spa.c revision 268126
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
88    "Check hostid on import?");
89
90/*
91 * The interval, in seconds, at which failed configuration cache file writes
92 * should be retried.
93 */
94static int zfs_ccw_retry_interval = 300;
95
96typedef enum zti_modes {
97	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
98	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
99	ZTI_MODE_NULL,			/* don't create a taskq */
100	ZTI_NMODES
101} zti_modes_t;
102
103#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
104#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
105#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
106
107#define	ZTI_N(n)	ZTI_P(n, 1)
108#define	ZTI_ONE		ZTI_N(1)
109
110typedef struct zio_taskq_info {
111	zti_modes_t zti_mode;
112	uint_t zti_value;
113	uint_t zti_count;
114} zio_taskq_info_t;
115
116static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
117	"issue", "issue_high", "intr", "intr_high"
118};
119
120/*
121 * This table defines the taskq settings for each ZFS I/O type. When
122 * initializing a pool, we use this table to create an appropriately sized
123 * taskq. Some operations are low volume and therefore have a small, static
124 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
125 * macros. Other operations process a large amount of data; the ZTI_BATCH
126 * macro causes us to create a taskq oriented for throughput. Some operations
127 * are so high frequency and short-lived that the taskq itself can become a a
128 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
129 * additional degree of parallelism specified by the number of threads per-
130 * taskq and the number of taskqs; when dispatching an event in this case, the
131 * particular taskq is chosen at random.
132 *
133 * The different taskq priorities are to handle the different contexts (issue
134 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
135 * need to be handled with minimum delay.
136 */
137const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
138	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
139	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
140	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
141	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
142	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
143	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
145};
146
147static void spa_sync_version(void *arg, dmu_tx_t *tx);
148static void spa_sync_props(void *arg, dmu_tx_t *tx);
149static boolean_t spa_has_active_shared_spare(spa_t *spa);
150static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
151    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
152    char **ereport);
153static void spa_vdev_resilver_done(spa_t *spa);
154
155uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
156#ifdef PSRSET_BIND
157id_t		zio_taskq_psrset_bind = PS_NONE;
158#endif
159#ifdef SYSDC
160boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
161#endif
162uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
163
164boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
165extern int	zfs_sync_pass_deferred_free;
166
167#ifndef illumos
168extern void spa_deadman(void *arg);
169#endif
170
171/*
172 * This (illegal) pool name is used when temporarily importing a spa_t in order
173 * to get the vdev stats associated with the imported devices.
174 */
175#define	TRYIMPORT_NAME	"$import"
176
177/*
178 * ==========================================================================
179 * SPA properties routines
180 * ==========================================================================
181 */
182
183/*
184 * Add a (source=src, propname=propval) list to an nvlist.
185 */
186static void
187spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
188    uint64_t intval, zprop_source_t src)
189{
190	const char *propname = zpool_prop_to_name(prop);
191	nvlist_t *propval;
192
193	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
194	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
195
196	if (strval != NULL)
197		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
198	else
199		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
200
201	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
202	nvlist_free(propval);
203}
204
205/*
206 * Get property values from the spa configuration.
207 */
208static void
209spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
210{
211	vdev_t *rvd = spa->spa_root_vdev;
212	dsl_pool_t *pool = spa->spa_dsl_pool;
213	uint64_t size;
214	uint64_t alloc;
215	uint64_t space;
216	uint64_t cap, version;
217	zprop_source_t src = ZPROP_SRC_NONE;
218	spa_config_dirent_t *dp;
219
220	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
221
222	if (rvd != NULL) {
223		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
224		size = metaslab_class_get_space(spa_normal_class(spa));
225		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
226		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
229		    size - alloc, src);
230
231		space = 0;
232		for (int c = 0; c < rvd->vdev_children; c++) {
233			vdev_t *tvd = rvd->vdev_child[c];
234			space += tvd->vdev_max_asize - tvd->vdev_asize;
235		}
236		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
237		    src);
238
239		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
240		    (spa_mode(spa) == FREAD), src);
241
242		cap = (size == 0) ? 0 : (alloc * 100 / size);
243		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
244
245		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
246		    ddt_get_pool_dedup_ratio(spa), src);
247
248		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
249		    rvd->vdev_state, src);
250
251		version = spa_version(spa);
252		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
253			src = ZPROP_SRC_DEFAULT;
254		else
255			src = ZPROP_SRC_LOCAL;
256		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
257	}
258
259	if (pool != NULL) {
260		/*
261		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
262		 * when opening pools before this version freedir will be NULL.
263		 */
264		if (pool->dp_free_dir != NULL) {
265			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
266			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
267		} else {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
269			    NULL, 0, src);
270		}
271
272		if (pool->dp_leak_dir != NULL) {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
274			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
275		} else {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
277			    NULL, 0, src);
278		}
279	}
280
281	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
282
283	if (spa->spa_comment != NULL) {
284		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
285		    0, ZPROP_SRC_LOCAL);
286	}
287
288	if (spa->spa_root != NULL)
289		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
290		    0, ZPROP_SRC_LOCAL);
291
292	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
293		if (dp->scd_path == NULL) {
294			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
295			    "none", 0, ZPROP_SRC_LOCAL);
296		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
297			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
299		}
300	}
301}
302
303/*
304 * Get zpool property values.
305 */
306int
307spa_prop_get(spa_t *spa, nvlist_t **nvp)
308{
309	objset_t *mos = spa->spa_meta_objset;
310	zap_cursor_t zc;
311	zap_attribute_t za;
312	int err;
313
314	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
315
316	mutex_enter(&spa->spa_props_lock);
317
318	/*
319	 * Get properties from the spa config.
320	 */
321	spa_prop_get_config(spa, nvp);
322
323	/* If no pool property object, no more prop to get. */
324	if (mos == NULL || spa->spa_pool_props_object == 0) {
325		mutex_exit(&spa->spa_props_lock);
326		return (0);
327	}
328
329	/*
330	 * Get properties from the MOS pool property object.
331	 */
332	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
333	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
334	    zap_cursor_advance(&zc)) {
335		uint64_t intval = 0;
336		char *strval = NULL;
337		zprop_source_t src = ZPROP_SRC_DEFAULT;
338		zpool_prop_t prop;
339
340		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
341			continue;
342
343		switch (za.za_integer_length) {
344		case 8:
345			/* integer property */
346			if (za.za_first_integer !=
347			    zpool_prop_default_numeric(prop))
348				src = ZPROP_SRC_LOCAL;
349
350			if (prop == ZPOOL_PROP_BOOTFS) {
351				dsl_pool_t *dp;
352				dsl_dataset_t *ds = NULL;
353
354				dp = spa_get_dsl(spa);
355				dsl_pool_config_enter(dp, FTAG);
356				if (err = dsl_dataset_hold_obj(dp,
357				    za.za_first_integer, FTAG, &ds)) {
358					dsl_pool_config_exit(dp, FTAG);
359					break;
360				}
361
362				strval = kmem_alloc(
363				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
364				    KM_SLEEP);
365				dsl_dataset_name(ds, strval);
366				dsl_dataset_rele(ds, FTAG);
367				dsl_pool_config_exit(dp, FTAG);
368			} else {
369				strval = NULL;
370				intval = za.za_first_integer;
371			}
372
373			spa_prop_add_list(*nvp, prop, strval, intval, src);
374
375			if (strval != NULL)
376				kmem_free(strval,
377				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
378
379			break;
380
381		case 1:
382			/* string property */
383			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
384			err = zap_lookup(mos, spa->spa_pool_props_object,
385			    za.za_name, 1, za.za_num_integers, strval);
386			if (err) {
387				kmem_free(strval, za.za_num_integers);
388				break;
389			}
390			spa_prop_add_list(*nvp, prop, strval, 0, src);
391			kmem_free(strval, za.za_num_integers);
392			break;
393
394		default:
395			break;
396		}
397	}
398	zap_cursor_fini(&zc);
399	mutex_exit(&spa->spa_props_lock);
400out:
401	if (err && err != ENOENT) {
402		nvlist_free(*nvp);
403		*nvp = NULL;
404		return (err);
405	}
406
407	return (0);
408}
409
410/*
411 * Validate the given pool properties nvlist and modify the list
412 * for the property values to be set.
413 */
414static int
415spa_prop_validate(spa_t *spa, nvlist_t *props)
416{
417	nvpair_t *elem;
418	int error = 0, reset_bootfs = 0;
419	uint64_t objnum = 0;
420	boolean_t has_feature = B_FALSE;
421
422	elem = NULL;
423	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
424		uint64_t intval;
425		char *strval, *slash, *check, *fname;
426		const char *propname = nvpair_name(elem);
427		zpool_prop_t prop = zpool_name_to_prop(propname);
428
429		switch (prop) {
430		case ZPROP_INVAL:
431			if (!zpool_prop_feature(propname)) {
432				error = SET_ERROR(EINVAL);
433				break;
434			}
435
436			/*
437			 * Sanitize the input.
438			 */
439			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (nvpair_value_uint64(elem, &intval) != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			if (intval != 0) {
450				error = SET_ERROR(EINVAL);
451				break;
452			}
453
454			fname = strchr(propname, '@') + 1;
455			if (zfeature_lookup_name(fname, NULL) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			has_feature = B_TRUE;
461			break;
462
463		case ZPOOL_PROP_VERSION:
464			error = nvpair_value_uint64(elem, &intval);
465			if (!error &&
466			    (intval < spa_version(spa) ||
467			    intval > SPA_VERSION_BEFORE_FEATURES ||
468			    has_feature))
469				error = SET_ERROR(EINVAL);
470			break;
471
472		case ZPOOL_PROP_DELEGATION:
473		case ZPOOL_PROP_AUTOREPLACE:
474		case ZPOOL_PROP_LISTSNAPS:
475		case ZPOOL_PROP_AUTOEXPAND:
476			error = nvpair_value_uint64(elem, &intval);
477			if (!error && intval > 1)
478				error = SET_ERROR(EINVAL);
479			break;
480
481		case ZPOOL_PROP_BOOTFS:
482			/*
483			 * If the pool version is less than SPA_VERSION_BOOTFS,
484			 * or the pool is still being created (version == 0),
485			 * the bootfs property cannot be set.
486			 */
487			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
488				error = SET_ERROR(ENOTSUP);
489				break;
490			}
491
492			/*
493			 * Make sure the vdev config is bootable
494			 */
495			if (!vdev_is_bootable(spa->spa_root_vdev)) {
496				error = SET_ERROR(ENOTSUP);
497				break;
498			}
499
500			reset_bootfs = 1;
501
502			error = nvpair_value_string(elem, &strval);
503
504			if (!error) {
505				objset_t *os;
506				uint64_t compress;
507
508				if (strval == NULL || strval[0] == '\0') {
509					objnum = zpool_prop_default_numeric(
510					    ZPOOL_PROP_BOOTFS);
511					break;
512				}
513
514				if (error = dmu_objset_hold(strval, FTAG, &os))
515					break;
516
517				/* Must be ZPL and not gzip compressed. */
518
519				if (dmu_objset_type(os) != DMU_OST_ZFS) {
520					error = SET_ERROR(ENOTSUP);
521				} else if ((error =
522				    dsl_prop_get_int_ds(dmu_objset_ds(os),
523				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
524				    &compress)) == 0 &&
525				    !BOOTFS_COMPRESS_VALID(compress)) {
526					error = SET_ERROR(ENOTSUP);
527				} else {
528					objnum = dmu_objset_id(os);
529				}
530				dmu_objset_rele(os, FTAG);
531			}
532			break;
533
534		case ZPOOL_PROP_FAILUREMODE:
535			error = nvpair_value_uint64(elem, &intval);
536			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
537			    intval > ZIO_FAILURE_MODE_PANIC))
538				error = SET_ERROR(EINVAL);
539
540			/*
541			 * This is a special case which only occurs when
542			 * the pool has completely failed. This allows
543			 * the user to change the in-core failmode property
544			 * without syncing it out to disk (I/Os might
545			 * currently be blocked). We do this by returning
546			 * EIO to the caller (spa_prop_set) to trick it
547			 * into thinking we encountered a property validation
548			 * error.
549			 */
550			if (!error && spa_suspended(spa)) {
551				spa->spa_failmode = intval;
552				error = SET_ERROR(EIO);
553			}
554			break;
555
556		case ZPOOL_PROP_CACHEFILE:
557			if ((error = nvpair_value_string(elem, &strval)) != 0)
558				break;
559
560			if (strval[0] == '\0')
561				break;
562
563			if (strcmp(strval, "none") == 0)
564				break;
565
566			if (strval[0] != '/') {
567				error = SET_ERROR(EINVAL);
568				break;
569			}
570
571			slash = strrchr(strval, '/');
572			ASSERT(slash != NULL);
573
574			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
575			    strcmp(slash, "/..") == 0)
576				error = SET_ERROR(EINVAL);
577			break;
578
579		case ZPOOL_PROP_COMMENT:
580			if ((error = nvpair_value_string(elem, &strval)) != 0)
581				break;
582			for (check = strval; *check != '\0'; check++) {
583				/*
584				 * The kernel doesn't have an easy isprint()
585				 * check.  For this kernel check, we merely
586				 * check ASCII apart from DEL.  Fix this if
587				 * there is an easy-to-use kernel isprint().
588				 */
589				if (*check >= 0x7f) {
590					error = SET_ERROR(EINVAL);
591					break;
592				}
593				check++;
594			}
595			if (strlen(strval) > ZPROP_MAX_COMMENT)
596				error = E2BIG;
597			break;
598
599		case ZPOOL_PROP_DEDUPDITTO:
600			if (spa_version(spa) < SPA_VERSION_DEDUP)
601				error = SET_ERROR(ENOTSUP);
602			else
603				error = nvpair_value_uint64(elem, &intval);
604			if (error == 0 &&
605			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
606				error = SET_ERROR(EINVAL);
607			break;
608		}
609
610		if (error)
611			break;
612	}
613
614	if (!error && reset_bootfs) {
615		error = nvlist_remove(props,
616		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617
618		if (!error) {
619			error = nvlist_add_uint64(props,
620			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
621		}
622	}
623
624	return (error);
625}
626
627void
628spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629{
630	char *cachefile;
631	spa_config_dirent_t *dp;
632
633	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
634	    &cachefile) != 0)
635		return;
636
637	dp = kmem_alloc(sizeof (spa_config_dirent_t),
638	    KM_SLEEP);
639
640	if (cachefile[0] == '\0')
641		dp->scd_path = spa_strdup(spa_config_path);
642	else if (strcmp(cachefile, "none") == 0)
643		dp->scd_path = NULL;
644	else
645		dp->scd_path = spa_strdup(cachefile);
646
647	list_insert_head(&spa->spa_config_list, dp);
648	if (need_sync)
649		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
650}
651
652int
653spa_prop_set(spa_t *spa, nvlist_t *nvp)
654{
655	int error;
656	nvpair_t *elem = NULL;
657	boolean_t need_sync = B_FALSE;
658
659	if ((error = spa_prop_validate(spa, nvp)) != 0)
660		return (error);
661
662	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
663		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664
665		if (prop == ZPOOL_PROP_CACHEFILE ||
666		    prop == ZPOOL_PROP_ALTROOT ||
667		    prop == ZPOOL_PROP_READONLY)
668			continue;
669
670		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
671			uint64_t ver;
672
673			if (prop == ZPOOL_PROP_VERSION) {
674				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
675			} else {
676				ASSERT(zpool_prop_feature(nvpair_name(elem)));
677				ver = SPA_VERSION_FEATURES;
678				need_sync = B_TRUE;
679			}
680
681			/* Save time if the version is already set. */
682			if (ver == spa_version(spa))
683				continue;
684
685			/*
686			 * In addition to the pool directory object, we might
687			 * create the pool properties object, the features for
688			 * read object, the features for write object, or the
689			 * feature descriptions object.
690			 */
691			error = dsl_sync_task(spa->spa_name, NULL,
692			    spa_sync_version, &ver, 6);
693			if (error)
694				return (error);
695			continue;
696		}
697
698		need_sync = B_TRUE;
699		break;
700	}
701
702	if (need_sync) {
703		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704		    nvp, 6));
705	}
706
707	return (0);
708}
709
710/*
711 * If the bootfs property value is dsobj, clear it.
712 */
713void
714spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715{
716	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717		VERIFY(zap_remove(spa->spa_meta_objset,
718		    spa->spa_pool_props_object,
719		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720		spa->spa_bootfs = 0;
721	}
722}
723
724/*ARGSUSED*/
725static int
726spa_change_guid_check(void *arg, dmu_tx_t *tx)
727{
728	uint64_t *newguid = arg;
729	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730	vdev_t *rvd = spa->spa_root_vdev;
731	uint64_t vdev_state;
732
733	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734	vdev_state = rvd->vdev_state;
735	spa_config_exit(spa, SCL_STATE, FTAG);
736
737	if (vdev_state != VDEV_STATE_HEALTHY)
738		return (SET_ERROR(ENXIO));
739
740	ASSERT3U(spa_guid(spa), !=, *newguid);
741
742	return (0);
743}
744
745static void
746spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747{
748	uint64_t *newguid = arg;
749	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750	uint64_t oldguid;
751	vdev_t *rvd = spa->spa_root_vdev;
752
753	oldguid = spa_guid(spa);
754
755	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756	rvd->vdev_guid = *newguid;
757	rvd->vdev_guid_sum += (*newguid - oldguid);
758	vdev_config_dirty(rvd);
759	spa_config_exit(spa, SCL_STATE, FTAG);
760
761	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762	    oldguid, *newguid);
763}
764
765/*
766 * Change the GUID for the pool.  This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs.  We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty.  Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool.  We are also going to issue a
772 * sysevent to update any watchers.
773 */
774int
775spa_change_guid(spa_t *spa)
776{
777	int error;
778	uint64_t guid;
779
780	mutex_enter(&spa->spa_vdev_top_lock);
781	mutex_enter(&spa_namespace_lock);
782	guid = spa_generate_guid(NULL);
783
784	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785	    spa_change_guid_sync, &guid, 5);
786
787	if (error == 0) {
788		spa_config_sync(spa, B_FALSE, B_TRUE);
789		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790	}
791
792	mutex_exit(&spa_namespace_lock);
793	mutex_exit(&spa->spa_vdev_top_lock);
794
795	return (error);
796}
797
798/*
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
802 */
803
804static int
805spa_error_entry_compare(const void *a, const void *b)
806{
807	spa_error_entry_t *sa = (spa_error_entry_t *)a;
808	spa_error_entry_t *sb = (spa_error_entry_t *)b;
809	int ret;
810
811	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812	    sizeof (zbookmark_phys_t));
813
814	if (ret < 0)
815		return (-1);
816	else if (ret > 0)
817		return (1);
818	else
819		return (0);
820}
821
822/*
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
825 */
826void
827spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828{
829	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830
831	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833
834	avl_create(&spa->spa_errlist_scrub,
835	    spa_error_entry_compare, sizeof (spa_error_entry_t),
836	    offsetof(spa_error_entry_t, se_avl));
837	avl_create(&spa->spa_errlist_last,
838	    spa_error_entry_compare, sizeof (spa_error_entry_t),
839	    offsetof(spa_error_entry_t, se_avl));
840}
841
842static void
843spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844{
845	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846	enum zti_modes mode = ztip->zti_mode;
847	uint_t value = ztip->zti_value;
848	uint_t count = ztip->zti_count;
849	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850	char name[32];
851	uint_t flags = 0;
852	boolean_t batch = B_FALSE;
853
854	if (mode == ZTI_MODE_NULL) {
855		tqs->stqs_count = 0;
856		tqs->stqs_taskq = NULL;
857		return;
858	}
859
860	ASSERT3U(count, >, 0);
861
862	tqs->stqs_count = count;
863	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864
865	switch (mode) {
866	case ZTI_MODE_FIXED:
867		ASSERT3U(value, >=, 1);
868		value = MAX(value, 1);
869		break;
870
871	case ZTI_MODE_BATCH:
872		batch = B_TRUE;
873		flags |= TASKQ_THREADS_CPU_PCT;
874		value = zio_taskq_batch_pct;
875		break;
876
877	default:
878		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879		    "spa_activate()",
880		    zio_type_name[t], zio_taskq_types[q], mode, value);
881		break;
882	}
883
884	for (uint_t i = 0; i < count; i++) {
885		taskq_t *tq;
886
887		if (count > 1) {
888			(void) snprintf(name, sizeof (name), "%s_%s_%u",
889			    zio_type_name[t], zio_taskq_types[q], i);
890		} else {
891			(void) snprintf(name, sizeof (name), "%s_%s",
892			    zio_type_name[t], zio_taskq_types[q]);
893		}
894
895#ifdef SYSDC
896		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
897			if (batch)
898				flags |= TASKQ_DC_BATCH;
899
900			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
901			    spa->spa_proc, zio_taskq_basedc, flags);
902		} else {
903#endif
904			pri_t pri = maxclsyspri;
905			/*
906			 * The write issue taskq can be extremely CPU
907			 * intensive.  Run it at slightly lower priority
908			 * than the other taskqs.
909			 */
910			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
911				pri--;
912
913			tq = taskq_create_proc(name, value, pri, 50,
914			    INT_MAX, spa->spa_proc, flags);
915#ifdef SYSDC
916		}
917#endif
918
919		tqs->stqs_taskq[i] = tq;
920	}
921}
922
923static void
924spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
925{
926	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927
928	if (tqs->stqs_taskq == NULL) {
929		ASSERT0(tqs->stqs_count);
930		return;
931	}
932
933	for (uint_t i = 0; i < tqs->stqs_count; i++) {
934		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
935		taskq_destroy(tqs->stqs_taskq[i]);
936	}
937
938	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
939	tqs->stqs_taskq = NULL;
940}
941
942/*
943 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
944 * Note that a type may have multiple discrete taskqs to avoid lock contention
945 * on the taskq itself. In that case we choose which taskq at random by using
946 * the low bits of gethrtime().
947 */
948void
949spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
950    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
951{
952	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953	taskq_t *tq;
954
955	ASSERT3P(tqs->stqs_taskq, !=, NULL);
956	ASSERT3U(tqs->stqs_count, !=, 0);
957
958	if (tqs->stqs_count == 1) {
959		tq = tqs->stqs_taskq[0];
960	} else {
961#ifdef _KERNEL
962		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
963#else
964		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
965#endif
966	}
967
968	taskq_dispatch_ent(tq, func, arg, flags, ent);
969}
970
971static void
972spa_create_zio_taskqs(spa_t *spa)
973{
974	for (int t = 0; t < ZIO_TYPES; t++) {
975		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
976			spa_taskqs_init(spa, t, q);
977		}
978	}
979}
980
981#ifdef _KERNEL
982#ifdef SPA_PROCESS
983static void
984spa_thread(void *arg)
985{
986	callb_cpr_t cprinfo;
987
988	spa_t *spa = arg;
989	user_t *pu = PTOU(curproc);
990
991	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
992	    spa->spa_name);
993
994	ASSERT(curproc != &p0);
995	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
996	    "zpool-%s", spa->spa_name);
997	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
998
999#ifdef PSRSET_BIND
1000	/* bind this thread to the requested psrset */
1001	if (zio_taskq_psrset_bind != PS_NONE) {
1002		pool_lock();
1003		mutex_enter(&cpu_lock);
1004		mutex_enter(&pidlock);
1005		mutex_enter(&curproc->p_lock);
1006
1007		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1008		    0, NULL, NULL) == 0)  {
1009			curthread->t_bind_pset = zio_taskq_psrset_bind;
1010		} else {
1011			cmn_err(CE_WARN,
1012			    "Couldn't bind process for zfs pool \"%s\" to "
1013			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1014		}
1015
1016		mutex_exit(&curproc->p_lock);
1017		mutex_exit(&pidlock);
1018		mutex_exit(&cpu_lock);
1019		pool_unlock();
1020	}
1021#endif
1022
1023#ifdef SYSDC
1024	if (zio_taskq_sysdc) {
1025		sysdc_thread_enter(curthread, 100, 0);
1026	}
1027#endif
1028
1029	spa->spa_proc = curproc;
1030	spa->spa_did = curthread->t_did;
1031
1032	spa_create_zio_taskqs(spa);
1033
1034	mutex_enter(&spa->spa_proc_lock);
1035	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1036
1037	spa->spa_proc_state = SPA_PROC_ACTIVE;
1038	cv_broadcast(&spa->spa_proc_cv);
1039
1040	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1041	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1042		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1043	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1044
1045	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1046	spa->spa_proc_state = SPA_PROC_GONE;
1047	spa->spa_proc = &p0;
1048	cv_broadcast(&spa->spa_proc_cv);
1049	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1050
1051	mutex_enter(&curproc->p_lock);
1052	lwp_exit();
1053}
1054#endif	/* SPA_PROCESS */
1055#endif
1056
1057/*
1058 * Activate an uninitialized pool.
