spa.c revision 258717
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		dsl_dir_t *freedir = pool->dp_free_dir;
262
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (freedir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    freedir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
288		if (dp->scd_path == NULL) {
289			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290			    "none", 0, ZPROP_SRC_LOCAL);
291		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
294		}
295	}
296}
297
298/*
299 * Get zpool property values.
300 */
301int
302spa_prop_get(spa_t *spa, nvlist_t **nvp)
303{
304	objset_t *mos = spa->spa_meta_objset;
305	zap_cursor_t zc;
306	zap_attribute_t za;
307	int err;
308
309	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310
311	mutex_enter(&spa->spa_props_lock);
312
313	/*
314	 * Get properties from the spa config.
315	 */
316	spa_prop_get_config(spa, nvp);
317
318	/* If no pool property object, no more prop to get. */
319	if (mos == NULL || spa->spa_pool_props_object == 0) {
320		mutex_exit(&spa->spa_props_lock);
321		return (0);
322	}
323
324	/*
325	 * Get properties from the MOS pool property object.
326	 */
327	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
328	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
329	    zap_cursor_advance(&zc)) {
330		uint64_t intval = 0;
331		char *strval = NULL;
332		zprop_source_t src = ZPROP_SRC_DEFAULT;
333		zpool_prop_t prop;
334
335		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
336			continue;
337
338		switch (za.za_integer_length) {
339		case 8:
340			/* integer property */
341			if (za.za_first_integer !=
342			    zpool_prop_default_numeric(prop))
343				src = ZPROP_SRC_LOCAL;
344
345			if (prop == ZPOOL_PROP_BOOTFS) {
346				dsl_pool_t *dp;
347				dsl_dataset_t *ds = NULL;
348
349				dp = spa_get_dsl(spa);
350				dsl_pool_config_enter(dp, FTAG);
351				if (err = dsl_dataset_hold_obj(dp,
352				    za.za_first_integer, FTAG, &ds)) {
353					dsl_pool_config_exit(dp, FTAG);
354					break;
355				}
356
357				strval = kmem_alloc(
358				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
359				    KM_SLEEP);
360				dsl_dataset_name(ds, strval);
361				dsl_dataset_rele(ds, FTAG);
362				dsl_pool_config_exit(dp, FTAG);
363			} else {
364				strval = NULL;
365				intval = za.za_first_integer;
366			}
367
368			spa_prop_add_list(*nvp, prop, strval, intval, src);
369
370			if (strval != NULL)
371				kmem_free(strval,
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
373
374			break;
375
376		case 1:
377			/* string property */
378			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
379			err = zap_lookup(mos, spa->spa_pool_props_object,
380			    za.za_name, 1, za.za_num_integers, strval);
381			if (err) {
382				kmem_free(strval, za.za_num_integers);
383				break;
384			}
385			spa_prop_add_list(*nvp, prop, strval, 0, src);
386			kmem_free(strval, za.za_num_integers);
387			break;
388
389		default:
390			break;
391		}
392	}
393	zap_cursor_fini(&zc);
394	mutex_exit(&spa->spa_props_lock);
395out:
396	if (err && err != ENOENT) {
397		nvlist_free(*nvp);
398		*nvp = NULL;
399		return (err);
400	}
401
402	return (0);
403}
404
405/*
406 * Validate the given pool properties nvlist and modify the list
407 * for the property values to be set.
408 */
409static int
410spa_prop_validate(spa_t *spa, nvlist_t *props)
411{
412	nvpair_t *elem;
413	int error = 0, reset_bootfs = 0;
414	uint64_t objnum = 0;
415	boolean_t has_feature = B_FALSE;
416
417	elem = NULL;
418	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
419		uint64_t intval;
420		char *strval, *slash, *check, *fname;
421		const char *propname = nvpair_name(elem);
422		zpool_prop_t prop = zpool_name_to_prop(propname);
423
424		switch (prop) {
425		case ZPROP_INVAL:
426			if (!zpool_prop_feature(propname)) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			/*
432			 * Sanitize the input.
433			 */
434			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			if (nvpair_value_uint64(elem, &intval) != 0) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (intval != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			fname = strchr(propname, '@') + 1;
450			if (zfeature_lookup_name(fname, NULL) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			has_feature = B_TRUE;
456			break;
457
458		case ZPOOL_PROP_VERSION:
459			error = nvpair_value_uint64(elem, &intval);
460			if (!error &&
461			    (intval < spa_version(spa) ||
462			    intval > SPA_VERSION_BEFORE_FEATURES ||
463			    has_feature))
464				error = SET_ERROR(EINVAL);
465			break;
466
467		case ZPOOL_PROP_DELEGATION:
468		case ZPOOL_PROP_AUTOREPLACE:
469		case ZPOOL_PROP_LISTSNAPS:
470		case ZPOOL_PROP_AUTOEXPAND:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error && intval > 1)
473				error = SET_ERROR(EINVAL);
474			break;
475
476		case ZPOOL_PROP_BOOTFS:
477			/*
478			 * If the pool version is less than SPA_VERSION_BOOTFS,
479			 * or the pool is still being created (version == 0),
480			 * the bootfs property cannot be set.
481			 */
482			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
483				error = SET_ERROR(ENOTSUP);
484				break;
485			}
486
487			/*
488			 * Make sure the vdev config is bootable
489			 */
490			if (!vdev_is_bootable(spa->spa_root_vdev)) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			reset_bootfs = 1;
496
497			error = nvpair_value_string(elem, &strval);
498
499			if (!error) {
500				objset_t *os;
501				uint64_t compress;
502
503				if (strval == NULL || strval[0] == '\0') {
504					objnum = zpool_prop_default_numeric(
505					    ZPOOL_PROP_BOOTFS);
506					break;
507				}
508
509				if (error = dmu_objset_hold(strval, FTAG, &os))
510					break;
511
512				/* Must be ZPL and not gzip compressed. */
513
514				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515					error = SET_ERROR(ENOTSUP);
516				} else if ((error =
517				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519				    &compress)) == 0 &&
520				    !BOOTFS_COMPRESS_VALID(compress)) {
521					error = SET_ERROR(ENOTSUP);
522				} else {
523					objnum = dmu_objset_id(os);
524				}
525				dmu_objset_rele(os, FTAG);
526			}
527			break;
528
529		case ZPOOL_PROP_FAILUREMODE:
530			error = nvpair_value_uint64(elem, &intval);
531			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
532			    intval > ZIO_FAILURE_MODE_PANIC))
533				error = SET_ERROR(EINVAL);
534
535			/*
536			 * This is a special case which only occurs when
537			 * the pool has completely failed. This allows
538			 * the user to change the in-core failmode property
539			 * without syncing it out to disk (I/Os might
540			 * currently be blocked). We do this by returning
541			 * EIO to the caller (spa_prop_set) to trick it
542			 * into thinking we encountered a property validation
543			 * error.
544			 */
545			if (!error && spa_suspended(spa)) {
546				spa->spa_failmode = intval;
547				error = SET_ERROR(EIO);
548			}
549			break;
550
551		case ZPOOL_PROP_CACHEFILE:
552			if ((error = nvpair_value_string(elem, &strval)) != 0)
553				break;
554
555			if (strval[0] == '\0')
556				break;
557
558			if (strcmp(strval, "none") == 0)
559				break;
560
561			if (strval[0] != '/') {
562				error = SET_ERROR(EINVAL);
563				break;
564			}
565
566			slash = strrchr(strval, '/');
567			ASSERT(slash != NULL);
568
569			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
570			    strcmp(slash, "/..") == 0)
571				error = SET_ERROR(EINVAL);
572			break;
573
574		case ZPOOL_PROP_COMMENT:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577			for (check = strval; *check != '\0'; check++) {
578				/*
579				 * The kernel doesn't have an easy isprint()
580				 * check.  For this kernel check, we merely
581				 * check ASCII apart from DEL.  Fix this if
582				 * there is an easy-to-use kernel isprint().
583				 */
584				if (*check >= 0x7f) {
585					error = SET_ERROR(EINVAL);
586					break;
587				}
588				check++;
589			}
590			if (strlen(strval) > ZPROP_MAX_COMMENT)
591				error = E2BIG;
592			break;
593
594		case ZPOOL_PROP_DEDUPDITTO:
595			if (spa_version(spa) < SPA_VERSION_DEDUP)
596				error = SET_ERROR(ENOTSUP);
597			else
598				error = nvpair_value_uint64(elem, &intval);
599			if (error == 0 &&
600			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601				error = SET_ERROR(EINVAL);
602			break;
603		}
604
605		if (error)
606			break;
607	}
608
609	if (!error && reset_bootfs) {
610		error = nvlist_remove(props,
611		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613		if (!error) {
614			error = nvlist_add_uint64(props,
615			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616		}
617	}
618
619	return (error);
620}
621
622void
623spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624{
625	char *cachefile;
626	spa_config_dirent_t *dp;
627
628	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629	    &cachefile) != 0)
630		return;
631
632	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633	    KM_SLEEP);
634
635	if (cachefile[0] == '\0')
636		dp->scd_path = spa_strdup(spa_config_path);
637	else if (strcmp(cachefile, "none") == 0)
638		dp->scd_path = NULL;
639	else
640		dp->scd_path = spa_strdup(cachefile);
641
642	list_insert_head(&spa->spa_config_list, dp);
643	if (need_sync)
644		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645}
646
647int
648spa_prop_set(spa_t *spa, nvlist_t *nvp)
649{
650	int error;
651	nvpair_t *elem = NULL;
652	boolean_t need_sync = B_FALSE;
653
654	if ((error = spa_prop_validate(spa, nvp)) != 0)
655		return (error);
656
657	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660		if (prop == ZPOOL_PROP_CACHEFILE ||
661		    prop == ZPOOL_PROP_ALTROOT ||
662		    prop == ZPOOL_PROP_READONLY)
663			continue;
664
665		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666			uint64_t ver;
667
668			if (prop == ZPOOL_PROP_VERSION) {
669				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670			} else {
671				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672				ver = SPA_VERSION_FEATURES;
673				need_sync = B_TRUE;
674			}
675
676			/* Save time if the version is already set. */
677			if (ver == spa_version(spa))
678				continue;
679
680			/*
681			 * In addition to the pool directory object, we might
682			 * create the pool properties object, the features for
683			 * read object, the features for write object, or the
684			 * feature descriptions object.
685			 */
686			error = dsl_sync_task(spa->spa_name, NULL,
687			    spa_sync_version, &ver, 6);
688			if (error)
689				return (error);
690			continue;
691		}
692
693		need_sync = B_TRUE;
694		break;
695	}
696
697	if (need_sync) {
698		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
699		    nvp, 6));
700	}
701
702	return (0);
703}
704
705/*
706 * If the bootfs property value is dsobj, clear it.
707 */
708void
709spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
710{
711	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
712		VERIFY(zap_remove(spa->spa_meta_objset,
713		    spa->spa_pool_props_object,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
715		spa->spa_bootfs = 0;
716	}
717}
718
719/*ARGSUSED*/
720static int
721spa_change_guid_check(void *arg, dmu_tx_t *tx)
722{
723	uint64_t *newguid = arg;
724	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725	vdev_t *rvd = spa->spa_root_vdev;
726	uint64_t vdev_state;
727
728	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
729	vdev_state = rvd->vdev_state;
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732	if (vdev_state != VDEV_STATE_HEALTHY)
733		return (SET_ERROR(ENXIO));
734
735	ASSERT3U(spa_guid(spa), !=, *newguid);
736
737	return (0);
738}
739
740static void
741spa_change_guid_sync(void *arg, dmu_tx_t *tx)
742{
743	uint64_t *newguid = arg;
744	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
745	uint64_t oldguid;
746	vdev_t *rvd = spa->spa_root_vdev;
747
748	oldguid = spa_guid(spa);
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	rvd->vdev_guid = *newguid;
752	rvd->vdev_guid_sum += (*newguid - oldguid);
753	vdev_config_dirty(rvd);
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
757	    oldguid, *newguid);
758}
759
760/*
761 * Change the GUID for the pool.  This is done so that we can later
762 * re-import a pool built from a clone of our own vdevs.  We will modify
763 * the root vdev's guid, our own pool guid, and then mark all of our
764 * vdevs dirty.  Note that we must make sure that all our vdevs are
765 * online when we do this, or else any vdevs that weren't present
766 * would be orphaned from our pool.  We are also going to issue a
767 * sysevent to update any watchers.
768 */
769int
770spa_change_guid(spa_t *spa)
771{
772	int error;
773	uint64_t guid;
774
775	mutex_enter(&spa->spa_vdev_top_lock);
776	mutex_enter(&spa_namespace_lock);
777	guid = spa_generate_guid(NULL);
778
779	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
780	    spa_change_guid_sync, &guid, 5);
781
782	if (error == 0) {
783		spa_config_sync(spa, B_FALSE, B_TRUE);
784		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
785	}
786
787	mutex_exit(&spa_namespace_lock);
788	mutex_exit(&spa->spa_vdev_top_lock);
789
790	return (error);
791}
792
793/*
794 * ==========================================================================
795 * SPA state manipulation (open/create/destroy/import/export)
796 * ==========================================================================
797 */
798
799static int
800spa_error_entry_compare(const void *a, const void *b)
801{
802	spa_error_entry_t *sa = (spa_error_entry_t *)a;
803	spa_error_entry_t *sb = (spa_error_entry_t *)b;
804	int ret;
805
806	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
807	    sizeof (zbookmark_t));
808
809	if (ret < 0)
810		return (-1);
811	else if (ret > 0)
812		return (1);
813	else
814		return (0);
815}
816
817/*
818 * Utility function which retrieves copies of the current logs and
819 * re-initializes them in the process.
820 */
821void
822spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
823{
824	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
825
826	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
827	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
828
829	avl_create(&spa->spa_errlist_scrub,
830	    spa_error_entry_compare, sizeof (spa_error_entry_t),
831	    offsetof(spa_error_entry_t, se_avl));
832	avl_create(&spa->spa_errlist_last,
833	    spa_error_entry_compare, sizeof (spa_error_entry_t),
834	    offsetof(spa_error_entry_t, se_avl));
835}
836
837static void
838spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
839{
840	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
841	enum zti_modes mode = ztip->zti_mode;
842	uint_t value = ztip->zti_value;
843	uint_t count = ztip->zti_count;
844	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
845	char name[32];
846	uint_t flags = 0;
847	boolean_t batch = B_FALSE;
848
849	if (mode == ZTI_MODE_NULL) {
850		tqs->stqs_count = 0;
851		tqs->stqs_taskq = NULL;
852		return;
853	}
854
855	ASSERT3U(count, >, 0);
856
857	tqs->stqs_count = count;
858	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
859
860	switch (mode) {
861	case ZTI_MODE_FIXED:
862		ASSERT3U(value, >=, 1);
863		value = MAX(value, 1);
864		break;
865
866	case ZTI_MODE_BATCH:
867		batch = B_TRUE;
868		flags |= TASKQ_THREADS_CPU_PCT;
869		value = zio_taskq_batch_pct;
870		break;
871
872	default:
873		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
874		    "spa_activate()",
875		    zio_type_name[t], zio_taskq_types[q], mode, value);
876		break;
877	}
878
879	for (uint_t i = 0; i < count; i++) {
880		taskq_t *tq;
881
882		if (count > 1) {
883			(void) snprintf(name, sizeof (name), "%s_%s_%u",
884			    zio_type_name[t], zio_taskq_types[q], i);
885		} else {
886			(void) snprintf(name, sizeof (name), "%s_%s",
887			    zio_type_name[t], zio_taskq_types[q]);
888		}
889
890#ifdef SYSDC
891		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892			if (batch)
893				flags |= TASKQ_DC_BATCH;
894
895			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896			    spa->spa_proc, zio_taskq_basedc, flags);
897		} else {
898#endif
899			pri_t pri = maxclsyspri;
900			/*
901			 * The write issue taskq can be extremely CPU
902			 * intensive.  Run it at slightly lower priority
903			 * than the other taskqs.
904			 */
905			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
906				pri--;
907
908			tq = taskq_create_proc(name, value, pri, 50,
909			    INT_MAX, spa->spa_proc, flags);
910#ifdef SYSDC
911		}
912#endif
913
914		tqs->stqs_taskq[i] = tq;
915	}
916}
917
918static void
919spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920{
921	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923	if (tqs->stqs_taskq == NULL) {
924		ASSERT0(tqs->stqs_count);
925		return;
926	}
927
928	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930		taskq_destroy(tqs->stqs_taskq[i]);
931	}
932
933	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934	tqs->stqs_taskq = NULL;
935}
936
937/*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943void
944spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	taskq_t *tq;
949
950	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951	ASSERT3U(tqs->stqs_count, !=, 0);
952
953	if (tqs->stqs_count == 1) {
954		tq = tqs->stqs_taskq[0];
955	} else {
956		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957	}
958
959	taskq_dispatch_ent(tq, func, arg, flags, ent);
960}
961
962static void
963spa_create_zio_taskqs(spa_t *spa)
964{
965	for (int t = 0; t < ZIO_TYPES; t++) {
966		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967			spa_taskqs_init(spa, t, q);
968		}
969	}
970}
971
972#ifdef _KERNEL
973#ifdef SPA_PROCESS
974static void
975spa_thread(void *arg)
976{
977	callb_cpr_t cprinfo;
978
979	spa_t *spa = arg;
980	user_t *pu = PTOU(curproc);
981
982	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983	    spa->spa_name);
984
985	ASSERT(curproc != &p0);
986	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987	    "zpool-%s", spa->spa_name);
988	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990#ifdef PSRSET_BIND
991	/* bind this thread to the requested psrset */
992	if (zio_taskq_psrset_bind != PS_NONE) {
993		pool_lock();
994		mutex_enter(&cpu_lock);
995		mutex_enter(&pidlock);
996		mutex_enter(&curproc->p_lock);
997
998		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999		    0, NULL, NULL) == 0)  {
1000			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001		} else {
1002			cmn_err(CE_WARN,
1003			    "Couldn't bind process for zfs pool \"%s\" to "
1004			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005		}
1006
1007		mutex_exit(&curproc->p_lock);
1008		mutex_exit(&pidlock);
1009		mutex_exit(&cpu_lock);
1010		pool_unlock();
1011	}
1012#endif
1013
1014#ifdef SYSDC
1015	if (zio_taskq_sysdc) {
1016		sysdc_thread_enter(curthread, 100, 0);
1017	}
1018#endif
1019
1020	spa->spa_proc = curproc;
1021	spa->spa_did = curthread->t_did;
1022
1023	spa_create_zio_taskqs(spa);
1024
1025	mutex_enter(&spa->spa_proc_lock);
1026	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1027
1028	spa->spa_proc_state = SPA_PROC_ACTIVE;
1029	cv_broadcast(&spa->spa_proc_cv);
1030
1031	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1032	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1033		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1034	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1035
1036	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1037	spa->spa_proc_state = SPA_PROC_GONE;
1038	spa->spa_proc = &p0;
1039	cv_broadcast(&spa->spa_proc_cv);
1040	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1041
1042	mutex_enter(&curproc->p_lock);
1043	lwp_exit();
1044}
1045#endif	/* SPA_PROCESS */
1046#endif
1047
1048/*
1049 * Activate an uninitialized pool.
1050 */
1051static void
1052spa_activate(spa_t *spa, int mode)
1053{
1054	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1055
1056	spa->spa_state = POOL_STATE_ACTIVE;
1057	spa->spa_mode = mode;
1058
1059	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1060	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1061
1062	/* Try to create a covering process */
1063	mutex_enter(&spa->spa_proc_lock);
1064	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1065	ASSERT(spa->spa_proc == &p0);
1066	spa->spa_did = 0;
1067
1068#ifdef SPA_PROCESS
1069	/* Only create a process if we're going to be around a while. */
1070	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1071		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1072		    NULL, 0) == 0) {
1073			spa->spa_proc_state = SPA_PROC_CREATED;
1074			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1075				cv_wait(&spa->spa_proc_cv,
1076				    &spa->spa_proc_lock);
1077			}
1078			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1079			ASSERT(spa->spa_proc != &p0);
1080			ASSERT(spa->spa_did != 0);
1081		} else {
1082#ifdef _KERNEL
1083			cmn_err(CE_WARN,
1084			    "Couldn't create process for zfs pool \"%s\"\n",
1085			    spa->spa_name);
1086#endif
1087		}
1088	}
1089#endif	/* SPA_PROCESS */
1090	mutex_exit(&spa->spa_proc_lock);
1091
1092	/* If we didn't create a process, we need to create our taskqs. */
1093	ASSERT(spa->spa_proc == &p0);
1094	if (spa->spa_proc == &p0) {
1095		spa_create_zio_taskqs(spa);
1096	}
1097
1098	/*
1099	 * Start TRIM thread.
1100	 */
1101	trim_thread_create(spa);
1102
1103	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1104	    offsetof(vdev_t, vdev_config_dirty_node));
1105	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1106	    offsetof(vdev_t, vdev_state_dirty_node));
1107
1108	txg_list_create(&spa->spa_vdev_txg_list,
1109	    offsetof(struct vdev, vdev_txg_node));
1110
1111	avl_create(&spa->spa_errlist_scrub,
1112	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113	    offsetof(spa_error_entry_t, se_avl));
1114	avl_create(&spa->spa_errlist_last,
1115	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1116	    offsetof(spa_error_entry_t, se_avl));
1117}
1118
1119/*
1120 * Opposite of spa_activate().
1121 */
1122static void
1123spa_deactivate(spa_t *spa)
1124{
1125	ASSERT(spa->spa_sync_on == B_FALSE);
1126	ASSERT(spa->spa_dsl_pool == NULL);
1127	ASSERT(spa->spa_root_vdev == NULL);
1128	ASSERT(spa->spa_async_zio_root == NULL);
1129	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1130
1131	/*
1132	 * Stop TRIM thread in case spa_unload() wasn't called directly
1133	 * before spa_deactivate().
1134	 */
1135	trim_thread_destroy(spa);
1136
1137	txg_list_destroy(&spa->spa_vdev_txg_list);
1138
1139	list_destroy(&spa->spa_config_dirty_list);
1140	list_destroy(&spa->spa_state_dirty_list);
1141
1142	for (int t = 0; t < ZIO_TYPES; t++) {
1143		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1144			spa_taskqs_fini(spa, t, q);
1145		}
1146	}
1147
1148	metaslab_class_destroy(spa->spa_normal_class);
1149	spa->spa_normal_class = NULL;
1150
1151	metaslab_class_destroy(spa->spa_log_class);
1152	spa->spa_log_class = NULL;
1153
1154	/*
1155	 * If this was part of an import or the open otherwise failed, we may
1156	 * still have errors left in the queues.  Empty them just in case.
1157	 */
1158	spa_errlog_drain(spa);
1159
1160	avl_destroy(&spa->spa_errlist_scrub);
1161	avl_destroy(&spa->spa_errlist_last);
1162
1163	spa->spa_state = POOL_STATE_UNINITIALIZED;
1164
1165	mutex_enter(&spa->spa_proc_lock);
1166	if (spa->spa_proc_state != SPA_PROC_NONE) {
1167		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1168		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1169		cv_broadcast(&spa->spa_proc_cv);
1170		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1171			ASSERT(spa->spa_proc != &p0);
1172			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1173		}
1174		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1175		spa->spa_proc_state = SPA_PROC_NONE;
1176	}
1177	ASSERT(spa->spa_proc == &p0);
1178	mutex_exit(&spa->spa_proc_lock);
1179
1180#ifdef SPA_PROCESS
1181	/*
1182	 * We want to make sure spa_thread() has actually exited the ZFS
1183	 * module, so that the module can't be unloaded out from underneath
1184	 * it.
