    B_FALSE, VDEV_CONFIG_L2CACHE);
6278		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6279		    sav->sav_count) == 0);
6280		for (i = 0; i < sav->sav_count; i++)
6281			nvlist_free(list[i]);
6282		kmem_free(list, sav->sav_count * sizeof (void *));
6283	}
6284
6285	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6286	nvlist_free(nvroot);
6287
6288	sav->sav_sync = B_FALSE;
6289}
6290
6291static void
6292spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6293{
6294	nvlist_t *config;
6295
6296	if (list_is_empty(&spa->spa_config_dirty_list))
6297		return;
6298
6299	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6300
6301	config = spa_config_generate(spa, spa->spa_root_vdev,
6302	    dmu_tx_get_txg(tx), B_FALSE);
6303
6304	/*
6305	 * If we're upgrading the spa version then make sure that
6306	 * the config object gets updated with the correct version.
6307	 */
6308	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6309		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6310		    spa->spa_uberblock.ub_version);
6311
6312	spa_config_exit(spa, SCL_STATE, FTAG);
6313
6314	if (spa->spa_config_syncing)
6315		nvlist_free(spa->spa_config_syncing);
6316	spa->spa_config_syncing = config;
6317
6318	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6319}
6320
6321static void
6322spa_sync_version(void *arg, dmu_tx_t *tx)
6323{
6324	uint64_t *versionp = arg;
6325	uint64_t version = *versionp;
6326	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6327
6328	/*
6329	 * Setting the version is special cased when first creating the pool.
6330	 */
6331	ASSERT(tx->tx_txg != TXG_INITIAL);
6332
6333	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6334	ASSERT(version >= spa_version(spa));
6335
6336	spa->spa_uberblock.ub_version = version;
6337	vdev_config_dirty(spa->spa_root_vdev);
6338	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6339}
6340
6341/*
6342 * Set zpool properties.
6343 */
6344static void
6345spa_sync_props(void *arg, dmu_tx_t *tx)
6346{
6347	nvlist_t *nvp = arg;
6348	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6349	objset_t *mos = spa->spa_meta_objset;
6350	nvpair_t *elem = NULL;
6351
6352	mutex_enter(&spa->spa_props_lock);
6353
6354	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6355		uint64_t intval;
6356		char *strval, *fname;
6357		zpool_prop_t prop;
6358		const char *propname;
6359		zprop_type_t proptype;
6360		spa_feature_t fid;
6361
6362		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6363		case ZPROP_INVAL:
6364			/*
6365			 * We checked this earlier in spa_prop_validate().
6366			 */
6367			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6368
6369			fname = strchr(nvpair_name(elem), '@') + 1;
6370			VERIFY0(zfeature_lookup_name(fname, &fid));
6371
6372			spa_feature_enable(spa, fid, tx);
6373			spa_history_log_internal(spa, "set", tx,
6374			    "%s=enabled", nvpair_name(elem));
6375			break;
6376
6377		case ZPOOL_PROP_VERSION:
6378			intval = fnvpair_value_uint64(elem);
6379			/*
6380			 * The version is synced seperatly before other
6381			 * properties and should be correct by now.
6382			 */
6383			ASSERT3U(spa_version(spa), >=, intval);
6384			break;
6385
6386		case ZPOOL_PROP_ALTROOT:
6387			/*
6388			 * 'altroot' is a non-persistent property. It should
6389			 * have been set temporarily at creation or import time.
6390			 */
6391			ASSERT(spa->spa_root != NULL);
6392			break;
6393
6394		case ZPOOL_PROP_READONLY:
6395		case ZPOOL_PROP_CACHEFILE:
6396			/*
6397			 * 'readonly' and 'cachefile' are also non-persisitent
6398			 * properties.
6399			 */
6400			break;
6401		case ZPOOL_PROP_COMMENT:
6402			strval = fnvpair_value_string(elem);
6403			if (spa->spa_comment != NULL)
6404				spa_strfree(spa->spa_comment);
6405			spa->spa_comment = spa_strdup(strval);
6406			/*
6407			 * We need to dirty the configuration on all the vdevs
6408			 * so that their labels get updated.  It's unnecessary
6409			 * to do this for pool creation since the vdev's
6410			 * configuratoin has already been dirtied.
6411			 */
6412			if (tx->tx_txg != TXG_INITIAL)
6413				vdev_config_dirty(spa->spa_root_vdev);
6414			spa_history_log_internal(spa, "set", tx,
6415			    "%s=%s", nvpair_name(elem), strval);
6416			break;
6417		default:
6418			/*
6419			 * Set pool property values in the poolprops mos object.
