spa.c revision 243505
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63#include <sys/zfeature.h>
64#include <sys/zvol.h>
65#include <sys/trim_map.h>
66
67#ifdef	_KERNEL
68#include <sys/callb.h>
69#include <sys/cpupart.h>
70#include <sys/zone.h>
71#endif	/* _KERNEL */
72
73#include "zfs_prop.h"
74#include "zfs_comutil.h"
75
76/* Check hostid on import? */
77static int check_hostid = 1;
78
79SYSCTL_DECL(_vfs_zfs);
80TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
81SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
82    "Check hostid on import?");
83
84typedef enum zti_modes {
85	zti_mode_fixed,			/* value is # of threads (min 1) */
86	zti_mode_online_percent,	/* value is % of online CPUs */
87	zti_mode_batch,			/* cpu-intensive; value is ignored */
88	zti_mode_null,			/* don't create a taskq */
89	zti_nmodes
90} zti_modes_t;
91
92#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
93#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
94#define	ZTI_BATCH	{ zti_mode_batch, 0 }
95#define	ZTI_NULL	{ zti_mode_null, 0 }
96
97#define	ZTI_ONE		ZTI_FIX(1)
98
99typedef struct zio_taskq_info {
100	enum zti_modes zti_mode;
101	uint_t zti_value;
102} zio_taskq_info_t;
103
104static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
105	"issue", "issue_high", "intr", "intr_high"
106};
107
108/*
109 * Define the taskq threads for the following I/O types:
110 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
111 */
112const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
113	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
114	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
116	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
117	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
118	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
119	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
120};
121
122static dsl_syncfunc_t spa_sync_version;
123static dsl_syncfunc_t spa_sync_props;
124static dsl_checkfunc_t spa_change_guid_check;
125static dsl_syncfunc_t spa_change_guid_sync;
126static boolean_t spa_has_active_shared_spare(spa_t *spa);
127static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
128    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
129    char **ereport);
130static void spa_vdev_resilver_done(spa_t *spa);
131
132uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
133#ifdef PSRSET_BIND
134id_t		zio_taskq_psrset_bind = PS_NONE;
135#endif
136#ifdef SYSDC
137boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
138#endif
139uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
140
141boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
142extern int	zfs_sync_pass_deferred_free;
143
144/*
145 * This (illegal) pool name is used when temporarily importing a spa_t in order
146 * to get the vdev stats associated with the imported devices.
147 */
148#define	TRYIMPORT_NAME	"$import"
149
150/*
151 * ==========================================================================
152 * SPA properties routines
153 * ==========================================================================
154 */
155
156/*
157 * Add a (source=src, propname=propval) list to an nvlist.
158 */
159static void
160spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
161    uint64_t intval, zprop_source_t src)
162{
163	const char *propname = zpool_prop_to_name(prop);
164	nvlist_t *propval;
165
166	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
167	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
168
169	if (strval != NULL)
170		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
171	else
172		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
173
174	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
175	nvlist_free(propval);
176}
177
178/*
179 * Get property values from the spa configuration.
180 */
181static void
182spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
183{
184	vdev_t *rvd = spa->spa_root_vdev;
185	dsl_pool_t *pool = spa->spa_dsl_pool;
186	uint64_t size;
187	uint64_t alloc;
188	uint64_t space;
189	uint64_t cap, version;
190	zprop_source_t src = ZPROP_SRC_NONE;
191	spa_config_dirent_t *dp;
192
193	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
194
195	if (rvd != NULL) {
196		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
197		size = metaslab_class_get_space(spa_normal_class(spa));
198		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
199		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
200		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
201		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
202		    size - alloc, src);
203
204		space = 0;
205		for (int c = 0; c < rvd->vdev_children; c++) {
206			vdev_t *tvd = rvd->vdev_child[c];
207			space += tvd->vdev_max_asize - tvd->vdev_asize;
208		}
209		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
210		    src);
211
212		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
213		    (spa_mode(spa) == FREAD), src);
214
215		cap = (size == 0) ? 0 : (alloc * 100 / size);
216		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
217
218		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
219		    ddt_get_pool_dedup_ratio(spa), src);
220
221		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
222		    rvd->vdev_state, src);
223
224		version = spa_version(spa);
225		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
226			src = ZPROP_SRC_DEFAULT;
227		else
228			src = ZPROP_SRC_LOCAL;
229		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
230	}
231
232	if (pool != NULL) {
233		dsl_dir_t *freedir = pool->dp_free_dir;
234
235		/*
236		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
237		 * when opening pools before this version freedir will be NULL.
