spa.c revision 253990
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	zti_mode_fixed,			/* value is # of threads (min 1) */
99	zti_mode_online_percent,	/* value is % of online CPUs */
100	zti_mode_batch,			/* cpu-intensive; value is ignored */
101	zti_mode_null,			/* don't create a taskq */
102	zti_nmodes
103} zti_modes_t;
104
105#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
106#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
107#define	ZTI_BATCH	{ zti_mode_batch, 0 }
108#define	ZTI_NULL	{ zti_mode_null, 0 }
109
110#define	ZTI_ONE		ZTI_FIX(1)
111
112typedef struct zio_taskq_info {
113	enum zti_modes zti_mode;
114	uint_t zti_value;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * Define the taskq threads for the following I/O types:
123 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
124 */
125const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
126	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
127	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
128	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
129	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
130	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
131	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
132	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
133};
134
135static void spa_sync_version(void *arg, dmu_tx_t *tx);
136static void spa_sync_props(void *arg, dmu_tx_t *tx);
137static boolean_t spa_has_active_shared_spare(spa_t *spa);
138static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
139    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
140    char **ereport);
141static void spa_vdev_resilver_done(spa_t *spa);
142
143uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
144#ifdef PSRSET_BIND
145id_t		zio_taskq_psrset_bind = PS_NONE;
146#endif
147#ifdef SYSDC
148boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
149#endif
150uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151
152boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153extern int	zfs_sync_pass_deferred_free;
154
155#ifndef illumos
156extern void spa_deadman(void *arg);
157#endif
158
159/*
160 * This (illegal) pool name is used when temporarily importing a spa_t in order
161 * to get the vdev stats associated with the imported devices.
162 */
163#define	TRYIMPORT_NAME	"$import"
164
165/*
166 * ==========================================================================
167 * SPA properties routines
168 * ==========================================================================
169 */
170
171/*
172 * Add a (source=src, propname=propval) list to an nvlist.
173 */
174static void
175spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176    uint64_t intval, zprop_source_t src)
177{
178	const char *propname = zpool_prop_to_name(prop);
179	nvlist_t *propval;
180
181	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183
184	if (strval != NULL)
185		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186	else
187		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188
189	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190	nvlist_free(propval);
191}
192
193/*
194 * Get property values from the spa configuration.
195 */
196static void
197spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198{
199	vdev_t *rvd = spa->spa_root_vdev;
200	dsl_pool_t *pool = spa->spa_dsl_pool;
201	uint64_t size;
202	uint64_t alloc;
203	uint64_t space;
204	uint64_t cap, version;
205	zprop_source_t src = ZPROP_SRC_NONE;
206	spa_config_dirent_t *dp;
207
208	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
209
210	if (rvd != NULL) {
211		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
212		size = metaslab_class_get_space(spa_normal_class(spa));
213		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
214		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
215		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
216		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
217		    size - alloc, src);
218
219		space = 0;
220		for (int c = 0; c < rvd->vdev_children; c++) {
221			vdev_t *tvd = rvd->vdev_child[c];
222			space += tvd->vdev_max_asize - tvd->vdev_asize;
223		}
224		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
225		    src);
226
227		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
228		    (spa_mode(spa) == FREAD), src);
229
230		cap = (size == 0) ? 0 : (alloc * 100 / size);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
232
233		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
234		    ddt_get_pool_dedup_ratio(spa), src);
235
236		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
237		    rvd->vdev_state, src);
238
239		version = spa_version(spa);
240		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
241			src = ZPROP_SRC_DEFAULT;
242		else
243			src = ZPROP_SRC_LOCAL;
244		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
245	}
246
247	if (pool != NULL) {
248		dsl_dir_t *freedir = pool->dp_free_dir;
249
250		/*
251		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
252		 * when opening pools before this version freedir will be NULL.
253		 */
254		if (freedir != NULL) {
255			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
256			    freedir->dd_phys->dd_used_bytes, src);
257		} else {
258			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
259			    NULL, 0, src);
260		}
261	}
262
263	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
264
265	if (spa->spa_comment != NULL) {
266		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
267		    0, ZPROP_SRC_LOCAL);
268	}
269
270	if (spa->spa_root != NULL)
271		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
272		    0, ZPROP_SRC_LOCAL);
273
274	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
275		if (dp->scd_path == NULL) {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
277			    "none", 0, ZPROP_SRC_LOCAL);
278		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
279			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
280			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
281		}
282	}
283}
284
285/*
286 * Get zpool property values.
287 */
288int
289spa_prop_get(spa_t *spa, nvlist_t **nvp)
290{
291	objset_t *mos = spa->spa_meta_objset;
292	zap_cursor_t zc;
293	zap_attribute_t za;
294	int err;
295
296	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
297
298	mutex_enter(&spa->spa_props_lock);
299
300	/*
301	 * Get properties from the spa config.
302	 */
303	spa_prop_get_config(spa, nvp);
304
305	/* If no pool property object, no more prop to get. */
306	if (mos == NULL || spa->spa_pool_props_object == 0) {
307		mutex_exit(&spa->spa_props_lock);
308		return (0);
309	}
310
311	/*
312	 * Get properties from the MOS pool property object.
313	 */
314	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
315	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
316	    zap_cursor_advance(&zc)) {
317		uint64_t intval = 0;
318		char *strval = NULL;
319		zprop_source_t src = ZPROP_SRC_DEFAULT;
320		zpool_prop_t prop;
321
322		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
323			continue;
324
325		switch (za.za_integer_length) {
326		case 8:
327			/* integer property */
328			if (za.za_first_integer !=
329			    zpool_prop_default_numeric(prop))
330				src = ZPROP_SRC_LOCAL;
331
332			if (prop == ZPOOL_PROP_BOOTFS) {
333				dsl_pool_t *dp;
334				dsl_dataset_t *ds = NULL;
335
336				dp = spa_get_dsl(spa);
337				dsl_pool_config_enter(dp, FTAG);
338				if (err = dsl_dataset_hold_obj(dp,
339				    za.za_first_integer, FTAG, &ds)) {
340					dsl_pool_config_exit(dp, FTAG);
341					break;
342				}
343
344				strval = kmem_alloc(
345				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
346				    KM_SLEEP);
347				dsl_dataset_name(ds, strval);
348				dsl_dataset_rele(ds, FTAG);
349				dsl_pool_config_exit(dp, FTAG);
350			} else {
351				strval = NULL;
352				intval = za.za_first_integer;
353			}
354
355			spa_prop_add_list(*nvp, prop, strval, intval, src);
356
357			if (strval != NULL)
358				kmem_free(strval,
359				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
360
361			break;
362
363		case 1:
364			/* string property */
365			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
366			err = zap_lookup(mos, spa->spa_pool_props_object,
367			    za.za_name, 1, za.za_num_integers, strval);
368			if (err) {
369				kmem_free(strval, za.za_num_integers);
370				break;
371			}
372			spa_prop_add_list(*nvp, prop, strval, 0, src);
373			kmem_free(strval, za.za_num_integers);
374			break;
375
376		default:
377			break;
378		}
379	}
380	zap_cursor_fini(&zc);
381	mutex_exit(&spa->spa_props_lock);
382out:
383	if (err && err != ENOENT) {
384		nvlist_free(*nvp);
385		*nvp = NULL;
386		return (err);
387	}
388
389	return (0);
390}
391
392/*
393 * Validate the given pool properties nvlist and modify the list
394 * for the property values to be set.
395 */
396static int
397spa_prop_validate(spa_t *spa, nvlist_t *props)
398{
399	nvpair_t *elem;
400	int error = 0, reset_bootfs = 0;
401	uint64_t objnum = 0;
402	boolean_t has_feature = B_FALSE;
403
404	elem = NULL;
405	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
406		uint64_t intval;
407		char *strval, *slash, *check, *fname;
408		const char *propname = nvpair_name(elem);
409		zpool_prop_t prop = zpool_name_to_prop(propname);
410
411		switch (prop) {
412		case ZPROP_INVAL:
413			if (!zpool_prop_feature(propname)) {
414				error = SET_ERROR(EINVAL);
415				break;
416			}
417
418			/*
419			 * Sanitize the input.
420			 */
421			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
422				error = SET_ERROR(EINVAL);
423				break;
424			}
425
426			if (nvpair_value_uint64(elem, &intval) != 0) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			if (intval != 0) {
432				error = SET_ERROR(EINVAL);
433				break;
434			}
435
436			fname = strchr(propname, '@') + 1;
437			if (zfeature_lookup_name(fname, NULL) != 0) {
438				error = SET_ERROR(EINVAL);
439				break;
440			}
441
442			has_feature = B_TRUE;
443			break;
444
445		case ZPOOL_PROP_VERSION:
446			error = nvpair_value_uint64(elem, &intval);
447			if (!error &&
448			    (intval < spa_version(spa) ||
449			    intval > SPA_VERSION_BEFORE_FEATURES ||
450			    has_feature))
451				error = SET_ERROR(EINVAL);
452			break;
453
454		case ZPOOL_PROP_DELEGATION:
455		case ZPOOL_PROP_AUTOREPLACE:
456		case ZPOOL_PROP_LISTSNAPS:
457		case ZPOOL_PROP_AUTOEXPAND:
458			error = nvpair_value_uint64(elem, &intval);
459			if (!error && intval > 1)
460				error = SET_ERROR(EINVAL);
461			break;
462
463		case ZPOOL_PROP_BOOTFS:
464			/*
465			 * If the pool version is less than SPA_VERSION_BOOTFS,
466			 * or the pool is still being created (version == 0),
467			 * the bootfs property cannot be set.
468			 */
469			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
470				error = SET_ERROR(ENOTSUP);
471				break;
472			}
473
474			/*
475			 * Make sure the vdev config is bootable
476			 */
477			if (!vdev_is_bootable(spa->spa_root_vdev)) {
478				error = SET_ERROR(ENOTSUP);
479				break;
480			}
481
482			reset_bootfs = 1;
483
484			error = nvpair_value_string(elem, &strval);
485
486			if (!error) {
487				objset_t *os;
488				uint64_t compress;
489
490				if (strval == NULL || strval[0] == '\0') {
491					objnum = zpool_prop_default_numeric(
492					    ZPOOL_PROP_BOOTFS);
493					break;
494				}
495
496				if (error = dmu_objset_hold(strval, FTAG, &os))
497					break;
498
499				/* Must be ZPL and not gzip compressed. */
500
501				if (dmu_objset_type(os) != DMU_OST_ZFS) {
502					error = SET_ERROR(ENOTSUP);
503				} else if ((error =
504				    dsl_prop_get_int_ds(dmu_objset_ds(os),
505				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
506				    &compress)) == 0 &&
507				    !BOOTFS_COMPRESS_VALID(compress)) {
508					error = SET_ERROR(ENOTSUP);
509				} else {
510					objnum = dmu_objset_id(os);
511				}
512				dmu_objset_rele(os, FTAG);
513			}
514			break;
515
516		case ZPOOL_PROP_FAILUREMODE:
517			error = nvpair_value_uint64(elem, &intval);
518			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
519			    intval > ZIO_FAILURE_MODE_PANIC))
520				error = SET_ERROR(EINVAL);
521
522			/*
523			 * This is a special case which only occurs when
524			 * the pool has completely failed. This allows
525			 * the user to change the in-core failmode property
526			 * without syncing it out to disk (I/Os might
527			 * currently be blocked). We do this by returning
528			 * EIO to the caller (spa_prop_set) to trick it
529			 * into thinking we encountered a property validation
530			 * error.
531			 */
532			if (!error && spa_suspended(spa)) {
533				spa->spa_failmode = intval;
534				error = SET_ERROR(EIO);
535			}
536			break;
537
538		case ZPOOL_PROP_CACHEFILE:
539			if ((error = nvpair_value_string(elem, &strval)) != 0)
540				break;
541
542			if (strval[0] == '\0')
543				break;
544
545			if (strcmp(strval, "none") == 0)
546				break;
547
548			if (strval[0] != '/') {
549				error = SET_ERROR(EINVAL);
550				break;
551			}
552
553			slash = strrchr(strval, '/');
554			ASSERT(slash != NULL);
555
556			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
557			    strcmp(slash, "/..") == 0)
558				error = SET_ERROR(EINVAL);
559			break;
560
561		case ZPOOL_PROP_COMMENT:
562			if ((error = nvpair_value_string(elem, &strval)) != 0)
563				break;
564			for (check = strval; *check != '\0'; check++) {
565				/*
566				 * The kernel doesn't have an easy isprint()
567				 * check.  For this kernel check, we merely
568				 * check ASCII apart from DEL.  Fix this if
569				 * there is an easy-to-use kernel isprint().
570				 */
571				if (*check >= 0x7f) {
572					error = SET_ERROR(EINVAL);
573					break;
574				}
575				check++;
576			}
577			if (strlen(strval) > ZPROP_MAX_COMMENT)
578				error = E2BIG;
579			break;
580
581		case ZPOOL_PROP_DEDUPDITTO:
582			if (spa_version(spa) < SPA_VERSION_DEDUP)
583				error = SET_ERROR(ENOTSUP);
584			else
585				error = nvpair_value_uint64(elem, &intval);
586			if (error == 0 &&
587			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
588				error = SET_ERROR(EINVAL);
589			break;
590		}
591
592		if (error)
593			break;
594	}
595
596	if (!error && reset_bootfs) {
597		error = nvlist_remove(props,
598		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
599
600		if (!error) {
601			error = nvlist_add_uint64(props,
602			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
603		}
604	}
605
606	return (error);
607}
608
609void
610spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
611{
612	char *cachefile;
613	spa_config_dirent_t *dp;
614
615	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
616	    &cachefile) != 0)
617		return;
618
619	dp = kmem_alloc(sizeof (spa_config_dirent_t),
620	    KM_SLEEP);
621
622	if (cachefile[0] == '\0')
623		dp->scd_path = spa_strdup(spa_config_path);
624	else if (strcmp(cachefile, "none") == 0)
625		dp->scd_path = NULL;
626	else
627		dp->scd_path = spa_strdup(cachefile);
628
629	list_insert_head(&spa->spa_config_list, dp);
630	if (need_sync)
631		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
632}
633
634int
635spa_prop_set(spa_t *spa, nvlist_t *nvp)
636{
637	int error;
638	nvpair_t *elem = NULL;
639	boolean_t need_sync = B_FALSE;
640
641	if ((error = spa_prop_validate(spa, nvp)) != 0)
642		return (error);
643
644	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
645		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
646
647		if (prop == ZPOOL_PROP_CACHEFILE ||
648		    prop == ZPOOL_PROP_ALTROOT ||
649		    prop == ZPOOL_PROP_READONLY)
650			continue;
651
652		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
653			uint64_t ver;
654
655			if (prop == ZPOOL_PROP_VERSION) {
656				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
657			} else {
658				ASSERT(zpool_prop_feature(nvpair_name(elem)));
659				ver = SPA_VERSION_FEATURES;
660				need_sync = B_TRUE;
661			}
662
663			/* Save time if the version is already set. */
664			if (ver == spa_version(spa))
665				continue;
666
667			/*
668			 * In addition to the pool directory object, we might
669			 * create the pool properties object, the features for
670			 * read object, the features for write object, or the
671			 * feature descriptions object.
672			 */
673			error = dsl_sync_task(spa->spa_name, NULL,
674			    spa_sync_version, &ver, 6);
675			if (error)
676				return (error);
677			continue;
678		}
679
680		need_sync = B_TRUE;
681		break;
682	}
683
684	if (need_sync) {
685		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
686		    nvp, 6));
687	}
688
689	return (0);
690}
691
692/*
693 * If the bootfs property value is dsobj, clear it.
694 */
695void
696spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
697{
698	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
699		VERIFY(zap_remove(spa->spa_meta_objset,
700		    spa->spa_pool_props_object,
701		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
702		spa->spa_bootfs = 0;
703	}
704}
705
706/*ARGSUSED*/
707static int
708spa_change_guid_check(void *arg, dmu_tx_t *tx)
709{
710	uint64_t *newguid = arg;
711	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
712	vdev_t *rvd = spa->spa_root_vdev;
713	uint64_t vdev_state;
714
715	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
716	vdev_state = rvd->vdev_state;
717	spa_config_exit(spa, SCL_STATE, FTAG);
718
719	if (vdev_state != VDEV_STATE_HEALTHY)
720		return (SET_ERROR(ENXIO));
721
722	ASSERT3U(spa_guid(spa), !=, *newguid);
723
724	return (0);
725}
726
727static void
728spa_change_guid_sync(void *arg, dmu_tx_t *tx)
729{
730	uint64_t *newguid = arg;
731	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
732	uint64_t oldguid;
733	vdev_t *rvd = spa->spa_root_vdev;
734
735	oldguid = spa_guid(spa);
736
737	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
738	rvd->vdev_guid = *newguid;
739	rvd->vdev_guid_sum += (*newguid - oldguid);
740	vdev_config_dirty(rvd);
741	spa_config_exit(spa, SCL_STATE, FTAG);
742
743	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
744	    oldguid, *newguid);
745}
746
747/*
748 * Change the GUID for the pool.  This is done so that we can later
749 * re-import a pool built from a clone of our own vdevs.  We will modify
750 * the root vdev's guid, our own pool guid, and then mark all of our
751 * vdevs dirty.  Note that we must make sure that all our vdevs are
752 * online when we do this, or else any vdevs that weren't present
753 * would be orphaned from our pool.  We are also going to issue a
754 * sysevent to update any watchers.
755 */
756int
757spa_change_guid(spa_t *spa)
758{
759	int error;
760	uint64_t guid;
761
762	mutex_enter(&spa_namespace_lock);
763	guid = spa_generate_guid(NULL);
764
765	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
766	    spa_change_guid_sync, &guid, 5);
767
768	if (error == 0) {
769		spa_config_sync(spa, B_FALSE, B_TRUE);
770		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
771	}
772
773	mutex_exit(&spa_namespace_lock);
774
775	return (error);
776}
777
778/*
779 * ==========================================================================
780 * SPA state manipulation (open/create/destroy/import/export)
781 * ==========================================================================
782 */
783
784static int
785spa_error_entry_compare(const void *a, const void *b)
786{
787	spa_error_entry_t *sa = (spa_error_entry_t *)a;
788	spa_error_entry_t *sb = (spa_error_entry_t *)b;
789	int ret;
790
791	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
792	    sizeof (zbookmark_t));
793
794	if (ret < 0)
795		return (-1);
796	else if (ret > 0)
797		return (1);
798	else
799		return (0);
800}
801
802/*
803 * Utility function which retrieves copies of the current logs and
804 * re-initializes them in the process.
805 */
806void
807spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
808{
809	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
810
811	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
812	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
813
814	avl_create(&spa->spa_errlist_scrub,
815	    spa_error_entry_compare, sizeof (spa_error_entry_t),
816	    offsetof(spa_error_entry_t, se_avl));
817	avl_create(&spa->spa_errlist_last,
818	    spa_error_entry_compare, sizeof (spa_error_entry_t),
819	    offsetof(spa_error_entry_t, se_avl));
820}
821
822static taskq_t *
823spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
824    uint_t value)
825{
826	uint_t flags = TASKQ_PREPOPULATE;
827	boolean_t batch = B_FALSE;
828
829	switch (mode) {
830	case zti_mode_null:
831		return (NULL);		/* no taskq needed */
832
833	case zti_mode_fixed:
834		ASSERT3U(value, >=, 1);
835		value = MAX(value, 1);
836		break;
837
838	case zti_mode_batch:
839		batch = B_TRUE;
840		flags |= TASKQ_THREADS_CPU_PCT;
841		value = zio_taskq_batch_pct;
842		break;
843
844	case zti_mode_online_percent:
845		flags |= TASKQ_THREADS_CPU_PCT;
846		break;
847
848	default:
849		panic("unrecognized mode for %s taskq (%u:%u) in "
850		    "spa_activate()",
851		    name, mode, value);
852		break;
853	}
854
855#ifdef SYSDC
856	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
857		if (batch)
858			flags |= TASKQ_DC_BATCH;
859
860		return (taskq_create_sysdc(name, value, 50, INT_MAX,
861		    spa->spa_proc, zio_taskq_basedc, flags));
862	}
863#endif
864	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
865	    spa->spa_proc, flags));
866}
867
868static void
869spa_create_zio_taskqs(spa_t *spa)
870{
871	for (int t = 0; t < ZIO_TYPES; t++) {
872		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
873			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
874			enum zti_modes mode = ztip->zti_mode;
875			uint_t value = ztip->zti_value;
876			char name[32];
877
878			(void) snprintf(name, sizeof (name),
879			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
880
881			spa->spa_zio_taskq[t][q] =
882			    spa_taskq_create(spa, name, mode, value);
883		}
884	}
885}
886
887#ifdef _KERNEL
888#ifdef SPA_PROCESS
889static void
890spa_thread(void *arg)
891{
892	callb_cpr_t cprinfo;
893
894	spa_t *spa = arg;
895	user_t *pu = PTOU(curproc);
896
897	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
898	    spa->spa_name);
899
900	ASSERT(curproc != &p0);
901	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
902	    "zpool-%s", spa->spa_name);
903	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
904
905#ifdef PSRSET_BIND
906	/* bind this thread to the requested psrset */
907	if (zio_taskq_psrset_bind != PS_NONE) {
908		pool_lock();
909		mutex_enter(&cpu_lock);
910		mutex_enter(&pidlock);
911		mutex_enter(&curproc->p_lock);
912
913		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
914		    0, NULL, NULL) == 0)  {
915			curthread->t_bind_pset = zio_taskq_psrset_bind;
916		} else {
917			cmn_err(CE_WARN,
918			    "Couldn't bind process for zfs pool \"%s\" to "
919			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
920		}
921
922		mutex_exit(&curproc->p_lock);
923		mutex_exit(&pidlock);
924		mutex_exit(&cpu_lock);
925		pool_unlock();
926	}
927#endif
928
929#ifdef SYSDC
930	if (zio_taskq_sysdc) {
931		sysdc_thread_enter(curthread, 100, 0);
932	}
933#endif
934
935	spa->spa_proc = curproc;
936	spa->spa_did = curthread->t_did;
937
938	spa_create_zio_taskqs(spa);
939
940	mutex_enter(&spa->spa_proc_lock);
941	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
942
943	spa->spa_proc_state = SPA_PROC_ACTIVE;
944	cv_broadcast(&spa->spa_proc_cv);
945
946	CALLB_CPR_SAFE_BEGIN(&cprinfo);
947	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
948		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
949	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
950
951	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
952	spa->spa_proc_state = SPA_PROC_GONE;
953	spa->spa_proc = &p0;
954	cv_broadcast(&spa->spa_proc_cv);
955	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
956
957	mutex_enter(&curproc->p_lock);
958	lwp_exit();
959}
960#endif	/* SPA_PROCESS */
961#endif
962
963/*
964 * Activate an uninitialized pool.
965 */
966static void
967spa_activate(spa_t *spa, int mode)
968{
969	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
970
971	spa->spa_state = POOL_STATE_ACTIVE;
972	spa->spa_mode = mode;
973
974	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
975	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
976
977	/* Try to create a covering process */
978	mutex_enter(&spa->spa_proc_lock);
979	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
980	ASSERT(spa->spa_proc == &p0);
981	spa->spa_did = 0;
982
983#ifdef SPA_PROCESS
984	/* Only create a process if we're going to be around a while. */
985	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
986		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
987		    NULL, 0) == 0) {
988			spa->spa_proc_state = SPA_PROC_CREATED;
989			while (spa->spa_proc_state == SPA_PROC_CREATED) {
990				cv_wait(&spa->spa_proc_cv,
991				    &spa->spa_proc_lock);
992			}
993			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
994			ASSERT(spa->spa_proc != &p0);
995			ASSERT(spa->spa_did != 0);
996		} else {
997#ifdef _KERNEL
998			cmn_err(CE_WARN,
999			    "Couldn't create process for zfs pool \"%s\"\n",
1000			    spa->spa_name);
1001#endif
1002		}
1003	}
1004#endif	/* SPA_PROCESS */
1005	mutex_exit(&spa->spa_proc_lock);
1006
1007	/* If we didn't create a process, we need to create our taskqs. */
1008	ASSERT(spa->spa_proc == &p0);
1009	if (spa->spa_proc == &p0) {
1010		spa_create_zio_taskqs(spa);
1011	}
1012
1013	/*
1014	 * Start TRIM thread.