1059 */
1060static void
1061spa_activate(spa_t *spa, int mode)
1062{
1063	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1064
1065	spa->spa_state = POOL_STATE_ACTIVE;
1066	spa->spa_mode = mode;
1067
1068	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1069	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1070
1071	/* Try to create a covering process */
1072	mutex_enter(&spa->spa_proc_lock);
1073	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1074	ASSERT(spa->spa_proc == &p0);
1075	spa->spa_did = 0;
1076
1077#ifdef SPA_PROCESS
1078	/* Only create a process if we're going to be around a while. */
1079	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1080		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1081		    NULL, 0) == 0) {
1082			spa->spa_proc_state = SPA_PROC_CREATED;
1083			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1084				cv_wait(&spa->spa_proc_cv,
1085				    &spa->spa_proc_lock);
1086			}
1087			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1088			ASSERT(spa->spa_proc != &p0);
1089			ASSERT(spa->spa_did != 0);
1090		} else {
1091#ifdef _KERNEL
1092			cmn_err(CE_WARN,
1093			    "Couldn't create process for zfs pool \"%s\"\n",
1094			    spa->spa_name);
1095#endif
1096		}
1097	}
1098#endif	/* SPA_PROCESS */
1099	mutex_exit(&spa->spa_proc_lock);
1100
1101	/* If we didn't create a process, we need to create our taskqs. */
1102	ASSERT(spa->spa_proc == &p0);
1103	if (spa->spa_proc == &p0) {
1104		spa_create_zio_taskqs(spa);
1105	}
1106
1107	/*
1108	 * Start TRIM thread.
1109	 */
1110	trim_thread_create(spa);
1111
1112	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1113	    offsetof(vdev_t, vdev_config_dirty_node));
1114	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1115	    offsetof(vdev_t, vdev_state_dirty_node));
1116
1117	txg_list_create(&spa->spa_vdev_txg_list,
1118	    offsetof(struct vdev, vdev_txg_node));
1119
1120	avl_create(&spa->spa_errlist_scrub,
1121	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1122	    offsetof(spa_error_entry_t, se_avl));
1123	avl_create(&spa->spa_errlist_last,
1124	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1125	    offsetof(spa_error_entry_t, se_avl));
1126}
1127
1128/*
1129 * Opposite of spa_activate().
1130 */
1131static void
1132spa_deactivate(spa_t *spa)
1133{
1134	ASSERT(spa->spa_sync_on == B_FALSE);
1135	ASSERT(spa->spa_dsl_pool == NULL);
1136	ASSERT(spa->spa_root_vdev == NULL);
1137	ASSERT(spa->spa_async_zio_root == NULL);
1138	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1139
1140	/*
1141	 * Stop TRIM thread in case spa_unload() wasn't called directly
1142	 * before spa_deactivate().
1143	 */
1144	trim_thread_destroy(spa);
1145
1146	txg_list_destroy(&spa->spa_vdev_txg_list);
1147
1148	list_destroy(&spa->spa_config_dirty_list);
1149	list_destroy(&spa->spa_state_dirty_list);
1150
1151	for (int t = 0; t < ZIO_TYPES; t++) {
1152		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1153			spa_taskqs_fini(spa, t, q);
1154		}
1155	}
1156
1157	metaslab_class_destroy(spa->spa_normal_class);
1158	spa->spa_normal_class = NULL;
1159
1160	metaslab_class_destroy(spa->spa_log_class);
1161	spa->spa_log_class = NULL;
1162
1163	/*
1164	 * If this was part of an import or the open otherwise failed, we may
1165	 * still have errors left in the queues.  Empty them just in case.
1166	 */
1167	spa_errlog_drain(spa);
1168
1169	avl_destroy(&spa->spa_errlist_scrub);
1170	avl_destroy(&spa->spa_errlist_last);
1171
1172	spa->spa_state = POOL_STATE_UNINITIALIZED;
1173
1174	mutex_enter(&spa->spa_proc_lock);
1175	if (spa->spa_proc_state != SPA_PROC_NONE) {
1176		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1177		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1178		cv_broadcast(&spa->spa_proc_cv);
1179		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1180			ASSERT(spa->spa_proc != &p0);
1181			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1182		}
1183		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1184		spa->spa_proc_state = SPA_PROC_NONE;
1185	}
1186	ASSERT(spa->spa_proc == &p0);
1187	mutex_exit(&spa->spa_proc_lock);
1188
1189#ifdef SPA_PROCESS
1190	/*
1191	 * We want to make sure spa_thread() has actually exited the ZFS
1192	 * module, so that the module can't be unloaded out from underneath
1193	 * it.
1194	 */
1195	if (spa->spa_did != 0) {
1196		thread_join(spa->spa_did);
1197		spa->spa_did = 0;
1198	}
1199#endif	/* SPA_PROCESS */
1200}
1201
1202/*
1203 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1204 * will create all the necessary vdevs in the appropriate layout, with each vdev
1205 * in the CLOSED state.  This will prep the pool before open/creation/import.
1206 * All vdev validation is done by the vdev_alloc() routine.
1207 */
1208static int
1209spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1210    uint_t id, int atype)
1211{
1212	nvlist_t **child;
1213	uint_t children;
1214	int error;
1215
1216	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1217		return (error);
1218
1219	if ((*vdp)->vdev_ops->vdev_op_leaf)
1220		return (0);
1221
1222	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1223	    &child, &children);
1224
1225	if (error == ENOENT)
1226		return (0);
1227
1228	if (error) {
1229		vdev_free(*vdp);
1230		*vdp = NULL;
1231		return (SET_ERROR(EINVAL));
1232	}
1233
1234	for (int c = 0; c < children; c++) {
1235		vdev_t *vd;
1236		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1237		    atype)) != 0) {
1238			vdev_free(*vdp);
1239			*vdp = NULL;
1240			return (error);
1241		}
1242	}
1243
1244	ASSERT(*vdp != NULL);
1245
1246	return (0);
1247}
1248
1249/*
1250 * Opposite of spa_load().
1251 */
1252static void
1253spa_unload(spa_t *spa)
1254{
1255	int i;
1256
1257	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1258
1259	/*
1260	 * Stop TRIM thread.
1261	 */
1262	trim_thread_destroy(spa);
1263
1264	/*
1265	 * Stop async tasks.
1266	 */
1267	spa_async_suspend(spa);
1268
1269	/*
1270	 * Stop syncing.
1271	 */
1272	if (spa->spa_sync_on) {
1273		txg_sync_stop(spa->spa_dsl_pool);
1274		spa->spa_sync_on = B_FALSE;
1275	}
1276
1277	/*
1278	 * Wait for any outstanding async I/O to complete.
1279	 */
1280	if (spa->spa_async_zio_root != NULL) {
1281		(void) zio_wait(spa->spa_async_zio_root);
1282		spa->spa_async_zio_root = NULL;
1283	}
1284
1285	bpobj_close(&spa->spa_deferred_bpobj);
1286
1287	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1288
1289	/*
1290	 * Close all vdevs.
1291	 */
1292	if (spa->spa_root_vdev)
1293		vdev_free(spa->spa_root_vdev);
1294	ASSERT(spa->spa_root_vdev == NULL);
1295
1296	/*
1297	 * Close the dsl pool.
1298	 */
1299	if (spa->spa_dsl_pool) {
1300		dsl_pool_close(spa->spa_dsl_pool);
1301		spa->spa_dsl_pool = NULL;
1302		spa->spa_meta_objset = NULL;
1303	}
1304
1305	ddt_unload(spa);
1306
1307
1308	/*
1309	 * Drop and purge level 2 cache
1310	 */
1311	spa_l2cache_drop(spa);
1312
1313	for (i = 0; i < spa->spa_spares.sav_count; i++)
1314		vdev_free(spa->spa_spares.sav_vdevs[i]);
1315	if (spa->spa_spares.sav_vdevs) {
1316		kmem_free(spa->spa_spares.sav_vdevs,
1317		    spa->spa_spares.sav_count * sizeof (void *));
1318		spa->spa_spares.sav_vdevs = NULL;
1319	}
1320	if (spa->spa_spares.sav_config) {
1321		nvlist_free(spa->spa_spares.sav_config);
1322		spa->spa_spares.sav_config = NULL;
1323	}
1324	spa->spa_spares.sav_count = 0;
1325
1326	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1327		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1328		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1329	}
1330	if (spa->spa_l2cache.sav_vdevs) {
1331		kmem_free(spa->spa_l2cache.sav_vdevs,
1332		    spa->spa_l2cache.sav_count * sizeof (void *));
1333		spa->spa_l2cache.sav_vdevs = NULL;
1334	}
1335	if (spa->spa_l2cache.sav_config) {
1336		nvlist_free(spa->spa_l2cache.sav_config);
1337		spa->spa_l2cache.sav_config = NULL;
1338	}
1339	spa->spa_l2cache.sav_count = 0;
1340
1341	spa->spa_async_suspended = 0;
1342
1343	if (spa->spa_comment != NULL) {
1344		spa_strfree(spa->spa_comment);
1345		spa->spa_comment = NULL;
1346	}
1347
1348	spa_config_exit(spa, SCL_ALL, FTAG);
1349}
1350
1351/*
1352 * Load (or re-load) the current list of vdevs describing the active spares for
1353 * this pool.  When this is called, we have some form of basic information in
1354 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1355 * then re-generate a more complete list including status information.
1356 */
1357static void
1358spa_load_spares(spa_t *spa)
1359{
1360	nvlist_t **spares;
1361	uint_t nspares;
1362	int i;
1363	vdev_t *vd, *tvd;
1364
1365	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1366
1367	/*
1368	 * First, close and free any existing spare vdevs.
1369	 */
1370	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1371		vd = spa->spa_spares.sav_vdevs[i];
1372
1373		/* Undo the call to spa_activate() below */
1374		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1375		    B_FALSE)) != NULL && tvd->vdev_isspare)
1376			spa_spare_remove(tvd);
1377		vdev_close(vd);
1378		vdev_free(vd);
1379	}
1380
1381	if (spa->spa_spares.sav_vdevs)
1382		kmem_free(spa->spa_spares.sav_vdevs,
1383		    spa->spa_spares.sav_count * sizeof (void *));
1384
1385	if (spa->spa_spares.sav_config == NULL)
1386		nspares = 0;
1387	else
1388		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1389		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1390
1391	spa->spa_spares.sav_count = (int)nspares;
1392	spa->spa_spares.sav_vdevs = NULL;
1393
1394	if (nspares == 0)
1395		return;
1396
1397	/*
1398	 * Construct the array of vdevs, opening them to get status in the
1399	 * process.   For each spare, there is potentially two different vdev_t
1400	 * structures associated with it: one in the list of spares (used only
1401	 * for basic validation purposes) and one in the active vdev
1402	 * configuration (if it's spared in).  During this phase we open and
1403	 * validate each vdev on the spare list.  If the vdev also exists in the
1404	 * active configuration, then we also mark this vdev as an active spare.
1405	 */
1406	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1407	    KM_SLEEP);
1408	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1409		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1410		    VDEV_ALLOC_SPARE) == 0);
1411		ASSERT(vd != NULL);
1412
1413		spa->spa_spares.sav_vdevs[i] = vd;
1414
1415		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1416		    B_FALSE)) != NULL) {
1417			if (!tvd->vdev_isspare)
1418				spa_spare_add(tvd);
1419
1420			/*
1421			 * We only mark the spare active if we were successfully
1422			 * able to load the vdev.  Otherwise, importing a pool
1423			 * with a bad active spare would result in strange
1424			 * behavior, because multiple pool would think the spare
1425			 * is actively in use.
1426			 *
1427			 * There is a vulnerability here to an equally bizarre
1428			 * circumstance, where a dead active spare is later
1429			 * brought back to life (onlined or otherwise).  Given
1430			 * the rarity of this scenario, and the extra complexity
1431			 * it adds, we ignore the possibility.
1432			 */
1433			if (!vdev_is_dead(tvd))
1434				spa_spare_activate(tvd);
1435		}
1436
1437		vd->vdev_top = vd;
1438		vd->vdev_aux = &spa->spa_spares;
1439
1440		if (vdev_open(vd) != 0)
1441			continue;
1442
1443		if (vdev_validate_aux(vd) == 0)
1444			spa_spare_add(vd);
1445	}
1446
1447	/*
1448	 * Recompute the stashed list of spares, with status information
1449	 * this time.
1450	 */
1451	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1452	    DATA_TYPE_NVLIST_ARRAY) == 0);
1453
1454	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1455	    KM_SLEEP);
1456	for (i = 0; i < spa->spa_spares.sav_count; i++)
1457		spares[i] = vdev_config_generate(spa,
1458		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1459	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1460	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1461	for (i = 0; i < spa->spa_spares.sav_count; i++)
1462		nvlist_free(spares[i]);
1463	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1464}
1465
1466/*
1467 * Load (or re-load) the current list of vdevs describing the active l2cache for
1468 * this pool.  When this is called, we have some form of basic information in
1469 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1470 * then re-generate a more complete list including status information.
1471 * Devices which are already active have their details maintained, and are
1472 * not re-opened.
1473 */
1474static void
1475spa_load_l2cache(spa_t *spa)
1476{
1477	nvlist_t **l2cache;
1478	uint_t nl2cache;
1479	int i, j, oldnvdevs;
1480	uint64_t guid;
1481	vdev_t *vd, **oldvdevs, **newvdevs;
1482	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1483
1484	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1485
1486	if (sav->sav_config != NULL) {
1487		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1488		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1489		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1490	} else {
1491		nl2cache = 0;
1492		newvdevs = NULL;
1493	}
1494
1495	oldvdevs = sav->sav_vdevs;
1496	oldnvdevs = sav->sav_count;
1497	sav->sav_vdevs = NULL;
1498	sav->sav_count = 0;
1499
1500	/*
1501	 * Process new nvlist of vdevs.
1502	 */
1503	for (i = 0; i < nl2cache; i++) {
1504		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1505		    &guid) == 0);
1506
1507		newvdevs[i] = NULL;
1508		for (j = 0; j < oldnvdevs; j++) {
1509			vd = oldvdevs[j];
1510			if (vd != NULL && guid == vd->vdev_guid) {
1511				/*
1512				 * Retain previous vdev for add/remove ops.
1513				 */
1514				newvdevs[i] = vd;
1515				oldvdevs[j] = NULL;
1516				break;
1517			}
1518		}
1519
1520		if (newvdevs[i] == NULL) {
1521			/*
1522			 * Create new vdev
1523			 */
1524			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1525			    VDEV_ALLOC_L2CACHE) == 0);
1526			ASSERT(vd != NULL);
1527			newvdevs[i] = vd;
1528
1529			/*
1530			 * Commit this vdev as an l2cache device,
1531			 * even if it fails to open.
1532			 */
1533			spa_l2cache_add(vd);
1534
1535			vd->vdev_top = vd;
1536			vd->vdev_aux = sav;
1537
1538			spa_l2cache_activate(vd);
1539
1540			if (vdev_open(vd) != 0)
1541				continue;
1542
1543			(void) vdev_validate_aux(vd);
1544
1545			if (!vdev_is_dead(vd))
1546				l2arc_add_vdev(spa, vd);
1547		}
1548	}
1549
1550	/*
1551	 * Purge vdevs that were dropped
1552	 */
1553	for (i = 0; i < oldnvdevs; i++) {
1554		uint64_t pool;
1555
1556		vd = oldvdevs[i];
1557		if (vd != NULL) {
1558			ASSERT(vd->vdev_isl2cache);
1559
1560			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1561			    pool != 0ULL && l2arc_vdev_present(vd))
1562				l2arc_remove_vdev(vd);
1563			vdev_clear_stats(vd);
1564			vdev_free(vd);
1565		}
1566	}
1567
1568	if (oldvdevs)
1569		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1570
1571	if (sav->sav_config == NULL)
1572		goto out;
1573
1574	sav->sav_vdevs = newvdevs;
1575	sav->sav_count = (int)nl2cache;
1576
1577	/*
1578	 * Recompute the stashed list of l2cache devices, with status
1579	 * information this time.
1580	 */
1581	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1582	    DATA_TYPE_NVLIST_ARRAY) == 0);
1583
1584	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1585	for (i = 0; i < sav->sav_count; i++)
1586		l2cache[i] = vdev_config_generate(spa,
1587		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1588	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1589	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1590out:
1591	for (i = 0; i < sav->sav_count; i++)
1592		nvlist_free(l2cache[i]);
1593	if (sav->sav_count)
1594		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1595}
1596
1597static int
1598load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1599{
1600	dmu_buf_t *db;
1601	char *packed = NULL;
1602	size_t nvsize = 0;
1603	int error;
1604	*value = NULL;
1605
1606	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1607	if (error != 0)
1608		return (error);
1609	nvsize = *(uint64_t *)db->db_data;
1610	dmu_buf_rele(db, FTAG);
1611
1612	packed = kmem_alloc(nvsize, KM_SLEEP);
1613	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1614	    DMU_READ_PREFETCH);
1615	if (error == 0)
1616		error = nvlist_unpack(packed, nvsize, value, 0);
1617	kmem_free(packed, nvsize);
1618
1619	return (error);
1620}
1621
1622/*
1623 * Checks to see if the given vdev could not be opened, in which case we post a
1624 * sysevent to notify the autoreplace code that the device has been removed.
1625 */
1626static void
1627spa_check_removed(vdev_t *vd)
1628{
1629	for (int c = 0; c < vd->vdev_children; c++)
1630		spa_check_removed(vd->vdev_child[c]);
1631
1632	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1633	    !vd->vdev_ishole) {
1634		zfs_post_autoreplace(vd->vdev_spa, vd);
1635		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1636	}
1637}
1638
1639/*
1640 * Validate the current config against the MOS config
1641 */
1642static boolean_t
1643spa_config_valid(spa_t *spa, nvlist_t *config)
1644{
1645	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1646	nvlist_t *nv;
1647
1648	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1649
1650	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1651	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1652
1653	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1654
1655	/*
1656	 * If we're doing a normal import, then build up any additional
1657	 * diagnostic information about missing devices in this config.
1658	 * We'll pass this up to the user for further processing.
1659	 */
1660	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1661		nvlist_t **child, *nv;
1662		uint64_t idx = 0;
1663
1664		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1665		    KM_SLEEP);
1666		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1667
1668		for (int c = 0; c < rvd->vdev_children; c++) {
1669			vdev_t *tvd = rvd->vdev_child[c];
1670			vdev_t *mtvd  = mrvd->vdev_child[c];
1671
1672			if (tvd->vdev_ops == &vdev_missing_ops &&
1673			    mtvd->vdev_ops != &vdev_missing_ops &&
1674			    mtvd->vdev_islog)
1675				child[idx++] = vdev_config_generate(spa, mtvd,
1676				    B_FALSE, 0);
1677		}
1678
1679		if (idx) {
1680			VERIFY(nvlist_add_nvlist_array(nv,
1681			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1682			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1683			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1684
1685			for (int i = 0; i < idx; i++)
1686				nvlist_free(child[i]);
1687		}
1688		nvlist_free(nv);
1689		kmem_free(child, rvd->vdev_children * sizeof (char **));
1690	}
1691
1692	/*
1693	 * Compare the root vdev tree with the information we have
1694	 * from the MOS config (mrvd). Check each top-level vdev
1695	 * with the corresponding MOS config top-level (mtvd).
1696	 */
1697	for (int c = 0; c < rvd->vdev_children; c++) {
1698		vdev_t *tvd = rvd->vdev_child[c];
1699		vdev_t *mtvd  = mrvd->vdev_child[c];
1700
1701		/*
1702		 * Resolve any "missing" vdevs in the current configuration.
1703		 * If we find that the MOS config has more accurate information
1704		 * about the top-level vdev then use that vdev instead.
1705		 */
1706		if (tvd->vdev_ops == &vdev_missing_ops &&
1707		    mtvd->vdev_ops != &vdev_missing_ops) {
1708
1709			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1710				continue;
1711
1712			/*
1713			 * Device specific actions.
1714			 */
1715			if (mtvd->vdev_islog) {
1716				spa_set_log_state(spa, SPA_LOG_CLEAR);
1717			} else {
1718				/*
1719				 * XXX - once we have 'readonly' pool
1720				 * support we should be able to handle
1721				 * missing data devices by transitioning
1722				 * the pool to readonly.
1723				 */
1724				continue;
1725			}
1726
1727			/*
1728			 * Swap the missing vdev with the data we were
1729			 * able to obtain from the MOS config.
1730			 */
1731			vdev_remove_child(rvd, tvd);
1732			vdev_remove_child(mrvd, mtvd);
1733
1734			vdev_add_child(rvd, mtvd);
1735			vdev_add_child(mrvd, tvd);
1736
1737			spa_config_exit(spa, SCL_ALL, FTAG);
1738			vdev_load(mtvd);
1739			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1740
1741			vdev_reopen(rvd);
1742		} else if (mtvd->vdev_islog) {
1743			/*
1744			 * Load the slog device's state from the MOS config
1745			 * since it's possible that the label does not
1746			 * contain the most up-to-date information.
1747			 */
1748			vdev_load_log_state(tvd, mtvd);
1749			vdev_reopen(tvd);
1750		}
1751	}
1752	vdev_free(mrvd);
1753	spa_config_exit(spa, SCL_ALL, FTAG);
1754
1755	/*
1756	 * Ensure we were able to validate the config.
1757	 */
1758	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1759}
1760
1761/*
1762 * Check for missing log devices
1763 */
1764static boolean_t
1765spa_check_logs(spa_t *spa)
1766{
1767	boolean_t rv = B_FALSE;
1768
1769	switch (spa->spa_log_state) {
1770	case SPA_LOG_MISSING:
1771		/* need to recheck in case slog has been restored */
1772	case SPA_LOG_UNKNOWN:
1773		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1774		    NULL, DS_FIND_CHILDREN) != 0);
1775		if (rv)
1776			spa_set_log_state(spa, SPA_LOG_MISSING);
1777		break;
1778	}
1779	return (rv);
1780}
1781
1782static boolean_t
1783spa_passivate_log(spa_t *spa)
1784{
1785	vdev_t *rvd = spa->spa_root_vdev;
1786	boolean_t slog_found = B_FALSE;
1787
1788	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1789
1790	if (!spa_has_slogs(spa))
1791		return (B_FALSE);
1792
1793	for (int c = 0; c < rvd->vdev_children; c++) {
1794		vdev_t *tvd = rvd->vdev_child[c];
1795		metaslab_group_t *mg = tvd->vdev_mg;
1796
1797		if (tvd->vdev_islog) {
1798			metaslab_group_passivate(mg);
1799			slog_found = B_TRUE;
1800		}
1801	}
1802
1803	return (slog_found);
1804}
1805
1806static void
1807spa_activate_log(spa_t *spa)
1808{
1809	vdev_t *rvd = spa->spa_root_vdev;
1810
1811	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1812
1813	for (int c = 0; c < rvd->vdev_children; c++) {
1814		vdev_t *tvd = rvd->vdev_child[c];
1815		metaslab_group_t *mg = tvd->vdev_mg;
1816
1817		if (tvd->vdev_islog)
1818			metaslab_group_activate(mg);
1819	}
1820}
1821
1822int
1823spa_offline_log(spa_t *spa)
1824{
1825	int error;
1826
1827	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1828	    NULL, DS_FIND_CHILDREN);
1829	if (error == 0) {
1830		/*
1831		 * We successfully offlined the log device, sync out the
1832		 * current txg so that the "stubby" block can be removed
1833		 * by zil_sync().