6420			 */
6421			if (spa->spa_pool_props_object == 0) {
6422				spa->spa_pool_props_object =
6423				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6424				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6425				    tx);
6426			}
6427
6428			/* normalize the property name */
6429			propname = zpool_prop_to_name(prop);
6430			proptype = zpool_prop_get_type(prop);
6431
6432			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6433				ASSERT(proptype == PROP_TYPE_STRING);
6434				strval = fnvpair_value_string(elem);
6435				VERIFY0(zap_update(mos,
6436				    spa->spa_pool_props_object, propname,
6437				    1, strlen(strval) + 1, strval, tx));
6438				spa_history_log_internal(spa, "set", tx,
6439				    "%s=%s", nvpair_name(elem), strval);
6440			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6441				intval = fnvpair_value_uint64(elem);
6442
6443				if (proptype == PROP_TYPE_INDEX) {
6444					const char *unused;
6445					VERIFY0(zpool_prop_index_to_string(
6446					    prop, intval, &unused));
6447				}
6448				VERIFY0(zap_update(mos,
6449				    spa->spa_pool_props_object, propname,
6450				    8, 1, &intval, tx));
6451				spa_history_log_internal(spa, "set", tx,
6452				    "%s=%lld", nvpair_name(elem), intval);
6453			} else {
6454				ASSERT(0); /* not allowed */
6455			}
6456
6457			switch (prop) {
6458			case ZPOOL_PROP_DELEGATION:
6459				spa->spa_delegation = intval;
6460				break;
6461			case ZPOOL_PROP_BOOTFS:
6462				spa->spa_bootfs = intval;
6463				break;
6464			case ZPOOL_PROP_FAILUREMODE:
6465				spa->spa_failmode = intval;
6466				break;
6467			case ZPOOL_PROP_AUTOEXPAND:
6468				spa->spa_autoexpand = intval;
6469				if (tx->tx_txg != TXG_INITIAL)
6470					spa_async_request(spa,
6471					    SPA_ASYNC_AUTOEXPAND);
6472				break;
6473			case ZPOOL_PROP_DEDUPDITTO:
6474				spa->spa_dedup_ditto = intval;
6475				break;
6476			default:
6477				break;
6478			}
6479		}
6480
6481	}
6482
6483	mutex_exit(&spa->spa_props_lock);
6484}
6485
6486/*
6487 * Perform one-time upgrade on-disk changes.  spa_version() does not
6488 * reflect the new version this txg, so there must be no changes this
6489 * txg to anything that the upgrade code depends on after it executes.
6490 * Therefore this must be called after dsl_pool_sync() does the sync
6491 * tasks.
6492 */
6493static void
6494spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6495{
6496	dsl_pool_t *dp = spa->spa_dsl_pool;
6497
6498	ASSERT(spa->spa_sync_pass == 1);
6499
6500	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6501
6502	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6503	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6504		dsl_pool_create_origin(dp, tx);
6505
6506		/* Keeping the origin open increases spa_minref */
6507		spa->spa_minref += 3;
6508	}
6509
6510	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6511	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6512		dsl_pool_upgrade_clones(dp, tx);
6513	}
6514
6515	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6516	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6517		dsl_pool_upgrade_dir_clones(dp, tx);
6518
6519		/* Keeping the freedir open increases spa_minref */
6520		spa->spa_minref += 3;
6521	}
6522
6523	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6524	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6525		spa_feature_create_zap_objects(spa, tx);
6526	}
6527
6528	/*
6529	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6530	 * when possibility to use lz4 compression for metadata was added
6531	 * Old pools that have this feature enabled must be upgraded to have
6532	 * this feature active
6533	 */
6534	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6535		boolean_t lz4_en = spa_feature_is_enabled(spa,
6536		    SPA_FEATURE_LZ4_COMPRESS);
6537		boolean_t lz4_ac = spa_feature_is_active(spa,
6538		    SPA_FEATURE_LZ4_COMPRESS);
6539
6540		if (lz4_en && !lz4_ac)
6541			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6542	}
6543	rrw_exit(&dp->dp_config_rwlock, FTAG);
6544}
6545
6546/*
6547 * Sync the specified transaction group.  New blocks may be dirtied as
6548 * part of the process, so we iterate until it converges.
6549 */
6550void
6551spa_sync(spa_t *spa, uint64_t txg)
6552{
6553	dsl_pool_t *dp = spa->spa_dsl_pool;
6554	objset_t *mos = spa->spa_meta_objset;
6555	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6556	vdev_t *rvd = spa->spa_root_vdev;
6557	vdev_t *vd;
6558	dmu_tx_t *tx;
6559	int error;
6560
6561	VERIFY(spa_writeable(spa));
6562
6563	/*
6564	 * Lock out configuration changes.