1015	 */
1016	trim_thread_create(spa);
1017
1018	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1019	    offsetof(vdev_t, vdev_config_dirty_node));
1020	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1021	    offsetof(vdev_t, vdev_state_dirty_node));
1022
1023	txg_list_create(&spa->spa_vdev_txg_list,
1024	    offsetof(struct vdev, vdev_txg_node));
1025
1026	avl_create(&spa->spa_errlist_scrub,
1027	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1028	    offsetof(spa_error_entry_t, se_avl));
1029	avl_create(&spa->spa_errlist_last,
1030	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1031	    offsetof(spa_error_entry_t, se_avl));
1032}
1033
1034/*
1035 * Opposite of spa_activate().
1036 */
1037static void
1038spa_deactivate(spa_t *spa)
1039{
1040	ASSERT(spa->spa_sync_on == B_FALSE);
1041	ASSERT(spa->spa_dsl_pool == NULL);
1042	ASSERT(spa->spa_root_vdev == NULL);
1043	ASSERT(spa->spa_async_zio_root == NULL);
1044	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1045
1046	/*
1047	 * Stop TRIM thread in case spa_unload() wasn't called directly
1048	 * before spa_deactivate().
1049	 */
1050	trim_thread_destroy(spa);
1051
1052	txg_list_destroy(&spa->spa_vdev_txg_list);
1053
1054	list_destroy(&spa->spa_config_dirty_list);
1055	list_destroy(&spa->spa_state_dirty_list);
1056
1057	for (int t = 0; t < ZIO_TYPES; t++) {
1058		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1059			if (spa->spa_zio_taskq[t][q] != NULL)
1060				taskq_destroy(spa->spa_zio_taskq[t][q]);
1061			spa->spa_zio_taskq[t][q] = NULL;
1062		}
1063	}
1064
1065	metaslab_class_destroy(spa->spa_normal_class);
1066	spa->spa_normal_class = NULL;
1067
1068	metaslab_class_destroy(spa->spa_log_class);
1069	spa->spa_log_class = NULL;
1070
1071	/*
1072	 * If this was part of an import or the open otherwise failed, we may
1073	 * still have errors left in the queues.  Empty them just in case.
1074	 */
1075	spa_errlog_drain(spa);
1076
1077	avl_destroy(&spa->spa_errlist_scrub);
1078	avl_destroy(&spa->spa_errlist_last);
1079
1080	spa->spa_state = POOL_STATE_UNINITIALIZED;
1081
1082	mutex_enter(&spa->spa_proc_lock);
1083	if (spa->spa_proc_state != SPA_PROC_NONE) {
1084		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1085		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1086		cv_broadcast(&spa->spa_proc_cv);
1087		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1088			ASSERT(spa->spa_proc != &p0);
1089			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1090		}
1091		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1092		spa->spa_proc_state = SPA_PROC_NONE;
1093	}
1094	ASSERT(spa->spa_proc == &p0);
1095	mutex_exit(&spa->spa_proc_lock);
1096
1097#ifdef SPA_PROCESS
1098	/*
1099	 * We want to make sure spa_thread() has actually exited the ZFS
1100	 * module, so that the module can't be unloaded out from underneath
1101	 * it.
1102	 */
1103	if (spa->spa_did != 0) {
1104		thread_join(spa->spa_did);
1105		spa->spa_did = 0;
1106	}
1107#endif	/* SPA_PROCESS */
1108}
1109
1110/*
1111 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1112 * will create all the necessary vdevs in the appropriate layout, with each vdev
1113 * in the CLOSED state.  This will prep the pool before open/creation/import.
1114 * All vdev validation is done by the vdev_alloc() routine.
1115 */
1116static int
1117spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1118    uint_t id, int atype)
1119{
1120	nvlist_t **child;
1121	uint_t children;
1122	int error;
1123
1124	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1125		return (error);
1126
1127	if ((*vdp)->vdev_ops->vdev_op_leaf)
1128		return (0);
1129
1130	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1131	    &child, &children);
1132
1133	if (error == ENOENT)
1134		return (0);
1135
1136	if (error) {
1137		vdev_free(*vdp);
1138		*vdp = NULL;
1139		return (SET_ERROR(EINVAL));
1140	}
1141
1142	for (int c = 0; c < children; c++) {
1143		vdev_t *vd;
1144		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1145		    atype)) != 0) {
1146			vdev_free(*vdp);
1147			*vdp = NULL;
1148			return (error);
1149		}
1150	}
1151
1152	ASSERT(*vdp != NULL);
1153
1154	return (0);
1155}
1156
1157/*
1158 * Opposite of spa_load().
1159 */
1160static void
1161spa_unload(spa_t *spa)
1162{
1163	int i;
1164
1165	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1166
1167	/*
1168	 * Stop TRIM thread.
1169	 */
1170	trim_thread_destroy(spa);
1171
1172	/*
1173	 * Stop async tasks.
1174	 */
1175	spa_async_suspend(spa);
1176
1177	/*
1178	 * Stop syncing.
1179	 */
1180	if (spa->spa_sync_on) {
1181		txg_sync_stop(spa->spa_dsl_pool);
1182		spa->spa_sync_on = B_FALSE;
1183	}
1184
1185	/*
1186	 * Wait for any outstanding async I/O to complete.
1187	 */
1188	if (spa->spa_async_zio_root != NULL) {
1189		(void) zio_wait(spa->spa_async_zio_root);
1190		spa->spa_async_zio_root = NULL;
1191	}
1192
1193	bpobj_close(&spa->spa_deferred_bpobj);
1194
1195	/*
1196	 * Close the dsl pool.
1197	 */
1198	if (spa->spa_dsl_pool) {
1199		dsl_pool_close(spa->spa_dsl_pool);
1200		spa->spa_dsl_pool = NULL;
1201		spa->spa_meta_objset = NULL;
1202	}
1203
1204	ddt_unload(spa);
1205
1206	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1207
1208	/*
1209	 * Drop and purge level 2 cache
1210	 */
1211	spa_l2cache_drop(spa);
1212
1213	/*
1214	 * Close all vdevs.
1215	 */
1216	if (spa->spa_root_vdev)
1217		vdev_free(spa->spa_root_vdev);
1218	ASSERT(spa->spa_root_vdev == NULL);
1219
1220	for (i = 0; i < spa->spa_spares.sav_count; i++)
1221		vdev_free(spa->spa_spares.sav_vdevs[i]);
1222	if (spa->spa_spares.sav_vdevs) {
1223		kmem_free(spa->spa_spares.sav_vdevs,
1224		    spa->spa_spares.sav_count * sizeof (void *));
1225		spa->spa_spares.sav_vdevs = NULL;
1226	}
1227	if (spa->spa_spares.sav_config) {
1228		nvlist_free(spa->spa_spares.sav_config);
1229		spa->spa_spares.sav_config = NULL;
1230	}
1231	spa->spa_spares.sav_count = 0;
1232
1233	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1234		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1235		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1236	}
1237	if (spa->spa_l2cache.sav_vdevs) {
1238		kmem_free(spa->spa_l2cache.sav_vdevs,
1239		    spa->spa_l2cache.sav_count * sizeof (void *));
1240		spa->spa_l2cache.sav_vdevs = NULL;
1241	}
1242	if (spa->spa_l2cache.sav_config) {
1243		nvlist_free(spa->spa_l2cache.sav_config);
1244		spa->spa_l2cache.sav_config = NULL;
1245	}
1246	spa->spa_l2cache.sav_count = 0;
1247
1248	spa->spa_async_suspended = 0;
1249
1250	if (spa->spa_comment != NULL) {
1251		spa_strfree(spa->spa_comment);
1252		spa->spa_comment = NULL;
1253	}
1254
1255	spa_config_exit(spa, SCL_ALL, FTAG);
1256}
1257
1258/*
1259 * Load (or re-load) the current list of vdevs describing the active spares for
1260 * this pool.  When this is called, we have some form of basic information in
1261 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1262 * then re-generate a more complete list including status information.
1263 */
1264static void
1265spa_load_spares(spa_t *spa)
1266{
1267	nvlist_t **spares;
1268	uint_t nspares;
1269	int i;
1270	vdev_t *vd, *tvd;
1271
1272	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1273
1274	/*
1275	 * First, close and free any existing spare vdevs.
1276	 */
1277	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1278		vd = spa->spa_spares.sav_vdevs[i];
1279
1280		/* Undo the call to spa_activate() below */
1281		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1282		    B_FALSE)) != NULL && tvd->vdev_isspare)
1283			spa_spare_remove(tvd);
1284		vdev_close(vd);
1285		vdev_free(vd);
1286	}
1287
1288	if (spa->spa_spares.sav_vdevs)
1289		kmem_free(spa->spa_spares.sav_vdevs,
1290		    spa->spa_spares.sav_count * sizeof (void *));
1291
1292	if (spa->spa_spares.sav_config == NULL)
1293		nspares = 0;
1294	else
1295		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1296		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1297
1298	spa->spa_spares.sav_count = (int)nspares;
1299	spa->spa_spares.sav_vdevs = NULL;
1300
1301	if (nspares == 0)
1302		return;
1303
1304	/*
1305	 * Construct the array of vdevs, opening them to get status in the
1306	 * process.   For each spare, there is potentially two different vdev_t
1307	 * structures associated with it: one in the list of spares (used only
1308	 * for basic validation purposes) and one in the active vdev
1309	 * configuration (if it's spared in).  During this phase we open and
1310	 * validate each vdev on the spare list.  If the vdev also exists in the
1311	 * active configuration, then we also mark this vdev as an active spare.
1312	 */
1313	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1314	    KM_SLEEP);
1315	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1316		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1317		    VDEV_ALLOC_SPARE) == 0);
1318		ASSERT(vd != NULL);
1319
1320		spa->spa_spares.sav_vdevs[i] = vd;
1321
1322		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1323		    B_FALSE)) != NULL) {
1324			if (!tvd->vdev_isspare)
1325				spa_spare_add(tvd);
1326
1327			/*
1328			 * We only mark the spare active if we were successfully
1329			 * able to load the vdev.  Otherwise, importing a pool
1330			 * with a bad active spare would result in strange
1331			 * behavior, because multiple pool would think the spare
1332			 * is actively in use.
1333			 *
1334			 * There is a vulnerability here to an equally bizarre
1335			 * circumstance, where a dead active spare is later
1336			 * brought back to life (onlined or otherwise).  Given
1337			 * the rarity of this scenario, and the extra complexity
1338			 * it adds, we ignore the possibility.
1339			 */
1340			if (!vdev_is_dead(tvd))
1341				spa_spare_activate(tvd);
1342		}
1343
1344		vd->vdev_top = vd;
1345		vd->vdev_aux = &spa->spa_spares;
1346
1347		if (vdev_open(vd) != 0)
1348			continue;
1349
1350		if (vdev_validate_aux(vd) == 0)
1351			spa_spare_add(vd);
1352	}
1353
1354	/*
1355	 * Recompute the stashed list of spares, with status information
1356	 * this time.
1357	 */
1358	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1359	    DATA_TYPE_NVLIST_ARRAY) == 0);
1360
1361	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1362	    KM_SLEEP);
1363	for (i = 0; i < spa->spa_spares.sav_count; i++)
1364		spares[i] = vdev_config_generate(spa,
1365		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1366	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1367	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1368	for (i = 0; i < spa->spa_spares.sav_count; i++)
1369		nvlist_free(spares[i]);
1370	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1371}
1372
1373/*
1374 * Load (or re-load) the current list of vdevs describing the active l2cache for
1375 * this pool.  When this is called, we have some form of basic information in
1376 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1377 * then re-generate a more complete list including status information.
1378 * Devices which are already active have their details maintained, and are
1379 * not re-opened.
1380 */
1381static void
1382spa_load_l2cache(spa_t *spa)
1383{
1384	nvlist_t **l2cache;
1385	uint_t nl2cache;
1386	int i, j, oldnvdevs;
1387	uint64_t guid;
1388	vdev_t *vd, **oldvdevs, **newvdevs;
1389	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1390
1391	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1392
1393	if (sav->sav_config != NULL) {
1394		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1395		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1396		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1397	} else {
1398		nl2cache = 0;
1399		newvdevs = NULL;
1400	}
1401
1402	oldvdevs = sav->sav_vdevs;
1403	oldnvdevs = sav->sav_count;
1404	sav->sav_vdevs = NULL;
1405	sav->sav_count = 0;
1406
1407	/*
1408	 * Process new nvlist of vdevs.
1409	 */
1410	for (i = 0; i < nl2cache; i++) {
1411		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1412		    &guid) == 0);
1413
1414		newvdevs[i] = NULL;
1415		for (j = 0; j < oldnvdevs; j++) {
1416			vd = oldvdevs[j];
1417			if (vd != NULL && guid == vd->vdev_guid) {
1418				/*
1419				 * Retain previous vdev for add/remove ops.
1420				 */
1421				newvdevs[i] = vd;
1422				oldvdevs[j] = NULL;
1423				break;
1424			}
1425		}
1426
1427		if (newvdevs[i] == NULL) {
1428			/*
1429			 * Create new vdev
1430			 */
1431			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1432			    VDEV_ALLOC_L2CACHE) == 0);
1433			ASSERT(vd != NULL);
1434			newvdevs[i] = vd;
1435
1436			/*
1437			 * Commit this vdev as an l2cache device,
1438			 * even if it fails to open.
1439			 */
1440			spa_l2cache_add(vd);
1441
1442			vd->vdev_top = vd;
1443			vd->vdev_aux = sav;
1444
1445			spa_l2cache_activate(vd);
1446
1447			if (vdev_open(vd) != 0)
1448				continue;
1449
1450			(void) vdev_validate_aux(vd);
1451
1452			if (!vdev_is_dead(vd))
1453				l2arc_add_vdev(spa, vd);
1454		}
1455	}
1456
1457	/*
1458	 * Purge vdevs that were dropped
1459	 */
1460	for (i = 0; i < oldnvdevs; i++) {
1461		uint64_t pool;
1462
1463		vd = oldvdevs[i];
1464		if (vd != NULL) {
1465			ASSERT(vd->vdev_isl2cache);
1466
1467			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1468			    pool != 0ULL && l2arc_vdev_present(vd))
1469				l2arc_remove_vdev(vd);
1470			vdev_clear_stats(vd);
1471			vdev_free(vd);
1472		}
1473	}
1474
1475	if (oldvdevs)
1476		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1477
1478	if (sav->sav_config == NULL)
1479		goto out;
1480
1481	sav->sav_vdevs = newvdevs;
1482	sav->sav_count = (int)nl2cache;
1483
1484	/*
1485	 * Recompute the stashed list of l2cache devices, with status
1486	 * information this time.
1487	 */
1488	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1489	    DATA_TYPE_NVLIST_ARRAY) == 0);
1490
1491	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1492	for (i = 0; i < sav->sav_count; i++)
1493		l2cache[i] = vdev_config_generate(spa,
1494		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1495	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1496	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1497out:
1498	for (i = 0; i < sav->sav_count; i++)
1499		nvlist_free(l2cache[i]);
1500	if (sav->sav_count)
1501		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1502}
1503
1504static int
1505load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1506{
1507	dmu_buf_t *db;
1508	char *packed = NULL;
1509	size_t nvsize = 0;
1510	int error;
1511	*value = NULL;
1512
1513	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1514	nvsize = *(uint64_t *)db->db_data;
1515	dmu_buf_rele(db, FTAG);
1516
1517	packed = kmem_alloc(nvsize, KM_SLEEP);
1518	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1519	    DMU_READ_PREFETCH);
1520	if (error == 0)
1521		error = nvlist_unpack(packed, nvsize, value, 0);
1522	kmem_free(packed, nvsize);
1523
1524	return (error);
1525}
1526
1527/*
1528 * Checks to see if the given vdev could not be opened, in which case we post a
1529 * sysevent to notify the autoreplace code that the device has been removed.
1530 */
1531static void
1532spa_check_removed(vdev_t *vd)
1533{
1534	for (int c = 0; c < vd->vdev_children; c++)
1535		spa_check_removed(vd->vdev_child[c]);
1536
1537	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1538	    !vd->vdev_ishole) {
1539		zfs_post_autoreplace(vd->vdev_spa, vd);
1540		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1541	}
1542}
1543
1544/*
1545 * Validate the current config against the MOS config
1546 */
1547static boolean_t
1548spa_config_valid(spa_t *spa, nvlist_t *config)
1549{
1550	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1551	nvlist_t *nv;
1552
1553	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1554
1555	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1556	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1557
1558	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1559
1560	/*
1561	 * If we're doing a normal import, then build up any additional
1562	 * diagnostic information about missing devices in this config.
1563	 * We'll pass this up to the user for further processing.
1564	 */
1565	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1566		nvlist_t **child, *nv;
1567		uint64_t idx = 0;
1568
1569		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1570		    KM_SLEEP);
1571		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1572
1573		for (int c = 0; c < rvd->vdev_children; c++) {
1574			vdev_t *tvd = rvd->vdev_child[c];
1575			vdev_t *mtvd  = mrvd->vdev_child[c];
1576
1577			if (tvd->vdev_ops == &vdev_missing_ops &&
1578			    mtvd->vdev_ops != &vdev_missing_ops &&
1579			    mtvd->vdev_islog)
1580				child[idx++] = vdev_config_generate(spa, mtvd,
1581				    B_FALSE, 0);
1582		}
1583
1584		if (idx) {
1585			VERIFY(nvlist_add_nvlist_array(nv,
1586			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1587			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1588			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1589
1590			for (int i = 0; i < idx; i++)
1591				nvlist_free(child[i]);
1592		}
1593		nvlist_free(nv);
1594		kmem_free(child, rvd->vdev_children * sizeof (char **));
1595	}
1596
1597	/*
1598	 * Compare the root vdev tree with the information we have
1599	 * from the MOS config (mrvd). Check each top-level vdev
1600	 * with the corresponding MOS config top-level (mtvd).
1601	 */
1602	for (int c = 0; c < rvd->vdev_children; c++) {
1603		vdev_t *tvd = rvd->vdev_child[c];
1604		vdev_t *mtvd  = mrvd->vdev_child[c];
1605
1606		/*
1607		 * Resolve any "missing" vdevs in the current configuration.
1608		 * If we find that the MOS config has more accurate information
1609		 * about the top-level vdev then use that vdev instead.
1610		 */
1611		if (tvd->vdev_ops == &vdev_missing_ops &&
1612		    mtvd->vdev_ops != &vdev_missing_ops) {
1613
1614			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1615				continue;
1616
1617			/*
1618			 * Device specific actions.
1619			 */
1620			if (mtvd->vdev_islog) {
1621				spa_set_log_state(spa, SPA_LOG_CLEAR);
1622			} else {
1623				/*
1624				 * XXX - once we have 'readonly' pool
1625				 * support we should be able to handle
1626				 * missing data devices by transitioning
1627				 * the pool to readonly.
1628				 */
1629				continue;
1630			}
1631
1632			/*
1633			 * Swap the missing vdev with the data we were
1634			 * able to obtain from the MOS config.
1635			 */
1636			vdev_remove_child(rvd, tvd);
1637			vdev_remove_child(mrvd, mtvd);
1638
1639			vdev_add_child(rvd, mtvd);
1640			vdev_add_child(mrvd, tvd);
1641
1642			spa_config_exit(spa, SCL_ALL, FTAG);
1643			vdev_load(mtvd);
1644			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1645
1646			vdev_reopen(rvd);
1647		} else if (mtvd->vdev_islog) {
1648			/*
1649			 * Load the slog device's state from the MOS config
1650			 * since it's possible that the label does not
1651			 * contain the most up-to-date information.
1652			 */
1653			vdev_load_log_state(tvd, mtvd);
1654			vdev_reopen(tvd);
1655		}
1656	}
1657	vdev_free(mrvd);
1658	spa_config_exit(spa, SCL_ALL, FTAG);
1659
1660	/*
1661	 * Ensure we were able to validate the config.
1662	 */
1663	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1664}
1665
1666/*
1667 * Check for missing log devices
1668 */
1669static boolean_t
1670spa_check_logs(spa_t *spa)
1671{
1672	boolean_t rv = B_FALSE;
1673
1674	switch (spa->spa_log_state) {
1675	case SPA_LOG_MISSING:
1676		/* need to recheck in case slog has been restored */
1677	case SPA_LOG_UNKNOWN:
1678		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1679		    NULL, DS_FIND_CHILDREN) != 0);
1680		if (rv)
1681			spa_set_log_state(spa, SPA_LOG_MISSING);
1682		break;
1683	}
1684	return (rv);
1685}
1686
1687static boolean_t
1688spa_passivate_log(spa_t *spa)
1689{
1690	vdev_t *rvd = spa->spa_root_vdev;
1691	boolean_t slog_found = B_FALSE;
1692
1693	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1694
1695	if (!spa_has_slogs(spa))
1696		return (B_FALSE);
1697
1698	for (int c = 0; c < rvd->vdev_children; c++) {
1699		vdev_t *tvd = rvd->vdev_child[c];
1700		metaslab_group_t *mg = tvd->vdev_mg;
1701
1702		if (tvd->vdev_islog) {
1703			metaslab_group_passivate(mg);
1704			slog_found = B_TRUE;
1705		}
1706	}
1707
1708	return (slog_found);
1709}
1710
1711static void
1712spa_activate_log(spa_t *spa)
1713{
1714	vdev_t *rvd = spa->spa_root_vdev;
1715
1716	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1717
1718	for (int c = 0; c < rvd->vdev_children; c++) {
1719		vdev_t *tvd = rvd->vdev_child[c];
1720		metaslab_group_t *mg = tvd->vdev_mg;
1721
1722		if (tvd->vdev_islog)
1723			metaslab_group_activate(mg);
1724	}
1725}
1726
1727int
1728spa_offline_log(spa_t *spa)
1729{
1730	int error;
1731
1732	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1733	    NULL, DS_FIND_CHILDREN);
1734	if (error == 0) {
1735		/*
1736		 * We successfully offlined the log device, sync out the
1737		 * current txg so that the "stubby" block can be removed
1738		 * by zil_sync().
