spa.c revision 271785
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86/*
87 * The interval, in seconds, at which failed configuration cache file writes
88 * should be retried.
89 */
90static int zfs_ccw_retry_interval = 300;
91
92SYSCTL_DECL(_vfs_zfs);
93SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
94    "Check hostid on import?");
95TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
97    &zfs_ccw_retry_interval, 0,
98    "Configuration cache file write, retry after failure, interval (seconds)");
99
100typedef enum zti_modes {
101	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
102	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
103	ZTI_MODE_NULL,			/* don't create a taskq */
104	ZTI_NMODES
105} zti_modes_t;
106
107#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
108#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
109#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
110
111#define	ZTI_N(n)	ZTI_P(n, 1)
112#define	ZTI_ONE		ZTI_N(1)
113
114typedef struct zio_taskq_info {
115	zti_modes_t zti_mode;
116	uint_t zti_value;
117	uint_t zti_count;
118} zio_taskq_info_t;
119
120static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121	"issue", "issue_high", "intr", "intr_high"
122};
123
124/*
125 * This table defines the taskq settings for each ZFS I/O type. When
126 * initializing a pool, we use this table to create an appropriately sized
127 * taskq. Some operations are low volume and therefore have a small, static
128 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129 * macros. Other operations process a large amount of data; the ZTI_BATCH
130 * macro causes us to create a taskq oriented for throughput. Some operations
131 * are so high frequency and short-lived that the taskq itself can become a a
132 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133 * additional degree of parallelism specified by the number of threads per-
134 * taskq and the number of taskqs; when dispatching an event in this case, the
135 * particular taskq is chosen at random.
136 *
137 * The different taskq priorities are to handle the different contexts (issue
138 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139 * need to be handled with minimum delay.
140 */
141const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
143	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
144	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
145	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
146	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
148	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
149};
150
151static void spa_sync_version(void *arg, dmu_tx_t *tx);
152static void spa_sync_props(void *arg, dmu_tx_t *tx);
153static boolean_t spa_has_active_shared_spare(spa_t *spa);
154static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
155    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
156    char **ereport);
157static void spa_vdev_resilver_done(spa_t *spa);
158
159uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
160#ifdef PSRSET_BIND
161id_t		zio_taskq_psrset_bind = PS_NONE;
162#endif
163#ifdef SYSDC
164boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
165#endif
166uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
167
168boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
169extern int	zfs_sync_pass_deferred_free;
170
171#ifndef illumos
172extern void spa_deadman(void *arg);
173#endif
174
175/*
176 * This (illegal) pool name is used when temporarily importing a spa_t in order
177 * to get the vdev stats associated with the imported devices.
178 */
179#define	TRYIMPORT_NAME	"$import"
180
181/*
182 * ==========================================================================
183 * SPA properties routines
184 * ==========================================================================
185 */
186
187/*
188 * Add a (source=src, propname=propval) list to an nvlist.
189 */
190static void
191spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
192    uint64_t intval, zprop_source_t src)
193{
194	const char *propname = zpool_prop_to_name(prop);
195	nvlist_t *propval;
196
197	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
198	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
199
200	if (strval != NULL)
201		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
202	else
203		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
204
205	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
206	nvlist_free(propval);
207}
208
209/*
210 * Get property values from the spa configuration.
211 */
212static void
213spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
214{
215	vdev_t *rvd = spa->spa_root_vdev;
216	dsl_pool_t *pool = spa->spa_dsl_pool;
217	uint64_t size, alloc, cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220	metaslab_class_t *mc = spa_normal_class(spa);
221
222	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
223
224	if (rvd != NULL) {
225		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
226		size = metaslab_class_get_space(spa_normal_class(spa));
227		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
231		    size - alloc, src);
232
233		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
234		    metaslab_class_fragmentation(mc), src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
236		    metaslab_class_expandable_space(mc), src);
237		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
238		    (spa_mode(spa) == FREAD), src);
239
240		cap = (size == 0) ? 0 : (alloc * 100 / size);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
242
243		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
244		    ddt_get_pool_dedup_ratio(spa), src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
247		    rvd->vdev_state, src);
248
249		version = spa_version(spa);
250		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
251			src = ZPROP_SRC_DEFAULT;
252		else
253			src = ZPROP_SRC_LOCAL;
254		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
255	}
256
257	if (pool != NULL) {
258		/*
259		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
260		 * when opening pools before this version freedir will be NULL.
261		 */
262		if (pool->dp_free_dir != NULL) {
263			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
264			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
265		} else {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
267			    NULL, 0, src);
268		}
269
270		if (pool->dp_leak_dir != NULL) {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
272			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
273		} else {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275			    NULL, 0, src);
276		}
277	}
278
279	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281	if (spa->spa_comment != NULL) {
282		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283		    0, ZPROP_SRC_LOCAL);
284	}
285
286	if (spa->spa_root != NULL)
287		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288		    0, ZPROP_SRC_LOCAL);
289
290	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
291		if (dp->scd_path == NULL) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    "none", 0, ZPROP_SRC_LOCAL);
294		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
295			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
296			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
297		}
298	}
299}
300
301/*
302 * Get zpool property values.
303 */
304int
305spa_prop_get(spa_t *spa, nvlist_t **nvp)
306{
307	objset_t *mos = spa->spa_meta_objset;
308	zap_cursor_t zc;
309	zap_attribute_t za;
310	int err;
311
312	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
313
314	mutex_enter(&spa->spa_props_lock);
315
316	/*
317	 * Get properties from the spa config.
318	 */
319	spa_prop_get_config(spa, nvp);
320
321	/* If no pool property object, no more prop to get. */
322	if (mos == NULL || spa->spa_pool_props_object == 0) {
323		mutex_exit(&spa->spa_props_lock);
324		return (0);
325	}
326
327	/*
328	 * Get properties from the MOS pool property object.
329	 */
330	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
331	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
332	    zap_cursor_advance(&zc)) {
333		uint64_t intval = 0;
334		char *strval = NULL;
335		zprop_source_t src = ZPROP_SRC_DEFAULT;
336		zpool_prop_t prop;
337
338		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
339			continue;
340
341		switch (za.za_integer_length) {
342		case 8:
343			/* integer property */
344			if (za.za_first_integer !=
345			    zpool_prop_default_numeric(prop))
346				src = ZPROP_SRC_LOCAL;
347
348			if (prop == ZPOOL_PROP_BOOTFS) {
349				dsl_pool_t *dp;
350				dsl_dataset_t *ds = NULL;
351
352				dp = spa_get_dsl(spa);
353				dsl_pool_config_enter(dp, FTAG);
354				if (err = dsl_dataset_hold_obj(dp,
355				    za.za_first_integer, FTAG, &ds)) {
356					dsl_pool_config_exit(dp, FTAG);
357					break;
358				}
359
360				strval = kmem_alloc(
361				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
362				    KM_SLEEP);
363				dsl_dataset_name(ds, strval);
364				dsl_dataset_rele(ds, FTAG);
365				dsl_pool_config_exit(dp, FTAG);
366			} else {
367				strval = NULL;
368				intval = za.za_first_integer;
369			}
370
371			spa_prop_add_list(*nvp, prop, strval, intval, src);
372
373			if (strval != NULL)
374				kmem_free(strval,
375				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
376
377			break;
378
379		case 1:
380			/* string property */
381			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
382			err = zap_lookup(mos, spa->spa_pool_props_object,
383			    za.za_name, 1, za.za_num_integers, strval);
384			if (err) {
385				kmem_free(strval, za.za_num_integers);
386				break;
387			}
388			spa_prop_add_list(*nvp, prop, strval, 0, src);
389			kmem_free(strval, za.za_num_integers);
390			break;
391
392		default:
393			break;
394		}
395	}
396	zap_cursor_fini(&zc);
397	mutex_exit(&spa->spa_props_lock);
398out:
399	if (err && err != ENOENT) {
400		nvlist_free(*nvp);
401		*nvp = NULL;
402		return (err);
403	}
404
405	return (0);
406}
407
408/*
409 * Validate the given pool properties nvlist and modify the list
410 * for the property values to be set.
411 */
412static int
413spa_prop_validate(spa_t *spa, nvlist_t *props)
414{
415	nvpair_t *elem;
416	int error = 0, reset_bootfs = 0;
417	uint64_t objnum = 0;
418	boolean_t has_feature = B_FALSE;
419
420	elem = NULL;
421	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
422		uint64_t intval;
423		char *strval, *slash, *check, *fname;
424		const char *propname = nvpair_name(elem);
425		zpool_prop_t prop = zpool_name_to_prop(propname);
426
427		switch (prop) {
428		case ZPROP_INVAL:
429			if (!zpool_prop_feature(propname)) {
430				error = SET_ERROR(EINVAL);
431				break;
432			}
433
434			/*
435			 * Sanitize the input.
436			 */
437			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
438				error = SET_ERROR(EINVAL);
439				break;
440			}
441
442			if (nvpair_value_uint64(elem, &intval) != 0) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			if (intval != 0) {
448				error = SET_ERROR(EINVAL);
449				break;
450			}
451
452			fname = strchr(propname, '@') + 1;
453			if (zfeature_lookup_name(fname, NULL) != 0) {
454				error = SET_ERROR(EINVAL);
455				break;
456			}
457
458			has_feature = B_TRUE;
459			break;
460
461		case ZPOOL_PROP_VERSION:
462			error = nvpair_value_uint64(elem, &intval);
463			if (!error &&
464			    (intval < spa_version(spa) ||
465			    intval > SPA_VERSION_BEFORE_FEATURES ||
466			    has_feature))
467				error = SET_ERROR(EINVAL);
468			break;
469
470		case ZPOOL_PROP_DELEGATION:
471		case ZPOOL_PROP_AUTOREPLACE:
472		case ZPOOL_PROP_LISTSNAPS:
473		case ZPOOL_PROP_AUTOEXPAND:
474			error = nvpair_value_uint64(elem, &intval);
475			if (!error && intval > 1)
476				error = SET_ERROR(EINVAL);
477			break;
478
479		case ZPOOL_PROP_BOOTFS:
480			/*
481			 * If the pool version is less than SPA_VERSION_BOOTFS,
482			 * or the pool is still being created (version == 0),
483			 * the bootfs property cannot be set.
484			 */
485			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
486				error = SET_ERROR(ENOTSUP);
487				break;
488			}
489
490			/*
491			 * Make sure the vdev config is bootable
492			 */
493			if (!vdev_is_bootable(spa->spa_root_vdev)) {
494				error = SET_ERROR(ENOTSUP);
495				break;
496			}
497
498			reset_bootfs = 1;
499
500			error = nvpair_value_string(elem, &strval);
501
502			if (!error) {
503				objset_t *os;
504				uint64_t compress;
505
506				if (strval == NULL || strval[0] == '\0') {
507					objnum = zpool_prop_default_numeric(
508					    ZPOOL_PROP_BOOTFS);
509					break;
510				}
511
512				if (error = dmu_objset_hold(strval, FTAG, &os))
513					break;
514
515				/* Must be ZPL and not gzip compressed. */
516
517				if (dmu_objset_type(os) != DMU_OST_ZFS) {
518					error = SET_ERROR(ENOTSUP);
519				} else if ((error =
520				    dsl_prop_get_int_ds(dmu_objset_ds(os),
521				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
522				    &compress)) == 0 &&
523				    !BOOTFS_COMPRESS_VALID(compress)) {
524					error = SET_ERROR(ENOTSUP);
525				} else {
526					objnum = dmu_objset_id(os);
527				}
528				dmu_objset_rele(os, FTAG);
529			}
530			break;
531
532		case ZPOOL_PROP_FAILUREMODE:
533			error = nvpair_value_uint64(elem, &intval);
534			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
535			    intval > ZIO_FAILURE_MODE_PANIC))
536				error = SET_ERROR(EINVAL);
537
538			/*
539			 * This is a special case which only occurs when
540			 * the pool has completely failed. This allows
541			 * the user to change the in-core failmode property
542			 * without syncing it out to disk (I/Os might
543			 * currently be blocked). We do this by returning
544			 * EIO to the caller (spa_prop_set) to trick it
545			 * into thinking we encountered a property validation
546			 * error.
547			 */
548			if (!error && spa_suspended(spa)) {
549				spa->spa_failmode = intval;
550				error = SET_ERROR(EIO);
551			}
552			break;
553
554		case ZPOOL_PROP_CACHEFILE:
555			if ((error = nvpair_value_string(elem, &strval)) != 0)
556				break;
557
558			if (strval[0] == '\0')
559				break;
560
561			if (strcmp(strval, "none") == 0)
562				break;
563
564			if (strval[0] != '/') {
565				error = SET_ERROR(EINVAL);
566				break;
567			}
568
569			slash = strrchr(strval, '/');
570			ASSERT(slash != NULL);
571
572			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
573			    strcmp(slash, "/..") == 0)
574				error = SET_ERROR(EINVAL);
575			break;
576
577		case ZPOOL_PROP_COMMENT:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580			for (check = strval; *check != '\0'; check++) {
581				/*
582				 * The kernel doesn't have an easy isprint()
583				 * check.  For this kernel check, we merely
584				 * check ASCII apart from DEL.  Fix this if
585				 * there is an easy-to-use kernel isprint().
586				 */
587				if (*check >= 0x7f) {
588					error = SET_ERROR(EINVAL);
589					break;
590				}
591				check++;
592			}
593			if (strlen(strval) > ZPROP_MAX_COMMENT)
594				error = E2BIG;
595			break;
596
597		case ZPOOL_PROP_DEDUPDITTO:
598			if (spa_version(spa) < SPA_VERSION_DEDUP)
599				error = SET_ERROR(ENOTSUP);
600			else
601				error = nvpair_value_uint64(elem, &intval);
602			if (error == 0 &&
603			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604				error = SET_ERROR(EINVAL);
605			break;
606		}
607
608		if (error)
609			break;
610	}
611
612	if (!error && reset_bootfs) {
613		error = nvlist_remove(props,
614		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
615
616		if (!error) {
617			error = nvlist_add_uint64(props,
618			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
619		}
620	}
621
622	return (error);
623}
624
625void
626spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
627{
628	char *cachefile;
629	spa_config_dirent_t *dp;
630
631	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
632	    &cachefile) != 0)
633		return;
634
635	dp = kmem_alloc(sizeof (spa_config_dirent_t),
636	    KM_SLEEP);
637
638	if (cachefile[0] == '\0')
639		dp->scd_path = spa_strdup(spa_config_path);
640	else if (strcmp(cachefile, "none") == 0)
641		dp->scd_path = NULL;
642	else
643		dp->scd_path = spa_strdup(cachefile);
644
645	list_insert_head(&spa->spa_config_list, dp);
646	if (need_sync)
647		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
648}
649
650int
651spa_prop_set(spa_t *spa, nvlist_t *nvp)
652{
653	int error;
654	nvpair_t *elem = NULL;
655	boolean_t need_sync = B_FALSE;
656
657	if ((error = spa_prop_validate(spa, nvp)) != 0)
658		return (error);
659
660	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
661		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
662
663		if (prop == ZPOOL_PROP_CACHEFILE ||
664		    prop == ZPOOL_PROP_ALTROOT ||
665		    prop == ZPOOL_PROP_READONLY)
666			continue;
667
668		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
669			uint64_t ver;
670
671			if (prop == ZPOOL_PROP_VERSION) {
672				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
673			} else {
674				ASSERT(zpool_prop_feature(nvpair_name(elem)));
675				ver = SPA_VERSION_FEATURES;
676				need_sync = B_TRUE;
677			}
678
679			/* Save time if the version is already set. */
680			if (ver == spa_version(spa))
681				continue;
682
683			/*
684			 * In addition to the pool directory object, we might
685			 * create the pool properties object, the features for
686			 * read object, the features for write object, or the
687			 * feature descriptions object.
688			 */
689			error = dsl_sync_task(spa->spa_name, NULL,
690			    spa_sync_version, &ver,
691			    6, ZFS_SPACE_CHECK_RESERVED);
692			if (error)
693				return (error);
694			continue;
695		}
696
697		need_sync = B_TRUE;
698		break;
699	}
700
701	if (need_sync) {
702		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
703		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
704	}
705
706	return (0);
707}
708
709/*
710 * If the bootfs property value is dsobj, clear it.
711 */
712void
713spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
714{
715	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
716		VERIFY(zap_remove(spa->spa_meta_objset,
717		    spa->spa_pool_props_object,
718		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
719		spa->spa_bootfs = 0;
720	}
721}
722
723/*ARGSUSED*/
724static int
725spa_change_guid_check(void *arg, dmu_tx_t *tx)
726{
727	uint64_t *newguid = arg;
728	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729	vdev_t *rvd = spa->spa_root_vdev;
730	uint64_t vdev_state;
731
732	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
733	vdev_state = rvd->vdev_state;
734	spa_config_exit(spa, SCL_STATE, FTAG);
735
736	if (vdev_state != VDEV_STATE_HEALTHY)
737		return (SET_ERROR(ENXIO));
738
739	ASSERT3U(spa_guid(spa), !=, *newguid);
740
741	return (0);
742}
743
744static void
745spa_change_guid_sync(void *arg, dmu_tx_t *tx)
746{
747	uint64_t *newguid = arg;
748	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749	uint64_t oldguid;
750	vdev_t *rvd = spa->spa_root_vdev;
751
752	oldguid = spa_guid(spa);
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	rvd->vdev_guid = *newguid;
756	rvd->vdev_guid_sum += (*newguid - oldguid);
757	vdev_config_dirty(rvd);
758	spa_config_exit(spa, SCL_STATE, FTAG);
759
760	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
761	    oldguid, *newguid);
762}
763
764/*
765 * Change the GUID for the pool.  This is done so that we can later
766 * re-import a pool built from a clone of our own vdevs.  We will modify
767 * the root vdev's guid, our own pool guid, and then mark all of our
768 * vdevs dirty.  Note that we must make sure that all our vdevs are
769 * online when we do this, or else any vdevs that weren't present
770 * would be orphaned from our pool.  We are also going to issue a
771 * sysevent to update any watchers.
772 */
773int
774spa_change_guid(spa_t *spa)
775{
776	int error;
777	uint64_t guid;
778
779	mutex_enter(&spa->spa_vdev_top_lock);
780	mutex_enter(&spa_namespace_lock);
781	guid = spa_generate_guid(NULL);
782
783	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
784	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
785
786	if (error == 0) {
787		spa_config_sync(spa, B_FALSE, B_TRUE);
788		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
789	}
790
791	mutex_exit(&spa_namespace_lock);
792	mutex_exit(&spa->spa_vdev_top_lock);
793
794	return (error);
795}
796
797/*
798 * ==========================================================================
799 * SPA state manipulation (open/create/destroy/import/export)
800 * ==========================================================================
801 */
802
803static int
804spa_error_entry_compare(const void *a, const void *b)
805{
806	spa_error_entry_t *sa = (spa_error_entry_t *)a;
807	spa_error_entry_t *sb = (spa_error_entry_t *)b;
808	int ret;
809
810	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
811	    sizeof (zbookmark_phys_t));
812
813	if (ret < 0)
814		return (-1);
815	else if (ret > 0)
816		return (1);
817	else
818		return (0);
819}
820
821/*
822 * Utility function which retrieves copies of the current logs and
823 * re-initializes them in the process.
824 */
825void
826spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
827{
828	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
829
830	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
831	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
832
833	avl_create(&spa->spa_errlist_scrub,
834	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835	    offsetof(spa_error_entry_t, se_avl));
836	avl_create(&spa->spa_errlist_last,
837	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838	    offsetof(spa_error_entry_t, se_avl));
839}
840
841static void
842spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
843{
844	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
845	enum zti_modes mode = ztip->zti_mode;
846	uint_t value = ztip->zti_value;
847	uint_t count = ztip->zti_count;
848	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
849	char name[32];
850	uint_t flags = 0;
851	boolean_t batch = B_FALSE;
852
853	if (mode == ZTI_MODE_NULL) {
854		tqs->stqs_count = 0;
855		tqs->stqs_taskq = NULL;
856		return;
857	}
858
859	ASSERT3U(count, >, 0);
860
861	tqs->stqs_count = count;
862	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
863
864	switch (mode) {
865	case ZTI_MODE_FIXED:
866		ASSERT3U(value, >=, 1);
867		value = MAX(value, 1);
868		break;
869
870	case ZTI_MODE_BATCH:
871		batch = B_TRUE;
872		flags |= TASKQ_THREADS_CPU_PCT;
873		value = zio_taskq_batch_pct;
874		break;
875
876	default:
877		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
878		    "spa_activate()",
879		    zio_type_name[t], zio_taskq_types[q], mode, value);
880		break;
881	}
882
883	for (uint_t i = 0; i < count; i++) {
884		taskq_t *tq;
885
886		if (count > 1) {
887			(void) snprintf(name, sizeof (name), "%s_%s_%u",
888			    zio_type_name[t], zio_taskq_types[q], i);
889		} else {
890			(void) snprintf(name, sizeof (name), "%s_%s",
891			    zio_type_name[t], zio_taskq_types[q]);
892		}
893
894#ifdef SYSDC
895		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896			if (batch)
897				flags |= TASKQ_DC_BATCH;
898
899			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900			    spa->spa_proc, zio_taskq_basedc, flags);
901		} else {
902#endif
903			pri_t pri = maxclsyspri;
904			/*
905			 * The write issue taskq can be extremely CPU
906			 * intensive.  Run it at slightly lower priority
907			 * than the other taskqs.
908			 */
909			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
910				pri--;
911
912			tq = taskq_create_proc(name, value, pri, 50,
913			    INT_MAX, spa->spa_proc, flags);
914#ifdef SYSDC
915		}
916#endif
917
918		tqs->stqs_taskq[i] = tq;
919	}
920}
921
922static void
923spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
924{
925	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
926
927	if (tqs->stqs_taskq == NULL) {
928		ASSERT0(tqs->stqs_count);
929		return;
930	}
931
932	for (uint_t i = 0; i < tqs->stqs_count; i++) {
933		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
934		taskq_destroy(tqs->stqs_taskq[i]);
935	}
936
937	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
938	tqs->stqs_taskq = NULL;
939}
940
941/*
942 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
943 * Note that a type may have multiple discrete taskqs to avoid lock contention
944 * on the taskq itself. In that case we choose which taskq at random by using
945 * the low bits of gethrtime().
946 */
947void
948spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
949    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
950{
951	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
952	taskq_t *tq;
953
954	ASSERT3P(tqs->stqs_taskq, !=, NULL);
955	ASSERT3U(tqs->stqs_count, !=, 0);
956
957	if (tqs->stqs_count == 1) {
958		tq = tqs->stqs_taskq[0];
959	} else {
960#ifdef _KERNEL
961		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
962#else
963		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
964#endif
965	}
966
967	taskq_dispatch_ent(tq, func, arg, flags, ent);
968}
969
970static void
971spa_create_zio_taskqs(spa_t *spa)
972{
973	for (int t = 0; t < ZIO_TYPES; t++) {
974		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
975			spa_taskqs_init(spa, t, q);
976		}
977	}
978}
979
980#ifdef _KERNEL
981#ifdef SPA_PROCESS
982static void
983spa_thread(void *arg)
984{
985	callb_cpr_t cprinfo;
986
987	spa_t *spa = arg;
988	user_t *pu = PTOU(curproc);
989
990	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
991	    spa->spa_name);
992
993	ASSERT(curproc != &p0);
994	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
995	    "zpool-%s", spa->spa_name);
996	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
997
998#ifdef PSRSET_BIND
999	/* bind this thread to the requested psrset */
1000	if (zio_taskq_psrset_bind != PS_NONE) {
1001		pool_lock();
1002		mutex_enter(&cpu_lock);
1003		mutex_enter(&pidlock);
1004		mutex_enter(&curproc->p_lock);
1005
1006		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1007		    0, NULL, NULL) == 0)  {
1008			curthread->t_bind_pset = zio_taskq_psrset_bind;
1009		} else {
1010			cmn_err(CE_WARN,
1011			    "Couldn't bind process for zfs pool \"%s\" to "
1012			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1013		}
1014
1015		mutex_exit(&curproc->p_lock);
1016		mutex_exit(&pidlock);
1017		mutex_exit(&cpu_lock);
1018		pool_unlock();
1019	}
1020#endif
1021
1022#ifdef SYSDC
1023	if (zio_taskq_sysdc) {
1024		sysdc_thread_enter(curthread, 100, 0);
1025	}
1026#endif
1027
1028	spa->spa_proc = curproc;
1029	spa->spa_did = curthread->t_did;
1030
1031	spa_create_zio_taskqs(spa);
1032
1033	mutex_enter(&spa->spa_proc_lock);
1034	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1035
1036	spa->spa_proc_state = SPA_PROC_ACTIVE;
1037	cv_broadcast(&spa->spa_proc_cv);
1038
1039	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1040	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1041		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1042	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1043
1044	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1045	spa->spa_proc_state = SPA_PROC_GONE;
1046	spa->spa_proc = &p0;
1047	cv_broadcast(&spa->spa_proc_cv);
1048	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1049
1050	mutex_enter(&curproc->p_lock);
1051	lwp_exit();
1052}
1053#endif	/* SPA_PROCESS */
1054#endif
1055
1056/*
1057 * Activate an uninitialized pool.