1185	 */
1186	if (spa->spa_did != 0) {
1187		thread_join(spa->spa_did);
1188		spa->spa_did = 0;
1189	}
1190#endif	/* SPA_PROCESS */
1191}
1192
1193/*
1194 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1195 * will create all the necessary vdevs in the appropriate layout, with each vdev
1196 * in the CLOSED state.  This will prep the pool before open/creation/import.
1197 * All vdev validation is done by the vdev_alloc() routine.
1198 */
1199static int
1200spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1201    uint_t id, int atype)
1202{
1203	nvlist_t **child;
1204	uint_t children;
1205	int error;
1206
1207	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1208		return (error);
1209
1210	if ((*vdp)->vdev_ops->vdev_op_leaf)
1211		return (0);
1212
1213	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1214	    &child, &children);
1215
1216	if (error == ENOENT)
1217		return (0);
1218
1219	if (error) {
1220		vdev_free(*vdp);
1221		*vdp = NULL;
1222		return (SET_ERROR(EINVAL));
1223	}
1224
1225	for (int c = 0; c < children; c++) {
1226		vdev_t *vd;
1227		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1228		    atype)) != 0) {
1229			vdev_free(*vdp);
1230			*vdp = NULL;
1231			return (error);
1232		}
1233	}
1234
1235	ASSERT(*vdp != NULL);
1236
1237	return (0);
1238}
1239
1240/*
1241 * Opposite of spa_load().
1242 */
1243static void
1244spa_unload(spa_t *spa)
1245{
1246	int i;
1247
1248	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1249
1250	/*
1251	 * Stop TRIM thread.
1252	 */
1253	trim_thread_destroy(spa);
1254
1255	/*
1256	 * Stop async tasks.
1257	 */
1258	spa_async_suspend(spa);
1259
1260	/*
1261	 * Stop syncing.
1262	 */
1263	if (spa->spa_sync_on) {
1264		txg_sync_stop(spa->spa_dsl_pool);
1265		spa->spa_sync_on = B_FALSE;
1266	}
1267
1268	/*
1269	 * Wait for any outstanding async I/O to complete.
1270	 */
1271	if (spa->spa_async_zio_root != NULL) {
1272		(void) zio_wait(spa->spa_async_zio_root);
1273		spa->spa_async_zio_root = NULL;
1274	}
1275
1276	bpobj_close(&spa->spa_deferred_bpobj);
1277
1278	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1279
1280	/*
1281	 * Close all vdevs.
1282	 */
1283	if (spa->spa_root_vdev)
1284		vdev_free(spa->spa_root_vdev);
1285	ASSERT(spa->spa_root_vdev == NULL);
1286
1287	/*
1288	 * Close the dsl pool.
1289	 */
1290	if (spa->spa_dsl_pool) {
1291		dsl_pool_close(spa->spa_dsl_pool);
1292		spa->spa_dsl_pool = NULL;
1293		spa->spa_meta_objset = NULL;
1294	}
1295
1296	ddt_unload(spa);
1297
1298
1299	/*
1300	 * Drop and purge level 2 cache
1301	 */
1302	spa_l2cache_drop(spa);
1303
1304	for (i = 0; i < spa->spa_spares.sav_count; i++)
1305		vdev_free(spa->spa_spares.sav_vdevs[i]);
1306	if (spa->spa_spares.sav_vdevs) {
1307		kmem_free(spa->spa_spares.sav_vdevs,
1308		    spa->spa_spares.sav_count * sizeof (void *));
1309		spa->spa_spares.sav_vdevs = NULL;
1310	}
1311	if (spa->spa_spares.sav_config) {
1312		nvlist_free(spa->spa_spares.sav_config);
1313		spa->spa_spares.sav_config = NULL;
1314	}
1315	spa->spa_spares.sav_count = 0;
1316
1317	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1318		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1319		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1320	}
1321	if (spa->spa_l2cache.sav_vdevs) {
1322		kmem_free(spa->spa_l2cache.sav_vdevs,
1323		    spa->spa_l2cache.sav_count * sizeof (void *));
1324		spa->spa_l2cache.sav_vdevs = NULL;
1325	}
1326	if (spa->spa_l2cache.sav_config) {
1327		nvlist_free(spa->spa_l2cache.sav_config);
1328		spa->spa_l2cache.sav_config = NULL;
1329	}
1330	spa->spa_l2cache.sav_count = 0;
1331
1332	spa->spa_async_suspended = 0;
1333
1334	if (spa->spa_comment != NULL) {
1335		spa_strfree(spa->spa_comment);
1336		spa->spa_comment = NULL;
1337	}
1338
1339	spa_config_exit(spa, SCL_ALL, FTAG);
1340}
1341
1342/*
1343 * Load (or re-load) the current list of vdevs describing the active spares for
1344 * this pool.  When this is called, we have some form of basic information in
1345 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1346 * then re-generate a more complete list including status information.
1347 */
1348static void
1349spa_load_spares(spa_t *spa)
1350{
1351	nvlist_t **spares;
1352	uint_t nspares;
1353	int i;
1354	vdev_t *vd, *tvd;
1355
1356	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1357
1358	/*
1359	 * First, close and free any existing spare vdevs.
1360	 */
1361	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1362		vd = spa->spa_spares.sav_vdevs[i];
1363
1364		/* Undo the call to spa_activate() below */
1365		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1366		    B_FALSE)) != NULL && tvd->vdev_isspare)
1367			spa_spare_remove(tvd);
1368		vdev_close(vd);
1369		vdev_free(vd);
1370	}
1371
1372	if (spa->spa_spares.sav_vdevs)
1373		kmem_free(spa->spa_spares.sav_vdevs,
1374		    spa->spa_spares.sav_count * sizeof (void *));
1375
1376	if (spa->spa_spares.sav_config == NULL)
1377		nspares = 0;
1378	else
1379		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1380		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1381
1382	spa->spa_spares.sav_count = (int)nspares;
1383	spa->spa_spares.sav_vdevs = NULL;
1384
1385	if (nspares == 0)
1386		return;
1387
1388	/*
1389	 * Construct the array of vdevs, opening them to get status in the
1390	 * process.   For each spare, there is potentially two different vdev_t
1391	 * structures associated with it: one in the list of spares (used only
1392	 * for basic validation purposes) and one in the active vdev
1393	 * configuration (if it's spared in).  During this phase we open and
1394	 * validate each vdev on the spare list.  If the vdev also exists in the
1395	 * active configuration, then we also mark this vdev as an active spare.
1396	 */
1397	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1398	    KM_SLEEP);
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1401		    VDEV_ALLOC_SPARE) == 0);
1402		ASSERT(vd != NULL);
1403
1404		spa->spa_spares.sav_vdevs[i] = vd;
1405
1406		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1407		    B_FALSE)) != NULL) {
1408			if (!tvd->vdev_isspare)
1409				spa_spare_add(tvd);
1410
1411			/*
1412			 * We only mark the spare active if we were successfully
1413			 * able to load the vdev.  Otherwise, importing a pool
1414			 * with a bad active spare would result in strange
1415			 * behavior, because multiple pool would think the spare
1416			 * is actively in use.
1417			 *
1418			 * There is a vulnerability here to an equally bizarre
1419			 * circumstance, where a dead active spare is later
1420			 * brought back to life (onlined or otherwise).  Given
1421			 * the rarity of this scenario, and the extra complexity
1422			 * it adds, we ignore the possibility.
1423			 */
1424			if (!vdev_is_dead(tvd))
1425				spa_spare_activate(tvd);
1426		}
1427
1428		vd->vdev_top = vd;
1429		vd->vdev_aux = &spa->spa_spares;
1430
1431		if (vdev_open(vd) != 0)
1432			continue;
1433
1434		if (vdev_validate_aux(vd) == 0)
1435			spa_spare_add(vd);
1436	}
1437
1438	/*
1439	 * Recompute the stashed list of spares, with status information
1440	 * this time.
1441	 */
1442	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1443	    DATA_TYPE_NVLIST_ARRAY) == 0);
1444
1445	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1446	    KM_SLEEP);
1447	for (i = 0; i < spa->spa_spares.sav_count; i++)
1448		spares[i] = vdev_config_generate(spa,
1449		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1450	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1451	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1452	for (i = 0; i < spa->spa_spares.sav_count; i++)
1453		nvlist_free(spares[i]);
1454	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1455}
1456
1457/*
1458 * Load (or re-load) the current list of vdevs describing the active l2cache for
1459 * this pool.  When this is called, we have some form of basic information in
1460 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1461 * then re-generate a more complete list including status information.
1462 * Devices which are already active have their details maintained, and are
1463 * not re-opened.
1464 */
1465static void
1466spa_load_l2cache(spa_t *spa)
1467{
1468	nvlist_t **l2cache;
1469	uint_t nl2cache;
1470	int i, j, oldnvdevs;
1471	uint64_t guid;
1472	vdev_t *vd, **oldvdevs, **newvdevs;
1473	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1474
1475	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1476
1477	if (sav->sav_config != NULL) {
1478		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1479		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1480		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1481	} else {
1482		nl2cache = 0;
1483		newvdevs = NULL;
1484	}
1485
1486	oldvdevs = sav->sav_vdevs;
1487	oldnvdevs = sav->sav_count;
1488	sav->sav_vdevs = NULL;
1489	sav->sav_count = 0;
1490
1491	/*
1492	 * Process new nvlist of vdevs.
1493	 */
1494	for (i = 0; i < nl2cache; i++) {
1495		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1496		    &guid) == 0);
1497
1498		newvdevs[i] = NULL;
1499		for (j = 0; j < oldnvdevs; j++) {
1500			vd = oldvdevs[j];
1501			if (vd != NULL && guid == vd->vdev_guid) {
1502				/*
1503				 * Retain previous vdev for add/remove ops.
1504				 */
1505				newvdevs[i] = vd;
1506				oldvdevs[j] = NULL;
1507				break;
1508			}
1509		}
1510
1511		if (newvdevs[i] == NULL) {
1512			/*
1513			 * Create new vdev
1514			 */
1515			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1516			    VDEV_ALLOC_L2CACHE) == 0);
1517			ASSERT(vd != NULL);
1518			newvdevs[i] = vd;
1519
1520			/*
1521			 * Commit this vdev as an l2cache device,
1522			 * even if it fails to open.
1523			 */
1524			spa_l2cache_add(vd);
1525
1526			vd->vdev_top = vd;
1527			vd->vdev_aux = sav;
1528
1529			spa_l2cache_activate(vd);
1530
1531			if (vdev_open(vd) != 0)
1532				continue;
1533
1534			(void) vdev_validate_aux(vd);
1535
1536			if (!vdev_is_dead(vd))
1537				l2arc_add_vdev(spa, vd);
1538		}
1539	}
1540
1541	/*
1542	 * Purge vdevs that were dropped
1543	 */
1544	for (i = 0; i < oldnvdevs; i++) {
1545		uint64_t pool;
1546
1547		vd = oldvdevs[i];
1548		if (vd != NULL) {
1549			ASSERT(vd->vdev_isl2cache);
1550
1551			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1552			    pool != 0ULL && l2arc_vdev_present(vd))
1553				l2arc_remove_vdev(vd);
1554			vdev_clear_stats(vd);
1555			vdev_free(vd);
1556		}
1557	}
1558
1559	if (oldvdevs)
1560		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1561
1562	if (sav->sav_config == NULL)
1563		goto out;
1564
1565	sav->sav_vdevs = newvdevs;
1566	sav->sav_count = (int)nl2cache;
1567
1568	/*
1569	 * Recompute the stashed list of l2cache devices, with status
1570	 * information this time.
1571	 */
1572	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1573	    DATA_TYPE_NVLIST_ARRAY) == 0);
1574
1575	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1576	for (i = 0; i < sav->sav_count; i++)
1577		l2cache[i] = vdev_config_generate(spa,
1578		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1579	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1580	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1581out:
1582	for (i = 0; i < sav->sav_count; i++)
1583		nvlist_free(l2cache[i]);
1584	if (sav->sav_count)
1585		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1586}
1587
1588static int
1589load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1590{
1591	dmu_buf_t *db;
1592	char *packed = NULL;
1593	size_t nvsize = 0;
1594	int error;
1595	*value = NULL;
1596
1597	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1598	nvsize = *(uint64_t *)db->db_data;
1599	dmu_buf_rele(db, FTAG);
1600
1601	packed = kmem_alloc(nvsize, KM_SLEEP);
1602	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1603	    DMU_READ_PREFETCH);
1604	if (error == 0)
1605		error = nvlist_unpack(packed, nvsize, value, 0);
1606	kmem_free(packed, nvsize);
1607
1608	return (error);
1609}
1610
1611/*
1612 * Checks to see if the given vdev could not be opened, in which case we post a
1613 * sysevent to notify the autoreplace code that the device has been removed.
1614 */
1615static void
1616spa_check_removed(vdev_t *vd)
1617{
1618	for (int c = 0; c < vd->vdev_children; c++)
1619		spa_check_removed(vd->vdev_child[c]);
1620
1621	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1622	    !vd->vdev_ishole) {
1623		zfs_post_autoreplace(vd->vdev_spa, vd);
1624		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1625	}
1626}
1627
1628/*
1629 * Validate the current config against the MOS config
1630 */
1631static boolean_t
1632spa_config_valid(spa_t *spa, nvlist_t *config)
1633{
1634	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1635	nvlist_t *nv;
1636
1637	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1638
1639	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1640	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1641
1642	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1643
1644	/*
1645	 * If we're doing a normal import, then build up any additional
1646	 * diagnostic information about missing devices in this config.
1647	 * We'll pass this up to the user for further processing.
1648	 */
1649	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1650		nvlist_t **child, *nv;
1651		uint64_t idx = 0;
1652
1653		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1654		    KM_SLEEP);
1655		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1656
1657		for (int c = 0; c < rvd->vdev_children; c++) {
1658			vdev_t *tvd = rvd->vdev_child[c];
1659			vdev_t *mtvd  = mrvd->vdev_child[c];
1660
1661			if (tvd->vdev_ops == &vdev_missing_ops &&
1662			    mtvd->vdev_ops != &vdev_missing_ops &&
1663			    mtvd->vdev_islog)
1664				child[idx++] = vdev_config_generate(spa, mtvd,
1665				    B_FALSE, 0);
1666		}
1667
1668		if (idx) {
1669			VERIFY(nvlist_add_nvlist_array(nv,
1670			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1671			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1672			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1673
1674			for (int i = 0; i < idx; i++)
1675				nvlist_free(child[i]);
1676		}
1677		nvlist_free(nv);
1678		kmem_free(child, rvd->vdev_children * sizeof (char **));
1679	}
1680
1681	/*
1682	 * Compare the root vdev tree with the information we have
1683	 * from the MOS config (mrvd). Check each top-level vdev
1684	 * with the corresponding MOS config top-level (mtvd).
1685	 */
1686	for (int c = 0; c < rvd->vdev_children; c++) {
1687		vdev_t *tvd = rvd->vdev_child[c];
1688		vdev_t *mtvd  = mrvd->vdev_child[c];
1689
1690		/*
1691		 * Resolve any "missing" vdevs in the current configuration.
1692		 * If we find that the MOS config has more accurate information
1693		 * about the top-level vdev then use that vdev instead.
1694		 */
1695		if (tvd->vdev_ops == &vdev_missing_ops &&
1696		    mtvd->vdev_ops != &vdev_missing_ops) {
1697
1698			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1699				continue;
1700
1701			/*
1702			 * Device specific actions.
1703			 */
1704			if (mtvd->vdev_islog) {
1705				spa_set_log_state(spa, SPA_LOG_CLEAR);
1706			} else {
1707				/*
1708				 * XXX - once we have 'readonly' pool
1709				 * support we should be able to handle
1710				 * missing data devices by transitioning
1711				 * the pool to readonly.
1712				 */
1713				continue;
1714			}
1715
1716			/*
1717			 * Swap the missing vdev with the data we were
1718			 * able to obtain from the MOS config.
1719			 */
1720			vdev_remove_child(rvd, tvd);
1721			vdev_remove_child(mrvd, mtvd);
1722
1723			vdev_add_child(rvd, mtvd);
1724			vdev_add_child(mrvd, tvd);
1725
1726			spa_config_exit(spa, SCL_ALL, FTAG);
1727			vdev_load(mtvd);
1728			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1729
1730			vdev_reopen(rvd);
1731		} else if (mtvd->vdev_islog) {
1732			/*
1733			 * Load the slog device's state from the MOS config
1734			 * since it's possible that the label does not
1735			 * contain the most up-to-date information.
1736			 */
1737			vdev_load_log_state(tvd, mtvd);
1738			vdev_reopen(tvd);
1739		}
1740	}
1741	vdev_free(mrvd);
1742	spa_config_exit(spa, SCL_ALL, FTAG);
1743
1744	/*
1745	 * Ensure we were able to validate the config.
1746	 */
1747	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1748}
1749
1750/*
1751 * Check for missing log devices
1752 */
1753static boolean_t
1754spa_check_logs(spa_t *spa)
1755{
1756	boolean_t rv = B_FALSE;
1757
1758	switch (spa->spa_log_state) {
1759	case SPA_LOG_MISSING:
1760		/* need to recheck in case slog has been restored */
1761	case SPA_LOG_UNKNOWN:
1762		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1763		    NULL, DS_FIND_CHILDREN) != 0);
1764		if (rv)
1765			spa_set_log_state(spa, SPA_LOG_MISSING);
1766		break;
1767	}
1768	return (rv);
1769}
1770
1771static boolean_t
1772spa_passivate_log(spa_t *spa)
1773{
1774	vdev_t *rvd = spa->spa_root_vdev;
1775	boolean_t slog_found = B_FALSE;
1776
1777	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1778
1779	if (!spa_has_slogs(spa))
1780		return (B_FALSE);
1781
1782	for (int c = 0; c < rvd->vdev_children; c++) {
1783		vdev_t *tvd = rvd->vdev_child[c];
1784		metaslab_group_t *mg = tvd->vdev_mg;
1785
1786		if (tvd->vdev_islog) {
1787			metaslab_group_passivate(mg);
1788			slog_found = B_TRUE;
1789		}
1790	}
1791
1792	return (slog_found);
1793}
1794
1795static void
1796spa_activate_log(spa_t *spa)
1797{
1798	vdev_t *rvd = spa->spa_root_vdev;
1799
1800	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1801
1802	for (int c = 0; c < rvd->vdev_children; c++) {
1803		vdev_t *tvd = rvd->vdev_child[c];
1804		metaslab_group_t *mg = tvd->vdev_mg;
1805
1806		if (tvd->vdev_islog)
1807			metaslab_group_activate(mg);
1808	}
1809}
1810
1811int
1812spa_offline_log(spa_t *spa)
1813{
1814	int error;
1815
1816	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1817	    NULL, DS_FIND_CHILDREN);
1818	if (error == 0) {
1819		/*
1820		 * We successfully offlined the log device, sync out the
1821		 * current txg so that the "stubby" block can be removed
1822		 * by zil_sync().
1823		 */
1824		txg_wait_synced(spa->spa_dsl_pool, 0);
1825	}
1826	return (error);
1827}
1828
1829static void
1830spa_aux_check_removed(spa_aux_vdev_t *sav)
1831{
1832	int i;
1833
1834	for (i = 0; i < sav->sav_count; i++)
1835		spa_check_removed(sav->sav_vdevs[i]);
1836}
1837
1838void
1839spa_claim_notify(zio_t *zio)
1840{
1841	spa_t *spa = zio->io_spa;
1842
1843	if (zio->io_error)
1844		return;
1845
1846	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1847	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1848		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1849	mutex_exit(&spa->spa_props_lock);
1850}
1851
1852typedef struct spa_load_error {
1853	uint64_t	sle_meta_count;
1854	uint64_t	sle_data_count;
1855} spa_load_error_t;
1856
1857static void
1858spa_load_verify_done(zio_t *zio)
1859{
1860	blkptr_t *bp = zio->io_bp;
1861	spa_load_error_t *sle = zio->io_private;
1862	dmu_object_type_t type = BP_GET_TYPE(bp);
1863	int error = zio->io_error;
1864
1865	if (error) {
1866		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1867		    type != DMU_OT_INTENT_LOG)
1868			atomic_add_64(&sle->sle_meta_count, 1);
1869		else
1870			atomic_add_64(&sle->sle_data_count, 1);
1871	}
1872	zio_data_buf_free(zio->io_data, zio->io_size);
1873}
1874
1875/*ARGSUSED*/
1876static int
1877spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1878    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1879{
1880	if (bp != NULL) {
1881		zio_t *rio = arg;
1882		size_t size = BP_GET_PSIZE(bp);
1883		void *data = zio_data_buf_alloc(size);
1884
1885		zio_nowait(zio_read(rio, spa, bp, data, size,
1886		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1887		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1888		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1889	}
1890	return (0);
1891}
1892
1893static int
1894spa_load_verify(spa_t *spa)
1895{
1896	zio_t *rio;
1897	spa_load_error_t sle = { 0 };
1898	zpool_rewind_policy_t policy;
1899	boolean_t verify_ok = B_FALSE;
1900	int error;
1901
1902	zpool_get_rewind_policy(spa->spa_config, &policy);
1903
1904	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1905		return (0);
1906
1907	rio = zio_root(spa, NULL, &sle,
1908	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1909
1910	error = traverse_pool(spa, spa->spa_verify_min_txg,
1911	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1912
1913	(void) zio_wait(rio);
1914
1915	spa->spa_load_meta_errors = sle.sle_meta_count;
1916	spa->spa_load_data_errors = sle.sle_data_count;
1917
1918	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1919	    sle.sle_data_count <= policy.zrp_maxdata) {
1920		int64_t loss = 0;
1921
1922		verify_ok = B_TRUE;
1923		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1924		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1925
1926		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1927		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1928		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1929		VERIFY(nvlist_add_int64(spa->spa_load_info,
1930		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1931		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1932		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1933	} else {
1934		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1935	}
1936
1937	if (error) {
1938		if (error != ENXIO && error != EIO)
1939			error = SET_ERROR(EIO);
1940		return (error);
1941	}
1942
1943	return (verify_ok ? 0 : EIO);
1944}
1945
1946/*
1947 * Find a value in the pool props object.
1948 */
1949static void
1950spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1951{
1952	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1953	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1954}
1955
1956/*
1957 * Find a value in the pool directory object.
1958 */
1959static int
1960spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1961{
1962	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1963	    name, sizeof (uint64_t), 1, val));
1964}
1965
1966static int
1967spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1968{
1969	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1970	return (err);
1971}
1972
1973/*
1974 * Fix up config after a partly-completed split.  This is done with the
1975 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1976 * pool have that entry in their config, but only the splitting one contains
1977 * a list of all the guids of the vdevs that are being split off.
1978 *
1979 * This function determines what to do with that list: either rejoin
1980 * all the disks to the pool, or complete the splitting process.  To attempt
1981 * the rejoin, each disk that is offlined is marked online again, and
1982 * we do a reopen() call.  If the vdev label for every disk that was
1983 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1984 * then we call vdev_split() on each disk, and complete the split.
1985 *
1986 * Otherwise we leave the config alone, with all the vdevs in place in
1987 * the original pool.