238		 */
239		if (freedir != NULL) {
240			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
241			    freedir->dd_phys->dd_used_bytes, src);
242		} else {
243			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
244			    NULL, 0, src);
245		}
246	}
247
248	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
249
250	if (spa->spa_comment != NULL) {
251		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
252		    0, ZPROP_SRC_LOCAL);
253	}
254
255	if (spa->spa_root != NULL)
256		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
257		    0, ZPROP_SRC_LOCAL);
258
259	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
260		if (dp->scd_path == NULL) {
261			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
262			    "none", 0, ZPROP_SRC_LOCAL);
263		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
264			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
265			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
266		}
267	}
268}
269
270/*
271 * Get zpool property values.
272 */
273int
274spa_prop_get(spa_t *spa, nvlist_t **nvp)
275{
276	objset_t *mos = spa->spa_meta_objset;
277	zap_cursor_t zc;
278	zap_attribute_t za;
279	int err;
280
281	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
282
283	mutex_enter(&spa->spa_props_lock);
284
285	/*
286	 * Get properties from the spa config.
287	 */
288	spa_prop_get_config(spa, nvp);
289
290	/* If no pool property object, no more prop to get. */
291	if (mos == NULL || spa->spa_pool_props_object == 0) {
292		mutex_exit(&spa->spa_props_lock);
293		return (0);
294	}
295
296	/*
297	 * Get properties from the MOS pool property object.
298	 */
299	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
300	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
301	    zap_cursor_advance(&zc)) {
302		uint64_t intval = 0;
303		char *strval = NULL;
304		zprop_source_t src = ZPROP_SRC_DEFAULT;
305		zpool_prop_t prop;
306
307		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
308			continue;
309
310		switch (za.za_integer_length) {
311		case 8:
312			/* integer property */
313			if (za.za_first_integer !=
314			    zpool_prop_default_numeric(prop))
315				src = ZPROP_SRC_LOCAL;
316
317			if (prop == ZPOOL_PROP_BOOTFS) {
318				dsl_pool_t *dp;
319				dsl_dataset_t *ds = NULL;
320
321				dp = spa_get_dsl(spa);
322				rw_enter(&dp->dp_config_rwlock, RW_READER);
323				if (err = dsl_dataset_hold_obj(dp,
324				    za.za_first_integer, FTAG, &ds)) {
325					rw_exit(&dp->dp_config_rwlock);
326					break;
327				}
328
329				strval = kmem_alloc(
330				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
331				    KM_SLEEP);
332				dsl_dataset_name(ds, strval);
333				dsl_dataset_rele(ds, FTAG);
334				rw_exit(&dp->dp_config_rwlock);
335			} else {
336				strval = NULL;
337				intval = za.za_first_integer;
338			}
339
340			spa_prop_add_list(*nvp, prop, strval, intval, src);
341
342			if (strval != NULL)
343				kmem_free(strval,
344				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
345
346			break;
347
348		case 1:
349			/* string property */
350			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
351			err = zap_lookup(mos, spa->spa_pool_props_object,
352			    za.za_name, 1, za.za_num_integers, strval);
353			if (err) {
354				kmem_free(strval, za.za_num_integers);
355				break;
356			}
357			spa_prop_add_list(*nvp, prop, strval, 0, src);
358			kmem_free(strval, za.za_num_integers);
359			break;
360
361		default:
362			break;
363		}
364	}
365	zap_cursor_fini(&zc);
366	mutex_exit(&spa->spa_props_lock);
367out:
368	if (err && err != ENOENT) {
369		nvlist_free(*nvp);
370		*nvp = NULL;
371		return (err);
372	}
373
374	return (0);
375}
376
377/*
378 * Validate the given pool properties nvlist and modify the list
379 * for the property values to be set.