1058 */
1059static void
1060spa_activate(spa_t *spa, int mode)
1061{
1062	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1063
1064	spa->spa_state = POOL_STATE_ACTIVE;
1065	spa->spa_mode = mode;
1066
1067	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1068	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1069
1070	/* Try to create a covering process */
1071	mutex_enter(&spa->spa_proc_lock);
1072	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1073	ASSERT(spa->spa_proc == &p0);
1074	spa->spa_did = 0;
1075
1076#ifdef SPA_PROCESS
1077	/* Only create a process if we're going to be around a while. */
1078	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1079		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1080		    NULL, 0) == 0) {
1081			spa->spa_proc_state = SPA_PROC_CREATED;
1082			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1083				cv_wait(&spa->spa_proc_cv,
1084				    &spa->spa_proc_lock);
1085			}
1086			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1087			ASSERT(spa->spa_proc != &p0);
1088			ASSERT(spa->spa_did != 0);
1089		} else {
1090#ifdef _KERNEL
1091			cmn_err(CE_WARN,
1092			    "Couldn't create process for zfs pool \"%s\"\n",
1093			    spa->spa_name);
1094#endif
1095		}
1096	}
1097#endif	/* SPA_PROCESS */
1098	mutex_exit(&spa->spa_proc_lock);
1099
1100	/* If we didn't create a process, we need to create our taskqs. */
1101	ASSERT(spa->spa_proc == &p0);
1102	if (spa->spa_proc == &p0) {
1103		spa_create_zio_taskqs(spa);
1104	}
1105
1106	/*
1107	 * Start TRIM thread.
1108	 */
1109	trim_thread_create(spa);
1110
1111	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1112	    offsetof(vdev_t, vdev_config_dirty_node));
1113	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1114	    offsetof(vdev_t, vdev_state_dirty_node));
1115
1116	txg_list_create(&spa->spa_vdev_txg_list,
1117	    offsetof(struct vdev, vdev_txg_node));
1118
1119	avl_create(&spa->spa_errlist_scrub,
1120	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1121	    offsetof(spa_error_entry_t, se_avl));
1122	avl_create(&spa->spa_errlist_last,
1123	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1124	    offsetof(spa_error_entry_t, se_avl));
1125}
1126
1127/*
1128 * Opposite of spa_activate().
1129 */
1130static void
1131spa_deactivate(spa_t *spa)
1132{
1133	ASSERT(spa->spa_sync_on == B_FALSE);
1134	ASSERT(spa->spa_dsl_pool == NULL);
1135	ASSERT(spa->spa_root_vdev == NULL);
1136	ASSERT(spa->spa_async_zio_root == NULL);
1137	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1138
1139	/*
1140	 * Stop TRIM thread in case spa_unload() wasn't called directly
1141	 * before spa_deactivate().
1142	 */
1143	trim_thread_destroy(spa);
1144
1145	txg_list_destroy(&spa->spa_vdev_txg_list);
1146
1147	list_destroy(&spa->spa_config_dirty_list);
1148	list_destroy(&spa->spa_state_dirty_list);
1149
1150	for (int t = 0; t < ZIO_TYPES; t++) {
1151		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1152			spa_taskqs_fini(spa, t, q);
1153		}
1154	}
1155
1156	metaslab_class_destroy(spa->spa_normal_class);
1157	spa->spa_normal_class = NULL;
1158
1159	metaslab_class_destroy(spa->spa_log_class);
1160	spa->spa_log_class = NULL;
1161
1162	/*
1163	 * If this was part of an import or the open otherwise failed, we may
1164	 * still have errors left in the queues.  Empty them just in case.
1165	 */
1166	spa_errlog_drain(spa);
1167
1168	avl_destroy(&spa->spa_errlist_scrub);
1169	avl_destroy(&spa->spa_errlist_last);
1170
1171	spa->spa_state = POOL_STATE_UNINITIALIZED;
1172
1173	mutex_enter(&spa->spa_proc_lock);
1174	if (spa->spa_proc_state != SPA_PROC_NONE) {
1175		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1176		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1177		cv_broadcast(&spa->spa_proc_cv);
1178		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1179			ASSERT(spa->spa_proc != &p0);
1180			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1181		}
1182		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1183		spa->spa_proc_state = SPA_PROC_NONE;
1184	}
1185	ASSERT(spa->spa_proc == &p0);
1186	mutex_exit(&spa->spa_proc_lock);
1187
1188#ifdef SPA_PROCESS
1189	/*
1190	 * We want to make sure spa_thread() has actually exited the ZFS
1191	 * module, so that the module can't be unloaded out from underneath
1192	 * it.
1193	 */
1194	if (spa->spa_did != 0) {
1195		thread_join(spa->spa_did);
1196		spa->spa_did = 0;
1197	}
1198#endif	/* SPA_PROCESS */
1199}
1200
1201/*
1202 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1203 * will create all the necessary vdevs in the appropriate layout, with each vdev
1204 * in the CLOSED state.  This will prep the pool before open/creation/import.
1205 * All vdev validation is done by the vdev_alloc() routine.
1206 */
1207static int
1208spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1209    uint_t id, int atype)
1210{
1211	nvlist_t **child;
1212	uint_t children;
1213	int error;
1214
1215	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1216		return (error);
1217
1218	if ((*vdp)->vdev_ops->vdev_op_leaf)
1219		return (0);
1220
1221	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1222	    &child, &children);
1223
1224	if (error == ENOENT)
1225		return (0);
1226
1227	if (error) {
1228		vdev_free(*vdp);
1229		*vdp = NULL;
1230		return (SET_ERROR(EINVAL));
1231	}
1232
1233	for (int c = 0; c < children; c++) {
1234		vdev_t *vd;
1235		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1236		    atype)) != 0) {
1237			vdev_free(*vdp);
1238			*vdp = NULL;
1239			return (error);
1240		}
1241	}
1242
1243	ASSERT(*vdp != NULL);
1244
1245	return (0);
1246}
1247
1248/*
1249 * Opposite of spa_load().
1250 */
1251static void
1252spa_unload(spa_t *spa)
1253{
1254	int i;
1255
1256	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1257
1258	/*
1259	 * Stop TRIM thread.
1260	 */
1261	trim_thread_destroy(spa);
1262
1263	/*
1264	 * Stop async tasks.
1265	 */
1266	spa_async_suspend(spa);
1267
1268	/*
1269	 * Stop syncing.
1270	 */
1271	if (spa->spa_sync_on) {
1272		txg_sync_stop(spa->spa_dsl_pool);
1273		spa->spa_sync_on = B_FALSE;
1274	}
1275
1276	/*
1277	 * Wait for any outstanding async I/O to complete.
1278	 */
1279	if (spa->spa_async_zio_root != NULL) {
1280		(void) zio_wait(spa->spa_async_zio_root);
1281		spa->spa_async_zio_root = NULL;
1282	}
1283
1284	bpobj_close(&spa->spa_deferred_bpobj);
1285
1286	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1287
1288	/*
1289	 * Close all vdevs.
1290	 */
1291	if (spa->spa_root_vdev)
1292		vdev_free(spa->spa_root_vdev);
1293	ASSERT(spa->spa_root_vdev == NULL);
1294
1295	/*
1296	 * Close the dsl pool.
1297	 */
1298	if (spa->spa_dsl_pool) {
1299		dsl_pool_close(spa->spa_dsl_pool);
1300		spa->spa_dsl_pool = NULL;
1301		spa->spa_meta_objset = NULL;
1302	}
1303
1304	ddt_unload(spa);
1305
1306
1307	/*
1308	 * Drop and purge level 2 cache
1309	 */
1310	spa_l2cache_drop(spa);
1311
1312	for (i = 0; i < spa->spa_spares.sav_count; i++)
1313		vdev_free(spa->spa_spares.sav_vdevs[i]);
1314	if (spa->spa_spares.sav_vdevs) {
1315		kmem_free(spa->spa_spares.sav_vdevs,
1316		    spa->spa_spares.sav_count * sizeof (void *));
1317		spa->spa_spares.sav_vdevs = NULL;
1318	}
1319	if (spa->spa_spares.sav_config) {
1320		nvlist_free(spa->spa_spares.sav_config);
1321		spa->spa_spares.sav_config = NULL;
1322	}
1323	spa->spa_spares.sav_count = 0;
1324
1325	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1326		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1327		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1328	}
1329	if (spa->spa_l2cache.sav_vdevs) {
1330		kmem_free(spa->spa_l2cache.sav_vdevs,
1331		    spa->spa_l2cache.sav_count * sizeof (void *));
1332		spa->spa_l2cache.sav_vdevs = NULL;
1333	}
1334	if (spa->spa_l2cache.sav_config) {
1335		nvlist_free(spa->spa_l2cache.sav_config);
1336		spa->spa_l2cache.sav_config = NULL;
1337	}
1338	spa->spa_l2cache.sav_count = 0;
1339
1340	spa->spa_async_suspended = 0;
1341
1342	if (spa->spa_comment != NULL) {
1343		spa_strfree(spa->spa_comment);
1344		spa->spa_comment = NULL;
1345	}
1346
1347	spa_config_exit(spa, SCL_ALL, FTAG);
1348}
1349
1350/*
1351 * Load (or re-load) the current list of vdevs describing the active spares for
1352 * this pool.  When this is called, we have some form of basic information in
1353 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1354 * then re-generate a more complete list including status information.
1355 */
1356static void
1357spa_load_spares(spa_t *spa)
1358{
1359	nvlist_t **spares;
1360	uint_t nspares;
1361	int i;
1362	vdev_t *vd, *tvd;
1363
1364	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1365
1366	/*
1367	 * First, close and free any existing spare vdevs.
1368	 */
1369	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1370		vd = spa->spa_spares.sav_vdevs[i];
1371
1372		/* Undo the call to spa_activate() below */
1373		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1374		    B_FALSE)) != NULL && tvd->vdev_isspare)
1375			spa_spare_remove(tvd);
1376		vdev_close(vd);
1377		vdev_free(vd);
1378	}
1379
1380	if (spa->spa_spares.sav_vdevs)
1381		kmem_free(spa->spa_spares.sav_vdevs,
1382		    spa->spa_spares.sav_count * sizeof (void *));
1383
1384	if (spa->spa_spares.sav_config == NULL)
1385		nspares = 0;
1386	else
1387		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1388		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1389
1390	spa->spa_spares.sav_count = (int)nspares;
1391	spa->spa_spares.sav_vdevs = NULL;
1392
1393	if (nspares == 0)
1394		return;
1395
1396	/*
1397	 * Construct the array of vdevs, opening them to get status in the
1398	 * process.   For each spare, there is potentially two different vdev_t
1399	 * structures associated with it: one in the list of spares (used only
1400	 * for basic validation purposes) and one in the active vdev
1401	 * configuration (if it's spared in).  During this phase we open and
1402	 * validate each vdev on the spare list.  If the vdev also exists in the
1403	 * active configuration, then we also mark this vdev as an active spare.
1404	 */
1405	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1406	    KM_SLEEP);
1407	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1408		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1409		    VDEV_ALLOC_SPARE) == 0);
1410		ASSERT(vd != NULL);
1411
1412		spa->spa_spares.sav_vdevs[i] = vd;
1413
1414		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1415		    B_FALSE)) != NULL) {
1416			if (!tvd->vdev_isspare)
1417				spa_spare_add(tvd);
1418
1419			/*
1420			 * We only mark the spare active if we were successfully
1421			 * able to load the vdev.  Otherwise, importing a pool
1422			 * with a bad active spare would result in strange
1423			 * behavior, because multiple pool would think the spare
1424			 * is actively in use.
1425			 *
1426			 * There is a vulnerability here to an equally bizarre
1427			 * circumstance, where a dead active spare is later
1428			 * brought back to life (onlined or otherwise).  Given
1429			 * the rarity of this scenario, and the extra complexity
1430			 * it adds, we ignore the possibility.
1431			 */
1432			if (!vdev_is_dead(tvd))
1433				spa_spare_activate(tvd);
1434		}
1435
1436		vd->vdev_top = vd;
1437		vd->vdev_aux = &spa->spa_spares;
1438
1439		if (vdev_open(vd) != 0)
1440			continue;
1441
1442		if (vdev_validate_aux(vd) == 0)
1443			spa_spare_add(vd);
1444	}
1445
1446	/*
1447	 * Recompute the stashed list of spares, with status information
1448	 * this time.
1449	 */
1450	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1451	    DATA_TYPE_NVLIST_ARRAY) == 0);
1452
1453	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1454	    KM_SLEEP);
1455	for (i = 0; i < spa->spa_spares.sav_count; i++)
1456		spares[i] = vdev_config_generate(spa,
1457		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1458	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1459	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1460	for (i = 0; i < spa->spa_spares.sav_count; i++)
1461		nvlist_free(spares[i]);
1462	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1463}
1464
1465/*
1466 * Load (or re-load) the current list of vdevs describing the active l2cache for
1467 * this pool.  When this is called, we have some form of basic information in
1468 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1469 * then re-generate a more complete list including status information.
1470 * Devices which are already active have their details maintained, and are
1471 * not re-opened.
1472 */
1473static void
1474spa_load_l2cache(spa_t *spa)
1475{
1476	nvlist_t **l2cache;
1477	uint_t nl2cache;
1478	int i, j, oldnvdevs;
1479	uint64_t guid;
1480	vdev_t *vd, **oldvdevs, **newvdevs;
1481	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1482
1483	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1484
1485	if (sav->sav_config != NULL) {
1486		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1487		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1488		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1489	} else {
1490		nl2cache = 0;
1491		newvdevs = NULL;
1492	}
1493
1494	oldvdevs = sav->sav_vdevs;
1495	oldnvdevs = sav->sav_count;
1496	sav->sav_vdevs = NULL;
1497	sav->sav_count = 0;
1498
1499	/*
1500	 * Process new nvlist of vdevs.
1501	 */
1502	for (i = 0; i < nl2cache; i++) {
1503		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1504		    &guid) == 0);
1505
1506		newvdevs[i] = NULL;
1507		for (j = 0; j < oldnvdevs; j++) {
1508			vd = oldvdevs[j];
1509			if (vd != NULL && guid == vd->vdev_guid) {
1510				/*
1511				 * Retain previous vdev for add/remove ops.
1512				 */
1513				newvdevs[i] = vd;
1514				oldvdevs[j] = NULL;
1515				break;
1516			}
1517		}
1518
1519		if (newvdevs[i] == NULL) {
1520			/*
1521			 * Create new vdev
1522			 */
1523			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1524			    VDEV_ALLOC_L2CACHE) == 0);
1525			ASSERT(vd != NULL);
1526			newvdevs[i] = vd;
1527
1528			/*
1529			 * Commit this vdev as an l2cache device,
1530			 * even if it fails to open.
1531			 */
1532			spa_l2cache_add(vd);
1533
1534			vd->vdev_top = vd;
1535			vd->vdev_aux = sav;
1536
1537			spa_l2cache_activate(vd);
1538
1539			if (vdev_open(vd) != 0)
1540				continue;
1541
1542			(void) vdev_validate_aux(vd);
1543
1544			if (!vdev_is_dead(vd))
1545				l2arc_add_vdev(spa, vd);
1546		}
1547	}
1548
1549	/*
1550	 * Purge vdevs that were dropped
1551	 */
1552	for (i = 0; i < oldnvdevs; i++) {
1553		uint64_t pool;
1554
1555		vd = oldvdevs[i];
1556		if (vd != NULL) {
1557			ASSERT(vd->vdev_isl2cache);
1558
1559			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1560			    pool != 0ULL && l2arc_vdev_present(vd))
1561				l2arc_remove_vdev(vd);
1562			vdev_clear_stats(vd);
1563			vdev_free(vd);
1564		}
1565	}
1566
1567	if (oldvdevs)
1568		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1569
1570	if (sav->sav_config == NULL)
1571		goto out;
1572
1573	sav->sav_vdevs = newvdevs;
1574	sav->sav_count = (int)nl2cache;
1575
1576	/*
1577	 * Recompute the stashed list of l2cache devices, with status
1578	 * information this time.
1579	 */
1580	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1581	    DATA_TYPE_NVLIST_ARRAY) == 0);
1582
1583	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1584	for (i = 0; i < sav->sav_count; i++)
1585		l2cache[i] = vdev_config_generate(spa,
1586		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1587	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1588	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1589out:
1590	for (i = 0; i < sav->sav_count; i++)
1591		nvlist_free(l2cache[i]);
1592	if (sav->sav_count)
1593		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1594}
1595
1596static int
1597load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1598{
1599	dmu_buf_t *db;
1600	char *packed = NULL;
1601	size_t nvsize = 0;
1602	int error;
1603	*value = NULL;
1604
1605	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1606	if (error != 0)
1607		return (error);
1608	nvsize = *(uint64_t *)db->db_data;
1609	dmu_buf_rele(db, FTAG);
1610
1611	packed = kmem_alloc(nvsize, KM_SLEEP);
1612	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1613	    DMU_READ_PREFETCH);
1614	if (error == 0)
1615		error = nvlist_unpack(packed, nvsize, value, 0);
1616	kmem_free(packed, nvsize);
1617
1618	return (error);
1619}
1620
1621/*
1622 * Checks to see if the given vdev could not be opened, in which case we post a
1623 * sysevent to notify the autoreplace code that the device has been removed.
1624 */
1625static void
1626spa_check_removed(vdev_t *vd)
1627{
1628	for (int c = 0; c < vd->vdev_children; c++)
1629		spa_check_removed(vd->vdev_child[c]);
1630
1631	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1632	    !vd->vdev_ishole) {
1633		zfs_post_autoreplace(vd->vdev_spa, vd);
1634		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1635	}
1636}
1637
1638/*
1639 * Validate the current config against the MOS config
1640 */
1641static boolean_t
1642spa_config_valid(spa_t *spa, nvlist_t *config)
1643{
1644	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1645	nvlist_t *nv;
1646
1647	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1648
1649	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1650	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1651
1652	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1653
1654	/*
1655	 * If we're doing a normal import, then build up any additional
1656	 * diagnostic information about missing devices in this config.
1657	 * We'll pass this up to the user for further processing.
1658	 */
1659	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1660		nvlist_t **child, *nv;
1661		uint64_t idx = 0;
1662
1663		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1664		    KM_SLEEP);
1665		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1666
1667		for (int c = 0; c < rvd->vdev_children; c++) {
1668			vdev_t *tvd = rvd->vdev_child[c];
1669			vdev_t *mtvd  = mrvd->vdev_child[c];
1670
1671			if (tvd->vdev_ops == &vdev_missing_ops &&
1672			    mtvd->vdev_ops != &vdev_missing_ops &&
1673			    mtvd->vdev_islog)
1674				child[idx++] = vdev_config_generate(spa, mtvd,
1675				    B_FALSE, 0);
1676		}
1677
1678		if (idx) {
1679			VERIFY(nvlist_add_nvlist_array(nv,
1680			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1681			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1682			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1683
1684			for (int i = 0; i < idx; i++)
1685				nvlist_free(child[i]);
1686		}
1687		nvlist_free(nv);
1688		kmem_free(child, rvd->vdev_children * sizeof (char **));
1689	}
1690
1691	/*
1692	 * Compare the root vdev tree with the information we have
1693	 * from the MOS config (mrvd). Check each top-level vdev
1694	 * with the corresponding MOS config top-level (mtvd).
1695	 */
1696	for (int c = 0; c < rvd->vdev_children; c++) {
1697		vdev_t *tvd = rvd->vdev_child[c];
1698		vdev_t *mtvd  = mrvd->vdev_child[c];
1699
1700		/*
1701		 * Resolve any "missing" vdevs in the current configuration.
1702		 * If we find that the MOS config has more accurate information
1703		 * about the top-level vdev then use that vdev instead.
1704		 */
1705		if (tvd->vdev_ops == &vdev_missing_ops &&
1706		    mtvd->vdev_ops != &vdev_missing_ops) {
1707
1708			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1709				continue;
1710
1711			/*
1712			 * Device specific actions.
1713			 */
1714			if (mtvd->vdev_islog) {
1715				spa_set_log_state(spa, SPA_LOG_CLEAR);
1716			} else {
1717				/*
1718				 * XXX - once we have 'readonly' pool
1719				 * support we should be able to handle
1720				 * missing data devices by transitioning
1721				 * the pool to readonly.
1722				 */
1723				continue;
1724			}
1725
1726			/*
1727			 * Swap the missing vdev with the data we were
1728			 * able to obtain from the MOS config.
1729			 */
1730			vdev_remove_child(rvd, tvd);
1731			vdev_remove_child(mrvd, mtvd);
1732
1733			vdev_add_child(rvd, mtvd);
1734			vdev_add_child(mrvd, tvd);
1735
1736			spa_config_exit(spa, SCL_ALL, FTAG);
1737			vdev_load(mtvd);
1738			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1739
1740			vdev_reopen(rvd);
1741		} else if (mtvd->vdev_islog) {
1742			/*
1743			 * Load the slog device's state from the MOS config
1744			 * since it's possible that the label does not
1745			 * contain the most up-to-date information.
1746			 */
1747			vdev_load_log_state(tvd, mtvd);
1748			vdev_reopen(tvd);
1749		}
1750	}
1751	vdev_free(mrvd);
1752	spa_config_exit(spa, SCL_ALL, FTAG);
1753
1754	/*
1755	 * Ensure we were able to validate the config.
1756	 */
1757	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1758}
1759
1760/*
1761 * Check for missing log devices
1762 */
1763static boolean_t
1764spa_check_logs(spa_t *spa)
1765{
1766	boolean_t rv = B_FALSE;
1767
1768	switch (spa->spa_log_state) {
1769	case SPA_LOG_MISSING:
1770		/* need to recheck in case slog has been restored */
1771	case SPA_LOG_UNKNOWN:
1772		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1773		    NULL, DS_FIND_CHILDREN) != 0);
1774		if (rv)
1775			spa_set_log_state(spa, SPA_LOG_MISSING);
1776		break;
1777	}
1778	return (rv);
1779}
1780
1781static boolean_t
1782spa_passivate_log(spa_t *spa)
1783{
1784	vdev_t *rvd = spa->spa_root_vdev;
1785	boolean_t slog_found = B_FALSE;
1786
1787	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1788
1789	if (!spa_has_slogs(spa))
1790		return (B_FALSE);
1791
1792	for (int c = 0; c < rvd->vdev_children; c++) {
1793		vdev_t *tvd = rvd->vdev_child[c];
1794		metaslab_group_t *mg = tvd->vdev_mg;
1795
1796		if (tvd->vdev_islog) {
1797			metaslab_group_passivate(mg);
1798			slog_found = B_TRUE;
1799		}
1800	}
1801
1802	return (slog_found);
1803}
1804
1805static void
1806spa_activate_log(spa_t *spa)
1807{
1808	vdev_t *rvd = spa->spa_root_vdev;
1809
1810	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1811
1812	for (int c = 0; c < rvd->vdev_children; c++) {
1813		vdev_t *tvd = rvd->vdev_child[c];
1814		metaslab_group_t *mg = tvd->vdev_mg;
1815
1816		if (tvd->vdev_islog)
1817			metaslab_group_activate(mg);
1818	}
1819}
1820
1821int
1822spa_offline_log(spa_t *spa)
1823{
1824	int error;
1825
1826	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1827	    NULL, DS_FIND_CHILDREN);
1828	if (error == 0) {
1829		/*
1830		 * We successfully offlined the log device, sync out the
1831		 * current txg so that the "stubby" block can be removed
1832		 * by zil_sync().