1988 */
1989static void
1990spa_try_repair(spa_t *spa, nvlist_t *config)
1991{
1992	uint_t extracted;
1993	uint64_t *glist;
1994	uint_t i, gcount;
1995	nvlist_t *nvl;
1996	vdev_t **vd;
1997	boolean_t attempt_reopen;
1998
1999	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2000		return;
2001
2002	/* check that the config is complete */
2003	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2004	    &glist, &gcount) != 0)
2005		return;
2006
2007	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2008
2009	/* attempt to online all the vdevs & validate */
2010	attempt_reopen = B_TRUE;
2011	for (i = 0; i < gcount; i++) {
2012		if (glist[i] == 0)	/* vdev is hole */
2013			continue;
2014
2015		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2016		if (vd[i] == NULL) {
2017			/*
2018			 * Don't bother attempting to reopen the disks;
2019			 * just do the split.
2020			 */
2021			attempt_reopen = B_FALSE;
2022		} else {
2023			/* attempt to re-online it */
2024			vd[i]->vdev_offline = B_FALSE;
2025		}
2026	}
2027
2028	if (attempt_reopen) {
2029		vdev_reopen(spa->spa_root_vdev);
2030
2031		/* check each device to see what state it's in */
2032		for (extracted = 0, i = 0; i < gcount; i++) {
2033			if (vd[i] != NULL &&
2034			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2035				break;
2036			++extracted;
2037		}
2038	}
2039
2040	/*
2041	 * If every disk has been moved to the new pool, or if we never
2042	 * even attempted to look at them, then we split them off for
2043	 * good.
2044	 */
2045	if (!attempt_reopen || gcount == extracted) {
2046		for (i = 0; i < gcount; i++)
2047			if (vd[i] != NULL)
2048				vdev_split(vd[i]);
2049		vdev_reopen(spa->spa_root_vdev);
2050	}
2051
2052	kmem_free(vd, gcount * sizeof (vdev_t *));
2053}
2054
2055static int
2056spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2057    boolean_t mosconfig)
2058{
2059	nvlist_t *config = spa->spa_config;
2060	char *ereport = FM_EREPORT_ZFS_POOL;
2061	char *comment;
2062	int error;
2063	uint64_t pool_guid;
2064	nvlist_t *nvl;
2065
2066	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2067		return (SET_ERROR(EINVAL));
2068
2069	ASSERT(spa->spa_comment == NULL);
2070	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2071		spa->spa_comment = spa_strdup(comment);
2072
2073	/*
2074	 * Versioning wasn't explicitly added to the label until later, so if
2075	 * it's not present treat it as the initial version.
2076	 */
2077	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2078	    &spa->spa_ubsync.ub_version) != 0)
2079		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2080
2081	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2082	    &spa->spa_config_txg);
2083
2084	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2085	    spa_guid_exists(pool_guid, 0)) {
2086		error = SET_ERROR(EEXIST);
2087	} else {
2088		spa->spa_config_guid = pool_guid;
2089
2090		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2091		    &nvl) == 0) {
2092			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2093			    KM_SLEEP) == 0);
2094		}
2095
2096		nvlist_free(spa->spa_load_info);
2097		spa->spa_load_info = fnvlist_alloc();
2098
2099		gethrestime(&spa->spa_loaded_ts);
2100		error = spa_load_impl(spa, pool_guid, config, state, type,
2101		    mosconfig, &ereport);
2102	}
2103
2104	spa->spa_minref = refcount_count(&spa->spa_refcount);
2105	if (error) {
2106		if (error != EEXIST) {
2107			spa->spa_loaded_ts.tv_sec = 0;
2108			spa->spa_loaded_ts.tv_nsec = 0;
2109		}
2110		if (error != EBADF) {
2111			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2112		}
2113	}
2114	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2115	spa->spa_ena = 0;
2116
2117	return (error);
2118}
2119
2120/*
2121 * Load an existing storage pool, using the pool's builtin spa_config as a
2122 * source of configuration information.
2123 */
2124static int
2125spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2126    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2127    char **ereport)
2128{
2129	int error = 0;
2130	nvlist_t *nvroot = NULL;
2131	nvlist_t *label;
2132	vdev_t *rvd;
2133	uberblock_t *ub = &spa->spa_uberblock;
2134	uint64_t children, config_cache_txg = spa->spa_config_txg;
2135	int orig_mode = spa->spa_mode;
2136	int parse;
2137	uint64_t obj;
2138	boolean_t missing_feat_write = B_FALSE;
2139
2140	/*
2141	 * If this is an untrusted config, access the pool in read-only mode.
2142	 * This prevents things like resilvering recently removed devices.
2143	 */
2144	if (!mosconfig)
2145		spa->spa_mode = FREAD;
2146
2147	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2148
2149	spa->spa_load_state = state;
2150
2151	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2152		return (SET_ERROR(EINVAL));
2153
2154	parse = (type == SPA_IMPORT_EXISTING ?
2155	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2156
2157	/*
2158	 * Create "The Godfather" zio to hold all async IOs
2159	 */
2160	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2161	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2162
2163	/*
2164	 * Parse the configuration into a vdev tree.  We explicitly set the
2165	 * value that will be returned by spa_version() since parsing the
2166	 * configuration requires knowing the version number.
2167	 */
2168	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2169	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2170	spa_config_exit(spa, SCL_ALL, FTAG);
2171
2172	if (error != 0)
2173		return (error);
2174
2175	ASSERT(spa->spa_root_vdev == rvd);
2176
2177	if (type != SPA_IMPORT_ASSEMBLE) {
2178		ASSERT(spa_guid(spa) == pool_guid);
2179	}
2180
2181	/*
2182	 * Try to open all vdevs, loading each label in the process.
2183	 */
2184	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2185	error = vdev_open(rvd);
2186	spa_config_exit(spa, SCL_ALL, FTAG);
2187	if (error != 0)
2188		return (error);
2189
2190	/*
2191	 * We need to validate the vdev labels against the configuration that
2192	 * we have in hand, which is dependent on the setting of mosconfig. If
2193	 * mosconfig is true then we're validating the vdev labels based on
2194	 * that config.  Otherwise, we're validating against the cached config
2195	 * (zpool.cache) that was read when we loaded the zfs module, and then
2196	 * later we will recursively call spa_load() and validate against
2197	 * the vdev config.
2198	 *
2199	 * If we're assembling a new pool that's been split off from an
2200	 * existing pool, the labels haven't yet been updated so we skip
2201	 * validation for now.
2202	 */
2203	if (type != SPA_IMPORT_ASSEMBLE) {
2204		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2205		error = vdev_validate(rvd, mosconfig);
2206		spa_config_exit(spa, SCL_ALL, FTAG);
2207
2208		if (error != 0)
2209			return (error);
2210
2211		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2212			return (SET_ERROR(ENXIO));
2213	}
2214
2215	/*
2216	 * Find the best uberblock.
2217	 */
2218	vdev_uberblock_load(rvd, ub, &label);
2219
2220	/*
2221	 * If we weren't able to find a single valid uberblock, return failure.
2222	 */
2223	if (ub->ub_txg == 0) {
2224		nvlist_free(label);
2225		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2226	}
2227
2228	/*
2229	 * If the pool has an unsupported version we can't open it.
2230	 */
2231	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2232		nvlist_free(label);
2233		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2234	}
2235
2236	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2237		nvlist_t *features;
2238
2239		/*
2240		 * If we weren't able to find what's necessary for reading the
2241		 * MOS in the label, return failure.
2242		 */
2243		if (label == NULL || nvlist_lookup_nvlist(label,
2244		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2245			nvlist_free(label);
2246			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2247			    ENXIO));
2248		}
2249
2250		/*
2251		 * Update our in-core representation with the definitive values
2252		 * from the label.
2253		 */
2254		nvlist_free(spa->spa_label_features);
2255		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2256	}
2257
2258	nvlist_free(label);
2259
2260	/*
2261	 * Look through entries in the label nvlist's features_for_read. If
2262	 * there is a feature listed there which we don't understand then we
2263	 * cannot open a pool.
2264	 */
2265	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2266		nvlist_t *unsup_feat;
2267
2268		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2269		    0);
2270
2271		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2272		    NULL); nvp != NULL;
2273		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2274			if (!zfeature_is_supported(nvpair_name(nvp))) {
2275				VERIFY(nvlist_add_string(unsup_feat,
2276				    nvpair_name(nvp), "") == 0);
2277			}
2278		}
2279
2280		if (!nvlist_empty(unsup_feat)) {
2281			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2282			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2283			nvlist_free(unsup_feat);
2284			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2285			    ENOTSUP));
2286		}
2287
2288		nvlist_free(unsup_feat);
2289	}
2290
2291	/*
2292	 * If the vdev guid sum doesn't match the uberblock, we have an
2293	 * incomplete configuration.  We first check to see if the pool
2294	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2295	 * If it is, defer the vdev_guid_sum check till later so we
2296	 * can handle missing vdevs.
2297	 */
2298	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2299	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2300	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2301		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2302
2303	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2304		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2305		spa_try_repair(spa, config);
2306		spa_config_exit(spa, SCL_ALL, FTAG);
2307		nvlist_free(spa->spa_config_splitting);
2308		spa->spa_config_splitting = NULL;
2309	}
2310
2311	/*
2312	 * Initialize internal SPA structures.
2313	 */
2314	spa->spa_state = POOL_STATE_ACTIVE;
2315	spa->spa_ubsync = spa->spa_uberblock;
2316	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2317	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2318	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2319	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2320	spa->spa_claim_max_txg = spa->spa_first_txg;
2321	spa->spa_prev_software_version = ub->ub_software_version;
2322
2323	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2324	if (error)
2325		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2327
2328	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2329		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2330
2331	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2332		boolean_t missing_feat_read = B_FALSE;
2333		nvlist_t *unsup_feat, *enabled_feat;
2334
2335		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2336		    &spa->spa_feat_for_read_obj) != 0) {
2337			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2338		}
2339
2340		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2341		    &spa->spa_feat_for_write_obj) != 0) {
2342			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2343		}
2344
2345		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2346		    &spa->spa_feat_desc_obj) != 0) {
2347			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348		}
2349
2350		enabled_feat = fnvlist_alloc();
2351		unsup_feat = fnvlist_alloc();
2352
2353		if (!feature_is_supported(spa->spa_meta_objset,
2354		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2355		    unsup_feat, enabled_feat))
2356			missing_feat_read = B_TRUE;
2357
2358		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2359			if (!feature_is_supported(spa->spa_meta_objset,
2360			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2361			    unsup_feat, enabled_feat)) {
2362				missing_feat_write = B_TRUE;
2363			}
2364		}
2365
2366		fnvlist_add_nvlist(spa->spa_load_info,
2367		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2368
2369		if (!nvlist_empty(unsup_feat)) {
2370			fnvlist_add_nvlist(spa->spa_load_info,
2371			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2372		}
2373
2374		fnvlist_free(enabled_feat);
2375		fnvlist_free(unsup_feat);
2376
2377		if (!missing_feat_read) {
2378			fnvlist_add_boolean(spa->spa_load_info,
2379			    ZPOOL_CONFIG_CAN_RDONLY);
2380		}
2381
2382		/*
2383		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2384		 * twofold: to determine whether the pool is available for
2385		 * import in read-write mode and (if it is not) whether the
2386		 * pool is available for import in read-only mode. If the pool
2387		 * is available for import in read-write mode, it is displayed
2388		 * as available in userland; if it is not available for import
2389		 * in read-only mode, it is displayed as unavailable in
2390		 * userland. If the pool is available for import in read-only
2391		 * mode but not read-write mode, it is displayed as unavailable
2392		 * in userland with a special note that the pool is actually
2393		 * available for open in read-only mode.
2394		 *
2395		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2396		 * missing a feature for write, we must first determine whether
2397		 * the pool can be opened read-only before returning to
2398		 * userland in order to know whether to display the
2399		 * abovementioned note.
2400		 */
2401		if (missing_feat_read || (missing_feat_write &&
2402		    spa_writeable(spa))) {
2403			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2404			    ENOTSUP));
2405		}
2406	}
2407
2408	spa->spa_is_initializing = B_TRUE;
2409	error = dsl_pool_open(spa->spa_dsl_pool);
2410	spa->spa_is_initializing = B_FALSE;
2411	if (error != 0)
2412		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413
2414	if (!mosconfig) {
2415		uint64_t hostid;
2416		nvlist_t *policy = NULL, *nvconfig;
2417
2418		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2419			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420
2421		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2422		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2423			char *hostname;
2424			unsigned long myhostid = 0;
2425
2426			VERIFY(nvlist_lookup_string(nvconfig,
2427			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2428
2429#ifdef	_KERNEL
2430			myhostid = zone_get_hostid(NULL);
2431#else	/* _KERNEL */
2432			/*
2433			 * We're emulating the system's hostid in userland, so
2434			 * we can't use zone_get_hostid().
2435			 */
2436			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2437#endif	/* _KERNEL */
2438			if (check_hostid && hostid != 0 && myhostid != 0 &&
2439			    hostid != myhostid) {
2440				nvlist_free(nvconfig);
2441				cmn_err(CE_WARN, "pool '%s' could not be "
2442				    "loaded as it was last accessed by "
2443				    "another system (host: %s hostid: 0x%lx). "
2444				    "See: http://illumos.org/msg/ZFS-8000-EY",
2445				    spa_name(spa), hostname,
2446				    (unsigned long)hostid);
2447				return (SET_ERROR(EBADF));
2448			}
2449		}
2450		if (nvlist_lookup_nvlist(spa->spa_config,
2451		    ZPOOL_REWIND_POLICY, &policy) == 0)
2452			VERIFY(nvlist_add_nvlist(nvconfig,
2453			    ZPOOL_REWIND_POLICY, policy) == 0);
2454
2455		spa_config_set(spa, nvconfig);
2456		spa_unload(spa);
2457		spa_deactivate(spa);
2458		spa_activate(spa, orig_mode);
2459
2460		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2461	}
2462
2463	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2464		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2466	if (error != 0)
2467		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2468
2469	/*
2470	 * Load the bit that tells us to use the new accounting function
2471	 * (raid-z deflation).  If we have an older pool, this will not
2472	 * be present.
2473	 */
2474	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2475	if (error != 0 && error != ENOENT)
2476		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477
2478	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2479	    &spa->spa_creation_version);
2480	if (error != 0 && error != ENOENT)
2481		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2482
2483	/*
2484	 * Load the persistent error log.  If we have an older pool, this will
2485	 * not be present.
2486	 */
2487	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2488	if (error != 0 && error != ENOENT)
2489		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490
2491	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2492	    &spa->spa_errlog_scrub);
2493	if (error != 0 && error != ENOENT)
2494		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2495
2496	/*
2497	 * Load the history object.  If we have an older pool, this
2498	 * will not be present.
2499	 */
2500	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2501	if (error != 0 && error != ENOENT)
2502		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503
2504	/*
2505	 * If we're assembling the pool from the split-off vdevs of
2506	 * an existing pool, we don't want to attach the spares & cache
2507	 * devices.
2508	 */
2509
2510	/*
2511	 * Load any hot spares for this pool.
2512	 */
2513	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2514	if (error != 0 && error != ENOENT)
2515		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2518		if (load_nvlist(spa, spa->spa_spares.sav_object,
2519		    &spa->spa_spares.sav_config) != 0)
2520			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521
2522		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523		spa_load_spares(spa);
2524		spa_config_exit(spa, SCL_ALL, FTAG);
2525	} else if (error == 0) {
2526		spa->spa_spares.sav_sync = B_TRUE;
2527	}
2528
2529	/*
2530	 * Load any level 2 ARC devices for this pool.
2531	 */
2532	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2533	    &spa->spa_l2cache.sav_object);
2534	if (error != 0 && error != ENOENT)
2535		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2537		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2538		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2539		    &spa->spa_l2cache.sav_config) != 0)
2540			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541
2542		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2543		spa_load_l2cache(spa);
2544		spa_config_exit(spa, SCL_ALL, FTAG);
2545	} else if (error == 0) {
2546		spa->spa_l2cache.sav_sync = B_TRUE;
2547	}
2548
2549	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2550
2551	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2552	if (error && error != ENOENT)
2553		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2554
2555	if (error == 0) {
2556		uint64_t autoreplace;
2557
2558		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2559		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2560		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2561		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2562		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2563		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2564		    &spa->spa_dedup_ditto);
2565
2566		spa->spa_autoreplace = (autoreplace != 0);
2567	}
2568
2569	/*
2570	 * If the 'autoreplace' property is set, then post a resource notifying
2571	 * the ZFS DE that it should not issue any faults for unopenable
2572	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2573	 * unopenable vdevs so that the normal autoreplace handler can take
2574	 * over.
2575	 */
2576	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2577		spa_check_removed(spa->spa_root_vdev);
2578		/*
2579		 * For the import case, this is done in spa_import(), because
2580		 * at this point we're using the spare definitions from
2581		 * the MOS config, not necessarily from the userland config.
2582		 */
2583		if (state != SPA_LOAD_IMPORT) {
2584			spa_aux_check_removed(&spa->spa_spares);
2585			spa_aux_check_removed(&spa->spa_l2cache);
2586		}
2587	}
2588
2589	/*
2590	 * Load the vdev state for all toplevel vdevs.
2591	 */
2592	vdev_load(rvd);
2593
2594	/*
2595	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2596	 */
2597	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2598	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2599	spa_config_exit(spa, SCL_ALL, FTAG);
2600
2601	/*
2602	 * Load the DDTs (dedup tables).
2603	 */
2604	error = ddt_load(spa);
2605	if (error != 0)
2606		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2607
2608	spa_update_dspace(spa);
2609
2610	/*
2611	 * Validate the config, using the MOS config to fill in any
2612	 * information which might be missing.  If we fail to validate
2613	 * the config then declare the pool unfit for use. If we're
2614	 * assembling a pool from a split, the log is not transferred
2615	 * over.
2616	 */
2617	if (type != SPA_IMPORT_ASSEMBLE) {
2618		nvlist_t *nvconfig;
2619
2620		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2621			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622
2623		if (!spa_config_valid(spa, nvconfig)) {
2624			nvlist_free(nvconfig);
2625			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2626			    ENXIO));
2627		}
2628		nvlist_free(nvconfig);
2629
2630		/*
2631		 * Now that we've validated the config, check the state of the
2632		 * root vdev.  If it can't be opened, it indicates one or
2633		 * more toplevel vdevs are faulted.
2634		 */
2635		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2636			return (SET_ERROR(ENXIO));
2637
2638		if (spa_check_logs(spa)) {
2639			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2640			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2641		}
2642	}
2643
2644	if (missing_feat_write) {
2645		ASSERT(state == SPA_LOAD_TRYIMPORT);
2646
2647		/*
2648		 * At this point, we know that we can open the pool in
2649		 * read-only mode but not read-write mode. We now have enough
2650		 * information and can return to userland.
2651		 */
2652		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2653	}
2654
2655	/*
2656	 * We've successfully opened the pool, verify that we're ready
2657	 * to start pushing transactions.
2658	 */
2659	if (state != SPA_LOAD_TRYIMPORT) {
2660		if (error = spa_load_verify(spa))
2661			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2662			    error));
2663	}
2664
2665	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2666	    spa->spa_load_max_txg == UINT64_MAX)) {
2667		dmu_tx_t *tx;
2668		int need_update = B_FALSE;
2669
2670		ASSERT(state != SPA_LOAD_TRYIMPORT);
2671
2672		/*
2673		 * Claim log blocks that haven't been committed yet.
2674		 * This must all happen in a single txg.
2675		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2676		 * invoked from zil_claim_log_block()'s i/o done callback.
2677		 * Price of rollback is that we abandon the log.
2678		 */
2679		spa->spa_claiming = B_TRUE;
2680
2681		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2682		    spa_first_txg(spa));
2683		(void) dmu_objset_find(spa_name(spa),
2684		    zil_claim, tx, DS_FIND_CHILDREN);
2685		dmu_tx_commit(tx);
2686
2687		spa->spa_claiming = B_FALSE;
2688
2689		spa_set_log_state(spa, SPA_LOG_GOOD);
2690		spa->spa_sync_on = B_TRUE;
2691		txg_sync_start(spa->spa_dsl_pool);
2692
2693		/*
2694		 * Wait for all claims to sync.  We sync up to the highest
2695		 * claimed log block birth time so that claimed log blocks
2696		 * don't appear to be from the future.  spa_claim_max_txg
2697		 * will have been set for us by either zil_check_log_chain()
2698		 * (invoked from spa_check_logs()) or zil_claim() above.
2699		 */
2700		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2701
2702		/*
2703		 * If the config cache is stale, or we have uninitialized
2704		 * metaslabs (see spa_vdev_add()), then update the config.
2705		 *
2706		 * If this is a verbatim import, trust the current
2707		 * in-core spa_config and update the disk labels.
2708		 */
2709		if (config_cache_txg != spa->spa_config_txg ||
2710		    state == SPA_LOAD_IMPORT ||
2711		    state == SPA_LOAD_RECOVER ||
2712		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2713			need_update = B_TRUE;
2714
2715		for (int c = 0; c < rvd->vdev_children; c++)
2716			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2717				need_update = B_TRUE;
2718
2719		/*
2720		 * Update the config cache asychronously in case we're the
2721		 * root pool, in which case the config cache isn't writable yet.
2722		 */
2723		if (need_update)
2724			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2725
2726		/*
2727		 * Check all DTLs to see if anything needs resilvering.
2728		 */
2729		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2730		    vdev_resilver_needed(rvd, NULL, NULL))
2731			spa_async_request(spa, SPA_ASYNC_RESILVER);
2732
2733		/*
2734		 * Log the fact that we booted up (so that we can detect if
2735		 * we rebooted in the middle of an operation).
2736		 */
2737		spa_history_log_version(spa, "open");
2738
2739		/*
2740		 * Delete any inconsistent datasets.
2741		 */
2742		(void) dmu_objset_find(spa_name(spa),
2743		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2744
2745		/*
2746		 * Clean up any stale temporary dataset userrefs.
2747		 */
2748		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2749	}
2750
2751	return (0);
2752}
2753
2754static int
2755spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2756{
2757	int mode = spa->spa_mode;
2758
2759	spa_unload(spa);
2760	spa_deactivate(spa);
2761
2762	spa->spa_load_max_txg--;
2763
2764	spa_activate(spa, mode);
2765	spa_async_suspend(spa);
2766
2767	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2768}
2769
2770/*
2771 * If spa_load() fails this function will try loading prior txg's. If
2772 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2773 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2774 * function will not rewind the pool and will return the same error as
2775 * spa_load().
2776 */
2777static int
2778spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2779    uint64_t max_request, int rewind_flags)
2780{
2781	nvlist_t *loadinfo = NULL;
2782	nvlist_t *config = NULL;
2783	int load_error, rewind_error;
2784	uint64_t safe_rewind_txg;
2785	uint64_t min_txg;
2786
2787	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2788		spa->spa_load_max_txg = spa->spa_load_txg;
2789		spa_set_log_state(spa, SPA_LOG_CLEAR);
2790	} else {
2791		spa->spa_load_max_txg = max_request;
2792	}
2793
2794	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2795	    mosconfig);
2796	if (load_error == 0)
2797		return (0);
2798
2799	if (spa->spa_root_vdev != NULL)
2800		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2801
2802	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2803	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2804
2805	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2806		nvlist_free(config);
2807		return (load_error);
2808	}
2809
2810	if (state == SPA_LOAD_RECOVER) {
2811		/* Price of rolling back is discarding txgs, including log */
2812		spa_set_log_state(spa, SPA_LOG_CLEAR);
2813	} else {
2814		/*
2815		 * If we aren't rolling back save the load info from our first
2816		 * import attempt so that we can restore it after attempting
2817		 * to rewind.