1834		 */
1835		txg_wait_synced(spa->spa_dsl_pool, 0);
1836	}
1837	return (error);
1838}
1839
1840static void
1841spa_aux_check_removed(spa_aux_vdev_t *sav)
1842{
1843	int i;
1844
1845	for (i = 0; i < sav->sav_count; i++)
1846		spa_check_removed(sav->sav_vdevs[i]);
1847}
1848
1849void
1850spa_claim_notify(zio_t *zio)
1851{
1852	spa_t *spa = zio->io_spa;
1853
1854	if (zio->io_error)
1855		return;
1856
1857	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1858	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1859		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1860	mutex_exit(&spa->spa_props_lock);
1861}
1862
1863typedef struct spa_load_error {
1864	uint64_t	sle_meta_count;
1865	uint64_t	sle_data_count;
1866} spa_load_error_t;
1867
1868static void
1869spa_load_verify_done(zio_t *zio)
1870{
1871	blkptr_t *bp = zio->io_bp;
1872	spa_load_error_t *sle = zio->io_private;
1873	dmu_object_type_t type = BP_GET_TYPE(bp);
1874	int error = zio->io_error;
1875
1876	if (error) {
1877		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1878		    type != DMU_OT_INTENT_LOG)
1879			atomic_add_64(&sle->sle_meta_count, 1);
1880		else
1881			atomic_add_64(&sle->sle_data_count, 1);
1882	}
1883	zio_data_buf_free(zio->io_data, zio->io_size);
1884}
1885
1886/*ARGSUSED*/
1887static int
1888spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1889    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1890{
1891	if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1892		zio_t *rio = arg;
1893		size_t size = BP_GET_PSIZE(bp);
1894		void *data = zio_data_buf_alloc(size);
1895
1896		zio_nowait(zio_read(rio, spa, bp, data, size,
1897		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1898		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1899		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1900	}
1901	return (0);
1902}
1903
1904static int
1905spa_load_verify(spa_t *spa)
1906{
1907	zio_t *rio;
1908	spa_load_error_t sle = { 0 };
1909	zpool_rewind_policy_t policy;
1910	boolean_t verify_ok = B_FALSE;
1911	int error;
1912
1913	zpool_get_rewind_policy(spa->spa_config, &policy);
1914
1915	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1916		return (0);
1917
1918	rio = zio_root(spa, NULL, &sle,
1919	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1920
1921	error = traverse_pool(spa, spa->spa_verify_min_txg,
1922	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1923
1924	(void) zio_wait(rio);
1925
1926	spa->spa_load_meta_errors = sle.sle_meta_count;
1927	spa->spa_load_data_errors = sle.sle_data_count;
1928
1929	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1930	    sle.sle_data_count <= policy.zrp_maxdata) {
1931		int64_t loss = 0;
1932
1933		verify_ok = B_TRUE;
1934		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1935		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1936
1937		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1938		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1939		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1940		VERIFY(nvlist_add_int64(spa->spa_load_info,
1941		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1942		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1943		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1944	} else {
1945		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1946	}
1947
1948	if (error) {
1949		if (error != ENXIO && error != EIO)
1950			error = SET_ERROR(EIO);
1951		return (error);
1952	}
1953
1954	return (verify_ok ? 0 : EIO);
1955}
1956
1957/*
1958 * Find a value in the pool props object.
1959 */
1960static void
1961spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1962{
1963	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1964	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1965}
1966
1967/*
1968 * Find a value in the pool directory object.
1969 */
1970static int
1971spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1972{
1973	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1974	    name, sizeof (uint64_t), 1, val));
1975}
1976
1977static int
1978spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1979{
1980	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1981	return (err);
1982}
1983
1984/*
1985 * Fix up config after a partly-completed split.  This is done with the
1986 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1987 * pool have that entry in their config, but only the splitting one contains
1988 * a list of all the guids of the vdevs that are being split off.
1989 *
1990 * This function determines what to do with that list: either rejoin
1991 * all the disks to the pool, or complete the splitting process.  To attempt
1992 * the rejoin, each disk that is offlined is marked online again, and
1993 * we do a reopen() call.  If the vdev label for every disk that was
1994 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1995 * then we call vdev_split() on each disk, and complete the split.
1996 *
1997 * Otherwise we leave the config alone, with all the vdevs in place in
1998 * the original pool.
1999 */
2000static void
2001spa_try_repair(spa_t *spa, nvlist_t *config)
2002{
2003	uint_t extracted;
2004	uint64_t *glist;
2005	uint_t i, gcount;
2006	nvlist_t *nvl;
2007	vdev_t **vd;
2008	boolean_t attempt_reopen;
2009
2010	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2011		return;
2012
2013	/* check that the config is complete */
2014	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2015	    &glist, &gcount) != 0)
2016		return;
2017
2018	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2019
2020	/* attempt to online all the vdevs & validate */
2021	attempt_reopen = B_TRUE;
2022	for (i = 0; i < gcount; i++) {
2023		if (glist[i] == 0)	/* vdev is hole */
2024			continue;
2025
2026		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2027		if (vd[i] == NULL) {
2028			/*
2029			 * Don't bother attempting to reopen the disks;
2030			 * just do the split.
2031			 */
2032			attempt_reopen = B_FALSE;
2033		} else {
2034			/* attempt to re-online it */
2035			vd[i]->vdev_offline = B_FALSE;
2036		}
2037	}
2038
2039	if (attempt_reopen) {
2040		vdev_reopen(spa->spa_root_vdev);
2041
2042		/* check each device to see what state it's in */
2043		for (extracted = 0, i = 0; i < gcount; i++) {
2044			if (vd[i] != NULL &&
2045			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2046				break;
2047			++extracted;
2048		}
2049	}
2050
2051	/*
2052	 * If every disk has been moved to the new pool, or if we never
2053	 * even attempted to look at them, then we split them off for
2054	 * good.
2055	 */
2056	if (!attempt_reopen || gcount == extracted) {
2057		for (i = 0; i < gcount; i++)
2058			if (vd[i] != NULL)
2059				vdev_split(vd[i]);
2060		vdev_reopen(spa->spa_root_vdev);
2061	}
2062
2063	kmem_free(vd, gcount * sizeof (vdev_t *));
2064}
2065
2066static int
2067spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2068    boolean_t mosconfig)
2069{
2070	nvlist_t *config = spa->spa_config;
2071	char *ereport = FM_EREPORT_ZFS_POOL;
2072	char *comment;
2073	int error;
2074	uint64_t pool_guid;
2075	nvlist_t *nvl;
2076
2077	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2078		return (SET_ERROR(EINVAL));
2079
2080	ASSERT(spa->spa_comment == NULL);
2081	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2082		spa->spa_comment = spa_strdup(comment);
2083
2084	/*
2085	 * Versioning wasn't explicitly added to the label until later, so if
2086	 * it's not present treat it as the initial version.
2087	 */
2088	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2089	    &spa->spa_ubsync.ub_version) != 0)
2090		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2091
2092	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2093	    &spa->spa_config_txg);
2094
2095	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2096	    spa_guid_exists(pool_guid, 0)) {
2097		error = SET_ERROR(EEXIST);
2098	} else {
2099		spa->spa_config_guid = pool_guid;
2100
2101		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2102		    &nvl) == 0) {
2103			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2104			    KM_SLEEP) == 0);
2105		}
2106
2107		nvlist_free(spa->spa_load_info);
2108		spa->spa_load_info = fnvlist_alloc();
2109
2110		gethrestime(&spa->spa_loaded_ts);
2111		error = spa_load_impl(spa, pool_guid, config, state, type,
2112		    mosconfig, &ereport);
2113	}
2114
2115	spa->spa_minref = refcount_count(&spa->spa_refcount);
2116	if (error) {
2117		if (error != EEXIST) {
2118			spa->spa_loaded_ts.tv_sec = 0;
2119			spa->spa_loaded_ts.tv_nsec = 0;
2120		}
2121		if (error != EBADF) {
2122			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2123		}
2124	}
2125	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2126	spa->spa_ena = 0;
2127
2128	return (error);
2129}
2130
2131/*
2132 * Load an existing storage pool, using the pool's builtin spa_config as a
2133 * source of configuration information.
2134 */
2135static int
2136spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2137    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2138    char **ereport)
2139{
2140	int error = 0;
2141	nvlist_t *nvroot = NULL;
2142	nvlist_t *label;
2143	vdev_t *rvd;
2144	uberblock_t *ub = &spa->spa_uberblock;
2145	uint64_t children, config_cache_txg = spa->spa_config_txg;
2146	int orig_mode = spa->spa_mode;
2147	int parse;
2148	uint64_t obj;
2149	boolean_t missing_feat_write = B_FALSE;
2150
2151	/*
2152	 * If this is an untrusted config, access the pool in read-only mode.
2153	 * This prevents things like resilvering recently removed devices.
2154	 */
2155	if (!mosconfig)
2156		spa->spa_mode = FREAD;
2157
2158	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2159
2160	spa->spa_load_state = state;
2161
2162	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2163		return (SET_ERROR(EINVAL));
2164
2165	parse = (type == SPA_IMPORT_EXISTING ?
2166	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2167
2168	/*
2169	 * Create "The Godfather" zio to hold all async IOs
2170	 */
2171	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2172	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2173
2174	/*
2175	 * Parse the configuration into a vdev tree.  We explicitly set the
2176	 * value that will be returned by spa_version() since parsing the
2177	 * configuration requires knowing the version number.
2178	 */
2179	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2181	spa_config_exit(spa, SCL_ALL, FTAG);
2182
2183	if (error != 0)
2184		return (error);
2185
2186	ASSERT(spa->spa_root_vdev == rvd);
2187
2188	if (type != SPA_IMPORT_ASSEMBLE) {
2189		ASSERT(spa_guid(spa) == pool_guid);
2190	}
2191
2192	/*
2193	 * Try to open all vdevs, loading each label in the process.
2194	 */
2195	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2196	error = vdev_open(rvd);
2197	spa_config_exit(spa, SCL_ALL, FTAG);
2198	if (error != 0)
2199		return (error);
2200
2201	/*
2202	 * We need to validate the vdev labels against the configuration that
2203	 * we have in hand, which is dependent on the setting of mosconfig. If
2204	 * mosconfig is true then we're validating the vdev labels based on
2205	 * that config.  Otherwise, we're validating against the cached config
2206	 * (zpool.cache) that was read when we loaded the zfs module, and then
2207	 * later we will recursively call spa_load() and validate against
2208	 * the vdev config.
2209	 *
2210	 * If we're assembling a new pool that's been split off from an
2211	 * existing pool, the labels haven't yet been updated so we skip
2212	 * validation for now.
2213	 */
2214	if (type != SPA_IMPORT_ASSEMBLE) {
2215		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2216		error = vdev_validate(rvd, mosconfig);
2217		spa_config_exit(spa, SCL_ALL, FTAG);
2218
2219		if (error != 0)
2220			return (error);
2221
2222		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2223			return (SET_ERROR(ENXIO));
2224	}
2225
2226	/*
2227	 * Find the best uberblock.
2228	 */
2229	vdev_uberblock_load(rvd, ub, &label);
2230
2231	/*
2232	 * If we weren't able to find a single valid uberblock, return failure.
2233	 */
2234	if (ub->ub_txg == 0) {
2235		nvlist_free(label);
2236		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2237	}
2238
2239	/*
2240	 * If the pool has an unsupported version we can't open it.
2241	 */
2242	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2243		nvlist_free(label);
2244		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2245	}
2246
2247	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2248		nvlist_t *features;
2249
2250		/*
2251		 * If we weren't able to find what's necessary for reading the
2252		 * MOS in the label, return failure.
2253		 */
2254		if (label == NULL || nvlist_lookup_nvlist(label,
2255		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2256			nvlist_free(label);
2257			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2258			    ENXIO));
2259		}
2260
2261		/*
2262		 * Update our in-core representation with the definitive values
2263		 * from the label.
2264		 */
2265		nvlist_free(spa->spa_label_features);
2266		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2267	}
2268
2269	nvlist_free(label);
2270
2271	/*
2272	 * Look through entries in the label nvlist's features_for_read. If
2273	 * there is a feature listed there which we don't understand then we
2274	 * cannot open a pool.
2275	 */
2276	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2277		nvlist_t *unsup_feat;
2278
2279		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2280		    0);
2281
2282		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2283		    NULL); nvp != NULL;
2284		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2285			if (!zfeature_is_supported(nvpair_name(nvp))) {
2286				VERIFY(nvlist_add_string(unsup_feat,
2287				    nvpair_name(nvp), "") == 0);
2288			}
2289		}
2290
2291		if (!nvlist_empty(unsup_feat)) {
2292			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2293			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2294			nvlist_free(unsup_feat);
2295			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2296			    ENOTSUP));
2297		}
2298
2299		nvlist_free(unsup_feat);
2300	}
2301
2302	/*
2303	 * If the vdev guid sum doesn't match the uberblock, we have an
2304	 * incomplete configuration.  We first check to see if the pool
2305	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2306	 * If it is, defer the vdev_guid_sum check till later so we
2307	 * can handle missing vdevs.
2308	 */
2309	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2310	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2311	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2312		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2313
2314	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2315		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2316		spa_try_repair(spa, config);
2317		spa_config_exit(spa, SCL_ALL, FTAG);
2318		nvlist_free(spa->spa_config_splitting);
2319		spa->spa_config_splitting = NULL;
2320	}
2321
2322	/*
2323	 * Initialize internal SPA structures.
2324	 */
2325	spa->spa_state = POOL_STATE_ACTIVE;
2326	spa->spa_ubsync = spa->spa_uberblock;
2327	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2328	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2329	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2330	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2331	spa->spa_claim_max_txg = spa->spa_first_txg;
2332	spa->spa_prev_software_version = ub->ub_software_version;
2333
2334	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2335	if (error)
2336		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2337	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2338
2339	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2340		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2341
2342	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2343		boolean_t missing_feat_read = B_FALSE;
2344		nvlist_t *unsup_feat, *enabled_feat;
2345
2346		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2347		    &spa->spa_feat_for_read_obj) != 0) {
2348			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349		}
2350
2351		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2352		    &spa->spa_feat_for_write_obj) != 0) {
2353			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2354		}
2355
2356		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2357		    &spa->spa_feat_desc_obj) != 0) {
2358			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359		}
2360
2361		enabled_feat = fnvlist_alloc();
2362		unsup_feat = fnvlist_alloc();
2363
2364		if (!spa_features_check(spa, B_FALSE,
2365		    unsup_feat, enabled_feat))
2366			missing_feat_read = B_TRUE;
2367
2368		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2369			if (!spa_features_check(spa, B_TRUE,
2370			    unsup_feat, enabled_feat)) {
2371				missing_feat_write = B_TRUE;
2372			}
2373		}
2374
2375		fnvlist_add_nvlist(spa->spa_load_info,
2376		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2377
2378		if (!nvlist_empty(unsup_feat)) {
2379			fnvlist_add_nvlist(spa->spa_load_info,
2380			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2381		}
2382
2383		fnvlist_free(enabled_feat);
2384		fnvlist_free(unsup_feat);
2385
2386		if (!missing_feat_read) {
2387			fnvlist_add_boolean(spa->spa_load_info,
2388			    ZPOOL_CONFIG_CAN_RDONLY);
2389		}
2390
2391		/*
2392		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2393		 * twofold: to determine whether the pool is available for
2394		 * import in read-write mode and (if it is not) whether the
2395		 * pool is available for import in read-only mode. If the pool
2396		 * is available for import in read-write mode, it is displayed
2397		 * as available in userland; if it is not available for import
2398		 * in read-only mode, it is displayed as unavailable in
2399		 * userland. If the pool is available for import in read-only
2400		 * mode but not read-write mode, it is displayed as unavailable
2401		 * in userland with a special note that the pool is actually
2402		 * available for open in read-only mode.
2403		 *
2404		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2405		 * missing a feature for write, we must first determine whether
2406		 * the pool can be opened read-only before returning to
2407		 * userland in order to know whether to display the
2408		 * abovementioned note.
2409		 */
2410		if (missing_feat_read || (missing_feat_write &&
2411		    spa_writeable(spa))) {
2412			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2413			    ENOTSUP));
2414		}
2415
2416		/*
2417		 * Load refcounts for ZFS features from disk into an in-memory
2418		 * cache during SPA initialization.
2419		 */
2420		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2421			uint64_t refcount;
2422
2423			error = feature_get_refcount_from_disk(spa,
2424			    &spa_feature_table[i], &refcount);
2425			if (error == 0) {
2426				spa->spa_feat_refcount_cache[i] = refcount;
2427			} else if (error == ENOTSUP) {
2428				spa->spa_feat_refcount_cache[i] =
2429				    SPA_FEATURE_DISABLED;
2430			} else {
2431				return (spa_vdev_err(rvd,
2432				    VDEV_AUX_CORRUPT_DATA, EIO));
2433			}
2434		}
2435	}
2436
2437	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2438		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2439		    &spa->spa_feat_enabled_txg_obj) != 0)
2440			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441	}
2442
2443	spa->spa_is_initializing = B_TRUE;
2444	error = dsl_pool_open(spa->spa_dsl_pool);
2445	spa->spa_is_initializing = B_FALSE;
2446	if (error != 0)
2447		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448
2449	if (!mosconfig) {
2450		uint64_t hostid;
2451		nvlist_t *policy = NULL, *nvconfig;
2452
2453		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2454			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455
2456		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2457		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2458			char *hostname;
2459			unsigned long myhostid = 0;
2460
2461			VERIFY(nvlist_lookup_string(nvconfig,
2462			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2463
2464#ifdef	_KERNEL
2465			myhostid = zone_get_hostid(NULL);
2466#else	/* _KERNEL */
2467			/*
2468			 * We're emulating the system's hostid in userland, so
2469			 * we can't use zone_get_hostid().
2470			 */
2471			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2472#endif	/* _KERNEL */
2473			if (check_hostid && hostid != 0 && myhostid != 0 &&
2474			    hostid != myhostid) {
2475				nvlist_free(nvconfig);
2476				cmn_err(CE_WARN, "pool '%s' could not be "
2477				    "loaded as it was last accessed by "
2478				    "another system (host: %s hostid: 0x%lx). "
2479				    "See: http://illumos.org/msg/ZFS-8000-EY",
2480				    spa_name(spa), hostname,
2481				    (unsigned long)hostid);
2482				return (SET_ERROR(EBADF));
2483			}
2484		}
2485		if (nvlist_lookup_nvlist(spa->spa_config,
2486		    ZPOOL_REWIND_POLICY, &policy) == 0)
2487			VERIFY(nvlist_add_nvlist(nvconfig,
2488			    ZPOOL_REWIND_POLICY, policy) == 0);
2489
2490		spa_config_set(spa, nvconfig);
2491		spa_unload(spa);
2492		spa_deactivate(spa);
2493		spa_activate(spa, orig_mode);
2494
2495		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2496	}
2497
2498	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2499		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2500	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2501	if (error != 0)
2502		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503
2504	/*
2505	 * Load the bit that tells us to use the new accounting function
2506	 * (raid-z deflation).  If we have an older pool, this will not
2507	 * be present.
2508	 */
2509	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2510	if (error != 0 && error != ENOENT)
2511		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512
2513	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2514	    &spa->spa_creation_version);
2515	if (error != 0 && error != ENOENT)
2516		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517
2518	/*
2519	 * Load the persistent error log.  If we have an older pool, this will
2520	 * not be present.
2521	 */
2522	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2523	if (error != 0 && error != ENOENT)
2524		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525
2526	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2527	    &spa->spa_errlog_scrub);
2528	if (error != 0 && error != ENOENT)
2529		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530
2531	/*
2532	 * Load the history object.  If we have an older pool, this
2533	 * will not be present.
2534	 */
2535	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2536	if (error != 0 && error != ENOENT)
2537		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538
2539	/*
2540	 * If we're assembling the pool from the split-off vdevs of
2541	 * an existing pool, we don't want to attach the spares & cache
2542	 * devices.
2543	 */
2544
2545	/*
2546	 * Load any hot spares for this pool.
2547	 */
2548	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2549	if (error != 0 && error != ENOENT)
2550		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2552		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2553		if (load_nvlist(spa, spa->spa_spares.sav_object,
2554		    &spa->spa_spares.sav_config) != 0)
2555			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556
2557		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2558		spa_load_spares(spa);
2559		spa_config_exit(spa, SCL_ALL, FTAG);
2560	} else if (error == 0) {
2561		spa->spa_spares.sav_sync = B_TRUE;
2562	}
2563
2564	/*
2565	 * Load any level 2 ARC devices for this pool.
2566	 */
2567	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2568	    &spa->spa_l2cache.sav_object);
2569	if (error != 0 && error != ENOENT)
2570		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2572		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2573		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2574		    &spa->spa_l2cache.sav_config) != 0)
2575			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2576
2577		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578		spa_load_l2cache(spa);
2579		spa_config_exit(spa, SCL_ALL, FTAG);
2580	} else if (error == 0) {
2581		spa->spa_l2cache.sav_sync = B_TRUE;
2582	}
2583
2584	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2585
2586	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2587	if (error && error != ENOENT)
2588		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2589
2590	if (error == 0) {
2591		uint64_t autoreplace;
2592
2593		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2594		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2595		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2596		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2597		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2598		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2599		    &spa->spa_dedup_ditto);
2600
2601		spa->spa_autoreplace = (autoreplace != 0);
2602	}
2603
2604	/*
2605	 * If the 'autoreplace' property is set, then post a resource notifying
2606	 * the ZFS DE that it should not issue any faults for unopenable
2607	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2608	 * unopenable vdevs so that the normal autoreplace handler can take
2609	 * over.
2610	 */
2611	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2612		spa_check_removed(spa->spa_root_vdev);
2613		/*
2614		 * For the import case, this is done in spa_import(), because
2615		 * at this point we're using the spare definitions from
2616		 * the MOS config, not necessarily from the userland config.
2617		 */
2618		if (state != SPA_LOAD_IMPORT) {
2619			spa_aux_check_removed(&spa->spa_spares);
2620			spa_aux_check_removed(&spa->spa_l2cache);
2621		}
2622	}
2623
2624	/*
2625	 * Load the vdev state for all toplevel vdevs.
2626	 */
2627	vdev_load(rvd);
2628
2629	/*
2630	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2631	 */
2632	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2633	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2634	spa_config_exit(spa, SCL_ALL, FTAG);
2635
2636	/*
2637	 * Load the DDTs (dedup tables).
2638	 */
2639	error = ddt_load(spa);
2640	if (error != 0)
2641		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2642
2643	spa_update_dspace(spa);
2644
2645	/*
2646	 * Validate the config, using the MOS config to fill in any
2647	 * information which might be missing.  If we fail to validate
2648	 * the config then declare the pool unfit for use. If we're
2649	 * assembling a pool from a split, the log is not transferred
2650	 * over.
2651	 */
2652	if (type != SPA_IMPORT_ASSEMBLE) {
2653		nvlist_t *nvconfig;
2654
2655		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2656			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657
2658		if (!spa_config_valid(spa, nvconfig)) {
2659			nvlist_free(nvconfig);
2660			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2661			    ENXIO));
2662		}
2663		nvlist_free(nvconfig);
2664
2665		/*
2666		 * Now that we've validated the config, check the state of the
2667		 * root vdev.  If it can't be opened, it indicates one or
2668		 * more toplevel vdevs are faulted.
2669		 */
2670		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2671			return (SET_ERROR(ENXIO));
2672
2673		if (spa_check_logs(spa)) {
2674			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2675			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2676		}
2677	}
2678
2679	if (missing_feat_write) {
2680		ASSERT(state == SPA_LOAD_TRYIMPORT);
2681
2682		/*
2683		 * At this point, we know that we can open the pool in
2684		 * read-only mode but not read-write mode. We now have enough
2685		 * information and can return to userland.
2686		 */
2687		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2688	}
2689
2690	/*
2691	 * We've successfully opened the pool, verify that we're ready
2692	 * to start pushing transactions.
2693	 */
2694	if (state != SPA_LOAD_TRYIMPORT) {
2695		if (error = spa_load_verify(spa))
2696			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2697			    error));
2698	}
2699
2700	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2701	    spa->spa_load_max_txg == UINT64_MAX)) {
2702		dmu_tx_t *tx;
2703		int need_update = B_FALSE;
2704
2705		ASSERT(state != SPA_LOAD_TRYIMPORT);
2706
2707		/*
2708		 * Claim log blocks that haven't been committed yet.
2709		 * This must all happen in a single txg.
2710		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2711		 * invoked from zil_claim_log_block()'s i/o done callback.
2712		 * Price of rollback is that we abandon the log.