1833		 */
1834		txg_wait_synced(spa->spa_dsl_pool, 0);
1835	}
1836	return (error);
1837}
1838
1839static void
1840spa_aux_check_removed(spa_aux_vdev_t *sav)
1841{
1842	int i;
1843
1844	for (i = 0; i < sav->sav_count; i++)
1845		spa_check_removed(sav->sav_vdevs[i]);
1846}
1847
1848void
1849spa_claim_notify(zio_t *zio)
1850{
1851	spa_t *spa = zio->io_spa;
1852
1853	if (zio->io_error)
1854		return;
1855
1856	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1857	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1858		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1859	mutex_exit(&spa->spa_props_lock);
1860}
1861
1862typedef struct spa_load_error {
1863	uint64_t	sle_meta_count;
1864	uint64_t	sle_data_count;
1865} spa_load_error_t;
1866
1867static void
1868spa_load_verify_done(zio_t *zio)
1869{
1870	blkptr_t *bp = zio->io_bp;
1871	spa_load_error_t *sle = zio->io_private;
1872	dmu_object_type_t type = BP_GET_TYPE(bp);
1873	int error = zio->io_error;
1874	spa_t *spa = zio->io_spa;
1875
1876	if (error) {
1877		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1878		    type != DMU_OT_INTENT_LOG)
1879			atomic_inc_64(&sle->sle_meta_count);
1880		else
1881			atomic_inc_64(&sle->sle_data_count);
1882	}
1883	zio_data_buf_free(zio->io_data, zio->io_size);
1884
1885	mutex_enter(&spa->spa_scrub_lock);
1886	spa->spa_scrub_inflight--;
1887	cv_broadcast(&spa->spa_scrub_io_cv);
1888	mutex_exit(&spa->spa_scrub_lock);
1889}
1890
1891/*
1892 * Maximum number of concurrent scrub i/os to create while verifying
1893 * a pool while importing it.
1894 */
1895int spa_load_verify_maxinflight = 10000;
1896boolean_t spa_load_verify_metadata = B_TRUE;
1897boolean_t spa_load_verify_data = B_TRUE;
1898
1899SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1900    &spa_load_verify_maxinflight, 0,
1901    "Maximum number of concurrent scrub I/Os to create while verifying a "
1902    "pool while importing it");
1903
1904SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1905    &spa_load_verify_metadata, 0,
1906    "Check metadata on import?");
1907
1908SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1909    &spa_load_verify_data, 0,
1910    "Check user data on import?");
1911
1912/*ARGSUSED*/
1913static int
1914spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1915    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1916{
1917	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1918		return (0);
1919	/*
1920	 * Note: normally this routine will not be called if
1921	 * spa_load_verify_metadata is not set.  However, it may be useful
1922	 * to manually set the flag after the traversal has begun.
1923	 */
1924	if (!spa_load_verify_metadata)
1925		return (0);
1926	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1927		return (0);
1928
1929	zio_t *rio = arg;
1930	size_t size = BP_GET_PSIZE(bp);
1931	void *data = zio_data_buf_alloc(size);
1932
1933	mutex_enter(&spa->spa_scrub_lock);
1934	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1935		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1936	spa->spa_scrub_inflight++;
1937	mutex_exit(&spa->spa_scrub_lock);
1938
1939	zio_nowait(zio_read(rio, spa, bp, data, size,
1940	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1941	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1942	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1943	return (0);
1944}
1945
1946static int
1947spa_load_verify(spa_t *spa)
1948{
1949	zio_t *rio;
1950	spa_load_error_t sle = { 0 };
1951	zpool_rewind_policy_t policy;
1952	boolean_t verify_ok = B_FALSE;
1953	int error = 0;
1954
1955	zpool_get_rewind_policy(spa->spa_config, &policy);
1956
1957	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1958		return (0);
1959
1960	rio = zio_root(spa, NULL, &sle,
1961	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1962
1963	if (spa_load_verify_metadata) {
1964		error = traverse_pool(spa, spa->spa_verify_min_txg,
1965		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1966		    spa_load_verify_cb, rio);
1967	}
1968
1969	(void) zio_wait(rio);
1970
1971	spa->spa_load_meta_errors = sle.sle_meta_count;
1972	spa->spa_load_data_errors = sle.sle_data_count;
1973
1974	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1975	    sle.sle_data_count <= policy.zrp_maxdata) {
1976		int64_t loss = 0;
1977
1978		verify_ok = B_TRUE;
1979		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1980		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1981
1982		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1983		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1984		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1985		VERIFY(nvlist_add_int64(spa->spa_load_info,
1986		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1987		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1988		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1989	} else {
1990		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1991	}
1992
1993	if (error) {
1994		if (error != ENXIO && error != EIO)
1995			error = SET_ERROR(EIO);
1996		return (error);
1997	}
1998
1999	return (verify_ok ? 0 : EIO);
2000}
2001
2002/*
2003 * Find a value in the pool props object.
2004 */
2005static void
2006spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2007{
2008	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2009	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2010}
2011
2012/*
2013 * Find a value in the pool directory object.
2014 */
2015static int
2016spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2017{
2018	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2019	    name, sizeof (uint64_t), 1, val));
2020}
2021
2022static int
2023spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2024{
2025	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2026	return (err);
2027}
2028
2029/*
2030 * Fix up config after a partly-completed split.  This is done with the
2031 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2032 * pool have that entry in their config, but only the splitting one contains
2033 * a list of all the guids of the vdevs that are being split off.
2034 *
2035 * This function determines what to do with that list: either rejoin
2036 * all the disks to the pool, or complete the splitting process.  To attempt
2037 * the rejoin, each disk that is offlined is marked online again, and
2038 * we do a reopen() call.  If the vdev label for every disk that was
2039 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2040 * then we call vdev_split() on each disk, and complete the split.
2041 *
2042 * Otherwise we leave the config alone, with all the vdevs in place in
2043 * the original pool.
2044 */
2045static void
2046spa_try_repair(spa_t *spa, nvlist_t *config)
2047{
2048	uint_t extracted;
2049	uint64_t *glist;
2050	uint_t i, gcount;
2051	nvlist_t *nvl;
2052	vdev_t **vd;
2053	boolean_t attempt_reopen;
2054
2055	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2056		return;
2057
2058	/* check that the config is complete */
2059	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2060	    &glist, &gcount) != 0)
2061		return;
2062
2063	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2064
2065	/* attempt to online all the vdevs & validate */
2066	attempt_reopen = B_TRUE;
2067	for (i = 0; i < gcount; i++) {
2068		if (glist[i] == 0)	/* vdev is hole */
2069			continue;
2070
2071		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2072		if (vd[i] == NULL) {
2073			/*
2074			 * Don't bother attempting to reopen the disks;
2075			 * just do the split.
2076			 */
2077			attempt_reopen = B_FALSE;
2078		} else {
2079			/* attempt to re-online it */
2080			vd[i]->vdev_offline = B_FALSE;
2081		}
2082	}
2083
2084	if (attempt_reopen) {
2085		vdev_reopen(spa->spa_root_vdev);
2086
2087		/* check each device to see what state it's in */
2088		for (extracted = 0, i = 0; i < gcount; i++) {
2089			if (vd[i] != NULL &&
2090			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2091				break;
2092			++extracted;
2093		}
2094	}
2095
2096	/*
2097	 * If every disk has been moved to the new pool, or if we never
2098	 * even attempted to look at them, then we split them off for
2099	 * good.
2100	 */
2101	if (!attempt_reopen || gcount == extracted) {
2102		for (i = 0; i < gcount; i++)
2103			if (vd[i] != NULL)
2104				vdev_split(vd[i]);
2105		vdev_reopen(spa->spa_root_vdev);
2106	}
2107
2108	kmem_free(vd, gcount * sizeof (vdev_t *));
2109}
2110
2111static int
2112spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2113    boolean_t mosconfig)
2114{
2115	nvlist_t *config = spa->spa_config;
2116	char *ereport = FM_EREPORT_ZFS_POOL;
2117	char *comment;
2118	int error;
2119	uint64_t pool_guid;
2120	nvlist_t *nvl;
2121
2122	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2123		return (SET_ERROR(EINVAL));
2124
2125	ASSERT(spa->spa_comment == NULL);
2126	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2127		spa->spa_comment = spa_strdup(comment);
2128
2129	/*
2130	 * Versioning wasn't explicitly added to the label until later, so if
2131	 * it's not present treat it as the initial version.
2132	 */
2133	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2134	    &spa->spa_ubsync.ub_version) != 0)
2135		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2136
2137	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2138	    &spa->spa_config_txg);
2139
2140	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2141	    spa_guid_exists(pool_guid, 0)) {
2142		error = SET_ERROR(EEXIST);
2143	} else {
2144		spa->spa_config_guid = pool_guid;
2145
2146		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2147		    &nvl) == 0) {
2148			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2149			    KM_SLEEP) == 0);
2150		}
2151
2152		nvlist_free(spa->spa_load_info);
2153		spa->spa_load_info = fnvlist_alloc();
2154
2155		gethrestime(&spa->spa_loaded_ts);
2156		error = spa_load_impl(spa, pool_guid, config, state, type,
2157		    mosconfig, &ereport);
2158	}
2159
2160	spa->spa_minref = refcount_count(&spa->spa_refcount);
2161	if (error) {
2162		if (error != EEXIST) {
2163			spa->spa_loaded_ts.tv_sec = 0;
2164			spa->spa_loaded_ts.tv_nsec = 0;
2165		}
2166		if (error != EBADF) {
2167			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2168		}
2169	}
2170	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2171	spa->spa_ena = 0;
2172
2173	return (error);
2174}
2175
2176/*
2177 * Load an existing storage pool, using the pool's builtin spa_config as a
2178 * source of configuration information.
2179 */
2180static int
2181spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2182    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2183    char **ereport)
2184{
2185	int error = 0;
2186	nvlist_t *nvroot = NULL;
2187	nvlist_t *label;
2188	vdev_t *rvd;
2189	uberblock_t *ub = &spa->spa_uberblock;
2190	uint64_t children, config_cache_txg = spa->spa_config_txg;
2191	int orig_mode = spa->spa_mode;
2192	int parse;
2193	uint64_t obj;
2194	boolean_t missing_feat_write = B_FALSE;
2195
2196	/*
2197	 * If this is an untrusted config, access the pool in read-only mode.
2198	 * This prevents things like resilvering recently removed devices.
2199	 */
2200	if (!mosconfig)
2201		spa->spa_mode = FREAD;
2202
2203	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2204
2205	spa->spa_load_state = state;
2206
2207	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2208		return (SET_ERROR(EINVAL));
2209
2210	parse = (type == SPA_IMPORT_EXISTING ?
2211	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2212
2213	/*
2214	 * Create "The Godfather" zio to hold all async IOs
2215	 */
2216	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2217	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2218
2219	/*
2220	 * Parse the configuration into a vdev tree.  We explicitly set the
2221	 * value that will be returned by spa_version() since parsing the
2222	 * configuration requires knowing the version number.
2223	 */
2224	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2225	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2226	spa_config_exit(spa, SCL_ALL, FTAG);
2227
2228	if (error != 0)
2229		return (error);
2230
2231	ASSERT(spa->spa_root_vdev == rvd);
2232
2233	if (type != SPA_IMPORT_ASSEMBLE) {
2234		ASSERT(spa_guid(spa) == pool_guid);
2235	}
2236
2237	/*
2238	 * Try to open all vdevs, loading each label in the process.
2239	 */
2240	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2241	error = vdev_open(rvd);
2242	spa_config_exit(spa, SCL_ALL, FTAG);
2243	if (error != 0)
2244		return (error);
2245
2246	/*
2247	 * We need to validate the vdev labels against the configuration that
2248	 * we have in hand, which is dependent on the setting of mosconfig. If
2249	 * mosconfig is true then we're validating the vdev labels based on
2250	 * that config.  Otherwise, we're validating against the cached config
2251	 * (zpool.cache) that was read when we loaded the zfs module, and then
2252	 * later we will recursively call spa_load() and validate against
2253	 * the vdev config.
2254	 *
2255	 * If we're assembling a new pool that's been split off from an
2256	 * existing pool, the labels haven't yet been updated so we skip
2257	 * validation for now.
2258	 */
2259	if (type != SPA_IMPORT_ASSEMBLE) {
2260		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261		error = vdev_validate(rvd, mosconfig);
2262		spa_config_exit(spa, SCL_ALL, FTAG);
2263
2264		if (error != 0)
2265			return (error);
2266
2267		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2268			return (SET_ERROR(ENXIO));
2269	}
2270
2271	/*
2272	 * Find the best uberblock.
2273	 */
2274	vdev_uberblock_load(rvd, ub, &label);
2275
2276	/*
2277	 * If we weren't able to find a single valid uberblock, return failure.
2278	 */
2279	if (ub->ub_txg == 0) {
2280		nvlist_free(label);
2281		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2282	}
2283
2284	/*
2285	 * If the pool has an unsupported version we can't open it.
2286	 */
2287	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2288		nvlist_free(label);
2289		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2290	}
2291
2292	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2293		nvlist_t *features;
2294
2295		/*
2296		 * If we weren't able to find what's necessary for reading the
2297		 * MOS in the label, return failure.
2298		 */
2299		if (label == NULL || nvlist_lookup_nvlist(label,
2300		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2301			nvlist_free(label);
2302			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2303			    ENXIO));
2304		}
2305
2306		/*
2307		 * Update our in-core representation with the definitive values
2308		 * from the label.
2309		 */
2310		nvlist_free(spa->spa_label_features);
2311		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2312	}
2313
2314	nvlist_free(label);
2315
2316	/*
2317	 * Look through entries in the label nvlist's features_for_read. If
2318	 * there is a feature listed there which we don't understand then we
2319	 * cannot open a pool.
2320	 */
2321	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2322		nvlist_t *unsup_feat;
2323
2324		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2325		    0);
2326
2327		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2328		    NULL); nvp != NULL;
2329		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2330			if (!zfeature_is_supported(nvpair_name(nvp))) {
2331				VERIFY(nvlist_add_string(unsup_feat,
2332				    nvpair_name(nvp), "") == 0);
2333			}
2334		}
2335
2336		if (!nvlist_empty(unsup_feat)) {
2337			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2338			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2339			nvlist_free(unsup_feat);
2340			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2341			    ENOTSUP));
2342		}
2343
2344		nvlist_free(unsup_feat);
2345	}
2346
2347	/*
2348	 * If the vdev guid sum doesn't match the uberblock, we have an
2349	 * incomplete configuration.  We first check to see if the pool
2350	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2351	 * If it is, defer the vdev_guid_sum check till later so we
2352	 * can handle missing vdevs.
2353	 */
2354	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2355	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2356	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2357		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2358
2359	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2360		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2361		spa_try_repair(spa, config);
2362		spa_config_exit(spa, SCL_ALL, FTAG);
2363		nvlist_free(spa->spa_config_splitting);
2364		spa->spa_config_splitting = NULL;
2365	}
2366
2367	/*
2368	 * Initialize internal SPA structures.
2369	 */
2370	spa->spa_state = POOL_STATE_ACTIVE;
2371	spa->spa_ubsync = spa->spa_uberblock;
2372	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2373	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2374	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2375	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2376	spa->spa_claim_max_txg = spa->spa_first_txg;
2377	spa->spa_prev_software_version = ub->ub_software_version;
2378
2379	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2380	if (error)
2381		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2382	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2383
2384	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2385		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386
2387	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2388		boolean_t missing_feat_read = B_FALSE;
2389		nvlist_t *unsup_feat, *enabled_feat;
2390
2391		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2392		    &spa->spa_feat_for_read_obj) != 0) {
2393			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2394		}
2395
2396		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2397		    &spa->spa_feat_for_write_obj) != 0) {
2398			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2399		}
2400
2401		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2402		    &spa->spa_feat_desc_obj) != 0) {
2403			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404		}
2405
2406		enabled_feat = fnvlist_alloc();
2407		unsup_feat = fnvlist_alloc();
2408
2409		if (!spa_features_check(spa, B_FALSE,
2410		    unsup_feat, enabled_feat))
2411			missing_feat_read = B_TRUE;
2412
2413		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2414			if (!spa_features_check(spa, B_TRUE,
2415			    unsup_feat, enabled_feat)) {
2416				missing_feat_write = B_TRUE;
2417			}
2418		}
2419
2420		fnvlist_add_nvlist(spa->spa_load_info,
2421		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2422
2423		if (!nvlist_empty(unsup_feat)) {
2424			fnvlist_add_nvlist(spa->spa_load_info,
2425			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2426		}
2427
2428		fnvlist_free(enabled_feat);
2429		fnvlist_free(unsup_feat);
2430
2431		if (!missing_feat_read) {
2432			fnvlist_add_boolean(spa->spa_load_info,
2433			    ZPOOL_CONFIG_CAN_RDONLY);
2434		}
2435
2436		/*
2437		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2438		 * twofold: to determine whether the pool is available for
2439		 * import in read-write mode and (if it is not) whether the
2440		 * pool is available for import in read-only mode. If the pool
2441		 * is available for import in read-write mode, it is displayed
2442		 * as available in userland; if it is not available for import
2443		 * in read-only mode, it is displayed as unavailable in
2444		 * userland. If the pool is available for import in read-only
2445		 * mode but not read-write mode, it is displayed as unavailable
2446		 * in userland with a special note that the pool is actually
2447		 * available for open in read-only mode.
2448		 *
2449		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2450		 * missing a feature for write, we must first determine whether
2451		 * the pool can be opened read-only before returning to
2452		 * userland in order to know whether to display the
2453		 * abovementioned note.
2454		 */
2455		if (missing_feat_read || (missing_feat_write &&
2456		    spa_writeable(spa))) {
2457			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2458			    ENOTSUP));
2459		}
2460
2461		/*
2462		 * Load refcounts for ZFS features from disk into an in-memory
2463		 * cache during SPA initialization.
2464		 */
2465		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2466			uint64_t refcount;
2467
2468			error = feature_get_refcount_from_disk(spa,
2469			    &spa_feature_table[i], &refcount);
2470			if (error == 0) {
2471				spa->spa_feat_refcount_cache[i] = refcount;
2472			} else if (error == ENOTSUP) {
2473				spa->spa_feat_refcount_cache[i] =
2474				    SPA_FEATURE_DISABLED;
2475			} else {
2476				return (spa_vdev_err(rvd,
2477				    VDEV_AUX_CORRUPT_DATA, EIO));
2478			}
2479		}
2480	}
2481
2482	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2483		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2484		    &spa->spa_feat_enabled_txg_obj) != 0)
2485			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486	}
2487
2488	spa->spa_is_initializing = B_TRUE;
2489	error = dsl_pool_open(spa->spa_dsl_pool);
2490	spa->spa_is_initializing = B_FALSE;
2491	if (error != 0)
2492		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2493
2494	if (!mosconfig) {
2495		uint64_t hostid;
2496		nvlist_t *policy = NULL, *nvconfig;
2497
2498		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2499			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2500
2501		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2502		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2503			char *hostname;
2504			unsigned long myhostid = 0;
2505
2506			VERIFY(nvlist_lookup_string(nvconfig,
2507			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2508
2509#ifdef	_KERNEL
2510			myhostid = zone_get_hostid(NULL);
2511#else	/* _KERNEL */
2512			/*
2513			 * We're emulating the system's hostid in userland, so
2514			 * we can't use zone_get_hostid().
2515			 */
2516			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2517#endif	/* _KERNEL */
2518			if (check_hostid && hostid != 0 && myhostid != 0 &&
2519			    hostid != myhostid) {
2520				nvlist_free(nvconfig);
2521				cmn_err(CE_WARN, "pool '%s' could not be "
2522				    "loaded as it was last accessed by "
2523				    "another system (host: %s hostid: 0x%lx). "
2524				    "See: http://illumos.org/msg/ZFS-8000-EY",
2525				    spa_name(spa), hostname,
2526				    (unsigned long)hostid);
2527				return (SET_ERROR(EBADF));
2528			}
2529		}
2530		if (nvlist_lookup_nvlist(spa->spa_config,
2531		    ZPOOL_REWIND_POLICY, &policy) == 0)
2532			VERIFY(nvlist_add_nvlist(nvconfig,
2533			    ZPOOL_REWIND_POLICY, policy) == 0);
2534
2535		spa_config_set(spa, nvconfig);
2536		spa_unload(spa);
2537		spa_deactivate(spa);
2538		spa_activate(spa, orig_mode);
2539
2540		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2541	}
2542
2543	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2544		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2545	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2546	if (error != 0)
2547		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548
2549	/*
2550	 * Load the bit that tells us to use the new accounting function
2551	 * (raid-z deflation).  If we have an older pool, this will not
2552	 * be present.
2553	 */
2554	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2555	if (error != 0 && error != ENOENT)
2556		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2557
2558	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2559	    &spa->spa_creation_version);
2560	if (error != 0 && error != ENOENT)
2561		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562
2563	/*
2564	 * Load the persistent error log.  If we have an older pool, this will
2565	 * not be present.
2566	 */
2567	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2568	if (error != 0 && error != ENOENT)
2569		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2570
2571	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2572	    &spa->spa_errlog_scrub);
2573	if (error != 0 && error != ENOENT)
2574		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2575
2576	/*
2577	 * Load the history object.  If we have an older pool, this
2578	 * will not be present.
2579	 */
2580	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2581	if (error != 0 && error != ENOENT)
2582		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2583
2584	/*
2585	 * If we're assembling the pool from the split-off vdevs of
2586	 * an existing pool, we don't want to attach the spares & cache
2587	 * devices.
2588	 */
2589
2590	/*
2591	 * Load any hot spares for this pool.
2592	 */
2593	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2594	if (error != 0 && error != ENOENT)
2595		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2597		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2598		if (load_nvlist(spa, spa->spa_spares.sav_object,
2599		    &spa->spa_spares.sav_config) != 0)
2600			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601
2602		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2603		spa_load_spares(spa);
2604		spa_config_exit(spa, SCL_ALL, FTAG);
2605	} else if (error == 0) {
2606		spa->spa_spares.sav_sync = B_TRUE;
2607	}
2608
2609	/*
2610	 * Load any level 2 ARC devices for this pool.
2611	 */
2612	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2613	    &spa->spa_l2cache.sav_object);
2614	if (error != 0 && error != ENOENT)
2615		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2616	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2617		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2618		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2619		    &spa->spa_l2cache.sav_config) != 0)
2620			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621
2622		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2623		spa_load_l2cache(spa);
2624		spa_config_exit(spa, SCL_ALL, FTAG);
2625	} else if (error == 0) {
2626		spa->spa_l2cache.sav_sync = B_TRUE;
2627	}
2628
2629	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2630
2631	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2632	if (error && error != ENOENT)
2633		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2634
2635	if (error == 0) {
2636		uint64_t autoreplace;
2637
2638		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2639		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2640		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2641		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2642		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2643		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2644		    &spa->spa_dedup_ditto);
2645
2646		spa->spa_autoreplace = (autoreplace != 0);
2647	}
2648
2649	/*
2650	 * If the 'autoreplace' property is set, then post a resource notifying
2651	 * the ZFS DE that it should not issue any faults for unopenable
2652	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2653	 * unopenable vdevs so that the normal autoreplace handler can take
2654	 * over.
2655	 */
2656	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2657		spa_check_removed(spa->spa_root_vdev);
2658		/*
2659		 * For the import case, this is done in spa_import(), because
2660		 * at this point we're using the spare definitions from
2661		 * the MOS config, not necessarily from the userland config.
2662		 */
2663		if (state != SPA_LOAD_IMPORT) {
2664			spa_aux_check_removed(&spa->spa_spares);
2665			spa_aux_check_removed(&spa->spa_l2cache);
2666		}
2667	}
2668
2669	/*
2670	 * Load the vdev state for all toplevel vdevs.
2671	 */
2672	vdev_load(rvd);
2673
2674	/*
2675	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2676	 */
2677	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2678	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2679	spa_config_exit(spa, SCL_ALL, FTAG);
2680
2681	/*
2682	 * Load the DDTs (dedup tables).
2683	 */
2684	error = ddt_load(spa);
2685	if (error != 0)
2686		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687
2688	spa_update_dspace(spa);
2689
2690	/*
2691	 * Validate the config, using the MOS config to fill in any
2692	 * information which might be missing.  If we fail to validate
2693	 * the config then declare the pool unfit for use. If we're
2694	 * assembling a pool from a split, the log is not transferred
2695	 * over.
2696	 */
2697	if (type != SPA_IMPORT_ASSEMBLE) {
2698		nvlist_t *nvconfig;
2699
2700		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2701			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2702
2703		if (!spa_config_valid(spa, nvconfig)) {
2704			nvlist_free(nvconfig);
2705			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2706			    ENXIO));
2707		}
2708		nvlist_free(nvconfig);
2709
2710		/*
2711		 * Now that we've validated the config, check the state of the
2712		 * root vdev.  If it can't be opened, it indicates one or
2713		 * more toplevel vdevs are faulted.