2818		 */
2819		loadinfo = spa->spa_load_info;
2820		spa->spa_load_info = fnvlist_alloc();
2821	}
2822
2823	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2824	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2825	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2826	    TXG_INITIAL : safe_rewind_txg;
2827
2828	/*
2829	 * Continue as long as we're finding errors, we're still within
2830	 * the acceptable rewind range, and we're still finding uberblocks
2831	 */
2832	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2833	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2834		if (spa->spa_load_max_txg < safe_rewind_txg)
2835			spa->spa_extreme_rewind = B_TRUE;
2836		rewind_error = spa_load_retry(spa, state, mosconfig);
2837	}
2838
2839	spa->spa_extreme_rewind = B_FALSE;
2840	spa->spa_load_max_txg = UINT64_MAX;
2841
2842	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2843		spa_config_set(spa, config);
2844
2845	if (state == SPA_LOAD_RECOVER) {
2846		ASSERT3P(loadinfo, ==, NULL);
2847		return (rewind_error);
2848	} else {
2849		/* Store the rewind info as part of the initial load info */
2850		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2851		    spa->spa_load_info);
2852
2853		/* Restore the initial load info */
2854		fnvlist_free(spa->spa_load_info);
2855		spa->spa_load_info = loadinfo;
2856
2857		return (load_error);
2858	}
2859}
2860
2861/*
2862 * Pool Open/Import
2863 *
2864 * The import case is identical to an open except that the configuration is sent
2865 * down from userland, instead of grabbed from the configuration cache.  For the
2866 * case of an open, the pool configuration will exist in the
2867 * POOL_STATE_UNINITIALIZED state.
2868 *
2869 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2870 * the same time open the pool, without having to keep around the spa_t in some
2871 * ambiguous state.
2872 */
2873static int
2874spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2875    nvlist_t **config)
2876{
2877	spa_t *spa;
2878	spa_load_state_t state = SPA_LOAD_OPEN;
2879	int error;
2880	int locked = B_FALSE;
2881	int firstopen = B_FALSE;
2882
2883	*spapp = NULL;
2884
2885	/*
2886	 * As disgusting as this is, we need to support recursive calls to this
2887	 * function because dsl_dir_open() is called during spa_load(), and ends
2888	 * up calling spa_open() again.  The real fix is to figure out how to
2889	 * avoid dsl_dir_open() calling this in the first place.
2890	 */
2891	if (mutex_owner(&spa_namespace_lock) != curthread) {
2892		mutex_enter(&spa_namespace_lock);
2893		locked = B_TRUE;
2894	}
2895
2896	if ((spa = spa_lookup(pool)) == NULL) {
2897		if (locked)
2898			mutex_exit(&spa_namespace_lock);
2899		return (SET_ERROR(ENOENT));
2900	}
2901
2902	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2903		zpool_rewind_policy_t policy;
2904
2905		firstopen = B_TRUE;
2906
2907		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2908		    &policy);
2909		if (policy.zrp_request & ZPOOL_DO_REWIND)
2910			state = SPA_LOAD_RECOVER;
2911
2912		spa_activate(spa, spa_mode_global);
2913
2914		if (state != SPA_LOAD_RECOVER)
2915			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2916
2917		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2918		    policy.zrp_request);
2919
2920		if (error == EBADF) {
2921			/*
2922			 * If vdev_validate() returns failure (indicated by
2923			 * EBADF), it indicates that one of the vdevs indicates
2924			 * that the pool has been exported or destroyed.  If
2925			 * this is the case, the config cache is out of sync and
2926			 * we should remove the pool from the namespace.
2927			 */
2928			spa_unload(spa);
2929			spa_deactivate(spa);
2930			spa_config_sync(spa, B_TRUE, B_TRUE);
2931			spa_remove(spa);
2932			if (locked)
2933				mutex_exit(&spa_namespace_lock);
2934			return (SET_ERROR(ENOENT));
2935		}
2936
2937		if (error) {
2938			/*
2939			 * We can't open the pool, but we still have useful
2940			 * information: the state of each vdev after the
2941			 * attempted vdev_open().  Return this to the user.
2942			 */
2943			if (config != NULL && spa->spa_config) {
2944				VERIFY(nvlist_dup(spa->spa_config, config,
2945				    KM_SLEEP) == 0);
2946				VERIFY(nvlist_add_nvlist(*config,
2947				    ZPOOL_CONFIG_LOAD_INFO,
2948				    spa->spa_load_info) == 0);
2949			}
2950			spa_unload(spa);
2951			spa_deactivate(spa);
2952			spa->spa_last_open_failed = error;
2953			if (locked)
2954				mutex_exit(&spa_namespace_lock);
2955			*spapp = NULL;
2956			return (error);
2957		}
2958	}
2959
2960	spa_open_ref(spa, tag);
2961
2962	if (config != NULL)
2963		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2964
2965	/*
2966	 * If we've recovered the pool, pass back any information we
2967	 * gathered while doing the load.
2968	 */
2969	if (state == SPA_LOAD_RECOVER) {
2970		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2971		    spa->spa_load_info) == 0);
2972	}
2973
2974	if (locked) {
2975		spa->spa_last_open_failed = 0;
2976		spa->spa_last_ubsync_txg = 0;
2977		spa->spa_load_txg = 0;
2978		mutex_exit(&spa_namespace_lock);
2979#ifdef __FreeBSD__
2980#ifdef _KERNEL
2981		if (firstopen)
2982			zvol_create_minors(spa->spa_name);
2983#endif
2984#endif
2985	}
2986
2987	*spapp = spa;
2988
2989	return (0);
2990}
2991
2992int
2993spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2994    nvlist_t **config)
2995{
2996	return (spa_open_common(name, spapp, tag, policy, config));
2997}
2998
2999int
3000spa_open(const char *name, spa_t **spapp, void *tag)
3001{
3002	return (spa_open_common(name, spapp, tag, NULL, NULL));
3003}
3004
3005/*
3006 * Lookup the given spa_t, incrementing the inject count in the process,
3007 * preventing it from being exported or destroyed.
3008 */
3009spa_t *
3010spa_inject_addref(char *name)
3011{
3012	spa_t *spa;
3013
3014	mutex_enter(&spa_namespace_lock);
3015	if ((spa = spa_lookup(name)) == NULL) {
3016		mutex_exit(&spa_namespace_lock);
3017		return (NULL);
3018	}
3019	spa->spa_inject_ref++;
3020	mutex_exit(&spa_namespace_lock);
3021
3022	return (spa);
3023}
3024
3025void
3026spa_inject_delref(spa_t *spa)
3027{
3028	mutex_enter(&spa_namespace_lock);
3029	spa->spa_inject_ref--;
3030	mutex_exit(&spa_namespace_lock);
3031}
3032
3033/*
3034 * Add spares device information to the nvlist.
3035 */
3036static void
3037spa_add_spares(spa_t *spa, nvlist_t *config)
3038{
3039	nvlist_t **spares;
3040	uint_t i, nspares;
3041	nvlist_t *nvroot;
3042	uint64_t guid;
3043	vdev_stat_t *vs;
3044	uint_t vsc;
3045	uint64_t pool;
3046
3047	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3048
3049	if (spa->spa_spares.sav_count == 0)
3050		return;
3051
3052	VERIFY(nvlist_lookup_nvlist(config,
3053	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3054	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3055	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3056	if (nspares != 0) {
3057		VERIFY(nvlist_add_nvlist_array(nvroot,
3058		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3059		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3060		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3061
3062		/*
3063		 * Go through and find any spares which have since been
3064		 * repurposed as an active spare.  If this is the case, update
3065		 * their status appropriately.
3066		 */
3067		for (i = 0; i < nspares; i++) {
3068			VERIFY(nvlist_lookup_uint64(spares[i],
3069			    ZPOOL_CONFIG_GUID, &guid) == 0);
3070			if (spa_spare_exists(guid, &pool, NULL) &&
3071			    pool != 0ULL) {
3072				VERIFY(nvlist_lookup_uint64_array(
3073				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3074				    (uint64_t **)&vs, &vsc) == 0);
3075				vs->vs_state = VDEV_STATE_CANT_OPEN;
3076				vs->vs_aux = VDEV_AUX_SPARED;
3077			}
3078		}
3079	}
3080}
3081
3082/*
3083 * Add l2cache device information to the nvlist, including vdev stats.
3084 */
3085static void
3086spa_add_l2cache(spa_t *spa, nvlist_t *config)
3087{
3088	nvlist_t **l2cache;
3089	uint_t i, j, nl2cache;
3090	nvlist_t *nvroot;
3091	uint64_t guid;
3092	vdev_t *vd;
3093	vdev_stat_t *vs;
3094	uint_t vsc;
3095
3096	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3097
3098	if (spa->spa_l2cache.sav_count == 0)
3099		return;
3100
3101	VERIFY(nvlist_lookup_nvlist(config,
3102	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3103	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3104	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3105	if (nl2cache != 0) {
3106		VERIFY(nvlist_add_nvlist_array(nvroot,
3107		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3108		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3109		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3110
3111		/*
3112		 * Update level 2 cache device stats.
3113		 */
3114
3115		for (i = 0; i < nl2cache; i++) {
3116			VERIFY(nvlist_lookup_uint64(l2cache[i],
3117			    ZPOOL_CONFIG_GUID, &guid) == 0);
3118
3119			vd = NULL;
3120			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3121				if (guid ==
3122				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3123					vd = spa->spa_l2cache.sav_vdevs[j];
3124					break;
3125				}
3126			}
3127			ASSERT(vd != NULL);
3128
3129			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3130			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3131			    == 0);
3132			vdev_get_stats(vd, vs);
3133		}
3134	}
3135}
3136
3137static void
3138spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3139{
3140	nvlist_t *features;
3141	zap_cursor_t zc;
3142	zap_attribute_t za;
3143
3144	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3145	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3146
3147	/* We may be unable to read features if pool is suspended. */
3148	if (spa_suspended(spa))
3149		goto out;
3150
3151	if (spa->spa_feat_for_read_obj != 0) {
3152		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3153		    spa->spa_feat_for_read_obj);
3154		    zap_cursor_retrieve(&zc, &za) == 0;
3155		    zap_cursor_advance(&zc)) {
3156			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3157			    za.za_num_integers == 1);
3158			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3159			    za.za_first_integer));
3160		}
3161		zap_cursor_fini(&zc);
3162	}
3163
3164	if (spa->spa_feat_for_write_obj != 0) {
3165		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3166		    spa->spa_feat_for_write_obj);
3167		    zap_cursor_retrieve(&zc, &za) == 0;
3168		    zap_cursor_advance(&zc)) {
3169			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3170			    za.za_num_integers == 1);
3171			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3172			    za.za_first_integer));
3173		}
3174		zap_cursor_fini(&zc);
3175	}
3176
3177out:
3178	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3179	    features) == 0);
3180	nvlist_free(features);
3181}
3182
3183int
3184spa_get_stats(const char *name, nvlist_t **config,
3185    char *altroot, size_t buflen)
3186{
3187	int error;
3188	spa_t *spa;
3189
3190	*config = NULL;
3191	error = spa_open_common(name, &spa, FTAG, NULL, config);
3192
3193	if (spa != NULL) {
3194		/*
3195		 * This still leaves a window of inconsistency where the spares
3196		 * or l2cache devices could change and the config would be
3197		 * self-inconsistent.
3198		 */
3199		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3200
3201		if (*config != NULL) {
3202			uint64_t loadtimes[2];
3203
3204			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3205			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3206			VERIFY(nvlist_add_uint64_array(*config,
3207			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3208
3209			VERIFY(nvlist_add_uint64(*config,
3210			    ZPOOL_CONFIG_ERRCOUNT,
3211			    spa_get_errlog_size(spa)) == 0);
3212
3213			if (spa_suspended(spa))
3214				VERIFY(nvlist_add_uint64(*config,
3215				    ZPOOL_CONFIG_SUSPENDED,
3216				    spa->spa_failmode) == 0);
3217
3218			spa_add_spares(spa, *config);
3219			spa_add_l2cache(spa, *config);
3220			spa_add_feature_stats(spa, *config);
3221		}
3222	}
3223
3224	/*
3225	 * We want to get the alternate root even for faulted pools, so we cheat
3226	 * and call spa_lookup() directly.
3227	 */
3228	if (altroot) {
3229		if (spa == NULL) {
3230			mutex_enter(&spa_namespace_lock);
3231			spa = spa_lookup(name);
3232			if (spa)
3233				spa_altroot(spa, altroot, buflen);
3234			else
3235				altroot[0] = '\0';
3236			spa = NULL;
3237			mutex_exit(&spa_namespace_lock);
3238		} else {
3239			spa_altroot(spa, altroot, buflen);
3240		}
3241	}
3242
3243	if (spa != NULL) {
3244		spa_config_exit(spa, SCL_CONFIG, FTAG);
3245		spa_close(spa, FTAG);
3246	}
3247
3248	return (error);
3249}
3250
3251/*
3252 * Validate that the auxiliary device array is well formed.  We must have an
3253 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3254 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3255 * specified, as long as they are well-formed.
3256 */
3257static int
3258spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3259    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3260    vdev_labeltype_t label)
3261{
3262	nvlist_t **dev;
3263	uint_t i, ndev;
3264	vdev_t *vd;
3265	int error;
3266
3267	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3268
3269	/*
3270	 * It's acceptable to have no devs specified.
3271	 */
3272	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3273		return (0);
3274
3275	if (ndev == 0)
3276		return (SET_ERROR(EINVAL));
3277
3278	/*
3279	 * Make sure the pool is formatted with a version that supports this
3280	 * device type.
3281	 */
3282	if (spa_version(spa) < version)
3283		return (SET_ERROR(ENOTSUP));
3284
3285	/*
3286	 * Set the pending device list so we correctly handle device in-use
3287	 * checking.
3288	 */
3289	sav->sav_pending = dev;
3290	sav->sav_npending = ndev;
3291
3292	for (i = 0; i < ndev; i++) {
3293		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3294		    mode)) != 0)
3295			goto out;
3296
3297		if (!vd->vdev_ops->vdev_op_leaf) {
3298			vdev_free(vd);
3299			error = SET_ERROR(EINVAL);
3300			goto out;
3301		}
3302
3303		/*
3304		 * The L2ARC currently only supports disk devices in
3305		 * kernel context.  For user-level testing, we allow it.
3306		 */
3307#ifdef _KERNEL
3308		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3309		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3310			error = SET_ERROR(ENOTBLK);
3311			vdev_free(vd);
3312			goto out;
3313		}
3314#endif
3315		vd->vdev_top = vd;
3316
3317		if ((error = vdev_open(vd)) == 0 &&
3318		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3319			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3320			    vd->vdev_guid) == 0);
3321		}
3322
3323		vdev_free(vd);
3324
3325		if (error &&
3326		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3327			goto out;
3328		else
3329			error = 0;
3330	}
3331
3332out:
3333	sav->sav_pending = NULL;
3334	sav->sav_npending = 0;
3335	return (error);
3336}
3337
3338static int
3339spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3340{
3341	int error;
3342
3343	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3344
3345	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3346	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3347	    VDEV_LABEL_SPARE)) != 0) {
3348		return (error);
3349	}
3350
3351	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3352	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3353	    VDEV_LABEL_L2CACHE));
3354}
3355
3356static void
3357spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3358    const char *config)
3359{
3360	int i;
3361
3362	if (sav->sav_config != NULL) {
3363		nvlist_t **olddevs;
3364		uint_t oldndevs;
3365		nvlist_t **newdevs;
3366
3367		/*
3368		 * Generate new dev list by concatentating with the
3369		 * current dev list.
3370		 */
3371		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3372		    &olddevs, &oldndevs) == 0);
3373
3374		newdevs = kmem_alloc(sizeof (void *) *
3375		    (ndevs + oldndevs), KM_SLEEP);
3376		for (i = 0; i < oldndevs; i++)
3377			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3378			    KM_SLEEP) == 0);
3379		for (i = 0; i < ndevs; i++)
3380			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3381			    KM_SLEEP) == 0);
3382
3383		VERIFY(nvlist_remove(sav->sav_config, config,
3384		    DATA_TYPE_NVLIST_ARRAY) == 0);
3385
3386		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3387		    config, newdevs, ndevs + oldndevs) == 0);
3388		for (i = 0; i < oldndevs + ndevs; i++)
3389			nvlist_free(newdevs[i]);
3390		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3391	} else {
3392		/*
3393		 * Generate a new dev list.
3394		 */
3395		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3396		    KM_SLEEP) == 0);
3397		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3398		    devs, ndevs) == 0);
3399	}
3400}
3401
3402/*
3403 * Stop and drop level 2 ARC devices
3404 */
3405void
3406spa_l2cache_drop(spa_t *spa)
3407{
3408	vdev_t *vd;
3409	int i;
3410	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3411
3412	for (i = 0; i < sav->sav_count; i++) {
3413		uint64_t pool;
3414
3415		vd = sav->sav_vdevs[i];
3416		ASSERT(vd != NULL);
3417
3418		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3419		    pool != 0ULL && l2arc_vdev_present(vd))
3420			l2arc_remove_vdev(vd);
3421	}
3422}
3423
3424/*
3425 * Pool Creation
3426 */
3427int
3428spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3429    nvlist_t *zplprops)
3430{
3431	spa_t *spa;
3432	char *altroot = NULL;
3433	vdev_t *rvd;
3434	dsl_pool_t *dp;
3435	dmu_tx_t *tx;
3436	int error = 0;
3437	uint64_t txg = TXG_INITIAL;
3438	nvlist_t **spares, **l2cache;
3439	uint_t nspares, nl2cache;
3440	uint64_t version, obj;
3441	boolean_t has_features;
3442
3443	/*
3444	 * If this pool already exists, return failure.
3445	 */
3446	mutex_enter(&spa_namespace_lock);
3447	if (spa_lookup(pool) != NULL) {
3448		mutex_exit(&spa_namespace_lock);
3449		return (SET_ERROR(EEXIST));
3450	}
3451
3452	/*
3453	 * Allocate a new spa_t structure.
3454	 */
3455	(void) nvlist_lookup_string(props,
3456	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3457	spa = spa_add(pool, NULL, altroot);
3458	spa_activate(spa, spa_mode_global);
3459
3460	if (props && (error = spa_prop_validate(spa, props))) {
3461		spa_deactivate(spa);
3462		spa_remove(spa);
3463		mutex_exit(&spa_namespace_lock);
3464		return (error);
3465	}
3466
3467	has_features = B_FALSE;
3468	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3469	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3470		if (zpool_prop_feature(nvpair_name(elem)))
3471			has_features = B_TRUE;
3472	}
3473
3474	if (has_features || nvlist_lookup_uint64(props,
3475	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3476		version = SPA_VERSION;
3477	}
3478	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3479
3480	spa->spa_first_txg = txg;
3481	spa->spa_uberblock.ub_txg = txg - 1;
3482	spa->spa_uberblock.ub_version = version;
3483	spa->spa_ubsync = spa->spa_uberblock;
3484
3485	/*
3486	 * Create "The Godfather" zio to hold all async IOs
3487	 */
3488	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3489	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3490
3491	/*
3492	 * Create the root vdev.
3493	 */
3494	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3495
3496	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3497
3498	ASSERT(error != 0 || rvd != NULL);
3499	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3500
3501	if (error == 0 && !zfs_allocatable_devs(nvroot))
3502		error = SET_ERROR(EINVAL);
3503
3504	if (error == 0 &&
3505	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3506	    (error = spa_validate_aux(spa, nvroot, txg,
3507	    VDEV_ALLOC_ADD)) == 0) {
3508		for (int c = 0; c < rvd->vdev_children; c++) {
3509			vdev_ashift_optimize(rvd->vdev_child[c]);
3510			vdev_metaslab_set_size(rvd->vdev_child[c]);
3511			vdev_expand(rvd->vdev_child[c], txg);
3512		}
3513	}
3514
3515	spa_config_exit(spa, SCL_ALL, FTAG);
3516
3517	if (error != 0) {
3518		spa_unload(spa);
3519		spa_deactivate(spa);
3520		spa_remove(spa);
3521		mutex_exit(&spa_namespace_lock);
3522		return (error);
3523	}
3524
3525	/*
3526	 * Get the list of spares, if specified.
3527	 */
3528	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3529	    &spares, &nspares) == 0) {
3530		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3531		    KM_SLEEP) == 0);
3532		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3533		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3534		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3535		spa_load_spares(spa);
3536		spa_config_exit(spa, SCL_ALL, FTAG);
3537		spa->spa_spares.sav_sync = B_TRUE;
3538	}
3539
3540	/*
3541	 * Get the list of level 2 cache devices, if specified.
3542	 */
3543	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3544	    &l2cache, &nl2cache) == 0) {
3545		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3546		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3547		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3548		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3549		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3550		spa_load_l2cache(spa);
3551		spa_config_exit(spa, SCL_ALL, FTAG);
3552		spa->spa_l2cache.sav_sync = B_TRUE;
3553	}
3554
3555	spa->spa_is_initializing = B_TRUE;
3556	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3557	spa->spa_meta_objset = dp->dp_meta_objset;
3558	spa->spa_is_initializing = B_FALSE;
3559
3560	/*
3561	 * Create DDTs (dedup tables).
3562	 */
3563	ddt_create(spa);
3564
3565	spa_update_dspace(spa);
3566
3567	tx = dmu_tx_create_assigned(dp, txg);
3568
3569	/*
3570	 * Create the pool config object.
3571	 */
3572	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3573	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3574	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3575
3576	if (zap_add(spa->spa_meta_objset,
3577	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3578	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3579		cmn_err(CE_PANIC, "failed to add pool config");
3580	}
3581
3582	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3583		spa_feature_create_zap_objects(spa, tx);
3584
3585	if (zap_add(spa->spa_meta_objset,
3586	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3587	    sizeof (uint64_t), 1, &version, tx) != 0) {
3588		cmn_err(CE_PANIC, "failed to add pool version");
3589	}
3590
3591	/* Newly created pools with the right version are always deflated. */
3592	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3593		spa->spa_deflate = TRUE;
3594		if (zap_add(spa->spa_meta_objset,
3595		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3596		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3597			cmn_err(CE_PANIC, "failed to add deflate");
3598		}
3599	}
3600
3601	/*
3602	 * Create the deferred-free bpobj.  Turn off compression
3603	 * because sync-to-convergence takes longer if the blocksize
3604	 * keeps changing.
3605	 */
3606	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3607	dmu_object_set_compress(spa->spa_meta_objset, obj,
3608	    ZIO_COMPRESS_OFF, tx);
3609	if (zap_add(spa->spa_meta_objset,
3610	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3611	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3612		cmn_err(CE_PANIC, "failed to add bpobj");
3613	}
3614	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3615	    spa->spa_meta_objset, obj));
3616
3617	/*
3618	 * Create the pool's history object.
3619	 */
3620	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3621		spa_history_create_obj(spa, tx);
3622
3623	/*
3624	 * Set pool properties.
3625	 */
3626	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3627	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3628	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3629	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3630
3631	if (props != NULL) {
3632		spa_configfile_set(spa, props, B_FALSE);
3633		spa_sync_props(props, tx);
3634	}
3635
3636	dmu_tx_commit(tx);
3637
3638	spa->spa_sync_on = B_TRUE;
3639	txg_sync_start(spa->spa_dsl_pool);
3640
3641	/*
3642	 * We explicitly wait for the first transaction to complete so that our
3643	 * bean counters are appropriately updated.