2713		 */
2714		spa->spa_claiming = B_TRUE;
2715
2716		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2717		    spa_first_txg(spa));
2718		(void) dmu_objset_find(spa_name(spa),
2719		    zil_claim, tx, DS_FIND_CHILDREN);
2720		dmu_tx_commit(tx);
2721
2722		spa->spa_claiming = B_FALSE;
2723
2724		spa_set_log_state(spa, SPA_LOG_GOOD);
2725		spa->spa_sync_on = B_TRUE;
2726		txg_sync_start(spa->spa_dsl_pool);
2727
2728		/*
2729		 * Wait for all claims to sync.  We sync up to the highest
2730		 * claimed log block birth time so that claimed log blocks
2731		 * don't appear to be from the future.  spa_claim_max_txg
2732		 * will have been set for us by either zil_check_log_chain()
2733		 * (invoked from spa_check_logs()) or zil_claim() above.
2734		 */
2735		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2736
2737		/*
2738		 * If the config cache is stale, or we have uninitialized
2739		 * metaslabs (see spa_vdev_add()), then update the config.
2740		 *
2741		 * If this is a verbatim import, trust the current
2742		 * in-core spa_config and update the disk labels.
2743		 */
2744		if (config_cache_txg != spa->spa_config_txg ||
2745		    state == SPA_LOAD_IMPORT ||
2746		    state == SPA_LOAD_RECOVER ||
2747		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2748			need_update = B_TRUE;
2749
2750		for (int c = 0; c < rvd->vdev_children; c++)
2751			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2752				need_update = B_TRUE;
2753
2754		/*
2755		 * Update the config cache asychronously in case we're the
2756		 * root pool, in which case the config cache isn't writable yet.
2757		 */
2758		if (need_update)
2759			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2760
2761		/*
2762		 * Check all DTLs to see if anything needs resilvering.
2763		 */
2764		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2765		    vdev_resilver_needed(rvd, NULL, NULL))
2766			spa_async_request(spa, SPA_ASYNC_RESILVER);
2767
2768		/*
2769		 * Log the fact that we booted up (so that we can detect if
2770		 * we rebooted in the middle of an operation).
2771		 */
2772		spa_history_log_version(spa, "open");
2773
2774		/*
2775		 * Delete any inconsistent datasets.
2776		 */
2777		(void) dmu_objset_find(spa_name(spa),
2778		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2779
2780		/*
2781		 * Clean up any stale temporary dataset userrefs.
2782		 */
2783		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2784	}
2785
2786	return (0);
2787}
2788
2789static int
2790spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2791{
2792	int mode = spa->spa_mode;
2793
2794	spa_unload(spa);
2795	spa_deactivate(spa);
2796
2797	spa->spa_load_max_txg--;
2798
2799	spa_activate(spa, mode);
2800	spa_async_suspend(spa);
2801
2802	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2803}
2804
2805/*
2806 * If spa_load() fails this function will try loading prior txg's. If
2807 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2808 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2809 * function will not rewind the pool and will return the same error as
2810 * spa_load().
2811 */
2812static int
2813spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2814    uint64_t max_request, int rewind_flags)
2815{
2816	nvlist_t *loadinfo = NULL;
2817	nvlist_t *config = NULL;
2818	int load_error, rewind_error;
2819	uint64_t safe_rewind_txg;
2820	uint64_t min_txg;
2821
2822	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2823		spa->spa_load_max_txg = spa->spa_load_txg;
2824		spa_set_log_state(spa, SPA_LOG_CLEAR);
2825	} else {
2826		spa->spa_load_max_txg = max_request;
2827	}
2828
2829	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2830	    mosconfig);
2831	if (load_error == 0)
2832		return (0);
2833
2834	if (spa->spa_root_vdev != NULL)
2835		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2836
2837	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2838	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2839
2840	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2841		nvlist_free(config);
2842		return (load_error);
2843	}
2844
2845	if (state == SPA_LOAD_RECOVER) {
2846		/* Price of rolling back is discarding txgs, including log */
2847		spa_set_log_state(spa, SPA_LOG_CLEAR);
2848	} else {
2849		/*
2850		 * If we aren't rolling back save the load info from our first
2851		 * import attempt so that we can restore it after attempting
2852		 * to rewind.
2853		 */
2854		loadinfo = spa->spa_load_info;
2855		spa->spa_load_info = fnvlist_alloc();
2856	}
2857
2858	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2859	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2860	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2861	    TXG_INITIAL : safe_rewind_txg;
2862
2863	/*
2864	 * Continue as long as we're finding errors, we're still within
2865	 * the acceptable rewind range, and we're still finding uberblocks
2866	 */
2867	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2868	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2869		if (spa->spa_load_max_txg < safe_rewind_txg)
2870			spa->spa_extreme_rewind = B_TRUE;
2871		rewind_error = spa_load_retry(spa, state, mosconfig);
2872	}
2873
2874	spa->spa_extreme_rewind = B_FALSE;
2875	spa->spa_load_max_txg = UINT64_MAX;
2876
2877	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2878		spa_config_set(spa, config);
2879
2880	if (state == SPA_LOAD_RECOVER) {
2881		ASSERT3P(loadinfo, ==, NULL);
2882		return (rewind_error);
2883	} else {
2884		/* Store the rewind info as part of the initial load info */
2885		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2886		    spa->spa_load_info);
2887
2888		/* Restore the initial load info */
2889		fnvlist_free(spa->spa_load_info);
2890		spa->spa_load_info = loadinfo;
2891
2892		return (load_error);
2893	}
2894}
2895
2896/*
2897 * Pool Open/Import
2898 *
2899 * The import case is identical to an open except that the configuration is sent
2900 * down from userland, instead of grabbed from the configuration cache.  For the
2901 * case of an open, the pool configuration will exist in the
2902 * POOL_STATE_UNINITIALIZED state.
2903 *
2904 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2905 * the same time open the pool, without having to keep around the spa_t in some
2906 * ambiguous state.
2907 */
2908static int
2909spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2910    nvlist_t **config)
2911{
2912	spa_t *spa;
2913	spa_load_state_t state = SPA_LOAD_OPEN;
2914	int error;
2915	int locked = B_FALSE;
2916	int firstopen = B_FALSE;
2917
2918	*spapp = NULL;
2919
2920	/*
2921	 * As disgusting as this is, we need to support recursive calls to this
2922	 * function because dsl_dir_open() is called during spa_load(), and ends
2923	 * up calling spa_open() again.  The real fix is to figure out how to
2924	 * avoid dsl_dir_open() calling this in the first place.
2925	 */
2926	if (mutex_owner(&spa_namespace_lock) != curthread) {
2927		mutex_enter(&spa_namespace_lock);
2928		locked = B_TRUE;
2929	}
2930
2931	if ((spa = spa_lookup(pool)) == NULL) {
2932		if (locked)
2933			mutex_exit(&spa_namespace_lock);
2934		return (SET_ERROR(ENOENT));
2935	}
2936
2937	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2938		zpool_rewind_policy_t policy;
2939
2940		firstopen = B_TRUE;
2941
2942		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2943		    &policy);
2944		if (policy.zrp_request & ZPOOL_DO_REWIND)
2945			state = SPA_LOAD_RECOVER;
2946
2947		spa_activate(spa, spa_mode_global);
2948
2949		if (state != SPA_LOAD_RECOVER)
2950			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2951
2952		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2953		    policy.zrp_request);
2954
2955		if (error == EBADF) {
2956			/*
2957			 * If vdev_validate() returns failure (indicated by
2958			 * EBADF), it indicates that one of the vdevs indicates
2959			 * that the pool has been exported or destroyed.  If
2960			 * this is the case, the config cache is out of sync and
2961			 * we should remove the pool from the namespace.
2962			 */
2963			spa_unload(spa);
2964			spa_deactivate(spa);
2965			spa_config_sync(spa, B_TRUE, B_TRUE);
2966			spa_remove(spa);
2967			if (locked)
2968				mutex_exit(&spa_namespace_lock);
2969			return (SET_ERROR(ENOENT));
2970		}
2971
2972		if (error) {
2973			/*
2974			 * We can't open the pool, but we still have useful
2975			 * information: the state of each vdev after the
2976			 * attempted vdev_open().  Return this to the user.
2977			 */
2978			if (config != NULL && spa->spa_config) {
2979				VERIFY(nvlist_dup(spa->spa_config, config,
2980				    KM_SLEEP) == 0);
2981				VERIFY(nvlist_add_nvlist(*config,
2982				    ZPOOL_CONFIG_LOAD_INFO,
2983				    spa->spa_load_info) == 0);
2984			}
2985			spa_unload(spa);
2986			spa_deactivate(spa);
2987			spa->spa_last_open_failed = error;
2988			if (locked)
2989				mutex_exit(&spa_namespace_lock);
2990			*spapp = NULL;
2991			return (error);
2992		}
2993	}
2994
2995	spa_open_ref(spa, tag);
2996
2997	if (config != NULL)
2998		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2999
3000	/*
3001	 * If we've recovered the pool, pass back any information we
3002	 * gathered while doing the load.
3003	 */
3004	if (state == SPA_LOAD_RECOVER) {
3005		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3006		    spa->spa_load_info) == 0);
3007	}
3008
3009	if (locked) {
3010		spa->spa_last_open_failed = 0;
3011		spa->spa_last_ubsync_txg = 0;
3012		spa->spa_load_txg = 0;
3013		mutex_exit(&spa_namespace_lock);
3014#ifdef __FreeBSD__
3015#ifdef _KERNEL
3016		if (firstopen)
3017			zvol_create_minors(spa->spa_name);
3018#endif
3019#endif
3020	}
3021
3022	*spapp = spa;
3023
3024	return (0);
3025}
3026
3027int
3028spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3029    nvlist_t **config)
3030{
3031	return (spa_open_common(name, spapp, tag, policy, config));
3032}
3033
3034int
3035spa_open(const char *name, spa_t **spapp, void *tag)
3036{
3037	return (spa_open_common(name, spapp, tag, NULL, NULL));
3038}
3039
3040/*
3041 * Lookup the given spa_t, incrementing the inject count in the process,
3042 * preventing it from being exported or destroyed.
3043 */
3044spa_t *
3045spa_inject_addref(char *name)
3046{
3047	spa_t *spa;
3048
3049	mutex_enter(&spa_namespace_lock);
3050	if ((spa = spa_lookup(name)) == NULL) {
3051		mutex_exit(&spa_namespace_lock);
3052		return (NULL);
3053	}
3054	spa->spa_inject_ref++;
3055	mutex_exit(&spa_namespace_lock);
3056
3057	return (spa);
3058}
3059
3060void
3061spa_inject_delref(spa_t *spa)
3062{
3063	mutex_enter(&spa_namespace_lock);
3064	spa->spa_inject_ref--;
3065	mutex_exit(&spa_namespace_lock);
3066}
3067
3068/*
3069 * Add spares device information to the nvlist.
3070 */
3071static void
3072spa_add_spares(spa_t *spa, nvlist_t *config)
3073{
3074	nvlist_t **spares;
3075	uint_t i, nspares;
3076	nvlist_t *nvroot;
3077	uint64_t guid;
3078	vdev_stat_t *vs;
3079	uint_t vsc;
3080	uint64_t pool;
3081
3082	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3083
3084	if (spa->spa_spares.sav_count == 0)
3085		return;
3086
3087	VERIFY(nvlist_lookup_nvlist(config,
3088	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3089	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3090	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3091	if (nspares != 0) {
3092		VERIFY(nvlist_add_nvlist_array(nvroot,
3093		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3094		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3095		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3096
3097		/*
3098		 * Go through and find any spares which have since been
3099		 * repurposed as an active spare.  If this is the case, update
3100		 * their status appropriately.
3101		 */
3102		for (i = 0; i < nspares; i++) {
3103			VERIFY(nvlist_lookup_uint64(spares[i],
3104			    ZPOOL_CONFIG_GUID, &guid) == 0);
3105			if (spa_spare_exists(guid, &pool, NULL) &&
3106			    pool != 0ULL) {
3107				VERIFY(nvlist_lookup_uint64_array(
3108				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3109				    (uint64_t **)&vs, &vsc) == 0);
3110				vs->vs_state = VDEV_STATE_CANT_OPEN;
3111				vs->vs_aux = VDEV_AUX_SPARED;
3112			}
3113		}
3114	}
3115}
3116
3117/*
3118 * Add l2cache device information to the nvlist, including vdev stats.
3119 */
3120static void
3121spa_add_l2cache(spa_t *spa, nvlist_t *config)
3122{
3123	nvlist_t **l2cache;
3124	uint_t i, j, nl2cache;
3125	nvlist_t *nvroot;
3126	uint64_t guid;
3127	vdev_t *vd;
3128	vdev_stat_t *vs;
3129	uint_t vsc;
3130
3131	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3132
3133	if (spa->spa_l2cache.sav_count == 0)
3134		return;
3135
3136	VERIFY(nvlist_lookup_nvlist(config,
3137	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3138	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3139	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3140	if (nl2cache != 0) {
3141		VERIFY(nvlist_add_nvlist_array(nvroot,
3142		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3143		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3144		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3145
3146		/*
3147		 * Update level 2 cache device stats.
3148		 */
3149
3150		for (i = 0; i < nl2cache; i++) {
3151			VERIFY(nvlist_lookup_uint64(l2cache[i],
3152			    ZPOOL_CONFIG_GUID, &guid) == 0);
3153
3154			vd = NULL;
3155			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3156				if (guid ==
3157				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3158					vd = spa->spa_l2cache.sav_vdevs[j];
3159					break;
3160				}
3161			}
3162			ASSERT(vd != NULL);
3163
3164			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3165			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3166			    == 0);
3167			vdev_get_stats(vd, vs);
3168		}
3169	}
3170}
3171
3172static void
3173spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3174{
3175	nvlist_t *features;
3176	zap_cursor_t zc;
3177	zap_attribute_t za;
3178
3179	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3180	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3181
3182	/* We may be unable to read features if pool is suspended. */
3183	if (spa_suspended(spa))
3184		goto out;
3185
3186	if (spa->spa_feat_for_read_obj != 0) {
3187		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3188		    spa->spa_feat_for_read_obj);
3189		    zap_cursor_retrieve(&zc, &za) == 0;
3190		    zap_cursor_advance(&zc)) {
3191			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3192			    za.za_num_integers == 1);
3193			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3194			    za.za_first_integer));
3195		}
3196		zap_cursor_fini(&zc);
3197	}
3198
3199	if (spa->spa_feat_for_write_obj != 0) {
3200		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3201		    spa->spa_feat_for_write_obj);
3202		    zap_cursor_retrieve(&zc, &za) == 0;
3203		    zap_cursor_advance(&zc)) {
3204			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3205			    za.za_num_integers == 1);
3206			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3207			    za.za_first_integer));
3208		}
3209		zap_cursor_fini(&zc);
3210	}
3211
3212out:
3213	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3214	    features) == 0);
3215	nvlist_free(features);
3216}
3217
3218int
3219spa_get_stats(const char *name, nvlist_t **config,
3220    char *altroot, size_t buflen)
3221{
3222	int error;
3223	spa_t *spa;
3224
3225	*config = NULL;
3226	error = spa_open_common(name, &spa, FTAG, NULL, config);
3227
3228	if (spa != NULL) {
3229		/*
3230		 * This still leaves a window of inconsistency where the spares
3231		 * or l2cache devices could change and the config would be
3232		 * self-inconsistent.
3233		 */
3234		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3235
3236		if (*config != NULL) {
3237			uint64_t loadtimes[2];
3238
3239			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3240			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3241			VERIFY(nvlist_add_uint64_array(*config,
3242			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3243
3244			VERIFY(nvlist_add_uint64(*config,
3245			    ZPOOL_CONFIG_ERRCOUNT,
3246			    spa_get_errlog_size(spa)) == 0);
3247
3248			if (spa_suspended(spa))
3249				VERIFY(nvlist_add_uint64(*config,
3250				    ZPOOL_CONFIG_SUSPENDED,
3251				    spa->spa_failmode) == 0);
3252
3253			spa_add_spares(spa, *config);
3254			spa_add_l2cache(spa, *config);
3255			spa_add_feature_stats(spa, *config);
3256		}
3257	}
3258
3259	/*
3260	 * We want to get the alternate root even for faulted pools, so we cheat
3261	 * and call spa_lookup() directly.
3262	 */
3263	if (altroot) {
3264		if (spa == NULL) {
3265			mutex_enter(&spa_namespace_lock);
3266			spa = spa_lookup(name);
3267			if (spa)
3268				spa_altroot(spa, altroot, buflen);
3269			else
3270				altroot[0] = '\0';
3271			spa = NULL;
3272			mutex_exit(&spa_namespace_lock);
3273		} else {
3274			spa_altroot(spa, altroot, buflen);
3275		}
3276	}
3277
3278	if (spa != NULL) {
3279		spa_config_exit(spa, SCL_CONFIG, FTAG);
3280		spa_close(spa, FTAG);
3281	}
3282
3283	return (error);
3284}
3285
3286/*
3287 * Validate that the auxiliary device array is well formed.  We must have an
3288 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3289 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3290 * specified, as long as they are well-formed.
3291 */
3292static int
3293spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3294    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3295    vdev_labeltype_t label)
3296{
3297	nvlist_t **dev;
3298	uint_t i, ndev;
3299	vdev_t *vd;
3300	int error;
3301
3302	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3303
3304	/*
3305	 * It's acceptable to have no devs specified.
3306	 */
3307	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3308		return (0);
3309
3310	if (ndev == 0)
3311		return (SET_ERROR(EINVAL));
3312
3313	/*
3314	 * Make sure the pool is formatted with a version that supports this
3315	 * device type.
3316	 */
3317	if (spa_version(spa) < version)
3318		return (SET_ERROR(ENOTSUP));
3319
3320	/*
3321	 * Set the pending device list so we correctly handle device in-use
3322	 * checking.
3323	 */
3324	sav->sav_pending = dev;
3325	sav->sav_npending = ndev;
3326
3327	for (i = 0; i < ndev; i++) {
3328		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3329		    mode)) != 0)
3330			goto out;
3331
3332		if (!vd->vdev_ops->vdev_op_leaf) {
3333			vdev_free(vd);
3334			error = SET_ERROR(EINVAL);
3335			goto out;
3336		}
3337
3338		/*
3339		 * The L2ARC currently only supports disk devices in
3340		 * kernel context.  For user-level testing, we allow it.
3341		 */
3342#ifdef _KERNEL
3343		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3344		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3345			error = SET_ERROR(ENOTBLK);
3346			vdev_free(vd);
3347			goto out;
3348		}
3349#endif
3350		vd->vdev_top = vd;
3351
3352		if ((error = vdev_open(vd)) == 0 &&
3353		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3354			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3355			    vd->vdev_guid) == 0);
3356		}
3357
3358		vdev_free(vd);
3359
3360		if (error &&
3361		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3362			goto out;
3363		else
3364			error = 0;
3365	}
3366
3367out:
3368	sav->sav_pending = NULL;
3369	sav->sav_npending = 0;
3370	return (error);
3371}
3372
3373static int
3374spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3375{
3376	int error;
3377
3378	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3379
3380	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3381	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3382	    VDEV_LABEL_SPARE)) != 0) {
3383		return (error);
3384	}
3385
3386	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3387	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3388	    VDEV_LABEL_L2CACHE));
3389}
3390
3391static void
3392spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3393    const char *config)
3394{
3395	int i;
3396
3397	if (sav->sav_config != NULL) {
3398		nvlist_t **olddevs;
3399		uint_t oldndevs;
3400		nvlist_t **newdevs;
3401
3402		/*
3403		 * Generate new dev list by concatentating with the
3404		 * current dev list.
3405		 */
3406		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3407		    &olddevs, &oldndevs) == 0);
3408
3409		newdevs = kmem_alloc(sizeof (void *) *
3410		    (ndevs + oldndevs), KM_SLEEP);
3411		for (i = 0; i < oldndevs; i++)
3412			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3413			    KM_SLEEP) == 0);
3414		for (i = 0; i < ndevs; i++)
3415			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3416			    KM_SLEEP) == 0);
3417
3418		VERIFY(nvlist_remove(sav->sav_config, config,
3419		    DATA_TYPE_NVLIST_ARRAY) == 0);
3420
3421		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3422		    config, newdevs, ndevs + oldndevs) == 0);
3423		for (i = 0; i < oldndevs + ndevs; i++)
3424			nvlist_free(newdevs[i]);
3425		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3426	} else {
3427		/*
3428		 * Generate a new dev list.
3429		 */
3430		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3431		    KM_SLEEP) == 0);
3432		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3433		    devs, ndevs) == 0);
3434	}
3435}
3436
3437/*
3438 * Stop and drop level 2 ARC devices
3439 */
3440void
3441spa_l2cache_drop(spa_t *spa)
3442{
3443	vdev_t *vd;
3444	int i;
3445	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3446
3447	for (i = 0; i < sav->sav_count; i++) {
3448		uint64_t pool;
3449
3450		vd = sav->sav_vdevs[i];
3451		ASSERT(vd != NULL);
3452
3453		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3454		    pool != 0ULL && l2arc_vdev_present(vd))
3455			l2arc_remove_vdev(vd);
3456	}
3457}
3458
3459/*
3460 * Pool Creation
3461 */
3462int
3463spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3464    nvlist_t *zplprops)
3465{
3466	spa_t *spa;
3467	char *altroot = NULL;
3468	vdev_t *rvd;
3469	dsl_pool_t *dp;
3470	dmu_tx_t *tx;
3471	int error = 0;
3472	uint64_t txg = TXG_INITIAL;
3473	nvlist_t **spares, **l2cache;
3474	uint_t nspares, nl2cache;
3475	uint64_t version, obj;
3476	boolean_t has_features;
3477
3478	/*
3479	 * If this pool already exists, return failure.
3480	 */
3481	mutex_enter(&spa_namespace_lock);
3482	if (spa_lookup(pool) != NULL) {
3483		mutex_exit(&spa_namespace_lock);
3484		return (SET_ERROR(EEXIST));
3485	}
3486
3487	/*
3488	 * Allocate a new spa_t structure.
3489	 */
3490	(void) nvlist_lookup_string(props,
3491	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3492	spa = spa_add(pool, NULL, altroot);
3493	spa_activate(spa, spa_mode_global);
3494
3495	if (props && (error = spa_prop_validate(spa, props))) {
3496		spa_deactivate(spa);
3497		spa_remove(spa);
3498		mutex_exit(&spa_namespace_lock);
3499		return (error);
3500	}
3501
3502	has_features = B_FALSE;
3503	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3504	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3505		if (zpool_prop_feature(nvpair_name(elem)))
3506			has_features = B_TRUE;
3507	}
3508
3509	if (has_features || nvlist_lookup_uint64(props,
3510	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3511		version = SPA_VERSION;
3512	}
3513	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3514
3515	spa->spa_first_txg = txg;
3516	spa->spa_uberblock.ub_txg = txg - 1;
3517	spa->spa_uberblock.ub_version = version;
3518	spa->spa_ubsync = spa->spa_uberblock;
3519
3520	/*
3521	 * Create "The Godfather" zio to hold all async IOs
3522	 */
3523	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3524	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3525
3526	/*
3527	 * Create the root vdev.
3528	 */
3529	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3530
3531	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3532
3533	ASSERT(error != 0 || rvd != NULL);
3534	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3535
3536	if (error == 0 && !zfs_allocatable_devs(nvroot))
3537		error = SET_ERROR(EINVAL);
3538
3539	if (error == 0 &&
3540	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3541	    (error = spa_validate_aux(spa, nvroot, txg,
3542	    VDEV_ALLOC_ADD)) == 0) {
3543		for (int c = 0; c < rvd->vdev_children; c++) {
3544			vdev_ashift_optimize(rvd->vdev_child[c]);
3545			vdev_metaslab_set_size(rvd->vdev_child[c]);
3546			vdev_expand(rvd->vdev_child[c], txg);
3547		}
3548	}
3549
3550	spa_config_exit(spa, SCL_ALL, FTAG);
3551
3552	if (error != 0) {
3553		spa_unload(spa);
3554		spa_deactivate(spa);
3555		spa_remove(spa);
3556		mutex_exit(&spa_namespace_lock);
3557		return (error);
3558	}
3559
3560	/*
3561	 * Get the list of spares, if specified.