2714		 */
2715		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2716			return (SET_ERROR(ENXIO));
2717
2718		if (spa_check_logs(spa)) {
2719			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2720			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2721		}
2722	}
2723
2724	if (missing_feat_write) {
2725		ASSERT(state == SPA_LOAD_TRYIMPORT);
2726
2727		/*
2728		 * At this point, we know that we can open the pool in
2729		 * read-only mode but not read-write mode. We now have enough
2730		 * information and can return to userland.
2731		 */
2732		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2733	}
2734
2735	/*
2736	 * We've successfully opened the pool, verify that we're ready
2737	 * to start pushing transactions.
2738	 */
2739	if (state != SPA_LOAD_TRYIMPORT) {
2740		if (error = spa_load_verify(spa))
2741			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2742			    error));
2743	}
2744
2745	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2746	    spa->spa_load_max_txg == UINT64_MAX)) {
2747		dmu_tx_t *tx;
2748		int need_update = B_FALSE;
2749
2750		ASSERT(state != SPA_LOAD_TRYIMPORT);
2751
2752		/*
2753		 * Claim log blocks that haven't been committed yet.
2754		 * This must all happen in a single txg.
2755		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2756		 * invoked from zil_claim_log_block()'s i/o done callback.
2757		 * Price of rollback is that we abandon the log.
2758		 */
2759		spa->spa_claiming = B_TRUE;
2760
2761		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2762		    spa_first_txg(spa));
2763		(void) dmu_objset_find(spa_name(spa),
2764		    zil_claim, tx, DS_FIND_CHILDREN);
2765		dmu_tx_commit(tx);
2766
2767		spa->spa_claiming = B_FALSE;
2768
2769		spa_set_log_state(spa, SPA_LOG_GOOD);
2770		spa->spa_sync_on = B_TRUE;
2771		txg_sync_start(spa->spa_dsl_pool);
2772
2773		/*
2774		 * Wait for all claims to sync.  We sync up to the highest
2775		 * claimed log block birth time so that claimed log blocks
2776		 * don't appear to be from the future.  spa_claim_max_txg
2777		 * will have been set for us by either zil_check_log_chain()
2778		 * (invoked from spa_check_logs()) or zil_claim() above.
2779		 */
2780		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2781
2782		/*
2783		 * If the config cache is stale, or we have uninitialized
2784		 * metaslabs (see spa_vdev_add()), then update the config.
2785		 *
2786		 * If this is a verbatim import, trust the current
2787		 * in-core spa_config and update the disk labels.
2788		 */
2789		if (config_cache_txg != spa->spa_config_txg ||
2790		    state == SPA_LOAD_IMPORT ||
2791		    state == SPA_LOAD_RECOVER ||
2792		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2793			need_update = B_TRUE;
2794
2795		for (int c = 0; c < rvd->vdev_children; c++)
2796			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2797				need_update = B_TRUE;
2798
2799		/*
2800		 * Update the config cache asychronously in case we're the
2801		 * root pool, in which case the config cache isn't writable yet.
2802		 */
2803		if (need_update)
2804			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2805
2806		/*
2807		 * Check all DTLs to see if anything needs resilvering.
2808		 */
2809		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2810		    vdev_resilver_needed(rvd, NULL, NULL))
2811			spa_async_request(spa, SPA_ASYNC_RESILVER);
2812
2813		/*
2814		 * Log the fact that we booted up (so that we can detect if
2815		 * we rebooted in the middle of an operation).
2816		 */
2817		spa_history_log_version(spa, "open");
2818
2819		/*
2820		 * Delete any inconsistent datasets.
2821		 */
2822		(void) dmu_objset_find(spa_name(spa),
2823		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2824
2825		/*
2826		 * Clean up any stale temporary dataset userrefs.
2827		 */
2828		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2829	}
2830
2831	return (0);
2832}
2833
2834static int
2835spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2836{
2837	int mode = spa->spa_mode;
2838
2839	spa_unload(spa);
2840	spa_deactivate(spa);
2841
2842	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2843
2844	spa_activate(spa, mode);
2845	spa_async_suspend(spa);
2846
2847	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2848}
2849
2850/*
2851 * If spa_load() fails this function will try loading prior txg's. If
2852 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2853 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2854 * function will not rewind the pool and will return the same error as
2855 * spa_load().
2856 */
2857static int
2858spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2859    uint64_t max_request, int rewind_flags)
2860{
2861	nvlist_t *loadinfo = NULL;
2862	nvlist_t *config = NULL;
2863	int load_error, rewind_error;
2864	uint64_t safe_rewind_txg;
2865	uint64_t min_txg;
2866
2867	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2868		spa->spa_load_max_txg = spa->spa_load_txg;
2869		spa_set_log_state(spa, SPA_LOG_CLEAR);
2870	} else {
2871		spa->spa_load_max_txg = max_request;
2872		if (max_request != UINT64_MAX)
2873			spa->spa_extreme_rewind = B_TRUE;
2874	}
2875
2876	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2877	    mosconfig);
2878	if (load_error == 0)
2879		return (0);
2880
2881	if (spa->spa_root_vdev != NULL)
2882		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2883
2884	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2885	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2886
2887	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2888		nvlist_free(config);
2889		return (load_error);
2890	}
2891
2892	if (state == SPA_LOAD_RECOVER) {
2893		/* Price of rolling back is discarding txgs, including log */
2894		spa_set_log_state(spa, SPA_LOG_CLEAR);
2895	} else {
2896		/*
2897		 * If we aren't rolling back save the load info from our first
2898		 * import attempt so that we can restore it after attempting
2899		 * to rewind.
2900		 */
2901		loadinfo = spa->spa_load_info;
2902		spa->spa_load_info = fnvlist_alloc();
2903	}
2904
2905	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2906	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2907	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2908	    TXG_INITIAL : safe_rewind_txg;
2909
2910	/*
2911	 * Continue as long as we're finding errors, we're still within
2912	 * the acceptable rewind range, and we're still finding uberblocks
2913	 */
2914	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2915	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2916		if (spa->spa_load_max_txg < safe_rewind_txg)
2917			spa->spa_extreme_rewind = B_TRUE;
2918		rewind_error = spa_load_retry(spa, state, mosconfig);
2919	}
2920
2921	spa->spa_extreme_rewind = B_FALSE;
2922	spa->spa_load_max_txg = UINT64_MAX;
2923
2924	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2925		spa_config_set(spa, config);
2926
2927	if (state == SPA_LOAD_RECOVER) {
2928		ASSERT3P(loadinfo, ==, NULL);
2929		return (rewind_error);
2930	} else {
2931		/* Store the rewind info as part of the initial load info */
2932		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2933		    spa->spa_load_info);
2934
2935		/* Restore the initial load info */
2936		fnvlist_free(spa->spa_load_info);
2937		spa->spa_load_info = loadinfo;
2938
2939		return (load_error);
2940	}
2941}
2942
2943/*
2944 * Pool Open/Import
2945 *
2946 * The import case is identical to an open except that the configuration is sent
2947 * down from userland, instead of grabbed from the configuration cache.  For the
2948 * case of an open, the pool configuration will exist in the
2949 * POOL_STATE_UNINITIALIZED state.
2950 *
2951 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2952 * the same time open the pool, without having to keep around the spa_t in some
2953 * ambiguous state.
2954 */
2955static int
2956spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2957    nvlist_t **config)
2958{
2959	spa_t *spa;
2960	spa_load_state_t state = SPA_LOAD_OPEN;
2961	int error;
2962	int locked = B_FALSE;
2963	int firstopen = B_FALSE;
2964
2965	*spapp = NULL;
2966
2967	/*
2968	 * As disgusting as this is, we need to support recursive calls to this
2969	 * function because dsl_dir_open() is called during spa_load(), and ends
2970	 * up calling spa_open() again.  The real fix is to figure out how to
2971	 * avoid dsl_dir_open() calling this in the first place.
2972	 */
2973	if (mutex_owner(&spa_namespace_lock) != curthread) {
2974		mutex_enter(&spa_namespace_lock);
2975		locked = B_TRUE;
2976	}
2977
2978	if ((spa = spa_lookup(pool)) == NULL) {
2979		if (locked)
2980			mutex_exit(&spa_namespace_lock);
2981		return (SET_ERROR(ENOENT));
2982	}
2983
2984	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2985		zpool_rewind_policy_t policy;
2986
2987		firstopen = B_TRUE;
2988
2989		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2990		    &policy);
2991		if (policy.zrp_request & ZPOOL_DO_REWIND)
2992			state = SPA_LOAD_RECOVER;
2993
2994		spa_activate(spa, spa_mode_global);
2995
2996		if (state != SPA_LOAD_RECOVER)
2997			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2998
2999		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3000		    policy.zrp_request);
3001
3002		if (error == EBADF) {
3003			/*
3004			 * If vdev_validate() returns failure (indicated by
3005			 * EBADF), it indicates that one of the vdevs indicates
3006			 * that the pool has been exported or destroyed.  If
3007			 * this is the case, the config cache is out of sync and
3008			 * we should remove the pool from the namespace.
3009			 */
3010			spa_unload(spa);
3011			spa_deactivate(spa);
3012			spa_config_sync(spa, B_TRUE, B_TRUE);
3013			spa_remove(spa);
3014			if (locked)
3015				mutex_exit(&spa_namespace_lock);
3016			return (SET_ERROR(ENOENT));
3017		}
3018
3019		if (error) {
3020			/*
3021			 * We can't open the pool, but we still have useful
3022			 * information: the state of each vdev after the
3023			 * attempted vdev_open().  Return this to the user.
3024			 */
3025			if (config != NULL && spa->spa_config) {
3026				VERIFY(nvlist_dup(spa->spa_config, config,
3027				    KM_SLEEP) == 0);
3028				VERIFY(nvlist_add_nvlist(*config,
3029				    ZPOOL_CONFIG_LOAD_INFO,
3030				    spa->spa_load_info) == 0);
3031			}
3032			spa_unload(spa);
3033			spa_deactivate(spa);
3034			spa->spa_last_open_failed = error;
3035			if (locked)
3036				mutex_exit(&spa_namespace_lock);
3037			*spapp = NULL;
3038			return (error);
3039		}
3040	}
3041
3042	spa_open_ref(spa, tag);
3043
3044	if (config != NULL)
3045		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3046
3047	/*
3048	 * If we've recovered the pool, pass back any information we
3049	 * gathered while doing the load.
3050	 */
3051	if (state == SPA_LOAD_RECOVER) {
3052		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3053		    spa->spa_load_info) == 0);
3054	}
3055
3056	if (locked) {
3057		spa->spa_last_open_failed = 0;
3058		spa->spa_last_ubsync_txg = 0;
3059		spa->spa_load_txg = 0;
3060		mutex_exit(&spa_namespace_lock);
3061#ifdef __FreeBSD__
3062#ifdef _KERNEL
3063		if (firstopen)
3064			zvol_create_minors(spa->spa_name);
3065#endif
3066#endif
3067	}
3068
3069	*spapp = spa;
3070
3071	return (0);
3072}
3073
3074int
3075spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3076    nvlist_t **config)
3077{
3078	return (spa_open_common(name, spapp, tag, policy, config));
3079}
3080
3081int
3082spa_open(const char *name, spa_t **spapp, void *tag)
3083{
3084	return (spa_open_common(name, spapp, tag, NULL, NULL));
3085}
3086
3087/*
3088 * Lookup the given spa_t, incrementing the inject count in the process,
3089 * preventing it from being exported or destroyed.
3090 */
3091spa_t *
3092spa_inject_addref(char *name)
3093{
3094	spa_t *spa;
3095
3096	mutex_enter(&spa_namespace_lock);
3097	if ((spa = spa_lookup(name)) == NULL) {
3098		mutex_exit(&spa_namespace_lock);
3099		return (NULL);
3100	}
3101	spa->spa_inject_ref++;
3102	mutex_exit(&spa_namespace_lock);
3103
3104	return (spa);
3105}
3106
3107void
3108spa_inject_delref(spa_t *spa)
3109{
3110	mutex_enter(&spa_namespace_lock);
3111	spa->spa_inject_ref--;
3112	mutex_exit(&spa_namespace_lock);
3113}
3114
3115/*
3116 * Add spares device information to the nvlist.
3117 */
3118static void
3119spa_add_spares(spa_t *spa, nvlist_t *config)
3120{
3121	nvlist_t **spares;
3122	uint_t i, nspares;
3123	nvlist_t *nvroot;
3124	uint64_t guid;
3125	vdev_stat_t *vs;
3126	uint_t vsc;
3127	uint64_t pool;
3128
3129	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3130
3131	if (spa->spa_spares.sav_count == 0)
3132		return;
3133
3134	VERIFY(nvlist_lookup_nvlist(config,
3135	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3136	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3137	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3138	if (nspares != 0) {
3139		VERIFY(nvlist_add_nvlist_array(nvroot,
3140		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3141		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3142		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3143
3144		/*
3145		 * Go through and find any spares which have since been
3146		 * repurposed as an active spare.  If this is the case, update
3147		 * their status appropriately.
3148		 */
3149		for (i = 0; i < nspares; i++) {
3150			VERIFY(nvlist_lookup_uint64(spares[i],
3151			    ZPOOL_CONFIG_GUID, &guid) == 0);
3152			if (spa_spare_exists(guid, &pool, NULL) &&
3153			    pool != 0ULL) {
3154				VERIFY(nvlist_lookup_uint64_array(
3155				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3156				    (uint64_t **)&vs, &vsc) == 0);
3157				vs->vs_state = VDEV_STATE_CANT_OPEN;
3158				vs->vs_aux = VDEV_AUX_SPARED;
3159			}
3160		}
3161	}
3162}
3163
3164/*
3165 * Add l2cache device information to the nvlist, including vdev stats.
3166 */
3167static void
3168spa_add_l2cache(spa_t *spa, nvlist_t *config)
3169{
3170	nvlist_t **l2cache;
3171	uint_t i, j, nl2cache;
3172	nvlist_t *nvroot;
3173	uint64_t guid;
3174	vdev_t *vd;
3175	vdev_stat_t *vs;
3176	uint_t vsc;
3177
3178	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3179
3180	if (spa->spa_l2cache.sav_count == 0)
3181		return;
3182
3183	VERIFY(nvlist_lookup_nvlist(config,
3184	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3185	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3186	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3187	if (nl2cache != 0) {
3188		VERIFY(nvlist_add_nvlist_array(nvroot,
3189		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3190		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3191		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3192
3193		/*
3194		 * Update level 2 cache device stats.
3195		 */
3196
3197		for (i = 0; i < nl2cache; i++) {
3198			VERIFY(nvlist_lookup_uint64(l2cache[i],
3199			    ZPOOL_CONFIG_GUID, &guid) == 0);
3200
3201			vd = NULL;
3202			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3203				if (guid ==
3204				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3205					vd = spa->spa_l2cache.sav_vdevs[j];
3206					break;
3207				}
3208			}
3209			ASSERT(vd != NULL);
3210
3211			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3212			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3213			    == 0);
3214			vdev_get_stats(vd, vs);
3215		}
3216	}
3217}
3218
3219static void
3220spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3221{
3222	nvlist_t *features;
3223	zap_cursor_t zc;
3224	zap_attribute_t za;
3225
3226	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3227	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3228
3229	/* We may be unable to read features if pool is suspended. */
3230	if (spa_suspended(spa))
3231		goto out;
3232
3233	if (spa->spa_feat_for_read_obj != 0) {
3234		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3235		    spa->spa_feat_for_read_obj);
3236		    zap_cursor_retrieve(&zc, &za) == 0;
3237		    zap_cursor_advance(&zc)) {
3238			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3239			    za.za_num_integers == 1);
3240			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3241			    za.za_first_integer));
3242		}
3243		zap_cursor_fini(&zc);
3244	}
3245
3246	if (spa->spa_feat_for_write_obj != 0) {
3247		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3248		    spa->spa_feat_for_write_obj);
3249		    zap_cursor_retrieve(&zc, &za) == 0;
3250		    zap_cursor_advance(&zc)) {
3251			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3252			    za.za_num_integers == 1);
3253			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3254			    za.za_first_integer));
3255		}
3256		zap_cursor_fini(&zc);
3257	}
3258
3259out:
3260	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3261	    features) == 0);
3262	nvlist_free(features);
3263}
3264
3265int
3266spa_get_stats(const char *name, nvlist_t **config,
3267    char *altroot, size_t buflen)
3268{
3269	int error;
3270	spa_t *spa;
3271
3272	*config = NULL;
3273	error = spa_open_common(name, &spa, FTAG, NULL, config);
3274
3275	if (spa != NULL) {
3276		/*
3277		 * This still leaves a window of inconsistency where the spares
3278		 * or l2cache devices could change and the config would be
3279		 * self-inconsistent.
3280		 */
3281		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3282
3283		if (*config != NULL) {
3284			uint64_t loadtimes[2];
3285
3286			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3287			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3288			VERIFY(nvlist_add_uint64_array(*config,
3289			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3290
3291			VERIFY(nvlist_add_uint64(*config,
3292			    ZPOOL_CONFIG_ERRCOUNT,
3293			    spa_get_errlog_size(spa)) == 0);
3294
3295			if (spa_suspended(spa))
3296				VERIFY(nvlist_add_uint64(*config,
3297				    ZPOOL_CONFIG_SUSPENDED,
3298				    spa->spa_failmode) == 0);
3299
3300			spa_add_spares(spa, *config);
3301			spa_add_l2cache(spa, *config);
3302			spa_add_feature_stats(spa, *config);
3303		}
3304	}
3305
3306	/*
3307	 * We want to get the alternate root even for faulted pools, so we cheat
3308	 * and call spa_lookup() directly.
3309	 */
3310	if (altroot) {
3311		if (spa == NULL) {
3312			mutex_enter(&spa_namespace_lock);
3313			spa = spa_lookup(name);
3314			if (spa)
3315				spa_altroot(spa, altroot, buflen);
3316			else
3317				altroot[0] = '\0';
3318			spa = NULL;
3319			mutex_exit(&spa_namespace_lock);
3320		} else {
3321			spa_altroot(spa, altroot, buflen);
3322		}
3323	}
3324
3325	if (spa != NULL) {
3326		spa_config_exit(spa, SCL_CONFIG, FTAG);
3327		spa_close(spa, FTAG);
3328	}
3329
3330	return (error);
3331}
3332
3333/*
3334 * Validate that the auxiliary device array is well formed.  We must have an
3335 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3336 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3337 * specified, as long as they are well-formed.
3338 */
3339static int
3340spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3341    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3342    vdev_labeltype_t label)
3343{
3344	nvlist_t **dev;
3345	uint_t i, ndev;
3346	vdev_t *vd;
3347	int error;
3348
3349	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3350
3351	/*
3352	 * It's acceptable to have no devs specified.
3353	 */
3354	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3355		return (0);
3356
3357	if (ndev == 0)
3358		return (SET_ERROR(EINVAL));
3359
3360	/*
3361	 * Make sure the pool is formatted with a version that supports this
3362	 * device type.
3363	 */
3364	if (spa_version(spa) < version)
3365		return (SET_ERROR(ENOTSUP));
3366
3367	/*
3368	 * Set the pending device list so we correctly handle device in-use
3369	 * checking.
3370	 */
3371	sav->sav_pending = dev;
3372	sav->sav_npending = ndev;
3373
3374	for (i = 0; i < ndev; i++) {
3375		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3376		    mode)) != 0)
3377			goto out;
3378
3379		if (!vd->vdev_ops->vdev_op_leaf) {
3380			vdev_free(vd);
3381			error = SET_ERROR(EINVAL);
3382			goto out;
3383		}
3384
3385		/*
3386		 * The L2ARC currently only supports disk devices in
3387		 * kernel context.  For user-level testing, we allow it.
3388		 */
3389#ifdef _KERNEL
3390		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3391		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3392			error = SET_ERROR(ENOTBLK);
3393			vdev_free(vd);
3394			goto out;
3395		}
3396#endif
3397		vd->vdev_top = vd;
3398
3399		if ((error = vdev_open(vd)) == 0 &&
3400		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3401			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3402			    vd->vdev_guid) == 0);
3403		}
3404
3405		vdev_free(vd);
3406
3407		if (error &&
3408		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3409			goto out;
3410		else
3411			error = 0;
3412	}
3413
3414out:
3415	sav->sav_pending = NULL;
3416	sav->sav_npending = 0;
3417	return (error);
3418}
3419
3420static int
3421spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3422{
3423	int error;
3424
3425	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3426
3427	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3428	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3429	    VDEV_LABEL_SPARE)) != 0) {
3430		return (error);
3431	}
3432
3433	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3434	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3435	    VDEV_LABEL_L2CACHE));
3436}
3437
3438static void
3439spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3440    const char *config)
3441{
3442	int i;
3443
3444	if (sav->sav_config != NULL) {
3445		nvlist_t **olddevs;
3446		uint_t oldndevs;
3447		nvlist_t **newdevs;
3448
3449		/*
3450		 * Generate new dev list by concatentating with the
3451		 * current dev list.
3452		 */
3453		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3454		    &olddevs, &oldndevs) == 0);
3455
3456		newdevs = kmem_alloc(sizeof (void *) *
3457		    (ndevs + oldndevs), KM_SLEEP);
3458		for (i = 0; i < oldndevs; i++)
3459			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3460			    KM_SLEEP) == 0);
3461		for (i = 0; i < ndevs; i++)
3462			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3463			    KM_SLEEP) == 0);
3464
3465		VERIFY(nvlist_remove(sav->sav_config, config,
3466		    DATA_TYPE_NVLIST_ARRAY) == 0);
3467
3468		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3469		    config, newdevs, ndevs + oldndevs) == 0);
3470		for (i = 0; i < oldndevs + ndevs; i++)
3471			nvlist_free(newdevs[i]);
3472		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3473	} else {
3474		/*
3475		 * Generate a new dev list.
3476		 */
3477		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3478		    KM_SLEEP) == 0);
3479		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3480		    devs, ndevs) == 0);
3481	}
3482}
3483
3484/*
3485 * Stop and drop level 2 ARC devices
3486 */
3487void
3488spa_l2cache_drop(spa_t *spa)
3489{
3490	vdev_t *vd;
3491	int i;
3492	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3493
3494	for (i = 0; i < sav->sav_count; i++) {
3495		uint64_t pool;
3496
3497		vd = sav->sav_vdevs[i];
3498		ASSERT(vd != NULL);
3499
3500		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3501		    pool != 0ULL && l2arc_vdev_present(vd))
3502			l2arc_remove_vdev(vd);
3503	}
3504}
3505
3506/*
3507 * Pool Creation
3508 */
3509int
3510spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3511    nvlist_t *zplprops)
3512{
3513	spa_t *spa;
3514	char *altroot = NULL;
3515	vdev_t *rvd;
3516	dsl_pool_t *dp;
3517	dmu_tx_t *tx;
3518	int error = 0;
3519	uint64_t txg = TXG_INITIAL;
3520	nvlist_t **spares, **l2cache;
3521	uint_t nspares, nl2cache;
3522	uint64_t version, obj;
3523	boolean_t has_features;
3524
3525	/*
3526	 * If this pool already exists, return failure.
3527	 */
3528	mutex_enter(&spa_namespace_lock);
3529	if (spa_lookup(pool) != NULL) {
3530		mutex_exit(&spa_namespace_lock);
3531		return (SET_ERROR(EEXIST));
3532	}
3533
3534	/*
3535	 * Allocate a new spa_t structure.
3536	 */
3537	(void) nvlist_lookup_string(props,
3538	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3539	spa = spa_add(pool, NULL, altroot);
3540	spa_activate(spa, spa_mode_global);
3541
3542	if (props && (error = spa_prop_validate(spa, props))) {
3543		spa_deactivate(spa);
3544		spa_remove(spa);
3545		mutex_exit(&spa_namespace_lock);
3546		return (error);
3547	}
3548
3549	has_features = B_FALSE;
3550	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3551	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3552		if (zpool_prop_feature(nvpair_name(elem)))
3553			has_features = B_TRUE;
3554	}
3555
3556	if (has_features || nvlist_lookup_uint64(props,
3557	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3558		version = SPA_VERSION;
3559	}
3560	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3561
3562	spa->spa_first_txg = txg;
3563	spa->spa_uberblock.ub_txg = txg - 1;
3564	spa->spa_uberblock.ub_version = version;
3565	spa->spa_ubsync = spa->spa_uberblock;
3566
3567	/*
3568	 * Create "The Godfather" zio to hold all async IOs
3569	 */
3570	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3571	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3572
3573	/*
3574	 * Create the root vdev.