1739		 */
1740		txg_wait_synced(spa->spa_dsl_pool, 0);
1741	}
1742	return (error);
1743}
1744
1745static void
1746spa_aux_check_removed(spa_aux_vdev_t *sav)
1747{
1748	int i;
1749
1750	for (i = 0; i < sav->sav_count; i++)
1751		spa_check_removed(sav->sav_vdevs[i]);
1752}
1753
1754void
1755spa_claim_notify(zio_t *zio)
1756{
1757	spa_t *spa = zio->io_spa;
1758
1759	if (zio->io_error)
1760		return;
1761
1762	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1763	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1764		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1765	mutex_exit(&spa->spa_props_lock);
1766}
1767
1768typedef struct spa_load_error {
1769	uint64_t	sle_meta_count;
1770	uint64_t	sle_data_count;
1771} spa_load_error_t;
1772
1773static void
1774spa_load_verify_done(zio_t *zio)
1775{
1776	blkptr_t *bp = zio->io_bp;
1777	spa_load_error_t *sle = zio->io_private;
1778	dmu_object_type_t type = BP_GET_TYPE(bp);
1779	int error = zio->io_error;
1780
1781	if (error) {
1782		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1783		    type != DMU_OT_INTENT_LOG)
1784			atomic_add_64(&sle->sle_meta_count, 1);
1785		else
1786			atomic_add_64(&sle->sle_data_count, 1);
1787	}
1788	zio_data_buf_free(zio->io_data, zio->io_size);
1789}
1790
1791/*ARGSUSED*/
1792static int
1793spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1794    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1795{
1796	if (bp != NULL) {
1797		zio_t *rio = arg;
1798		size_t size = BP_GET_PSIZE(bp);
1799		void *data = zio_data_buf_alloc(size);
1800
1801		zio_nowait(zio_read(rio, spa, bp, data, size,
1802		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1803		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1804		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1805	}
1806	return (0);
1807}
1808
1809static int
1810spa_load_verify(spa_t *spa)
1811{
1812	zio_t *rio;
1813	spa_load_error_t sle = { 0 };
1814	zpool_rewind_policy_t policy;
1815	boolean_t verify_ok = B_FALSE;
1816	int error;
1817
1818	zpool_get_rewind_policy(spa->spa_config, &policy);
1819
1820	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1821		return (0);
1822
1823	rio = zio_root(spa, NULL, &sle,
1824	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1825
1826	error = traverse_pool(spa, spa->spa_verify_min_txg,
1827	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1828
1829	(void) zio_wait(rio);
1830
1831	spa->spa_load_meta_errors = sle.sle_meta_count;
1832	spa->spa_load_data_errors = sle.sle_data_count;
1833
1834	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1835	    sle.sle_data_count <= policy.zrp_maxdata) {
1836		int64_t loss = 0;
1837
1838		verify_ok = B_TRUE;
1839		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1840		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1841
1842		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1843		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1844		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1845		VERIFY(nvlist_add_int64(spa->spa_load_info,
1846		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1847		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1848		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1849	} else {
1850		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1851	}
1852
1853	if (error) {
1854		if (error != ENXIO && error != EIO)
1855			error = SET_ERROR(EIO);
1856		return (error);
1857	}
1858
1859	return (verify_ok ? 0 : EIO);
1860}
1861
1862/*
1863 * Find a value in the pool props object.
1864 */
1865static void
1866spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1867{
1868	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1869	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1870}
1871
1872/*
1873 * Find a value in the pool directory object.
1874 */
1875static int
1876spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1877{
1878	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1879	    name, sizeof (uint64_t), 1, val));
1880}
1881
1882static int
1883spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1884{
1885	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1886	return (err);
1887}
1888
1889/*
1890 * Fix up config after a partly-completed split.  This is done with the
1891 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1892 * pool have that entry in their config, but only the splitting one contains
1893 * a list of all the guids of the vdevs that are being split off.
1894 *
1895 * This function determines what to do with that list: either rejoin
1896 * all the disks to the pool, or complete the splitting process.  To attempt
1897 * the rejoin, each disk that is offlined is marked online again, and
1898 * we do a reopen() call.  If the vdev label for every disk that was
1899 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1900 * then we call vdev_split() on each disk, and complete the split.
1901 *
1902 * Otherwise we leave the config alone, with all the vdevs in place in
1903 * the original pool.
1904 */
1905static void
1906spa_try_repair(spa_t *spa, nvlist_t *config)
1907{
1908	uint_t extracted;
1909	uint64_t *glist;
1910	uint_t i, gcount;
1911	nvlist_t *nvl;
1912	vdev_t **vd;
1913	boolean_t attempt_reopen;
1914
1915	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1916		return;
1917
1918	/* check that the config is complete */
1919	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1920	    &glist, &gcount) != 0)
1921		return;
1922
1923	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1924
1925	/* attempt to online all the vdevs & validate */
1926	attempt_reopen = B_TRUE;
1927	for (i = 0; i < gcount; i++) {
1928		if (glist[i] == 0)	/* vdev is hole */
1929			continue;
1930
1931		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1932		if (vd[i] == NULL) {
1933			/*
1934			 * Don't bother attempting to reopen the disks;
1935			 * just do the split.
1936			 */
1937			attempt_reopen = B_FALSE;
1938		} else {
1939			/* attempt to re-online it */
1940			vd[i]->vdev_offline = B_FALSE;
1941		}
1942	}
1943
1944	if (attempt_reopen) {
1945		vdev_reopen(spa->spa_root_vdev);
1946
1947		/* check each device to see what state it's in */
1948		for (extracted = 0, i = 0; i < gcount; i++) {
1949			if (vd[i] != NULL &&
1950			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1951				break;
1952			++extracted;
1953		}
1954	}
1955
1956	/*
1957	 * If every disk has been moved to the new pool, or if we never
1958	 * even attempted to look at them, then we split them off for
1959	 * good.
1960	 */
1961	if (!attempt_reopen || gcount == extracted) {
1962		for (i = 0; i < gcount; i++)
1963			if (vd[i] != NULL)
1964				vdev_split(vd[i]);
1965		vdev_reopen(spa->spa_root_vdev);
1966	}
1967
1968	kmem_free(vd, gcount * sizeof (vdev_t *));
1969}
1970
1971static int
1972spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1973    boolean_t mosconfig)
1974{
1975	nvlist_t *config = spa->spa_config;
1976	char *ereport = FM_EREPORT_ZFS_POOL;
1977	char *comment;
1978	int error;
1979	uint64_t pool_guid;
1980	nvlist_t *nvl;
1981
1982	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1983		return (SET_ERROR(EINVAL));
1984
1985	ASSERT(spa->spa_comment == NULL);
1986	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1987		spa->spa_comment = spa_strdup(comment);
1988
1989	/*
1990	 * Versioning wasn't explicitly added to the label until later, so if
1991	 * it's not present treat it as the initial version.
1992	 */
1993	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1994	    &spa->spa_ubsync.ub_version) != 0)
1995		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1996
1997	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1998	    &spa->spa_config_txg);
1999
2000	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2001	    spa_guid_exists(pool_guid, 0)) {
2002		error = SET_ERROR(EEXIST);
2003	} else {
2004		spa->spa_config_guid = pool_guid;
2005
2006		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2007		    &nvl) == 0) {
2008			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2009			    KM_SLEEP) == 0);
2010		}
2011
2012		nvlist_free(spa->spa_load_info);
2013		spa->spa_load_info = fnvlist_alloc();
2014
2015		gethrestime(&spa->spa_loaded_ts);
2016		error = spa_load_impl(spa, pool_guid, config, state, type,
2017		    mosconfig, &ereport);
2018	}
2019
2020	spa->spa_minref = refcount_count(&spa->spa_refcount);
2021	if (error) {
2022		if (error != EEXIST) {
2023			spa->spa_loaded_ts.tv_sec = 0;
2024			spa->spa_loaded_ts.tv_nsec = 0;
2025		}
2026		if (error != EBADF) {
2027			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2028		}
2029	}
2030	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2031	spa->spa_ena = 0;
2032
2033	return (error);
2034}
2035
2036/*
2037 * Load an existing storage pool, using the pool's builtin spa_config as a
2038 * source of configuration information.
2039 */
2040static int
2041spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2042    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2043    char **ereport)
2044{
2045	int error = 0;
2046	nvlist_t *nvroot = NULL;
2047	nvlist_t *label;
2048	vdev_t *rvd;
2049	uberblock_t *ub = &spa->spa_uberblock;
2050	uint64_t children, config_cache_txg = spa->spa_config_txg;
2051	int orig_mode = spa->spa_mode;
2052	int parse;
2053	uint64_t obj;
2054	boolean_t missing_feat_write = B_FALSE;
2055
2056	/*
2057	 * If this is an untrusted config, access the pool in read-only mode.
2058	 * This prevents things like resilvering recently removed devices.
2059	 */
2060	if (!mosconfig)
2061		spa->spa_mode = FREAD;
2062
2063	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2064
2065	spa->spa_load_state = state;
2066
2067	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2068		return (SET_ERROR(EINVAL));
2069
2070	parse = (type == SPA_IMPORT_EXISTING ?
2071	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2072
2073	/*
2074	 * Create "The Godfather" zio to hold all async IOs
2075	 */
2076	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2077	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2078
2079	/*
2080	 * Parse the configuration into a vdev tree.  We explicitly set the
2081	 * value that will be returned by spa_version() since parsing the
2082	 * configuration requires knowing the version number.
2083	 */
2084	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2085	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2086	spa_config_exit(spa, SCL_ALL, FTAG);
2087
2088	if (error != 0)
2089		return (error);
2090
2091	ASSERT(spa->spa_root_vdev == rvd);
2092
2093	if (type != SPA_IMPORT_ASSEMBLE) {
2094		ASSERT(spa_guid(spa) == pool_guid);
2095	}
2096
2097	/*
2098	 * Try to open all vdevs, loading each label in the process.
2099	 */
2100	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2101	error = vdev_open(rvd);
2102	spa_config_exit(spa, SCL_ALL, FTAG);
2103	if (error != 0)
2104		return (error);
2105
2106	/*
2107	 * We need to validate the vdev labels against the configuration that
2108	 * we have in hand, which is dependent on the setting of mosconfig. If
2109	 * mosconfig is true then we're validating the vdev labels based on
2110	 * that config.  Otherwise, we're validating against the cached config
2111	 * (zpool.cache) that was read when we loaded the zfs module, and then
2112	 * later we will recursively call spa_load() and validate against
2113	 * the vdev config.
2114	 *
2115	 * If we're assembling a new pool that's been split off from an
2116	 * existing pool, the labels haven't yet been updated so we skip
2117	 * validation for now.
2118	 */
2119	if (type != SPA_IMPORT_ASSEMBLE) {
2120		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2121		error = vdev_validate(rvd, mosconfig);
2122		spa_config_exit(spa, SCL_ALL, FTAG);
2123
2124		if (error != 0)
2125			return (error);
2126
2127		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2128			return (SET_ERROR(ENXIO));
2129	}
2130
2131	/*
2132	 * Find the best uberblock.
2133	 */
2134	vdev_uberblock_load(rvd, ub, &label);
2135
2136	/*
2137	 * If we weren't able to find a single valid uberblock, return failure.
2138	 */
2139	if (ub->ub_txg == 0) {
2140		nvlist_free(label);
2141		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2142	}
2143
2144	/*
2145	 * If the pool has an unsupported version we can't open it.
2146	 */
2147	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2148		nvlist_free(label);
2149		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2150	}
2151
2152	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2153		nvlist_t *features;
2154
2155		/*
2156		 * If we weren't able to find what's necessary for reading the
2157		 * MOS in the label, return failure.
2158		 */
2159		if (label == NULL || nvlist_lookup_nvlist(label,
2160		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2161			nvlist_free(label);
2162			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2163			    ENXIO));
2164		}
2165
2166		/*
2167		 * Update our in-core representation with the definitive values
2168		 * from the label.
2169		 */
2170		nvlist_free(spa->spa_label_features);
2171		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2172	}
2173
2174	nvlist_free(label);
2175
2176	/*
2177	 * Look through entries in the label nvlist's features_for_read. If
2178	 * there is a feature listed there which we don't understand then we
2179	 * cannot open a pool.
2180	 */
2181	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2182		nvlist_t *unsup_feat;
2183
2184		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2185		    0);
2186
2187		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2188		    NULL); nvp != NULL;
2189		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2190			if (!zfeature_is_supported(nvpair_name(nvp))) {
2191				VERIFY(nvlist_add_string(unsup_feat,
2192				    nvpair_name(nvp), "") == 0);
2193			}
2194		}
2195
2196		if (!nvlist_empty(unsup_feat)) {
2197			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2198			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2199			nvlist_free(unsup_feat);
2200			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2201			    ENOTSUP));
2202		}
2203
2204		nvlist_free(unsup_feat);
2205	}
2206
2207	/*
2208	 * If the vdev guid sum doesn't match the uberblock, we have an
2209	 * incomplete configuration.  We first check to see if the pool
2210	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2211	 * If it is, defer the vdev_guid_sum check till later so we
2212	 * can handle missing vdevs.
2213	 */
2214	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2215	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2216	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2217		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2218
2219	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2220		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2221		spa_try_repair(spa, config);
2222		spa_config_exit(spa, SCL_ALL, FTAG);
2223		nvlist_free(spa->spa_config_splitting);
2224		spa->spa_config_splitting = NULL;
2225	}
2226
2227	/*
2228	 * Initialize internal SPA structures.
2229	 */
2230	spa->spa_state = POOL_STATE_ACTIVE;
2231	spa->spa_ubsync = spa->spa_uberblock;
2232	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2233	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2234	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2235	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2236	spa->spa_claim_max_txg = spa->spa_first_txg;
2237	spa->spa_prev_software_version = ub->ub_software_version;
2238
2239	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2240	if (error)
2241		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2242	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2243
2244	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2245		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2246
2247	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2248		boolean_t missing_feat_read = B_FALSE;
2249		nvlist_t *unsup_feat, *enabled_feat;
2250
2251		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2252		    &spa->spa_feat_for_read_obj) != 0) {
2253			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2254		}
2255
2256		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2257		    &spa->spa_feat_for_write_obj) != 0) {
2258			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2259		}
2260
2261		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2262		    &spa->spa_feat_desc_obj) != 0) {
2263			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2264		}
2265
2266		enabled_feat = fnvlist_alloc();
2267		unsup_feat = fnvlist_alloc();
2268
2269		if (!feature_is_supported(spa->spa_meta_objset,
2270		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2271		    unsup_feat, enabled_feat))
2272			missing_feat_read = B_TRUE;
2273
2274		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2275			if (!feature_is_supported(spa->spa_meta_objset,
2276			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2277			    unsup_feat, enabled_feat)) {
2278				missing_feat_write = B_TRUE;
2279			}
2280		}
2281
2282		fnvlist_add_nvlist(spa->spa_load_info,
2283		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2284
2285		if (!nvlist_empty(unsup_feat)) {
2286			fnvlist_add_nvlist(spa->spa_load_info,
2287			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2288		}
2289
2290		fnvlist_free(enabled_feat);
2291		fnvlist_free(unsup_feat);
2292
2293		if (!missing_feat_read) {
2294			fnvlist_add_boolean(spa->spa_load_info,
2295			    ZPOOL_CONFIG_CAN_RDONLY);
2296		}
2297
2298		/*
2299		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2300		 * twofold: to determine whether the pool is available for
2301		 * import in read-write mode and (if it is not) whether the
2302		 * pool is available for import in read-only mode. If the pool
2303		 * is available for import in read-write mode, it is displayed
2304		 * as available in userland; if it is not available for import
2305		 * in read-only mode, it is displayed as unavailable in
2306		 * userland. If the pool is available for import in read-only
2307		 * mode but not read-write mode, it is displayed as unavailable
2308		 * in userland with a special note that the pool is actually
2309		 * available for open in read-only mode.
2310		 *
2311		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2312		 * missing a feature for write, we must first determine whether
2313		 * the pool can be opened read-only before returning to
2314		 * userland in order to know whether to display the
2315		 * abovementioned note.
2316		 */
2317		if (missing_feat_read || (missing_feat_write &&
2318		    spa_writeable(spa))) {
2319			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2320			    ENOTSUP));
2321		}
2322	}
2323
2324	spa->spa_is_initializing = B_TRUE;
2325	error = dsl_pool_open(spa->spa_dsl_pool);
2326	spa->spa_is_initializing = B_FALSE;
2327	if (error != 0)
2328		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2329
2330	if (!mosconfig) {
2331		uint64_t hostid;
2332		nvlist_t *policy = NULL, *nvconfig;
2333
2334		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2335			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2336
2337		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2338		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2339			char *hostname;
2340			unsigned long myhostid = 0;
2341
2342			VERIFY(nvlist_lookup_string(nvconfig,
2343			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2344
2345#ifdef	_KERNEL
2346			myhostid = zone_get_hostid(NULL);
2347#else	/* _KERNEL */
2348			/*
2349			 * We're emulating the system's hostid in userland, so
2350			 * we can't use zone_get_hostid().
2351			 */
2352			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2353#endif	/* _KERNEL */
2354			if (check_hostid && hostid != 0 && myhostid != 0 &&
2355			    hostid != myhostid) {
2356				nvlist_free(nvconfig);
2357				cmn_err(CE_WARN, "pool '%s' could not be "
2358				    "loaded as it was last accessed by "
2359				    "another system (host: %s hostid: 0x%lx). "
2360				    "See: http://illumos.org/msg/ZFS-8000-EY",
2361				    spa_name(spa), hostname,
2362				    (unsigned long)hostid);
2363				return (SET_ERROR(EBADF));
2364			}
2365		}
2366		if (nvlist_lookup_nvlist(spa->spa_config,
2367		    ZPOOL_REWIND_POLICY, &policy) == 0)
2368			VERIFY(nvlist_add_nvlist(nvconfig,
2369			    ZPOOL_REWIND_POLICY, policy) == 0);
2370
2371		spa_config_set(spa, nvconfig);
2372		spa_unload(spa);
2373		spa_deactivate(spa);
2374		spa_activate(spa, orig_mode);
2375
2376		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2377	}
2378
2379	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2380		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2381	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2382	if (error != 0)
2383		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2384
2385	/*
2386	 * Load the bit that tells us to use the new accounting function
2387	 * (raid-z deflation).  If we have an older pool, this will not
2388	 * be present.
2389	 */
2390	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2391	if (error != 0 && error != ENOENT)
2392		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393
2394	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2395	    &spa->spa_creation_version);
2396	if (error != 0 && error != ENOENT)
2397		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2398
2399	/*
2400	 * Load the persistent error log.  If we have an older pool, this will
2401	 * not be present.
2402	 */
2403	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2404	if (error != 0 && error != ENOENT)
2405		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2406
2407	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2408	    &spa->spa_errlog_scrub);
2409	if (error != 0 && error != ENOENT)
2410		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411
2412	/*
2413	 * Load the history object.  If we have an older pool, this
2414	 * will not be present.
2415	 */
2416	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2417	if (error != 0 && error != ENOENT)
2418		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2419
2420	/*
2421	 * If we're assembling the pool from the split-off vdevs of
2422	 * an existing pool, we don't want to attach the spares & cache
2423	 * devices.
2424	 */
2425
2426	/*
2427	 * Load any hot spares for this pool.
2428	 */
2429	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2430	if (error != 0 && error != ENOENT)
2431		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2433		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2434		if (load_nvlist(spa, spa->spa_spares.sav_object,
2435		    &spa->spa_spares.sav_config) != 0)
2436			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2437
2438		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2439		spa_load_spares(spa);
2440		spa_config_exit(spa, SCL_ALL, FTAG);
2441	} else if (error == 0) {
2442		spa->spa_spares.sav_sync = B_TRUE;
2443	}
2444
2445	/*
2446	 * Load any level 2 ARC devices for this pool.
2447	 */
2448	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2449	    &spa->spa_l2cache.sav_object);
2450	if (error != 0 && error != ENOENT)
2451		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2453		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2454		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2455		    &spa->spa_l2cache.sav_config) != 0)
2456			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457
2458		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2459		spa_load_l2cache(spa);
2460		spa_config_exit(spa, SCL_ALL, FTAG);
2461	} else if (error == 0) {
2462		spa->spa_l2cache.sav_sync = B_TRUE;
2463	}
2464
2465	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2466
2467	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2468	if (error && error != ENOENT)
2469		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471	if (error == 0) {
2472		uint64_t autoreplace;
2473
2474		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2475		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2476		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2477		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2478		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2479		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2480		    &spa->spa_dedup_ditto);
2481
2482		spa->spa_autoreplace = (autoreplace != 0);
2483	}
2484
2485	/*
2486	 * If the 'autoreplace' property is set, then post a resource notifying
2487	 * the ZFS DE that it should not issue any faults for unopenable
2488	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2489	 * unopenable vdevs so that the normal autoreplace handler can take
2490	 * over.
2491	 */
2492	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2493		spa_check_removed(spa->spa_root_vdev);
2494		/*
2495		 * For the import case, this is done in spa_import(), because
2496		 * at this point we're using the spare definitions from
2497		 * the MOS config, not necessarily from the userland config.
2498		 */
2499		if (state != SPA_LOAD_IMPORT) {
2500			spa_aux_check_removed(&spa->spa_spares);
2501			spa_aux_check_removed(&spa->spa_l2cache);
2502		}
2503	}
2504
2505	/*
2506	 * Load the vdev state for all toplevel vdevs.
2507	 */
2508	vdev_load(rvd);
2509
2510	/*
2511	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2512	 */
2513	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2514	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2515	spa_config_exit(spa, SCL_ALL, FTAG);
2516
2517	/*
2518	 * Load the DDTs (dedup tables).
2519	 */
2520	error = ddt_load(spa);
2521	if (error != 0)
2522		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523
2524	spa_update_dspace(spa);
2525
2526	/*
2527	 * Validate the config, using the MOS config to fill in any
2528	 * information which might be missing.  If we fail to validate
2529	 * the config then declare the pool unfit for use. If we're
2530	 * assembling a pool from a split, the log is not transferred
2531	 * over.
2532	 */
2533	if (type != SPA_IMPORT_ASSEMBLE) {
2534		nvlist_t *nvconfig;
2535
2536		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2537			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538
2539		if (!spa_config_valid(spa, nvconfig)) {
2540			nvlist_free(nvconfig);
2541			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2542			    ENXIO));
2543		}
2544		nvlist_free(nvconfig);
2545
2546		/*
2547		 * Now that we've validated the config, check the state of the
2548		 * root vdev.  If it can't be opened, it indicates one or
2549		 * more toplevel vdevs are faulted.
2550		 */
2551		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2552			return (SET_ERROR(ENXIO));
2553
2554		if (spa_check_logs(spa)) {
2555			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2556			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2557		}
2558	}
2559
2560	if (missing_feat_write) {
2561		ASSERT(state == SPA_LOAD_TRYIMPORT);
2562
2563		/*
2564		 * At this point, we know that we can open the pool in
2565		 * read-only mode but not read-write mode. We now have enough
2566		 * information and can return to userland.
2567		 */
2568		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2569	}
2570
2571	/*
2572	 * We've successfully opened the pool, verify that we're ready
2573	 * to start pushing transactions.
2574	 */
2575	if (state != SPA_LOAD_TRYIMPORT) {
2576		if (error = spa_load_verify(spa))
2577			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2578			    error));
2579	}
2580
2581	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2582	    spa->spa_load_max_txg == UINT64_MAX)) {
2583		dmu_tx_t *tx;
2584		int need_update = B_FALSE;
2585
2586		ASSERT(state != SPA_LOAD_TRYIMPORT);
2587
2588		/*
2589		 * Claim log blocks that haven't been committed yet.
2590		 * This must all happen in a single txg.
2591		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2592		 * invoked from zil_claim_log_block()'s i/o done callback.
2593		 * Price of rollback is that we abandon the log.
2594		 */
2595		spa->spa_claiming = B_TRUE;
2596
2597		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2598		    spa_first_txg(spa));
2599		(void) dmu_objset_find(spa_name(spa),
2600		    zil_claim, tx, DS_FIND_CHILDREN);
2601		dmu_tx_commit(tx);
2602
2603		spa->spa_claiming = B_FALSE;
2604
2605		spa_set_log_state(spa, SPA_LOG_GOOD);
2606		spa->spa_sync_on = B_TRUE;
2607		txg_sync_start(spa->spa_dsl_pool);
2608
2609		/*
2610		 * Wait for all claims to sync.  We sync up to the highest
2611		 * claimed log block birth time so that claimed log blocks
2612		 * don't appear to be from the future.  spa_claim_max_txg
2613		 * will have been set for us by either zil_check_log_chain()
2614		 * (invoked from spa_check_logs()) or zil_claim() above.
2615		 */
2616		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2617
2618		/*
2619		 * If the config cache is stale, or we have uninitialized
2620		 * metaslabs (see spa_vdev_add()), then update the config.
2621		 *
2622		 * If this is a verbatim import, trust the current
2623		 * in-core spa_config and update the disk labels.