3562	 */
3563	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3564	    &spares, &nspares) == 0) {
3565		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3566		    KM_SLEEP) == 0);
3567		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3568		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3569		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3570		spa_load_spares(spa);
3571		spa_config_exit(spa, SCL_ALL, FTAG);
3572		spa->spa_spares.sav_sync = B_TRUE;
3573	}
3574
3575	/*
3576	 * Get the list of level 2 cache devices, if specified.
3577	 */
3578	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3579	    &l2cache, &nl2cache) == 0) {
3580		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3581		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3582		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3583		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3584		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3585		spa_load_l2cache(spa);
3586		spa_config_exit(spa, SCL_ALL, FTAG);
3587		spa->spa_l2cache.sav_sync = B_TRUE;
3588	}
3589
3590	spa->spa_is_initializing = B_TRUE;
3591	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3592	spa->spa_meta_objset = dp->dp_meta_objset;
3593	spa->spa_is_initializing = B_FALSE;
3594
3595	/*
3596	 * Create DDTs (dedup tables).
3597	 */
3598	ddt_create(spa);
3599
3600	spa_update_dspace(spa);
3601
3602	tx = dmu_tx_create_assigned(dp, txg);
3603
3604	/*
3605	 * Create the pool config object.
3606	 */
3607	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3608	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3609	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3610
3611	if (zap_add(spa->spa_meta_objset,
3612	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3613	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3614		cmn_err(CE_PANIC, "failed to add pool config");
3615	}
3616
3617	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3618		spa_feature_create_zap_objects(spa, tx);
3619
3620	if (zap_add(spa->spa_meta_objset,
3621	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3622	    sizeof (uint64_t), 1, &version, tx) != 0) {
3623		cmn_err(CE_PANIC, "failed to add pool version");
3624	}
3625
3626	/* Newly created pools with the right version are always deflated. */
3627	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3628		spa->spa_deflate = TRUE;
3629		if (zap_add(spa->spa_meta_objset,
3630		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3631		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3632			cmn_err(CE_PANIC, "failed to add deflate");
3633		}
3634	}
3635
3636	/*
3637	 * Create the deferred-free bpobj.  Turn off compression
3638	 * because sync-to-convergence takes longer if the blocksize
3639	 * keeps changing.
3640	 */
3641	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3642	dmu_object_set_compress(spa->spa_meta_objset, obj,
3643	    ZIO_COMPRESS_OFF, tx);
3644	if (zap_add(spa->spa_meta_objset,
3645	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3646	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3647		cmn_err(CE_PANIC, "failed to add bpobj");
3648	}
3649	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3650	    spa->spa_meta_objset, obj));
3651
3652	/*
3653	 * Create the pool's history object.
3654	 */
3655	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3656		spa_history_create_obj(spa, tx);
3657
3658	/*
3659	 * Set pool properties.
3660	 */
3661	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3662	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3663	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3664	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3665
3666	if (props != NULL) {
3667		spa_configfile_set(spa, props, B_FALSE);
3668		spa_sync_props(props, tx);
3669	}
3670
3671	dmu_tx_commit(tx);
3672
3673	spa->spa_sync_on = B_TRUE;
3674	txg_sync_start(spa->spa_dsl_pool);
3675
3676	/*
3677	 * We explicitly wait for the first transaction to complete so that our
3678	 * bean counters are appropriately updated.
3679	 */
3680	txg_wait_synced(spa->spa_dsl_pool, txg);
3681
3682	spa_config_sync(spa, B_FALSE, B_TRUE);
3683
3684	spa_history_log_version(spa, "create");
3685
3686	spa->spa_minref = refcount_count(&spa->spa_refcount);
3687
3688	mutex_exit(&spa_namespace_lock);
3689
3690	return (0);
3691}
3692
3693#ifdef _KERNEL
3694#if defined(sun)
3695/*
3696 * Get the root pool information from the root disk, then import the root pool
3697 * during the system boot up time.
3698 */
3699extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3700
3701static nvlist_t *
3702spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3703{
3704	nvlist_t *config;
3705	nvlist_t *nvtop, *nvroot;
3706	uint64_t pgid;
3707
3708	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3709		return (NULL);
3710
3711	/*
3712	 * Add this top-level vdev to the child array.
3713	 */
3714	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3715	    &nvtop) == 0);
3716	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3717	    &pgid) == 0);
3718	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3719
3720	/*
3721	 * Put this pool's top-level vdevs into a root vdev.
3722	 */
3723	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3724	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3725	    VDEV_TYPE_ROOT) == 0);
3726	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3727	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3728	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3729	    &nvtop, 1) == 0);
3730
3731	/*
3732	 * Replace the existing vdev_tree with the new root vdev in
3733	 * this pool's configuration (remove the old, add the new).
3734	 */
3735	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3736	nvlist_free(nvroot);
3737	return (config);
3738}
3739
3740/*
3741 * Walk the vdev tree and see if we can find a device with "better"
3742 * configuration. A configuration is "better" if the label on that
3743 * device has a more recent txg.
3744 */
3745static void
3746spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3747{
3748	for (int c = 0; c < vd->vdev_children; c++)
3749		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3750
3751	if (vd->vdev_ops->vdev_op_leaf) {
3752		nvlist_t *label;
3753		uint64_t label_txg;
3754
3755		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3756		    &label) != 0)
3757			return;
3758
3759		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3760		    &label_txg) == 0);
3761
3762		/*
3763		 * Do we have a better boot device?
3764		 */
3765		if (label_txg > *txg) {
3766			*txg = label_txg;
3767			*avd = vd;
3768		}
3769		nvlist_free(label);
3770	}
3771}
3772
3773/*
3774 * Import a root pool.
3775 *
3776 * For x86. devpath_list will consist of devid and/or physpath name of
3777 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3778 * The GRUB "findroot" command will return the vdev we should boot.
3779 *
3780 * For Sparc, devpath_list consists the physpath name of the booting device
3781 * no matter the rootpool is a single device pool or a mirrored pool.
3782 * e.g.
3783 *	"/pci@1f,0/ide@d/disk@0,0:a"
3784 */
3785int
3786spa_import_rootpool(char *devpath, char *devid)
3787{
3788	spa_t *spa;
3789	vdev_t *rvd, *bvd, *avd = NULL;
3790	nvlist_t *config, *nvtop;
3791	uint64_t guid, txg;
3792	char *pname;
3793	int error;
3794
3795	/*
3796	 * Read the label from the boot device and generate a configuration.
3797	 */
3798	config = spa_generate_rootconf(devpath, devid, &guid);
3799#if defined(_OBP) && defined(_KERNEL)
3800	if (config == NULL) {
3801		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3802			/* iscsi boot */
3803			get_iscsi_bootpath_phy(devpath);
3804			config = spa_generate_rootconf(devpath, devid, &guid);
3805		}
3806	}
3807#endif
3808	if (config == NULL) {
3809		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3810		    devpath);
3811		return (SET_ERROR(EIO));
3812	}
3813
3814	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3815	    &pname) == 0);
3816	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3817
3818	mutex_enter(&spa_namespace_lock);
3819	if ((spa = spa_lookup(pname)) != NULL) {
3820		/*
3821		 * Remove the existing root pool from the namespace so that we
3822		 * can replace it with the correct config we just read in.
3823		 */
3824		spa_remove(spa);
3825	}
3826
3827	spa = spa_add(pname, config, NULL);
3828	spa->spa_is_root = B_TRUE;
3829	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3830
3831	/*
3832	 * Build up a vdev tree based on the boot device's label config.
3833	 */
3834	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3835	    &nvtop) == 0);
3836	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3837	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3838	    VDEV_ALLOC_ROOTPOOL);
3839	spa_config_exit(spa, SCL_ALL, FTAG);
3840	if (error) {
3841		mutex_exit(&spa_namespace_lock);
3842		nvlist_free(config);
3843		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3844		    pname);
3845		return (error);
3846	}
3847
3848	/*
3849	 * Get the boot vdev.
3850	 */
3851	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3852		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3853		    (u_longlong_t)guid);
3854		error = SET_ERROR(ENOENT);
3855		goto out;
3856	}
3857
3858	/*
3859	 * Determine if there is a better boot device.
3860	 */
3861	avd = bvd;
3862	spa_alt_rootvdev(rvd, &avd, &txg);
3863	if (avd != bvd) {
3864		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3865		    "try booting from '%s'", avd->vdev_path);
3866		error = SET_ERROR(EINVAL);
3867		goto out;
3868	}
3869
3870	/*
3871	 * If the boot device is part of a spare vdev then ensure that
3872	 * we're booting off the active spare.
3873	 */
3874	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3875	    !bvd->vdev_isspare) {
3876		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3877		    "try booting from '%s'",
3878		    bvd->vdev_parent->
3879		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3880		error = SET_ERROR(EINVAL);
3881		goto out;
3882	}
3883
3884	error = 0;
3885out:
3886	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3887	vdev_free(rvd);
3888	spa_config_exit(spa, SCL_ALL, FTAG);
3889	mutex_exit(&spa_namespace_lock);
3890
3891	nvlist_free(config);
3892	return (error);
3893}
3894
3895#else
3896
3897extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3898    uint64_t *count);
3899
3900static nvlist_t *
3901spa_generate_rootconf(const char *name)
3902{
3903	nvlist_t **configs, **tops;
3904	nvlist_t *config;
3905	nvlist_t *best_cfg, *nvtop, *nvroot;
3906	uint64_t *holes;
3907	uint64_t best_txg;
3908	uint64_t nchildren;
3909	uint64_t pgid;
3910	uint64_t count;
3911	uint64_t i;
3912	uint_t   nholes;
3913
3914	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3915		return (NULL);
3916
3917	ASSERT3U(count, !=, 0);
3918	best_txg = 0;
3919	for (i = 0; i < count; i++) {
3920		uint64_t txg;
3921
3922		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3923		    &txg) == 0);
3924		if (txg > best_txg) {
3925			best_txg = txg;
3926			best_cfg = configs[i];
3927		}
3928	}
3929
3930	nchildren = 1;
3931	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3932	holes = NULL;
3933	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3934	    &holes, &nholes);
3935
3936	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3937	for (i = 0; i < nchildren; i++) {
3938		if (i >= count)
3939			break;
3940		if (configs[i] == NULL)
3941			continue;
3942		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3943		    &nvtop) == 0);
3944		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3945	}
3946	for (i = 0; holes != NULL && i < nholes; i++) {
3947		if (i >= nchildren)
3948			continue;
3949		if (tops[holes[i]] != NULL)
3950			continue;
3951		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3952		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3953		    VDEV_TYPE_HOLE) == 0);
3954		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3955		    holes[i]) == 0);
3956		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3957		    0) == 0);
3958	}
3959	for (i = 0; i < nchildren; i++) {
3960		if (tops[i] != NULL)
3961			continue;
3962		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3963		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3964		    VDEV_TYPE_MISSING) == 0);
3965		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3966		    i) == 0);
3967		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3968		    0) == 0);
3969	}
3970
3971	/*
3972	 * Create pool config based on the best vdev config.
3973	 */
3974	nvlist_dup(best_cfg, &config, KM_SLEEP);
3975
3976	/*
3977	 * Put this pool's top-level vdevs into a root vdev.
3978	 */
3979	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3980	    &pgid) == 0);
3981	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3982	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3983	    VDEV_TYPE_ROOT) == 0);
3984	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3985	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3986	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3987	    tops, nchildren) == 0);
3988
3989	/*
3990	 * Replace the existing vdev_tree with the new root vdev in
3991	 * this pool's configuration (remove the old, add the new).
3992	 */
3993	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3994
3995	/*
3996	 * Drop vdev config elements that should not be present at pool level.
3997	 */
3998	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3999	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4000
4001	for (i = 0; i < count; i++)
4002		nvlist_free(configs[i]);
4003	kmem_free(configs, count * sizeof(void *));
4004	for (i = 0; i < nchildren; i++)
4005		nvlist_free(tops[i]);
4006	kmem_free(tops, nchildren * sizeof(void *));
4007	nvlist_free(nvroot);
4008	return (config);
4009}
4010
4011int
4012spa_import_rootpool(const char *name)
4013{
4014	spa_t *spa;
4015	vdev_t *rvd, *bvd, *avd = NULL;
4016	nvlist_t *config, *nvtop;
4017	uint64_t txg;
4018	char *pname;
4019	int error;
4020
4021	/*
4022	 * Read the label from the boot device and generate a configuration.
4023	 */
4024	config = spa_generate_rootconf(name);
4025
4026	mutex_enter(&spa_namespace_lock);
4027	if (config != NULL) {
4028		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4029		    &pname) == 0 && strcmp(name, pname) == 0);
4030		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4031		    == 0);
4032
4033		if ((spa = spa_lookup(pname)) != NULL) {
4034			/*
4035			 * Remove the existing root pool from the namespace so
4036			 * that we can replace it with the correct config
4037			 * we just read in.
4038			 */
4039			spa_remove(spa);
4040		}
4041		spa = spa_add(pname, config, NULL);
4042
4043		/*
4044		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4045		 * via spa_version().
4046		 */
4047		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4048		    &spa->spa_ubsync.ub_version) != 0)
4049			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4050	} else if ((spa = spa_lookup(name)) == NULL) {
4051		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4052		    name);
4053		return (EIO);
4054	} else {
4055		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4056	}
4057	spa->spa_is_root = B_TRUE;
4058	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4059
4060	/*
4061	 * Build up a vdev tree based on the boot device's label config.
4062	 */
4063	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4064	    &nvtop) == 0);
4065	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4066	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4067	    VDEV_ALLOC_ROOTPOOL);
4068	spa_config_exit(spa, SCL_ALL, FTAG);
4069	if (error) {
4070		mutex_exit(&spa_namespace_lock);
4071		nvlist_free(config);
4072		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4073		    pname);
4074		return (error);
4075	}
4076
4077	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4078	vdev_free(rvd);
4079	spa_config_exit(spa, SCL_ALL, FTAG);
4080	mutex_exit(&spa_namespace_lock);
4081
4082	nvlist_free(config);
4083	return (0);
4084}
4085
4086#endif	/* sun */
4087#endif
4088
4089/*
4090 * Import a non-root pool into the system.
4091 */
4092int
4093spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4094{
4095	spa_t *spa;
4096	char *altroot = NULL;
4097	spa_load_state_t state = SPA_LOAD_IMPORT;
4098	zpool_rewind_policy_t policy;
4099	uint64_t mode = spa_mode_global;
4100	uint64_t readonly = B_FALSE;
4101	int error;
4102	nvlist_t *nvroot;
4103	nvlist_t **spares, **l2cache;
4104	uint_t nspares, nl2cache;
4105
4106	/*
4107	 * If a pool with this name exists, return failure.
4108	 */
4109	mutex_enter(&spa_namespace_lock);
4110	if (spa_lookup(pool) != NULL) {
4111		mutex_exit(&spa_namespace_lock);
4112		return (SET_ERROR(EEXIST));
4113	}
4114
4115	/*
4116	 * Create and initialize the spa structure.
4117	 */
4118	(void) nvlist_lookup_string(props,
4119	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4120	(void) nvlist_lookup_uint64(props,
4121	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4122	if (readonly)
4123		mode = FREAD;
4124	spa = spa_add(pool, config, altroot);
4125	spa->spa_import_flags = flags;
4126
4127	/*
4128	 * Verbatim import - Take a pool and insert it into the namespace
4129	 * as if it had been loaded at boot.
4130	 */
4131	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4132		if (props != NULL)
4133			spa_configfile_set(spa, props, B_FALSE);
4134
4135		spa_config_sync(spa, B_FALSE, B_TRUE);
4136
4137		mutex_exit(&spa_namespace_lock);
4138		return (0);
4139	}
4140
4141	spa_activate(spa, mode);
4142
4143	/*
4144	 * Don't start async tasks until we know everything is healthy.
4145	 */
4146	spa_async_suspend(spa);
4147
4148	zpool_get_rewind_policy(config, &policy);
4149	if (policy.zrp_request & ZPOOL_DO_REWIND)
4150		state = SPA_LOAD_RECOVER;
4151
4152	/*
4153	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4154	 * because the user-supplied config is actually the one to trust when
4155	 * doing an import.
4156	 */
4157	if (state != SPA_LOAD_RECOVER)
4158		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4159
4160	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4161	    policy.zrp_request);
4162
4163	/*
4164	 * Propagate anything learned while loading the pool and pass it
4165	 * back to caller (i.e. rewind info, missing devices, etc).
4166	 */
4167	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4168	    spa->spa_load_info) == 0);
4169
4170	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4171	/*
4172	 * Toss any existing sparelist, as it doesn't have any validity
4173	 * anymore, and conflicts with spa_has_spare().
4174	 */
4175	if (spa->spa_spares.sav_config) {
4176		nvlist_free(spa->spa_spares.sav_config);
4177		spa->spa_spares.sav_config = NULL;
4178		spa_load_spares(spa);
4179	}
4180	if (spa->spa_l2cache.sav_config) {
4181		nvlist_free(spa->spa_l2cache.sav_config);
4182		spa->spa_l2cache.sav_config = NULL;
4183		spa_load_l2cache(spa);
4184	}
4185
4186	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4187	    &nvroot) == 0);
4188	if (error == 0)
4189		error = spa_validate_aux(spa, nvroot, -1ULL,
4190		    VDEV_ALLOC_SPARE);
4191	if (error == 0)
4192		error = spa_validate_aux(spa, nvroot, -1ULL,
4193		    VDEV_ALLOC_L2CACHE);
4194	spa_config_exit(spa, SCL_ALL, FTAG);
4195
4196	if (props != NULL)
4197		spa_configfile_set(spa, props, B_FALSE);
4198
4199	if (error != 0 || (props && spa_writeable(spa) &&
4200	    (error = spa_prop_set(spa, props)))) {
4201		spa_unload(spa);
4202		spa_deactivate(spa);
4203		spa_remove(spa);
4204		mutex_exit(&spa_namespace_lock);
4205		return (error);
4206	}
4207
4208	spa_async_resume(spa);
4209
4210	/*
4211	 * Override any spares and level 2 cache devices as specified by
4212	 * the user, as these may have correct device names/devids, etc.
4213	 */
4214	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4215	    &spares, &nspares) == 0) {
4216		if (spa->spa_spares.sav_config)
4217			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4218			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4219		else
4220			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4221			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4222		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4223		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4224		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4225		spa_load_spares(spa);
4226		spa_config_exit(spa, SCL_ALL, FTAG);
4227		spa->spa_spares.sav_sync = B_TRUE;
4228	}
4229	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4230	    &l2cache, &nl2cache) == 0) {
4231		if (spa->spa_l2cache.sav_config)
4232			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4233			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4234		else
4235			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4236			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4237		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4238		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4239		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4240		spa_load_l2cache(spa);
4241		spa_config_exit(spa, SCL_ALL, FTAG);
4242		spa->spa_l2cache.sav_sync = B_TRUE;
4243	}
4244
4245	/*
4246	 * Check for any removed devices.
4247	 */
4248	if (spa->spa_autoreplace) {
4249		spa_aux_check_removed(&spa->spa_spares);
4250		spa_aux_check_removed(&spa->spa_l2cache);
4251	}
4252
4253	if (spa_writeable(spa)) {
4254		/*
4255		 * Update the config cache to include the newly-imported pool.
4256		 */
4257		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4258	}
4259
4260	/*
4261	 * It's possible that the pool was expanded while it was exported.
4262	 * We kick off an async task to handle this for us.
4263	 */
4264	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4265
4266	mutex_exit(&spa_namespace_lock);
4267	spa_history_log_version(spa, "import");
4268
4269#ifdef __FreeBSD__
4270#ifdef _KERNEL
4271	zvol_create_minors(pool);
4272#endif
4273#endif
4274	return (0);
4275}
4276
4277nvlist_t *
4278spa_tryimport(nvlist_t *tryconfig)
4279{
4280	nvlist_t *config = NULL;
4281	char *poolname;
4282	spa_t *spa;
4283	uint64_t state;
4284	int error;
4285
4286	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4287		return (NULL);
4288
4289	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4290		return (NULL);
4291
4292	/*
4293	 * Create and initialize the spa structure.
4294	 */
4295	mutex_enter(&spa_namespace_lock);
4296	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4297	spa_activate(spa, FREAD);
4298
4299	/*
4300	 * Pass off the heavy lifting to spa_load().
4301	 * Pass TRUE for mosconfig because the user-supplied config
4302	 * is actually the one to trust when doing an import.
4303	 */
4304	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4305
4306	/*
4307	 * If 'tryconfig' was at least parsable, return the current config.
4308	 */
4309	if (spa->spa_root_vdev != NULL) {
4310		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4311		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4312		    poolname) == 0);
4313		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4314		    state) == 0);
4315		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4316		    spa->spa_uberblock.ub_timestamp) == 0);
4317		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4318		    spa->spa_load_info) == 0);
4319
4320		/*
4321		 * If the bootfs property exists on this pool then we
4322		 * copy it out so that external consumers can tell which
4323		 * pools are bootable.
4324		 */
4325		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4326			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4327
4328			/*
4329			 * We have to play games with the name since the
4330			 * pool was opened as TRYIMPORT_NAME.
4331			 */
4332			if (dsl_dsobj_to_dsname(spa_name(spa),
4333			    spa->spa_bootfs, tmpname) == 0) {
4334				char *cp;
4335				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4336
4337				cp = strchr(tmpname, '/');
4338				if (cp == NULL) {
4339					(void) strlcpy(dsname, tmpname,
4340					    MAXPATHLEN);
4341				} else {
4342					(void) snprintf(dsname, MAXPATHLEN,
4343					    "%s/%s", poolname, ++cp);
4344				}
4345				VERIFY(nvlist_add_string(config,
4346				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4347				kmem_free(dsname, MAXPATHLEN);
4348			}
4349			kmem_free(tmpname, MAXPATHLEN);
4350		}
4351
4352		/*
4353		 * Add the list of hot spares and level 2 cache devices.
4354		 */
4355		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4356		spa_add_spares(spa, config);
4357		spa_add_l2cache(spa, config);
4358		spa_config_exit(spa, SCL_CONFIG, FTAG);
4359	}
4360
4361	spa_unload(spa);
4362	spa_deactivate(spa);
4363	spa_remove(spa);
4364	mutex_exit(&spa_namespace_lock);
4365
4366	return (config);
4367}
4368
4369/*
4370 * Pool export/destroy
4371 *
4372 * The act of destroying or exporting a pool is very simple.  We make sure there
4373 * is no more pending I/O and any references to the pool are gone.  Then, we
4374 * update the pool state and sync all the labels to disk, removing the
4375 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4376 * we don't sync the labels or remove the configuration cache.
4377 */
4378static int
4379spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4380    boolean_t force, boolean_t hardforce)
4381{
4382	spa_t *spa;
4383
4384	if (oldconfig)
4385		*oldconfig = NULL;
4386
4387	if (!(spa_mode_global & FWRITE))
4388		return (SET_ERROR(EROFS));
4389
4390	mutex_enter(&spa_namespace_lock);
4391	if ((spa = spa_lookup(pool)) == NULL) {
4392		mutex_exit(&spa_namespace_lock);
4393		return (SET_ERROR(ENOENT));
4394	}
4395
4396	/*
4397	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4398	 * reacquire the namespace lock, and see if we can export.
4399	 */
4400	spa_open_ref(spa, FTAG);
4401	mutex_exit(&spa_namespace_lock);
4402	spa_async_suspend(spa);
4403	mutex_enter(&spa_namespace_lock);
4404	spa_close(spa, FTAG);
4405
4406	/*
4407	 * The pool will be in core if it's openable,
4408	 * in which case we can modify its state.
4409	 */
4410	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4411		/*
4412		 * Objsets may be open only because they're dirty, so we
4413		 * have to force it to sync before checking spa_refcnt.
4414		 */
4415		txg_wait_synced(spa->spa_dsl_pool, 0);
4416
4417		/*
4418		 * A pool cannot be exported or destroyed if there are active
4419		 * references.  If we are resetting a pool, allow references by
4420		 * fault injection handlers.
4421		 */
4422		if (!spa_refcount_zero(spa) ||
4423		    (spa->spa_inject_ref != 0 &&
4424		    new_state != POOL_STATE_UNINITIALIZED)) {
4425			spa_async_resume(spa);
4426			mutex_exit(&spa_namespace_lock);
4427			return (SET_ERROR(EBUSY));
4428		}
4429
4430		/*
4431		 * A pool cannot be exported if it has an active shared spare.