380 */
381static int
382spa_prop_validate(spa_t *spa, nvlist_t *props)
383{
384	nvpair_t *elem;
385	int error = 0, reset_bootfs = 0;
386	uint64_t objnum;
387	boolean_t has_feature = B_FALSE;
388
389	elem = NULL;
390	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
391		uint64_t intval;
392		char *strval, *slash, *check, *fname;
393		const char *propname = nvpair_name(elem);
394		zpool_prop_t prop = zpool_name_to_prop(propname);
395
396		switch (prop) {
397		case ZPROP_INVAL:
398			if (!zpool_prop_feature(propname)) {
399				error = EINVAL;
400				break;
401			}
402
403			/*
404			 * Sanitize the input.
405			 */
406			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
407				error = EINVAL;
408				break;
409			}
410
411			if (nvpair_value_uint64(elem, &intval) != 0) {
412				error = EINVAL;
413				break;
414			}
415
416			if (intval != 0) {
417				error = EINVAL;
418				break;
419			}
420
421			fname = strchr(propname, '@') + 1;
422			if (zfeature_lookup_name(fname, NULL) != 0) {
423				error = EINVAL;
424				break;
425			}
426
427			has_feature = B_TRUE;
428			break;
429
430		case ZPOOL_PROP_VERSION:
431			error = nvpair_value_uint64(elem, &intval);
432			if (!error &&
433			    (intval < spa_version(spa) ||
434			    intval > SPA_VERSION_BEFORE_FEATURES ||
435			    has_feature))
436				error = EINVAL;
437			break;
438
439		case ZPOOL_PROP_DELEGATION:
440		case ZPOOL_PROP_AUTOREPLACE:
441		case ZPOOL_PROP_LISTSNAPS:
442		case ZPOOL_PROP_AUTOEXPAND:
443			error = nvpair_value_uint64(elem, &intval);
444			if (!error && intval > 1)
445				error = EINVAL;
446			break;
447
448		case ZPOOL_PROP_BOOTFS:
449			/*
450			 * If the pool version is less than SPA_VERSION_BOOTFS,
451			 * or the pool is still being created (version == 0),
452			 * the bootfs property cannot be set.
453			 */
454			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
455				error = ENOTSUP;
456				break;
457			}
458
459			/*
460			 * Make sure the vdev config is bootable
461			 */
462			if (!vdev_is_bootable(spa->spa_root_vdev)) {
463				error = ENOTSUP;
464				break;
465			}
466
467			reset_bootfs = 1;
468
469			error = nvpair_value_string(elem, &strval);
470
471			if (!error) {
472				objset_t *os;
473				uint64_t compress;
474
475				if (strval == NULL || strval[0] == '\0') {
476					objnum = zpool_prop_default_numeric(
477					    ZPOOL_PROP_BOOTFS);
478					break;
479				}
480
481				if (error = dmu_objset_hold(strval, FTAG, &os))
482					break;
483
484				/* Must be ZPL and not gzip compressed. */
485
486				if (dmu_objset_type(os) != DMU_OST_ZFS) {
487					error = ENOTSUP;
488				} else if ((error = dsl_prop_get_integer(strval,
489				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
490				    &compress, NULL)) == 0 &&
491				    !BOOTFS_COMPRESS_VALID(compress)) {
492					error = ENOTSUP;
493				} else {
494					objnum = dmu_objset_id(os);
495				}
496				dmu_objset_rele(os, FTAG);
497			}
498			break;
499
500		case ZPOOL_PROP_FAILUREMODE:
501			error = nvpair_value_uint64(elem, &intval);
502			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
503			    intval > ZIO_FAILURE_MODE_PANIC))
504				error = EINVAL;
505
506			/*
507			 * This is a special case which only occurs when
508			 * the pool has completely failed. This allows
509			 * the user to change the in-core failmode property
510			 * without syncing it out to disk (I/Os might
511			 * currently be blocked). We do this by returning
512			 * EIO to the caller (spa_prop_set) to trick it
513			 * into thinking we encountered a property validation
514			 * error.