6565	 */
6566	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6567
6568	spa->spa_syncing_txg = txg;
6569	spa->spa_sync_pass = 0;
6570
6571	/*
6572	 * If there are any pending vdev state changes, convert them
6573	 * into config changes that go out with this transaction group.
6574	 */
6575	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6576	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6577		/*
6578		 * We need the write lock here because, for aux vdevs,
6579		 * calling vdev_config_dirty() modifies sav_config.
6580		 * This is ugly and will become unnecessary when we
6581		 * eliminate the aux vdev wart by integrating all vdevs
6582		 * into the root vdev tree.
6583		 */
6584		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6585		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6586		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6587			vdev_state_clean(vd);
6588			vdev_config_dirty(vd);
6589		}
6590		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6591		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6592	}
6593	spa_config_exit(spa, SCL_STATE, FTAG);
6594
6595	tx = dmu_tx_create_assigned(dp, txg);
6596
6597	spa->spa_sync_starttime = gethrtime();
6598#ifdef illumos
6599	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6600	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6601#else	/* !illumos */
6602#ifdef _KERNEL
6603	callout_reset(&spa->spa_deadman_cycid,
6604	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6605#endif
6606#endif	/* illumos */
6607
6608	/*
6609	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6610	 * set spa_deflate if we have no raid-z vdevs.
6611	 */
6612	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6613	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6614		int i;
6615
6616		for (i = 0; i < rvd->vdev_children; i++) {
6617			vd = rvd->vdev_child[i];
6618			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6619				break;
6620		}
6621		if (i == rvd->vdev_children) {
6622			spa->spa_deflate = TRUE;
6623			VERIFY(0 == zap_add(spa->spa_meta_objset,
6624			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6625			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6626		}
6627	}
6628
6629	/*
6630	 * Iterate to convergence.
6631	 */
6632	do {
6633		int pass = ++spa->spa_sync_pass;
6634
6635		spa_sync_config_object(spa, tx);
6636		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6637		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6638		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6639		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6640		spa_errlog_sync(spa, txg);
6641		dsl_pool_sync(dp, txg);
6642
6643		if (pass < zfs_sync_pass_deferred_free) {
6644			spa_sync_frees(spa, free_bpl, tx);
6645		} else {
6646			/*
6647			 * We can not defer frees in pass 1, because
6648			 * we sync the deferred frees later in pass 1.
6649			 */
6650			ASSERT3U(pass, >, 1);
6651			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6652			    &spa->spa_deferred_bpobj, tx);
6653		}
6654
6655		ddt_sync(spa, txg);
6656		dsl_scan_sync(dp, tx);
6657
6658		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6659			vdev_sync(vd, txg);
6660
6661		if (pass == 1) {
6662			spa_sync_upgrades(spa, tx);
6663			ASSERT3U(txg, >=,
6664			    spa->spa_uberblock.ub_rootbp.blk_birth);
6665			/*
6666			 * Note: We need to check if the MOS is dirty
6667			 * because we could have marked the MOS dirty
6668			 * without updating the uberblock (e.g. if we
6669			 * have sync tasks but no dirty user data).  We
6670			 * need to check the uberblock's rootbp because
6671			 * it is updated if we have synced out dirty
6672			 * data (though in this case the MOS will most
6673			 * likely also be dirty due to second order
6674			 * effects, we don't want to rely on that here).
6675			 */
6676			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6677			    !dmu_objset_is_dirty(mos, txg)) {
6678				/*
6679				 * Nothing changed on the first pass,
6680				 * therefore this TXG is a no-op.  Avoid
6681				 * syncing deferred frees, so that we
6682				 * can keep this TXG as a no-op.
6683				 */
6684				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6685				    txg));
6686				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6687				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6688				break;
6689			}
6690			spa_sync_deferred_frees(spa, tx);
6691		}
6692
6693	} while (dmu_objset_is_dirty(mos, txg));
6694
6695	/*
6696	 * Rewrite the vdev configuration (which includes the uberblock)
6697	 * to commit the transaction group.
6698	 *
6699	 * If there are no dirty vdevs, we sync the uberblock to a few
6700	 * random top-level vdevs that are known to be visible in the
6701	 * config cache (see spa_vdev_add() for a complete description).
6702	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6703	 */
6704	for (;;) {
6705		/*
6706		 * We hold SCL_STATE to prevent vdev open/close/etc.