4432		 * This is to prevent other pools stealing the active spare
4433		 * from an exported pool. At user's own will, such pool can
4434		 * be forcedly exported.
4435		 */
4436		if (!force && new_state == POOL_STATE_EXPORTED &&
4437		    spa_has_active_shared_spare(spa)) {
4438			spa_async_resume(spa);
4439			mutex_exit(&spa_namespace_lock);
4440			return (SET_ERROR(EXDEV));
4441		}
4442
4443		/*
4444		 * We want this to be reflected on every label,
4445		 * so mark them all dirty.  spa_unload() will do the
4446		 * final sync that pushes these changes out.
4447		 */
4448		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4449			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4450			spa->spa_state = new_state;
4451			spa->spa_final_txg = spa_last_synced_txg(spa) +
4452			    TXG_DEFER_SIZE + 1;
4453			vdev_config_dirty(spa->spa_root_vdev);
4454			spa_config_exit(spa, SCL_ALL, FTAG);
4455		}
4456	}
4457
4458	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4459
4460	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4461		spa_unload(spa);
4462		spa_deactivate(spa);
4463	}
4464
4465	if (oldconfig && spa->spa_config)
4466		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4467
4468	if (new_state != POOL_STATE_UNINITIALIZED) {
4469		if (!hardforce)
4470			spa_config_sync(spa, B_TRUE, B_TRUE);
4471		spa_remove(spa);
4472	}
4473	mutex_exit(&spa_namespace_lock);
4474
4475	return (0);
4476}
4477
4478/*
4479 * Destroy a storage pool.
4480 */
4481int
4482spa_destroy(char *pool)
4483{
4484	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4485	    B_FALSE, B_FALSE));
4486}
4487
4488/*
4489 * Export a storage pool.
4490 */
4491int
4492spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4493    boolean_t hardforce)
4494{
4495	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4496	    force, hardforce));
4497}
4498
4499/*
4500 * Similar to spa_export(), this unloads the spa_t without actually removing it
4501 * from the namespace in any way.
4502 */
4503int
4504spa_reset(char *pool)
4505{
4506	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4507	    B_FALSE, B_FALSE));
4508}
4509
4510/*
4511 * ==========================================================================
4512 * Device manipulation
4513 * ==========================================================================
4514 */
4515
4516/*
4517 * Add a device to a storage pool.
4518 */
4519int
4520spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4521{
4522	uint64_t txg, id;
4523	int error;
4524	vdev_t *rvd = spa->spa_root_vdev;
4525	vdev_t *vd, *tvd;
4526	nvlist_t **spares, **l2cache;
4527	uint_t nspares, nl2cache;
4528
4529	ASSERT(spa_writeable(spa));
4530
4531	txg = spa_vdev_enter(spa);
4532
4533	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4534	    VDEV_ALLOC_ADD)) != 0)
4535		return (spa_vdev_exit(spa, NULL, txg, error));
4536
4537	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4538
4539	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4540	    &nspares) != 0)
4541		nspares = 0;
4542
4543	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4544	    &nl2cache) != 0)
4545		nl2cache = 0;
4546
4547	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4548		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4549
4550	if (vd->vdev_children != 0 &&
4551	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4552		return (spa_vdev_exit(spa, vd, txg, error));
4553
4554	/*
4555	 * We must validate the spares and l2cache devices after checking the
4556	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4557	 */
4558	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4559		return (spa_vdev_exit(spa, vd, txg, error));
4560
4561	/*
4562	 * Transfer each new top-level vdev from vd to rvd.
4563	 */
4564	for (int c = 0; c < vd->vdev_children; c++) {
4565
4566		/*
4567		 * Set the vdev id to the first hole, if one exists.
4568		 */
4569		for (id = 0; id < rvd->vdev_children; id++) {
4570			if (rvd->vdev_child[id]->vdev_ishole) {
4571				vdev_free(rvd->vdev_child[id]);
4572				break;
4573			}
4574		}
4575		tvd = vd->vdev_child[c];
4576		vdev_remove_child(vd, tvd);
4577		tvd->vdev_id = id;
4578		vdev_add_child(rvd, tvd);
4579		vdev_config_dirty(tvd);
4580	}
4581
4582	if (nspares != 0) {
4583		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4584		    ZPOOL_CONFIG_SPARES);
4585		spa_load_spares(spa);
4586		spa->spa_spares.sav_sync = B_TRUE;
4587	}
4588
4589	if (nl2cache != 0) {
4590		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4591		    ZPOOL_CONFIG_L2CACHE);
4592		spa_load_l2cache(spa);
4593		spa->spa_l2cache.sav_sync = B_TRUE;
4594	}
4595
4596	/*
4597	 * We have to be careful when adding new vdevs to an existing pool.
4598	 * If other threads start allocating from these vdevs before we
4599	 * sync the config cache, and we lose power, then upon reboot we may
4600	 * fail to open the pool because there are DVAs that the config cache
4601	 * can't translate.  Therefore, we first add the vdevs without
4602	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4603	 * and then let spa_config_update() initialize the new metaslabs.
4604	 *
4605	 * spa_load() checks for added-but-not-initialized vdevs, so that
4606	 * if we lose power at any point in this sequence, the remaining
4607	 * steps will be completed the next time we load the pool.
4608	 */
4609	(void) spa_vdev_exit(spa, vd, txg, 0);
4610
4611	mutex_enter(&spa_namespace_lock);
4612	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4613	mutex_exit(&spa_namespace_lock);
4614
4615	return (0);
4616}
4617
4618/*
4619 * Attach a device to a mirror.  The arguments are the path to any device
4620 * in the mirror, and the nvroot for the new device.  If the path specifies
4621 * a device that is not mirrored, we automatically insert the mirror vdev.
4622 *
4623 * If 'replacing' is specified, the new device is intended to replace the
4624 * existing device; in this case the two devices are made into their own
4625 * mirror using the 'replacing' vdev, which is functionally identical to
4626 * the mirror vdev (it actually reuses all the same ops) but has a few
4627 * extra rules: you can't attach to it after it's been created, and upon
4628 * completion of resilvering, the first disk (the one being replaced)
4629 * is automatically detached.
4630 */
4631int
4632spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4633{
4634	uint64_t txg, dtl_max_txg;
4635	vdev_t *rvd = spa->spa_root_vdev;
4636	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4637	vdev_ops_t *pvops;
4638	char *oldvdpath, *newvdpath;
4639	int newvd_isspare;
4640	int error;
4641
4642	ASSERT(spa_writeable(spa));
4643
4644	txg = spa_vdev_enter(spa);
4645
4646	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4647
4648	if (oldvd == NULL)
4649		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4650
4651	if (!oldvd->vdev_ops->vdev_op_leaf)
4652		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4653
4654	pvd = oldvd->vdev_parent;
4655
4656	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4657	    VDEV_ALLOC_ATTACH)) != 0)
4658		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4659
4660	if (newrootvd->vdev_children != 1)
4661		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4662
4663	newvd = newrootvd->vdev_child[0];
4664
4665	if (!newvd->vdev_ops->vdev_op_leaf)
4666		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4667
4668	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4669		return (spa_vdev_exit(spa, newrootvd, txg, error));
4670
4671	/*
4672	 * Spares can't replace logs
4673	 */
4674	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4675		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4676
4677	if (!replacing) {
4678		/*
4679		 * For attach, the only allowable parent is a mirror or the root
4680		 * vdev.
4681		 */
4682		if (pvd->vdev_ops != &vdev_mirror_ops &&
4683		    pvd->vdev_ops != &vdev_root_ops)
4684			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4685
4686		pvops = &vdev_mirror_ops;
4687	} else {
4688		/*
4689		 * Active hot spares can only be replaced by inactive hot
4690		 * spares.
4691		 */
4692		if (pvd->vdev_ops == &vdev_spare_ops &&
4693		    oldvd->vdev_isspare &&
4694		    !spa_has_spare(spa, newvd->vdev_guid))
4695			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4696
4697		/*
4698		 * If the source is a hot spare, and the parent isn't already a
4699		 * spare, then we want to create a new hot spare.  Otherwise, we
4700		 * want to create a replacing vdev.  The user is not allowed to
4701		 * attach to a spared vdev child unless the 'isspare' state is
4702		 * the same (spare replaces spare, non-spare replaces
4703		 * non-spare).
4704		 */
4705		if (pvd->vdev_ops == &vdev_replacing_ops &&
4706		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4707			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4708		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4709		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4710			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4711		}
4712
4713		if (newvd->vdev_isspare)
4714			pvops = &vdev_spare_ops;
4715		else
4716			pvops = &vdev_replacing_ops;
4717	}
4718
4719	/*
4720	 * Make sure the new device is big enough.
4721	 */
4722	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4723		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4724
4725	/*
4726	 * The new device cannot have a higher alignment requirement
4727	 * than the top-level vdev.
4728	 */
4729	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4730		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4731
4732	/*
4733	 * If this is an in-place replacement, update oldvd's path and devid
4734	 * to make it distinguishable from newvd, and unopenable from now on.
4735	 */
4736	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4737		spa_strfree(oldvd->vdev_path);
4738		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4739		    KM_SLEEP);
4740		(void) sprintf(oldvd->vdev_path, "%s/%s",
4741		    newvd->vdev_path, "old");
4742		if (oldvd->vdev_devid != NULL) {
4743			spa_strfree(oldvd->vdev_devid);
4744			oldvd->vdev_devid = NULL;
4745		}
4746	}
4747
4748	/* mark the device being resilvered */
4749	newvd->vdev_resilver_txg = txg;
4750
4751	/*
4752	 * If the parent is not a mirror, or if we're replacing, insert the new
4753	 * mirror/replacing/spare vdev above oldvd.
4754	 */
4755	if (pvd->vdev_ops != pvops)
4756		pvd = vdev_add_parent(oldvd, pvops);
4757
4758	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4759	ASSERT(pvd->vdev_ops == pvops);
4760	ASSERT(oldvd->vdev_parent == pvd);
4761
4762	/*
4763	 * Extract the new device from its root and add it to pvd.
4764	 */
4765	vdev_remove_child(newrootvd, newvd);
4766	newvd->vdev_id = pvd->vdev_children;
4767	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4768	vdev_add_child(pvd, newvd);
4769
4770	tvd = newvd->vdev_top;
4771	ASSERT(pvd->vdev_top == tvd);
4772	ASSERT(tvd->vdev_parent == rvd);
4773
4774	vdev_config_dirty(tvd);
4775
4776	/*
4777	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4778	 * for any dmu_sync-ed blocks.  It will propagate upward when
4779	 * spa_vdev_exit() calls vdev_dtl_reassess().
4780	 */
4781	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4782
4783	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4784	    dtl_max_txg - TXG_INITIAL);
4785
4786	if (newvd->vdev_isspare) {
4787		spa_spare_activate(newvd);
4788		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4789	}
4790
4791	oldvdpath = spa_strdup(oldvd->vdev_path);
4792	newvdpath = spa_strdup(newvd->vdev_path);
4793	newvd_isspare = newvd->vdev_isspare;
4794
4795	/*
4796	 * Mark newvd's DTL dirty in this txg.
4797	 */
4798	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4799
4800	/*
4801	 * Schedule the resilver to restart in the future. We do this to
4802	 * ensure that dmu_sync-ed blocks have been stitched into the
4803	 * respective datasets.
4804	 */
4805	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4806
4807	/*
4808	 * Commit the config
4809	 */
4810	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4811
4812	spa_history_log_internal(spa, "vdev attach", NULL,
4813	    "%s vdev=%s %s vdev=%s",
4814	    replacing && newvd_isspare ? "spare in" :
4815	    replacing ? "replace" : "attach", newvdpath,
4816	    replacing ? "for" : "to", oldvdpath);
4817
4818	spa_strfree(oldvdpath);
4819	spa_strfree(newvdpath);
4820
4821	if (spa->spa_bootfs)
4822		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4823
4824	return (0);
4825}
4826
4827/*
4828 * Detach a device from a mirror or replacing vdev.
4829 *
4830 * If 'replace_done' is specified, only detach if the parent
4831 * is a replacing vdev.
4832 */
4833int
4834spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4835{
4836	uint64_t txg;
4837	int error;
4838	vdev_t *rvd = spa->spa_root_vdev;
4839	vdev_t *vd, *pvd, *cvd, *tvd;
4840	boolean_t unspare = B_FALSE;
4841	uint64_t unspare_guid = 0;
4842	char *vdpath;
4843
4844	ASSERT(spa_writeable(spa));
4845
4846	txg = spa_vdev_enter(spa);
4847
4848	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4849
4850	if (vd == NULL)
4851		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4852
4853	if (!vd->vdev_ops->vdev_op_leaf)
4854		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4855
4856	pvd = vd->vdev_parent;
4857
4858	/*
4859	 * If the parent/child relationship is not as expected, don't do it.
4860	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4861	 * vdev that's replacing B with C.  The user's intent in replacing
4862	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4863	 * the replace by detaching C, the expected behavior is to end up
4864	 * M(A,B).  But suppose that right after deciding to detach C,
4865	 * the replacement of B completes.  We would have M(A,C), and then
4866	 * ask to detach C, which would leave us with just A -- not what
4867	 * the user wanted.  To prevent this, we make sure that the
4868	 * parent/child relationship hasn't changed -- in this example,
4869	 * that C's parent is still the replacing vdev R.
4870	 */
4871	if (pvd->vdev_guid != pguid && pguid != 0)
4872		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4873
4874	/*
4875	 * Only 'replacing' or 'spare' vdevs can be replaced.
4876	 */
4877	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4878	    pvd->vdev_ops != &vdev_spare_ops)
4879		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4880
4881	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4882	    spa_version(spa) >= SPA_VERSION_SPARES);
4883
4884	/*
4885	 * Only mirror, replacing, and spare vdevs support detach.
4886	 */
4887	if (pvd->vdev_ops != &vdev_replacing_ops &&
4888	    pvd->vdev_ops != &vdev_mirror_ops &&
4889	    pvd->vdev_ops != &vdev_spare_ops)
4890		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4891
4892	/*
4893	 * If this device has the only valid copy of some data,
4894	 * we cannot safely detach it.
4895	 */
4896	if (vdev_dtl_required(vd))
4897		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4898
4899	ASSERT(pvd->vdev_children >= 2);
4900
4901	/*
4902	 * If we are detaching the second disk from a replacing vdev, then
4903	 * check to see if we changed the original vdev's path to have "/old"
4904	 * at the end in spa_vdev_attach().  If so, undo that change now.
4905	 */
4906	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4907	    vd->vdev_path != NULL) {
4908		size_t len = strlen(vd->vdev_path);
4909
4910		for (int c = 0; c < pvd->vdev_children; c++) {
4911			cvd = pvd->vdev_child[c];
4912
4913			if (cvd == vd || cvd->vdev_path == NULL)
4914				continue;
4915
4916			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4917			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4918				spa_strfree(cvd->vdev_path);
4919				cvd->vdev_path = spa_strdup(vd->vdev_path);
4920				break;
4921			}
4922		}
4923	}
4924
4925	/*
4926	 * If we are detaching the original disk from a spare, then it implies
4927	 * that the spare should become a real disk, and be removed from the
4928	 * active spare list for the pool.
4929	 */
4930	if (pvd->vdev_ops == &vdev_spare_ops &&
4931	    vd->vdev_id == 0 &&
4932	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4933		unspare = B_TRUE;
4934
4935	/*
4936	 * Erase the disk labels so the disk can be used for other things.
4937	 * This must be done after all other error cases are handled,
4938	 * but before we disembowel vd (so we can still do I/O to it).
4939	 * But if we can't do it, don't treat the error as fatal --
4940	 * it may be that the unwritability of the disk is the reason
4941	 * it's being detached!
4942	 */
4943	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4944
4945	/*
4946	 * Remove vd from its parent and compact the parent's children.
4947	 */
4948	vdev_remove_child(pvd, vd);
4949	vdev_compact_children(pvd);
4950
4951	/*
4952	 * Remember one of the remaining children so we can get tvd below.
4953	 */
4954	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4955
4956	/*
4957	 * If we need to remove the remaining child from the list of hot spares,
4958	 * do it now, marking the vdev as no longer a spare in the process.
4959	 * We must do this before vdev_remove_parent(), because that can
4960	 * change the GUID if it creates a new toplevel GUID.  For a similar
4961	 * reason, we must remove the spare now, in the same txg as the detach;
4962	 * otherwise someone could attach a new sibling, change the GUID, and
4963	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4964	 */
4965	if (unspare) {
4966		ASSERT(cvd->vdev_isspare);
4967		spa_spare_remove(cvd);
4968		unspare_guid = cvd->vdev_guid;
4969		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4970		cvd->vdev_unspare = B_TRUE;
4971	}
4972
4973	/*
4974	 * If the parent mirror/replacing vdev only has one child,
4975	 * the parent is no longer needed.  Remove it from the tree.
4976	 */
4977	if (pvd->vdev_children == 1) {
4978		if (pvd->vdev_ops == &vdev_spare_ops)
4979			cvd->vdev_unspare = B_FALSE;
4980		vdev_remove_parent(cvd);
4981	}
4982
4983
4984	/*
4985	 * We don't set tvd until now because the parent we just removed
4986	 * may have been the previous top-level vdev.
4987	 */
4988	tvd = cvd->vdev_top;
4989	ASSERT(tvd->vdev_parent == rvd);
4990
4991	/*
4992	 * Reevaluate the parent vdev state.
4993	 */
4994	vdev_propagate_state(cvd);
4995
4996	/*
4997	 * If the 'autoexpand' property is set on the pool then automatically
4998	 * try to expand the size of the pool. For example if the device we
4999	 * just detached was smaller than the others, it may be possible to
5000	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5001	 * first so that we can obtain the updated sizes of the leaf vdevs.
5002	 */
5003	if (spa->spa_autoexpand) {
5004		vdev_reopen(tvd);
5005		vdev_expand(tvd, txg);
5006	}
5007
5008	vdev_config_dirty(tvd);
5009
5010	/*
5011	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5012	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5013	 * But first make sure we're not on any *other* txg's DTL list, to
5014	 * prevent vd from being accessed after it's freed.
5015	 */
5016	vdpath = spa_strdup(vd->vdev_path);
5017	for (int t = 0; t < TXG_SIZE; t++)
5018		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5019	vd->vdev_detached = B_TRUE;
5020	vdev_dirty(tvd, VDD_DTL, vd, txg);
5021
5022	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5023
5024	/* hang on to the spa before we release the lock */
5025	spa_open_ref(spa, FTAG);
5026
5027	error = spa_vdev_exit(spa, vd, txg, 0);
5028
5029	spa_history_log_internal(spa, "detach", NULL,
5030	    "vdev=%s", vdpath);
5031	spa_strfree(vdpath);
5032
5033	/*
5034	 * If this was the removal of the original device in a hot spare vdev,
5035	 * then we want to go through and remove the device from the hot spare
5036	 * list of every other pool.
5037	 */
5038	if (unspare) {
5039		spa_t *altspa = NULL;
5040
5041		mutex_enter(&spa_namespace_lock);
5042		while ((altspa = spa_next(altspa)) != NULL) {
5043			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5044			    altspa == spa)
5045				continue;
5046
5047			spa_open_ref(altspa, FTAG);
5048			mutex_exit(&spa_namespace_lock);
5049			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5050			mutex_enter(&spa_namespace_lock);
5051			spa_close(altspa, FTAG);
5052		}
5053		mutex_exit(&spa_namespace_lock);
5054
5055		/* search the rest of the vdevs for spares to remove */
5056		spa_vdev_resilver_done(spa);
5057	}
5058
5059	/* all done with the spa; OK to release */
5060	mutex_enter(&spa_namespace_lock);
5061	spa_close(spa, FTAG);
5062	mutex_exit(&spa_namespace_lock);
5063
5064	return (error);
5065}
5066
5067/*
5068 * Split a set of devices from their mirrors, and create a new pool from them.
5069 */
5070int
5071spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5072    nvlist_t *props, boolean_t exp)
5073{
5074	int error = 0;
5075	uint64_t txg, *glist;
5076	spa_t *newspa;
5077	uint_t c, children, lastlog;
5078	nvlist_t **child, *nvl, *tmp;
5079	dmu_tx_t *tx;
5080	char *altroot = NULL;
5081	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5082	boolean_t activate_slog;
5083
5084	ASSERT(spa_writeable(spa));
5085
5086	txg = spa_vdev_enter(spa);
5087
5088	/* clear the log and flush everything up to now */
5089	activate_slog = spa_passivate_log(spa);
5090	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5091	error = spa_offline_log(spa);
5092	txg = spa_vdev_config_enter(spa);
5093
5094	if (activate_slog)
5095		spa_activate_log(spa);
5096
5097	if (error != 0)
5098		return (spa_vdev_exit(spa, NULL, txg, error));
5099
5100	/* check new spa name before going any further */
5101	if (spa_lookup(newname) != NULL)
5102		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5103
5104	/*
5105	 * scan through all the children to ensure they're all mirrors
5106	 */
5107	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5108	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5109	    &children) != 0)
5110		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5111
5112	/* first, check to ensure we've got the right child count */
5113	rvd = spa->spa_root_vdev;
5114	lastlog = 0;
5115	for (c = 0; c < rvd->vdev_children; c++) {
5116		vdev_t *vd = rvd->vdev_child[c];
5117
5118		/* don't count the holes & logs as children */
5119		if (vd->vdev_islog || vd->vdev_ishole) {
5120			if (lastlog == 0)
5121				lastlog = c;
5122			continue;
5123		}
5124
5125		lastlog = 0;
5126	}
5127	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5128		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5129
5130	/* next, ensure no spare or cache devices are part of the split */
5131	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5132	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5133		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5134
5135	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5136	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5137
5138	/* then, loop over each vdev and validate it */
5139	for (c = 0; c < children; c++) {
5140		uint64_t is_hole = 0;
5141
5142		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5143		    &is_hole);
5144
5145		if (is_hole != 0) {
5146			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5147			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5148				continue;
5149			} else {
5150				error = SET_ERROR(EINVAL);
5151				break;
5152			}
5153		}
5154
5155		/* which disk is going to be split? */
5156		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5157		    &glist[c]) != 0) {
5158			error = SET_ERROR(EINVAL);
5159			break;
5160		}
5161
5162		/* look it up in the spa */
5163		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5164		if (vml[c] == NULL) {
5165			error = SET_ERROR(ENODEV);
5166			break;
5167		}
5168
5169		/* make sure there's nothing stopping the split */
5170		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5171		    vml[c]->vdev_islog ||
5172		    vml[c]->vdev_ishole ||
5173		    vml[c]->vdev_isspare ||
5174		    vml[c]->vdev_isl2cache ||
5175		    !vdev_writeable(vml[c]) ||
5176		    vml[c]->vdev_children != 0 ||
5177		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5178		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5179			error = SET_ERROR(EINVAL);
5180			break;
5181		}
5182
5183		if (vdev_dtl_required(vml[c])) {
5184			error = SET_ERROR(EBUSY);
5185			break;
5186		}
5187
5188		/* we need certain info from the top level */
5189		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5190		    vml[c]->vdev_top->vdev_ms_array) == 0);
5191		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5192		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5193		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5194		    vml[c]->vdev_top->vdev_asize) == 0);
5195		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5196		    vml[c]->vdev_top->vdev_ashift) == 0);
5197	}
5198
5199	if (error != 0) {
5200		kmem_free(vml, children * sizeof (vdev_t *));
5201		kmem_free(glist, children * sizeof (uint64_t));
5202		return (spa_vdev_exit(spa, NULL, txg, error));
5203	}
5204
5205	/* stop writers from using the disks */
5206	for (c = 0; c < children; c++) {
5207		if (vml[c] != NULL)
5208			vml[c]->vdev_offline = B_TRUE;
5209	}
5210	vdev_reopen(spa->spa_root_vdev);
5211
5212	/*
5213	 * Temporarily record the splitting vdevs in the spa config.  This
5214	 * will disappear once the config is regenerated.