2624		 */
2625		if (config_cache_txg != spa->spa_config_txg ||
2626		    state == SPA_LOAD_IMPORT ||
2627		    state == SPA_LOAD_RECOVER ||
2628		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2629			need_update = B_TRUE;
2630
2631		for (int c = 0; c < rvd->vdev_children; c++)
2632			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2633				need_update = B_TRUE;
2634
2635		/*
2636		 * Update the config cache asychronously in case we're the
2637		 * root pool, in which case the config cache isn't writable yet.
2638		 */
2639		if (need_update)
2640			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2641
2642		/*
2643		 * Check all DTLs to see if anything needs resilvering.
2644		 */
2645		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2646		    vdev_resilver_needed(rvd, NULL, NULL))
2647			spa_async_request(spa, SPA_ASYNC_RESILVER);
2648
2649		/*
2650		 * Log the fact that we booted up (so that we can detect if
2651		 * we rebooted in the middle of an operation).
2652		 */
2653		spa_history_log_version(spa, "open");
2654
2655		/*
2656		 * Delete any inconsistent datasets.
2657		 */
2658		(void) dmu_objset_find(spa_name(spa),
2659		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2660
2661		/*
2662		 * Clean up any stale temporary dataset userrefs.
2663		 */
2664		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2665	}
2666
2667	return (0);
2668}
2669
2670static int
2671spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2672{
2673	int mode = spa->spa_mode;
2674
2675	spa_unload(spa);
2676	spa_deactivate(spa);
2677
2678	spa->spa_load_max_txg--;
2679
2680	spa_activate(spa, mode);
2681	spa_async_suspend(spa);
2682
2683	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2684}
2685
2686/*
2687 * If spa_load() fails this function will try loading prior txg's. If
2688 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2689 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2690 * function will not rewind the pool and will return the same error as
2691 * spa_load().
2692 */
2693static int
2694spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2695    uint64_t max_request, int rewind_flags)
2696{
2697	nvlist_t *loadinfo = NULL;
2698	nvlist_t *config = NULL;
2699	int load_error, rewind_error;
2700	uint64_t safe_rewind_txg;
2701	uint64_t min_txg;
2702
2703	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2704		spa->spa_load_max_txg = spa->spa_load_txg;
2705		spa_set_log_state(spa, SPA_LOG_CLEAR);
2706	} else {
2707		spa->spa_load_max_txg = max_request;
2708	}
2709
2710	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2711	    mosconfig);
2712	if (load_error == 0)
2713		return (0);
2714
2715	if (spa->spa_root_vdev != NULL)
2716		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2717
2718	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2719	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2720
2721	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2722		nvlist_free(config);
2723		return (load_error);
2724	}
2725
2726	if (state == SPA_LOAD_RECOVER) {
2727		/* Price of rolling back is discarding txgs, including log */
2728		spa_set_log_state(spa, SPA_LOG_CLEAR);
2729	} else {
2730		/*
2731		 * If we aren't rolling back save the load info from our first
2732		 * import attempt so that we can restore it after attempting
2733		 * to rewind.
2734		 */
2735		loadinfo = spa->spa_load_info;
2736		spa->spa_load_info = fnvlist_alloc();
2737	}
2738
2739	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2740	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2741	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2742	    TXG_INITIAL : safe_rewind_txg;
2743
2744	/*
2745	 * Continue as long as we're finding errors, we're still within
2746	 * the acceptable rewind range, and we're still finding uberblocks
2747	 */
2748	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2749	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2750		if (spa->spa_load_max_txg < safe_rewind_txg)
2751			spa->spa_extreme_rewind = B_TRUE;
2752		rewind_error = spa_load_retry(spa, state, mosconfig);
2753	}
2754
2755	spa->spa_extreme_rewind = B_FALSE;
2756	spa->spa_load_max_txg = UINT64_MAX;
2757
2758	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2759		spa_config_set(spa, config);
2760
2761	if (state == SPA_LOAD_RECOVER) {
2762		ASSERT3P(loadinfo, ==, NULL);
2763		return (rewind_error);
2764	} else {
2765		/* Store the rewind info as part of the initial load info */
2766		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2767		    spa->spa_load_info);
2768
2769		/* Restore the initial load info */
2770		fnvlist_free(spa->spa_load_info);
2771		spa->spa_load_info = loadinfo;
2772
2773		return (load_error);
2774	}
2775}
2776
2777/*
2778 * Pool Open/Import
2779 *
2780 * The import case is identical to an open except that the configuration is sent
2781 * down from userland, instead of grabbed from the configuration cache.  For the
2782 * case of an open, the pool configuration will exist in the
2783 * POOL_STATE_UNINITIALIZED state.
2784 *
2785 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2786 * the same time open the pool, without having to keep around the spa_t in some
2787 * ambiguous state.
2788 */
2789static int
2790spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2791    nvlist_t **config)
2792{
2793	spa_t *spa;
2794	spa_load_state_t state = SPA_LOAD_OPEN;
2795	int error;
2796	int locked = B_FALSE;
2797	int firstopen = B_FALSE;
2798
2799	*spapp = NULL;
2800
2801	/*
2802	 * As disgusting as this is, we need to support recursive calls to this
2803	 * function because dsl_dir_open() is called during spa_load(), and ends
2804	 * up calling spa_open() again.  The real fix is to figure out how to
2805	 * avoid dsl_dir_open() calling this in the first place.
2806	 */
2807	if (mutex_owner(&spa_namespace_lock) != curthread) {
2808		mutex_enter(&spa_namespace_lock);
2809		locked = B_TRUE;
2810	}
2811
2812	if ((spa = spa_lookup(pool)) == NULL) {
2813		if (locked)
2814			mutex_exit(&spa_namespace_lock);
2815		return (SET_ERROR(ENOENT));
2816	}
2817
2818	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2819		zpool_rewind_policy_t policy;
2820
2821		firstopen = B_TRUE;
2822
2823		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2824		    &policy);
2825		if (policy.zrp_request & ZPOOL_DO_REWIND)
2826			state = SPA_LOAD_RECOVER;
2827
2828		spa_activate(spa, spa_mode_global);
2829
2830		if (state != SPA_LOAD_RECOVER)
2831			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2832
2833		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2834		    policy.zrp_request);
2835
2836		if (error == EBADF) {
2837			/*
2838			 * If vdev_validate() returns failure (indicated by
2839			 * EBADF), it indicates that one of the vdevs indicates
2840			 * that the pool has been exported or destroyed.  If
2841			 * this is the case, the config cache is out of sync and
2842			 * we should remove the pool from the namespace.
2843			 */
2844			spa_unload(spa);
2845			spa_deactivate(spa);
2846			spa_config_sync(spa, B_TRUE, B_TRUE);
2847			spa_remove(spa);
2848			if (locked)
2849				mutex_exit(&spa_namespace_lock);
2850			return (SET_ERROR(ENOENT));
2851		}
2852
2853		if (error) {
2854			/*
2855			 * We can't open the pool, but we still have useful
2856			 * information: the state of each vdev after the
2857			 * attempted vdev_open().  Return this to the user.
2858			 */
2859			if (config != NULL && spa->spa_config) {
2860				VERIFY(nvlist_dup(spa->spa_config, config,
2861				    KM_SLEEP) == 0);
2862				VERIFY(nvlist_add_nvlist(*config,
2863				    ZPOOL_CONFIG_LOAD_INFO,
2864				    spa->spa_load_info) == 0);
2865			}
2866			spa_unload(spa);
2867			spa_deactivate(spa);
2868			spa->spa_last_open_failed = error;
2869			if (locked)
2870				mutex_exit(&spa_namespace_lock);
2871			*spapp = NULL;
2872			return (error);
2873		}
2874	}
2875
2876	spa_open_ref(spa, tag);
2877
2878	if (config != NULL)
2879		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2880
2881	/*
2882	 * If we've recovered the pool, pass back any information we
2883	 * gathered while doing the load.
2884	 */
2885	if (state == SPA_LOAD_RECOVER) {
2886		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2887		    spa->spa_load_info) == 0);
2888	}
2889
2890	if (locked) {
2891		spa->spa_last_open_failed = 0;
2892		spa->spa_last_ubsync_txg = 0;
2893		spa->spa_load_txg = 0;
2894		mutex_exit(&spa_namespace_lock);
2895#ifdef __FreeBSD__
2896#ifdef _KERNEL
2897		if (firstopen)
2898			zvol_create_minors(spa->spa_name);
2899#endif
2900#endif
2901	}
2902
2903	*spapp = spa;
2904
2905	return (0);
2906}
2907
2908int
2909spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2910    nvlist_t **config)
2911{
2912	return (spa_open_common(name, spapp, tag, policy, config));
2913}
2914
2915int
2916spa_open(const char *name, spa_t **spapp, void *tag)
2917{
2918	return (spa_open_common(name, spapp, tag, NULL, NULL));
2919}
2920
2921/*
2922 * Lookup the given spa_t, incrementing the inject count in the process,
2923 * preventing it from being exported or destroyed.
2924 */
2925spa_t *
2926spa_inject_addref(char *name)
2927{
2928	spa_t *spa;
2929
2930	mutex_enter(&spa_namespace_lock);
2931	if ((spa = spa_lookup(name)) == NULL) {
2932		mutex_exit(&spa_namespace_lock);
2933		return (NULL);
2934	}
2935	spa->spa_inject_ref++;
2936	mutex_exit(&spa_namespace_lock);
2937
2938	return (spa);
2939}
2940
2941void
2942spa_inject_delref(spa_t *spa)
2943{
2944	mutex_enter(&spa_namespace_lock);
2945	spa->spa_inject_ref--;
2946	mutex_exit(&spa_namespace_lock);
2947}
2948
2949/*
2950 * Add spares device information to the nvlist.
2951 */
2952static void
2953spa_add_spares(spa_t *spa, nvlist_t *config)
2954{
2955	nvlist_t **spares;
2956	uint_t i, nspares;
2957	nvlist_t *nvroot;
2958	uint64_t guid;
2959	vdev_stat_t *vs;
2960	uint_t vsc;
2961	uint64_t pool;
2962
2963	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2964
2965	if (spa->spa_spares.sav_count == 0)
2966		return;
2967
2968	VERIFY(nvlist_lookup_nvlist(config,
2969	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2970	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2971	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2972	if (nspares != 0) {
2973		VERIFY(nvlist_add_nvlist_array(nvroot,
2974		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2975		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2976		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2977
2978		/*
2979		 * Go through and find any spares which have since been
2980		 * repurposed as an active spare.  If this is the case, update
2981		 * their status appropriately.
2982		 */
2983		for (i = 0; i < nspares; i++) {
2984			VERIFY(nvlist_lookup_uint64(spares[i],
2985			    ZPOOL_CONFIG_GUID, &guid) == 0);
2986			if (spa_spare_exists(guid, &pool, NULL) &&
2987			    pool != 0ULL) {
2988				VERIFY(nvlist_lookup_uint64_array(
2989				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2990				    (uint64_t **)&vs, &vsc) == 0);
2991				vs->vs_state = VDEV_STATE_CANT_OPEN;
2992				vs->vs_aux = VDEV_AUX_SPARED;
2993			}
2994		}
2995	}
2996}
2997
2998/*
2999 * Add l2cache device information to the nvlist, including vdev stats.
3000 */
3001static void
3002spa_add_l2cache(spa_t *spa, nvlist_t *config)
3003{
3004	nvlist_t **l2cache;
3005	uint_t i, j, nl2cache;
3006	nvlist_t *nvroot;
3007	uint64_t guid;
3008	vdev_t *vd;
3009	vdev_stat_t *vs;
3010	uint_t vsc;
3011
3012	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3013
3014	if (spa->spa_l2cache.sav_count == 0)
3015		return;
3016
3017	VERIFY(nvlist_lookup_nvlist(config,
3018	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3019	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3020	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3021	if (nl2cache != 0) {
3022		VERIFY(nvlist_add_nvlist_array(nvroot,
3023		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3024		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3025		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3026
3027		/*
3028		 * Update level 2 cache device stats.
3029		 */
3030
3031		for (i = 0; i < nl2cache; i++) {
3032			VERIFY(nvlist_lookup_uint64(l2cache[i],
3033			    ZPOOL_CONFIG_GUID, &guid) == 0);
3034
3035			vd = NULL;
3036			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3037				if (guid ==
3038				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3039					vd = spa->spa_l2cache.sav_vdevs[j];
3040					break;
3041				}
3042			}
3043			ASSERT(vd != NULL);
3044
3045			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3046			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3047			    == 0);
3048			vdev_get_stats(vd, vs);
3049		}
3050	}
3051}
3052
3053static void
3054spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3055{
3056	nvlist_t *features;
3057	zap_cursor_t zc;
3058	zap_attribute_t za;
3059
3060	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3061	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3062
3063	if (spa->spa_feat_for_read_obj != 0) {
3064		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3065		    spa->spa_feat_for_read_obj);
3066		    zap_cursor_retrieve(&zc, &za) == 0;
3067		    zap_cursor_advance(&zc)) {
3068			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3069			    za.za_num_integers == 1);
3070			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3071			    za.za_first_integer));
3072		}
3073		zap_cursor_fini(&zc);
3074	}
3075
3076	if (spa->spa_feat_for_write_obj != 0) {
3077		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3078		    spa->spa_feat_for_write_obj);
3079		    zap_cursor_retrieve(&zc, &za) == 0;
3080		    zap_cursor_advance(&zc)) {
3081			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3082			    za.za_num_integers == 1);
3083			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3084			    za.za_first_integer));
3085		}
3086		zap_cursor_fini(&zc);
3087	}
3088
3089	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3090	    features) == 0);
3091	nvlist_free(features);
3092}
3093
3094int
3095spa_get_stats(const char *name, nvlist_t **config,
3096    char *altroot, size_t buflen)
3097{
3098	int error;
3099	spa_t *spa;
3100
3101	*config = NULL;
3102	error = spa_open_common(name, &spa, FTAG, NULL, config);
3103
3104	if (spa != NULL) {
3105		/*
3106		 * This still leaves a window of inconsistency where the spares
3107		 * or l2cache devices could change and the config would be
3108		 * self-inconsistent.
3109		 */
3110		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3111
3112		if (*config != NULL) {
3113			uint64_t loadtimes[2];
3114
3115			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3116			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3117			VERIFY(nvlist_add_uint64_array(*config,
3118			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3119
3120			VERIFY(nvlist_add_uint64(*config,
3121			    ZPOOL_CONFIG_ERRCOUNT,
3122			    spa_get_errlog_size(spa)) == 0);
3123
3124			if (spa_suspended(spa))
3125				VERIFY(nvlist_add_uint64(*config,
3126				    ZPOOL_CONFIG_SUSPENDED,
3127				    spa->spa_failmode) == 0);
3128
3129			spa_add_spares(spa, *config);
3130			spa_add_l2cache(spa, *config);
3131			spa_add_feature_stats(spa, *config);
3132		}
3133	}
3134
3135	/*
3136	 * We want to get the alternate root even for faulted pools, so we cheat
3137	 * and call spa_lookup() directly.
3138	 */
3139	if (altroot) {
3140		if (spa == NULL) {
3141			mutex_enter(&spa_namespace_lock);
3142			spa = spa_lookup(name);
3143			if (spa)
3144				spa_altroot(spa, altroot, buflen);
3145			else
3146				altroot[0] = '\0';
3147			spa = NULL;
3148			mutex_exit(&spa_namespace_lock);
3149		} else {
3150			spa_altroot(spa, altroot, buflen);
3151		}
3152	}
3153
3154	if (spa != NULL) {
3155		spa_config_exit(spa, SCL_CONFIG, FTAG);
3156		spa_close(spa, FTAG);
3157	}
3158
3159	return (error);
3160}
3161
3162/*
3163 * Validate that the auxiliary device array is well formed.  We must have an
3164 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3165 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3166 * specified, as long as they are well-formed.
3167 */
3168static int
3169spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3170    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3171    vdev_labeltype_t label)
3172{
3173	nvlist_t **dev;
3174	uint_t i, ndev;
3175	vdev_t *vd;
3176	int error;
3177
3178	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3179
3180	/*
3181	 * It's acceptable to have no devs specified.
3182	 */
3183	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3184		return (0);
3185
3186	if (ndev == 0)
3187		return (SET_ERROR(EINVAL));
3188
3189	/*
3190	 * Make sure the pool is formatted with a version that supports this
3191	 * device type.
3192	 */
3193	if (spa_version(spa) < version)
3194		return (SET_ERROR(ENOTSUP));
3195
3196	/*
3197	 * Set the pending device list so we correctly handle device in-use
3198	 * checking.
3199	 */
3200	sav->sav_pending = dev;
3201	sav->sav_npending = ndev;
3202
3203	for (i = 0; i < ndev; i++) {
3204		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3205		    mode)) != 0)
3206			goto out;
3207
3208		if (!vd->vdev_ops->vdev_op_leaf) {
3209			vdev_free(vd);
3210			error = SET_ERROR(EINVAL);
3211			goto out;
3212		}
3213
3214		/*
3215		 * The L2ARC currently only supports disk devices in
3216		 * kernel context.  For user-level testing, we allow it.
3217		 */
3218#ifdef _KERNEL
3219		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3220		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3221			error = SET_ERROR(ENOTBLK);
3222			vdev_free(vd);
3223			goto out;
3224		}
3225#endif
3226		vd->vdev_top = vd;
3227
3228		if ((error = vdev_open(vd)) == 0 &&
3229		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3230			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3231			    vd->vdev_guid) == 0);
3232		}
3233
3234		vdev_free(vd);
3235
3236		if (error &&
3237		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3238			goto out;
3239		else
3240			error = 0;
3241	}
3242
3243out:
3244	sav->sav_pending = NULL;
3245	sav->sav_npending = 0;
3246	return (error);
3247}
3248
3249static int
3250spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3251{
3252	int error;
3253
3254	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3255
3256	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3257	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3258	    VDEV_LABEL_SPARE)) != 0) {
3259		return (error);
3260	}
3261
3262	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3263	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3264	    VDEV_LABEL_L2CACHE));
3265}
3266
3267static void
3268spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3269    const char *config)
3270{
3271	int i;
3272
3273	if (sav->sav_config != NULL) {
3274		nvlist_t **olddevs;
3275		uint_t oldndevs;
3276		nvlist_t **newdevs;
3277
3278		/*
3279		 * Generate new dev list by concatentating with the
3280		 * current dev list.
3281		 */
3282		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3283		    &olddevs, &oldndevs) == 0);
3284
3285		newdevs = kmem_alloc(sizeof (void *) *
3286		    (ndevs + oldndevs), KM_SLEEP);
3287		for (i = 0; i < oldndevs; i++)
3288			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3289			    KM_SLEEP) == 0);
3290		for (i = 0; i < ndevs; i++)
3291			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3292			    KM_SLEEP) == 0);
3293
3294		VERIFY(nvlist_remove(sav->sav_config, config,
3295		    DATA_TYPE_NVLIST_ARRAY) == 0);
3296
3297		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3298		    config, newdevs, ndevs + oldndevs) == 0);
3299		for (i = 0; i < oldndevs + ndevs; i++)
3300			nvlist_free(newdevs[i]);
3301		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3302	} else {
3303		/*
3304		 * Generate a new dev list.
3305		 */
3306		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3307		    KM_SLEEP) == 0);
3308		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3309		    devs, ndevs) == 0);
3310	}
3311}
3312
3313/*
3314 * Stop and drop level 2 ARC devices
3315 */
3316void
3317spa_l2cache_drop(spa_t *spa)
3318{
3319	vdev_t *vd;
3320	int i;
3321	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3322
3323	for (i = 0; i < sav->sav_count; i++) {
3324		uint64_t pool;
3325
3326		vd = sav->sav_vdevs[i];
3327		ASSERT(vd != NULL);
3328
3329		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3330		    pool != 0ULL && l2arc_vdev_present(vd))
3331			l2arc_remove_vdev(vd);
3332	}
3333}
3334
3335/*
3336 * Pool Creation
3337 */
3338int
3339spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3340    nvlist_t *zplprops)
3341{
3342	spa_t *spa;
3343	char *altroot = NULL;
3344	vdev_t *rvd;
3345	dsl_pool_t *dp;
3346	dmu_tx_t *tx;
3347	int error = 0;
3348	uint64_t txg = TXG_INITIAL;
3349	nvlist_t **spares, **l2cache;
3350	uint_t nspares, nl2cache;
3351	uint64_t version, obj;
3352	boolean_t has_features;
3353
3354	/*
3355	 * If this pool already exists, return failure.
3356	 */
3357	mutex_enter(&spa_namespace_lock);
3358	if (spa_lookup(pool) != NULL) {
3359		mutex_exit(&spa_namespace_lock);
3360		return (SET_ERROR(EEXIST));
3361	}
3362
3363	/*
3364	 * Allocate a new spa_t structure.
3365	 */
3366	(void) nvlist_lookup_string(props,
3367	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3368	spa = spa_add(pool, NULL, altroot);
3369	spa_activate(spa, spa_mode_global);
3370
3371	if (props && (error = spa_prop_validate(spa, props))) {
3372		spa_deactivate(spa);
3373		spa_remove(spa);
3374		mutex_exit(&spa_namespace_lock);
3375		return (error);
3376	}
3377
3378	has_features = B_FALSE;
3379	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3380	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3381		if (zpool_prop_feature(nvpair_name(elem)))
3382			has_features = B_TRUE;
3383	}
3384
3385	if (has_features || nvlist_lookup_uint64(props,
3386	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3387		version = SPA_VERSION;
3388	}
3389	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3390
3391	spa->spa_first_txg = txg;
3392	spa->spa_uberblock.ub_txg = txg - 1;
3393	spa->spa_uberblock.ub_version = version;
3394	spa->spa_ubsync = spa->spa_uberblock;
3395
3396	/*
3397	 * Create "The Godfather" zio to hold all async IOs
3398	 */
3399	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3400	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3401
3402	/*
3403	 * Create the root vdev.
3404	 */
3405	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3406
3407	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3408
3409	ASSERT(error != 0 || rvd != NULL);
3410	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3411
3412	if (error == 0 && !zfs_allocatable_devs(nvroot))
3413		error = SET_ERROR(EINVAL);
3414
3415	if (error == 0 &&
3416	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3417	    (error = spa_validate_aux(spa, nvroot, txg,
3418	    VDEV_ALLOC_ADD)) == 0) {
3419		for (int c = 0; c < rvd->vdev_children; c++) {
3420			vdev_metaslab_set_size(rvd->vdev_child[c]);
3421			vdev_expand(rvd->vdev_child[c], txg);
3422		}
3423	}
3424
3425	spa_config_exit(spa, SCL_ALL, FTAG);
3426
3427	if (error != 0) {
3428		spa_unload(spa);
3429		spa_deactivate(spa);
3430		spa_remove(spa);
3431		mutex_exit(&spa_namespace_lock);
3432		return (error);
3433	}
3434
3435	/*
3436	 * Get the list of spares, if specified.
3437	 */
3438	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3439	    &spares, &nspares) == 0) {
3440		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3441		    KM_SLEEP) == 0);
3442		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3443		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3444		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3445		spa_load_spares(spa);
3446		spa_config_exit(spa, SCL_ALL, FTAG);
3447		spa->spa_spares.sav_sync = B_TRUE;
3448	}
3449
3450	/*
3451	 * Get the list of level 2 cache devices, if specified.
3452	 */
3453	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3454	    &l2cache, &nl2cache) == 0) {
3455		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3456		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3457		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3458		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3459		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3460		spa_load_l2cache(spa);
3461		spa_config_exit(spa, SCL_ALL, FTAG);
3462		spa->spa_l2cache.sav_sync = B_TRUE;
3463	}
3464
3465	spa->spa_is_initializing = B_TRUE;
3466	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3467	spa->spa_meta_objset = dp->dp_meta_objset;
3468	spa->spa_is_initializing = B_FALSE;
3469
3470	/*
3471	 * Create DDTs (dedup tables).