3575	 */
3576	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577
3578	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3579
3580	ASSERT(error != 0 || rvd != NULL);
3581	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3582
3583	if (error == 0 && !zfs_allocatable_devs(nvroot))
3584		error = SET_ERROR(EINVAL);
3585
3586	if (error == 0 &&
3587	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3588	    (error = spa_validate_aux(spa, nvroot, txg,
3589	    VDEV_ALLOC_ADD)) == 0) {
3590		for (int c = 0; c < rvd->vdev_children; c++) {
3591			vdev_ashift_optimize(rvd->vdev_child[c]);
3592			vdev_metaslab_set_size(rvd->vdev_child[c]);
3593			vdev_expand(rvd->vdev_child[c], txg);
3594		}
3595	}
3596
3597	spa_config_exit(spa, SCL_ALL, FTAG);
3598
3599	if (error != 0) {
3600		spa_unload(spa);
3601		spa_deactivate(spa);
3602		spa_remove(spa);
3603		mutex_exit(&spa_namespace_lock);
3604		return (error);
3605	}
3606
3607	/*
3608	 * Get the list of spares, if specified.
3609	 */
3610	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3611	    &spares, &nspares) == 0) {
3612		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3613		    KM_SLEEP) == 0);
3614		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3615		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3616		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3617		spa_load_spares(spa);
3618		spa_config_exit(spa, SCL_ALL, FTAG);
3619		spa->spa_spares.sav_sync = B_TRUE;
3620	}
3621
3622	/*
3623	 * Get the list of level 2 cache devices, if specified.
3624	 */
3625	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3626	    &l2cache, &nl2cache) == 0) {
3627		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3628		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3629		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3630		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3631		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3632		spa_load_l2cache(spa);
3633		spa_config_exit(spa, SCL_ALL, FTAG);
3634		spa->spa_l2cache.sav_sync = B_TRUE;
3635	}
3636
3637	spa->spa_is_initializing = B_TRUE;
3638	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3639	spa->spa_meta_objset = dp->dp_meta_objset;
3640	spa->spa_is_initializing = B_FALSE;
3641
3642	/*
3643	 * Create DDTs (dedup tables).
3644	 */
3645	ddt_create(spa);
3646
3647	spa_update_dspace(spa);
3648
3649	tx = dmu_tx_create_assigned(dp, txg);
3650
3651	/*
3652	 * Create the pool config object.
3653	 */
3654	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3655	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3656	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3657
3658	if (zap_add(spa->spa_meta_objset,
3659	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3660	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3661		cmn_err(CE_PANIC, "failed to add pool config");
3662	}
3663
3664	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3665		spa_feature_create_zap_objects(spa, tx);
3666
3667	if (zap_add(spa->spa_meta_objset,
3668	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3669	    sizeof (uint64_t), 1, &version, tx) != 0) {
3670		cmn_err(CE_PANIC, "failed to add pool version");
3671	}
3672
3673	/* Newly created pools with the right version are always deflated. */
3674	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3675		spa->spa_deflate = TRUE;
3676		if (zap_add(spa->spa_meta_objset,
3677		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3678		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3679			cmn_err(CE_PANIC, "failed to add deflate");
3680		}
3681	}
3682
3683	/*
3684	 * Create the deferred-free bpobj.  Turn off compression
3685	 * because sync-to-convergence takes longer if the blocksize
3686	 * keeps changing.
3687	 */
3688	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3689	dmu_object_set_compress(spa->spa_meta_objset, obj,
3690	    ZIO_COMPRESS_OFF, tx);
3691	if (zap_add(spa->spa_meta_objset,
3692	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3693	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3694		cmn_err(CE_PANIC, "failed to add bpobj");
3695	}
3696	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3697	    spa->spa_meta_objset, obj));
3698
3699	/*
3700	 * Create the pool's history object.
3701	 */
3702	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3703		spa_history_create_obj(spa, tx);
3704
3705	/*
3706	 * Set pool properties.
3707	 */
3708	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3709	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3710	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3711	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3712
3713	if (props != NULL) {
3714		spa_configfile_set(spa, props, B_FALSE);
3715		spa_sync_props(props, tx);
3716	}
3717
3718	dmu_tx_commit(tx);
3719
3720	spa->spa_sync_on = B_TRUE;
3721	txg_sync_start(spa->spa_dsl_pool);
3722
3723	/*
3724	 * We explicitly wait for the first transaction to complete so that our
3725	 * bean counters are appropriately updated.
3726	 */
3727	txg_wait_synced(spa->spa_dsl_pool, txg);
3728
3729	spa_config_sync(spa, B_FALSE, B_TRUE);
3730
3731	spa_history_log_version(spa, "create");
3732
3733	spa->spa_minref = refcount_count(&spa->spa_refcount);
3734
3735	mutex_exit(&spa_namespace_lock);
3736
3737	return (0);
3738}
3739
3740#ifdef _KERNEL
3741#if defined(sun)
3742/*
3743 * Get the root pool information from the root disk, then import the root pool
3744 * during the system boot up time.
3745 */
3746extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3747
3748static nvlist_t *
3749spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3750{
3751	nvlist_t *config;
3752	nvlist_t *nvtop, *nvroot;
3753	uint64_t pgid;
3754
3755	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3756		return (NULL);
3757
3758	/*
3759	 * Add this top-level vdev to the child array.
3760	 */
3761	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3762	    &nvtop) == 0);
3763	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3764	    &pgid) == 0);
3765	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3766
3767	/*
3768	 * Put this pool's top-level vdevs into a root vdev.
3769	 */
3770	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3771	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3772	    VDEV_TYPE_ROOT) == 0);
3773	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3774	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3775	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3776	    &nvtop, 1) == 0);
3777
3778	/*
3779	 * Replace the existing vdev_tree with the new root vdev in
3780	 * this pool's configuration (remove the old, add the new).
3781	 */
3782	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3783	nvlist_free(nvroot);
3784	return (config);
3785}
3786
3787/*
3788 * Walk the vdev tree and see if we can find a device with "better"
3789 * configuration. A configuration is "better" if the label on that
3790 * device has a more recent txg.
3791 */
3792static void
3793spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3794{
3795	for (int c = 0; c < vd->vdev_children; c++)
3796		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3797
3798	if (vd->vdev_ops->vdev_op_leaf) {
3799		nvlist_t *label;
3800		uint64_t label_txg;
3801
3802		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3803		    &label) != 0)
3804			return;
3805
3806		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3807		    &label_txg) == 0);
3808
3809		/*
3810		 * Do we have a better boot device?
3811		 */
3812		if (label_txg > *txg) {
3813			*txg = label_txg;
3814			*avd = vd;
3815		}
3816		nvlist_free(label);
3817	}
3818}
3819
3820/*
3821 * Import a root pool.
3822 *
3823 * For x86. devpath_list will consist of devid and/or physpath name of
3824 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3825 * The GRUB "findroot" command will return the vdev we should boot.
3826 *
3827 * For Sparc, devpath_list consists the physpath name of the booting device
3828 * no matter the rootpool is a single device pool or a mirrored pool.
3829 * e.g.
3830 *	"/pci@1f,0/ide@d/disk@0,0:a"
3831 */
3832int
3833spa_import_rootpool(char *devpath, char *devid)
3834{
3835	spa_t *spa;
3836	vdev_t *rvd, *bvd, *avd = NULL;
3837	nvlist_t *config, *nvtop;
3838	uint64_t guid, txg;
3839	char *pname;
3840	int error;
3841
3842	/*
3843	 * Read the label from the boot device and generate a configuration.
3844	 */
3845	config = spa_generate_rootconf(devpath, devid, &guid);
3846#if defined(_OBP) && defined(_KERNEL)
3847	if (config == NULL) {
3848		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3849			/* iscsi boot */
3850			get_iscsi_bootpath_phy(devpath);
3851			config = spa_generate_rootconf(devpath, devid, &guid);
3852		}
3853	}
3854#endif
3855	if (config == NULL) {
3856		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3857		    devpath);
3858		return (SET_ERROR(EIO));
3859	}
3860
3861	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3862	    &pname) == 0);
3863	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3864
3865	mutex_enter(&spa_namespace_lock);
3866	if ((spa = spa_lookup(pname)) != NULL) {
3867		/*
3868		 * Remove the existing root pool from the namespace so that we
3869		 * can replace it with the correct config we just read in.
3870		 */
3871		spa_remove(spa);
3872	}
3873
3874	spa = spa_add(pname, config, NULL);
3875	spa->spa_is_root = B_TRUE;
3876	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3877
3878	/*
3879	 * Build up a vdev tree based on the boot device's label config.
3880	 */
3881	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3882	    &nvtop) == 0);
3883	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3884	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3885	    VDEV_ALLOC_ROOTPOOL);
3886	spa_config_exit(spa, SCL_ALL, FTAG);
3887	if (error) {
3888		mutex_exit(&spa_namespace_lock);
3889		nvlist_free(config);
3890		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3891		    pname);
3892		return (error);
3893	}
3894
3895	/*
3896	 * Get the boot vdev.
3897	 */
3898	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3899		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3900		    (u_longlong_t)guid);
3901		error = SET_ERROR(ENOENT);
3902		goto out;
3903	}
3904
3905	/*
3906	 * Determine if there is a better boot device.
3907	 */
3908	avd = bvd;
3909	spa_alt_rootvdev(rvd, &avd, &txg);
3910	if (avd != bvd) {
3911		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3912		    "try booting from '%s'", avd->vdev_path);
3913		error = SET_ERROR(EINVAL);
3914		goto out;
3915	}
3916
3917	/*
3918	 * If the boot device is part of a spare vdev then ensure that
3919	 * we're booting off the active spare.
3920	 */
3921	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3922	    !bvd->vdev_isspare) {
3923		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3924		    "try booting from '%s'",
3925		    bvd->vdev_parent->
3926		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3927		error = SET_ERROR(EINVAL);
3928		goto out;
3929	}
3930
3931	error = 0;
3932out:
3933	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3934	vdev_free(rvd);
3935	spa_config_exit(spa, SCL_ALL, FTAG);
3936	mutex_exit(&spa_namespace_lock);
3937
3938	nvlist_free(config);
3939	return (error);
3940}
3941
3942#else
3943
3944extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3945    uint64_t *count);
3946
3947static nvlist_t *
3948spa_generate_rootconf(const char *name)
3949{
3950	nvlist_t **configs, **tops;
3951	nvlist_t *config;
3952	nvlist_t *best_cfg, *nvtop, *nvroot;
3953	uint64_t *holes;
3954	uint64_t best_txg;
3955	uint64_t nchildren;
3956	uint64_t pgid;
3957	uint64_t count;
3958	uint64_t i;
3959	uint_t   nholes;
3960
3961	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3962		return (NULL);
3963
3964	ASSERT3U(count, !=, 0);
3965	best_txg = 0;
3966	for (i = 0; i < count; i++) {
3967		uint64_t txg;
3968
3969		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3970		    &txg) == 0);
3971		if (txg > best_txg) {
3972			best_txg = txg;
3973			best_cfg = configs[i];
3974		}
3975	}
3976
3977	nchildren = 1;
3978	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3979	holes = NULL;
3980	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3981	    &holes, &nholes);
3982
3983	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3984	for (i = 0; i < nchildren; i++) {
3985		if (i >= count)
3986			break;
3987		if (configs[i] == NULL)
3988			continue;
3989		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3990		    &nvtop) == 0);
3991		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3992	}
3993	for (i = 0; holes != NULL && i < nholes; i++) {
3994		if (i >= nchildren)
3995			continue;
3996		if (tops[holes[i]] != NULL)
3997			continue;
3998		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3999		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4000		    VDEV_TYPE_HOLE) == 0);
4001		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4002		    holes[i]) == 0);
4003		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4004		    0) == 0);
4005	}
4006	for (i = 0; i < nchildren; i++) {
4007		if (tops[i] != NULL)
4008			continue;
4009		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4010		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4011		    VDEV_TYPE_MISSING) == 0);
4012		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4013		    i) == 0);
4014		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4015		    0) == 0);
4016	}
4017
4018	/*
4019	 * Create pool config based on the best vdev config.
4020	 */
4021	nvlist_dup(best_cfg, &config, KM_SLEEP);
4022
4023	/*
4024	 * Put this pool's top-level vdevs into a root vdev.
4025	 */
4026	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4027	    &pgid) == 0);
4028	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4029	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4030	    VDEV_TYPE_ROOT) == 0);
4031	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4032	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4033	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4034	    tops, nchildren) == 0);
4035
4036	/*
4037	 * Replace the existing vdev_tree with the new root vdev in
4038	 * this pool's configuration (remove the old, add the new).
4039	 */
4040	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4041
4042	/*
4043	 * Drop vdev config elements that should not be present at pool level.
4044	 */
4045	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4046	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4047
4048	for (i = 0; i < count; i++)
4049		nvlist_free(configs[i]);
4050	kmem_free(configs, count * sizeof(void *));
4051	for (i = 0; i < nchildren; i++)
4052		nvlist_free(tops[i]);
4053	kmem_free(tops, nchildren * sizeof(void *));
4054	nvlist_free(nvroot);
4055	return (config);
4056}
4057
4058int
4059spa_import_rootpool(const char *name)
4060{
4061	spa_t *spa;
4062	vdev_t *rvd, *bvd, *avd = NULL;
4063	nvlist_t *config, *nvtop;
4064	uint64_t txg;
4065	char *pname;
4066	int error;
4067
4068	/*
4069	 * Read the label from the boot device and generate a configuration.
4070	 */
4071	config = spa_generate_rootconf(name);
4072
4073	mutex_enter(&spa_namespace_lock);
4074	if (config != NULL) {
4075		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4076		    &pname) == 0 && strcmp(name, pname) == 0);
4077		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4078		    == 0);
4079
4080		if ((spa = spa_lookup(pname)) != NULL) {
4081			/*
4082			 * Remove the existing root pool from the namespace so
4083			 * that we can replace it with the correct config
4084			 * we just read in.
4085			 */
4086			spa_remove(spa);
4087		}
4088		spa = spa_add(pname, config, NULL);
4089
4090		/*
4091		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4092		 * via spa_version().
4093		 */
4094		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4095		    &spa->spa_ubsync.ub_version) != 0)
4096			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4097	} else if ((spa = spa_lookup(name)) == NULL) {
4098		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4099		    name);
4100		return (EIO);
4101	} else {
4102		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4103	}
4104	spa->spa_is_root = B_TRUE;
4105	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4106
4107	/*
4108	 * Build up a vdev tree based on the boot device's label config.
4109	 */
4110	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4111	    &nvtop) == 0);
4112	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4113	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4114	    VDEV_ALLOC_ROOTPOOL);
4115	spa_config_exit(spa, SCL_ALL, FTAG);
4116	if (error) {
4117		mutex_exit(&spa_namespace_lock);
4118		nvlist_free(config);
4119		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4120		    pname);
4121		return (error);
4122	}
4123
4124	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4125	vdev_free(rvd);
4126	spa_config_exit(spa, SCL_ALL, FTAG);
4127	mutex_exit(&spa_namespace_lock);
4128
4129	nvlist_free(config);
4130	return (0);
4131}
4132
4133#endif	/* sun */
4134#endif
4135
4136/*
4137 * Import a non-root pool into the system.
4138 */
4139int
4140spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4141{
4142	spa_t *spa;
4143	char *altroot = NULL;
4144	spa_load_state_t state = SPA_LOAD_IMPORT;
4145	zpool_rewind_policy_t policy;
4146	uint64_t mode = spa_mode_global;
4147	uint64_t readonly = B_FALSE;
4148	int error;
4149	nvlist_t *nvroot;
4150	nvlist_t **spares, **l2cache;
4151	uint_t nspares, nl2cache;
4152
4153	/*
4154	 * If a pool with this name exists, return failure.
4155	 */
4156	mutex_enter(&spa_namespace_lock);
4157	if (spa_lookup(pool) != NULL) {
4158		mutex_exit(&spa_namespace_lock);
4159		return (SET_ERROR(EEXIST));
4160	}
4161
4162	/*
4163	 * Create and initialize the spa structure.
4164	 */
4165	(void) nvlist_lookup_string(props,
4166	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4167	(void) nvlist_lookup_uint64(props,
4168	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4169	if (readonly)
4170		mode = FREAD;
4171	spa = spa_add(pool, config, altroot);
4172	spa->spa_import_flags = flags;
4173
4174	/*
4175	 * Verbatim import - Take a pool and insert it into the namespace
4176	 * as if it had been loaded at boot.
4177	 */
4178	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4179		if (props != NULL)
4180			spa_configfile_set(spa, props, B_FALSE);
4181
4182		spa_config_sync(spa, B_FALSE, B_TRUE);
4183
4184		mutex_exit(&spa_namespace_lock);
4185		return (0);
4186	}
4187
4188	spa_activate(spa, mode);
4189
4190	/*
4191	 * Don't start async tasks until we know everything is healthy.
4192	 */
4193	spa_async_suspend(spa);
4194
4195	zpool_get_rewind_policy(config, &policy);
4196	if (policy.zrp_request & ZPOOL_DO_REWIND)
4197		state = SPA_LOAD_RECOVER;
4198
4199	/*
4200	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4201	 * because the user-supplied config is actually the one to trust when
4202	 * doing an import.
4203	 */
4204	if (state != SPA_LOAD_RECOVER)
4205		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4206
4207	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4208	    policy.zrp_request);
4209
4210	/*
4211	 * Propagate anything learned while loading the pool and pass it
4212	 * back to caller (i.e. rewind info, missing devices, etc).
4213	 */
4214	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4215	    spa->spa_load_info) == 0);
4216
4217	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4218	/*
4219	 * Toss any existing sparelist, as it doesn't have any validity
4220	 * anymore, and conflicts with spa_has_spare().
4221	 */
4222	if (spa->spa_spares.sav_config) {
4223		nvlist_free(spa->spa_spares.sav_config);
4224		spa->spa_spares.sav_config = NULL;
4225		spa_load_spares(spa);
4226	}
4227	if (spa->spa_l2cache.sav_config) {
4228		nvlist_free(spa->spa_l2cache.sav_config);
4229		spa->spa_l2cache.sav_config = NULL;
4230		spa_load_l2cache(spa);
4231	}
4232
4233	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4234	    &nvroot) == 0);
4235	if (error == 0)
4236		error = spa_validate_aux(spa, nvroot, -1ULL,
4237		    VDEV_ALLOC_SPARE);
4238	if (error == 0)
4239		error = spa_validate_aux(spa, nvroot, -1ULL,
4240		    VDEV_ALLOC_L2CACHE);
4241	spa_config_exit(spa, SCL_ALL, FTAG);
4242
4243	if (props != NULL)
4244		spa_configfile_set(spa, props, B_FALSE);
4245
4246	if (error != 0 || (props && spa_writeable(spa) &&
4247	    (error = spa_prop_set(spa, props)))) {
4248		spa_unload(spa);
4249		spa_deactivate(spa);
4250		spa_remove(spa);
4251		mutex_exit(&spa_namespace_lock);
4252		return (error);
4253	}
4254
4255	spa_async_resume(spa);
4256
4257	/*
4258	 * Override any spares and level 2 cache devices as specified by
4259	 * the user, as these may have correct device names/devids, etc.
4260	 */
4261	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4262	    &spares, &nspares) == 0) {
4263		if (spa->spa_spares.sav_config)
4264			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4265			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4266		else
4267			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4268			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4269		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4270		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4271		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4272		spa_load_spares(spa);
4273		spa_config_exit(spa, SCL_ALL, FTAG);
4274		spa->spa_spares.sav_sync = B_TRUE;
4275	}
4276	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4277	    &l2cache, &nl2cache) == 0) {
4278		if (spa->spa_l2cache.sav_config)
4279			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4280			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4281		else
4282			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4283			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4284		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4285		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4286		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4287		spa_load_l2cache(spa);
4288		spa_config_exit(spa, SCL_ALL, FTAG);
4289		spa->spa_l2cache.sav_sync = B_TRUE;
4290	}
4291
4292	/*
4293	 * Check for any removed devices.
4294	 */
4295	if (spa->spa_autoreplace) {
4296		spa_aux_check_removed(&spa->spa_spares);
4297		spa_aux_check_removed(&spa->spa_l2cache);
4298	}
4299
4300	if (spa_writeable(spa)) {
4301		/*
4302		 * Update the config cache to include the newly-imported pool.
4303		 */
4304		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4305	}
4306
4307	/*
4308	 * It's possible that the pool was expanded while it was exported.
4309	 * We kick off an async task to handle this for us.
4310	 */
4311	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4312
4313	mutex_exit(&spa_namespace_lock);
4314	spa_history_log_version(spa, "import");
4315
4316#ifdef __FreeBSD__
4317#ifdef _KERNEL
4318	zvol_create_minors(pool);
4319#endif
4320#endif
4321	return (0);
4322}
4323
4324nvlist_t *
4325spa_tryimport(nvlist_t *tryconfig)
4326{
4327	nvlist_t *config = NULL;
4328	char *poolname;
4329	spa_t *spa;
4330	uint64_t state;
4331	int error;
4332
4333	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4334		return (NULL);
4335
4336	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4337		return (NULL);
4338
4339	/*
4340	 * Create and initialize the spa structure.
4341	 */
4342	mutex_enter(&spa_namespace_lock);
4343	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4344	spa_activate(spa, FREAD);
4345
4346	/*
4347	 * Pass off the heavy lifting to spa_load().
4348	 * Pass TRUE for mosconfig because the user-supplied config
4349	 * is actually the one to trust when doing an import.
4350	 */
4351	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4352
4353	/*
4354	 * If 'tryconfig' was at least parsable, return the current config.
4355	 */
4356	if (spa->spa_root_vdev != NULL) {
4357		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4358		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4359		    poolname) == 0);
4360		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4361		    state) == 0);
4362		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4363		    spa->spa_uberblock.ub_timestamp) == 0);
4364		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4365		    spa->spa_load_info) == 0);
4366
4367		/*
4368		 * If the bootfs property exists on this pool then we
4369		 * copy it out so that external consumers can tell which
4370		 * pools are bootable.
4371		 */
4372		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4373			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4374
4375			/*
4376			 * We have to play games with the name since the
4377			 * pool was opened as TRYIMPORT_NAME.
4378			 */
4379			if (dsl_dsobj_to_dsname(spa_name(spa),
4380			    spa->spa_bootfs, tmpname) == 0) {
4381				char *cp;
4382				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4383
4384				cp = strchr(tmpname, '/');
4385				if (cp == NULL) {
4386					(void) strlcpy(dsname, tmpname,
4387					    MAXPATHLEN);
4388				} else {
4389					(void) snprintf(dsname, MAXPATHLEN,
4390					    "%s/%s", poolname, ++cp);
4391				}
4392				VERIFY(nvlist_add_string(config,
4393				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4394				kmem_free(dsname, MAXPATHLEN);
4395			}
4396			kmem_free(tmpname, MAXPATHLEN);
4397		}
4398
4399		/*
4400		 * Add the list of hot spares and level 2 cache devices.
4401		 */
4402		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4403		spa_add_spares(spa, config);
4404		spa_add_l2cache(spa, config);
4405		spa_config_exit(spa, SCL_CONFIG, FTAG);
4406	}
4407
4408	spa_unload(spa);
4409	spa_deactivate(spa);
4410	spa_remove(spa);
4411	mutex_exit(&spa_namespace_lock);
4412
4413	return (config);
4414}
4415
4416/*
4417 * Pool export/destroy
4418 *
4419 * The act of destroying or exporting a pool is very simple.  We make sure there
4420 * is no more pending I/O and any references to the pool are gone.  Then, we
4421 * update the pool state and sync all the labels to disk, removing the
4422 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4423 * we don't sync the labels or remove the configuration cache.
4424 */
4425static int
4426spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4427    boolean_t force, boolean_t hardforce)
4428{
4429	spa_t *spa;
4430
4431	if (oldconfig)
4432		*oldconfig = NULL;
4433
4434	if (!(spa_mode_global & FWRITE))
4435		return (SET_ERROR(EROFS));
4436
4437	mutex_enter(&spa_namespace_lock);
4438	if ((spa = spa_lookup(pool)) == NULL) {
4439		mutex_exit(&spa_namespace_lock);
4440		return (SET_ERROR(ENOENT));
4441	}
4442
4443	/*
4444	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4445	 * reacquire the namespace lock, and see if we can export.
4446	 */
4447	spa_open_ref(spa, FTAG);
4448	mutex_exit(&spa_namespace_lock);
4449	spa_async_suspend(spa);
4450	mutex_enter(&spa_namespace_lock);
4451	spa_close(spa, FTAG);
4452
4453	/*
4454	 * The pool will be in core if it's openable,
4455	 * in which case we can modify its state.