515			 */
516			if (!error && spa_suspended(spa)) {
517				spa->spa_failmode = intval;
518				error = EIO;
519			}
520			break;
521
522		case ZPOOL_PROP_CACHEFILE:
523			if ((error = nvpair_value_string(elem, &strval)) != 0)
524				break;
525
526			if (strval[0] == '\0')
527				break;
528
529			if (strcmp(strval, "none") == 0)
530				break;
531
532			if (strval[0] != '/') {
533				error = EINVAL;
534				break;
535			}
536
537			slash = strrchr(strval, '/');
538			ASSERT(slash != NULL);
539
540			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
541			    strcmp(slash, "/..") == 0)
542				error = EINVAL;
543			break;
544
545		case ZPOOL_PROP_COMMENT:
546			if ((error = nvpair_value_string(elem, &strval)) != 0)
547				break;
548			for (check = strval; *check != '\0'; check++) {
549				/*
550				 * The kernel doesn't have an easy isprint()
551				 * check.  For this kernel check, we merely
552				 * check ASCII apart from DEL.  Fix this if
553				 * there is an easy-to-use kernel isprint().
554				 */
555				if (*check >= 0x7f) {
556					error = EINVAL;
557					break;
558				}
559				check++;
560			}
561			if (strlen(strval) > ZPROP_MAX_COMMENT)
562				error = E2BIG;
563			break;
564
565		case ZPOOL_PROP_DEDUPDITTO:
566			if (spa_version(spa) < SPA_VERSION_DEDUP)
567				error = ENOTSUP;
568			else
569				error = nvpair_value_uint64(elem, &intval);
570			if (error == 0 &&
571			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
572				error = EINVAL;
573			break;
574		}
575
576		if (error)
577			break;
578	}
579
580	if (!error && reset_bootfs) {
581		error = nvlist_remove(props,
582		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
583
584		if (!error) {
585			error = nvlist_add_uint64(props,
586			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
587		}
588	}
589
590	return (error);
591}
592
593void
594spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
595{
596	char *cachefile;
597	spa_config_dirent_t *dp;
598
599	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
600	    &cachefile) != 0)
601		return;
602
603	dp = kmem_alloc(sizeof (spa_config_dirent_t),
604	    KM_SLEEP);
605
606	if (cachefile[0] == '\0')
607		dp->scd_path = spa_strdup(spa_config_path);
608	else if (strcmp(cachefile, "none") == 0)
609		dp->scd_path = NULL;
610	else
611		dp->scd_path = spa_strdup(cachefile);
612
613	list_insert_head(&spa->spa_config_list, dp);
614	if (need_sync)
615		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
616}
617
618int
619spa_prop_set(spa_t *spa, nvlist_t *nvp)
620{
621	int error;
622	nvpair_t *elem = NULL;
623	boolean_t need_sync = B_FALSE;
624
625	if ((error = spa_prop_validate(spa, nvp)) != 0)
626		return (error);
627
628	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
629		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
630
631		if (prop == ZPOOL_PROP_CACHEFILE ||
632		    prop == ZPOOL_PROP_ALTROOT ||
633		    prop == ZPOOL_PROP_READONLY)
634			continue;
635
636		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
637			uint64_t ver;
638
639			if (prop == ZPOOL_PROP_VERSION) {
640				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
641			} else {
642				ASSERT(zpool_prop_feature(nvpair_name(elem)));
643				ver = SPA_VERSION_FEATURES;
644				need_sync = B_TRUE;
645			}
646
647			/* Save time if the version is already set. */
648			if (ver == spa_version(spa))
649				continue;
650
651			/*
652			 * In addition to the pool directory object, we might
653			 * create the pool properties object, the features for
654			 * read object, the features for write object, or the
655			 * feature descriptions object.