3472	 */
3473	ddt_create(spa);
3474
3475	spa_update_dspace(spa);
3476
3477	tx = dmu_tx_create_assigned(dp, txg);
3478
3479	/*
3480	 * Create the pool config object.
3481	 */
3482	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3483	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3484	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3485
3486	if (zap_add(spa->spa_meta_objset,
3487	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3488	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3489		cmn_err(CE_PANIC, "failed to add pool config");
3490	}
3491
3492	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3493		spa_feature_create_zap_objects(spa, tx);
3494
3495	if (zap_add(spa->spa_meta_objset,
3496	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3497	    sizeof (uint64_t), 1, &version, tx) != 0) {
3498		cmn_err(CE_PANIC, "failed to add pool version");
3499	}
3500
3501	/* Newly created pools with the right version are always deflated. */
3502	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3503		spa->spa_deflate = TRUE;
3504		if (zap_add(spa->spa_meta_objset,
3505		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3506		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3507			cmn_err(CE_PANIC, "failed to add deflate");
3508		}
3509	}
3510
3511	/*
3512	 * Create the deferred-free bpobj.  Turn off compression
3513	 * because sync-to-convergence takes longer if the blocksize
3514	 * keeps changing.
3515	 */
3516	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3517	dmu_object_set_compress(spa->spa_meta_objset, obj,
3518	    ZIO_COMPRESS_OFF, tx);
3519	if (zap_add(spa->spa_meta_objset,
3520	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3521	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3522		cmn_err(CE_PANIC, "failed to add bpobj");
3523	}
3524	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3525	    spa->spa_meta_objset, obj));
3526
3527	/*
3528	 * Create the pool's history object.
3529	 */
3530	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3531		spa_history_create_obj(spa, tx);
3532
3533	/*
3534	 * Set pool properties.
3535	 */
3536	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3537	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3538	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3539	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3540
3541	if (props != NULL) {
3542		spa_configfile_set(spa, props, B_FALSE);
3543		spa_sync_props(props, tx);
3544	}
3545
3546	dmu_tx_commit(tx);
3547
3548	spa->spa_sync_on = B_TRUE;
3549	txg_sync_start(spa->spa_dsl_pool);
3550
3551	/*
3552	 * We explicitly wait for the first transaction to complete so that our
3553	 * bean counters are appropriately updated.
3554	 */
3555	txg_wait_synced(spa->spa_dsl_pool, txg);
3556
3557	spa_config_sync(spa, B_FALSE, B_TRUE);
3558
3559	spa_history_log_version(spa, "create");
3560
3561	spa->spa_minref = refcount_count(&spa->spa_refcount);
3562
3563	mutex_exit(&spa_namespace_lock);
3564
3565	return (0);
3566}
3567
3568#ifdef _KERNEL
3569#if defined(sun)
3570/*
3571 * Get the root pool information from the root disk, then import the root pool
3572 * during the system boot up time.
3573 */
3574extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3575
3576static nvlist_t *
3577spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3578{
3579	nvlist_t *config;
3580	nvlist_t *nvtop, *nvroot;
3581	uint64_t pgid;
3582
3583	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3584		return (NULL);
3585
3586	/*
3587	 * Add this top-level vdev to the child array.
3588	 */
3589	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3590	    &nvtop) == 0);
3591	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3592	    &pgid) == 0);
3593	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3594
3595	/*
3596	 * Put this pool's top-level vdevs into a root vdev.
3597	 */
3598	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3599	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3600	    VDEV_TYPE_ROOT) == 0);
3601	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3602	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3603	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3604	    &nvtop, 1) == 0);
3605
3606	/*
3607	 * Replace the existing vdev_tree with the new root vdev in
3608	 * this pool's configuration (remove the old, add the new).
3609	 */
3610	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3611	nvlist_free(nvroot);
3612	return (config);
3613}
3614
3615/*
3616 * Walk the vdev tree and see if we can find a device with "better"
3617 * configuration. A configuration is "better" if the label on that
3618 * device has a more recent txg.
3619 */
3620static void
3621spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3622{
3623	for (int c = 0; c < vd->vdev_children; c++)
3624		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3625
3626	if (vd->vdev_ops->vdev_op_leaf) {
3627		nvlist_t *label;
3628		uint64_t label_txg;
3629
3630		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3631		    &label) != 0)
3632			return;
3633
3634		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3635		    &label_txg) == 0);
3636
3637		/*
3638		 * Do we have a better boot device?
3639		 */
3640		if (label_txg > *txg) {
3641			*txg = label_txg;
3642			*avd = vd;
3643		}
3644		nvlist_free(label);
3645	}
3646}
3647
3648/*
3649 * Import a root pool.
3650 *
3651 * For x86. devpath_list will consist of devid and/or physpath name of
3652 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3653 * The GRUB "findroot" command will return the vdev we should boot.
3654 *
3655 * For Sparc, devpath_list consists the physpath name of the booting device
3656 * no matter the rootpool is a single device pool or a mirrored pool.
3657 * e.g.
3658 *	"/pci@1f,0/ide@d/disk@0,0:a"
3659 */
3660int
3661spa_import_rootpool(char *devpath, char *devid)
3662{
3663	spa_t *spa;
3664	vdev_t *rvd, *bvd, *avd = NULL;
3665	nvlist_t *config, *nvtop;
3666	uint64_t guid, txg;
3667	char *pname;
3668	int error;
3669
3670	/*
3671	 * Read the label from the boot device and generate a configuration.
3672	 */
3673	config = spa_generate_rootconf(devpath, devid, &guid);
3674#if defined(_OBP) && defined(_KERNEL)
3675	if (config == NULL) {
3676		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3677			/* iscsi boot */
3678			get_iscsi_bootpath_phy(devpath);
3679			config = spa_generate_rootconf(devpath, devid, &guid);
3680		}
3681	}
3682#endif
3683	if (config == NULL) {
3684		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3685		    devpath);
3686		return (SET_ERROR(EIO));
3687	}
3688
3689	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3690	    &pname) == 0);
3691	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3692
3693	mutex_enter(&spa_namespace_lock);
3694	if ((spa = spa_lookup(pname)) != NULL) {
3695		/*
3696		 * Remove the existing root pool from the namespace so that we
3697		 * can replace it with the correct config we just read in.
3698		 */
3699		spa_remove(spa);
3700	}
3701
3702	spa = spa_add(pname, config, NULL);
3703	spa->spa_is_root = B_TRUE;
3704	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3705
3706	/*
3707	 * Build up a vdev tree based on the boot device's label config.
3708	 */
3709	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3710	    &nvtop) == 0);
3711	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3713	    VDEV_ALLOC_ROOTPOOL);
3714	spa_config_exit(spa, SCL_ALL, FTAG);
3715	if (error) {
3716		mutex_exit(&spa_namespace_lock);
3717		nvlist_free(config);
3718		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3719		    pname);
3720		return (error);
3721	}
3722
3723	/*
3724	 * Get the boot vdev.
3725	 */
3726	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3727		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3728		    (u_longlong_t)guid);
3729		error = SET_ERROR(ENOENT);
3730		goto out;
3731	}
3732
3733	/*
3734	 * Determine if there is a better boot device.
3735	 */
3736	avd = bvd;
3737	spa_alt_rootvdev(rvd, &avd, &txg);
3738	if (avd != bvd) {
3739		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3740		    "try booting from '%s'", avd->vdev_path);
3741		error = SET_ERROR(EINVAL);
3742		goto out;
3743	}
3744
3745	/*
3746	 * If the boot device is part of a spare vdev then ensure that
3747	 * we're booting off the active spare.
3748	 */
3749	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3750	    !bvd->vdev_isspare) {
3751		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3752		    "try booting from '%s'",
3753		    bvd->vdev_parent->
3754		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3755		error = SET_ERROR(EINVAL);
3756		goto out;
3757	}
3758
3759	error = 0;
3760out:
3761	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3762	vdev_free(rvd);
3763	spa_config_exit(spa, SCL_ALL, FTAG);
3764	mutex_exit(&spa_namespace_lock);
3765
3766	nvlist_free(config);
3767	return (error);
3768}
3769
3770#else
3771
3772extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3773    uint64_t *count);
3774
3775static nvlist_t *
3776spa_generate_rootconf(const char *name)
3777{
3778	nvlist_t **configs, **tops;
3779	nvlist_t *config;
3780	nvlist_t *best_cfg, *nvtop, *nvroot;
3781	uint64_t *holes;
3782	uint64_t best_txg;
3783	uint64_t nchildren;
3784	uint64_t pgid;
3785	uint64_t count;
3786	uint64_t i;
3787	uint_t   nholes;
3788
3789	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3790		return (NULL);
3791
3792	ASSERT3U(count, !=, 0);
3793	best_txg = 0;
3794	for (i = 0; i < count; i++) {
3795		uint64_t txg;
3796
3797		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3798		    &txg) == 0);
3799		if (txg > best_txg) {
3800			best_txg = txg;
3801			best_cfg = configs[i];
3802		}
3803	}
3804
3805	/*
3806	 * Multi-vdev root pool configuration discovery is not supported yet.
3807	 */
3808	nchildren = 1;
3809	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3810	holes = NULL;
3811	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3812	    &holes, &nholes);
3813
3814	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3815	for (i = 0; i < nchildren; i++) {
3816		if (i >= count)
3817			break;
3818		if (configs[i] == NULL)
3819			continue;
3820		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3821		    &nvtop) == 0);
3822		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3823	}
3824	for (i = 0; holes != NULL && i < nholes; i++) {
3825		if (i >= nchildren)
3826			continue;
3827		if (tops[holes[i]] != NULL)
3828			continue;
3829		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3830		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3831		    VDEV_TYPE_HOLE) == 0);
3832		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3833		    holes[i]) == 0);
3834		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3835		    0) == 0);
3836	}
3837	for (i = 0; i < nchildren; i++) {
3838		if (tops[i] != NULL)
3839			continue;
3840		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3841		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3842		    VDEV_TYPE_MISSING) == 0);
3843		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3844		    i) == 0);
3845		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3846		    0) == 0);
3847	}
3848
3849	/*
3850	 * Create pool config based on the best vdev config.
3851	 */
3852	nvlist_dup(best_cfg, &config, KM_SLEEP);
3853
3854	/*
3855	 * Put this pool's top-level vdevs into a root vdev.
3856	 */
3857	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3858	    &pgid) == 0);
3859	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3860	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3861	    VDEV_TYPE_ROOT) == 0);
3862	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3863	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3864	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3865	    tops, nchildren) == 0);
3866
3867	/*
3868	 * Replace the existing vdev_tree with the new root vdev in
3869	 * this pool's configuration (remove the old, add the new).
3870	 */
3871	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3872
3873	/*
3874	 * Drop vdev config elements that should not be present at pool level.
3875	 */
3876	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3877	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3878
3879	for (i = 0; i < count; i++)
3880		nvlist_free(configs[i]);
3881	kmem_free(configs, count * sizeof(void *));
3882	for (i = 0; i < nchildren; i++)
3883		nvlist_free(tops[i]);
3884	kmem_free(tops, nchildren * sizeof(void *));
3885	nvlist_free(nvroot);
3886	return (config);
3887}
3888
3889int
3890spa_import_rootpool(const char *name)
3891{
3892	spa_t *spa;
3893	vdev_t *rvd, *bvd, *avd = NULL;
3894	nvlist_t *config, *nvtop;
3895	uint64_t txg;
3896	char *pname;
3897	int error;
3898
3899	/*
3900	 * Read the label from the boot device and generate a configuration.
3901	 */
3902	config = spa_generate_rootconf(name);
3903
3904	mutex_enter(&spa_namespace_lock);
3905	if (config != NULL) {
3906		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3907		    &pname) == 0 && strcmp(name, pname) == 0);
3908		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3909		    == 0);
3910
3911		if ((spa = spa_lookup(pname)) != NULL) {
3912			/*
3913			 * Remove the existing root pool from the namespace so
3914			 * that we can replace it with the correct config
3915			 * we just read in.
3916			 */
3917			spa_remove(spa);
3918		}
3919		spa = spa_add(pname, config, NULL);
3920
3921		/*
3922		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
3923		 * via spa_version().
3924		 */
3925		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3926		    &spa->spa_ubsync.ub_version) != 0)
3927			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3928	} else if ((spa = spa_lookup(name)) == NULL) {
3929		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
3930		    name);
3931		return (EIO);
3932	} else {
3933		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
3934	}
3935	spa->spa_is_root = B_TRUE;
3936	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3937
3938	/*
3939	 * Build up a vdev tree based on the boot device's label config.
3940	 */
3941	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3942	    &nvtop) == 0);
3943	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3944	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3945	    VDEV_ALLOC_ROOTPOOL);
3946	spa_config_exit(spa, SCL_ALL, FTAG);
3947	if (error) {
3948		mutex_exit(&spa_namespace_lock);
3949		nvlist_free(config);
3950		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3951		    pname);
3952		return (error);
3953	}
3954
3955	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3956	vdev_free(rvd);
3957	spa_config_exit(spa, SCL_ALL, FTAG);
3958	mutex_exit(&spa_namespace_lock);
3959
3960	nvlist_free(config);
3961	return (0);
3962}
3963
3964#endif	/* sun */
3965#endif
3966
3967/*
3968 * Import a non-root pool into the system.
3969 */
3970int
3971spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3972{
3973	spa_t *spa;
3974	char *altroot = NULL;
3975	spa_load_state_t state = SPA_LOAD_IMPORT;
3976	zpool_rewind_policy_t policy;
3977	uint64_t mode = spa_mode_global;
3978	uint64_t readonly = B_FALSE;
3979	int error;
3980	nvlist_t *nvroot;
3981	nvlist_t **spares, **l2cache;
3982	uint_t nspares, nl2cache;
3983
3984	/*
3985	 * If a pool with this name exists, return failure.
3986	 */
3987	mutex_enter(&spa_namespace_lock);
3988	if (spa_lookup(pool) != NULL) {
3989		mutex_exit(&spa_namespace_lock);
3990		return (SET_ERROR(EEXIST));
3991	}
3992
3993	/*
3994	 * Create and initialize the spa structure.
3995	 */
3996	(void) nvlist_lookup_string(props,
3997	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3998	(void) nvlist_lookup_uint64(props,
3999	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4000	if (readonly)
4001		mode = FREAD;
4002	spa = spa_add(pool, config, altroot);
4003	spa->spa_import_flags = flags;
4004
4005	/*
4006	 * Verbatim import - Take a pool and insert it into the namespace
4007	 * as if it had been loaded at boot.
4008	 */
4009	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4010		if (props != NULL)
4011			spa_configfile_set(spa, props, B_FALSE);
4012
4013		spa_config_sync(spa, B_FALSE, B_TRUE);
4014
4015		mutex_exit(&spa_namespace_lock);
4016		spa_history_log_version(spa, "import");
4017
4018		return (0);
4019	}
4020
4021	spa_activate(spa, mode);
4022
4023	/*
4024	 * Don't start async tasks until we know everything is healthy.
4025	 */
4026	spa_async_suspend(spa);
4027
4028	zpool_get_rewind_policy(config, &policy);
4029	if (policy.zrp_request & ZPOOL_DO_REWIND)
4030		state = SPA_LOAD_RECOVER;
4031
4032	/*
4033	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4034	 * because the user-supplied config is actually the one to trust when
4035	 * doing an import.
4036	 */
4037	if (state != SPA_LOAD_RECOVER)
4038		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4039
4040	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4041	    policy.zrp_request);
4042
4043	/*
4044	 * Propagate anything learned while loading the pool and pass it
4045	 * back to caller (i.e. rewind info, missing devices, etc).
4046	 */
4047	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4048	    spa->spa_load_info) == 0);
4049
4050	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4051	/*
4052	 * Toss any existing sparelist, as it doesn't have any validity
4053	 * anymore, and conflicts with spa_has_spare().
4054	 */
4055	if (spa->spa_spares.sav_config) {
4056		nvlist_free(spa->spa_spares.sav_config);
4057		spa->spa_spares.sav_config = NULL;
4058		spa_load_spares(spa);
4059	}
4060	if (spa->spa_l2cache.sav_config) {
4061		nvlist_free(spa->spa_l2cache.sav_config);
4062		spa->spa_l2cache.sav_config = NULL;
4063		spa_load_l2cache(spa);
4064	}
4065
4066	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4067	    &nvroot) == 0);
4068	if (error == 0)
4069		error = spa_validate_aux(spa, nvroot, -1ULL,
4070		    VDEV_ALLOC_SPARE);
4071	if (error == 0)
4072		error = spa_validate_aux(spa, nvroot, -1ULL,
4073		    VDEV_ALLOC_L2CACHE);
4074	spa_config_exit(spa, SCL_ALL, FTAG);
4075
4076	if (props != NULL)
4077		spa_configfile_set(spa, props, B_FALSE);
4078
4079	if (error != 0 || (props && spa_writeable(spa) &&
4080	    (error = spa_prop_set(spa, props)))) {
4081		spa_unload(spa);
4082		spa_deactivate(spa);
4083		spa_remove(spa);
4084		mutex_exit(&spa_namespace_lock);
4085		return (error);
4086	}
4087
4088	spa_async_resume(spa);
4089
4090	/*
4091	 * Override any spares and level 2 cache devices as specified by
4092	 * the user, as these may have correct device names/devids, etc.
4093	 */
4094	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4095	    &spares, &nspares) == 0) {
4096		if (spa->spa_spares.sav_config)
4097			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4098			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4099		else
4100			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4101			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4102		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4103		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4104		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4105		spa_load_spares(spa);
4106		spa_config_exit(spa, SCL_ALL, FTAG);
4107		spa->spa_spares.sav_sync = B_TRUE;
4108	}
4109	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4110	    &l2cache, &nl2cache) == 0) {
4111		if (spa->spa_l2cache.sav_config)
4112			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4113			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4114		else
4115			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4116			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4117		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4118		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4119		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4120		spa_load_l2cache(spa);
4121		spa_config_exit(spa, SCL_ALL, FTAG);
4122		spa->spa_l2cache.sav_sync = B_TRUE;
4123	}
4124
4125	/*
4126	 * Check for any removed devices.
4127	 */
4128	if (spa->spa_autoreplace) {
4129		spa_aux_check_removed(&spa->spa_spares);
4130		spa_aux_check_removed(&spa->spa_l2cache);
4131	}
4132
4133	if (spa_writeable(spa)) {
4134		/*
4135		 * Update the config cache to include the newly-imported pool.
4136		 */
4137		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4138	}
4139
4140	/*
4141	 * It's possible that the pool was expanded while it was exported.
4142	 * We kick off an async task to handle this for us.
4143	 */
4144	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4145
4146	mutex_exit(&spa_namespace_lock);
4147	spa_history_log_version(spa, "import");
4148
4149#ifdef __FreeBSD__
4150#ifdef _KERNEL
4151	zvol_create_minors(pool);
4152#endif
4153#endif
4154	return (0);
4155}
4156
4157nvlist_t *
4158spa_tryimport(nvlist_t *tryconfig)
4159{
4160	nvlist_t *config = NULL;
4161	char *poolname;
4162	spa_t *spa;
4163	uint64_t state;
4164	int error;
4165
4166	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4167		return (NULL);
4168
4169	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4170		return (NULL);
4171
4172	/*
4173	 * Create and initialize the spa structure.
4174	 */
4175	mutex_enter(&spa_namespace_lock);
4176	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4177	spa_activate(spa, FREAD);
4178
4179	/*
4180	 * Pass off the heavy lifting to spa_load().
4181	 * Pass TRUE for mosconfig because the user-supplied config
4182	 * is actually the one to trust when doing an import.
4183	 */
4184	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4185
4186	/*
4187	 * If 'tryconfig' was at least parsable, return the current config.
4188	 */
4189	if (spa->spa_root_vdev != NULL) {
4190		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4191		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4192		    poolname) == 0);
4193		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4194		    state) == 0);
4195		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4196		    spa->spa_uberblock.ub_timestamp) == 0);
4197		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4198		    spa->spa_load_info) == 0);
4199
4200		/*
4201		 * If the bootfs property exists on this pool then we
4202		 * copy it out so that external consumers can tell which
4203		 * pools are bootable.
4204		 */
4205		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4206			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4207
4208			/*
4209			 * We have to play games with the name since the
4210			 * pool was opened as TRYIMPORT_NAME.
4211			 */
4212			if (dsl_dsobj_to_dsname(spa_name(spa),
4213			    spa->spa_bootfs, tmpname) == 0) {
4214				char *cp;
4215				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4216
4217				cp = strchr(tmpname, '/');
4218				if (cp == NULL) {
4219					(void) strlcpy(dsname, tmpname,
4220					    MAXPATHLEN);
4221				} else {
4222					(void) snprintf(dsname, MAXPATHLEN,
4223					    "%s/%s", poolname, ++cp);
4224				}
4225				VERIFY(nvlist_add_string(config,
4226				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4227				kmem_free(dsname, MAXPATHLEN);
4228			}
4229			kmem_free(tmpname, MAXPATHLEN);
4230		}
4231
4232		/*
4233		 * Add the list of hot spares and level 2 cache devices.
4234		 */
4235		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4236		spa_add_spares(spa, config);
4237		spa_add_l2cache(spa, config);
4238		spa_config_exit(spa, SCL_CONFIG, FTAG);
4239	}
4240
4241	spa_unload(spa);
4242	spa_deactivate(spa);
4243	spa_remove(spa);
4244	mutex_exit(&spa_namespace_lock);
4245
4246	return (config);
4247}
4248
4249/*
4250 * Pool export/destroy
4251 *
4252 * The act of destroying or exporting a pool is very simple.  We make sure there
4253 * is no more pending I/O and any references to the pool are gone.  Then, we
4254 * update the pool state and sync all the labels to disk, removing the
4255 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4256 * we don't sync the labels or remove the configuration cache.
4257 */
4258static int
4259spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4260    boolean_t force, boolean_t hardforce)
4261{
4262	spa_t *spa;
4263
4264	if (oldconfig)
4265		*oldconfig = NULL;
4266
4267	if (!(spa_mode_global & FWRITE))
4268		return (SET_ERROR(EROFS));
4269
4270	mutex_enter(&spa_namespace_lock);
4271	if ((spa = spa_lookup(pool)) == NULL) {
4272		mutex_exit(&spa_namespace_lock);
4273		return (SET_ERROR(ENOENT));
4274	}
4275
4276	/*
4277	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4278	 * reacquire the namespace lock, and see if we can export.
4279	 */
4280	spa_open_ref(spa, FTAG);
4281	mutex_exit(&spa_namespace_lock);
4282	spa_async_suspend(spa);
4283	mutex_enter(&spa_namespace_lock);
4284	spa_close(spa, FTAG);
4285
4286	/*
4287	 * The pool will be in core if it's openable,
4288	 * in which case we can modify its state.
4289	 */
4290	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4291		/*
4292		 * Objsets may be open only because they're dirty, so we
4293		 * have to force it to sync before checking spa_refcnt.
4294		 */
4295		txg_wait_synced(spa->spa_dsl_pool, 0);
4296
4297		/*
4298		 * A pool cannot be exported or destroyed if there are active
4299		 * references.  If we are resetting a pool, allow references by
4300		 * fault injection handlers.
4301		 */
4302		if (!spa_refcount_zero(spa) ||
4303		    (spa->spa_inject_ref != 0 &&
4304		    new_state != POOL_STATE_UNINITIALIZED)) {
4305			spa_async_resume(spa);
4306			mutex_exit(&spa_namespace_lock);
4307			return (SET_ERROR(EBUSY));
4308		}
4309
4310		/*
4311		 * A pool cannot be exported if it has an active shared spare.
4312		 * This is to prevent other pools stealing the active spare
4313		 * from an exported pool. At user's own will, such pool can
4314		 * be forcedly exported.