4456	 */
4457	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4458		/*
4459		 * Objsets may be open only because they're dirty, so we
4460		 * have to force it to sync before checking spa_refcnt.
4461		 */
4462		txg_wait_synced(spa->spa_dsl_pool, 0);
4463
4464		/*
4465		 * A pool cannot be exported or destroyed if there are active
4466		 * references.  If we are resetting a pool, allow references by
4467		 * fault injection handlers.
4468		 */
4469		if (!spa_refcount_zero(spa) ||
4470		    (spa->spa_inject_ref != 0 &&
4471		    new_state != POOL_STATE_UNINITIALIZED)) {
4472			spa_async_resume(spa);
4473			mutex_exit(&spa_namespace_lock);
4474			return (SET_ERROR(EBUSY));
4475		}
4476
4477		/*
4478		 * A pool cannot be exported if it has an active shared spare.
4479		 * This is to prevent other pools stealing the active spare
4480		 * from an exported pool. At user's own will, such pool can
4481		 * be forcedly exported.
4482		 */
4483		if (!force && new_state == POOL_STATE_EXPORTED &&
4484		    spa_has_active_shared_spare(spa)) {
4485			spa_async_resume(spa);
4486			mutex_exit(&spa_namespace_lock);
4487			return (SET_ERROR(EXDEV));
4488		}
4489
4490		/*
4491		 * We want this to be reflected on every label,
4492		 * so mark them all dirty.  spa_unload() will do the
4493		 * final sync that pushes these changes out.
4494		 */
4495		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4496			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4497			spa->spa_state = new_state;
4498			spa->spa_final_txg = spa_last_synced_txg(spa) +
4499			    TXG_DEFER_SIZE + 1;
4500			vdev_config_dirty(spa->spa_root_vdev);
4501			spa_config_exit(spa, SCL_ALL, FTAG);
4502		}
4503	}
4504
4505	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4506
4507	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4508		spa_unload(spa);
4509		spa_deactivate(spa);
4510	}
4511
4512	if (oldconfig && spa->spa_config)
4513		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4514
4515	if (new_state != POOL_STATE_UNINITIALIZED) {
4516		if (!hardforce)
4517			spa_config_sync(spa, B_TRUE, B_TRUE);
4518		spa_remove(spa);
4519	}
4520	mutex_exit(&spa_namespace_lock);
4521
4522	return (0);
4523}
4524
4525/*
4526 * Destroy a storage pool.
4527 */
4528int
4529spa_destroy(char *pool)
4530{
4531	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4532	    B_FALSE, B_FALSE));
4533}
4534
4535/*
4536 * Export a storage pool.
4537 */
4538int
4539spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4540    boolean_t hardforce)
4541{
4542	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4543	    force, hardforce));
4544}
4545
4546/*
4547 * Similar to spa_export(), this unloads the spa_t without actually removing it
4548 * from the namespace in any way.
4549 */
4550int
4551spa_reset(char *pool)
4552{
4553	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4554	    B_FALSE, B_FALSE));
4555}
4556
4557/*
4558 * ==========================================================================
4559 * Device manipulation
4560 * ==========================================================================
4561 */
4562
4563/*
4564 * Add a device to a storage pool.
4565 */
4566int
4567spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4568{
4569	uint64_t txg, id;
4570	int error;
4571	vdev_t *rvd = spa->spa_root_vdev;
4572	vdev_t *vd, *tvd;
4573	nvlist_t **spares, **l2cache;
4574	uint_t nspares, nl2cache;
4575
4576	ASSERT(spa_writeable(spa));
4577
4578	txg = spa_vdev_enter(spa);
4579
4580	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4581	    VDEV_ALLOC_ADD)) != 0)
4582		return (spa_vdev_exit(spa, NULL, txg, error));
4583
4584	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4585
4586	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4587	    &nspares) != 0)
4588		nspares = 0;
4589
4590	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4591	    &nl2cache) != 0)
4592		nl2cache = 0;
4593
4594	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4595		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4596
4597	if (vd->vdev_children != 0 &&
4598	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4599		return (spa_vdev_exit(spa, vd, txg, error));
4600
4601	/*
4602	 * We must validate the spares and l2cache devices after checking the
4603	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4604	 */
4605	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4606		return (spa_vdev_exit(spa, vd, txg, error));
4607
4608	/*
4609	 * Transfer each new top-level vdev from vd to rvd.
4610	 */
4611	for (int c = 0; c < vd->vdev_children; c++) {
4612
4613		/*
4614		 * Set the vdev id to the first hole, if one exists.
4615		 */
4616		for (id = 0; id < rvd->vdev_children; id++) {
4617			if (rvd->vdev_child[id]->vdev_ishole) {
4618				vdev_free(rvd->vdev_child[id]);
4619				break;
4620			}
4621		}
4622		tvd = vd->vdev_child[c];
4623		vdev_remove_child(vd, tvd);
4624		tvd->vdev_id = id;
4625		vdev_add_child(rvd, tvd);
4626		vdev_config_dirty(tvd);
4627	}
4628
4629	if (nspares != 0) {
4630		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4631		    ZPOOL_CONFIG_SPARES);
4632		spa_load_spares(spa);
4633		spa->spa_spares.sav_sync = B_TRUE;
4634	}
4635
4636	if (nl2cache != 0) {
4637		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4638		    ZPOOL_CONFIG_L2CACHE);
4639		spa_load_l2cache(spa);
4640		spa->spa_l2cache.sav_sync = B_TRUE;
4641	}
4642
4643	/*
4644	 * We have to be careful when adding new vdevs to an existing pool.
4645	 * If other threads start allocating from these vdevs before we
4646	 * sync the config cache, and we lose power, then upon reboot we may
4647	 * fail to open the pool because there are DVAs that the config cache
4648	 * can't translate.  Therefore, we first add the vdevs without
4649	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4650	 * and then let spa_config_update() initialize the new metaslabs.
4651	 *
4652	 * spa_load() checks for added-but-not-initialized vdevs, so that
4653	 * if we lose power at any point in this sequence, the remaining
4654	 * steps will be completed the next time we load the pool.
4655	 */
4656	(void) spa_vdev_exit(spa, vd, txg, 0);
4657
4658	mutex_enter(&spa_namespace_lock);
4659	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4660	mutex_exit(&spa_namespace_lock);
4661
4662	return (0);
4663}
4664
4665/*
4666 * Attach a device to a mirror.  The arguments are the path to any device
4667 * in the mirror, and the nvroot for the new device.  If the path specifies
4668 * a device that is not mirrored, we automatically insert the mirror vdev.
4669 *
4670 * If 'replacing' is specified, the new device is intended to replace the
4671 * existing device; in this case the two devices are made into their own
4672 * mirror using the 'replacing' vdev, which is functionally identical to
4673 * the mirror vdev (it actually reuses all the same ops) but has a few
4674 * extra rules: you can't attach to it after it's been created, and upon
4675 * completion of resilvering, the first disk (the one being replaced)
4676 * is automatically detached.
4677 */
4678int
4679spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4680{
4681	uint64_t txg, dtl_max_txg;
4682	vdev_t *rvd = spa->spa_root_vdev;
4683	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4684	vdev_ops_t *pvops;
4685	char *oldvdpath, *newvdpath;
4686	int newvd_isspare;
4687	int error;
4688
4689	ASSERT(spa_writeable(spa));
4690
4691	txg = spa_vdev_enter(spa);
4692
4693	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4694
4695	if (oldvd == NULL)
4696		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4697
4698	if (!oldvd->vdev_ops->vdev_op_leaf)
4699		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4700
4701	pvd = oldvd->vdev_parent;
4702
4703	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4704	    VDEV_ALLOC_ATTACH)) != 0)
4705		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4706
4707	if (newrootvd->vdev_children != 1)
4708		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4709
4710	newvd = newrootvd->vdev_child[0];
4711
4712	if (!newvd->vdev_ops->vdev_op_leaf)
4713		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4714
4715	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4716		return (spa_vdev_exit(spa, newrootvd, txg, error));
4717
4718	/*
4719	 * Spares can't replace logs
4720	 */
4721	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4722		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4723
4724	if (!replacing) {
4725		/*
4726		 * For attach, the only allowable parent is a mirror or the root
4727		 * vdev.
4728		 */
4729		if (pvd->vdev_ops != &vdev_mirror_ops &&
4730		    pvd->vdev_ops != &vdev_root_ops)
4731			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4732
4733		pvops = &vdev_mirror_ops;
4734	} else {
4735		/*
4736		 * Active hot spares can only be replaced by inactive hot
4737		 * spares.
4738		 */
4739		if (pvd->vdev_ops == &vdev_spare_ops &&
4740		    oldvd->vdev_isspare &&
4741		    !spa_has_spare(spa, newvd->vdev_guid))
4742			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4743
4744		/*
4745		 * If the source is a hot spare, and the parent isn't already a
4746		 * spare, then we want to create a new hot spare.  Otherwise, we
4747		 * want to create a replacing vdev.  The user is not allowed to
4748		 * attach to a spared vdev child unless the 'isspare' state is
4749		 * the same (spare replaces spare, non-spare replaces
4750		 * non-spare).
4751		 */
4752		if (pvd->vdev_ops == &vdev_replacing_ops &&
4753		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4754			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4755		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4756		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4757			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4758		}
4759
4760		if (newvd->vdev_isspare)
4761			pvops = &vdev_spare_ops;
4762		else
4763			pvops = &vdev_replacing_ops;
4764	}
4765
4766	/*
4767	 * Make sure the new device is big enough.
4768	 */
4769	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4770		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4771
4772	/*
4773	 * The new device cannot have a higher alignment requirement
4774	 * than the top-level vdev.
4775	 */
4776	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4777		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4778
4779	/*
4780	 * If this is an in-place replacement, update oldvd's path and devid
4781	 * to make it distinguishable from newvd, and unopenable from now on.
4782	 */
4783	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4784		spa_strfree(oldvd->vdev_path);
4785		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4786		    KM_SLEEP);
4787		(void) sprintf(oldvd->vdev_path, "%s/%s",
4788		    newvd->vdev_path, "old");
4789		if (oldvd->vdev_devid != NULL) {
4790			spa_strfree(oldvd->vdev_devid);
4791			oldvd->vdev_devid = NULL;
4792		}
4793	}
4794
4795	/* mark the device being resilvered */
4796	newvd->vdev_resilver_txg = txg;
4797
4798	/*
4799	 * If the parent is not a mirror, or if we're replacing, insert the new
4800	 * mirror/replacing/spare vdev above oldvd.
4801	 */
4802	if (pvd->vdev_ops != pvops)
4803		pvd = vdev_add_parent(oldvd, pvops);
4804
4805	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4806	ASSERT(pvd->vdev_ops == pvops);
4807	ASSERT(oldvd->vdev_parent == pvd);
4808
4809	/*
4810	 * Extract the new device from its root and add it to pvd.
4811	 */
4812	vdev_remove_child(newrootvd, newvd);
4813	newvd->vdev_id = pvd->vdev_children;
4814	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4815	vdev_add_child(pvd, newvd);
4816
4817	tvd = newvd->vdev_top;
4818	ASSERT(pvd->vdev_top == tvd);
4819	ASSERT(tvd->vdev_parent == rvd);
4820
4821	vdev_config_dirty(tvd);
4822
4823	/*
4824	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4825	 * for any dmu_sync-ed blocks.  It will propagate upward when
4826	 * spa_vdev_exit() calls vdev_dtl_reassess().
4827	 */
4828	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4829
4830	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4831	    dtl_max_txg - TXG_INITIAL);
4832
4833	if (newvd->vdev_isspare) {
4834		spa_spare_activate(newvd);
4835		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4836	}
4837
4838	oldvdpath = spa_strdup(oldvd->vdev_path);
4839	newvdpath = spa_strdup(newvd->vdev_path);
4840	newvd_isspare = newvd->vdev_isspare;
4841
4842	/*
4843	 * Mark newvd's DTL dirty in this txg.
4844	 */
4845	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4846
4847	/*
4848	 * Schedule the resilver to restart in the future. We do this to
4849	 * ensure that dmu_sync-ed blocks have been stitched into the
4850	 * respective datasets.
4851	 */
4852	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4853
4854	/*
4855	 * Commit the config
4856	 */
4857	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4858
4859	spa_history_log_internal(spa, "vdev attach", NULL,
4860	    "%s vdev=%s %s vdev=%s",
4861	    replacing && newvd_isspare ? "spare in" :
4862	    replacing ? "replace" : "attach", newvdpath,
4863	    replacing ? "for" : "to", oldvdpath);
4864
4865	spa_strfree(oldvdpath);
4866	spa_strfree(newvdpath);
4867
4868	if (spa->spa_bootfs)
4869		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4870
4871	return (0);
4872}
4873
4874/*
4875 * Detach a device from a mirror or replacing vdev.
4876 *
4877 * If 'replace_done' is specified, only detach if the parent
4878 * is a replacing vdev.
4879 */
4880int
4881spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4882{
4883	uint64_t txg;
4884	int error;
4885	vdev_t *rvd = spa->spa_root_vdev;
4886	vdev_t *vd, *pvd, *cvd, *tvd;
4887	boolean_t unspare = B_FALSE;
4888	uint64_t unspare_guid = 0;
4889	char *vdpath;
4890
4891	ASSERT(spa_writeable(spa));
4892
4893	txg = spa_vdev_enter(spa);
4894
4895	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4896
4897	if (vd == NULL)
4898		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4899
4900	if (!vd->vdev_ops->vdev_op_leaf)
4901		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4902
4903	pvd = vd->vdev_parent;
4904
4905	/*
4906	 * If the parent/child relationship is not as expected, don't do it.
4907	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4908	 * vdev that's replacing B with C.  The user's intent in replacing
4909	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4910	 * the replace by detaching C, the expected behavior is to end up
4911	 * M(A,B).  But suppose that right after deciding to detach C,
4912	 * the replacement of B completes.  We would have M(A,C), and then
4913	 * ask to detach C, which would leave us with just A -- not what
4914	 * the user wanted.  To prevent this, we make sure that the
4915	 * parent/child relationship hasn't changed -- in this example,
4916	 * that C's parent is still the replacing vdev R.
4917	 */
4918	if (pvd->vdev_guid != pguid && pguid != 0)
4919		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4920
4921	/*
4922	 * Only 'replacing' or 'spare' vdevs can be replaced.
4923	 */
4924	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4925	    pvd->vdev_ops != &vdev_spare_ops)
4926		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4927
4928	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4929	    spa_version(spa) >= SPA_VERSION_SPARES);
4930
4931	/*
4932	 * Only mirror, replacing, and spare vdevs support detach.
4933	 */
4934	if (pvd->vdev_ops != &vdev_replacing_ops &&
4935	    pvd->vdev_ops != &vdev_mirror_ops &&
4936	    pvd->vdev_ops != &vdev_spare_ops)
4937		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4938
4939	/*
4940	 * If this device has the only valid copy of some data,
4941	 * we cannot safely detach it.
4942	 */
4943	if (vdev_dtl_required(vd))
4944		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4945
4946	ASSERT(pvd->vdev_children >= 2);
4947
4948	/*
4949	 * If we are detaching the second disk from a replacing vdev, then
4950	 * check to see if we changed the original vdev's path to have "/old"
4951	 * at the end in spa_vdev_attach().  If so, undo that change now.
4952	 */
4953	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4954	    vd->vdev_path != NULL) {
4955		size_t len = strlen(vd->vdev_path);
4956
4957		for (int c = 0; c < pvd->vdev_children; c++) {
4958			cvd = pvd->vdev_child[c];
4959
4960			if (cvd == vd || cvd->vdev_path == NULL)
4961				continue;
4962
4963			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4964			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4965				spa_strfree(cvd->vdev_path);
4966				cvd->vdev_path = spa_strdup(vd->vdev_path);
4967				break;
4968			}
4969		}
4970	}
4971
4972	/*
4973	 * If we are detaching the original disk from a spare, then it implies
4974	 * that the spare should become a real disk, and be removed from the
4975	 * active spare list for the pool.
4976	 */
4977	if (pvd->vdev_ops == &vdev_spare_ops &&
4978	    vd->vdev_id == 0 &&
4979	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4980		unspare = B_TRUE;
4981
4982	/*
4983	 * Erase the disk labels so the disk can be used for other things.
4984	 * This must be done after all other error cases are handled,
4985	 * but before we disembowel vd (so we can still do I/O to it).
4986	 * But if we can't do it, don't treat the error as fatal --
4987	 * it may be that the unwritability of the disk is the reason
4988	 * it's being detached!
4989	 */
4990	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4991
4992	/*
4993	 * Remove vd from its parent and compact the parent's children.
4994	 */
4995	vdev_remove_child(pvd, vd);
4996	vdev_compact_children(pvd);
4997
4998	/*
4999	 * Remember one of the remaining children so we can get tvd below.
5000	 */
5001	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5002
5003	/*
5004	 * If we need to remove the remaining child from the list of hot spares,
5005	 * do it now, marking the vdev as no longer a spare in the process.
5006	 * We must do this before vdev_remove_parent(), because that can
5007	 * change the GUID if it creates a new toplevel GUID.  For a similar
5008	 * reason, we must remove the spare now, in the same txg as the detach;
5009	 * otherwise someone could attach a new sibling, change the GUID, and
5010	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5011	 */
5012	if (unspare) {
5013		ASSERT(cvd->vdev_isspare);
5014		spa_spare_remove(cvd);
5015		unspare_guid = cvd->vdev_guid;
5016		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5017		cvd->vdev_unspare = B_TRUE;
5018	}
5019
5020	/*
5021	 * If the parent mirror/replacing vdev only has one child,
5022	 * the parent is no longer needed.  Remove it from the tree.
5023	 */
5024	if (pvd->vdev_children == 1) {
5025		if (pvd->vdev_ops == &vdev_spare_ops)
5026			cvd->vdev_unspare = B_FALSE;
5027		vdev_remove_parent(cvd);
5028	}
5029
5030
5031	/*
5032	 * We don't set tvd until now because the parent we just removed
5033	 * may have been the previous top-level vdev.
5034	 */
5035	tvd = cvd->vdev_top;
5036	ASSERT(tvd->vdev_parent == rvd);
5037
5038	/*
5039	 * Reevaluate the parent vdev state.
5040	 */
5041	vdev_propagate_state(cvd);
5042
5043	/*
5044	 * If the 'autoexpand' property is set on the pool then automatically
5045	 * try to expand the size of the pool. For example if the device we
5046	 * just detached was smaller than the others, it may be possible to
5047	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5048	 * first so that we can obtain the updated sizes of the leaf vdevs.
5049	 */
5050	if (spa->spa_autoexpand) {
5051		vdev_reopen(tvd);
5052		vdev_expand(tvd, txg);
5053	}
5054
5055	vdev_config_dirty(tvd);
5056
5057	/*
5058	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5059	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5060	 * But first make sure we're not on any *other* txg's DTL list, to
5061	 * prevent vd from being accessed after it's freed.
5062	 */
5063	vdpath = spa_strdup(vd->vdev_path);
5064	for (int t = 0; t < TXG_SIZE; t++)
5065		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5066	vd->vdev_detached = B_TRUE;
5067	vdev_dirty(tvd, VDD_DTL, vd, txg);
5068
5069	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5070
5071	/* hang on to the spa before we release the lock */
5072	spa_open_ref(spa, FTAG);
5073
5074	error = spa_vdev_exit(spa, vd, txg, 0);
5075
5076	spa_history_log_internal(spa, "detach", NULL,
5077	    "vdev=%s", vdpath);
5078	spa_strfree(vdpath);
5079
5080	/*
5081	 * If this was the removal of the original device in a hot spare vdev,
5082	 * then we want to go through and remove the device from the hot spare
5083	 * list of every other pool.
5084	 */
5085	if (unspare) {
5086		spa_t *altspa = NULL;
5087
5088		mutex_enter(&spa_namespace_lock);
5089		while ((altspa = spa_next(altspa)) != NULL) {
5090			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5091			    altspa == spa)
5092				continue;
5093
5094			spa_open_ref(altspa, FTAG);
5095			mutex_exit(&spa_namespace_lock);
5096			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5097			mutex_enter(&spa_namespace_lock);
5098			spa_close(altspa, FTAG);
5099		}
5100		mutex_exit(&spa_namespace_lock);
5101
5102		/* search the rest of the vdevs for spares to remove */
5103		spa_vdev_resilver_done(spa);
5104	}
5105
5106	/* all done with the spa; OK to release */
5107	mutex_enter(&spa_namespace_lock);
5108	spa_close(spa, FTAG);
5109	mutex_exit(&spa_namespace_lock);
5110
5111	return (error);
5112}
5113
5114/*
5115 * Split a set of devices from their mirrors, and create a new pool from them.
5116 */
5117int
5118spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5119    nvlist_t *props, boolean_t exp)
5120{
5121	int error = 0;
5122	uint64_t txg, *glist;
5123	spa_t *newspa;
5124	uint_t c, children, lastlog;
5125	nvlist_t **child, *nvl, *tmp;
5126	dmu_tx_t *tx;
5127	char *altroot = NULL;
5128	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5129	boolean_t activate_slog;
5130
5131	ASSERT(spa_writeable(spa));
5132
5133	txg = spa_vdev_enter(spa);
5134
5135	/* clear the log and flush everything up to now */
5136	activate_slog = spa_passivate_log(spa);
5137	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5138	error = spa_offline_log(spa);
5139	txg = spa_vdev_config_enter(spa);
5140
5141	if (activate_slog)
5142		spa_activate_log(spa);
5143
5144	if (error != 0)
5145		return (spa_vdev_exit(spa, NULL, txg, error));
5146
5147	/* check new spa name before going any further */
5148	if (spa_lookup(newname) != NULL)
5149		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5150
5151	/*
5152	 * scan through all the children to ensure they're all mirrors
5153	 */
5154	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5155	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5156	    &children) != 0)
5157		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5158
5159	/* first, check to ensure we've got the right child count */
5160	rvd = spa->spa_root_vdev;
5161	lastlog = 0;
5162	for (c = 0; c < rvd->vdev_children; c++) {
5163		vdev_t *vd = rvd->vdev_child[c];
5164
5165		/* don't count the holes & logs as children */
5166		if (vd->vdev_islog || vd->vdev_ishole) {
5167			if (lastlog == 0)
5168				lastlog = c;
5169			continue;
5170		}
5171
5172		lastlog = 0;
5173	}
5174	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5175		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5176
5177	/* next, ensure no spare or cache devices are part of the split */
5178	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5179	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5180		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5181
5182	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5183	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5184
5185	/* then, loop over each vdev and validate it */
5186	for (c = 0; c < children; c++) {
5187		uint64_t is_hole = 0;
5188
5189		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5190		    &is_hole);
5191
5192		if (is_hole != 0) {
5193			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5194			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5195				continue;
5196			} else {
5197				error = SET_ERROR(EINVAL);
5198				break;
5199			}
5200		}
5201
5202		/* which disk is going to be split? */
5203		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5204		    &glist[c]) != 0) {
5205			error = SET_ERROR(EINVAL);
5206			break;
5207		}
5208
5209		/* look it up in the spa */
5210		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5211		if (vml[c] == NULL) {
5212			error = SET_ERROR(ENODEV);
5213			break;
5214		}
5215
5216		/* make sure there's nothing stopping the split */
5217		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5218		    vml[c]->vdev_islog ||
5219		    vml[c]->vdev_ishole ||
5220		    vml[c]->vdev_isspare ||
5221		    vml[c]->vdev_isl2cache ||
5222		    !vdev_writeable(vml[c]) ||
5223		    vml[c]->vdev_children != 0 ||
5224		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5225		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5226			error = SET_ERROR(EINVAL);
5227			break;
5228		}
5229
5230		if (vdev_dtl_required(vml[c])) {
5231			error = SET_ERROR(EBUSY);
5232			break;
5233		}
5234
5235		/* we need certain info from the top level */
5236		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5237		    vml[c]->vdev_top->vdev_ms_array) == 0);
5238		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5239		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5240		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5241		    vml[c]->vdev_top->vdev_asize) == 0);
5242		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5243		    vml[c]->vdev_top->vdev_ashift) == 0);
5244	}
5245
5246	if (error != 0) {
5247		kmem_free(vml, children * sizeof (vdev_t *));
5248		kmem_free(glist, children * sizeof (uint64_t));
5249		return (spa_vdev_exit(spa, NULL, txg, error));
5250	}
5251
5252	/* stop writers from using the disks */
5253	for (c = 0; c < children; c++) {
5254		if (vml[c] != NULL)
5255			vml[c]->vdev_offline = B_TRUE;
5256	}
5257	vdev_reopen(spa->spa_root_vdev);
5258
5259	/*
5260	 * Temporarily record the splitting vdevs in the spa config.  This
5261	 * will disappear once the config is regenerated.