656			 */
657			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
658			    spa_sync_version, spa, &ver, 6);
659			if (error)
660				return (error);
661			continue;
662		}
663
664		need_sync = B_TRUE;
665		break;
666	}
667
668	if (need_sync) {
669		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
670		    spa, nvp, 6));
671	}
672
673	return (0);
674}
675
676/*
677 * If the bootfs property value is dsobj, clear it.
678 */
679void
680spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
681{
682	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
683		VERIFY(zap_remove(spa->spa_meta_objset,
684		    spa->spa_pool_props_object,
685		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
686		spa->spa_bootfs = 0;
687	}
688}
689
690/*ARGSUSED*/
691static int
692spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
693{
694	spa_t *spa = arg1;
695	uint64_t *newguid = arg2;
696	vdev_t *rvd = spa->spa_root_vdev;
697	uint64_t vdev_state;
698
699	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
700	vdev_state = rvd->vdev_state;
701	spa_config_exit(spa, SCL_STATE, FTAG);
702
703	if (vdev_state != VDEV_STATE_HEALTHY)
704		return (ENXIO);
705
706	ASSERT3U(spa_guid(spa), !=, *newguid);
707
708	return (0);
709}
710
711static void
712spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
713{
714	spa_t *spa = arg1;
715	uint64_t *newguid = arg2;
716	uint64_t oldguid;
717	vdev_t *rvd = spa->spa_root_vdev;
718
719	oldguid = spa_guid(spa);
720
721	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
722	rvd->vdev_guid = *newguid;
723	rvd->vdev_guid_sum += (*newguid - oldguid);
724	vdev_config_dirty(rvd);
725	spa_config_exit(spa, SCL_STATE, FTAG);
726
727#ifdef __FreeBSD__
728	/*
729	 * TODO: until recent illumos logging changes are merged
730	 *       log reguid as pool property change
731	 */
732	spa_history_log_internal(LOG_POOL_PROPSET, spa, tx,
733	    "guid change old=%llu new=%llu", oldguid, *newguid);
734#else
735	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
736	    oldguid, *newguid);
737#endif
738}
739
740/*
741 * Change the GUID for the pool.  This is done so that we can later
742 * re-import a pool built from a clone of our own vdevs.  We will modify
743 * the root vdev's guid, our own pool guid, and then mark all of our
744 * vdevs dirty.  Note that we must make sure that all our vdevs are
745 * online when we do this, or else any vdevs that weren't present
746 * would be orphaned from our pool.  We are also going to issue a
747 * sysevent to update any watchers.
748 */
749int
750spa_change_guid(spa_t *spa)
751{
752	int error;
753	uint64_t guid;
754
755	mutex_enter(&spa_namespace_lock);
756	guid = spa_generate_guid(NULL);
757
758	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
759	    spa_change_guid_sync, spa, &guid, 5);
760
761	if (error == 0) {
762		spa_config_sync(spa, B_FALSE, B_TRUE);
763		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
764	}
765
766	mutex_exit(&spa_namespace_lock);
767
768	return (error);
769}
770
771/*
772 * ==========================================================================
773 * SPA state manipulation (open/create/destroy/import/export)
774 * ==========================================================================
775 */
776
777static int
778spa_error_entry_compare(const void *a, const void *b)
779{
780	spa_error_entry_t *sa = (spa_error_entry_t *)a;
781	spa_error_entry_t *sb = (spa_error_entry_t *)b;
782	int ret;
783
784	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
785	    sizeof (zbookmark_t));
786
787	if (ret < 0)
788		return (-1);
789	else if (ret > 0)
790		return (1);
791	else
792		return (0);
793}
794
795/*
796 * Utility function which retrieves copies of the current logs and
797 * re-initializes them in the process.