4315		 */
4316		if (!force && new_state == POOL_STATE_EXPORTED &&
4317		    spa_has_active_shared_spare(spa)) {
4318			spa_async_resume(spa);
4319			mutex_exit(&spa_namespace_lock);
4320			return (SET_ERROR(EXDEV));
4321		}
4322
4323		/*
4324		 * We want this to be reflected on every label,
4325		 * so mark them all dirty.  spa_unload() will do the
4326		 * final sync that pushes these changes out.
4327		 */
4328		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4329			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4330			spa->spa_state = new_state;
4331			spa->spa_final_txg = spa_last_synced_txg(spa) +
4332			    TXG_DEFER_SIZE + 1;
4333			vdev_config_dirty(spa->spa_root_vdev);
4334			spa_config_exit(spa, SCL_ALL, FTAG);
4335		}
4336	}
4337
4338	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4339
4340	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4341		spa_unload(spa);
4342		spa_deactivate(spa);
4343	}
4344
4345	if (oldconfig && spa->spa_config)
4346		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4347
4348	if (new_state != POOL_STATE_UNINITIALIZED) {
4349		if (!hardforce)
4350			spa_config_sync(spa, B_TRUE, B_TRUE);
4351		spa_remove(spa);
4352	}
4353	mutex_exit(&spa_namespace_lock);
4354
4355	return (0);
4356}
4357
4358/*
4359 * Destroy a storage pool.
4360 */
4361int
4362spa_destroy(char *pool)
4363{
4364	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4365	    B_FALSE, B_FALSE));
4366}
4367
4368/*
4369 * Export a storage pool.
4370 */
4371int
4372spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4373    boolean_t hardforce)
4374{
4375	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4376	    force, hardforce));
4377}
4378
4379/*
4380 * Similar to spa_export(), this unloads the spa_t without actually removing it
4381 * from the namespace in any way.
4382 */
4383int
4384spa_reset(char *pool)
4385{
4386	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4387	    B_FALSE, B_FALSE));
4388}
4389
4390/*
4391 * ==========================================================================
4392 * Device manipulation
4393 * ==========================================================================
4394 */
4395
4396/*
4397 * Add a device to a storage pool.
4398 */
4399int
4400spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4401{
4402	uint64_t txg, id;
4403	int error;
4404	vdev_t *rvd = spa->spa_root_vdev;
4405	vdev_t *vd, *tvd;
4406	nvlist_t **spares, **l2cache;
4407	uint_t nspares, nl2cache;
4408
4409	ASSERT(spa_writeable(spa));
4410
4411	txg = spa_vdev_enter(spa);
4412
4413	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4414	    VDEV_ALLOC_ADD)) != 0)
4415		return (spa_vdev_exit(spa, NULL, txg, error));
4416
4417	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4418
4419	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4420	    &nspares) != 0)
4421		nspares = 0;
4422
4423	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4424	    &nl2cache) != 0)
4425		nl2cache = 0;
4426
4427	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4428		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4429
4430	if (vd->vdev_children != 0 &&
4431	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4432		return (spa_vdev_exit(spa, vd, txg, error));
4433
4434	/*
4435	 * We must validate the spares and l2cache devices after checking the
4436	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4437	 */
4438	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4439		return (spa_vdev_exit(spa, vd, txg, error));
4440
4441	/*
4442	 * Transfer each new top-level vdev from vd to rvd.
4443	 */
4444	for (int c = 0; c < vd->vdev_children; c++) {
4445
4446		/*
4447		 * Set the vdev id to the first hole, if one exists.
4448		 */
4449		for (id = 0; id < rvd->vdev_children; id++) {
4450			if (rvd->vdev_child[id]->vdev_ishole) {
4451				vdev_free(rvd->vdev_child[id]);
4452				break;
4453			}
4454		}
4455		tvd = vd->vdev_child[c];
4456		vdev_remove_child(vd, tvd);
4457		tvd->vdev_id = id;
4458		vdev_add_child(rvd, tvd);
4459		vdev_config_dirty(tvd);
4460	}
4461
4462	if (nspares != 0) {
4463		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4464		    ZPOOL_CONFIG_SPARES);
4465		spa_load_spares(spa);
4466		spa->spa_spares.sav_sync = B_TRUE;
4467	}
4468
4469	if (nl2cache != 0) {
4470		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4471		    ZPOOL_CONFIG_L2CACHE);
4472		spa_load_l2cache(spa);
4473		spa->spa_l2cache.sav_sync = B_TRUE;
4474	}
4475
4476	/*
4477	 * We have to be careful when adding new vdevs to an existing pool.
4478	 * If other threads start allocating from these vdevs before we
4479	 * sync the config cache, and we lose power, then upon reboot we may
4480	 * fail to open the pool because there are DVAs that the config cache
4481	 * can't translate.  Therefore, we first add the vdevs without
4482	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4483	 * and then let spa_config_update() initialize the new metaslabs.
4484	 *
4485	 * spa_load() checks for added-but-not-initialized vdevs, so that
4486	 * if we lose power at any point in this sequence, the remaining
4487	 * steps will be completed the next time we load the pool.
4488	 */
4489	(void) spa_vdev_exit(spa, vd, txg, 0);
4490
4491	mutex_enter(&spa_namespace_lock);
4492	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4493	mutex_exit(&spa_namespace_lock);
4494
4495	return (0);
4496}
4497
4498/*
4499 * Attach a device to a mirror.  The arguments are the path to any device
4500 * in the mirror, and the nvroot for the new device.  If the path specifies
4501 * a device that is not mirrored, we automatically insert the mirror vdev.
4502 *
4503 * If 'replacing' is specified, the new device is intended to replace the
4504 * existing device; in this case the two devices are made into their own
4505 * mirror using the 'replacing' vdev, which is functionally identical to
4506 * the mirror vdev (it actually reuses all the same ops) but has a few
4507 * extra rules: you can't attach to it after it's been created, and upon
4508 * completion of resilvering, the first disk (the one being replaced)
4509 * is automatically detached.
4510 */
4511int
4512spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4513{
4514	uint64_t txg, dtl_max_txg;
4515	vdev_t *rvd = spa->spa_root_vdev;
4516	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4517	vdev_ops_t *pvops;
4518	char *oldvdpath, *newvdpath;
4519	int newvd_isspare;
4520	int error;
4521
4522	ASSERT(spa_writeable(spa));
4523
4524	txg = spa_vdev_enter(spa);
4525
4526	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4527
4528	if (oldvd == NULL)
4529		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4530
4531	if (!oldvd->vdev_ops->vdev_op_leaf)
4532		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4533
4534	pvd = oldvd->vdev_parent;
4535
4536	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4537	    VDEV_ALLOC_ATTACH)) != 0)
4538		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4539
4540	if (newrootvd->vdev_children != 1)
4541		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4542
4543	newvd = newrootvd->vdev_child[0];
4544
4545	if (!newvd->vdev_ops->vdev_op_leaf)
4546		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4547
4548	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4549		return (spa_vdev_exit(spa, newrootvd, txg, error));
4550
4551	/*
4552	 * Spares can't replace logs
4553	 */
4554	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4555		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4556
4557	if (!replacing) {
4558		/*
4559		 * For attach, the only allowable parent is a mirror or the root
4560		 * vdev.
4561		 */
4562		if (pvd->vdev_ops != &vdev_mirror_ops &&
4563		    pvd->vdev_ops != &vdev_root_ops)
4564			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4565
4566		pvops = &vdev_mirror_ops;
4567	} else {
4568		/*
4569		 * Active hot spares can only be replaced by inactive hot
4570		 * spares.
4571		 */
4572		if (pvd->vdev_ops == &vdev_spare_ops &&
4573		    oldvd->vdev_isspare &&
4574		    !spa_has_spare(spa, newvd->vdev_guid))
4575			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4576
4577		/*
4578		 * If the source is a hot spare, and the parent isn't already a
4579		 * spare, then we want to create a new hot spare.  Otherwise, we
4580		 * want to create a replacing vdev.  The user is not allowed to
4581		 * attach to a spared vdev child unless the 'isspare' state is
4582		 * the same (spare replaces spare, non-spare replaces
4583		 * non-spare).
4584		 */
4585		if (pvd->vdev_ops == &vdev_replacing_ops &&
4586		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4587			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4588		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4589		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4590			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4591		}
4592
4593		if (newvd->vdev_isspare)
4594			pvops = &vdev_spare_ops;
4595		else
4596			pvops = &vdev_replacing_ops;
4597	}
4598
4599	/*
4600	 * Make sure the new device is big enough.
4601	 */
4602	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4603		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4604
4605	/*
4606	 * The new device cannot have a higher alignment requirement
4607	 * than the top-level vdev.
4608	 */
4609	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4610		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4611
4612	/*
4613	 * If this is an in-place replacement, update oldvd's path and devid
4614	 * to make it distinguishable from newvd, and unopenable from now on.
4615	 */
4616	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4617		spa_strfree(oldvd->vdev_path);
4618		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4619		    KM_SLEEP);
4620		(void) sprintf(oldvd->vdev_path, "%s/%s",
4621		    newvd->vdev_path, "old");
4622		if (oldvd->vdev_devid != NULL) {
4623			spa_strfree(oldvd->vdev_devid);
4624			oldvd->vdev_devid = NULL;
4625		}
4626	}
4627
4628	/* mark the device being resilvered */
4629	newvd->vdev_resilvering = B_TRUE;
4630
4631	/*
4632	 * If the parent is not a mirror, or if we're replacing, insert the new
4633	 * mirror/replacing/spare vdev above oldvd.
4634	 */
4635	if (pvd->vdev_ops != pvops)
4636		pvd = vdev_add_parent(oldvd, pvops);
4637
4638	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4639	ASSERT(pvd->vdev_ops == pvops);
4640	ASSERT(oldvd->vdev_parent == pvd);
4641
4642	/*
4643	 * Extract the new device from its root and add it to pvd.
4644	 */
4645	vdev_remove_child(newrootvd, newvd);
4646	newvd->vdev_id = pvd->vdev_children;
4647	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4648	vdev_add_child(pvd, newvd);
4649
4650	tvd = newvd->vdev_top;
4651	ASSERT(pvd->vdev_top == tvd);
4652	ASSERT(tvd->vdev_parent == rvd);
4653
4654	vdev_config_dirty(tvd);
4655
4656	/*
4657	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4658	 * for any dmu_sync-ed blocks.  It will propagate upward when
4659	 * spa_vdev_exit() calls vdev_dtl_reassess().
4660	 */
4661	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4662
4663	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4664	    dtl_max_txg - TXG_INITIAL);
4665
4666	if (newvd->vdev_isspare) {
4667		spa_spare_activate(newvd);
4668		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4669	}
4670
4671	oldvdpath = spa_strdup(oldvd->vdev_path);
4672	newvdpath = spa_strdup(newvd->vdev_path);
4673	newvd_isspare = newvd->vdev_isspare;
4674
4675	/*
4676	 * Mark newvd's DTL dirty in this txg.
4677	 */
4678	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4679
4680	/*
4681	 * Restart the resilver
4682	 */
4683	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4684
4685	/*
4686	 * Commit the config
4687	 */
4688	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4689
4690	spa_history_log_internal(spa, "vdev attach", NULL,
4691	    "%s vdev=%s %s vdev=%s",
4692	    replacing && newvd_isspare ? "spare in" :
4693	    replacing ? "replace" : "attach", newvdpath,
4694	    replacing ? "for" : "to", oldvdpath);
4695
4696	spa_strfree(oldvdpath);
4697	spa_strfree(newvdpath);
4698
4699	if (spa->spa_bootfs)
4700		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4701
4702	return (0);
4703}
4704
4705/*
4706 * Detach a device from a mirror or replacing vdev.
4707 *
4708 * If 'replace_done' is specified, only detach if the parent
4709 * is a replacing vdev.
4710 */
4711int
4712spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4713{
4714	uint64_t txg;
4715	int error;
4716	vdev_t *rvd = spa->spa_root_vdev;
4717	vdev_t *vd, *pvd, *cvd, *tvd;
4718	boolean_t unspare = B_FALSE;
4719	uint64_t unspare_guid = 0;
4720	char *vdpath;
4721
4722	ASSERT(spa_writeable(spa));
4723
4724	txg = spa_vdev_enter(spa);
4725
4726	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4727
4728	if (vd == NULL)
4729		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4730
4731	if (!vd->vdev_ops->vdev_op_leaf)
4732		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4733
4734	pvd = vd->vdev_parent;
4735
4736	/*
4737	 * If the parent/child relationship is not as expected, don't do it.
4738	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4739	 * vdev that's replacing B with C.  The user's intent in replacing
4740	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4741	 * the replace by detaching C, the expected behavior is to end up
4742	 * M(A,B).  But suppose that right after deciding to detach C,
4743	 * the replacement of B completes.  We would have M(A,C), and then
4744	 * ask to detach C, which would leave us with just A -- not what
4745	 * the user wanted.  To prevent this, we make sure that the
4746	 * parent/child relationship hasn't changed -- in this example,
4747	 * that C's parent is still the replacing vdev R.
4748	 */
4749	if (pvd->vdev_guid != pguid && pguid != 0)
4750		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4751
4752	/*
4753	 * Only 'replacing' or 'spare' vdevs can be replaced.
4754	 */
4755	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4756	    pvd->vdev_ops != &vdev_spare_ops)
4757		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4758
4759	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4760	    spa_version(spa) >= SPA_VERSION_SPARES);
4761
4762	/*
4763	 * Only mirror, replacing, and spare vdevs support detach.
4764	 */
4765	if (pvd->vdev_ops != &vdev_replacing_ops &&
4766	    pvd->vdev_ops != &vdev_mirror_ops &&
4767	    pvd->vdev_ops != &vdev_spare_ops)
4768		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4769
4770	/*
4771	 * If this device has the only valid copy of some data,
4772	 * we cannot safely detach it.
4773	 */
4774	if (vdev_dtl_required(vd))
4775		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4776
4777	ASSERT(pvd->vdev_children >= 2);
4778
4779	/*
4780	 * If we are detaching the second disk from a replacing vdev, then
4781	 * check to see if we changed the original vdev's path to have "/old"
4782	 * at the end in spa_vdev_attach().  If so, undo that change now.
4783	 */
4784	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4785	    vd->vdev_path != NULL) {
4786		size_t len = strlen(vd->vdev_path);
4787
4788		for (int c = 0; c < pvd->vdev_children; c++) {
4789			cvd = pvd->vdev_child[c];
4790
4791			if (cvd == vd || cvd->vdev_path == NULL)
4792				continue;
4793
4794			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4795			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4796				spa_strfree(cvd->vdev_path);
4797				cvd->vdev_path = spa_strdup(vd->vdev_path);
4798				break;
4799			}
4800		}
4801	}
4802
4803	/*
4804	 * If we are detaching the original disk from a spare, then it implies
4805	 * that the spare should become a real disk, and be removed from the
4806	 * active spare list for the pool.
4807	 */
4808	if (pvd->vdev_ops == &vdev_spare_ops &&
4809	    vd->vdev_id == 0 &&
4810	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4811		unspare = B_TRUE;
4812
4813	/*
4814	 * Erase the disk labels so the disk can be used for other things.
4815	 * This must be done after all other error cases are handled,
4816	 * but before we disembowel vd (so we can still do I/O to it).
4817	 * But if we can't do it, don't treat the error as fatal --
4818	 * it may be that the unwritability of the disk is the reason
4819	 * it's being detached!
4820	 */
4821	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4822
4823	/*
4824	 * Remove vd from its parent and compact the parent's children.
4825	 */
4826	vdev_remove_child(pvd, vd);
4827	vdev_compact_children(pvd);
4828
4829	/*
4830	 * Remember one of the remaining children so we can get tvd below.
4831	 */
4832	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4833
4834	/*
4835	 * If we need to remove the remaining child from the list of hot spares,
4836	 * do it now, marking the vdev as no longer a spare in the process.
4837	 * We must do this before vdev_remove_parent(), because that can
4838	 * change the GUID if it creates a new toplevel GUID.  For a similar
4839	 * reason, we must remove the spare now, in the same txg as the detach;
4840	 * otherwise someone could attach a new sibling, change the GUID, and
4841	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4842	 */
4843	if (unspare) {
4844		ASSERT(cvd->vdev_isspare);
4845		spa_spare_remove(cvd);
4846		unspare_guid = cvd->vdev_guid;
4847		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4848		cvd->vdev_unspare = B_TRUE;
4849	}
4850
4851	/*
4852	 * If the parent mirror/replacing vdev only has one child,
4853	 * the parent is no longer needed.  Remove it from the tree.
4854	 */
4855	if (pvd->vdev_children == 1) {
4856		if (pvd->vdev_ops == &vdev_spare_ops)
4857			cvd->vdev_unspare = B_FALSE;
4858		vdev_remove_parent(cvd);
4859		cvd->vdev_resilvering = B_FALSE;
4860	}
4861
4862
4863	/*
4864	 * We don't set tvd until now because the parent we just removed
4865	 * may have been the previous top-level vdev.
4866	 */
4867	tvd = cvd->vdev_top;
4868	ASSERT(tvd->vdev_parent == rvd);
4869
4870	/*
4871	 * Reevaluate the parent vdev state.
4872	 */
4873	vdev_propagate_state(cvd);
4874
4875	/*
4876	 * If the 'autoexpand' property is set on the pool then automatically
4877	 * try to expand the size of the pool. For example if the device we
4878	 * just detached was smaller than the others, it may be possible to
4879	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4880	 * first so that we can obtain the updated sizes of the leaf vdevs.
4881	 */
4882	if (spa->spa_autoexpand) {
4883		vdev_reopen(tvd);
4884		vdev_expand(tvd, txg);
4885	}
4886
4887	vdev_config_dirty(tvd);
4888
4889	/*
4890	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4891	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4892	 * But first make sure we're not on any *other* txg's DTL list, to
4893	 * prevent vd from being accessed after it's freed.
4894	 */
4895	vdpath = spa_strdup(vd->vdev_path);
4896	for (int t = 0; t < TXG_SIZE; t++)
4897		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4898	vd->vdev_detached = B_TRUE;
4899	vdev_dirty(tvd, VDD_DTL, vd, txg);
4900
4901	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4902
4903	/* hang on to the spa before we release the lock */
4904	spa_open_ref(spa, FTAG);
4905
4906	error = spa_vdev_exit(spa, vd, txg, 0);
4907
4908	spa_history_log_internal(spa, "detach", NULL,
4909	    "vdev=%s", vdpath);
4910	spa_strfree(vdpath);
4911
4912	/*
4913	 * If this was the removal of the original device in a hot spare vdev,
4914	 * then we want to go through and remove the device from the hot spare
4915	 * list of every other pool.
4916	 */
4917	if (unspare) {
4918		spa_t *altspa = NULL;
4919
4920		mutex_enter(&spa_namespace_lock);
4921		while ((altspa = spa_next(altspa)) != NULL) {
4922			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4923			    altspa == spa)
4924				continue;
4925
4926			spa_open_ref(altspa, FTAG);
4927			mutex_exit(&spa_namespace_lock);
4928			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4929			mutex_enter(&spa_namespace_lock);
4930			spa_close(altspa, FTAG);
4931		}
4932		mutex_exit(&spa_namespace_lock);
4933
4934		/* search the rest of the vdevs for spares to remove */
4935		spa_vdev_resilver_done(spa);
4936	}
4937
4938	/* all done with the spa; OK to release */
4939	mutex_enter(&spa_namespace_lock);
4940	spa_close(spa, FTAG);
4941	mutex_exit(&spa_namespace_lock);
4942
4943	return (error);
4944}
4945
4946/*
4947 * Split a set of devices from their mirrors, and create a new pool from them.
4948 */
4949int
4950spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4951    nvlist_t *props, boolean_t exp)
4952{
4953	int error = 0;
4954	uint64_t txg, *glist;
4955	spa_t *newspa;
4956	uint_t c, children, lastlog;
4957	nvlist_t **child, *nvl, *tmp;
4958	dmu_tx_t *tx;
4959	char *altroot = NULL;
4960	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4961	boolean_t activate_slog;
4962
4963	ASSERT(spa_writeable(spa));
4964
4965	txg = spa_vdev_enter(spa);
4966
4967	/* clear the log and flush everything up to now */
4968	activate_slog = spa_passivate_log(spa);
4969	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4970	error = spa_offline_log(spa);
4971	txg = spa_vdev_config_enter(spa);
4972
4973	if (activate_slog)
4974		spa_activate_log(spa);
4975
4976	if (error != 0)
4977		return (spa_vdev_exit(spa, NULL, txg, error));
4978
4979	/* check new spa name before going any further */
4980	if (spa_lookup(newname) != NULL)
4981		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4982
4983	/*
4984	 * scan through all the children to ensure they're all mirrors
4985	 */
4986	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4987	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4988	    &children) != 0)
4989		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4990
4991	/* first, check to ensure we've got the right child count */
4992	rvd = spa->spa_root_vdev;
4993	lastlog = 0;
4994	for (c = 0; c < rvd->vdev_children; c++) {
4995		vdev_t *vd = rvd->vdev_child[c];
4996
4997		/* don't count the holes & logs as children */
4998		if (vd->vdev_islog || vd->vdev_ishole) {
4999			if (lastlog == 0)
5000				lastlog = c;
5001			continue;
5002		}
5003
5004		lastlog = 0;
5005	}
5006	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5007		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5008
5009	/* next, ensure no spare or cache devices are part of the split */
5010	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5011	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5012		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5013
5014	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5015	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5016
5017	/* then, loop over each vdev and validate it */
5018	for (c = 0; c < children; c++) {
5019		uint64_t is_hole = 0;
5020
5021		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5022		    &is_hole);
5023
5024		if (is_hole != 0) {
5025			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5026			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5027				continue;
5028			} else {
5029				error = SET_ERROR(EINVAL);
5030				break;
5031			}
5032		}
5033
5034		/* which disk is going to be split? */
5035		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5036		    &glist[c]) != 0) {
5037			error = SET_ERROR(EINVAL);
5038			break;
5039		}
5040
5041		/* look it up in the spa */
5042		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5043		if (vml[c] == NULL) {
5044			error = SET_ERROR(ENODEV);
5045			break;
5046		}
5047
5048		/* make sure there's nothing stopping the split */
5049		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5050		    vml[c]->vdev_islog ||
5051		    vml[c]->vdev_ishole ||
5052		    vml[c]->vdev_isspare ||
5053		    vml[c]->vdev_isl2cache ||
5054		    !vdev_writeable(vml[c]) ||
5055		    vml[c]->vdev_children != 0 ||
5056		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5057		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5058			error = SET_ERROR(EINVAL);
5059			break;
5060		}
5061
5062		if (vdev_dtl_required(vml[c])) {
5063			error = SET_ERROR(EBUSY);
5064			break;
5065		}
5066
5067		/* we need certain info from the top level */
5068		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5069		    vml[c]->vdev_top->vdev_ms_array) == 0);
5070		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5071		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5072		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5073		    vml[c]->vdev_top->vdev_asize) == 0);
5074		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5075		    vml[c]->vdev_top->vdev_ashift) == 0);
5076	}
5077
5078	if (error != 0) {
5079		kmem_free(vml, children * sizeof (vdev_t *));
5080		kmem_free(glist, children * sizeof (uint64_t));
5081		return (spa_vdev_exit(spa, NULL, txg, error));
5082	}
5083
5084	/* stop writers from using the disks */
5085	for (c = 0; c < children; c++) {
5086		if (vml[c] != NULL)
5087			vml[c]->vdev_offline = B_TRUE;
5088	}
5089	vdev_reopen(spa->spa_root_vdev);
5090
5091	/*
5092	 * Temporarily record the splitting vdevs in the spa config.  This
5093	 * will disappear once the config is regenerated.