5215	 */
5216	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5217	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5218	    glist, children) == 0);
5219	kmem_free(glist, children * sizeof (uint64_t));
5220
5221	mutex_enter(&spa->spa_props_lock);
5222	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5223	    nvl) == 0);
5224	mutex_exit(&spa->spa_props_lock);
5225	spa->spa_config_splitting = nvl;
5226	vdev_config_dirty(spa->spa_root_vdev);
5227
5228	/* configure and create the new pool */
5229	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5230	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5231	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5232	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5233	    spa_version(spa)) == 0);
5234	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5235	    spa->spa_config_txg) == 0);
5236	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5237	    spa_generate_guid(NULL)) == 0);
5238	(void) nvlist_lookup_string(props,
5239	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5240
5241	/* add the new pool to the namespace */
5242	newspa = spa_add(newname, config, altroot);
5243	newspa->spa_config_txg = spa->spa_config_txg;
5244	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5245
5246	/* release the spa config lock, retaining the namespace lock */
5247	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5248
5249	if (zio_injection_enabled)
5250		zio_handle_panic_injection(spa, FTAG, 1);
5251
5252	spa_activate(newspa, spa_mode_global);
5253	spa_async_suspend(newspa);
5254
5255#ifndef sun
5256	/* mark that we are creating new spa by splitting */
5257	newspa->spa_splitting_newspa = B_TRUE;
5258#endif
5259	/* create the new pool from the disks of the original pool */
5260	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5261#ifndef sun
5262	newspa->spa_splitting_newspa = B_FALSE;
5263#endif
5264	if (error)
5265		goto out;
5266
5267	/* if that worked, generate a real config for the new pool */
5268	if (newspa->spa_root_vdev != NULL) {
5269		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5270		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5271		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5272		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5273		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5274		    B_TRUE));
5275	}
5276
5277	/* set the props */
5278	if (props != NULL) {
5279		spa_configfile_set(newspa, props, B_FALSE);
5280		error = spa_prop_set(newspa, props);
5281		if (error)
5282			goto out;
5283	}
5284
5285	/* flush everything */
5286	txg = spa_vdev_config_enter(newspa);
5287	vdev_config_dirty(newspa->spa_root_vdev);
5288	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5289
5290	if (zio_injection_enabled)
5291		zio_handle_panic_injection(spa, FTAG, 2);
5292
5293	spa_async_resume(newspa);
5294
5295	/* finally, update the original pool's config */
5296	txg = spa_vdev_config_enter(spa);
5297	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5298	error = dmu_tx_assign(tx, TXG_WAIT);
5299	if (error != 0)
5300		dmu_tx_abort(tx);
5301	for (c = 0; c < children; c++) {
5302		if (vml[c] != NULL) {
5303			vdev_split(vml[c]);
5304			if (error == 0)
5305				spa_history_log_internal(spa, "detach", tx,
5306				    "vdev=%s", vml[c]->vdev_path);
5307			vdev_free(vml[c]);
5308		}
5309	}
5310	vdev_config_dirty(spa->spa_root_vdev);
5311	spa->spa_config_splitting = NULL;
5312	nvlist_free(nvl);
5313	if (error == 0)
5314		dmu_tx_commit(tx);
5315	(void) spa_vdev_exit(spa, NULL, txg, 0);
5316
5317	if (zio_injection_enabled)
5318		zio_handle_panic_injection(spa, FTAG, 3);
5319
5320	/* split is complete; log a history record */
5321	spa_history_log_internal(newspa, "split", NULL,
5322	    "from pool %s", spa_name(spa));
5323
5324	kmem_free(vml, children * sizeof (vdev_t *));
5325
5326	/* if we're not going to mount the filesystems in userland, export */
5327	if (exp)
5328		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5329		    B_FALSE, B_FALSE);
5330
5331	return (error);
5332
5333out:
5334	spa_unload(newspa);
5335	spa_deactivate(newspa);
5336	spa_remove(newspa);
5337
5338	txg = spa_vdev_config_enter(spa);
5339
5340	/* re-online all offlined disks */
5341	for (c = 0; c < children; c++) {
5342		if (vml[c] != NULL)
5343			vml[c]->vdev_offline = B_FALSE;
5344	}
5345	vdev_reopen(spa->spa_root_vdev);
5346
5347	nvlist_free(spa->spa_config_splitting);
5348	spa->spa_config_splitting = NULL;
5349	(void) spa_vdev_exit(spa, NULL, txg, error);
5350
5351	kmem_free(vml, children * sizeof (vdev_t *));
5352	return (error);
5353}
5354
5355static nvlist_t *
5356spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5357{
5358	for (int i = 0; i < count; i++) {
5359		uint64_t guid;
5360
5361		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5362		    &guid) == 0);
5363
5364		if (guid == target_guid)
5365			return (nvpp[i]);
5366	}
5367
5368	return (NULL);
5369}
5370
5371static void
5372spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5373	nvlist_t *dev_to_remove)
5374{
5375	nvlist_t **newdev = NULL;
5376
5377	if (count > 1)
5378		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5379
5380	for (int i = 0, j = 0; i < count; i++) {
5381		if (dev[i] == dev_to_remove)
5382			continue;
5383		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5384	}
5385
5386	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5387	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5388
5389	for (int i = 0; i < count - 1; i++)
5390		nvlist_free(newdev[i]);
5391
5392	if (count > 1)
5393		kmem_free(newdev, (count - 1) * sizeof (void *));
5394}
5395
5396/*
5397 * Evacuate the device.
5398 */
5399static int
5400spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5401{
5402	uint64_t txg;
5403	int error = 0;
5404
5405	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5406	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5407	ASSERT(vd == vd->vdev_top);
5408
5409	/*
5410	 * Evacuate the device.  We don't hold the config lock as writer
5411	 * since we need to do I/O but we do keep the
5412	 * spa_namespace_lock held.  Once this completes the device
5413	 * should no longer have any blocks allocated on it.
5414	 */
5415	if (vd->vdev_islog) {
5416		if (vd->vdev_stat.vs_alloc != 0)
5417			error = spa_offline_log(spa);
5418	} else {
5419		error = SET_ERROR(ENOTSUP);
5420	}
5421
5422	if (error)
5423		return (error);
5424
5425	/*
5426	 * The evacuation succeeded.  Remove any remaining MOS metadata
5427	 * associated with this vdev, and wait for these changes to sync.
5428	 */
5429	ASSERT0(vd->vdev_stat.vs_alloc);
5430	txg = spa_vdev_config_enter(spa);
5431	vd->vdev_removing = B_TRUE;
5432	vdev_dirty_leaves(vd, VDD_DTL, txg);
5433	vdev_config_dirty(vd);
5434	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5435
5436	return (0);
5437}
5438
5439/*
5440 * Complete the removal by cleaning up the namespace.
5441 */
5442static void
5443spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5444{
5445	vdev_t *rvd = spa->spa_root_vdev;
5446	uint64_t id = vd->vdev_id;
5447	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5448
5449	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5450	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5451	ASSERT(vd == vd->vdev_top);
5452
5453	/*
5454	 * Only remove any devices which are empty.
5455	 */
5456	if (vd->vdev_stat.vs_alloc != 0)
5457		return;
5458
5459	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5460
5461	if (list_link_active(&vd->vdev_state_dirty_node))
5462		vdev_state_clean(vd);
5463	if (list_link_active(&vd->vdev_config_dirty_node))
5464		vdev_config_clean(vd);
5465
5466	vdev_free(vd);
5467
5468	if (last_vdev) {
5469		vdev_compact_children(rvd);
5470	} else {
5471		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5472		vdev_add_child(rvd, vd);
5473	}
5474	vdev_config_dirty(rvd);
5475
5476	/*
5477	 * Reassess the health of our root vdev.
5478	 */
5479	vdev_reopen(rvd);
5480}
5481
5482/*
5483 * Remove a device from the pool -
5484 *
5485 * Removing a device from the vdev namespace requires several steps
5486 * and can take a significant amount of time.  As a result we use
5487 * the spa_vdev_config_[enter/exit] functions which allow us to
5488 * grab and release the spa_config_lock while still holding the namespace
5489 * lock.  During each step the configuration is synced out.
5490 *
5491 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5492 * devices.
5493 */
5494int
5495spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5496{
5497	vdev_t *vd;
5498	metaslab_group_t *mg;
5499	nvlist_t **spares, **l2cache, *nv;
5500	uint64_t txg = 0;
5501	uint_t nspares, nl2cache;
5502	int error = 0;
5503	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5504
5505	ASSERT(spa_writeable(spa));
5506
5507	if (!locked)
5508		txg = spa_vdev_enter(spa);
5509
5510	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5511
5512	if (spa->spa_spares.sav_vdevs != NULL &&
5513	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5514	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5515	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5516		/*
5517		 * Only remove the hot spare if it's not currently in use
5518		 * in this pool.
5519		 */
5520		if (vd == NULL || unspare) {
5521			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5522			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5523			spa_load_spares(spa);
5524			spa->spa_spares.sav_sync = B_TRUE;
5525		} else {
5526			error = SET_ERROR(EBUSY);
5527		}
5528	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5529	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5530	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5531	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5532		/*
5533		 * Cache devices can always be removed.
5534		 */
5535		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5536		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5537		spa_load_l2cache(spa);
5538		spa->spa_l2cache.sav_sync = B_TRUE;
5539	} else if (vd != NULL && vd->vdev_islog) {
5540		ASSERT(!locked);
5541		ASSERT(vd == vd->vdev_top);
5542
5543		mg = vd->vdev_mg;
5544
5545		/*
5546		 * Stop allocating from this vdev.
5547		 */
5548		metaslab_group_passivate(mg);
5549
5550		/*
5551		 * Wait for the youngest allocations and frees to sync,
5552		 * and then wait for the deferral of those frees to finish.
5553		 */
5554		spa_vdev_config_exit(spa, NULL,
5555		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5556
5557		/*
5558		 * Attempt to evacuate the vdev.
5559		 */
5560		error = spa_vdev_remove_evacuate(spa, vd);
5561
5562		txg = spa_vdev_config_enter(spa);
5563
5564		/*
5565		 * If we couldn't evacuate the vdev, unwind.
5566		 */
5567		if (error) {
5568			metaslab_group_activate(mg);
5569			return (spa_vdev_exit(spa, NULL, txg, error));
5570		}
5571
5572		/*
5573		 * Clean up the vdev namespace.
5574		 */
5575		spa_vdev_remove_from_namespace(spa, vd);
5576
5577	} else if (vd != NULL) {
5578		/*
5579		 * Normal vdevs cannot be removed (yet).
5580		 */
5581		error = SET_ERROR(ENOTSUP);
5582	} else {
5583		/*
5584		 * There is no vdev of any kind with the specified guid.
5585		 */
5586		error = SET_ERROR(ENOENT);
5587	}
5588
5589	if (!locked)
5590		return (spa_vdev_exit(spa, NULL, txg, error));
5591
5592	return (error);
5593}
5594
5595/*
5596 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5597 * currently spared, so we can detach it.
5598 */
5599static vdev_t *
5600spa_vdev_resilver_done_hunt(vdev_t *vd)
5601{
5602	vdev_t *newvd, *oldvd;
5603
5604	for (int c = 0; c < vd->vdev_children; c++) {
5605		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5606		if (oldvd != NULL)
5607			return (oldvd);
5608	}
5609
5610	/*
5611	 * Check for a completed replacement.  We always consider the first
5612	 * vdev in the list to be the oldest vdev, and the last one to be
5613	 * the newest (see spa_vdev_attach() for how that works).  In
5614	 * the case where the newest vdev is faulted, we will not automatically
5615	 * remove it after a resilver completes.  This is OK as it will require
5616	 * user intervention to determine which disk the admin wishes to keep.
5617	 */
5618	if (vd->vdev_ops == &vdev_replacing_ops) {
5619		ASSERT(vd->vdev_children > 1);
5620
5621		newvd = vd->vdev_child[vd->vdev_children - 1];
5622		oldvd = vd->vdev_child[0];
5623
5624		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5625		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5626		    !vdev_dtl_required(oldvd))
5627			return (oldvd);
5628	}
5629
5630	/*
5631	 * Check for a completed resilver with the 'unspare' flag set.
5632	 */
5633	if (vd->vdev_ops == &vdev_spare_ops) {
5634		vdev_t *first = vd->vdev_child[0];
5635		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5636
5637		if (last->vdev_unspare) {
5638			oldvd = first;
5639			newvd = last;
5640		} else if (first->vdev_unspare) {
5641			oldvd = last;
5642			newvd = first;
5643		} else {
5644			oldvd = NULL;
5645		}
5646
5647		if (oldvd != NULL &&
5648		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5649		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5650		    !vdev_dtl_required(oldvd))
5651			return (oldvd);
5652
5653		/*
5654		 * If there are more than two spares attached to a disk,
5655		 * and those spares are not required, then we want to
5656		 * attempt to free them up now so that they can be used
5657		 * by other pools.  Once we're back down to a single
5658		 * disk+spare, we stop removing them.
5659		 */
5660		if (vd->vdev_children > 2) {
5661			newvd = vd->vdev_child[1];
5662
5663			if (newvd->vdev_isspare && last->vdev_isspare &&
5664			    vdev_dtl_empty(last, DTL_MISSING) &&
5665			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5666			    !vdev_dtl_required(newvd))
5667				return (newvd);
5668		}
5669	}
5670
5671	return (NULL);
5672}
5673
5674static void
5675spa_vdev_resilver_done(spa_t *spa)
5676{
5677	vdev_t *vd, *pvd, *ppvd;
5678	uint64_t guid, sguid, pguid, ppguid;
5679
5680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5681
5682	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5683		pvd = vd->vdev_parent;
5684		ppvd = pvd->vdev_parent;
5685		guid = vd->vdev_guid;
5686		pguid = pvd->vdev_guid;
5687		ppguid = ppvd->vdev_guid;
5688		sguid = 0;
5689		/*
5690		 * If we have just finished replacing a hot spared device, then
5691		 * we need to detach the parent's first child (the original hot
5692		 * spare) as well.
5693		 */
5694		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5695		    ppvd->vdev_children == 2) {
5696			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5697			sguid = ppvd->vdev_child[1]->vdev_guid;
5698		}
5699		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5700
5701		spa_config_exit(spa, SCL_ALL, FTAG);
5702		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5703			return;
5704		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5705			return;
5706		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5707	}
5708
5709	spa_config_exit(spa, SCL_ALL, FTAG);
5710}
5711
5712/*
5713 * Update the stored path or FRU for this vdev.
5714 */
5715int
5716spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5717    boolean_t ispath)
5718{
5719	vdev_t *vd;
5720	boolean_t sync = B_FALSE;
5721
5722	ASSERT(spa_writeable(spa));
5723
5724	spa_vdev_state_enter(spa, SCL_ALL);
5725
5726	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5727		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5728
5729	if (!vd->vdev_ops->vdev_op_leaf)
5730		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5731
5732	if (ispath) {
5733		if (strcmp(value, vd->vdev_path) != 0) {
5734			spa_strfree(vd->vdev_path);
5735			vd->vdev_path = spa_strdup(value);
5736			sync = B_TRUE;
5737		}
5738	} else {
5739		if (vd->vdev_fru == NULL) {
5740			vd->vdev_fru = spa_strdup(value);
5741			sync = B_TRUE;
5742		} else if (strcmp(value, vd->vdev_fru) != 0) {
5743			spa_strfree(vd->vdev_fru);
5744			vd->vdev_fru = spa_strdup(value);
5745			sync = B_TRUE;
5746		}
5747	}
5748
5749	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5750}
5751
5752int
5753spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5754{
5755	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5756}
5757
5758int
5759spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5760{
5761	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5762}
5763
5764/*
5765 * ==========================================================================
5766 * SPA Scanning
5767 * ==========================================================================
5768 */
5769
5770int
5771spa_scan_stop(spa_t *spa)
5772{
5773	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5774	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5775		return (SET_ERROR(EBUSY));
5776	return (dsl_scan_cancel(spa->spa_dsl_pool));
5777}
5778
5779int
5780spa_scan(spa_t *spa, pool_scan_func_t func)
5781{
5782	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5783
5784	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5785		return (SET_ERROR(ENOTSUP));
5786
5787	/*
5788	 * If a resilver was requested, but there is no DTL on a
5789	 * writeable leaf device, we have nothing to do.
5790	 */
5791	if (func == POOL_SCAN_RESILVER &&
5792	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5793		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5794		return (0);
5795	}
5796
5797	return (dsl_scan(spa->spa_dsl_pool, func));
5798}
5799
5800/*
5801 * ==========================================================================
5802 * SPA async task processing
5803 * ==========================================================================
5804 */
5805
5806static void
5807spa_async_remove(spa_t *spa, vdev_t *vd)
5808{
5809	if (vd->vdev_remove_wanted) {
5810		vd->vdev_remove_wanted = B_FALSE;
5811		vd->vdev_delayed_close = B_FALSE;
5812		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5813
5814		/*
5815		 * We want to clear the stats, but we don't want to do a full
5816		 * vdev_clear() as that will cause us to throw away
5817		 * degraded/faulted state as well as attempt to reopen the
5818		 * device, all of which is a waste.
5819		 */
5820		vd->vdev_stat.vs_read_errors = 0;
5821		vd->vdev_stat.vs_write_errors = 0;
5822		vd->vdev_stat.vs_checksum_errors = 0;
5823
5824		vdev_state_dirty(vd->vdev_top);
5825	}
5826
5827	for (int c = 0; c < vd->vdev_children; c++)
5828		spa_async_remove(spa, vd->vdev_child[c]);
5829}
5830
5831static void
5832spa_async_probe(spa_t *spa, vdev_t *vd)
5833{
5834	if (vd->vdev_probe_wanted) {
5835		vd->vdev_probe_wanted = B_FALSE;
5836		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5837	}
5838
5839	for (int c = 0; c < vd->vdev_children; c++)
5840		spa_async_probe(spa, vd->vdev_child[c]);
5841}
5842
5843static void
5844spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5845{
5846	sysevent_id_t eid;
5847	nvlist_t *attr;
5848	char *physpath;
5849
5850	if (!spa->spa_autoexpand)
5851		return;
5852
5853	for (int c = 0; c < vd->vdev_children; c++) {
5854		vdev_t *cvd = vd->vdev_child[c];
5855		spa_async_autoexpand(spa, cvd);
5856	}
5857
5858	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5859		return;
5860
5861	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5862	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5863
5864	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5865	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5866
5867	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5868	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5869
5870	nvlist_free(attr);
5871	kmem_free(physpath, MAXPATHLEN);
5872}
5873
5874static void
5875spa_async_thread(void *arg)
5876{
5877	spa_t *spa = arg;
5878	int tasks;
5879
5880	ASSERT(spa->spa_sync_on);
5881
5882	mutex_enter(&spa->spa_async_lock);
5883	tasks = spa->spa_async_tasks;
5884	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5885	mutex_exit(&spa->spa_async_lock);
5886
5887	/*
5888	 * See if the config needs to be updated.
5889	 */
5890	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5891		uint64_t old_space, new_space;
5892
5893		mutex_enter(&spa_namespace_lock);
5894		old_space = metaslab_class_get_space(spa_normal_class(spa));
5895		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5896		new_space = metaslab_class_get_space(spa_normal_class(spa));
5897		mutex_exit(&spa_namespace_lock);
5898
5899		/*
5900		 * If the pool grew as a result of the config update,
5901		 * then log an internal history event.
5902		 */
5903		if (new_space != old_space) {
5904			spa_history_log_internal(spa, "vdev online", NULL,
5905			    "pool '%s' size: %llu(+%llu)",
5906			    spa_name(spa), new_space, new_space - old_space);
5907		}
5908	}
5909
5910	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5911		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5912		spa_async_autoexpand(spa, spa->spa_root_vdev);
5913		spa_config_exit(spa, SCL_CONFIG, FTAG);
5914	}
5915
5916	/*
5917	 * See if any devices need to be probed.
5918	 */
5919	if (tasks & SPA_ASYNC_PROBE) {
5920		spa_vdev_state_enter(spa, SCL_NONE);
5921		spa_async_probe(spa, spa->spa_root_vdev);
5922		(void) spa_vdev_state_exit(spa, NULL, 0);
5923	}
5924
5925	/*
5926	 * If any devices are done replacing, detach them.
5927	 */
5928	if (tasks & SPA_ASYNC_RESILVER_DONE)
5929		spa_vdev_resilver_done(spa);
5930
5931	/*
5932	 * Kick off a resilver.
5933	 */
5934	if (tasks & SPA_ASYNC_RESILVER)
5935		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5936
5937	/*
5938	 * Let the world know that we're done.
5939	 */
5940	mutex_enter(&spa->spa_async_lock);
5941	spa->spa_async_thread = NULL;
5942	cv_broadcast(&spa->spa_async_cv);
5943	mutex_exit(&spa->spa_async_lock);
5944	thread_exit();
5945}
5946
5947static void
5948spa_async_thread_vd(void *arg)
5949{
5950	spa_t *spa = arg;
5951	int tasks;
5952
5953	ASSERT(spa->spa_sync_on);
5954
5955	mutex_enter(&spa->spa_async_lock);
5956	tasks = spa->spa_async_tasks;
5957retry:
5958	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5959	mutex_exit(&spa->spa_async_lock);
5960
5961	/*
5962	 * See if any devices need to be marked REMOVED.
5963	 */
5964	if (tasks & SPA_ASYNC_REMOVE) {
5965		spa_vdev_state_enter(spa, SCL_NONE);
5966		spa_async_remove(spa, spa->spa_root_vdev);
5967		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5968			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5969		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5970			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5971		(void) spa_vdev_state_exit(spa, NULL, 0);
5972	}
5973
5974	/*
5975	 * Let the world know that we're done.
5976	 */
5977	mutex_enter(&spa->spa_async_lock);
5978	tasks = spa->spa_async_tasks;
5979	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5980		goto retry;
5981	spa->spa_async_thread_vd = NULL;
5982	cv_broadcast(&spa->spa_async_cv);
5983	mutex_exit(&spa->spa_async_lock);
5984	thread_exit();
5985}
5986
5987void
5988spa_async_suspend(spa_t *spa)
5989{
5990	mutex_enter(&spa->spa_async_lock);
5991	spa->spa_async_suspended++;
5992	while (spa->spa_async_thread != NULL &&
5993	    spa->spa_async_thread_vd != NULL)
5994		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5995	mutex_exit(&spa->spa_async_lock);
5996}
5997
5998void
5999spa_async_resume(spa_t *spa)
6000{
6001	mutex_enter(&spa->spa_async_lock);
6002	ASSERT(spa->spa_async_suspended != 0);
6003	spa->spa_async_suspended--;
6004	mutex_exit(&spa->spa_async_lock);
6005}
6006
6007static boolean_t
6008spa_async_tasks_pending(spa_t *spa)
6009{
6010	uint_t non_config_tasks;
6011	uint_t config_task;
6012	boolean_t config_task_suspended;
6013
6014	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6015	    SPA_ASYNC_REMOVE);
6016	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6017	if (spa->spa_ccw_fail_time == 0) {
6018		config_task_suspended = B_FALSE;
6019	} else {
6020		config_task_suspended =
6021		    (gethrtime() - spa->spa_ccw_fail_time) <
6022		    (zfs_ccw_retry_interval * NANOSEC);
6023	}
6024
6025	return (non_config_tasks || (config_task && !config_task_suspended));
6026}
6027
6028static void
6029spa_async_dispatch(spa_t *spa)
6030{
6031	mutex_enter(&spa->spa_async_lock);
6032	if (spa_async_tasks_pending(spa) &&
6033	    !spa->spa_async_suspended &&
6034	    spa->spa_async_thread == NULL &&
6035	    rootdir != NULL)
6036		spa->spa_async_thread = thread_create(NULL, 0,
6037		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6038	mutex_exit(&spa->spa_async_lock);
6039}
6040
6041static void
6042spa_async_dispatch_vd(spa_t *spa)
6043{
6044	mutex_enter(&spa->spa_async_lock);
6045	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6046	    !spa->spa_async_suspended &&
6047	    spa->spa_async_thread_vd == NULL &&
6048	    rootdir != NULL)
6049		spa->spa_async_thread_vd = thread_create(NULL, 0,
6050		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6051	mutex_exit(&spa->spa_async_lock);
6052}
6053
6054void
6055spa_async_request(spa_t *spa, int task)
6056{
6057	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6058	mutex_enter(&spa->spa_async_lock);
6059	spa->spa_async_tasks |= task;
6060	mutex_exit(&spa->spa_async_lock);
6061	spa_async_dispatch_vd(spa);
6062}
6063
6064/*
6065 * ==========================================================================
6066 * SPA syncing routines
6067 * ==========================================================================
6068 */
6069
6070static int
6071bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6072{
6073	bpobj_t *bpo = arg;
6074	bpobj_enqueue(bpo, bp, tx);
6075	return (0);
6076}
6077
6078static int
6079spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6080{
6081	zio_t *zio = arg;
6082
6083	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6084	    BP_GET_PSIZE(bp), zio->io_flags));
6085	return (0);
6086}
6087
6088/*
6089 * Note: this simple function is not inlined to make it easier to dtrace the
6090 * amount of time spent syncing frees.