3644	 */
3645	txg_wait_synced(spa->spa_dsl_pool, txg);
3646
3647	spa_config_sync(spa, B_FALSE, B_TRUE);
3648
3649	spa_history_log_version(spa, "create");
3650
3651	spa->spa_minref = refcount_count(&spa->spa_refcount);
3652
3653	mutex_exit(&spa_namespace_lock);
3654
3655	return (0);
3656}
3657
3658#ifdef _KERNEL
3659#if defined(sun)
3660/*
3661 * Get the root pool information from the root disk, then import the root pool
3662 * during the system boot up time.
3663 */
3664extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3665
3666static nvlist_t *
3667spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3668{
3669	nvlist_t *config;
3670	nvlist_t *nvtop, *nvroot;
3671	uint64_t pgid;
3672
3673	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3674		return (NULL);
3675
3676	/*
3677	 * Add this top-level vdev to the child array.
3678	 */
3679	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3680	    &nvtop) == 0);
3681	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3682	    &pgid) == 0);
3683	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3684
3685	/*
3686	 * Put this pool's top-level vdevs into a root vdev.
3687	 */
3688	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3689	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3690	    VDEV_TYPE_ROOT) == 0);
3691	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3692	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3693	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3694	    &nvtop, 1) == 0);
3695
3696	/*
3697	 * Replace the existing vdev_tree with the new root vdev in
3698	 * this pool's configuration (remove the old, add the new).
3699	 */
3700	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3701	nvlist_free(nvroot);
3702	return (config);
3703}
3704
3705/*
3706 * Walk the vdev tree and see if we can find a device with "better"
3707 * configuration. A configuration is "better" if the label on that
3708 * device has a more recent txg.
3709 */
3710static void
3711spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3712{
3713	for (int c = 0; c < vd->vdev_children; c++)
3714		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3715
3716	if (vd->vdev_ops->vdev_op_leaf) {
3717		nvlist_t *label;
3718		uint64_t label_txg;
3719
3720		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3721		    &label) != 0)
3722			return;
3723
3724		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3725		    &label_txg) == 0);
3726
3727		/*
3728		 * Do we have a better boot device?
3729		 */
3730		if (label_txg > *txg) {
3731			*txg = label_txg;
3732			*avd = vd;
3733		}
3734		nvlist_free(label);
3735	}
3736}
3737
3738/*
3739 * Import a root pool.
3740 *
3741 * For x86. devpath_list will consist of devid and/or physpath name of
3742 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3743 * The GRUB "findroot" command will return the vdev we should boot.
3744 *
3745 * For Sparc, devpath_list consists the physpath name of the booting device
3746 * no matter the rootpool is a single device pool or a mirrored pool.
3747 * e.g.
3748 *	"/pci@1f,0/ide@d/disk@0,0:a"
3749 */
3750int
3751spa_import_rootpool(char *devpath, char *devid)
3752{
3753	spa_t *spa;
3754	vdev_t *rvd, *bvd, *avd = NULL;
3755	nvlist_t *config, *nvtop;
3756	uint64_t guid, txg;
3757	char *pname;
3758	int error;
3759
3760	/*
3761	 * Read the label from the boot device and generate a configuration.
3762	 */
3763	config = spa_generate_rootconf(devpath, devid, &guid);
3764#if defined(_OBP) && defined(_KERNEL)
3765	if (config == NULL) {
3766		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3767			/* iscsi boot */
3768			get_iscsi_bootpath_phy(devpath);
3769			config = spa_generate_rootconf(devpath, devid, &guid);
3770		}
3771	}
3772#endif
3773	if (config == NULL) {
3774		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3775		    devpath);
3776		return (SET_ERROR(EIO));
3777	}
3778
3779	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3780	    &pname) == 0);
3781	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3782
3783	mutex_enter(&spa_namespace_lock);
3784	if ((spa = spa_lookup(pname)) != NULL) {
3785		/*
3786		 * Remove the existing root pool from the namespace so that we
3787		 * can replace it with the correct config we just read in.
3788		 */
3789		spa_remove(spa);
3790	}
3791
3792	spa = spa_add(pname, config, NULL);
3793	spa->spa_is_root = B_TRUE;
3794	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3795
3796	/*
3797	 * Build up a vdev tree based on the boot device's label config.
3798	 */
3799	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3800	    &nvtop) == 0);
3801	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3802	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3803	    VDEV_ALLOC_ROOTPOOL);
3804	spa_config_exit(spa, SCL_ALL, FTAG);
3805	if (error) {
3806		mutex_exit(&spa_namespace_lock);
3807		nvlist_free(config);
3808		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3809		    pname);
3810		return (error);
3811	}
3812
3813	/*
3814	 * Get the boot vdev.
3815	 */
3816	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3817		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3818		    (u_longlong_t)guid);
3819		error = SET_ERROR(ENOENT);
3820		goto out;
3821	}
3822
3823	/*
3824	 * Determine if there is a better boot device.
3825	 */
3826	avd = bvd;
3827	spa_alt_rootvdev(rvd, &avd, &txg);
3828	if (avd != bvd) {
3829		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3830		    "try booting from '%s'", avd->vdev_path);
3831		error = SET_ERROR(EINVAL);
3832		goto out;
3833	}
3834
3835	/*
3836	 * If the boot device is part of a spare vdev then ensure that
3837	 * we're booting off the active spare.
3838	 */
3839	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3840	    !bvd->vdev_isspare) {
3841		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3842		    "try booting from '%s'",
3843		    bvd->vdev_parent->
3844		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3845		error = SET_ERROR(EINVAL);
3846		goto out;
3847	}
3848
3849	error = 0;
3850out:
3851	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3852	vdev_free(rvd);
3853	spa_config_exit(spa, SCL_ALL, FTAG);
3854	mutex_exit(&spa_namespace_lock);
3855
3856	nvlist_free(config);
3857	return (error);
3858}
3859
3860#else
3861
3862extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3863    uint64_t *count);
3864
3865static nvlist_t *
3866spa_generate_rootconf(const char *name)
3867{
3868	nvlist_t **configs, **tops;
3869	nvlist_t *config;
3870	nvlist_t *best_cfg, *nvtop, *nvroot;
3871	uint64_t *holes;
3872	uint64_t best_txg;
3873	uint64_t nchildren;
3874	uint64_t pgid;
3875	uint64_t count;
3876	uint64_t i;
3877	uint_t   nholes;
3878
3879	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3880		return (NULL);
3881
3882	ASSERT3U(count, !=, 0);
3883	best_txg = 0;
3884	for (i = 0; i < count; i++) {
3885		uint64_t txg;
3886
3887		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3888		    &txg) == 0);
3889		if (txg > best_txg) {
3890			best_txg = txg;
3891			best_cfg = configs[i];
3892		}
3893	}
3894
3895	/*
3896	 * Multi-vdev root pool configuration discovery is not supported yet.
3897	 */
3898	nchildren = 1;
3899	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3900	holes = NULL;
3901	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3902	    &holes, &nholes);
3903
3904	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3905	for (i = 0; i < nchildren; i++) {
3906		if (i >= count)
3907			break;
3908		if (configs[i] == NULL)
3909			continue;
3910		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3911		    &nvtop) == 0);
3912		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3913	}
3914	for (i = 0; holes != NULL && i < nholes; i++) {
3915		if (i >= nchildren)
3916			continue;
3917		if (tops[holes[i]] != NULL)
3918			continue;
3919		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3920		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3921		    VDEV_TYPE_HOLE) == 0);
3922		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3923		    holes[i]) == 0);
3924		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3925		    0) == 0);
3926	}
3927	for (i = 0; i < nchildren; i++) {
3928		if (tops[i] != NULL)
3929			continue;
3930		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3931		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3932		    VDEV_TYPE_MISSING) == 0);
3933		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3934		    i) == 0);
3935		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3936		    0) == 0);
3937	}
3938
3939	/*
3940	 * Create pool config based on the best vdev config.
3941	 */
3942	nvlist_dup(best_cfg, &config, KM_SLEEP);
3943
3944	/*
3945	 * Put this pool's top-level vdevs into a root vdev.
3946	 */
3947	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3948	    &pgid) == 0);
3949	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3950	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3951	    VDEV_TYPE_ROOT) == 0);
3952	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3953	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3954	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3955	    tops, nchildren) == 0);
3956
3957	/*
3958	 * Replace the existing vdev_tree with the new root vdev in
3959	 * this pool's configuration (remove the old, add the new).
3960	 */
3961	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3962
3963	/*
3964	 * Drop vdev config elements that should not be present at pool level.
3965	 */
3966	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3967	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3968
3969	for (i = 0; i < count; i++)
3970		nvlist_free(configs[i]);
3971	kmem_free(configs, count * sizeof(void *));
3972	for (i = 0; i < nchildren; i++)
3973		nvlist_free(tops[i]);
3974	kmem_free(tops, nchildren * sizeof(void *));
3975	nvlist_free(nvroot);
3976	return (config);
3977}
3978
3979int
3980spa_import_rootpool(const char *name)
3981{
3982	spa_t *spa;
3983	vdev_t *rvd, *bvd, *avd = NULL;
3984	nvlist_t *config, *nvtop;
3985	uint64_t txg;
3986	char *pname;
3987	int error;
3988
3989	/*
3990	 * Read the label from the boot device and generate a configuration.
3991	 */
3992	config = spa_generate_rootconf(name);
3993
3994	mutex_enter(&spa_namespace_lock);
3995	if (config != NULL) {
3996		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3997		    &pname) == 0 && strcmp(name, pname) == 0);
3998		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3999		    == 0);
4000
4001		if ((spa = spa_lookup(pname)) != NULL) {
4002			/*
4003			 * Remove the existing root pool from the namespace so
4004			 * that we can replace it with the correct config
4005			 * we just read in.
4006			 */
4007			spa_remove(spa);
4008		}
4009		spa = spa_add(pname, config, NULL);
4010
4011		/*
4012		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4013		 * via spa_version().
4014		 */
4015		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4016		    &spa->spa_ubsync.ub_version) != 0)
4017			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4018	} else if ((spa = spa_lookup(name)) == NULL) {
4019		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4020		    name);
4021		return (EIO);
4022	} else {
4023		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4024	}
4025	spa->spa_is_root = B_TRUE;
4026	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4027
4028	/*
4029	 * Build up a vdev tree based on the boot device's label config.
4030	 */
4031	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4032	    &nvtop) == 0);
4033	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4034	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4035	    VDEV_ALLOC_ROOTPOOL);
4036	spa_config_exit(spa, SCL_ALL, FTAG);
4037	if (error) {
4038		mutex_exit(&spa_namespace_lock);
4039		nvlist_free(config);
4040		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4041		    pname);
4042		return (error);
4043	}
4044
4045	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4046	vdev_free(rvd);
4047	spa_config_exit(spa, SCL_ALL, FTAG);
4048	mutex_exit(&spa_namespace_lock);
4049
4050	nvlist_free(config);
4051	return (0);
4052}
4053
4054#endif	/* sun */
4055#endif
4056
4057/*
4058 * Import a non-root pool into the system.
4059 */
4060int
4061spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4062{
4063	spa_t *spa;
4064	char *altroot = NULL;
4065	spa_load_state_t state = SPA_LOAD_IMPORT;
4066	zpool_rewind_policy_t policy;
4067	uint64_t mode = spa_mode_global;
4068	uint64_t readonly = B_FALSE;
4069	int error;
4070	nvlist_t *nvroot;
4071	nvlist_t **spares, **l2cache;
4072	uint_t nspares, nl2cache;
4073
4074	/*
4075	 * If a pool with this name exists, return failure.
4076	 */
4077	mutex_enter(&spa_namespace_lock);
4078	if (spa_lookup(pool) != NULL) {
4079		mutex_exit(&spa_namespace_lock);
4080		return (SET_ERROR(EEXIST));
4081	}
4082
4083	/*
4084	 * Create and initialize the spa structure.
4085	 */
4086	(void) nvlist_lookup_string(props,
4087	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4088	(void) nvlist_lookup_uint64(props,
4089	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4090	if (readonly)
4091		mode = FREAD;
4092	spa = spa_add(pool, config, altroot);
4093	spa->spa_import_flags = flags;
4094
4095	/*
4096	 * Verbatim import - Take a pool and insert it into the namespace
4097	 * as if it had been loaded at boot.
4098	 */
4099	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4100		if (props != NULL)
4101			spa_configfile_set(spa, props, B_FALSE);
4102
4103		spa_config_sync(spa, B_FALSE, B_TRUE);
4104
4105		mutex_exit(&spa_namespace_lock);
4106		spa_history_log_version(spa, "import");
4107
4108		return (0);
4109	}
4110
4111	spa_activate(spa, mode);
4112
4113	/*
4114	 * Don't start async tasks until we know everything is healthy.
4115	 */
4116	spa_async_suspend(spa);
4117
4118	zpool_get_rewind_policy(config, &policy);
4119	if (policy.zrp_request & ZPOOL_DO_REWIND)
4120		state = SPA_LOAD_RECOVER;
4121
4122	/*
4123	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4124	 * because the user-supplied config is actually the one to trust when
4125	 * doing an import.
4126	 */
4127	if (state != SPA_LOAD_RECOVER)
4128		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4129
4130	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4131	    policy.zrp_request);
4132
4133	/*
4134	 * Propagate anything learned while loading the pool and pass it
4135	 * back to caller (i.e. rewind info, missing devices, etc).
4136	 */
4137	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4138	    spa->spa_load_info) == 0);
4139
4140	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4141	/*
4142	 * Toss any existing sparelist, as it doesn't have any validity
4143	 * anymore, and conflicts with spa_has_spare().
4144	 */
4145	if (spa->spa_spares.sav_config) {
4146		nvlist_free(spa->spa_spares.sav_config);
4147		spa->spa_spares.sav_config = NULL;
4148		spa_load_spares(spa);
4149	}
4150	if (spa->spa_l2cache.sav_config) {
4151		nvlist_free(spa->spa_l2cache.sav_config);
4152		spa->spa_l2cache.sav_config = NULL;
4153		spa_load_l2cache(spa);
4154	}
4155
4156	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4157	    &nvroot) == 0);
4158	if (error == 0)
4159		error = spa_validate_aux(spa, nvroot, -1ULL,
4160		    VDEV_ALLOC_SPARE);
4161	if (error == 0)
4162		error = spa_validate_aux(spa, nvroot, -1ULL,
4163		    VDEV_ALLOC_L2CACHE);
4164	spa_config_exit(spa, SCL_ALL, FTAG);
4165
4166	if (props != NULL)
4167		spa_configfile_set(spa, props, B_FALSE);
4168
4169	if (error != 0 || (props && spa_writeable(spa) &&
4170	    (error = spa_prop_set(spa, props)))) {
4171		spa_unload(spa);
4172		spa_deactivate(spa);
4173		spa_remove(spa);
4174		mutex_exit(&spa_namespace_lock);
4175		return (error);
4176	}
4177
4178	spa_async_resume(spa);
4179
4180	/*
4181	 * Override any spares and level 2 cache devices as specified by
4182	 * the user, as these may have correct device names/devids, etc.
4183	 */
4184	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4185	    &spares, &nspares) == 0) {
4186		if (spa->spa_spares.sav_config)
4187			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4188			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4189		else
4190			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4191			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4192		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4193		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4194		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4195		spa_load_spares(spa);
4196		spa_config_exit(spa, SCL_ALL, FTAG);
4197		spa->spa_spares.sav_sync = B_TRUE;
4198	}
4199	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4200	    &l2cache, &nl2cache) == 0) {
4201		if (spa->spa_l2cache.sav_config)
4202			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4203			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4204		else
4205			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4206			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4207		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4208		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4209		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4210		spa_load_l2cache(spa);
4211		spa_config_exit(spa, SCL_ALL, FTAG);
4212		spa->spa_l2cache.sav_sync = B_TRUE;
4213	}
4214
4215	/*
4216	 * Check for any removed devices.
4217	 */
4218	if (spa->spa_autoreplace) {
4219		spa_aux_check_removed(&spa->spa_spares);
4220		spa_aux_check_removed(&spa->spa_l2cache);
4221	}
4222
4223	if (spa_writeable(spa)) {
4224		/*
4225		 * Update the config cache to include the newly-imported pool.
4226		 */
4227		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4228	}
4229
4230	/*
4231	 * It's possible that the pool was expanded while it was exported.
4232	 * We kick off an async task to handle this for us.
4233	 */
4234	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4235
4236	mutex_exit(&spa_namespace_lock);
4237	spa_history_log_version(spa, "import");
4238
4239#ifdef __FreeBSD__
4240#ifdef _KERNEL
4241	zvol_create_minors(pool);
4242#endif
4243#endif
4244	return (0);
4245}
4246
4247nvlist_t *
4248spa_tryimport(nvlist_t *tryconfig)
4249{
4250	nvlist_t *config = NULL;
4251	char *poolname;
4252	spa_t *spa;
4253	uint64_t state;
4254	int error;
4255
4256	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4257		return (NULL);
4258
4259	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4260		return (NULL);
4261
4262	/*
4263	 * Create and initialize the spa structure.
4264	 */
4265	mutex_enter(&spa_namespace_lock);
4266	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4267	spa_activate(spa, FREAD);
4268
4269	/*
4270	 * Pass off the heavy lifting to spa_load().
4271	 * Pass TRUE for mosconfig because the user-supplied config
4272	 * is actually the one to trust when doing an import.
4273	 */
4274	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4275
4276	/*
4277	 * If 'tryconfig' was at least parsable, return the current config.
4278	 */
4279	if (spa->spa_root_vdev != NULL) {
4280		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4281		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4282		    poolname) == 0);
4283		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4284		    state) == 0);
4285		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4286		    spa->spa_uberblock.ub_timestamp) == 0);
4287		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4288		    spa->spa_load_info) == 0);
4289
4290		/*
4291		 * If the bootfs property exists on this pool then we
4292		 * copy it out so that external consumers can tell which
4293		 * pools are bootable.
4294		 */
4295		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4296			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4297
4298			/*
4299			 * We have to play games with the name since the
4300			 * pool was opened as TRYIMPORT_NAME.
4301			 */
4302			if (dsl_dsobj_to_dsname(spa_name(spa),
4303			    spa->spa_bootfs, tmpname) == 0) {
4304				char *cp;
4305				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4306
4307				cp = strchr(tmpname, '/');
4308				if (cp == NULL) {
4309					(void) strlcpy(dsname, tmpname,
4310					    MAXPATHLEN);
4311				} else {
4312					(void) snprintf(dsname, MAXPATHLEN,
4313					    "%s/%s", poolname, ++cp);
4314				}
4315				VERIFY(nvlist_add_string(config,
4316				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4317				kmem_free(dsname, MAXPATHLEN);
4318			}
4319			kmem_free(tmpname, MAXPATHLEN);
4320		}
4321
4322		/*
4323		 * Add the list of hot spares and level 2 cache devices.
4324		 */
4325		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4326		spa_add_spares(spa, config);
4327		spa_add_l2cache(spa, config);
4328		spa_config_exit(spa, SCL_CONFIG, FTAG);
4329	}
4330
4331	spa_unload(spa);
4332	spa_deactivate(spa);
4333	spa_remove(spa);
4334	mutex_exit(&spa_namespace_lock);
4335
4336	return (config);
4337}
4338
4339/*
4340 * Pool export/destroy
4341 *
4342 * The act of destroying or exporting a pool is very simple.  We make sure there
4343 * is no more pending I/O and any references to the pool are gone.  Then, we
4344 * update the pool state and sync all the labels to disk, removing the
4345 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4346 * we don't sync the labels or remove the configuration cache.
4347 */
4348static int
4349spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4350    boolean_t force, boolean_t hardforce)
4351{
4352	spa_t *spa;
4353
4354	if (oldconfig)
4355		*oldconfig = NULL;
4356
4357	if (!(spa_mode_global & FWRITE))
4358		return (SET_ERROR(EROFS));
4359
4360	mutex_enter(&spa_namespace_lock);
4361	if ((spa = spa_lookup(pool)) == NULL) {
4362		mutex_exit(&spa_namespace_lock);
4363		return (SET_ERROR(ENOENT));
4364	}
4365
4366	/*
4367	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4368	 * reacquire the namespace lock, and see if we can export.
4369	 */
4370	spa_open_ref(spa, FTAG);
4371	mutex_exit(&spa_namespace_lock);
4372	spa_async_suspend(spa);
4373	mutex_enter(&spa_namespace_lock);
4374	spa_close(spa, FTAG);
4375
4376	/*
4377	 * The pool will be in core if it's openable,
4378	 * in which case we can modify its state.
4379	 */
4380	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4381		/*
4382		 * Objsets may be open only because they're dirty, so we
4383		 * have to force it to sync before checking spa_refcnt.
4384		 */
4385		txg_wait_synced(spa->spa_dsl_pool, 0);
4386
4387		/*
4388		 * A pool cannot be exported or destroyed if there are active
4389		 * references.  If we are resetting a pool, allow references by
4390		 * fault injection handlers.
4391		 */
4392		if (!spa_refcount_zero(spa) ||
4393		    (spa->spa_inject_ref != 0 &&
4394		    new_state != POOL_STATE_UNINITIALIZED)) {
4395			spa_async_resume(spa);
4396			mutex_exit(&spa_namespace_lock);
4397			return (SET_ERROR(EBUSY));
4398		}
4399
4400		/*
4401		 * A pool cannot be exported if it has an active shared spare.
4402		 * This is to prevent other pools stealing the active spare
4403		 * from an exported pool. At user's own will, such pool can
4404		 * be forcedly exported.
4405		 */
4406		if (!force && new_state == POOL_STATE_EXPORTED &&
4407		    spa_has_active_shared_spare(spa)) {
4408			spa_async_resume(spa);
4409			mutex_exit(&spa_namespace_lock);
4410			return (SET_ERROR(EXDEV));
4411		}
4412
4413		/*
4414		 * We want this to be reflected on every label,
4415		 * so mark them all dirty.  spa_unload() will do the
4416		 * final sync that pushes these changes out.
4417		 */
4418		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4419			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4420			spa->spa_state = new_state;
4421			spa->spa_final_txg = spa_last_synced_txg(spa) +
4422			    TXG_DEFER_SIZE + 1;
4423			vdev_config_dirty(spa->spa_root_vdev);
4424			spa_config_exit(spa, SCL_ALL, FTAG);
4425		}
4426	}
4427
4428	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4429
4430	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4431		spa_unload(spa);
4432		spa_deactivate(spa);
4433	}
4434
4435	if (oldconfig && spa->spa_config)
4436		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4437
4438	if (new_state != POOL_STATE_UNINITIALIZED) {
4439		if (!hardforce)
4440			spa_config_sync(spa, B_TRUE, B_TRUE);
4441		spa_remove(spa);
4442	}
4443	mutex_exit(&spa_namespace_lock);
4444
4445	return (0);
4446}
4447
4448/*
4449 * Destroy a storage pool.
4450 */
4451int
4452spa_destroy(char *pool)
4453{
4454	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4455	    B_FALSE, B_FALSE));
4456}
4457
4458/*
4459 * Export a storage pool.
4460 */
4461int
4462spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4463    boolean_t hardforce)
4464{
4465	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4466	    force, hardforce));
4467}
4468
4469/*
4470 * Similar to spa_export(), this unloads the spa_t without actually removing it
4471 * from the namespace in any way.