5094	 */
5095	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5096	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5097	    glist, children) == 0);
5098	kmem_free(glist, children * sizeof (uint64_t));
5099
5100	mutex_enter(&spa->spa_props_lock);
5101	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5102	    nvl) == 0);
5103	mutex_exit(&spa->spa_props_lock);
5104	spa->spa_config_splitting = nvl;
5105	vdev_config_dirty(spa->spa_root_vdev);
5106
5107	/* configure and create the new pool */
5108	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5109	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5110	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5111	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5112	    spa_version(spa)) == 0);
5113	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5114	    spa->spa_config_txg) == 0);
5115	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5116	    spa_generate_guid(NULL)) == 0);
5117	(void) nvlist_lookup_string(props,
5118	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5119
5120	/* add the new pool to the namespace */
5121	newspa = spa_add(newname, config, altroot);
5122	newspa->spa_config_txg = spa->spa_config_txg;
5123	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5124
5125	/* release the spa config lock, retaining the namespace lock */
5126	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5127
5128	if (zio_injection_enabled)
5129		zio_handle_panic_injection(spa, FTAG, 1);
5130
5131	spa_activate(newspa, spa_mode_global);
5132	spa_async_suspend(newspa);
5133
5134#ifndef sun
5135	/* mark that we are creating new spa by splitting */
5136	newspa->spa_splitting_newspa = B_TRUE;
5137#endif
5138	/* create the new pool from the disks of the original pool */
5139	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5140#ifndef sun
5141	newspa->spa_splitting_newspa = B_FALSE;
5142#endif
5143	if (error)
5144		goto out;
5145
5146	/* if that worked, generate a real config for the new pool */
5147	if (newspa->spa_root_vdev != NULL) {
5148		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5149		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5150		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5151		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5152		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5153		    B_TRUE));
5154	}
5155
5156	/* set the props */
5157	if (props != NULL) {
5158		spa_configfile_set(newspa, props, B_FALSE);
5159		error = spa_prop_set(newspa, props);
5160		if (error)
5161			goto out;
5162	}
5163
5164	/* flush everything */
5165	txg = spa_vdev_config_enter(newspa);
5166	vdev_config_dirty(newspa->spa_root_vdev);
5167	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5168
5169	if (zio_injection_enabled)
5170		zio_handle_panic_injection(spa, FTAG, 2);
5171
5172	spa_async_resume(newspa);
5173
5174	/* finally, update the original pool's config */
5175	txg = spa_vdev_config_enter(spa);
5176	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5177	error = dmu_tx_assign(tx, TXG_WAIT);
5178	if (error != 0)
5179		dmu_tx_abort(tx);
5180	for (c = 0; c < children; c++) {
5181		if (vml[c] != NULL) {
5182			vdev_split(vml[c]);
5183			if (error == 0)
5184				spa_history_log_internal(spa, "detach", tx,
5185				    "vdev=%s", vml[c]->vdev_path);
5186			vdev_free(vml[c]);
5187		}
5188	}
5189	vdev_config_dirty(spa->spa_root_vdev);
5190	spa->spa_config_splitting = NULL;
5191	nvlist_free(nvl);
5192	if (error == 0)
5193		dmu_tx_commit(tx);
5194	(void) spa_vdev_exit(spa, NULL, txg, 0);
5195
5196	if (zio_injection_enabled)
5197		zio_handle_panic_injection(spa, FTAG, 3);
5198
5199	/* split is complete; log a history record */
5200	spa_history_log_internal(newspa, "split", NULL,
5201	    "from pool %s", spa_name(spa));
5202
5203	kmem_free(vml, children * sizeof (vdev_t *));
5204
5205	/* if we're not going to mount the filesystems in userland, export */
5206	if (exp)
5207		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5208		    B_FALSE, B_FALSE);
5209
5210	return (error);
5211
5212out:
5213	spa_unload(newspa);
5214	spa_deactivate(newspa);
5215	spa_remove(newspa);
5216
5217	txg = spa_vdev_config_enter(spa);
5218
5219	/* re-online all offlined disks */
5220	for (c = 0; c < children; c++) {
5221		if (vml[c] != NULL)
5222			vml[c]->vdev_offline = B_FALSE;
5223	}
5224	vdev_reopen(spa->spa_root_vdev);
5225
5226	nvlist_free(spa->spa_config_splitting);
5227	spa->spa_config_splitting = NULL;
5228	(void) spa_vdev_exit(spa, NULL, txg, error);
5229
5230	kmem_free(vml, children * sizeof (vdev_t *));
5231	return (error);
5232}
5233
5234static nvlist_t *
5235spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5236{
5237	for (int i = 0; i < count; i++) {
5238		uint64_t guid;
5239
5240		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5241		    &guid) == 0);
5242
5243		if (guid == target_guid)
5244			return (nvpp[i]);
5245	}
5246
5247	return (NULL);
5248}
5249
5250static void
5251spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5252	nvlist_t *dev_to_remove)
5253{
5254	nvlist_t **newdev = NULL;
5255
5256	if (count > 1)
5257		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5258
5259	for (int i = 0, j = 0; i < count; i++) {
5260		if (dev[i] == dev_to_remove)
5261			continue;
5262		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5263	}
5264
5265	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5266	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5267
5268	for (int i = 0; i < count - 1; i++)
5269		nvlist_free(newdev[i]);
5270
5271	if (count > 1)
5272		kmem_free(newdev, (count - 1) * sizeof (void *));
5273}
5274
5275/*
5276 * Evacuate the device.
5277 */
5278static int
5279spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5280{
5281	uint64_t txg;
5282	int error = 0;
5283
5284	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5285	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5286	ASSERT(vd == vd->vdev_top);
5287
5288	/*
5289	 * Evacuate the device.  We don't hold the config lock as writer
5290	 * since we need to do I/O but we do keep the
5291	 * spa_namespace_lock held.  Once this completes the device
5292	 * should no longer have any blocks allocated on it.
5293	 */
5294	if (vd->vdev_islog) {
5295		if (vd->vdev_stat.vs_alloc != 0)
5296			error = spa_offline_log(spa);
5297	} else {
5298		error = SET_ERROR(ENOTSUP);
5299	}
5300
5301	if (error)
5302		return (error);
5303
5304	/*
5305	 * The evacuation succeeded.  Remove any remaining MOS metadata
5306	 * associated with this vdev, and wait for these changes to sync.
5307	 */
5308	ASSERT0(vd->vdev_stat.vs_alloc);
5309	txg = spa_vdev_config_enter(spa);
5310	vd->vdev_removing = B_TRUE;
5311	vdev_dirty(vd, 0, NULL, txg);
5312	vdev_config_dirty(vd);
5313	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5314
5315	return (0);
5316}
5317
5318/*
5319 * Complete the removal by cleaning up the namespace.
5320 */
5321static void
5322spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5323{
5324	vdev_t *rvd = spa->spa_root_vdev;
5325	uint64_t id = vd->vdev_id;
5326	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5327
5328	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5329	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5330	ASSERT(vd == vd->vdev_top);
5331
5332	/*
5333	 * Only remove any devices which are empty.
5334	 */
5335	if (vd->vdev_stat.vs_alloc != 0)
5336		return;
5337
5338	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5339
5340	if (list_link_active(&vd->vdev_state_dirty_node))
5341		vdev_state_clean(vd);
5342	if (list_link_active(&vd->vdev_config_dirty_node))
5343		vdev_config_clean(vd);
5344
5345	vdev_free(vd);
5346
5347	if (last_vdev) {
5348		vdev_compact_children(rvd);
5349	} else {
5350		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5351		vdev_add_child(rvd, vd);
5352	}
5353	vdev_config_dirty(rvd);
5354
5355	/*
5356	 * Reassess the health of our root vdev.
5357	 */
5358	vdev_reopen(rvd);
5359}
5360
5361/*
5362 * Remove a device from the pool -
5363 *
5364 * Removing a device from the vdev namespace requires several steps
5365 * and can take a significant amount of time.  As a result we use
5366 * the spa_vdev_config_[enter/exit] functions which allow us to
5367 * grab and release the spa_config_lock while still holding the namespace
5368 * lock.  During each step the configuration is synced out.
5369 *
5370 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5371 * devices.
5372 */
5373int
5374spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5375{
5376	vdev_t *vd;
5377	metaslab_group_t *mg;
5378	nvlist_t **spares, **l2cache, *nv;
5379	uint64_t txg = 0;
5380	uint_t nspares, nl2cache;
5381	int error = 0;
5382	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5383
5384	ASSERT(spa_writeable(spa));
5385
5386	if (!locked)
5387		txg = spa_vdev_enter(spa);
5388
5389	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5390
5391	if (spa->spa_spares.sav_vdevs != NULL &&
5392	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5393	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5394	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5395		/*
5396		 * Only remove the hot spare if it's not currently in use
5397		 * in this pool.
5398		 */
5399		if (vd == NULL || unspare) {
5400			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5401			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5402			spa_load_spares(spa);
5403			spa->spa_spares.sav_sync = B_TRUE;
5404		} else {
5405			error = SET_ERROR(EBUSY);
5406		}
5407	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5408	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5409	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5410	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5411		/*
5412		 * Cache devices can always be removed.
5413		 */
5414		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5415		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5416		spa_load_l2cache(spa);
5417		spa->spa_l2cache.sav_sync = B_TRUE;
5418	} else if (vd != NULL && vd->vdev_islog) {
5419		ASSERT(!locked);
5420		ASSERT(vd == vd->vdev_top);
5421
5422		/*
5423		 * XXX - Once we have bp-rewrite this should
5424		 * become the common case.
5425		 */
5426
5427		mg = vd->vdev_mg;
5428
5429		/*
5430		 * Stop allocating from this vdev.
5431		 */
5432		metaslab_group_passivate(mg);
5433
5434		/*
5435		 * Wait for the youngest allocations and frees to sync,
5436		 * and then wait for the deferral of those frees to finish.
5437		 */
5438		spa_vdev_config_exit(spa, NULL,
5439		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5440
5441		/*
5442		 * Attempt to evacuate the vdev.
5443		 */
5444		error = spa_vdev_remove_evacuate(spa, vd);
5445
5446		txg = spa_vdev_config_enter(spa);
5447
5448		/*
5449		 * If we couldn't evacuate the vdev, unwind.
5450		 */
5451		if (error) {
5452			metaslab_group_activate(mg);
5453			return (spa_vdev_exit(spa, NULL, txg, error));
5454		}
5455
5456		/*
5457		 * Clean up the vdev namespace.
5458		 */
5459		spa_vdev_remove_from_namespace(spa, vd);
5460
5461	} else if (vd != NULL) {
5462		/*
5463		 * Normal vdevs cannot be removed (yet).
5464		 */
5465		error = SET_ERROR(ENOTSUP);
5466	} else {
5467		/*
5468		 * There is no vdev of any kind with the specified guid.
5469		 */
5470		error = SET_ERROR(ENOENT);
5471	}
5472
5473	if (!locked)
5474		return (spa_vdev_exit(spa, NULL, txg, error));
5475
5476	return (error);
5477}
5478
5479/*
5480 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5481 * currently spared, so we can detach it.
5482 */
5483static vdev_t *
5484spa_vdev_resilver_done_hunt(vdev_t *vd)
5485{
5486	vdev_t *newvd, *oldvd;
5487
5488	for (int c = 0; c < vd->vdev_children; c++) {
5489		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5490		if (oldvd != NULL)
5491			return (oldvd);
5492	}
5493
5494	/*
5495	 * Check for a completed replacement.  We always consider the first
5496	 * vdev in the list to be the oldest vdev, and the last one to be
5497	 * the newest (see spa_vdev_attach() for how that works).  In
5498	 * the case where the newest vdev is faulted, we will not automatically
5499	 * remove it after a resilver completes.  This is OK as it will require
5500	 * user intervention to determine which disk the admin wishes to keep.
5501	 */
5502	if (vd->vdev_ops == &vdev_replacing_ops) {
5503		ASSERT(vd->vdev_children > 1);
5504
5505		newvd = vd->vdev_child[vd->vdev_children - 1];
5506		oldvd = vd->vdev_child[0];
5507
5508		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5509		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5510		    !vdev_dtl_required(oldvd))
5511			return (oldvd);
5512	}
5513
5514	/*
5515	 * Check for a completed resilver with the 'unspare' flag set.
5516	 */
5517	if (vd->vdev_ops == &vdev_spare_ops) {
5518		vdev_t *first = vd->vdev_child[0];
5519		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5520
5521		if (last->vdev_unspare) {
5522			oldvd = first;
5523			newvd = last;
5524		} else if (first->vdev_unspare) {
5525			oldvd = last;
5526			newvd = first;
5527		} else {
5528			oldvd = NULL;
5529		}
5530
5531		if (oldvd != NULL &&
5532		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5533		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5534		    !vdev_dtl_required(oldvd))
5535			return (oldvd);
5536
5537		/*
5538		 * If there are more than two spares attached to a disk,
5539		 * and those spares are not required, then we want to
5540		 * attempt to free them up now so that they can be used
5541		 * by other pools.  Once we're back down to a single
5542		 * disk+spare, we stop removing them.
5543		 */
5544		if (vd->vdev_children > 2) {
5545			newvd = vd->vdev_child[1];
5546
5547			if (newvd->vdev_isspare && last->vdev_isspare &&
5548			    vdev_dtl_empty(last, DTL_MISSING) &&
5549			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5550			    !vdev_dtl_required(newvd))
5551				return (newvd);
5552		}
5553	}
5554
5555	return (NULL);
5556}
5557
5558static void
5559spa_vdev_resilver_done(spa_t *spa)
5560{
5561	vdev_t *vd, *pvd, *ppvd;
5562	uint64_t guid, sguid, pguid, ppguid;
5563
5564	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5565
5566	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5567		pvd = vd->vdev_parent;
5568		ppvd = pvd->vdev_parent;
5569		guid = vd->vdev_guid;
5570		pguid = pvd->vdev_guid;
5571		ppguid = ppvd->vdev_guid;
5572		sguid = 0;
5573		/*
5574		 * If we have just finished replacing a hot spared device, then
5575		 * we need to detach the parent's first child (the original hot
5576		 * spare) as well.
5577		 */
5578		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5579		    ppvd->vdev_children == 2) {
5580			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5581			sguid = ppvd->vdev_child[1]->vdev_guid;
5582		}
5583		spa_config_exit(spa, SCL_ALL, FTAG);
5584		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5585			return;
5586		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5587			return;
5588		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5589	}
5590
5591	spa_config_exit(spa, SCL_ALL, FTAG);
5592}
5593
5594/*
5595 * Update the stored path or FRU for this vdev.
5596 */
5597int
5598spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5599    boolean_t ispath)
5600{
5601	vdev_t *vd;
5602	boolean_t sync = B_FALSE;
5603
5604	ASSERT(spa_writeable(spa));
5605
5606	spa_vdev_state_enter(spa, SCL_ALL);
5607
5608	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5609		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5610
5611	if (!vd->vdev_ops->vdev_op_leaf)
5612		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5613
5614	if (ispath) {
5615		if (strcmp(value, vd->vdev_path) != 0) {
5616			spa_strfree(vd->vdev_path);
5617			vd->vdev_path = spa_strdup(value);
5618			sync = B_TRUE;
5619		}
5620	} else {
5621		if (vd->vdev_fru == NULL) {
5622			vd->vdev_fru = spa_strdup(value);
5623			sync = B_TRUE;
5624		} else if (strcmp(value, vd->vdev_fru) != 0) {
5625			spa_strfree(vd->vdev_fru);
5626			vd->vdev_fru = spa_strdup(value);
5627			sync = B_TRUE;
5628		}
5629	}
5630
5631	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5632}
5633
5634int
5635spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5636{
5637	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5638}
5639
5640int
5641spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5642{
5643	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5644}
5645
5646/*
5647 * ==========================================================================
5648 * SPA Scanning
5649 * ==========================================================================
5650 */
5651
5652int
5653spa_scan_stop(spa_t *spa)
5654{
5655	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5656	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5657		return (SET_ERROR(EBUSY));
5658	return (dsl_scan_cancel(spa->spa_dsl_pool));
5659}
5660
5661int
5662spa_scan(spa_t *spa, pool_scan_func_t func)
5663{
5664	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5665
5666	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5667		return (SET_ERROR(ENOTSUP));
5668
5669	/*
5670	 * If a resilver was requested, but there is no DTL on a
5671	 * writeable leaf device, we have nothing to do.
5672	 */
5673	if (func == POOL_SCAN_RESILVER &&
5674	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5675		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5676		return (0);
5677	}
5678
5679	return (dsl_scan(spa->spa_dsl_pool, func));
5680}
5681
5682/*
5683 * ==========================================================================
5684 * SPA async task processing
5685 * ==========================================================================
5686 */
5687
5688static void
5689spa_async_remove(spa_t *spa, vdev_t *vd)
5690{
5691	if (vd->vdev_remove_wanted) {
5692		vd->vdev_remove_wanted = B_FALSE;
5693		vd->vdev_delayed_close = B_FALSE;
5694		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5695
5696		/*
5697		 * We want to clear the stats, but we don't want to do a full
5698		 * vdev_clear() as that will cause us to throw away
5699		 * degraded/faulted state as well as attempt to reopen the
5700		 * device, all of which is a waste.
5701		 */
5702		vd->vdev_stat.vs_read_errors = 0;
5703		vd->vdev_stat.vs_write_errors = 0;
5704		vd->vdev_stat.vs_checksum_errors = 0;
5705
5706		vdev_state_dirty(vd->vdev_top);
5707	}
5708
5709	for (int c = 0; c < vd->vdev_children; c++)
5710		spa_async_remove(spa, vd->vdev_child[c]);
5711}
5712
5713static void
5714spa_async_probe(spa_t *spa, vdev_t *vd)
5715{
5716	if (vd->vdev_probe_wanted) {
5717		vd->vdev_probe_wanted = B_FALSE;
5718		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5719	}
5720
5721	for (int c = 0; c < vd->vdev_children; c++)
5722		spa_async_probe(spa, vd->vdev_child[c]);
5723}
5724
5725static void
5726spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5727{
5728	sysevent_id_t eid;
5729	nvlist_t *attr;
5730	char *physpath;
5731
5732	if (!spa->spa_autoexpand)
5733		return;
5734
5735	for (int c = 0; c < vd->vdev_children; c++) {
5736		vdev_t *cvd = vd->vdev_child[c];
5737		spa_async_autoexpand(spa, cvd);
5738	}
5739
5740	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5741		return;
5742
5743	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5744	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5745
5746	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5747	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5748
5749	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5750	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5751
5752	nvlist_free(attr);
5753	kmem_free(physpath, MAXPATHLEN);
5754}
5755
5756static void
5757spa_async_thread(void *arg)
5758{
5759	spa_t *spa = arg;
5760	int tasks;
5761
5762	ASSERT(spa->spa_sync_on);
5763
5764	mutex_enter(&spa->spa_async_lock);
5765	tasks = spa->spa_async_tasks;
5766	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5767	mutex_exit(&spa->spa_async_lock);
5768
5769	/*
5770	 * See if the config needs to be updated.
5771	 */
5772	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5773		uint64_t old_space, new_space;
5774
5775		mutex_enter(&spa_namespace_lock);
5776		old_space = metaslab_class_get_space(spa_normal_class(spa));
5777		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5778		new_space = metaslab_class_get_space(spa_normal_class(spa));
5779		mutex_exit(&spa_namespace_lock);
5780
5781		/*
5782		 * If the pool grew as a result of the config update,
5783		 * then log an internal history event.
5784		 */
5785		if (new_space != old_space) {
5786			spa_history_log_internal(spa, "vdev online", NULL,
5787			    "pool '%s' size: %llu(+%llu)",
5788			    spa_name(spa), new_space, new_space - old_space);
5789		}
5790	}
5791
5792	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5793		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5794		spa_async_autoexpand(spa, spa->spa_root_vdev);
5795		spa_config_exit(spa, SCL_CONFIG, FTAG);
5796	}
5797
5798	/*
5799	 * See if any devices need to be probed.
5800	 */
5801	if (tasks & SPA_ASYNC_PROBE) {
5802		spa_vdev_state_enter(spa, SCL_NONE);
5803		spa_async_probe(spa, spa->spa_root_vdev);
5804		(void) spa_vdev_state_exit(spa, NULL, 0);
5805	}
5806
5807	/*
5808	 * If any devices are done replacing, detach them.
5809	 */
5810	if (tasks & SPA_ASYNC_RESILVER_DONE)
5811		spa_vdev_resilver_done(spa);
5812
5813	/*
5814	 * Kick off a resilver.
5815	 */
5816	if (tasks & SPA_ASYNC_RESILVER)
5817		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5818
5819	/*
5820	 * Let the world know that we're done.
5821	 */
5822	mutex_enter(&spa->spa_async_lock);
5823	spa->spa_async_thread = NULL;
5824	cv_broadcast(&spa->spa_async_cv);
5825	mutex_exit(&spa->spa_async_lock);
5826	thread_exit();
5827}
5828
5829static void
5830spa_async_thread_vd(void *arg)
5831{
5832	spa_t *spa = arg;
5833	int tasks;
5834
5835	ASSERT(spa->spa_sync_on);
5836
5837	mutex_enter(&spa->spa_async_lock);
5838	tasks = spa->spa_async_tasks;
5839retry:
5840	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5841	mutex_exit(&spa->spa_async_lock);
5842
5843	/*
5844	 * See if any devices need to be marked REMOVED.
5845	 */
5846	if (tasks & SPA_ASYNC_REMOVE) {
5847		spa_vdev_state_enter(spa, SCL_NONE);
5848		spa_async_remove(spa, spa->spa_root_vdev);
5849		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5850			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5851		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5852			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5853		(void) spa_vdev_state_exit(spa, NULL, 0);
5854	}
5855
5856	/*
5857	 * Let the world know that we're done.
5858	 */
5859	mutex_enter(&spa->spa_async_lock);
5860	tasks = spa->spa_async_tasks;
5861	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5862		goto retry;
5863	spa->spa_async_thread_vd = NULL;
5864	cv_broadcast(&spa->spa_async_cv);
5865	mutex_exit(&spa->spa_async_lock);
5866	thread_exit();
5867}
5868
5869void
5870spa_async_suspend(spa_t *spa)
5871{
5872	mutex_enter(&spa->spa_async_lock);
5873	spa->spa_async_suspended++;
5874	while (spa->spa_async_thread != NULL &&
5875	    spa->spa_async_thread_vd != NULL)
5876		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5877	mutex_exit(&spa->spa_async_lock);
5878}
5879
5880void
5881spa_async_resume(spa_t *spa)
5882{
5883	mutex_enter(&spa->spa_async_lock);
5884	ASSERT(spa->spa_async_suspended != 0);
5885	spa->spa_async_suspended--;
5886	mutex_exit(&spa->spa_async_lock);
5887}
5888
5889static boolean_t
5890spa_async_tasks_pending(spa_t *spa)
5891{
5892	uint_t non_config_tasks;
5893	uint_t config_task;
5894	boolean_t config_task_suspended;
5895
5896	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
5897	    SPA_ASYNC_REMOVE);
5898	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5899	if (spa->spa_ccw_fail_time == 0) {
5900		config_task_suspended = B_FALSE;
5901	} else {
5902		config_task_suspended =
5903		    (gethrtime() - spa->spa_ccw_fail_time) <
5904		    (zfs_ccw_retry_interval * NANOSEC);
5905	}
5906
5907	return (non_config_tasks || (config_task && !config_task_suspended));
5908}
5909
5910static void
5911spa_async_dispatch(spa_t *spa)
5912{
5913	mutex_enter(&spa->spa_async_lock);
5914	if (spa_async_tasks_pending(spa) &&
5915	    !spa->spa_async_suspended &&
5916	    spa->spa_async_thread == NULL &&
5917	    rootdir != NULL)
5918		spa->spa_async_thread = thread_create(NULL, 0,
5919		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5920	mutex_exit(&spa->spa_async_lock);
5921}
5922
5923static void
5924spa_async_dispatch_vd(spa_t *spa)
5925{
5926	mutex_enter(&spa->spa_async_lock);
5927	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
5928	    !spa->spa_async_suspended &&
5929	    spa->spa_async_thread_vd == NULL &&
5930	    rootdir != NULL)
5931		spa->spa_async_thread_vd = thread_create(NULL, 0,
5932		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
5933	mutex_exit(&spa->spa_async_lock);
5934}
5935
5936void
5937spa_async_request(spa_t *spa, int task)
5938{
5939	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5940	mutex_enter(&spa->spa_async_lock);
5941	spa->spa_async_tasks |= task;
5942	mutex_exit(&spa->spa_async_lock);
5943	spa_async_dispatch_vd(spa);
5944}
5945
5946/*
5947 * ==========================================================================
5948 * SPA syncing routines
5949 * ==========================================================================
5950 */
5951
5952static int
5953bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5954{
5955	bpobj_t *bpo = arg;
5956	bpobj_enqueue(bpo, bp, tx);
5957	return (0);
5958}
5959
5960static int
5961spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5962{
5963	zio_t *zio = arg;
5964
5965	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5966	    BP_GET_PSIZE(bp), zio->io_flags));
5967	return (0);
5968}
5969
5970static void
5971spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5972{
5973	char *packed = NULL;
5974	size_t bufsize;
5975	size_t nvsize = 0;
5976	dmu_buf_t *db;
5977
5978	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5979
5980	/*
5981	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5982	 * information.  This avoids the dbuf_will_dirty() path and
5983	 * saves us a pre-read to get data we don't actually care about.