5262	 */
5263	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5264	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5265	    glist, children) == 0);
5266	kmem_free(glist, children * sizeof (uint64_t));
5267
5268	mutex_enter(&spa->spa_props_lock);
5269	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5270	    nvl) == 0);
5271	mutex_exit(&spa->spa_props_lock);
5272	spa->spa_config_splitting = nvl;
5273	vdev_config_dirty(spa->spa_root_vdev);
5274
5275	/* configure and create the new pool */
5276	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5277	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5278	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5279	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5280	    spa_version(spa)) == 0);
5281	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5282	    spa->spa_config_txg) == 0);
5283	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5284	    spa_generate_guid(NULL)) == 0);
5285	(void) nvlist_lookup_string(props,
5286	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5287
5288	/* add the new pool to the namespace */
5289	newspa = spa_add(newname, config, altroot);
5290	newspa->spa_config_txg = spa->spa_config_txg;
5291	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5292
5293	/* release the spa config lock, retaining the namespace lock */
5294	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5295
5296	if (zio_injection_enabled)
5297		zio_handle_panic_injection(spa, FTAG, 1);
5298
5299	spa_activate(newspa, spa_mode_global);
5300	spa_async_suspend(newspa);
5301
5302#ifndef sun
5303	/* mark that we are creating new spa by splitting */
5304	newspa->spa_splitting_newspa = B_TRUE;
5305#endif
5306	/* create the new pool from the disks of the original pool */
5307	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5308#ifndef sun
5309	newspa->spa_splitting_newspa = B_FALSE;
5310#endif
5311	if (error)
5312		goto out;
5313
5314	/* if that worked, generate a real config for the new pool */
5315	if (newspa->spa_root_vdev != NULL) {
5316		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5317		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5318		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5319		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5320		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5321		    B_TRUE));
5322	}
5323
5324	/* set the props */
5325	if (props != NULL) {
5326		spa_configfile_set(newspa, props, B_FALSE);
5327		error = spa_prop_set(newspa, props);
5328		if (error)
5329			goto out;
5330	}
5331
5332	/* flush everything */
5333	txg = spa_vdev_config_enter(newspa);
5334	vdev_config_dirty(newspa->spa_root_vdev);
5335	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5336
5337	if (zio_injection_enabled)
5338		zio_handle_panic_injection(spa, FTAG, 2);
5339
5340	spa_async_resume(newspa);
5341
5342	/* finally, update the original pool's config */
5343	txg = spa_vdev_config_enter(spa);
5344	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5345	error = dmu_tx_assign(tx, TXG_WAIT);
5346	if (error != 0)
5347		dmu_tx_abort(tx);
5348	for (c = 0; c < children; c++) {
5349		if (vml[c] != NULL) {
5350			vdev_split(vml[c]);
5351			if (error == 0)
5352				spa_history_log_internal(spa, "detach", tx,
5353				    "vdev=%s", vml[c]->vdev_path);
5354			vdev_free(vml[c]);
5355		}
5356	}
5357	vdev_config_dirty(spa->spa_root_vdev);
5358	spa->spa_config_splitting = NULL;
5359	nvlist_free(nvl);
5360	if (error == 0)
5361		dmu_tx_commit(tx);
5362	(void) spa_vdev_exit(spa, NULL, txg, 0);
5363
5364	if (zio_injection_enabled)
5365		zio_handle_panic_injection(spa, FTAG, 3);
5366
5367	/* split is complete; log a history record */
5368	spa_history_log_internal(newspa, "split", NULL,
5369	    "from pool %s", spa_name(spa));
5370
5371	kmem_free(vml, children * sizeof (vdev_t *));
5372
5373	/* if we're not going to mount the filesystems in userland, export */
5374	if (exp)
5375		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5376		    B_FALSE, B_FALSE);
5377
5378	return (error);
5379
5380out:
5381	spa_unload(newspa);
5382	spa_deactivate(newspa);
5383	spa_remove(newspa);
5384
5385	txg = spa_vdev_config_enter(spa);
5386
5387	/* re-online all offlined disks */
5388	for (c = 0; c < children; c++) {
5389		if (vml[c] != NULL)
5390			vml[c]->vdev_offline = B_FALSE;
5391	}
5392	vdev_reopen(spa->spa_root_vdev);
5393
5394	nvlist_free(spa->spa_config_splitting);
5395	spa->spa_config_splitting = NULL;
5396	(void) spa_vdev_exit(spa, NULL, txg, error);
5397
5398	kmem_free(vml, children * sizeof (vdev_t *));
5399	return (error);
5400}
5401
5402static nvlist_t *
5403spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5404{
5405	for (int i = 0; i < count; i++) {
5406		uint64_t guid;
5407
5408		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5409		    &guid) == 0);
5410
5411		if (guid == target_guid)
5412			return (nvpp[i]);
5413	}
5414
5415	return (NULL);
5416}
5417
5418static void
5419spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5420	nvlist_t *dev_to_remove)
5421{
5422	nvlist_t **newdev = NULL;
5423
5424	if (count > 1)
5425		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5426
5427	for (int i = 0, j = 0; i < count; i++) {
5428		if (dev[i] == dev_to_remove)
5429			continue;
5430		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5431	}
5432
5433	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5434	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5435
5436	for (int i = 0; i < count - 1; i++)
5437		nvlist_free(newdev[i]);
5438
5439	if (count > 1)
5440		kmem_free(newdev, (count - 1) * sizeof (void *));
5441}
5442
5443/*
5444 * Evacuate the device.
5445 */
5446static int
5447spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5448{
5449	uint64_t txg;
5450	int error = 0;
5451
5452	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5453	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5454	ASSERT(vd == vd->vdev_top);
5455
5456	/*
5457	 * Evacuate the device.  We don't hold the config lock as writer
5458	 * since we need to do I/O but we do keep the
5459	 * spa_namespace_lock held.  Once this completes the device
5460	 * should no longer have any blocks allocated on it.
5461	 */
5462	if (vd->vdev_islog) {
5463		if (vd->vdev_stat.vs_alloc != 0)
5464			error = spa_offline_log(spa);
5465	} else {
5466		error = SET_ERROR(ENOTSUP);
5467	}
5468
5469	if (error)
5470		return (error);
5471
5472	/*
5473	 * The evacuation succeeded.  Remove any remaining MOS metadata
5474	 * associated with this vdev, and wait for these changes to sync.
5475	 */
5476	ASSERT0(vd->vdev_stat.vs_alloc);
5477	txg = spa_vdev_config_enter(spa);
5478	vd->vdev_removing = B_TRUE;
5479	vdev_dirty_leaves(vd, VDD_DTL, txg);
5480	vdev_config_dirty(vd);
5481	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5482
5483	return (0);
5484}
5485
5486/*
5487 * Complete the removal by cleaning up the namespace.
5488 */
5489static void
5490spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5491{
5492	vdev_t *rvd = spa->spa_root_vdev;
5493	uint64_t id = vd->vdev_id;
5494	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5495
5496	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5497	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5498	ASSERT(vd == vd->vdev_top);
5499
5500	/*
5501	 * Only remove any devices which are empty.
5502	 */
5503	if (vd->vdev_stat.vs_alloc != 0)
5504		return;
5505
5506	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5507
5508	if (list_link_active(&vd->vdev_state_dirty_node))
5509		vdev_state_clean(vd);
5510	if (list_link_active(&vd->vdev_config_dirty_node))
5511		vdev_config_clean(vd);
5512
5513	vdev_free(vd);
5514
5515	if (last_vdev) {
5516		vdev_compact_children(rvd);
5517	} else {
5518		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5519		vdev_add_child(rvd, vd);
5520	}
5521	vdev_config_dirty(rvd);
5522
5523	/*
5524	 * Reassess the health of our root vdev.
5525	 */
5526	vdev_reopen(rvd);
5527}
5528
5529/*
5530 * Remove a device from the pool -
5531 *
5532 * Removing a device from the vdev namespace requires several steps
5533 * and can take a significant amount of time.  As a result we use
5534 * the spa_vdev_config_[enter/exit] functions which allow us to
5535 * grab and release the spa_config_lock while still holding the namespace
5536 * lock.  During each step the configuration is synced out.
5537 *
5538 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5539 * devices.
5540 */
5541int
5542spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5543{
5544	vdev_t *vd;
5545	metaslab_group_t *mg;
5546	nvlist_t **spares, **l2cache, *nv;
5547	uint64_t txg = 0;
5548	uint_t nspares, nl2cache;
5549	int error = 0;
5550	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5551
5552	ASSERT(spa_writeable(spa));
5553
5554	if (!locked)
5555		txg = spa_vdev_enter(spa);
5556
5557	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5558
5559	if (spa->spa_spares.sav_vdevs != NULL &&
5560	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5561	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5562	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5563		/*
5564		 * Only remove the hot spare if it's not currently in use
5565		 * in this pool.
5566		 */
5567		if (vd == NULL || unspare) {
5568			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5569			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5570			spa_load_spares(spa);
5571			spa->spa_spares.sav_sync = B_TRUE;
5572		} else {
5573			error = SET_ERROR(EBUSY);
5574		}
5575	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5576	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5577	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5578	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5579		/*
5580		 * Cache devices can always be removed.
5581		 */
5582		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5583		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5584		spa_load_l2cache(spa);
5585		spa->spa_l2cache.sav_sync = B_TRUE;
5586	} else if (vd != NULL && vd->vdev_islog) {
5587		ASSERT(!locked);
5588		ASSERT(vd == vd->vdev_top);
5589
5590		mg = vd->vdev_mg;
5591
5592		/*
5593		 * Stop allocating from this vdev.
5594		 */
5595		metaslab_group_passivate(mg);
5596
5597		/*
5598		 * Wait for the youngest allocations and frees to sync,
5599		 * and then wait for the deferral of those frees to finish.
5600		 */
5601		spa_vdev_config_exit(spa, NULL,
5602		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5603
5604		/*
5605		 * Attempt to evacuate the vdev.
5606		 */
5607		error = spa_vdev_remove_evacuate(spa, vd);
5608
5609		txg = spa_vdev_config_enter(spa);
5610
5611		/*
5612		 * If we couldn't evacuate the vdev, unwind.
5613		 */
5614		if (error) {
5615			metaslab_group_activate(mg);
5616			return (spa_vdev_exit(spa, NULL, txg, error));
5617		}
5618
5619		/*
5620		 * Clean up the vdev namespace.
5621		 */
5622		spa_vdev_remove_from_namespace(spa, vd);
5623
5624	} else if (vd != NULL) {
5625		/*
5626		 * Normal vdevs cannot be removed (yet).
5627		 */
5628		error = SET_ERROR(ENOTSUP);
5629	} else {
5630		/*
5631		 * There is no vdev of any kind with the specified guid.
5632		 */
5633		error = SET_ERROR(ENOENT);
5634	}
5635
5636	if (!locked)
5637		return (spa_vdev_exit(spa, NULL, txg, error));
5638
5639	return (error);
5640}
5641
5642/*
5643 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5644 * currently spared, so we can detach it.
5645 */
5646static vdev_t *
5647spa_vdev_resilver_done_hunt(vdev_t *vd)
5648{
5649	vdev_t *newvd, *oldvd;
5650
5651	for (int c = 0; c < vd->vdev_children; c++) {
5652		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5653		if (oldvd != NULL)
5654			return (oldvd);
5655	}
5656
5657	/*
5658	 * Check for a completed replacement.  We always consider the first
5659	 * vdev in the list to be the oldest vdev, and the last one to be
5660	 * the newest (see spa_vdev_attach() for how that works).  In
5661	 * the case where the newest vdev is faulted, we will not automatically
5662	 * remove it after a resilver completes.  This is OK as it will require
5663	 * user intervention to determine which disk the admin wishes to keep.
5664	 */
5665	if (vd->vdev_ops == &vdev_replacing_ops) {
5666		ASSERT(vd->vdev_children > 1);
5667
5668		newvd = vd->vdev_child[vd->vdev_children - 1];
5669		oldvd = vd->vdev_child[0];
5670
5671		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5672		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5673		    !vdev_dtl_required(oldvd))
5674			return (oldvd);
5675	}
5676
5677	/*
5678	 * Check for a completed resilver with the 'unspare' flag set.
5679	 */
5680	if (vd->vdev_ops == &vdev_spare_ops) {
5681		vdev_t *first = vd->vdev_child[0];
5682		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5683
5684		if (last->vdev_unspare) {
5685			oldvd = first;
5686			newvd = last;
5687		} else if (first->vdev_unspare) {
5688			oldvd = last;
5689			newvd = first;
5690		} else {
5691			oldvd = NULL;
5692		}
5693
5694		if (oldvd != NULL &&
5695		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5696		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5697		    !vdev_dtl_required(oldvd))
5698			return (oldvd);
5699
5700		/*
5701		 * If there are more than two spares attached to a disk,
5702		 * and those spares are not required, then we want to
5703		 * attempt to free them up now so that they can be used
5704		 * by other pools.  Once we're back down to a single
5705		 * disk+spare, we stop removing them.
5706		 */
5707		if (vd->vdev_children > 2) {
5708			newvd = vd->vdev_child[1];
5709
5710			if (newvd->vdev_isspare && last->vdev_isspare &&
5711			    vdev_dtl_empty(last, DTL_MISSING) &&
5712			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5713			    !vdev_dtl_required(newvd))
5714				return (newvd);
5715		}
5716	}
5717
5718	return (NULL);
5719}
5720
5721static void
5722spa_vdev_resilver_done(spa_t *spa)
5723{
5724	vdev_t *vd, *pvd, *ppvd;
5725	uint64_t guid, sguid, pguid, ppguid;
5726
5727	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5728
5729	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5730		pvd = vd->vdev_parent;
5731		ppvd = pvd->vdev_parent;
5732		guid = vd->vdev_guid;
5733		pguid = pvd->vdev_guid;
5734		ppguid = ppvd->vdev_guid;
5735		sguid = 0;
5736		/*
5737		 * If we have just finished replacing a hot spared device, then
5738		 * we need to detach the parent's first child (the original hot
5739		 * spare) as well.
5740		 */
5741		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5742		    ppvd->vdev_children == 2) {
5743			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5744			sguid = ppvd->vdev_child[1]->vdev_guid;
5745		}
5746		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5747
5748		spa_config_exit(spa, SCL_ALL, FTAG);
5749		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5750			return;
5751		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5752			return;
5753		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5754	}
5755
5756	spa_config_exit(spa, SCL_ALL, FTAG);
5757}
5758
5759/*
5760 * Update the stored path or FRU for this vdev.
5761 */
5762int
5763spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5764    boolean_t ispath)
5765{
5766	vdev_t *vd;
5767	boolean_t sync = B_FALSE;
5768
5769	ASSERT(spa_writeable(spa));
5770
5771	spa_vdev_state_enter(spa, SCL_ALL);
5772
5773	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5774		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5775
5776	if (!vd->vdev_ops->vdev_op_leaf)
5777		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5778
5779	if (ispath) {
5780		if (strcmp(value, vd->vdev_path) != 0) {
5781			spa_strfree(vd->vdev_path);
5782			vd->vdev_path = spa_strdup(value);
5783			sync = B_TRUE;
5784		}
5785	} else {
5786		if (vd->vdev_fru == NULL) {
5787			vd->vdev_fru = spa_strdup(value);
5788			sync = B_TRUE;
5789		} else if (strcmp(value, vd->vdev_fru) != 0) {
5790			spa_strfree(vd->vdev_fru);
5791			vd->vdev_fru = spa_strdup(value);
5792			sync = B_TRUE;
5793		}
5794	}
5795
5796	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5797}
5798
5799int
5800spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5801{
5802	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5803}
5804
5805int
5806spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5807{
5808	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5809}
5810
5811/*
5812 * ==========================================================================
5813 * SPA Scanning
5814 * ==========================================================================
5815 */
5816
5817int
5818spa_scan_stop(spa_t *spa)
5819{
5820	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5821	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5822		return (SET_ERROR(EBUSY));
5823	return (dsl_scan_cancel(spa->spa_dsl_pool));
5824}
5825
5826int
5827spa_scan(spa_t *spa, pool_scan_func_t func)
5828{
5829	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5830
5831	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5832		return (SET_ERROR(ENOTSUP));
5833
5834	/*
5835	 * If a resilver was requested, but there is no DTL on a
5836	 * writeable leaf device, we have nothing to do.
5837	 */
5838	if (func == POOL_SCAN_RESILVER &&
5839	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5840		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5841		return (0);
5842	}
5843
5844	return (dsl_scan(spa->spa_dsl_pool, func));
5845}
5846
5847/*
5848 * ==========================================================================
5849 * SPA async task processing
5850 * ==========================================================================
5851 */
5852
5853static void
5854spa_async_remove(spa_t *spa, vdev_t *vd)
5855{
5856	if (vd->vdev_remove_wanted) {
5857		vd->vdev_remove_wanted = B_FALSE;
5858		vd->vdev_delayed_close = B_FALSE;
5859		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5860
5861		/*
5862		 * We want to clear the stats, but we don't want to do a full
5863		 * vdev_clear() as that will cause us to throw away
5864		 * degraded/faulted state as well as attempt to reopen the
5865		 * device, all of which is a waste.
5866		 */
5867		vd->vdev_stat.vs_read_errors = 0;
5868		vd->vdev_stat.vs_write_errors = 0;
5869		vd->vdev_stat.vs_checksum_errors = 0;
5870
5871		vdev_state_dirty(vd->vdev_top);
5872	}
5873
5874	for (int c = 0; c < vd->vdev_children; c++)
5875		spa_async_remove(spa, vd->vdev_child[c]);
5876}
5877
5878static void
5879spa_async_probe(spa_t *spa, vdev_t *vd)
5880{
5881	if (vd->vdev_probe_wanted) {
5882		vd->vdev_probe_wanted = B_FALSE;
5883		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5884	}
5885
5886	for (int c = 0; c < vd->vdev_children; c++)
5887		spa_async_probe(spa, vd->vdev_child[c]);
5888}
5889
5890static void
5891spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5892{
5893	sysevent_id_t eid;
5894	nvlist_t *attr;
5895	char *physpath;
5896
5897	if (!spa->spa_autoexpand)
5898		return;
5899
5900	for (int c = 0; c < vd->vdev_children; c++) {
5901		vdev_t *cvd = vd->vdev_child[c];
5902		spa_async_autoexpand(spa, cvd);
5903	}
5904
5905	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5906		return;
5907
5908	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5909	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5910
5911	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5912	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5913
5914	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5915	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5916
5917	nvlist_free(attr);
5918	kmem_free(physpath, MAXPATHLEN);
5919}
5920
5921static void
5922spa_async_thread(void *arg)
5923{
5924	spa_t *spa = arg;
5925	int tasks;
5926
5927	ASSERT(spa->spa_sync_on);
5928
5929	mutex_enter(&spa->spa_async_lock);
5930	tasks = spa->spa_async_tasks;
5931	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5932	mutex_exit(&spa->spa_async_lock);
5933
5934	/*
5935	 * See if the config needs to be updated.
5936	 */
5937	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5938		uint64_t old_space, new_space;
5939
5940		mutex_enter(&spa_namespace_lock);
5941		old_space = metaslab_class_get_space(spa_normal_class(spa));
5942		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5943		new_space = metaslab_class_get_space(spa_normal_class(spa));
5944		mutex_exit(&spa_namespace_lock);
5945
5946		/*
5947		 * If the pool grew as a result of the config update,
5948		 * then log an internal history event.
5949		 */
5950		if (new_space != old_space) {
5951			spa_history_log_internal(spa, "vdev online", NULL,
5952			    "pool '%s' size: %llu(+%llu)",
5953			    spa_name(spa), new_space, new_space - old_space);
5954		}
5955	}
5956
5957	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5958		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5959		spa_async_autoexpand(spa, spa->spa_root_vdev);
5960		spa_config_exit(spa, SCL_CONFIG, FTAG);
5961	}
5962
5963	/*
5964	 * See if any devices need to be probed.
5965	 */
5966	if (tasks & SPA_ASYNC_PROBE) {
5967		spa_vdev_state_enter(spa, SCL_NONE);
5968		spa_async_probe(spa, spa->spa_root_vdev);
5969		(void) spa_vdev_state_exit(spa, NULL, 0);
5970	}
5971
5972	/*
5973	 * If any devices are done replacing, detach them.
5974	 */
5975	if (tasks & SPA_ASYNC_RESILVER_DONE)
5976		spa_vdev_resilver_done(spa);
5977
5978	/*
5979	 * Kick off a resilver.
5980	 */
5981	if (tasks & SPA_ASYNC_RESILVER)
5982		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5983
5984	/*
5985	 * Let the world know that we're done.
5986	 */
5987	mutex_enter(&spa->spa_async_lock);
5988	spa->spa_async_thread = NULL;
5989	cv_broadcast(&spa->spa_async_cv);
5990	mutex_exit(&spa->spa_async_lock);
5991	thread_exit();
5992}
5993
5994static void
5995spa_async_thread_vd(void *arg)
5996{
5997	spa_t *spa = arg;
5998	int tasks;
5999
6000	ASSERT(spa->spa_sync_on);
6001
6002	mutex_enter(&spa->spa_async_lock);
6003	tasks = spa->spa_async_tasks;
6004retry:
6005	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6006	mutex_exit(&spa->spa_async_lock);
6007
6008	/*
6009	 * See if any devices need to be marked REMOVED.
6010	 */
6011	if (tasks & SPA_ASYNC_REMOVE) {
6012		spa_vdev_state_enter(spa, SCL_NONE);
6013		spa_async_remove(spa, spa->spa_root_vdev);
6014		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6015			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6016		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6017			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6018		(void) spa_vdev_state_exit(spa, NULL, 0);
6019	}
6020
6021	/*
6022	 * Let the world know that we're done.
6023	 */
6024	mutex_enter(&spa->spa_async_lock);
6025	tasks = spa->spa_async_tasks;
6026	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6027		goto retry;
6028	spa->spa_async_thread_vd = NULL;
6029	cv_broadcast(&spa->spa_async_cv);
6030	mutex_exit(&spa->spa_async_lock);
6031	thread_exit();
6032}
6033
6034void
6035spa_async_suspend(spa_t *spa)
6036{
6037	mutex_enter(&spa->spa_async_lock);
6038	spa->spa_async_suspended++;
6039	while (spa->spa_async_thread != NULL &&
6040	    spa->spa_async_thread_vd != NULL)
6041		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6042	mutex_exit(&spa->spa_async_lock);
6043}
6044
6045void
6046spa_async_resume(spa_t *spa)
6047{
6048	mutex_enter(&spa->spa_async_lock);
6049	ASSERT(spa->spa_async_suspended != 0);
6050	spa->spa_async_suspended--;
6051	mutex_exit(&spa->spa_async_lock);
6052}
6053
6054static boolean_t
6055spa_async_tasks_pending(spa_t *spa)
6056{
6057	uint_t non_config_tasks;
6058	uint_t config_task;
6059	boolean_t config_task_suspended;
6060
6061	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6062	    SPA_ASYNC_REMOVE);
6063	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6064	if (spa->spa_ccw_fail_time == 0) {
6065		config_task_suspended = B_FALSE;
6066	} else {
6067		config_task_suspended =
6068		    (gethrtime() - spa->spa_ccw_fail_time) <
6069		    (zfs_ccw_retry_interval * NANOSEC);
6070	}
6071
6072	return (non_config_tasks || (config_task && !config_task_suspended));
6073}
6074
6075static void
6076spa_async_dispatch(spa_t *spa)
6077{
6078	mutex_enter(&spa->spa_async_lock);
6079	if (spa_async_tasks_pending(spa) &&
6080	    !spa->spa_async_suspended &&
6081	    spa->spa_async_thread == NULL &&
6082	    rootdir != NULL)
6083		spa->spa_async_thread = thread_create(NULL, 0,
6084		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6085	mutex_exit(&spa->spa_async_lock);
6086}
6087
6088static void
6089spa_async_dispatch_vd(spa_t *spa)
6090{
6091	mutex_enter(&spa->spa_async_lock);
6092	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6093	    !spa->spa_async_suspended &&
6094	    spa->spa_async_thread_vd == NULL &&
6095	    rootdir != NULL)
6096		spa->spa_async_thread_vd = thread_create(NULL, 0,
6097		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6098	mutex_exit(&spa->spa_async_lock);
6099}
6100
6101void
6102spa_async_request(spa_t *spa, int task)
6103{
6104	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6105	mutex_enter(&spa->spa_async_lock);
6106	spa->spa_async_tasks |= task;
6107	mutex_exit(&spa->spa_async_lock);
6108	spa_async_dispatch_vd(spa);
6109}
6110
6111/*
6112 * ==========================================================================
6113 * SPA syncing routines
6114 * ==========================================================================
6115 */
6116
6117static int
6118bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6119{
6120	bpobj_t *bpo = arg;
6121	bpobj_enqueue(bpo, bp, tx);
6122	return (0);
6123}
6124
6125static int
6126spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6127{
6128	zio_t *zio = arg;
6129
6130	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6131	    BP_GET_PSIZE(bp), zio->io_flags));
6132	return (0);
6133}
6134
6135/*
6136 * Note: this simple function is not inlined to make it easier to dtrace the
6137 * amount of time spent syncing frees.