4472 */
4473int
4474spa_reset(char *pool)
4475{
4476	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4477	    B_FALSE, B_FALSE));
4478}
4479
4480/*
4481 * ==========================================================================
4482 * Device manipulation
4483 * ==========================================================================
4484 */
4485
4486/*
4487 * Add a device to a storage pool.
4488 */
4489int
4490spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4491{
4492	uint64_t txg, id;
4493	int error;
4494	vdev_t *rvd = spa->spa_root_vdev;
4495	vdev_t *vd, *tvd;
4496	nvlist_t **spares, **l2cache;
4497	uint_t nspares, nl2cache;
4498
4499	ASSERT(spa_writeable(spa));
4500
4501	txg = spa_vdev_enter(spa);
4502
4503	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4504	    VDEV_ALLOC_ADD)) != 0)
4505		return (spa_vdev_exit(spa, NULL, txg, error));
4506
4507	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4508
4509	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4510	    &nspares) != 0)
4511		nspares = 0;
4512
4513	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4514	    &nl2cache) != 0)
4515		nl2cache = 0;
4516
4517	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4518		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4519
4520	if (vd->vdev_children != 0 &&
4521	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4522		return (spa_vdev_exit(spa, vd, txg, error));
4523
4524	/*
4525	 * We must validate the spares and l2cache devices after checking the
4526	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4527	 */
4528	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4529		return (spa_vdev_exit(spa, vd, txg, error));
4530
4531	/*
4532	 * Transfer each new top-level vdev from vd to rvd.
4533	 */
4534	for (int c = 0; c < vd->vdev_children; c++) {
4535
4536		/*
4537		 * Set the vdev id to the first hole, if one exists.
4538		 */
4539		for (id = 0; id < rvd->vdev_children; id++) {
4540			if (rvd->vdev_child[id]->vdev_ishole) {
4541				vdev_free(rvd->vdev_child[id]);
4542				break;
4543			}
4544		}
4545		tvd = vd->vdev_child[c];
4546		vdev_remove_child(vd, tvd);
4547		tvd->vdev_id = id;
4548		vdev_add_child(rvd, tvd);
4549		vdev_config_dirty(tvd);
4550	}
4551
4552	if (nspares != 0) {
4553		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4554		    ZPOOL_CONFIG_SPARES);
4555		spa_load_spares(spa);
4556		spa->spa_spares.sav_sync = B_TRUE;
4557	}
4558
4559	if (nl2cache != 0) {
4560		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4561		    ZPOOL_CONFIG_L2CACHE);
4562		spa_load_l2cache(spa);
4563		spa->spa_l2cache.sav_sync = B_TRUE;
4564	}
4565
4566	/*
4567	 * We have to be careful when adding new vdevs to an existing pool.
4568	 * If other threads start allocating from these vdevs before we
4569	 * sync the config cache, and we lose power, then upon reboot we may
4570	 * fail to open the pool because there are DVAs that the config cache
4571	 * can't translate.  Therefore, we first add the vdevs without
4572	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4573	 * and then let spa_config_update() initialize the new metaslabs.
4574	 *
4575	 * spa_load() checks for added-but-not-initialized vdevs, so that
4576	 * if we lose power at any point in this sequence, the remaining
4577	 * steps will be completed the next time we load the pool.
4578	 */
4579	(void) spa_vdev_exit(spa, vd, txg, 0);
4580
4581	mutex_enter(&spa_namespace_lock);
4582	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4583	mutex_exit(&spa_namespace_lock);
4584
4585	return (0);
4586}
4587
4588/*
4589 * Attach a device to a mirror.  The arguments are the path to any device
4590 * in the mirror, and the nvroot for the new device.  If the path specifies
4591 * a device that is not mirrored, we automatically insert the mirror vdev.
4592 *
4593 * If 'replacing' is specified, the new device is intended to replace the
4594 * existing device; in this case the two devices are made into their own
4595 * mirror using the 'replacing' vdev, which is functionally identical to
4596 * the mirror vdev (it actually reuses all the same ops) but has a few
4597 * extra rules: you can't attach to it after it's been created, and upon
4598 * completion of resilvering, the first disk (the one being replaced)
4599 * is automatically detached.
4600 */
4601int
4602spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4603{
4604	uint64_t txg, dtl_max_txg;
4605	vdev_t *rvd = spa->spa_root_vdev;
4606	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4607	vdev_ops_t *pvops;
4608	char *oldvdpath, *newvdpath;
4609	int newvd_isspare;
4610	int error;
4611
4612	ASSERT(spa_writeable(spa));
4613
4614	txg = spa_vdev_enter(spa);
4615
4616	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4617
4618	if (oldvd == NULL)
4619		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4620
4621	if (!oldvd->vdev_ops->vdev_op_leaf)
4622		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623
4624	pvd = oldvd->vdev_parent;
4625
4626	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4627	    VDEV_ALLOC_ATTACH)) != 0)
4628		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4629
4630	if (newrootvd->vdev_children != 1)
4631		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4632
4633	newvd = newrootvd->vdev_child[0];
4634
4635	if (!newvd->vdev_ops->vdev_op_leaf)
4636		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4637
4638	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4639		return (spa_vdev_exit(spa, newrootvd, txg, error));
4640
4641	/*
4642	 * Spares can't replace logs
4643	 */
4644	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4645		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4646
4647	if (!replacing) {
4648		/*
4649		 * For attach, the only allowable parent is a mirror or the root
4650		 * vdev.
4651		 */
4652		if (pvd->vdev_ops != &vdev_mirror_ops &&
4653		    pvd->vdev_ops != &vdev_root_ops)
4654			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4655
4656		pvops = &vdev_mirror_ops;
4657	} else {
4658		/*
4659		 * Active hot spares can only be replaced by inactive hot
4660		 * spares.
4661		 */
4662		if (pvd->vdev_ops == &vdev_spare_ops &&
4663		    oldvd->vdev_isspare &&
4664		    !spa_has_spare(spa, newvd->vdev_guid))
4665			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4666
4667		/*
4668		 * If the source is a hot spare, and the parent isn't already a
4669		 * spare, then we want to create a new hot spare.  Otherwise, we
4670		 * want to create a replacing vdev.  The user is not allowed to
4671		 * attach to a spared vdev child unless the 'isspare' state is
4672		 * the same (spare replaces spare, non-spare replaces
4673		 * non-spare).
4674		 */
4675		if (pvd->vdev_ops == &vdev_replacing_ops &&
4676		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4677			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4678		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4679		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4680			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4681		}
4682
4683		if (newvd->vdev_isspare)
4684			pvops = &vdev_spare_ops;
4685		else
4686			pvops = &vdev_replacing_ops;
4687	}
4688
4689	/*
4690	 * Make sure the new device is big enough.
4691	 */
4692	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4693		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4694
4695	/*
4696	 * The new device cannot have a higher alignment requirement
4697	 * than the top-level vdev.
4698	 */
4699	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4700		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4701
4702	/*
4703	 * If this is an in-place replacement, update oldvd's path and devid
4704	 * to make it distinguishable from newvd, and unopenable from now on.
4705	 */
4706	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4707		spa_strfree(oldvd->vdev_path);
4708		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4709		    KM_SLEEP);
4710		(void) sprintf(oldvd->vdev_path, "%s/%s",
4711		    newvd->vdev_path, "old");
4712		if (oldvd->vdev_devid != NULL) {
4713			spa_strfree(oldvd->vdev_devid);
4714			oldvd->vdev_devid = NULL;
4715		}
4716	}
4717
4718	/* mark the device being resilvered */
4719	newvd->vdev_resilver_txg = txg;
4720
4721	/*
4722	 * If the parent is not a mirror, or if we're replacing, insert the new
4723	 * mirror/replacing/spare vdev above oldvd.
4724	 */
4725	if (pvd->vdev_ops != pvops)
4726		pvd = vdev_add_parent(oldvd, pvops);
4727
4728	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4729	ASSERT(pvd->vdev_ops == pvops);
4730	ASSERT(oldvd->vdev_parent == pvd);
4731
4732	/*
4733	 * Extract the new device from its root and add it to pvd.
4734	 */
4735	vdev_remove_child(newrootvd, newvd);
4736	newvd->vdev_id = pvd->vdev_children;
4737	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4738	vdev_add_child(pvd, newvd);
4739
4740	tvd = newvd->vdev_top;
4741	ASSERT(pvd->vdev_top == tvd);
4742	ASSERT(tvd->vdev_parent == rvd);
4743
4744	vdev_config_dirty(tvd);
4745
4746	/*
4747	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4748	 * for any dmu_sync-ed blocks.  It will propagate upward when
4749	 * spa_vdev_exit() calls vdev_dtl_reassess().
4750	 */
4751	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4752
4753	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4754	    dtl_max_txg - TXG_INITIAL);
4755
4756	if (newvd->vdev_isspare) {
4757		spa_spare_activate(newvd);
4758		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4759	}
4760
4761	oldvdpath = spa_strdup(oldvd->vdev_path);
4762	newvdpath = spa_strdup(newvd->vdev_path);
4763	newvd_isspare = newvd->vdev_isspare;
4764
4765	/*
4766	 * Mark newvd's DTL dirty in this txg.
4767	 */
4768	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4769
4770	/*
4771	 * Schedule the resilver to restart in the future. We do this to
4772	 * ensure that dmu_sync-ed blocks have been stitched into the
4773	 * respective datasets.
4774	 */
4775	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4776
4777	/*
4778	 * Commit the config
4779	 */
4780	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4781
4782	spa_history_log_internal(spa, "vdev attach", NULL,
4783	    "%s vdev=%s %s vdev=%s",
4784	    replacing && newvd_isspare ? "spare in" :
4785	    replacing ? "replace" : "attach", newvdpath,
4786	    replacing ? "for" : "to", oldvdpath);
4787
4788	spa_strfree(oldvdpath);
4789	spa_strfree(newvdpath);
4790
4791	if (spa->spa_bootfs)
4792		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4793
4794	return (0);
4795}
4796
4797/*
4798 * Detach a device from a mirror or replacing vdev.
4799 *
4800 * If 'replace_done' is specified, only detach if the parent
4801 * is a replacing vdev.
4802 */
4803int
4804spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4805{
4806	uint64_t txg;
4807	int error;
4808	vdev_t *rvd = spa->spa_root_vdev;
4809	vdev_t *vd, *pvd, *cvd, *tvd;
4810	boolean_t unspare = B_FALSE;
4811	uint64_t unspare_guid = 0;
4812	char *vdpath;
4813
4814	ASSERT(spa_writeable(spa));
4815
4816	txg = spa_vdev_enter(spa);
4817
4818	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4819
4820	if (vd == NULL)
4821		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4822
4823	if (!vd->vdev_ops->vdev_op_leaf)
4824		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4825
4826	pvd = vd->vdev_parent;
4827
4828	/*
4829	 * If the parent/child relationship is not as expected, don't do it.
4830	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4831	 * vdev that's replacing B with C.  The user's intent in replacing
4832	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4833	 * the replace by detaching C, the expected behavior is to end up
4834	 * M(A,B).  But suppose that right after deciding to detach C,
4835	 * the replacement of B completes.  We would have M(A,C), and then
4836	 * ask to detach C, which would leave us with just A -- not what
4837	 * the user wanted.  To prevent this, we make sure that the
4838	 * parent/child relationship hasn't changed -- in this example,
4839	 * that C's parent is still the replacing vdev R.
4840	 */
4841	if (pvd->vdev_guid != pguid && pguid != 0)
4842		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4843
4844	/*
4845	 * Only 'replacing' or 'spare' vdevs can be replaced.
4846	 */
4847	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4848	    pvd->vdev_ops != &vdev_spare_ops)
4849		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4850
4851	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4852	    spa_version(spa) >= SPA_VERSION_SPARES);
4853
4854	/*
4855	 * Only mirror, replacing, and spare vdevs support detach.
4856	 */
4857	if (pvd->vdev_ops != &vdev_replacing_ops &&
4858	    pvd->vdev_ops != &vdev_mirror_ops &&
4859	    pvd->vdev_ops != &vdev_spare_ops)
4860		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4861
4862	/*
4863	 * If this device has the only valid copy of some data,
4864	 * we cannot safely detach it.
4865	 */
4866	if (vdev_dtl_required(vd))
4867		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4868
4869	ASSERT(pvd->vdev_children >= 2);
4870
4871	/*
4872	 * If we are detaching the second disk from a replacing vdev, then
4873	 * check to see if we changed the original vdev's path to have "/old"
4874	 * at the end in spa_vdev_attach().  If so, undo that change now.
4875	 */
4876	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4877	    vd->vdev_path != NULL) {
4878		size_t len = strlen(vd->vdev_path);
4879
4880		for (int c = 0; c < pvd->vdev_children; c++) {
4881			cvd = pvd->vdev_child[c];
4882
4883			if (cvd == vd || cvd->vdev_path == NULL)
4884				continue;
4885
4886			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4887			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4888				spa_strfree(cvd->vdev_path);
4889				cvd->vdev_path = spa_strdup(vd->vdev_path);
4890				break;
4891			}
4892		}
4893	}
4894
4895	/*
4896	 * If we are detaching the original disk from a spare, then it implies
4897	 * that the spare should become a real disk, and be removed from the
4898	 * active spare list for the pool.
4899	 */
4900	if (pvd->vdev_ops == &vdev_spare_ops &&
4901	    vd->vdev_id == 0 &&
4902	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4903		unspare = B_TRUE;
4904
4905	/*
4906	 * Erase the disk labels so the disk can be used for other things.
4907	 * This must be done after all other error cases are handled,
4908	 * but before we disembowel vd (so we can still do I/O to it).
4909	 * But if we can't do it, don't treat the error as fatal --
4910	 * it may be that the unwritability of the disk is the reason
4911	 * it's being detached!
4912	 */
4913	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4914
4915	/*
4916	 * Remove vd from its parent and compact the parent's children.
4917	 */
4918	vdev_remove_child(pvd, vd);
4919	vdev_compact_children(pvd);
4920
4921	/*
4922	 * Remember one of the remaining children so we can get tvd below.
4923	 */
4924	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4925
4926	/*
4927	 * If we need to remove the remaining child from the list of hot spares,
4928	 * do it now, marking the vdev as no longer a spare in the process.
4929	 * We must do this before vdev_remove_parent(), because that can
4930	 * change the GUID if it creates a new toplevel GUID.  For a similar
4931	 * reason, we must remove the spare now, in the same txg as the detach;
4932	 * otherwise someone could attach a new sibling, change the GUID, and
4933	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4934	 */
4935	if (unspare) {
4936		ASSERT(cvd->vdev_isspare);
4937		spa_spare_remove(cvd);
4938		unspare_guid = cvd->vdev_guid;
4939		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4940		cvd->vdev_unspare = B_TRUE;
4941	}
4942
4943	/*
4944	 * If the parent mirror/replacing vdev only has one child,
4945	 * the parent is no longer needed.  Remove it from the tree.
4946	 */
4947	if (pvd->vdev_children == 1) {
4948		if (pvd->vdev_ops == &vdev_spare_ops)
4949			cvd->vdev_unspare = B_FALSE;
4950		vdev_remove_parent(cvd);
4951	}
4952
4953
4954	/*
4955	 * We don't set tvd until now because the parent we just removed
4956	 * may have been the previous top-level vdev.
4957	 */
4958	tvd = cvd->vdev_top;
4959	ASSERT(tvd->vdev_parent == rvd);
4960
4961	/*
4962	 * Reevaluate the parent vdev state.
4963	 */
4964	vdev_propagate_state(cvd);
4965
4966	/*
4967	 * If the 'autoexpand' property is set on the pool then automatically
4968	 * try to expand the size of the pool. For example if the device we
4969	 * just detached was smaller than the others, it may be possible to
4970	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4971	 * first so that we can obtain the updated sizes of the leaf vdevs.
4972	 */
4973	if (spa->spa_autoexpand) {
4974		vdev_reopen(tvd);
4975		vdev_expand(tvd, txg);
4976	}
4977
4978	vdev_config_dirty(tvd);
4979
4980	/*
4981	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4982	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4983	 * But first make sure we're not on any *other* txg's DTL list, to
4984	 * prevent vd from being accessed after it's freed.
4985	 */
4986	vdpath = spa_strdup(vd->vdev_path);
4987	for (int t = 0; t < TXG_SIZE; t++)
4988		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4989	vd->vdev_detached = B_TRUE;
4990	vdev_dirty(tvd, VDD_DTL, vd, txg);
4991
4992	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4993
4994	/* hang on to the spa before we release the lock */
4995	spa_open_ref(spa, FTAG);
4996
4997	error = spa_vdev_exit(spa, vd, txg, 0);
4998
4999	spa_history_log_internal(spa, "detach", NULL,
5000	    "vdev=%s", vdpath);
5001	spa_strfree(vdpath);
5002
5003	/*
5004	 * If this was the removal of the original device in a hot spare vdev,
5005	 * then we want to go through and remove the device from the hot spare
5006	 * list of every other pool.
5007	 */
5008	if (unspare) {
5009		spa_t *altspa = NULL;
5010
5011		mutex_enter(&spa_namespace_lock);
5012		while ((altspa = spa_next(altspa)) != NULL) {
5013			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5014			    altspa == spa)
5015				continue;
5016
5017			spa_open_ref(altspa, FTAG);
5018			mutex_exit(&spa_namespace_lock);
5019			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5020			mutex_enter(&spa_namespace_lock);
5021			spa_close(altspa, FTAG);
5022		}
5023		mutex_exit(&spa_namespace_lock);
5024
5025		/* search the rest of the vdevs for spares to remove */
5026		spa_vdev_resilver_done(spa);
5027	}
5028
5029	/* all done with the spa; OK to release */
5030	mutex_enter(&spa_namespace_lock);
5031	spa_close(spa, FTAG);
5032	mutex_exit(&spa_namespace_lock);
5033
5034	return (error);
5035}
5036
5037/*
5038 * Split a set of devices from their mirrors, and create a new pool from them.
5039 */
5040int
5041spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5042    nvlist_t *props, boolean_t exp)
5043{
5044	int error = 0;
5045	uint64_t txg, *glist;
5046	spa_t *newspa;
5047	uint_t c, children, lastlog;
5048	nvlist_t **child, *nvl, *tmp;
5049	dmu_tx_t *tx;
5050	char *altroot = NULL;
5051	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5052	boolean_t activate_slog;
5053
5054	ASSERT(spa_writeable(spa));
5055
5056	txg = spa_vdev_enter(spa);
5057
5058	/* clear the log and flush everything up to now */
5059	activate_slog = spa_passivate_log(spa);
5060	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5061	error = spa_offline_log(spa);
5062	txg = spa_vdev_config_enter(spa);
5063
5064	if (activate_slog)
5065		spa_activate_log(spa);
5066
5067	if (error != 0)
5068		return (spa_vdev_exit(spa, NULL, txg, error));
5069
5070	/* check new spa name before going any further */
5071	if (spa_lookup(newname) != NULL)
5072		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5073
5074	/*
5075	 * scan through all the children to ensure they're all mirrors
5076	 */
5077	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5078	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5079	    &children) != 0)
5080		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5081
5082	/* first, check to ensure we've got the right child count */
5083	rvd = spa->spa_root_vdev;
5084	lastlog = 0;
5085	for (c = 0; c < rvd->vdev_children; c++) {
5086		vdev_t *vd = rvd->vdev_child[c];
5087
5088		/* don't count the holes & logs as children */
5089		if (vd->vdev_islog || vd->vdev_ishole) {
5090			if (lastlog == 0)
5091				lastlog = c;
5092			continue;
5093		}
5094
5095		lastlog = 0;
5096	}
5097	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5098		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5099
5100	/* next, ensure no spare or cache devices are part of the split */
5101	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5102	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5103		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5104
5105	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5106	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5107
5108	/* then, loop over each vdev and validate it */
5109	for (c = 0; c < children; c++) {
5110		uint64_t is_hole = 0;
5111
5112		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5113		    &is_hole);
5114
5115		if (is_hole != 0) {
5116			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5117			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5118				continue;
5119			} else {
5120				error = SET_ERROR(EINVAL);
5121				break;
5122			}
5123		}
5124
5125		/* which disk is going to be split? */
5126		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5127		    &glist[c]) != 0) {
5128			error = SET_ERROR(EINVAL);
5129			break;
5130		}
5131
5132		/* look it up in the spa */
5133		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5134		if (vml[c] == NULL) {
5135			error = SET_ERROR(ENODEV);
5136			break;
5137		}
5138
5139		/* make sure there's nothing stopping the split */
5140		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5141		    vml[c]->vdev_islog ||
5142		    vml[c]->vdev_ishole ||
5143		    vml[c]->vdev_isspare ||
5144		    vml[c]->vdev_isl2cache ||
5145		    !vdev_writeable(vml[c]) ||
5146		    vml[c]->vdev_children != 0 ||
5147		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5148		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5149			error = SET_ERROR(EINVAL);
5150			break;
5151		}
5152
5153		if (vdev_dtl_required(vml[c])) {
5154			error = SET_ERROR(EBUSY);
5155			break;
5156		}
5157
5158		/* we need certain info from the top level */
5159		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5160		    vml[c]->vdev_top->vdev_ms_array) == 0);
5161		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5162		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5163		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5164		    vml[c]->vdev_top->vdev_asize) == 0);
5165		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5166		    vml[c]->vdev_top->vdev_ashift) == 0);
5167	}
5168
5169	if (error != 0) {
5170		kmem_free(vml, children * sizeof (vdev_t *));
5171		kmem_free(glist, children * sizeof (uint64_t));
5172		return (spa_vdev_exit(spa, NULL, txg, error));
5173	}
5174
5175	/* stop writers from using the disks */
5176	for (c = 0; c < children; c++) {
5177		if (vml[c] != NULL)
5178			vml[c]->vdev_offline = B_TRUE;
5179	}
5180	vdev_reopen(spa->spa_root_vdev);
5181
5182	/*
5183	 * Temporarily record the splitting vdevs in the spa config.  This
5184	 * will disappear once the config is regenerated.