5984	 */
5985	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5986	packed = kmem_alloc(bufsize, KM_SLEEP);
5987
5988	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5989	    KM_SLEEP) == 0);
5990	bzero(packed + nvsize, bufsize - nvsize);
5991
5992	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5993
5994	kmem_free(packed, bufsize);
5995
5996	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5997	dmu_buf_will_dirty(db, tx);
5998	*(uint64_t *)db->db_data = nvsize;
5999	dmu_buf_rele(db, FTAG);
6000}
6001
6002static void
6003spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6004    const char *config, const char *entry)
6005{
6006	nvlist_t *nvroot;
6007	nvlist_t **list;
6008	int i;
6009
6010	if (!sav->sav_sync)
6011		return;
6012
6013	/*
6014	 * Update the MOS nvlist describing the list of available devices.
6015	 * spa_validate_aux() will have already made sure this nvlist is
6016	 * valid and the vdevs are labeled appropriately.
6017	 */
6018	if (sav->sav_object == 0) {
6019		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6020		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6021		    sizeof (uint64_t), tx);
6022		VERIFY(zap_update(spa->spa_meta_objset,
6023		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6024		    &sav->sav_object, tx) == 0);
6025	}
6026
6027	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6028	if (sav->sav_count == 0) {
6029		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6030	} else {
6031		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6032		for (i = 0; i < sav->sav_count; i++)
6033			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6034			    B_FALSE, VDEV_CONFIG_L2CACHE);
6035		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6036		    sav->sav_count) == 0);
6037		for (i = 0; i < sav->sav_count; i++)
6038			nvlist_free(list[i]);
6039		kmem_free(list, sav->sav_count * sizeof (void *));
6040	}
6041
6042	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6043	nvlist_free(nvroot);
6044
6045	sav->sav_sync = B_FALSE;
6046}
6047
6048static void
6049spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6050{
6051	nvlist_t *config;
6052
6053	if (list_is_empty(&spa->spa_config_dirty_list))
6054		return;
6055
6056	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6057
6058	config = spa_config_generate(spa, spa->spa_root_vdev,
6059	    dmu_tx_get_txg(tx), B_FALSE);
6060
6061	/*
6062	 * If we're upgrading the spa version then make sure that
6063	 * the config object gets updated with the correct version.
6064	 */
6065	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6066		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6067		    spa->spa_uberblock.ub_version);
6068
6069	spa_config_exit(spa, SCL_STATE, FTAG);
6070
6071	if (spa->spa_config_syncing)
6072		nvlist_free(spa->spa_config_syncing);
6073	spa->spa_config_syncing = config;
6074
6075	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6076}
6077
6078static void
6079spa_sync_version(void *arg, dmu_tx_t *tx)
6080{
6081	uint64_t *versionp = arg;
6082	uint64_t version = *versionp;
6083	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6084
6085	/*
6086	 * Setting the version is special cased when first creating the pool.
6087	 */
6088	ASSERT(tx->tx_txg != TXG_INITIAL);
6089
6090	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6091	ASSERT(version >= spa_version(spa));
6092
6093	spa->spa_uberblock.ub_version = version;
6094	vdev_config_dirty(spa->spa_root_vdev);
6095	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6096}
6097
6098/*
6099 * Set zpool properties.
6100 */
6101static void
6102spa_sync_props(void *arg, dmu_tx_t *tx)
6103{
6104	nvlist_t *nvp = arg;
6105	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6106	objset_t *mos = spa->spa_meta_objset;
6107	nvpair_t *elem = NULL;
6108
6109	mutex_enter(&spa->spa_props_lock);
6110
6111	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6112		uint64_t intval;
6113		char *strval, *fname;
6114		zpool_prop_t prop;
6115		const char *propname;
6116		zprop_type_t proptype;
6117		zfeature_info_t *feature;
6118
6119		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6120		case ZPROP_INVAL:
6121			/*
6122			 * We checked this earlier in spa_prop_validate().
6123			 */
6124			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6125
6126			fname = strchr(nvpair_name(elem), '@') + 1;
6127			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
6128
6129			spa_feature_enable(spa, feature, tx);
6130			spa_history_log_internal(spa, "set", tx,
6131			    "%s=enabled", nvpair_name(elem));
6132			break;
6133
6134		case ZPOOL_PROP_VERSION:
6135			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6136			/*
6137			 * The version is synced seperatly before other
6138			 * properties and should be correct by now.
6139			 */
6140			ASSERT3U(spa_version(spa), >=, intval);
6141			break;
6142
6143		case ZPOOL_PROP_ALTROOT:
6144			/*
6145			 * 'altroot' is a non-persistent property. It should
6146			 * have been set temporarily at creation or import time.
6147			 */
6148			ASSERT(spa->spa_root != NULL);
6149			break;
6150
6151		case ZPOOL_PROP_READONLY:
6152		case ZPOOL_PROP_CACHEFILE:
6153			/*
6154			 * 'readonly' and 'cachefile' are also non-persisitent
6155			 * properties.
6156			 */
6157			break;
6158		case ZPOOL_PROP_COMMENT:
6159			VERIFY(nvpair_value_string(elem, &strval) == 0);
6160			if (spa->spa_comment != NULL)
6161				spa_strfree(spa->spa_comment);
6162			spa->spa_comment = spa_strdup(strval);
6163			/*
6164			 * We need to dirty the configuration on all the vdevs
6165			 * so that their labels get updated.  It's unnecessary
6166			 * to do this for pool creation since the vdev's
6167			 * configuratoin has already been dirtied.
6168			 */
6169			if (tx->tx_txg != TXG_INITIAL)
6170				vdev_config_dirty(spa->spa_root_vdev);
6171			spa_history_log_internal(spa, "set", tx,
6172			    "%s=%s", nvpair_name(elem), strval);
6173			break;
6174		default:
6175			/*
6176			 * Set pool property values in the poolprops mos object.
6177			 */
6178			if (spa->spa_pool_props_object == 0) {
6179				spa->spa_pool_props_object =
6180				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6181				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6182				    tx);
6183			}
6184
6185			/* normalize the property name */
6186			propname = zpool_prop_to_name(prop);
6187			proptype = zpool_prop_get_type(prop);
6188
6189			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6190				ASSERT(proptype == PROP_TYPE_STRING);
6191				VERIFY(nvpair_value_string(elem, &strval) == 0);
6192				VERIFY(zap_update(mos,
6193				    spa->spa_pool_props_object, propname,
6194				    1, strlen(strval) + 1, strval, tx) == 0);
6195				spa_history_log_internal(spa, "set", tx,
6196				    "%s=%s", nvpair_name(elem), strval);
6197			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6198				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6199
6200				if (proptype == PROP_TYPE_INDEX) {
6201					const char *unused;
6202					VERIFY(zpool_prop_index_to_string(
6203					    prop, intval, &unused) == 0);
6204				}
6205				VERIFY(zap_update(mos,
6206				    spa->spa_pool_props_object, propname,
6207				    8, 1, &intval, tx) == 0);
6208				spa_history_log_internal(spa, "set", tx,
6209				    "%s=%lld", nvpair_name(elem), intval);
6210			} else {
6211				ASSERT(0); /* not allowed */
6212			}
6213
6214			switch (prop) {
6215			case ZPOOL_PROP_DELEGATION:
6216				spa->spa_delegation = intval;
6217				break;
6218			case ZPOOL_PROP_BOOTFS:
6219				spa->spa_bootfs = intval;
6220				break;
6221			case ZPOOL_PROP_FAILUREMODE:
6222				spa->spa_failmode = intval;
6223				break;
6224			case ZPOOL_PROP_AUTOEXPAND:
6225				spa->spa_autoexpand = intval;
6226				if (tx->tx_txg != TXG_INITIAL)
6227					spa_async_request(spa,
6228					    SPA_ASYNC_AUTOEXPAND);
6229				break;
6230			case ZPOOL_PROP_DEDUPDITTO:
6231				spa->spa_dedup_ditto = intval;
6232				break;
6233			default:
6234				break;
6235			}
6236		}
6237
6238	}
6239
6240	mutex_exit(&spa->spa_props_lock);
6241}
6242
6243/*
6244 * Perform one-time upgrade on-disk changes.  spa_version() does not
6245 * reflect the new version this txg, so there must be no changes this
6246 * txg to anything that the upgrade code depends on after it executes.
6247 * Therefore this must be called after dsl_pool_sync() does the sync
6248 * tasks.
6249 */
6250static void
6251spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6252{
6253	dsl_pool_t *dp = spa->spa_dsl_pool;
6254
6255	ASSERT(spa->spa_sync_pass == 1);
6256
6257	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6258
6259	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6260	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6261		dsl_pool_create_origin(dp, tx);
6262
6263		/* Keeping the origin open increases spa_minref */
6264		spa->spa_minref += 3;
6265	}
6266
6267	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6268	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6269		dsl_pool_upgrade_clones(dp, tx);
6270	}
6271
6272	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6273	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6274		dsl_pool_upgrade_dir_clones(dp, tx);
6275
6276		/* Keeping the freedir open increases spa_minref */
6277		spa->spa_minref += 3;
6278	}
6279
6280	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6281	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6282		spa_feature_create_zap_objects(spa, tx);
6283	}
6284	rrw_exit(&dp->dp_config_rwlock, FTAG);
6285}
6286
6287/*
6288 * Sync the specified transaction group.  New blocks may be dirtied as
6289 * part of the process, so we iterate until it converges.
6290 */
6291void
6292spa_sync(spa_t *spa, uint64_t txg)
6293{
6294	dsl_pool_t *dp = spa->spa_dsl_pool;
6295	objset_t *mos = spa->spa_meta_objset;
6296	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6297	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6298	vdev_t *rvd = spa->spa_root_vdev;
6299	vdev_t *vd;
6300	dmu_tx_t *tx;
6301	int error;
6302
6303	VERIFY(spa_writeable(spa));
6304
6305	/*
6306	 * Lock out configuration changes.
6307	 */
6308	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6309
6310	spa->spa_syncing_txg = txg;
6311	spa->spa_sync_pass = 0;
6312
6313	/*
6314	 * If there are any pending vdev state changes, convert them
6315	 * into config changes that go out with this transaction group.
6316	 */
6317	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6318	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6319		/*
6320		 * We need the write lock here because, for aux vdevs,
6321		 * calling vdev_config_dirty() modifies sav_config.
6322		 * This is ugly and will become unnecessary when we
6323		 * eliminate the aux vdev wart by integrating all vdevs
6324		 * into the root vdev tree.
6325		 */
6326		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6327		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6328		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6329			vdev_state_clean(vd);
6330			vdev_config_dirty(vd);
6331		}
6332		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6333		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6334	}
6335	spa_config_exit(spa, SCL_STATE, FTAG);
6336
6337	tx = dmu_tx_create_assigned(dp, txg);
6338
6339	spa->spa_sync_starttime = gethrtime();
6340#ifdef illumos
6341	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6342	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6343#else	/* FreeBSD */
6344#ifdef _KERNEL
6345	callout_reset(&spa->spa_deadman_cycid,
6346	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6347#endif
6348#endif
6349
6350	/*
6351	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6352	 * set spa_deflate if we have no raid-z vdevs.
6353	 */
6354	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6355	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6356		int i;
6357
6358		for (i = 0; i < rvd->vdev_children; i++) {
6359			vd = rvd->vdev_child[i];
6360			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6361				break;
6362		}
6363		if (i == rvd->vdev_children) {
6364			spa->spa_deflate = TRUE;
6365			VERIFY(0 == zap_add(spa->spa_meta_objset,
6366			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6367			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6368		}
6369	}
6370
6371	/*
6372	 * If anything has changed in this txg, or if someone is waiting
6373	 * for this txg to sync (eg, spa_vdev_remove()), push the
6374	 * deferred frees from the previous txg.  If not, leave them
6375	 * alone so that we don't generate work on an otherwise idle
6376	 * system.
6377	 */
6378	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6379	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6380	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6381	    ((dsl_scan_active(dp->dp_scan) ||
6382	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6383		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6384		VERIFY3U(bpobj_iterate(defer_bpo,
6385		    spa_free_sync_cb, zio, tx), ==, 0);
6386		VERIFY0(zio_wait(zio));
6387	}
6388
6389	/*
6390	 * Iterate to convergence.
6391	 */
6392	do {
6393		int pass = ++spa->spa_sync_pass;
6394
6395		spa_sync_config_object(spa, tx);
6396		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6397		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6398		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6399		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6400		spa_errlog_sync(spa, txg);
6401		dsl_pool_sync(dp, txg);
6402
6403		if (pass < zfs_sync_pass_deferred_free) {
6404			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6405			bplist_iterate(free_bpl, spa_free_sync_cb,
6406			    zio, tx);
6407			VERIFY(zio_wait(zio) == 0);
6408		} else {
6409			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6410			    defer_bpo, tx);
6411		}
6412
6413		ddt_sync(spa, txg);
6414		dsl_scan_sync(dp, tx);
6415
6416		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6417			vdev_sync(vd, txg);
6418
6419		if (pass == 1)
6420			spa_sync_upgrades(spa, tx);
6421
6422	} while (dmu_objset_is_dirty(mos, txg));
6423
6424	/*
6425	 * Rewrite the vdev configuration (which includes the uberblock)
6426	 * to commit the transaction group.
6427	 *
6428	 * If there are no dirty vdevs, we sync the uberblock to a few
6429	 * random top-level vdevs that are known to be visible in the
6430	 * config cache (see spa_vdev_add() for a complete description).
6431	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6432	 */
6433	for (;;) {
6434		/*
6435		 * We hold SCL_STATE to prevent vdev open/close/etc.
6436		 * while we're attempting to write the vdev labels.
6437		 */
6438		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6439
6440		if (list_is_empty(&spa->spa_config_dirty_list)) {
6441			vdev_t *svd[SPA_DVAS_PER_BP];
6442			int svdcount = 0;
6443			int children = rvd->vdev_children;
6444			int c0 = spa_get_random(children);
6445
6446			for (int c = 0; c < children; c++) {
6447				vd = rvd->vdev_child[(c0 + c) % children];
6448				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6449					continue;
6450				svd[svdcount++] = vd;
6451				if (svdcount == SPA_DVAS_PER_BP)
6452					break;
6453			}
6454			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6455			if (error != 0)
6456				error = vdev_config_sync(svd, svdcount, txg,
6457				    B_TRUE);
6458		} else {
6459			error = vdev_config_sync(rvd->vdev_child,
6460			    rvd->vdev_children, txg, B_FALSE);
6461			if (error != 0)
6462				error = vdev_config_sync(rvd->vdev_child,
6463				    rvd->vdev_children, txg, B_TRUE);
6464		}
6465
6466		if (error == 0)
6467			spa->spa_last_synced_guid = rvd->vdev_guid;
6468
6469		spa_config_exit(spa, SCL_STATE, FTAG);
6470
6471		if (error == 0)
6472			break;
6473		zio_suspend(spa, NULL);
6474		zio_resume_wait(spa);
6475	}
6476	dmu_tx_commit(tx);
6477
6478#ifdef illumos
6479	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6480#else	/* FreeBSD */
6481#ifdef _KERNEL
6482	callout_drain(&spa->spa_deadman_cycid);
6483#endif
6484#endif
6485
6486	/*
6487	 * Clear the dirty config list.
6488	 */
6489	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6490		vdev_config_clean(vd);
6491
6492	/*
6493	 * Now that the new config has synced transactionally,
6494	 * let it become visible to the config cache.
6495	 */
6496	if (spa->spa_config_syncing != NULL) {
6497		spa_config_set(spa, spa->spa_config_syncing);
6498		spa->spa_config_txg = txg;
6499		spa->spa_config_syncing = NULL;
6500	}
6501
6502	spa->spa_ubsync = spa->spa_uberblock;
6503
6504	dsl_pool_sync_done(dp, txg);
6505
6506	/*
6507	 * Update usable space statistics.
6508	 */
6509	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6510		vdev_sync_done(vd, txg);
6511
6512	spa_update_dspace(spa);
6513
6514	/*
6515	 * It had better be the case that we didn't dirty anything
6516	 * since vdev_config_sync().
6517	 */
6518	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6519	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6520	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6521
6522	spa->spa_sync_pass = 0;
6523
6524	spa_config_exit(spa, SCL_CONFIG, FTAG);
6525
6526	spa_handle_ignored_writes(spa);
6527
6528	/*
6529	 * If any async tasks have been requested, kick them off.
6530	 */
6531	spa_async_dispatch(spa);
6532	spa_async_dispatch_vd(spa);
6533}
6534
6535/*
6536 * Sync all pools.  We don't want to hold the namespace lock across these
6537 * operations, so we take a reference on the spa_t and drop the lock during the
6538 * sync.
6539 */
6540void
6541spa_sync_allpools(void)
6542{
6543	spa_t *spa = NULL;
6544	mutex_enter(&spa_namespace_lock);
6545	while ((spa = spa_next(spa)) != NULL) {
6546		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6547		    !spa_writeable(spa) || spa_suspended(spa))
6548			continue;
6549		spa_open_ref(spa, FTAG);
6550		mutex_exit(&spa_namespace_lock);
6551		txg_wait_synced(spa_get_dsl(spa), 0);
6552		mutex_enter(&spa_namespace_lock);
6553		spa_close(spa, FTAG);
6554	}
6555	mutex_exit(&spa_namespace_lock);
6556}
6557
6558/*
6559 * ==========================================================================
6560 * Miscellaneous routines
6561 * ==========================================================================
6562 */
6563
6564/*
6565 * Remove all pools in the system.
6566 */
6567void
6568spa_evict_all(void)
6569{
6570	spa_t *spa;
6571
6572	/*
6573	 * Remove all cached state.  All pools should be closed now,
6574	 * so every spa in the AVL tree should be unreferenced.
6575	 */
6576	mutex_enter(&spa_namespace_lock);
6577	while ((spa = spa_next(NULL)) != NULL) {
6578		/*
6579		 * Stop async tasks.  The async thread may need to detach
6580		 * a device that's been replaced, which requires grabbing
6581		 * spa_namespace_lock, so we must drop it here.
6582		 */
6583		spa_open_ref(spa, FTAG);
6584		mutex_exit(&spa_namespace_lock);
6585		spa_async_suspend(spa);
6586		mutex_enter(&spa_namespace_lock);
6587		spa_close(spa, FTAG);
6588
6589		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6590			spa_unload(spa);
6591			spa_deactivate(spa);
6592		}
6593		spa_remove(spa);
6594	}
6595	mutex_exit(&spa_namespace_lock);
6596}
6597
6598vdev_t *
6599spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6600{
6601	vdev_t *vd;
6602	int i;
6603
6604	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6605		return (vd);
6606
6607	if (aux) {
6608		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6609			vd = spa->spa_l2cache.sav_vdevs[i];
6610			if (vd->vdev_guid == guid)
6611				return (vd);
6612		}
6613
6614		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6615			vd = spa->spa_spares.sav_vdevs[i];
6616			if (vd->vdev_guid == guid)
6617				return (vd);
6618		}
6619	}
6620
6621	return (NULL);
6622}
6623
6624void
6625spa_upgrade(spa_t *spa, uint64_t version)
6626{
6627	ASSERT(spa_writeable(spa));
6628
6629	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6630
6631	/*
6632	 * This should only be called for a non-faulted pool, and since a
6633	 * future version would result in an unopenable pool, this shouldn't be
6634	 * possible.
6635	 */
6636	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6637	ASSERT(version >= spa->spa_uberblock.ub_version);
6638
6639	spa->spa_uberblock.ub_version = version;
6640	vdev_config_dirty(spa->spa_root_vdev);
6641
6642	spa_config_exit(spa, SCL_ALL, FTAG);
6643
6644	txg_wait_synced(spa_get_dsl(spa), 0);
6645}
6646
6647boolean_t
6648spa_has_spare(spa_t *spa, uint64_t guid)
6649{
6650	int i;
6651	uint64_t spareguid;
6652	spa_aux_vdev_t *sav = &spa->spa_spares;
6653
6654	for (i = 0; i < sav->sav_count; i++)
6655		if (sav->sav_vdevs[i]->vdev_guid == guid)
6656			return (B_TRUE);
6657
6658	for (i = 0; i < sav->sav_npending; i++) {
6659		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6660		    &spareguid) == 0 && spareguid == guid)
6661			return (B_TRUE);
6662	}
6663
6664	return (B_FALSE);
6665}
6666
6667/*
6668 * Check if a pool has an active shared spare device.
6669 * Note: reference count of an active spare is 2, as a spare and as a replace
6670 */
6671static boolean_t
6672spa_has_active_shared_spare(spa_t *spa)
6673{
6674	int i, refcnt;
6675	uint64_t pool;
6676	spa_aux_vdev_t *sav = &spa->spa_spares;
6677
6678	for (i = 0; i < sav->sav_count; i++) {
6679		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6680		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6681		    refcnt > 2)
6682			return (B_TRUE);
6683	}
6684
6685	return (B_FALSE);
6686}
6687
6688/*
6689 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6690 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6691 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6692 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6693 * or zdb as real changes.
6694 */
6695void
6696spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6697{
6698#ifdef _KERNEL
6699	sysevent_t		*ev;
6700	sysevent_attr_list_t	*attr = NULL;
6701	sysevent_value_t	value;
6702	sysevent_id_t		eid;
6703
6704	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6705	    SE_SLEEP);
6706
6707	value.value_type = SE_DATA_TYPE_STRING;
6708	value.value.sv_string = spa_name(spa);
6709	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6710		goto done;
6711
6712	value.value_type = SE_DATA_TYPE_UINT64;
6713	value.value.sv_uint64 = spa_guid(spa);
6714	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6715		goto done;
6716
6717	if (vd) {
6718		value.value_type = SE_DATA_TYPE_UINT64;
6719		value.value.sv_uint64 = vd->vdev_guid;
6720		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6721		    SE_SLEEP) != 0)
6722			goto done;
6723
6724		if (vd->vdev_path) {
6725			value.value_type = SE_DATA_TYPE_STRING;
6726			value.value.sv_string = vd->vdev_path;
6727			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6728			    &value, SE_SLEEP) != 0)
6729				goto done;
6730		}
6731	}
6732
6733	if (sysevent_attach_attributes(ev, attr) != 0)
6734		goto done;
6735	attr = NULL;
6736
6737	(void) log_sysevent(ev, SE_SLEEP, &eid);
6738
6739done:
6740	if (attr)
6741		sysevent_free_attr(attr);
6742	sysevent_free(ev);
6743#endif
6744}
6745