6138 */
6139static void
6140spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6141{
6142	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6143	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6144	VERIFY(zio_wait(zio) == 0);
6145}
6146
6147/*
6148 * Note: this simple function is not inlined to make it easier to dtrace the
6149 * amount of time spent syncing deferred frees.
6150 */
6151static void
6152spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6153{
6154	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6155	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6156	    spa_free_sync_cb, zio, tx), ==, 0);
6157	VERIFY0(zio_wait(zio));
6158}
6159
6160
6161static void
6162spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6163{
6164	char *packed = NULL;
6165	size_t bufsize;
6166	size_t nvsize = 0;
6167	dmu_buf_t *db;
6168
6169	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6170
6171	/*
6172	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6173	 * information.  This avoids the dmu_buf_will_dirty() path and
6174	 * saves us a pre-read to get data we don't actually care about.
6175	 */
6176	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6177	packed = kmem_alloc(bufsize, KM_SLEEP);
6178
6179	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6180	    KM_SLEEP) == 0);
6181	bzero(packed + nvsize, bufsize - nvsize);
6182
6183	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6184
6185	kmem_free(packed, bufsize);
6186
6187	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6188	dmu_buf_will_dirty(db, tx);
6189	*(uint64_t *)db->db_data = nvsize;
6190	dmu_buf_rele(db, FTAG);
6191}
6192
6193static void
6194spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6195    const char *config, const char *entry)
6196{
6197	nvlist_t *nvroot;
6198	nvlist_t **list;
6199	int i;
6200
6201	if (!sav->sav_sync)
6202		return;
6203
6204	/*
6205	 * Update the MOS nvlist describing the list of available devices.
6206	 * spa_validate_aux() will have already made sure this nvlist is
6207	 * valid and the vdevs are labeled appropriately.
6208	 */
6209	if (sav->sav_object == 0) {
6210		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6211		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6212		    sizeof (uint64_t), tx);
6213		VERIFY(zap_update(spa->spa_meta_objset,
6214		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6215		    &sav->sav_object, tx) == 0);
6216	}
6217
6218	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6219	if (sav->sav_count == 0) {
6220		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6221	} else {
6222		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6223		for (i = 0; i < sav->sav_count; i++)
6224			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6225			    B_FALSE, VDEV_CONFIG_L2CACHE);
6226		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6227		    sav->sav_count) == 0);
6228		for (i = 0; i < sav->sav_count; i++)
6229			nvlist_free(list[i]);
6230		kmem_free(list, sav->sav_count * sizeof (void *));
6231	}
6232
6233	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6234	nvlist_free(nvroot);
6235
6236	sav->sav_sync = B_FALSE;
6237}
6238
6239static void
6240spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6241{
6242	nvlist_t *config;
6243
6244	if (list_is_empty(&spa->spa_config_dirty_list))
6245		return;
6246
6247	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6248
6249	config = spa_config_generate(spa, spa->spa_root_vdev,
6250	    dmu_tx_get_txg(tx), B_FALSE);
6251
6252	/*
6253	 * If we're upgrading the spa version then make sure that
6254	 * the config object gets updated with the correct version.
6255	 */
6256	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6257		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6258		    spa->spa_uberblock.ub_version);
6259
6260	spa_config_exit(spa, SCL_STATE, FTAG);
6261
6262	if (spa->spa_config_syncing)
6263		nvlist_free(spa->spa_config_syncing);
6264	spa->spa_config_syncing = config;
6265
6266	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6267}
6268
6269static void
6270spa_sync_version(void *arg, dmu_tx_t *tx)
6271{
6272	uint64_t *versionp = arg;
6273	uint64_t version = *versionp;
6274	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6275
6276	/*
6277	 * Setting the version is special cased when first creating the pool.
6278	 */
6279	ASSERT(tx->tx_txg != TXG_INITIAL);
6280
6281	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6282	ASSERT(version >= spa_version(spa));
6283
6284	spa->spa_uberblock.ub_version = version;
6285	vdev_config_dirty(spa->spa_root_vdev);
6286	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6287}
6288
6289/*
6290 * Set zpool properties.
6291 */
6292static void
6293spa_sync_props(void *arg, dmu_tx_t *tx)
6294{
6295	nvlist_t *nvp = arg;
6296	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6297	objset_t *mos = spa->spa_meta_objset;
6298	nvpair_t *elem = NULL;
6299
6300	mutex_enter(&spa->spa_props_lock);
6301
6302	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6303		uint64_t intval;
6304		char *strval, *fname;
6305		zpool_prop_t prop;
6306		const char *propname;
6307		zprop_type_t proptype;
6308		spa_feature_t fid;
6309
6310		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6311		case ZPROP_INVAL:
6312			/*
6313			 * We checked this earlier in spa_prop_validate().
6314			 */
6315			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6316
6317			fname = strchr(nvpair_name(elem), '@') + 1;
6318			VERIFY0(zfeature_lookup_name(fname, &fid));
6319
6320			spa_feature_enable(spa, fid, tx);
6321			spa_history_log_internal(spa, "set", tx,
6322			    "%s=enabled", nvpair_name(elem));
6323			break;
6324
6325		case ZPOOL_PROP_VERSION:
6326			intval = fnvpair_value_uint64(elem);
6327			/*
6328			 * The version is synced seperatly before other
6329			 * properties and should be correct by now.
6330			 */
6331			ASSERT3U(spa_version(spa), >=, intval);
6332			break;
6333
6334		case ZPOOL_PROP_ALTROOT:
6335			/*
6336			 * 'altroot' is a non-persistent property. It should
6337			 * have been set temporarily at creation or import time.
6338			 */
6339			ASSERT(spa->spa_root != NULL);
6340			break;
6341
6342		case ZPOOL_PROP_READONLY:
6343		case ZPOOL_PROP_CACHEFILE:
6344			/*
6345			 * 'readonly' and 'cachefile' are also non-persisitent
6346			 * properties.
6347			 */
6348			break;
6349		case ZPOOL_PROP_COMMENT:
6350			strval = fnvpair_value_string(elem);
6351			if (spa->spa_comment != NULL)
6352				spa_strfree(spa->spa_comment);
6353			spa->spa_comment = spa_strdup(strval);
6354			/*
6355			 * We need to dirty the configuration on all the vdevs
6356			 * so that their labels get updated.  It's unnecessary
6357			 * to do this for pool creation since the vdev's
6358			 * configuratoin has already been dirtied.
6359			 */
6360			if (tx->tx_txg != TXG_INITIAL)
6361				vdev_config_dirty(spa->spa_root_vdev);
6362			spa_history_log_internal(spa, "set", tx,
6363			    "%s=%s", nvpair_name(elem), strval);
6364			break;
6365		default:
6366			/*
6367			 * Set pool property values in the poolprops mos object.
6368			 */
6369			if (spa->spa_pool_props_object == 0) {
6370				spa->spa_pool_props_object =
6371				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6372				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6373				    tx);
6374			}
6375
6376			/* normalize the property name */
6377			propname = zpool_prop_to_name(prop);
6378			proptype = zpool_prop_get_type(prop);
6379
6380			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6381				ASSERT(proptype == PROP_TYPE_STRING);
6382				strval = fnvpair_value_string(elem);
6383				VERIFY0(zap_update(mos,
6384				    spa->spa_pool_props_object, propname,
6385				    1, strlen(strval) + 1, strval, tx));
6386				spa_history_log_internal(spa, "set", tx,
6387				    "%s=%s", nvpair_name(elem), strval);
6388			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6389				intval = fnvpair_value_uint64(elem);
6390
6391				if (proptype == PROP_TYPE_INDEX) {
6392					const char *unused;
6393					VERIFY0(zpool_prop_index_to_string(
6394					    prop, intval, &unused));
6395				}
6396				VERIFY0(zap_update(mos,
6397				    spa->spa_pool_props_object, propname,
6398				    8, 1, &intval, tx));
6399				spa_history_log_internal(spa, "set", tx,
6400				    "%s=%lld", nvpair_name(elem), intval);
6401			} else {
6402				ASSERT(0); /* not allowed */
6403			}
6404
6405			switch (prop) {
6406			case ZPOOL_PROP_DELEGATION:
6407				spa->spa_delegation = intval;
6408				break;
6409			case ZPOOL_PROP_BOOTFS:
6410				spa->spa_bootfs = intval;
6411				break;
6412			case ZPOOL_PROP_FAILUREMODE:
6413				spa->spa_failmode = intval;
6414				break;
6415			case ZPOOL_PROP_AUTOEXPAND:
6416				spa->spa_autoexpand = intval;
6417				if (tx->tx_txg != TXG_INITIAL)
6418					spa_async_request(spa,
6419					    SPA_ASYNC_AUTOEXPAND);
6420				break;
6421			case ZPOOL_PROP_DEDUPDITTO:
6422				spa->spa_dedup_ditto = intval;
6423				break;
6424			default:
6425				break;
6426			}
6427		}
6428
6429	}
6430
6431	mutex_exit(&spa->spa_props_lock);
6432}
6433
6434/*
6435 * Perform one-time upgrade on-disk changes.  spa_version() does not
6436 * reflect the new version this txg, so there must be no changes this
6437 * txg to anything that the upgrade code depends on after it executes.
6438 * Therefore this must be called after dsl_pool_sync() does the sync
6439 * tasks.
6440 */
6441static void
6442spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6443{
6444	dsl_pool_t *dp = spa->spa_dsl_pool;
6445
6446	ASSERT(spa->spa_sync_pass == 1);
6447
6448	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6449
6450	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6451	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6452		dsl_pool_create_origin(dp, tx);
6453
6454		/* Keeping the origin open increases spa_minref */
6455		spa->spa_minref += 3;
6456	}
6457
6458	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6459	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6460		dsl_pool_upgrade_clones(dp, tx);
6461	}
6462
6463	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6464	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6465		dsl_pool_upgrade_dir_clones(dp, tx);
6466
6467		/* Keeping the freedir open increases spa_minref */
6468		spa->spa_minref += 3;
6469	}
6470
6471	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6472	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6473		spa_feature_create_zap_objects(spa, tx);
6474	}
6475
6476	/*
6477	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6478	 * when possibility to use lz4 compression for metadata was added
6479	 * Old pools that have this feature enabled must be upgraded to have
6480	 * this feature active
6481	 */
6482	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6483		boolean_t lz4_en = spa_feature_is_enabled(spa,
6484		    SPA_FEATURE_LZ4_COMPRESS);
6485		boolean_t lz4_ac = spa_feature_is_active(spa,
6486		    SPA_FEATURE_LZ4_COMPRESS);
6487
6488		if (lz4_en && !lz4_ac)
6489			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6490	}
6491	rrw_exit(&dp->dp_config_rwlock, FTAG);
6492}
6493
6494/*
6495 * Sync the specified transaction group.  New blocks may be dirtied as
6496 * part of the process, so we iterate until it converges.
6497 */
6498void
6499spa_sync(spa_t *spa, uint64_t txg)
6500{
6501	dsl_pool_t *dp = spa->spa_dsl_pool;
6502	objset_t *mos = spa->spa_meta_objset;
6503	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6504	vdev_t *rvd = spa->spa_root_vdev;
6505	vdev_t *vd;
6506	dmu_tx_t *tx;
6507	int error;
6508
6509	VERIFY(spa_writeable(spa));
6510
6511	/*
6512	 * Lock out configuration changes.
6513	 */
6514	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6515
6516	spa->spa_syncing_txg = txg;
6517	spa->spa_sync_pass = 0;
6518
6519	/*
6520	 * If there are any pending vdev state changes, convert them
6521	 * into config changes that go out with this transaction group.
6522	 */
6523	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6524	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6525		/*
6526		 * We need the write lock here because, for aux vdevs,
6527		 * calling vdev_config_dirty() modifies sav_config.
6528		 * This is ugly and will become unnecessary when we
6529		 * eliminate the aux vdev wart by integrating all vdevs
6530		 * into the root vdev tree.
6531		 */
6532		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6533		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6534		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6535			vdev_state_clean(vd);
6536			vdev_config_dirty(vd);
6537		}
6538		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6539		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6540	}
6541	spa_config_exit(spa, SCL_STATE, FTAG);
6542
6543	tx = dmu_tx_create_assigned(dp, txg);
6544
6545	spa->spa_sync_starttime = gethrtime();
6546#ifdef illumos
6547	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6548	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6549#else	/* FreeBSD */
6550#ifdef _KERNEL
6551	callout_reset(&spa->spa_deadman_cycid,
6552	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6553#endif
6554#endif
6555
6556	/*
6557	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6558	 * set spa_deflate if we have no raid-z vdevs.
6559	 */
6560	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6561	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6562		int i;
6563
6564		for (i = 0; i < rvd->vdev_children; i++) {
6565			vd = rvd->vdev_child[i];
6566			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6567				break;
6568		}
6569		if (i == rvd->vdev_children) {
6570			spa->spa_deflate = TRUE;
6571			VERIFY(0 == zap_add(spa->spa_meta_objset,
6572			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6573			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6574		}
6575	}
6576
6577	/*
6578	 * If anything has changed in this txg, or if someone is waiting
6579	 * for this txg to sync (eg, spa_vdev_remove()), push the
6580	 * deferred frees from the previous txg.  If not, leave them
6581	 * alone so that we don't generate work on an otherwise idle
6582	 * system.
6583	 */
6584	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6585	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6586	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6587	    ((dsl_scan_active(dp->dp_scan) ||
6588	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6589		spa_sync_deferred_frees(spa, tx);
6590	}
6591
6592	/*
6593	 * Iterate to convergence.
6594	 */
6595	do {
6596		int pass = ++spa->spa_sync_pass;
6597
6598		spa_sync_config_object(spa, tx);
6599		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6600		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6601		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6602		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6603		spa_errlog_sync(spa, txg);
6604		dsl_pool_sync(dp, txg);
6605
6606		if (pass < zfs_sync_pass_deferred_free) {
6607			spa_sync_frees(spa, free_bpl, tx);
6608		} else {
6609			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6610			    &spa->spa_deferred_bpobj, tx);
6611		}
6612
6613		ddt_sync(spa, txg);
6614		dsl_scan_sync(dp, tx);
6615
6616		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6617			vdev_sync(vd, txg);
6618
6619		if (pass == 1)
6620			spa_sync_upgrades(spa, tx);
6621
6622	} while (dmu_objset_is_dirty(mos, txg));
6623
6624	/*
6625	 * Rewrite the vdev configuration (which includes the uberblock)
6626	 * to commit the transaction group.
6627	 *
6628	 * If there are no dirty vdevs, we sync the uberblock to a few
6629	 * random top-level vdevs that are known to be visible in the
6630	 * config cache (see spa_vdev_add() for a complete description).
6631	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6632	 */
6633	for (;;) {
6634		/*
6635		 * We hold SCL_STATE to prevent vdev open/close/etc.
6636		 * while we're attempting to write the vdev labels.
6637		 */
6638		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6639
6640		if (list_is_empty(&spa->spa_config_dirty_list)) {
6641			vdev_t *svd[SPA_DVAS_PER_BP];
6642			int svdcount = 0;
6643			int children = rvd->vdev_children;
6644			int c0 = spa_get_random(children);
6645
6646			for (int c = 0; c < children; c++) {
6647				vd = rvd->vdev_child[(c0 + c) % children];
6648				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6649					continue;
6650				svd[svdcount++] = vd;
6651				if (svdcount == SPA_DVAS_PER_BP)
6652					break;
6653			}
6654			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6655			if (error != 0)
6656				error = vdev_config_sync(svd, svdcount, txg,
6657				    B_TRUE);
6658		} else {
6659			error = vdev_config_sync(rvd->vdev_child,
6660			    rvd->vdev_children, txg, B_FALSE);
6661			if (error != 0)
6662				error = vdev_config_sync(rvd->vdev_child,
6663				    rvd->vdev_children, txg, B_TRUE);
6664		}
6665
6666		if (error == 0)
6667			spa->spa_last_synced_guid = rvd->vdev_guid;
6668
6669		spa_config_exit(spa, SCL_STATE, FTAG);
6670
6671		if (error == 0)
6672			break;
6673		zio_suspend(spa, NULL);
6674		zio_resume_wait(spa);
6675	}
6676	dmu_tx_commit(tx);
6677
6678#ifdef illumos
6679	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6680#else	/* FreeBSD */
6681#ifdef _KERNEL
6682	callout_drain(&spa->spa_deadman_cycid);
6683#endif
6684#endif
6685
6686	/*
6687	 * Clear the dirty config list.
6688	 */
6689	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6690		vdev_config_clean(vd);
6691
6692	/*
6693	 * Now that the new config has synced transactionally,
6694	 * let it become visible to the config cache.
6695	 */
6696	if (spa->spa_config_syncing != NULL) {
6697		spa_config_set(spa, spa->spa_config_syncing);
6698		spa->spa_config_txg = txg;
6699		spa->spa_config_syncing = NULL;
6700	}
6701
6702	spa->spa_ubsync = spa->spa_uberblock;
6703
6704	dsl_pool_sync_done(dp, txg);
6705
6706	/*
6707	 * Update usable space statistics.
6708	 */
6709	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6710		vdev_sync_done(vd, txg);
6711
6712	spa_update_dspace(spa);
6713
6714	/*
6715	 * It had better be the case that we didn't dirty anything
6716	 * since vdev_config_sync().
6717	 */
6718	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6719	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6720	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6721
6722	spa->spa_sync_pass = 0;
6723
6724	spa_config_exit(spa, SCL_CONFIG, FTAG);
6725
6726	spa_handle_ignored_writes(spa);
6727
6728	/*
6729	 * If any async tasks have been requested, kick them off.
6730	 */
6731	spa_async_dispatch(spa);
6732	spa_async_dispatch_vd(spa);
6733}
6734
6735/*
6736 * Sync all pools.  We don't want to hold the namespace lock across these
6737 * operations, so we take a reference on the spa_t and drop the lock during the
6738 * sync.
6739 */
6740void
6741spa_sync_allpools(void)
6742{
6743	spa_t *spa = NULL;
6744	mutex_enter(&spa_namespace_lock);
6745	while ((spa = spa_next(spa)) != NULL) {
6746		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6747		    !spa_writeable(spa) || spa_suspended(spa))
6748			continue;
6749		spa_open_ref(spa, FTAG);
6750		mutex_exit(&spa_namespace_lock);
6751		txg_wait_synced(spa_get_dsl(spa), 0);
6752		mutex_enter(&spa_namespace_lock);
6753		spa_close(spa, FTAG);
6754	}
6755	mutex_exit(&spa_namespace_lock);
6756}
6757
6758/*
6759 * ==========================================================================
6760 * Miscellaneous routines
6761 * ==========================================================================
6762 */
6763
6764/*
6765 * Remove all pools in the system.
6766 */
6767void
6768spa_evict_all(void)
6769{
6770	spa_t *spa;
6771
6772	/*
6773	 * Remove all cached state.  All pools should be closed now,
6774	 * so every spa in the AVL tree should be unreferenced.
6775	 */
6776	mutex_enter(&spa_namespace_lock);
6777	while ((spa = spa_next(NULL)) != NULL) {
6778		/*
6779		 * Stop async tasks.  The async thread may need to detach
6780		 * a device that's been replaced, which requires grabbing
6781		 * spa_namespace_lock, so we must drop it here.
6782		 */
6783		spa_open_ref(spa, FTAG);
6784		mutex_exit(&spa_namespace_lock);
6785		spa_async_suspend(spa);
6786		mutex_enter(&spa_namespace_lock);
6787		spa_close(spa, FTAG);
6788
6789		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6790			spa_unload(spa);
6791			spa_deactivate(spa);
6792		}
6793		spa_remove(spa);
6794	}
6795	mutex_exit(&spa_namespace_lock);
6796}
6797
6798vdev_t *
6799spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6800{
6801	vdev_t *vd;
6802	int i;
6803
6804	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6805		return (vd);
6806
6807	if (aux) {
6808		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6809			vd = spa->spa_l2cache.sav_vdevs[i];
6810			if (vd->vdev_guid == guid)
6811				return (vd);
6812		}
6813
6814		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6815			vd = spa->spa_spares.sav_vdevs[i];
6816			if (vd->vdev_guid == guid)
6817				return (vd);
6818		}
6819	}
6820
6821	return (NULL);
6822}
6823
6824void
6825spa_upgrade(spa_t *spa, uint64_t version)
6826{
6827	ASSERT(spa_writeable(spa));
6828
6829	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6830
6831	/*
6832	 * This should only be called for a non-faulted pool, and since a
6833	 * future version would result in an unopenable pool, this shouldn't be
6834	 * possible.
6835	 */
6836	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6837	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6838
6839	spa->spa_uberblock.ub_version = version;
6840	vdev_config_dirty(spa->spa_root_vdev);
6841
6842	spa_config_exit(spa, SCL_ALL, FTAG);
6843
6844	txg_wait_synced(spa_get_dsl(spa), 0);
6845}
6846
6847boolean_t
6848spa_has_spare(spa_t *spa, uint64_t guid)
6849{
6850	int i;
6851	uint64_t spareguid;
6852	spa_aux_vdev_t *sav = &spa->spa_spares;
6853
6854	for (i = 0; i < sav->sav_count; i++)
6855		if (sav->sav_vdevs[i]->vdev_guid == guid)
6856			return (B_TRUE);
6857
6858	for (i = 0; i < sav->sav_npending; i++) {
6859		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6860		    &spareguid) == 0 && spareguid == guid)
6861			return (B_TRUE);
6862	}
6863
6864	return (B_FALSE);
6865}
6866
6867/*
6868 * Check if a pool has an active shared spare device.
6869 * Note: reference count of an active spare is 2, as a spare and as a replace
6870 */
6871static boolean_t
6872spa_has_active_shared_spare(spa_t *spa)
6873{
6874	int i, refcnt;
6875	uint64_t pool;
6876	spa_aux_vdev_t *sav = &spa->spa_spares;
6877
6878	for (i = 0; i < sav->sav_count; i++) {
6879		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6880		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6881		    refcnt > 2)
6882			return (B_TRUE);
6883	}
6884
6885	return (B_FALSE);
6886}
6887
6888/*
6889 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6890 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6891 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6892 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6893 * or zdb as real changes.
6894 */
6895void
6896spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6897{
6898#ifdef _KERNEL
6899	sysevent_t		*ev;
6900	sysevent_attr_list_t	*attr = NULL;
6901	sysevent_value_t	value;
6902	sysevent_id_t		eid;
6903
6904	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6905	    SE_SLEEP);
6906
6907	value.value_type = SE_DATA_TYPE_STRING;
6908	value.value.sv_string = spa_name(spa);
6909	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6910		goto done;
6911
6912	value.value_type = SE_DATA_TYPE_UINT64;
6913	value.value.sv_uint64 = spa_guid(spa);
6914	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6915		goto done;
6916
6917	if (vd) {
6918		value.value_type = SE_DATA_TYPE_UINT64;
6919		value.value.sv_uint64 = vd->vdev_guid;
6920		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6921		    SE_SLEEP) != 0)
6922			goto done;
6923
6924		if (vd->vdev_path) {
6925			value.value_type = SE_DATA_TYPE_STRING;
6926			value.value.sv_string = vd->vdev_path;
6927			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6928			    &value, SE_SLEEP) != 0)
6929				goto done;
6930		}
6931	}
6932
6933	if (sysevent_attach_attributes(ev, attr) != 0)
6934		goto done;
6935	attr = NULL;
6936
6937	(void) log_sysevent(ev, SE_SLEEP, &eid);
6938
6939done:
6940	if (attr)
6941		sysevent_free_attr(attr);
6942	sysevent_free(ev);
6943#endif
6944}
6945