5185	 */
5186	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5187	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5188	    glist, children) == 0);
5189	kmem_free(glist, children * sizeof (uint64_t));
5190
5191	mutex_enter(&spa->spa_props_lock);
5192	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5193	    nvl) == 0);
5194	mutex_exit(&spa->spa_props_lock);
5195	spa->spa_config_splitting = nvl;
5196	vdev_config_dirty(spa->spa_root_vdev);
5197
5198	/* configure and create the new pool */
5199	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5200	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5201	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5202	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5203	    spa_version(spa)) == 0);
5204	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5205	    spa->spa_config_txg) == 0);
5206	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5207	    spa_generate_guid(NULL)) == 0);
5208	(void) nvlist_lookup_string(props,
5209	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5210
5211	/* add the new pool to the namespace */
5212	newspa = spa_add(newname, config, altroot);
5213	newspa->spa_config_txg = spa->spa_config_txg;
5214	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5215
5216	/* release the spa config lock, retaining the namespace lock */
5217	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5218
5219	if (zio_injection_enabled)
5220		zio_handle_panic_injection(spa, FTAG, 1);
5221
5222	spa_activate(newspa, spa_mode_global);
5223	spa_async_suspend(newspa);
5224
5225#ifndef sun
5226	/* mark that we are creating new spa by splitting */
5227	newspa->spa_splitting_newspa = B_TRUE;
5228#endif
5229	/* create the new pool from the disks of the original pool */
5230	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5231#ifndef sun
5232	newspa->spa_splitting_newspa = B_FALSE;
5233#endif
5234	if (error)
5235		goto out;
5236
5237	/* if that worked, generate a real config for the new pool */
5238	if (newspa->spa_root_vdev != NULL) {
5239		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5240		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5241		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5242		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5243		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5244		    B_TRUE));
5245	}
5246
5247	/* set the props */
5248	if (props != NULL) {
5249		spa_configfile_set(newspa, props, B_FALSE);
5250		error = spa_prop_set(newspa, props);
5251		if (error)
5252			goto out;
5253	}
5254
5255	/* flush everything */
5256	txg = spa_vdev_config_enter(newspa);
5257	vdev_config_dirty(newspa->spa_root_vdev);
5258	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5259
5260	if (zio_injection_enabled)
5261		zio_handle_panic_injection(spa, FTAG, 2);
5262
5263	spa_async_resume(newspa);
5264
5265	/* finally, update the original pool's config */
5266	txg = spa_vdev_config_enter(spa);
5267	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5268	error = dmu_tx_assign(tx, TXG_WAIT);
5269	if (error != 0)
5270		dmu_tx_abort(tx);
5271	for (c = 0; c < children; c++) {
5272		if (vml[c] != NULL) {
5273			vdev_split(vml[c]);
5274			if (error == 0)
5275				spa_history_log_internal(spa, "detach", tx,
5276				    "vdev=%s", vml[c]->vdev_path);
5277			vdev_free(vml[c]);
5278		}
5279	}
5280	vdev_config_dirty(spa->spa_root_vdev);
5281	spa->spa_config_splitting = NULL;
5282	nvlist_free(nvl);
5283	if (error == 0)
5284		dmu_tx_commit(tx);
5285	(void) spa_vdev_exit(spa, NULL, txg, 0);
5286
5287	if (zio_injection_enabled)
5288		zio_handle_panic_injection(spa, FTAG, 3);
5289
5290	/* split is complete; log a history record */
5291	spa_history_log_internal(newspa, "split", NULL,
5292	    "from pool %s", spa_name(spa));
5293
5294	kmem_free(vml, children * sizeof (vdev_t *));
5295
5296	/* if we're not going to mount the filesystems in userland, export */
5297	if (exp)
5298		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5299		    B_FALSE, B_FALSE);
5300
5301	return (error);
5302
5303out:
5304	spa_unload(newspa);
5305	spa_deactivate(newspa);
5306	spa_remove(newspa);
5307
5308	txg = spa_vdev_config_enter(spa);
5309
5310	/* re-online all offlined disks */
5311	for (c = 0; c < children; c++) {
5312		if (vml[c] != NULL)
5313			vml[c]->vdev_offline = B_FALSE;
5314	}
5315	vdev_reopen(spa->spa_root_vdev);
5316
5317	nvlist_free(spa->spa_config_splitting);
5318	spa->spa_config_splitting = NULL;
5319	(void) spa_vdev_exit(spa, NULL, txg, error);
5320
5321	kmem_free(vml, children * sizeof (vdev_t *));
5322	return (error);
5323}
5324
5325static nvlist_t *
5326spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5327{
5328	for (int i = 0; i < count; i++) {
5329		uint64_t guid;
5330
5331		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5332		    &guid) == 0);
5333
5334		if (guid == target_guid)
5335			return (nvpp[i]);
5336	}
5337
5338	return (NULL);
5339}
5340
5341static void
5342spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5343	nvlist_t *dev_to_remove)
5344{
5345	nvlist_t **newdev = NULL;
5346
5347	if (count > 1)
5348		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5349
5350	for (int i = 0, j = 0; i < count; i++) {
5351		if (dev[i] == dev_to_remove)
5352			continue;
5353		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5354	}
5355
5356	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5357	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5358
5359	for (int i = 0; i < count - 1; i++)
5360		nvlist_free(newdev[i]);
5361
5362	if (count > 1)
5363		kmem_free(newdev, (count - 1) * sizeof (void *));
5364}
5365
5366/*
5367 * Evacuate the device.
5368 */
5369static int
5370spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5371{
5372	uint64_t txg;
5373	int error = 0;
5374
5375	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5376	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5377	ASSERT(vd == vd->vdev_top);
5378
5379	/*
5380	 * Evacuate the device.  We don't hold the config lock as writer
5381	 * since we need to do I/O but we do keep the
5382	 * spa_namespace_lock held.  Once this completes the device
5383	 * should no longer have any blocks allocated on it.
5384	 */
5385	if (vd->vdev_islog) {
5386		if (vd->vdev_stat.vs_alloc != 0)
5387			error = spa_offline_log(spa);
5388	} else {
5389		error = SET_ERROR(ENOTSUP);
5390	}
5391
5392	if (error)
5393		return (error);
5394
5395	/*
5396	 * The evacuation succeeded.  Remove any remaining MOS metadata
5397	 * associated with this vdev, and wait for these changes to sync.
5398	 */
5399	ASSERT0(vd->vdev_stat.vs_alloc);
5400	txg = spa_vdev_config_enter(spa);
5401	vd->vdev_removing = B_TRUE;
5402	vdev_dirty_leaves(vd, VDD_DTL, txg);
5403	vdev_config_dirty(vd);
5404	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5405
5406	return (0);
5407}
5408
5409/*
5410 * Complete the removal by cleaning up the namespace.
5411 */
5412static void
5413spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5414{
5415	vdev_t *rvd = spa->spa_root_vdev;
5416	uint64_t id = vd->vdev_id;
5417	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5418
5419	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5420	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5421	ASSERT(vd == vd->vdev_top);
5422
5423	/*
5424	 * Only remove any devices which are empty.
5425	 */
5426	if (vd->vdev_stat.vs_alloc != 0)
5427		return;
5428
5429	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5430
5431	if (list_link_active(&vd->vdev_state_dirty_node))
5432		vdev_state_clean(vd);
5433	if (list_link_active(&vd->vdev_config_dirty_node))
5434		vdev_config_clean(vd);
5435
5436	vdev_free(vd);
5437
5438	if (last_vdev) {
5439		vdev_compact_children(rvd);
5440	} else {
5441		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5442		vdev_add_child(rvd, vd);
5443	}
5444	vdev_config_dirty(rvd);
5445
5446	/*
5447	 * Reassess the health of our root vdev.
5448	 */
5449	vdev_reopen(rvd);
5450}
5451
5452/*
5453 * Remove a device from the pool -
5454 *
5455 * Removing a device from the vdev namespace requires several steps
5456 * and can take a significant amount of time.  As a result we use
5457 * the spa_vdev_config_[enter/exit] functions which allow us to
5458 * grab and release the spa_config_lock while still holding the namespace
5459 * lock.  During each step the configuration is synced out.
5460 *
5461 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5462 * devices.
5463 */
5464int
5465spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5466{
5467	vdev_t *vd;
5468	metaslab_group_t *mg;
5469	nvlist_t **spares, **l2cache, *nv;
5470	uint64_t txg = 0;
5471	uint_t nspares, nl2cache;
5472	int error = 0;
5473	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5474
5475	ASSERT(spa_writeable(spa));
5476
5477	if (!locked)
5478		txg = spa_vdev_enter(spa);
5479
5480	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5481
5482	if (spa->spa_spares.sav_vdevs != NULL &&
5483	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5484	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5485	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5486		/*
5487		 * Only remove the hot spare if it's not currently in use
5488		 * in this pool.
5489		 */
5490		if (vd == NULL || unspare) {
5491			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5492			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5493			spa_load_spares(spa);
5494			spa->spa_spares.sav_sync = B_TRUE;
5495		} else {
5496			error = SET_ERROR(EBUSY);
5497		}
5498	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5499	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5500	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5501	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5502		/*
5503		 * Cache devices can always be removed.
5504		 */
5505		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5506		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5507		spa_load_l2cache(spa);
5508		spa->spa_l2cache.sav_sync = B_TRUE;
5509	} else if (vd != NULL && vd->vdev_islog) {
5510		ASSERT(!locked);
5511		ASSERT(vd == vd->vdev_top);
5512
5513		/*
5514		 * XXX - Once we have bp-rewrite this should
5515		 * become the common case.
5516		 */
5517
5518		mg = vd->vdev_mg;
5519
5520		/*
5521		 * Stop allocating from this vdev.
5522		 */
5523		metaslab_group_passivate(mg);
5524
5525		/*
5526		 * Wait for the youngest allocations and frees to sync,
5527		 * and then wait for the deferral of those frees to finish.
5528		 */
5529		spa_vdev_config_exit(spa, NULL,
5530		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5531
5532		/*
5533		 * Attempt to evacuate the vdev.
5534		 */
5535		error = spa_vdev_remove_evacuate(spa, vd);
5536
5537		txg = spa_vdev_config_enter(spa);
5538
5539		/*
5540		 * If we couldn't evacuate the vdev, unwind.
5541		 */
5542		if (error) {
5543			metaslab_group_activate(mg);
5544			return (spa_vdev_exit(spa, NULL, txg, error));
5545		}
5546
5547		/*
5548		 * Clean up the vdev namespace.
5549		 */
5550		spa_vdev_remove_from_namespace(spa, vd);
5551
5552	} else if (vd != NULL) {
5553		/*
5554		 * Normal vdevs cannot be removed (yet).
5555		 */
5556		error = SET_ERROR(ENOTSUP);
5557	} else {
5558		/*
5559		 * There is no vdev of any kind with the specified guid.
5560		 */
5561		error = SET_ERROR(ENOENT);
5562	}
5563
5564	if (!locked)
5565		return (spa_vdev_exit(spa, NULL, txg, error));
5566
5567	return (error);
5568}
5569
5570/*
5571 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5572 * currently spared, so we can detach it.
5573 */
5574static vdev_t *
5575spa_vdev_resilver_done_hunt(vdev_t *vd)
5576{
5577	vdev_t *newvd, *oldvd;
5578
5579	for (int c = 0; c < vd->vdev_children; c++) {
5580		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5581		if (oldvd != NULL)
5582			return (oldvd);
5583	}
5584
5585	/*
5586	 * Check for a completed replacement.  We always consider the first
5587	 * vdev in the list to be the oldest vdev, and the last one to be
5588	 * the newest (see spa_vdev_attach() for how that works).  In
5589	 * the case where the newest vdev is faulted, we will not automatically
5590	 * remove it after a resilver completes.  This is OK as it will require
5591	 * user intervention to determine which disk the admin wishes to keep.
5592	 */
5593	if (vd->vdev_ops == &vdev_replacing_ops) {
5594		ASSERT(vd->vdev_children > 1);
5595
5596		newvd = vd->vdev_child[vd->vdev_children - 1];
5597		oldvd = vd->vdev_child[0];
5598
5599		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5600		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5601		    !vdev_dtl_required(oldvd))
5602			return (oldvd);
5603	}
5604
5605	/*
5606	 * Check for a completed resilver with the 'unspare' flag set.
5607	 */
5608	if (vd->vdev_ops == &vdev_spare_ops) {
5609		vdev_t *first = vd->vdev_child[0];
5610		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5611
5612		if (last->vdev_unspare) {
5613			oldvd = first;
5614			newvd = last;
5615		} else if (first->vdev_unspare) {
5616			oldvd = last;
5617			newvd = first;
5618		} else {
5619			oldvd = NULL;
5620		}
5621
5622		if (oldvd != NULL &&
5623		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5624		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5625		    !vdev_dtl_required(oldvd))
5626			return (oldvd);
5627
5628		/*
5629		 * If there are more than two spares attached to a disk,
5630		 * and those spares are not required, then we want to
5631		 * attempt to free them up now so that they can be used
5632		 * by other pools.  Once we're back down to a single
5633		 * disk+spare, we stop removing them.
5634		 */
5635		if (vd->vdev_children > 2) {
5636			newvd = vd->vdev_child[1];
5637
5638			if (newvd->vdev_isspare && last->vdev_isspare &&
5639			    vdev_dtl_empty(last, DTL_MISSING) &&
5640			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5641			    !vdev_dtl_required(newvd))
5642				return (newvd);
5643		}
5644	}
5645
5646	return (NULL);
5647}
5648
5649static void
5650spa_vdev_resilver_done(spa_t *spa)
5651{
5652	vdev_t *vd, *pvd, *ppvd;
5653	uint64_t guid, sguid, pguid, ppguid;
5654
5655	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5656
5657	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5658		pvd = vd->vdev_parent;
5659		ppvd = pvd->vdev_parent;
5660		guid = vd->vdev_guid;
5661		pguid = pvd->vdev_guid;
5662		ppguid = ppvd->vdev_guid;
5663		sguid = 0;
5664		/*
5665		 * If we have just finished replacing a hot spared device, then
5666		 * we need to detach the parent's first child (the original hot
5667		 * spare) as well.
5668		 */
5669		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5670		    ppvd->vdev_children == 2) {
5671			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5672			sguid = ppvd->vdev_child[1]->vdev_guid;
5673		}
5674		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5675
5676		spa_config_exit(spa, SCL_ALL, FTAG);
5677		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5678			return;
5679		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5680			return;
5681		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5682	}
5683
5684	spa_config_exit(spa, SCL_ALL, FTAG);
5685}
5686
5687/*
5688 * Update the stored path or FRU for this vdev.
5689 */
5690int
5691spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5692    boolean_t ispath)
5693{
5694	vdev_t *vd;
5695	boolean_t sync = B_FALSE;
5696
5697	ASSERT(spa_writeable(spa));
5698
5699	spa_vdev_state_enter(spa, SCL_ALL);
5700
5701	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5702		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5703
5704	if (!vd->vdev_ops->vdev_op_leaf)
5705		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5706
5707	if (ispath) {
5708		if (strcmp(value, vd->vdev_path) != 0) {
5709			spa_strfree(vd->vdev_path);
5710			vd->vdev_path = spa_strdup(value);
5711			sync = B_TRUE;
5712		}
5713	} else {
5714		if (vd->vdev_fru == NULL) {
5715			vd->vdev_fru = spa_strdup(value);
5716			sync = B_TRUE;
5717		} else if (strcmp(value, vd->vdev_fru) != 0) {
5718			spa_strfree(vd->vdev_fru);
5719			vd->vdev_fru = spa_strdup(value);
5720			sync = B_TRUE;
5721		}
5722	}
5723
5724	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5725}
5726
5727int
5728spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5729{
5730	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5731}
5732
5733int
5734spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5735{
5736	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5737}
5738
5739/*
5740 * ==========================================================================
5741 * SPA Scanning
5742 * ==========================================================================
5743 */
5744
5745int
5746spa_scan_stop(spa_t *spa)
5747{
5748	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5749	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5750		return (SET_ERROR(EBUSY));
5751	return (dsl_scan_cancel(spa->spa_dsl_pool));
5752}
5753
5754int
5755spa_scan(spa_t *spa, pool_scan_func_t func)
5756{
5757	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5758
5759	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5760		return (SET_ERROR(ENOTSUP));
5761
5762	/*
5763	 * If a resilver was requested, but there is no DTL on a
5764	 * writeable leaf device, we have nothing to do.
5765	 */
5766	if (func == POOL_SCAN_RESILVER &&
5767	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5768		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5769		return (0);
5770	}
5771
5772	return (dsl_scan(spa->spa_dsl_pool, func));
5773}
5774
5775/*
5776 * ==========================================================================
5777 * SPA async task processing
5778 * ==========================================================================
5779 */
5780
5781static void
5782spa_async_remove(spa_t *spa, vdev_t *vd)
5783{
5784	if (vd->vdev_remove_wanted) {
5785		vd->vdev_remove_wanted = B_FALSE;
5786		vd->vdev_delayed_close = B_FALSE;
5787		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5788
5789		/*
5790		 * We want to clear the stats, but we don't want to do a full
5791		 * vdev_clear() as that will cause us to throw away
5792		 * degraded/faulted state as well as attempt to reopen the
5793		 * device, all of which is a waste.
5794		 */
5795		vd->vdev_stat.vs_read_errors = 0;
5796		vd->vdev_stat.vs_write_errors = 0;
5797		vd->vdev_stat.vs_checksum_errors = 0;
5798
5799		vdev_state_dirty(vd->vdev_top);
5800	}
5801
5802	for (int c = 0; c < vd->vdev_children; c++)
5803		spa_async_remove(spa, vd->vdev_child[c]);
5804}
5805
5806static void
5807spa_async_probe(spa_t *spa, vdev_t *vd)
5808{
5809	if (vd->vdev_probe_wanted) {
5810		vd->vdev_probe_wanted = B_FALSE;
5811		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5812	}
5813
5814	for (int c = 0; c < vd->vdev_children; c++)
5815		spa_async_probe(spa, vd->vdev_child[c]);
5816}
5817
5818static void
5819spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5820{
5821	sysevent_id_t eid;
5822	nvlist_t *attr;
5823	char *physpath;
5824
5825	if (!spa->spa_autoexpand)
5826		return;
5827
5828	for (int c = 0; c < vd->vdev_children; c++) {
5829		vdev_t *cvd = vd->vdev_child[c];
5830		spa_async_autoexpand(spa, cvd);
5831	}
5832
5833	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5834		return;
5835
5836	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5837	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5838
5839	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5840	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5841
5842	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5843	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5844
5845	nvlist_free(attr);
5846	kmem_free(physpath, MAXPATHLEN);
5847}
5848
5849static void
5850spa_async_thread(void *arg)
5851{
5852	spa_t *spa = arg;
5853	int tasks;
5854
5855	ASSERT(spa->spa_sync_on);
5856
5857	mutex_enter(&spa->spa_async_lock);
5858	tasks = spa->spa_async_tasks;
5859	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5860	mutex_exit(&spa->spa_async_lock);
5861
5862	/*
5863	 * See if the config needs to be updated.
5864	 */
5865	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5866		uint64_t old_space, new_space;
5867
5868		mutex_enter(&spa_namespace_lock);
5869		old_space = metaslab_class_get_space(spa_normal_class(spa));
5870		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5871		new_space = metaslab_class_get_space(spa_normal_class(spa));
5872		mutex_exit(&spa_namespace_lock);
5873
5874		/*
5875		 * If the pool grew as a result of the config update,
5876		 * then log an internal history event.
5877		 */
5878		if (new_space != old_space) {
5879			spa_history_log_internal(spa, "vdev online", NULL,
5880			    "pool '%s' size: %llu(+%llu)",
5881			    spa_name(spa), new_space, new_space - old_space);
5882		}
5883	}
5884
5885	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5886		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5887		spa_async_autoexpand(spa, spa->spa_root_vdev);
5888		spa_config_exit(spa, SCL_CONFIG, FTAG);
5889	}
5890
5891	/*
5892	 * See if any devices need to be probed.
5893	 */
5894	if (tasks & SPA_ASYNC_PROBE) {
5895		spa_vdev_state_enter(spa, SCL_NONE);
5896		spa_async_probe(spa, spa->spa_root_vdev);
5897		(void) spa_vdev_state_exit(spa, NULL, 0);
5898	}
5899
5900	/*
5901	 * If any devices are done replacing, detach them.
5902	 */
5903	if (tasks & SPA_ASYNC_RESILVER_DONE)
5904		spa_vdev_resilver_done(spa);
5905
5906	/*
5907	 * Kick off a resilver.
5908	 */
5909	if (tasks & SPA_ASYNC_RESILVER)
5910		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5911
5912	/*
5913	 * Let the world know that we're done.
5914	 */
5915	mutex_enter(&spa->spa_async_lock);
5916	spa->spa_async_thread = NULL;
5917	cv_broadcast(&spa->spa_async_cv);
5918	mutex_exit(&spa->spa_async_lock);
5919	thread_exit();
5920}
5921
5922static void
5923spa_async_thread_vd(void *arg)
5924{
5925	spa_t *spa = arg;
5926	int tasks;
5927
5928	ASSERT(spa->spa_sync_on);
5929
5930	mutex_enter(&spa->spa_async_lock);
5931	tasks = spa->spa_async_tasks;
5932retry:
5933	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5934	mutex_exit(&spa->spa_async_lock);
5935
5936	/*
5937	 * See if any devices need to be marked REMOVED.
5938	 */
5939	if (tasks & SPA_ASYNC_REMOVE) {
5940		spa_vdev_state_enter(spa, SCL_NONE);
5941		spa_async_remove(spa, spa->spa_root_vdev);
5942		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5943			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5944		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5945			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5946		(void) spa_vdev_state_exit(spa, NULL, 0);
5947	}
5948
5949	/*
5950	 * Let the world know that we're done.
5951	 */
5952	mutex_enter(&spa->spa_async_lock);
5953	tasks = spa->spa_async_tasks;
5954	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5955		goto retry;
5956	spa->spa_async_thread_vd = NULL;
5957	cv_broadcast(&spa->spa_async_cv);
5958	mutex_exit(&spa->spa_async_lock);
5959	thread_exit();
5960}
5961
5962void
5963spa_async_suspend(spa_t *spa)
5964{
5965	mutex_enter(&spa->spa_async_lock);
5966	spa->spa_async_suspended++;
5967	while (spa->spa_async_thread != NULL &&
5968	    spa->spa_async_thread_vd != NULL)
5969		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5970	mutex_exit(&spa->spa_async_lock);
5971}
5972
5973void
5974spa_async_resume(spa_t *spa)
5975{
5976	mutex_enter(&spa->spa_async_lock);
5977	ASSERT(spa->spa_async_suspended != 0);
5978	spa->spa_async_suspended--;
5979	mutex_exit(&spa->spa_async_lock);
5980}
5981
5982static boolean_t
5983spa_async_tasks_pending(spa_t *spa)
5984{
5985	uint_t non_config_tasks;
5986	uint_t config_task;
5987	boolean_t config_task_suspended;
5988
5989	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
5990	    SPA_ASYNC_REMOVE);
5991	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5992	if (spa->spa_ccw_fail_time == 0) {
5993		config_task_suspended = B_FALSE;
5994	} else {
5995		config_task_suspended =
5996		    (gethrtime() - spa->spa_ccw_fail_time) <
5997		    (zfs_ccw_retry_interval * NANOSEC);
5998	}
5999
6000	return (non_config_tasks || (config_task && !config_task_suspended));
6001}
6002
6003static void
6004spa_async_dispatch(spa_t *spa)
6005{
6006	mutex_enter(&spa->spa_async_lock);
6007	if (spa_async_tasks_pending(spa) &&
6008	    !spa->spa_async_suspended &&
6009	    spa->spa_async_thread == NULL &&
6010	    rootdir != NULL)
6011		spa->spa_async_thread = thread_create(NULL, 0,
6012		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6013	mutex_exit(&spa->spa_async_lock);
6014}
6015
6016static void
6017spa_async_dispatch_vd(spa_t *spa)
6018{
6019	mutex_enter(&spa->spa_async_lock);
6020	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6021	    !spa->spa_async_suspended &&
6022	    spa->spa_async_thread_vd == NULL &&
6023	    rootdir != NULL)
6024		spa->spa_async_thread_vd = thread_create(NULL, 0,
6025		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6026	mutex_exit(&spa->spa_async_lock);
6027}
6028
6029void
6030spa_async_request(spa_t *spa, int task)
6031{
6032	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6033	mutex_enter(&spa->spa_async_lock);
6034	spa->spa_async_tasks |= task;
6035	mutex_exit(&spa->spa_async_lock);
6036	spa_async_dispatch_vd(spa);
6037}
6038
6039/*
6040 * ==========================================================================
6041 * SPA syncing routines
6042 * ==========================================================================
6043 */
6044
6045static int
6046bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6047{
6048	bpobj_t *bpo = arg;
6049	bpobj_enqueue(bpo, bp, tx);
6050	return (0);
6051}
6052
6053static int
6054spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6055{
6056	zio_t *zio = arg;
6057
6058	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6059	    BP_GET_PSIZE(bp), zio->io_flags));
6060	return (0);
6061}
6062
6063/*
6064 * Note: this simple function is not inlined to make it easier to dtrace the
6065 * amount of time spent syncing frees.