6707		 * while we're attempting to write the vdev labels.
6708		 */
6709		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6710
6711		if (list_is_empty(&spa->spa_config_dirty_list)) {
6712			vdev_t *svd[SPA_DVAS_PER_BP];
6713			int svdcount = 0;
6714			int children = rvd->vdev_children;
6715			int c0 = spa_get_random(children);
6716
6717			for (int c = 0; c < children; c++) {
6718				vd = rvd->vdev_child[(c0 + c) % children];
6719				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6720					continue;
6721				svd[svdcount++] = vd;
6722				if (svdcount == SPA_DVAS_PER_BP)
6723					break;
6724			}
6725			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6726			if (error != 0)
6727				error = vdev_config_sync(svd, svdcount, txg,
6728				    B_TRUE);
6729		} else {
6730			error = vdev_config_sync(rvd->vdev_child,
6731			    rvd->vdev_children, txg, B_FALSE);
6732			if (error != 0)
6733				error = vdev_config_sync(rvd->vdev_child,
6734				    rvd->vdev_children, txg, B_TRUE);
6735		}
6736
6737		if (error == 0)
6738			spa->spa_last_synced_guid = rvd->vdev_guid;
6739
6740		spa_config_exit(spa, SCL_STATE, FTAG);
6741
6742		if (error == 0)
6743			break;
6744		zio_suspend(spa, NULL);
6745		zio_resume_wait(spa);
6746	}
6747	dmu_tx_commit(tx);
6748
6749#ifdef illumos
6750	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6751#else	/* !illumos */
6752#ifdef _KERNEL
6753	callout_drain(&spa->spa_deadman_cycid);
6754#endif
6755#endif	/* illumos */
6756
6757	/*
6758	 * Clear the dirty config list.
6759	 */
6760	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6761		vdev_config_clean(vd);
6762
6763	/*
6764	 * Now that the new config has synced transactionally,
6765	 * let it become visible to the config cache.
6766	 */
6767	if (spa->spa_config_syncing != NULL) {
6768		spa_config_set(spa, spa->spa_config_syncing);
6769		spa->spa_config_txg = txg;
6770		spa->spa_config_syncing = NULL;
6771	}
6772
6773	spa->spa_ubsync = spa->spa_uberblock;
6774
6775	dsl_pool_sync_done(dp, txg);
6776
6777	/*
6778	 * Update usable space statistics.
6779	 */
6780	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6781		vdev_sync_done(vd, txg);
6782
6783	spa_update_dspace(spa);
6784
6785	/*
6786	 * It had better be the case that we didn't dirty anything
6787	 * since vdev_config_sync().
6788	 */
6789	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6790	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6791	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6792
6793	spa->spa_sync_pass = 0;
6794
6795	spa_config_exit(spa, SCL_CONFIG, FTAG);
6796
6797	spa_handle_ignored_writes(spa);
6798
6799	/*
6800	 * If any async tasks have been requested, kick them off.
6801	 */
6802	spa_async_dispatch(spa);
6803	spa_async_dispatch_vd(spa);
6804}
6805
6806/*
6807 * Sync all pools.  We don't want to hold the namespace lock across these
6808 * operations, so we take a reference on the spa_t and drop the lock during the
6809 * sync.
6810 */
6811void
6812spa_sync_allpools(void)
6813{
6814	spa_t *spa = NULL;
6815	mutex_enter(&spa_namespace_lock);
6816	while ((spa = spa_next(spa)) != NULL) {
6817		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6818		    !spa_writeable(spa) || spa_suspended(spa))
6819			continue;
6820		spa_open_ref(spa, FTAG);
6821		mutex_exit(&spa_namespace_lock);
6822		txg_wait_synced(spa_get_dsl(spa), 0);
6823		mutex_enter(&spa_namespace_lock);
6824		spa_close(spa, FTAG);
6825	}
6826	mutex_exit(&spa_namespace_lock);
6827}
6828
6829/*
6830 * ==========================================================================
6831 * Miscellaneous routines
6832 * ==========================================================================
6833 */
6834
6835/*
6836 * Remove all pools in the system.
6837 */
6838void
6839spa_evict_all(void)
6840{
6841	spa_t *spa;
6842
6843	/*
6844	 * Remove all cached state.  All pools should be closed now,
6845	 * so every spa in the AVL tree should be unreferenced.
6846	 */
6847	mutex_enter(&spa_namespace_lock);
6848	while ((spa = spa_next(NULL)) != NULL) {
6849		/*
6850		 * Stop async tasks.  The async thread may need to detach
6851		 * a device that's been replaced, which requires grabbing
6852		 * spa_namespace_lock, so we must drop it here.