6091 */
6092static void
6093spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6094{
6095	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6096	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6097	VERIFY(zio_wait(zio) == 0);
6098}
6099
6100/*
6101 * Note: this simple function is not inlined to make it easier to dtrace the
6102 * amount of time spent syncing deferred frees.
6103 */
6104static void
6105spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6106{
6107	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6108	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6109	    spa_free_sync_cb, zio, tx), ==, 0);
6110	VERIFY0(zio_wait(zio));
6111}
6112
6113
6114static void
6115spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6116{
6117	char *packed = NULL;
6118	size_t bufsize;
6119	size_t nvsize = 0;
6120	dmu_buf_t *db;
6121
6122	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6123
6124	/*
6125	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6126	 * information.  This avoids the dmu_buf_will_dirty() path and
6127	 * saves us a pre-read to get data we don't actually care about.
6128	 */
6129	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6130	packed = kmem_alloc(bufsize, KM_SLEEP);
6131
6132	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6133	    KM_SLEEP) == 0);
6134	bzero(packed + nvsize, bufsize - nvsize);
6135
6136	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6137
6138	kmem_free(packed, bufsize);
6139
6140	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6141	dmu_buf_will_dirty(db, tx);
6142	*(uint64_t *)db->db_data = nvsize;
6143	dmu_buf_rele(db, FTAG);
6144}
6145
6146static void
6147spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6148    const char *config, const char *entry)
6149{
6150	nvlist_t *nvroot;
6151	nvlist_t **list;
6152	int i;
6153
6154	if (!sav->sav_sync)
6155		return;
6156
6157	/*
6158	 * Update the MOS nvlist describing the list of available devices.
6159	 * spa_validate_aux() will have already made sure this nvlist is
6160	 * valid and the vdevs are labeled appropriately.
6161	 */
6162	if (sav->sav_object == 0) {
6163		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6164		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6165		    sizeof (uint64_t), tx);
6166		VERIFY(zap_update(spa->spa_meta_objset,
6167		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6168		    &sav->sav_object, tx) == 0);
6169	}
6170
6171	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6172	if (sav->sav_count == 0) {
6173		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6174	} else {
6175		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6176		for (i = 0; i < sav->sav_count; i++)
6177			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6178			    B_FALSE, VDEV_CONFIG_L2CACHE);
6179		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6180		    sav->sav_count) == 0);
6181		for (i = 0; i < sav->sav_count; i++)
6182			nvlist_free(list[i]);
6183		kmem_free(list, sav->sav_count * sizeof (void *));
6184	}
6185
6186	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6187	nvlist_free(nvroot);
6188
6189	sav->sav_sync = B_FALSE;
6190}
6191
6192static void
6193spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6194{
6195	nvlist_t *config;
6196
6197	if (list_is_empty(&spa->spa_config_dirty_list))
6198		return;
6199
6200	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6201
6202	config = spa_config_generate(spa, spa->spa_root_vdev,
6203	    dmu_tx_get_txg(tx), B_FALSE);
6204
6205	/*
6206	 * If we're upgrading the spa version then make sure that
6207	 * the config object gets updated with the correct version.
6208	 */
6209	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6210		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6211		    spa->spa_uberblock.ub_version);
6212
6213	spa_config_exit(spa, SCL_STATE, FTAG);
6214
6215	if (spa->spa_config_syncing)
6216		nvlist_free(spa->spa_config_syncing);
6217	spa->spa_config_syncing = config;
6218
6219	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6220}
6221
6222static void
6223spa_sync_version(void *arg, dmu_tx_t *tx)
6224{
6225	uint64_t *versionp = arg;
6226	uint64_t version = *versionp;
6227	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6228
6229	/*
6230	 * Setting the version is special cased when first creating the pool.
6231	 */
6232	ASSERT(tx->tx_txg != TXG_INITIAL);
6233
6234	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6235	ASSERT(version >= spa_version(spa));
6236
6237	spa->spa_uberblock.ub_version = version;
6238	vdev_config_dirty(spa->spa_root_vdev);
6239	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6240}
6241
6242/*
6243 * Set zpool properties.
6244 */
6245static void
6246spa_sync_props(void *arg, dmu_tx_t *tx)
6247{
6248	nvlist_t *nvp = arg;
6249	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6250	objset_t *mos = spa->spa_meta_objset;
6251	nvpair_t *elem = NULL;
6252
6253	mutex_enter(&spa->spa_props_lock);
6254
6255	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6256		uint64_t intval;
6257		char *strval, *fname;
6258		zpool_prop_t prop;
6259		const char *propname;
6260		zprop_type_t proptype;
6261		spa_feature_t fid;
6262
6263		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6264		case ZPROP_INVAL:
6265			/*
6266			 * We checked this earlier in spa_prop_validate().
6267			 */
6268			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6269
6270			fname = strchr(nvpair_name(elem), '@') + 1;
6271			VERIFY0(zfeature_lookup_name(fname, &fid));
6272
6273			spa_feature_enable(spa, fid, tx);
6274			spa_history_log_internal(spa, "set", tx,
6275			    "%s=enabled", nvpair_name(elem));
6276			break;
6277
6278		case ZPOOL_PROP_VERSION:
6279			intval = fnvpair_value_uint64(elem);
6280			/*
6281			 * The version is synced seperatly before other
6282			 * properties and should be correct by now.
6283			 */
6284			ASSERT3U(spa_version(spa), >=, intval);
6285			break;
6286
6287		case ZPOOL_PROP_ALTROOT:
6288			/*
6289			 * 'altroot' is a non-persistent property. It should
6290			 * have been set temporarily at creation or import time.
6291			 */
6292			ASSERT(spa->spa_root != NULL);
6293			break;
6294
6295		case ZPOOL_PROP_READONLY:
6296		case ZPOOL_PROP_CACHEFILE:
6297			/*
6298			 * 'readonly' and 'cachefile' are also non-persisitent
6299			 * properties.
6300			 */
6301			break;
6302		case ZPOOL_PROP_COMMENT:
6303			strval = fnvpair_value_string(elem);
6304			if (spa->spa_comment != NULL)
6305				spa_strfree(spa->spa_comment);
6306			spa->spa_comment = spa_strdup(strval);
6307			/*
6308			 * We need to dirty the configuration on all the vdevs
6309			 * so that their labels get updated.  It's unnecessary
6310			 * to do this for pool creation since the vdev's
6311			 * configuratoin has already been dirtied.
6312			 */
6313			if (tx->tx_txg != TXG_INITIAL)
6314				vdev_config_dirty(spa->spa_root_vdev);
6315			spa_history_log_internal(spa, "set", tx,
6316			    "%s=%s", nvpair_name(elem), strval);
6317			break;
6318		default:
6319			/*
6320			 * Set pool property values in the poolprops mos object.
6321			 */
6322			if (spa->spa_pool_props_object == 0) {
6323				spa->spa_pool_props_object =
6324				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6325				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6326				    tx);
6327			}
6328
6329			/* normalize the property name */
6330			propname = zpool_prop_to_name(prop);
6331			proptype = zpool_prop_get_type(prop);
6332
6333			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6334				ASSERT(proptype == PROP_TYPE_STRING);
6335				strval = fnvpair_value_string(elem);
6336				VERIFY0(zap_update(mos,
6337				    spa->spa_pool_props_object, propname,
6338				    1, strlen(strval) + 1, strval, tx));
6339				spa_history_log_internal(spa, "set", tx,
6340				    "%s=%s", nvpair_name(elem), strval);
6341			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6342				intval = fnvpair_value_uint64(elem);
6343
6344				if (proptype == PROP_TYPE_INDEX) {
6345					const char *unused;
6346					VERIFY0(zpool_prop_index_to_string(
6347					    prop, intval, &unused));
6348				}
6349				VERIFY0(zap_update(mos,
6350				    spa->spa_pool_props_object, propname,
6351				    8, 1, &intval, tx));
6352				spa_history_log_internal(spa, "set", tx,
6353				    "%s=%lld", nvpair_name(elem), intval);
6354			} else {
6355				ASSERT(0); /* not allowed */
6356			}
6357
6358			switch (prop) {
6359			case ZPOOL_PROP_DELEGATION:
6360				spa->spa_delegation = intval;
6361				break;
6362			case ZPOOL_PROP_BOOTFS:
6363				spa->spa_bootfs = intval;
6364				break;
6365			case ZPOOL_PROP_FAILUREMODE:
6366				spa->spa_failmode = intval;
6367				break;
6368			case ZPOOL_PROP_AUTOEXPAND:
6369				spa->spa_autoexpand = intval;
6370				if (tx->tx_txg != TXG_INITIAL)
6371					spa_async_request(spa,
6372					    SPA_ASYNC_AUTOEXPAND);
6373				break;
6374			case ZPOOL_PROP_DEDUPDITTO:
6375				spa->spa_dedup_ditto = intval;
6376				break;
6377			default:
6378				break;
6379			}
6380		}
6381
6382	}
6383
6384	mutex_exit(&spa->spa_props_lock);
6385}
6386
6387/*
6388 * Perform one-time upgrade on-disk changes.  spa_version() does not
6389 * reflect the new version this txg, so there must be no changes this
6390 * txg to anything that the upgrade code depends on after it executes.
6391 * Therefore this must be called after dsl_pool_sync() does the sync
6392 * tasks.
6393 */
6394static void
6395spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6396{
6397	dsl_pool_t *dp = spa->spa_dsl_pool;
6398
6399	ASSERT(spa->spa_sync_pass == 1);
6400
6401	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6402
6403	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6404	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6405		dsl_pool_create_origin(dp, tx);
6406
6407		/* Keeping the origin open increases spa_minref */
6408		spa->spa_minref += 3;
6409	}
6410
6411	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6412	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6413		dsl_pool_upgrade_clones(dp, tx);
6414	}
6415
6416	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6417	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6418		dsl_pool_upgrade_dir_clones(dp, tx);
6419
6420		/* Keeping the freedir open increases spa_minref */
6421		spa->spa_minref += 3;
6422	}
6423
6424	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6425	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6426		spa_feature_create_zap_objects(spa, tx);
6427	}
6428
6429	/*
6430	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6431	 * when possibility to use lz4 compression for metadata was added
6432	 * Old pools that have this feature enabled must be upgraded to have
6433	 * this feature active
6434	 */
6435	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6436		boolean_t lz4_en = spa_feature_is_enabled(spa,
6437		    SPA_FEATURE_LZ4_COMPRESS);
6438		boolean_t lz4_ac = spa_feature_is_active(spa,
6439		    SPA_FEATURE_LZ4_COMPRESS);
6440
6441		if (lz4_en && !lz4_ac)
6442			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6443	}
6444	rrw_exit(&dp->dp_config_rwlock, FTAG);
6445}
6446
6447/*
6448 * Sync the specified transaction group.  New blocks may be dirtied as
6449 * part of the process, so we iterate until it converges.
6450 */
6451void
6452spa_sync(spa_t *spa, uint64_t txg)
6453{
6454	dsl_pool_t *dp = spa->spa_dsl_pool;
6455	objset_t *mos = spa->spa_meta_objset;
6456	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6457	vdev_t *rvd = spa->spa_root_vdev;
6458	vdev_t *vd;
6459	dmu_tx_t *tx;
6460	int error;
6461
6462	VERIFY(spa_writeable(spa));
6463
6464	/*
6465	 * Lock out configuration changes.
6466	 */
6467	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6468
6469	spa->spa_syncing_txg = txg;
6470	spa->spa_sync_pass = 0;
6471
6472	/*
6473	 * If there are any pending vdev state changes, convert them
6474	 * into config changes that go out with this transaction group.
6475	 */
6476	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6477	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6478		/*
6479		 * We need the write lock here because, for aux vdevs,
6480		 * calling vdev_config_dirty() modifies sav_config.
6481		 * This is ugly and will become unnecessary when we
6482		 * eliminate the aux vdev wart by integrating all vdevs
6483		 * into the root vdev tree.
6484		 */
6485		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6486		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6487		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6488			vdev_state_clean(vd);
6489			vdev_config_dirty(vd);
6490		}
6491		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6492		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6493	}
6494	spa_config_exit(spa, SCL_STATE, FTAG);
6495
6496	tx = dmu_tx_create_assigned(dp, txg);
6497
6498	spa->spa_sync_starttime = gethrtime();
6499#ifdef illumos
6500	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6501	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6502#else	/* FreeBSD */
6503#ifdef _KERNEL
6504	callout_reset(&spa->spa_deadman_cycid,
6505	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6506#endif
6507#endif
6508
6509	/*
6510	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6511	 * set spa_deflate if we have no raid-z vdevs.
6512	 */
6513	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6514	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6515		int i;
6516
6517		for (i = 0; i < rvd->vdev_children; i++) {
6518			vd = rvd->vdev_child[i];
6519			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6520				break;
6521		}
6522		if (i == rvd->vdev_children) {
6523			spa->spa_deflate = TRUE;
6524			VERIFY(0 == zap_add(spa->spa_meta_objset,
6525			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6526			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6527		}
6528	}
6529
6530	/*
6531	 * If anything has changed in this txg, or if someone is waiting
6532	 * for this txg to sync (eg, spa_vdev_remove()), push the
6533	 * deferred frees from the previous txg.  If not, leave them
6534	 * alone so that we don't generate work on an otherwise idle
6535	 * system.
6536	 */
6537	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6538	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6539	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6540	    ((dsl_scan_active(dp->dp_scan) ||
6541	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6542		spa_sync_deferred_frees(spa, tx);
6543	}
6544
6545	/*
6546	 * Iterate to convergence.
6547	 */
6548	do {
6549		int pass = ++spa->spa_sync_pass;
6550
6551		spa_sync_config_object(spa, tx);
6552		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6553		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6554		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6555		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6556		spa_errlog_sync(spa, txg);
6557		dsl_pool_sync(dp, txg);
6558
6559		if (pass < zfs_sync_pass_deferred_free) {
6560			spa_sync_frees(spa, free_bpl, tx);
6561		} else {
6562			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6563			    &spa->spa_deferred_bpobj, tx);
6564		}
6565
6566		ddt_sync(spa, txg);
6567		dsl_scan_sync(dp, tx);
6568
6569		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6570			vdev_sync(vd, txg);
6571
6572		if (pass == 1)
6573			spa_sync_upgrades(spa, tx);
6574
6575	} while (dmu_objset_is_dirty(mos, txg));
6576
6577	/*
6578	 * Rewrite the vdev configuration (which includes the uberblock)
6579	 * to commit the transaction group.
6580	 *
6581	 * If there are no dirty vdevs, we sync the uberblock to a few
6582	 * random top-level vdevs that are known to be visible in the
6583	 * config cache (see spa_vdev_add() for a complete description).
6584	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6585	 */
6586	for (;;) {
6587		/*
6588		 * We hold SCL_STATE to prevent vdev open/close/etc.
6589		 * while we're attempting to write the vdev labels.
6590		 */
6591		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6592
6593		if (list_is_empty(&spa->spa_config_dirty_list)) {
6594			vdev_t *svd[SPA_DVAS_PER_BP];
6595			int svdcount = 0;
6596			int children = rvd->vdev_children;
6597			int c0 = spa_get_random(children);
6598
6599			for (int c = 0; c < children; c++) {
6600				vd = rvd->vdev_child[(c0 + c) % children];
6601				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6602					continue;
6603				svd[svdcount++] = vd;
6604				if (svdcount == SPA_DVAS_PER_BP)
6605					break;
6606			}
6607			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6608			if (error != 0)
6609				error = vdev_config_sync(svd, svdcount, txg,
6610				    B_TRUE);
6611		} else {
6612			error = vdev_config_sync(rvd->vdev_child,
6613			    rvd->vdev_children, txg, B_FALSE);
6614			if (error != 0)
6615				error = vdev_config_sync(rvd->vdev_child,
6616				    rvd->vdev_children, txg, B_TRUE);
6617		}
6618
6619		if (error == 0)
6620			spa->spa_last_synced_guid = rvd->vdev_guid;
6621
6622		spa_config_exit(spa, SCL_STATE, FTAG);
6623
6624		if (error == 0)
6625			break;
6626		zio_suspend(spa, NULL);
6627		zio_resume_wait(spa);
6628	}
6629	dmu_tx_commit(tx);
6630
6631#ifdef illumos
6632	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6633#else	/* FreeBSD */
6634#ifdef _KERNEL
6635	callout_drain(&spa->spa_deadman_cycid);
6636#endif
6637#endif
6638
6639	/*
6640	 * Clear the dirty config list.
6641	 */
6642	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6643		vdev_config_clean(vd);
6644
6645	/*
6646	 * Now that the new config has synced transactionally,
6647	 * let it become visible to the config cache.
6648	 */
6649	if (spa->spa_config_syncing != NULL) {
6650		spa_config_set(spa, spa->spa_config_syncing);
6651		spa->spa_config_txg = txg;
6652		spa->spa_config_syncing = NULL;
6653	}
6654
6655	spa->spa_ubsync = spa->spa_uberblock;
6656
6657	dsl_pool_sync_done(dp, txg);
6658
6659	/*
6660	 * Update usable space statistics.
6661	 */
6662	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6663		vdev_sync_done(vd, txg);
6664
6665	spa_update_dspace(spa);
6666
6667	/*
6668	 * It had better be the case that we didn't dirty anything
6669	 * since vdev_config_sync().
6670	 */
6671	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6672	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6673	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6674
6675	spa->spa_sync_pass = 0;
6676
6677	spa_config_exit(spa, SCL_CONFIG, FTAG);
6678
6679	spa_handle_ignored_writes(spa);
6680
6681	/*
6682	 * If any async tasks have been requested, kick them off.
6683	 */
6684	spa_async_dispatch(spa);
6685	spa_async_dispatch_vd(spa);
6686}
6687
6688/*
6689 * Sync all pools.  We don't want to hold the namespace lock across these
6690 * operations, so we take a reference on the spa_t and drop the lock during the
6691 * sync.
6692 */
6693void
6694spa_sync_allpools(void)
6695{
6696	spa_t *spa = NULL;
6697	mutex_enter(&spa_namespace_lock);
6698	while ((spa = spa_next(spa)) != NULL) {
6699		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6700		    !spa_writeable(spa) || spa_suspended(spa))
6701			continue;
6702		spa_open_ref(spa, FTAG);
6703		mutex_exit(&spa_namespace_lock);
6704		txg_wait_synced(spa_get_dsl(spa), 0);
6705		mutex_enter(&spa_namespace_lock);
6706		spa_close(spa, FTAG);
6707	}
6708	mutex_exit(&spa_namespace_lock);
6709}
6710
6711/*
6712 * ==========================================================================
6713 * Miscellaneous routines
6714 * ==========================================================================
6715 */
6716
6717/*
6718 * Remove all pools in the system.
6719 */
6720void
6721spa_evict_all(void)
6722{
6723	spa_t *spa;
6724
6725	/*
6726	 * Remove all cached state.  All pools should be closed now,
6727	 * so every spa in the AVL tree should be unreferenced.
6728	 */
6729	mutex_enter(&spa_namespace_lock);
6730	while ((spa = spa_next(NULL)) != NULL) {
6731		/*
6732		 * Stop async tasks.  The async thread may need to detach
6733		 * a device that's been replaced, which requires grabbing
6734		 * spa_namespace_lock, so we must drop it here.
6735		 */
6736		spa_open_ref(spa, FTAG);
6737		mutex_exit(&spa_namespace_lock);
6738		spa_async_suspend(spa);
6739		mutex_enter(&spa_namespace_lock);
6740		spa_close(spa, FTAG);
6741
6742		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6743			spa_unload(spa);
6744			spa_deactivate(spa);
6745		}
6746		spa_remove(spa);
6747	}
6748	mutex_exit(&spa_namespace_lock);
6749}
6750
6751vdev_t *
6752spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6753{
6754	vdev_t *vd;
6755	int i;
6756
6757	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6758		return (vd);
6759
6760	if (aux) {
6761		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6762			vd = spa->spa_l2cache.sav_vdevs[i];
6763			if (vd->vdev_guid == guid)
6764				return (vd);
6765		}
6766
6767		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6768			vd = spa->spa_spares.sav_vdevs[i];
6769			if (vd->vdev_guid == guid)
6770				return (vd);
6771		}
6772	}
6773
6774	return (NULL);
6775}
6776
6777void
6778spa_upgrade(spa_t *spa, uint64_t version)
6779{
6780	ASSERT(spa_writeable(spa));
6781
6782	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6783
6784	/*
6785	 * This should only be called for a non-faulted pool, and since a
6786	 * future version would result in an unopenable pool, this shouldn't be
6787	 * possible.
6788	 */
6789	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6790	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6791
6792	spa->spa_uberblock.ub_version = version;
6793	vdev_config_dirty(spa->spa_root_vdev);
6794
6795	spa_config_exit(spa, SCL_ALL, FTAG);
6796
6797	txg_wait_synced(spa_get_dsl(spa), 0);
6798}
6799
6800boolean_t
6801spa_has_spare(spa_t *spa, uint64_t guid)
6802{
6803	int i;
6804	uint64_t spareguid;
6805	spa_aux_vdev_t *sav = &spa->spa_spares;
6806
6807	for (i = 0; i < sav->sav_count; i++)
6808		if (sav->sav_vdevs[i]->vdev_guid == guid)
6809			return (B_TRUE);
6810
6811	for (i = 0; i < sav->sav_npending; i++) {
6812		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6813		    &spareguid) == 0 && spareguid == guid)
6814			return (B_TRUE);
6815	}
6816
6817	return (B_FALSE);
6818}
6819
6820/*
6821 * Check if a pool has an active shared spare device.
6822 * Note: reference count of an active spare is 2, as a spare and as a replace
6823 */
6824static boolean_t
6825spa_has_active_shared_spare(spa_t *spa)
6826{
6827	int i, refcnt;
6828	uint64_t pool;
6829	spa_aux_vdev_t *sav = &spa->spa_spares;
6830
6831	for (i = 0; i < sav->sav_count; i++) {
6832		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6833		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6834		    refcnt > 2)
6835			return (B_TRUE);
6836	}
6837
6838	return (B_FALSE);
6839}
6840
6841/*
6842 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6843 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6844 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6845 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6846 * or zdb as real changes.
6847 */
6848void
6849spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6850{
6851#ifdef _KERNEL
6852	sysevent_t		*ev;
6853	sysevent_attr_list_t	*attr = NULL;
6854	sysevent_value_t	value;
6855	sysevent_id_t		eid;
6856
6857	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6858	    SE_SLEEP);
6859
6860	value.value_type = SE_DATA_TYPE_STRING;
6861	value.value.sv_string = spa_name(spa);
6862	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6863		goto done;
6864
6865	value.value_type = SE_DATA_TYPE_UINT64;
6866	value.value.sv_uint64 = spa_guid(spa);
6867	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6868		goto done;
6869
6870	if (vd) {
6871		value.value_type = SE_DATA_TYPE_UINT64;
6872		value.value.sv_uint64 = vd->vdev_guid;
6873		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6874		    SE_SLEEP) != 0)
6875			goto done;
6876
6877		if (vd->vdev_path) {
6878			value.value_type = SE_DATA_TYPE_STRING;
6879			value.value.sv_string = vd->vdev_path;
6880			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6881			    &value, SE_SLEEP) != 0)
6882				goto done;
6883		}
6884	}
6885
6886	if (sysevent_attach_attributes(ev, attr) != 0)
6887		goto done;
6888	attr = NULL;
6889
6890	(void) log_sysevent(ev, SE_SLEEP, &eid);
6891
6892done:
6893	if (attr)
6894		sysevent_free_attr(attr);
6895	sysevent_free(ev);
6896#endif
6897}
6898