6066 */
6067static void
6068spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6069{
6070	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6071	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6072	VERIFY(zio_wait(zio) == 0);
6073}
6074
6075/*
6076 * Note: this simple function is not inlined to make it easier to dtrace the
6077 * amount of time spent syncing deferred frees.
6078 */
6079static void
6080spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6081{
6082	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6083	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6084	    spa_free_sync_cb, zio, tx), ==, 0);
6085	VERIFY0(zio_wait(zio));
6086}
6087
6088
6089static void
6090spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6091{
6092	char *packed = NULL;
6093	size_t bufsize;
6094	size_t nvsize = 0;
6095	dmu_buf_t *db;
6096
6097	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6098
6099	/*
6100	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6101	 * information.  This avoids the dbuf_will_dirty() path and
6102	 * saves us a pre-read to get data we don't actually care about.
6103	 */
6104	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6105	packed = kmem_alloc(bufsize, KM_SLEEP);
6106
6107	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6108	    KM_SLEEP) == 0);
6109	bzero(packed + nvsize, bufsize - nvsize);
6110
6111	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6112
6113	kmem_free(packed, bufsize);
6114
6115	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6116	dmu_buf_will_dirty(db, tx);
6117	*(uint64_t *)db->db_data = nvsize;
6118	dmu_buf_rele(db, FTAG);
6119}
6120
6121static void
6122spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6123    const char *config, const char *entry)
6124{
6125	nvlist_t *nvroot;
6126	nvlist_t **list;
6127	int i;
6128
6129	if (!sav->sav_sync)
6130		return;
6131
6132	/*
6133	 * Update the MOS nvlist describing the list of available devices.
6134	 * spa_validate_aux() will have already made sure this nvlist is
6135	 * valid and the vdevs are labeled appropriately.
6136	 */
6137	if (sav->sav_object == 0) {
6138		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6139		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6140		    sizeof (uint64_t), tx);
6141		VERIFY(zap_update(spa->spa_meta_objset,
6142		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6143		    &sav->sav_object, tx) == 0);
6144	}
6145
6146	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6147	if (sav->sav_count == 0) {
6148		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6149	} else {
6150		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6151		for (i = 0; i < sav->sav_count; i++)
6152			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6153			    B_FALSE, VDEV_CONFIG_L2CACHE);
6154		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6155		    sav->sav_count) == 0);
6156		for (i = 0; i < sav->sav_count; i++)
6157			nvlist_free(list[i]);
6158		kmem_free(list, sav->sav_count * sizeof (void *));
6159	}
6160
6161	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6162	nvlist_free(nvroot);
6163
6164	sav->sav_sync = B_FALSE;
6165}
6166
6167static void
6168spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6169{
6170	nvlist_t *config;
6171
6172	if (list_is_empty(&spa->spa_config_dirty_list))
6173		return;
6174
6175	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6176
6177	config = spa_config_generate(spa, spa->spa_root_vdev,
6178	    dmu_tx_get_txg(tx), B_FALSE);
6179
6180	/*
6181	 * If we're upgrading the spa version then make sure that
6182	 * the config object gets updated with the correct version.
6183	 */
6184	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6185		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6186		    spa->spa_uberblock.ub_version);
6187
6188	spa_config_exit(spa, SCL_STATE, FTAG);
6189
6190	if (spa->spa_config_syncing)
6191		nvlist_free(spa->spa_config_syncing);
6192	spa->spa_config_syncing = config;
6193
6194	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6195}
6196
6197static void
6198spa_sync_version(void *arg, dmu_tx_t *tx)
6199{
6200	uint64_t *versionp = arg;
6201	uint64_t version = *versionp;
6202	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6203
6204	/*
6205	 * Setting the version is special cased when first creating the pool.
6206	 */
6207	ASSERT(tx->tx_txg != TXG_INITIAL);
6208
6209	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6210	ASSERT(version >= spa_version(spa));
6211
6212	spa->spa_uberblock.ub_version = version;
6213	vdev_config_dirty(spa->spa_root_vdev);
6214	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6215}
6216
6217/*
6218 * Set zpool properties.
6219 */
6220static void
6221spa_sync_props(void *arg, dmu_tx_t *tx)
6222{
6223	nvlist_t *nvp = arg;
6224	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6225	objset_t *mos = spa->spa_meta_objset;
6226	nvpair_t *elem = NULL;
6227
6228	mutex_enter(&spa->spa_props_lock);
6229
6230	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6231		uint64_t intval;
6232		char *strval, *fname;
6233		zpool_prop_t prop;
6234		const char *propname;
6235		zprop_type_t proptype;
6236		zfeature_info_t *feature;
6237
6238		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6239		case ZPROP_INVAL:
6240			/*
6241			 * We checked this earlier in spa_prop_validate().
6242			 */
6243			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6244
6245			fname = strchr(nvpair_name(elem), '@') + 1;
6246			VERIFY0(zfeature_lookup_name(fname, &feature));
6247
6248			spa_feature_enable(spa, feature, tx);
6249			spa_history_log_internal(spa, "set", tx,
6250			    "%s=enabled", nvpair_name(elem));
6251			break;
6252
6253		case ZPOOL_PROP_VERSION:
6254			intval = fnvpair_value_uint64(elem);
6255			/*
6256			 * The version is synced seperatly before other
6257			 * properties and should be correct by now.
6258			 */
6259			ASSERT3U(spa_version(spa), >=, intval);
6260			break;
6261
6262		case ZPOOL_PROP_ALTROOT:
6263			/*
6264			 * 'altroot' is a non-persistent property. It should
6265			 * have been set temporarily at creation or import time.
6266			 */
6267			ASSERT(spa->spa_root != NULL);
6268			break;
6269
6270		case ZPOOL_PROP_READONLY:
6271		case ZPOOL_PROP_CACHEFILE:
6272			/*
6273			 * 'readonly' and 'cachefile' are also non-persisitent
6274			 * properties.
6275			 */
6276			break;
6277		case ZPOOL_PROP_COMMENT:
6278			strval = fnvpair_value_string(elem);
6279			if (spa->spa_comment != NULL)
6280				spa_strfree(spa->spa_comment);
6281			spa->spa_comment = spa_strdup(strval);
6282			/*
6283			 * We need to dirty the configuration on all the vdevs
6284			 * so that their labels get updated.  It's unnecessary
6285			 * to do this for pool creation since the vdev's
6286			 * configuratoin has already been dirtied.
6287			 */
6288			if (tx->tx_txg != TXG_INITIAL)
6289				vdev_config_dirty(spa->spa_root_vdev);
6290			spa_history_log_internal(spa, "set", tx,
6291			    "%s=%s", nvpair_name(elem), strval);
6292			break;
6293		default:
6294			/*
6295			 * Set pool property values in the poolprops mos object.
6296			 */
6297			if (spa->spa_pool_props_object == 0) {
6298				spa->spa_pool_props_object =
6299				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6300				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6301				    tx);
6302			}
6303
6304			/* normalize the property name */
6305			propname = zpool_prop_to_name(prop);
6306			proptype = zpool_prop_get_type(prop);
6307
6308			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6309				ASSERT(proptype == PROP_TYPE_STRING);
6310				strval = fnvpair_value_string(elem);
6311				VERIFY0(zap_update(mos,
6312				    spa->spa_pool_props_object, propname,
6313				    1, strlen(strval) + 1, strval, tx));
6314				spa_history_log_internal(spa, "set", tx,
6315				    "%s=%s", nvpair_name(elem), strval);
6316			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6317				intval = fnvpair_value_uint64(elem);
6318
6319				if (proptype == PROP_TYPE_INDEX) {
6320					const char *unused;
6321					VERIFY0(zpool_prop_index_to_string(
6322					    prop, intval, &unused));
6323				}
6324				VERIFY0(zap_update(mos,
6325				    spa->spa_pool_props_object, propname,
6326				    8, 1, &intval, tx));
6327				spa_history_log_internal(spa, "set", tx,
6328				    "%s=%lld", nvpair_name(elem), intval);
6329			} else {
6330				ASSERT(0); /* not allowed */
6331			}
6332
6333			switch (prop) {
6334			case ZPOOL_PROP_DELEGATION:
6335				spa->spa_delegation = intval;
6336				break;
6337			case ZPOOL_PROP_BOOTFS:
6338				spa->spa_bootfs = intval;
6339				break;
6340			case ZPOOL_PROP_FAILUREMODE:
6341				spa->spa_failmode = intval;
6342				break;
6343			case ZPOOL_PROP_AUTOEXPAND:
6344				spa->spa_autoexpand = intval;
6345				if (tx->tx_txg != TXG_INITIAL)
6346					spa_async_request(spa,
6347					    SPA_ASYNC_AUTOEXPAND);
6348				break;
6349			case ZPOOL_PROP_DEDUPDITTO:
6350				spa->spa_dedup_ditto = intval;
6351				break;
6352			default:
6353				break;
6354			}
6355		}
6356
6357	}
6358
6359	mutex_exit(&spa->spa_props_lock);
6360}
6361
6362/*
6363 * Perform one-time upgrade on-disk changes.  spa_version() does not
6364 * reflect the new version this txg, so there must be no changes this
6365 * txg to anything that the upgrade code depends on after it executes.
6366 * Therefore this must be called after dsl_pool_sync() does the sync
6367 * tasks.
6368 */
6369static void
6370spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6371{
6372	dsl_pool_t *dp = spa->spa_dsl_pool;
6373
6374	ASSERT(spa->spa_sync_pass == 1);
6375
6376	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6377
6378	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6379	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6380		dsl_pool_create_origin(dp, tx);
6381
6382		/* Keeping the origin open increases spa_minref */
6383		spa->spa_minref += 3;
6384	}
6385
6386	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6387	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6388		dsl_pool_upgrade_clones(dp, tx);
6389	}
6390
6391	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6392	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6393		dsl_pool_upgrade_dir_clones(dp, tx);
6394
6395		/* Keeping the freedir open increases spa_minref */
6396		spa->spa_minref += 3;
6397	}
6398
6399	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6400	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6401		spa_feature_create_zap_objects(spa, tx);
6402	}
6403	rrw_exit(&dp->dp_config_rwlock, FTAG);
6404}
6405
6406/*
6407 * Sync the specified transaction group.  New blocks may be dirtied as
6408 * part of the process, so we iterate until it converges.
6409 */
6410void
6411spa_sync(spa_t *spa, uint64_t txg)
6412{
6413	dsl_pool_t *dp = spa->spa_dsl_pool;
6414	objset_t *mos = spa->spa_meta_objset;
6415	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6416	vdev_t *rvd = spa->spa_root_vdev;
6417	vdev_t *vd;
6418	dmu_tx_t *tx;
6419	int error;
6420
6421	VERIFY(spa_writeable(spa));
6422
6423	/*
6424	 * Lock out configuration changes.
6425	 */
6426	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6427
6428	spa->spa_syncing_txg = txg;
6429	spa->spa_sync_pass = 0;
6430
6431	/*
6432	 * If there are any pending vdev state changes, convert them
6433	 * into config changes that go out with this transaction group.
6434	 */
6435	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6436	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6437		/*
6438		 * We need the write lock here because, for aux vdevs,
6439		 * calling vdev_config_dirty() modifies sav_config.
6440		 * This is ugly and will become unnecessary when we
6441		 * eliminate the aux vdev wart by integrating all vdevs
6442		 * into the root vdev tree.
6443		 */
6444		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6445		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6446		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6447			vdev_state_clean(vd);
6448			vdev_config_dirty(vd);
6449		}
6450		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6451		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6452	}
6453	spa_config_exit(spa, SCL_STATE, FTAG);
6454
6455	tx = dmu_tx_create_assigned(dp, txg);
6456
6457	spa->spa_sync_starttime = gethrtime();
6458#ifdef illumos
6459	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6460	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6461#else	/* FreeBSD */
6462#ifdef _KERNEL
6463	callout_reset(&spa->spa_deadman_cycid,
6464	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6465#endif
6466#endif
6467
6468	/*
6469	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6470	 * set spa_deflate if we have no raid-z vdevs.
6471	 */
6472	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6473	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6474		int i;
6475
6476		for (i = 0; i < rvd->vdev_children; i++) {
6477			vd = rvd->vdev_child[i];
6478			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6479				break;
6480		}
6481		if (i == rvd->vdev_children) {
6482			spa->spa_deflate = TRUE;
6483			VERIFY(0 == zap_add(spa->spa_meta_objset,
6484			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6485			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6486		}
6487	}
6488
6489	/*
6490	 * If anything has changed in this txg, or if someone is waiting
6491	 * for this txg to sync (eg, spa_vdev_remove()), push the
6492	 * deferred frees from the previous txg.  If not, leave them
6493	 * alone so that we don't generate work on an otherwise idle
6494	 * system.
6495	 */
6496	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6497	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6498	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6499	    ((dsl_scan_active(dp->dp_scan) ||
6500	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6501		spa_sync_deferred_frees(spa, tx);
6502	}
6503
6504	/*
6505	 * Iterate to convergence.
6506	 */
6507	do {
6508		int pass = ++spa->spa_sync_pass;
6509
6510		spa_sync_config_object(spa, tx);
6511		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6512		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6513		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6514		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6515		spa_errlog_sync(spa, txg);
6516		dsl_pool_sync(dp, txg);
6517
6518		if (pass < zfs_sync_pass_deferred_free) {
6519			spa_sync_frees(spa, free_bpl, tx);
6520		} else {
6521			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6522			    &spa->spa_deferred_bpobj, tx);
6523		}
6524
6525		ddt_sync(spa, txg);
6526		dsl_scan_sync(dp, tx);
6527
6528		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6529			vdev_sync(vd, txg);
6530
6531		if (pass == 1)
6532			spa_sync_upgrades(spa, tx);
6533
6534	} while (dmu_objset_is_dirty(mos, txg));
6535
6536	/*
6537	 * Rewrite the vdev configuration (which includes the uberblock)
6538	 * to commit the transaction group.
6539	 *
6540	 * If there are no dirty vdevs, we sync the uberblock to a few
6541	 * random top-level vdevs that are known to be visible in the
6542	 * config cache (see spa_vdev_add() for a complete description).
6543	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6544	 */
6545	for (;;) {
6546		/*
6547		 * We hold SCL_STATE to prevent vdev open/close/etc.
6548		 * while we're attempting to write the vdev labels.
6549		 */
6550		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6551
6552		if (list_is_empty(&spa->spa_config_dirty_list)) {
6553			vdev_t *svd[SPA_DVAS_PER_BP];
6554			int svdcount = 0;
6555			int children = rvd->vdev_children;
6556			int c0 = spa_get_random(children);
6557
6558			for (int c = 0; c < children; c++) {
6559				vd = rvd->vdev_child[(c0 + c) % children];
6560				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6561					continue;
6562				svd[svdcount++] = vd;
6563				if (svdcount == SPA_DVAS_PER_BP)
6564					break;
6565			}
6566			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6567			if (error != 0)
6568				error = vdev_config_sync(svd, svdcount, txg,
6569				    B_TRUE);
6570		} else {
6571			error = vdev_config_sync(rvd->vdev_child,
6572			    rvd->vdev_children, txg, B_FALSE);
6573			if (error != 0)
6574				error = vdev_config_sync(rvd->vdev_child,
6575				    rvd->vdev_children, txg, B_TRUE);
6576		}
6577
6578		if (error == 0)
6579			spa->spa_last_synced_guid = rvd->vdev_guid;
6580
6581		spa_config_exit(spa, SCL_STATE, FTAG);
6582
6583		if (error == 0)
6584			break;
6585		zio_suspend(spa, NULL);
6586		zio_resume_wait(spa);
6587	}
6588	dmu_tx_commit(tx);
6589
6590#ifdef illumos
6591	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6592#else	/* FreeBSD */
6593#ifdef _KERNEL
6594	callout_drain(&spa->spa_deadman_cycid);
6595#endif
6596#endif
6597
6598	/*
6599	 * Clear the dirty config list.
6600	 */
6601	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6602		vdev_config_clean(vd);
6603
6604	/*
6605	 * Now that the new config has synced transactionally,
6606	 * let it become visible to the config cache.
6607	 */
6608	if (spa->spa_config_syncing != NULL) {
6609		spa_config_set(spa, spa->spa_config_syncing);
6610		spa->spa_config_txg = txg;
6611		spa->spa_config_syncing = NULL;
6612	}
6613
6614	spa->spa_ubsync = spa->spa_uberblock;
6615
6616	dsl_pool_sync_done(dp, txg);
6617
6618	/*
6619	 * Update usable space statistics.
6620	 */
6621	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6622		vdev_sync_done(vd, txg);
6623
6624	spa_update_dspace(spa);
6625
6626	/*
6627	 * It had better be the case that we didn't dirty anything
6628	 * since vdev_config_sync().
6629	 */
6630	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6631	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6632	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6633
6634	spa->spa_sync_pass = 0;
6635
6636	spa_config_exit(spa, SCL_CONFIG, FTAG);
6637
6638	spa_handle_ignored_writes(spa);
6639
6640	/*
6641	 * If any async tasks have been requested, kick them off.
6642	 */
6643	spa_async_dispatch(spa);
6644	spa_async_dispatch_vd(spa);
6645}
6646
6647/*
6648 * Sync all pools.  We don't want to hold the namespace lock across these
6649 * operations, so we take a reference on the spa_t and drop the lock during the
6650 * sync.
6651 */
6652void
6653spa_sync_allpools(void)
6654{
6655	spa_t *spa = NULL;
6656	mutex_enter(&spa_namespace_lock);
6657	while ((spa = spa_next(spa)) != NULL) {
6658		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6659		    !spa_writeable(spa) || spa_suspended(spa))
6660			continue;
6661		spa_open_ref(spa, FTAG);
6662		mutex_exit(&spa_namespace_lock);
6663		txg_wait_synced(spa_get_dsl(spa), 0);
6664		mutex_enter(&spa_namespace_lock);
6665		spa_close(spa, FTAG);
6666	}
6667	mutex_exit(&spa_namespace_lock);
6668}
6669
6670/*
6671 * ==========================================================================
6672 * Miscellaneous routines
6673 * ==========================================================================
6674 */
6675
6676/*
6677 * Remove all pools in the system.
6678 */
6679void
6680spa_evict_all(void)
6681{
6682	spa_t *spa;
6683
6684	/*
6685	 * Remove all cached state.  All pools should be closed now,
6686	 * so every spa in the AVL tree should be unreferenced.
6687	 */
6688	mutex_enter(&spa_namespace_lock);
6689	while ((spa = spa_next(NULL)) != NULL) {
6690		/*
6691		 * Stop async tasks.  The async thread may need to detach
6692		 * a device that's been replaced, which requires grabbing
6693		 * spa_namespace_lock, so we must drop it here.
6694		 */
6695		spa_open_ref(spa, FTAG);
6696		mutex_exit(&spa_namespace_lock);
6697		spa_async_suspend(spa);
6698		mutex_enter(&spa_namespace_lock);
6699		spa_close(spa, FTAG);
6700
6701		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6702			spa_unload(spa);
6703			spa_deactivate(spa);
6704		}
6705		spa_remove(spa);
6706	}
6707	mutex_exit(&spa_namespace_lock);
6708}
6709
6710vdev_t *
6711spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6712{
6713	vdev_t *vd;
6714	int i;
6715
6716	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6717		return (vd);
6718
6719	if (aux) {
6720		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6721			vd = spa->spa_l2cache.sav_vdevs[i];
6722			if (vd->vdev_guid == guid)
6723				return (vd);
6724		}
6725
6726		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6727			vd = spa->spa_spares.sav_vdevs[i];
6728			if (vd->vdev_guid == guid)
6729				return (vd);
6730		}
6731	}
6732
6733	return (NULL);
6734}
6735
6736void
6737spa_upgrade(spa_t *spa, uint64_t version)
6738{
6739	ASSERT(spa_writeable(spa));
6740
6741	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6742
6743	/*
6744	 * This should only be called for a non-faulted pool, and since a
6745	 * future version would result in an unopenable pool, this shouldn't be
6746	 * possible.
6747	 */
6748	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6749	ASSERT(version >= spa->spa_uberblock.ub_version);
6750
6751	spa->spa_uberblock.ub_version = version;
6752	vdev_config_dirty(spa->spa_root_vdev);
6753
6754	spa_config_exit(spa, SCL_ALL, FTAG);
6755
6756	txg_wait_synced(spa_get_dsl(spa), 0);
6757}
6758
6759boolean_t
6760spa_has_spare(spa_t *spa, uint64_t guid)
6761{
6762	int i;
6763	uint64_t spareguid;
6764	spa_aux_vdev_t *sav = &spa->spa_spares;
6765
6766	for (i = 0; i < sav->sav_count; i++)
6767		if (sav->sav_vdevs[i]->vdev_guid == guid)
6768			return (B_TRUE);
6769
6770	for (i = 0; i < sav->sav_npending; i++) {
6771		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6772		    &spareguid) == 0 && spareguid == guid)
6773			return (B_TRUE);
6774	}
6775
6776	return (B_FALSE);
6777}
6778
6779/*
6780 * Check if a pool has an active shared spare device.
6781 * Note: reference count of an active spare is 2, as a spare and as a replace
6782 */
6783static boolean_t
6784spa_has_active_shared_spare(spa_t *spa)
6785{
6786	int i, refcnt;
6787	uint64_t pool;
6788	spa_aux_vdev_t *sav = &spa->spa_spares;
6789
6790	for (i = 0; i < sav->sav_count; i++) {
6791		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6792		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6793		    refcnt > 2)
6794			return (B_TRUE);
6795	}
6796
6797	return (B_FALSE);
6798}
6799
6800/*
6801 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6802 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6803 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6804 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6805 * or zdb as real changes.
6806 */
6807void
6808spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6809{
6810#ifdef _KERNEL
6811	sysevent_t		*ev;
6812	sysevent_attr_list_t	*attr = NULL;
6813	sysevent_value_t	value;
6814	sysevent_id_t		eid;
6815
6816	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6817	    SE_SLEEP);
6818
6819	value.value_type = SE_DATA_TYPE_STRING;
6820	value.value.sv_string = spa_name(spa);
6821	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6822		goto done;
6823
6824	value.value_type = SE_DATA_TYPE_UINT64;
6825	value.value.sv_uint64 = spa_guid(spa);
6826	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6827		goto done;
6828
6829	if (vd) {
6830		value.value_type = SE_DATA_TYPE_UINT64;
6831		value.value.sv_uint64 = vd->vdev_guid;
6832		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6833		    SE_SLEEP) != 0)
6834			goto done;
6835
6836		if (vd->vdev_path) {
6837			value.value_type = SE_DATA_TYPE_STRING;
6838			value.value.sv_string = vd->vdev_path;
6839			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6840			    &value, SE_SLEEP) != 0)
6841				goto done;
6842		}
6843	}
6844
6845	if (sysevent_attach_attributes(ev, attr) != 0)
6846		goto done;
6847	attr = NULL;
6848
6849	(void) log_sysevent(ev, SE_SLEEP, &eid);
6850
6851done:
6852	if (attr)
6853		sysevent_free_attr(attr);
6854	sysevent_free(ev);
6855#endif
6856}
6857