6853		 */
6854		spa_open_ref(spa, FTAG);
6855		mutex_exit(&spa_namespace_lock);
6856		spa_async_suspend(spa);
6857		mutex_enter(&spa_namespace_lock);
6858		spa_close(spa, FTAG);
6859
6860		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6861			spa_unload(spa);
6862			spa_deactivate(spa);
6863		}
6864		spa_remove(spa);
6865	}
6866	mutex_exit(&spa_namespace_lock);
6867}
6868
6869vdev_t *
6870spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6871{
6872	vdev_t *vd;
6873	int i;
6874
6875	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6876		return (vd);
6877
6878	if (aux) {
6879		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6880			vd = spa->spa_l2cache.sav_vdevs[i];
6881			if (vd->vdev_guid == guid)
6882				return (vd);
6883		}
6884
6885		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6886			vd = spa->spa_spares.sav_vdevs[i];
6887			if (vd->vdev_guid == guid)
6888				return (vd);
6889		}
6890	}
6891
6892	return (NULL);
6893}
6894
6895void
6896spa_upgrade(spa_t *spa, uint64_t version)
6897{
6898	ASSERT(spa_writeable(spa));
6899
6900	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6901
6902	/*
6903	 * This should only be called for a non-faulted pool, and since a
6904	 * future version would result in an unopenable pool, this shouldn't be
6905	 * possible.
6906	 */
6907	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6908	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6909
6910	spa->spa_uberblock.ub_version = version;
6911	vdev_config_dirty(spa->spa_root_vdev);
6912
6913	spa_config_exit(spa, SCL_ALL, FTAG);
6914
6915	txg_wait_synced(spa_get_dsl(spa), 0);
6916}
6917
6918boolean_t
6919spa_has_spare(spa_t *spa, uint64_t guid)
6920{
6921	int i;
6922	uint64_t spareguid;
6923	spa_aux_vdev_t *sav = &spa->spa_spares;
6924
6925	for (i = 0; i < sav->sav_count; i++)
6926		if (sav->sav_vdevs[i]->vdev_guid == guid)
6927			return (B_TRUE);
6928
6929	for (i = 0; i < sav->sav_npending; i++) {
6930		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6931		    &spareguid) == 0 && spareguid == guid)
6932			return (B_TRUE);
6933	}
6934
6935	return (B_FALSE);
6936}
6937
6938/*
6939 * Check if a pool has an active shared spare device.
6940 * Note: reference count of an active spare is 2, as a spare and as a replace
6941 */
6942static boolean_t
6943spa_has_active_shared_spare(spa_t *spa)
6944{
6945	int i, refcnt;
6946	uint64_t pool;
6947	spa_aux_vdev_t *sav = &spa->spa_spares;
6948
6949	for (i = 0; i < sav->sav_count; i++) {
6950		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6951		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6952		    refcnt > 2)
6953			return (B_TRUE);
6954	}
6955
6956	return (B_FALSE);
6957}
6958
6959/*
6960 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6961 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6962 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6963 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6964 * or zdb as real changes.
6965 */
6966void
6967spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6968{
6969#ifdef _KERNEL
6970	sysevent_t		*ev;
6971	sysevent_attr_list_t	*attr = NULL;
6972	sysevent_value_t	value;
6973	sysevent_id_t		eid;
6974
6975	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6976	    SE_SLEEP);
6977
6978	value.value_type = SE_DATA_TYPE_STRING;
6979	value.value.sv_string = spa_name(spa);
6980	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6981		goto done;
6982
6983	value.value_type = SE_DATA_TYPE_UINT64;
6984	value.value.sv_uint64 = spa_guid(spa);
6985	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6986		goto done;
6987
6988	if (vd) {
6989		value.value_type = SE_DATA_TYPE_UINT64;
6990		value.value.sv_uint64 = vd->vdev_guid;
6991		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6992		    SE_SLEEP) != 0)
6993			goto done;
6994
6995		if (vd->vdev_path) {
6996			value.value_type = SE_DATA_TYPE_STRING;
6997			value.value.sv_string = vd->vdev_path;
6998			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6999			    &value, SE_SLEEP) != 0)
7000				goto done;
7001		}
7002	}
7003
7004	if (sysevent_attach_attributes(ev, attr) != 0)
7005		goto done;
7006	attr = NULL;
7007
7008	(void) log_sysevent(ev, SE_SLEEP, &eid);
7009
7010done:
7011	if (attr)
7012		sysevent_free_attr(attr);
7013	sysevent_free(ev);
7014#endif
7015}
7016