798 */
799void
800spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
801{
802	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
803
804	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
805	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
806
807	avl_create(&spa->spa_errlist_scrub,
808	    spa_error_entry_compare, sizeof (spa_error_entry_t),
809	    offsetof(spa_error_entry_t, se_avl));
810	avl_create(&spa->spa_errlist_last,
811	    spa_error_entry_compare, sizeof (spa_error_entry_t),
812	    offsetof(spa_error_entry_t, se_avl));
813}
814
815static taskq_t *
816spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
817    uint_t value)
818{
819	uint_t flags = TASKQ_PREPOPULATE;
820	boolean_t batch = B_FALSE;
821
822	switch (mode) {
823	case zti_mode_null:
824		return (NULL);		/* no taskq needed */
825
826	case zti_mode_fixed:
827		ASSERT3U(value, >=, 1);
828		value = MAX(value, 1);
829		break;
830
831	case zti_mode_batch:
832		batch = B_TRUE;
833		flags |= TASKQ_THREADS_CPU_PCT;
834		value = zio_taskq_batch_pct;
835		break;
836
837	case zti_mode_online_percent:
838		flags |= TASKQ_THREADS_CPU_PCT;
839		break;
840
841	default:
842		panic("unrecognized mode for %s taskq (%u:%u) in "
843		    "spa_activate()",
844		    name, mode, value);
845		break;
846	}
847
848#ifdef SYSDC
849	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
850		if (batch)
851			flags |= TASKQ_DC_BATCH;
852
853		return (taskq_create_sysdc(name, value, 50, INT_MAX,
854		    spa->spa_proc, zio_taskq_basedc, flags));
855	}
856#endif
857	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
858	    spa->spa_proc, flags));
859}
860
861static void
862spa_create_zio_taskqs(spa_t *spa)
863{
864	for (int t = 0; t < ZIO_TYPES; t++) {
865		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
866			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867			enum zti_modes mode = ztip->zti_mode;
868			uint_t value = ztip->zti_value;
869			char name[32];
870
871			(void) snprintf(name, sizeof (name),
872			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
873
874			spa->spa_zio_taskq[t][q] =
875			    spa_taskq_create(spa, name, mode, value);
876		}
877	}
878}
879
880#ifdef _KERNEL
881#ifdef SPA_PROCESS
882static void
883spa_thread(void *arg)
884{
885	callb_cpr_t cprinfo;
886
887	spa_t *spa = arg;
888	user_t *pu = PTOU(curproc);
889
890	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
891	    spa->spa_name);
892
893	ASSERT(curproc != &p0);
894	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
895	    "zpool-%s", spa->spa_name);
896	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
897
898#ifdef PSRSET_BIND
899	/* bind this thread to the requested psrset */
900	if (zio_taskq_psrset_bind != PS_NONE) {
901		pool_lock();
902		mutex_enter(&cpu_lock);
903		mutex_enter(&pidlock);
904		mutex_enter(&curproc->p_lock);
905
906		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
907		    0, NULL, NULL) == 0)  {
908			curthread->t_bind_pset = zio_taskq_psrset_bind;
909		} else {
910			cmn_err(CE_WARN,
911			    "Couldn't bind process for zfs pool \"%s\" to "
912			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
913		}
914
915		mutex_exit(&curproc->p_lock);
916		mutex_exit(&pidlock);
917		mutex_exit(&cpu_lock);
918		pool_unlock();
919	}
920#endif
921
922#ifdef SYSDC
923	if (zio_taskq_sysdc) {
924		sysdc_thread_enter(curthread, 100, 0);
925	}
926#endif
927
928	spa->spa_proc = curproc;
929	spa->spa_did = curthread->t_did;
930
931	spa_create_zio_taskqs(spa);
932
933	mutex_enter(&spa->spa_proc_lock);
934	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
935
936	spa->spa_proc_state = SPA_PROC_ACTIVE;
937	cv_broadcast(&spa->spa_proc_cv);
938
939	CALLB_CPR_SAFE_BEGIN(&cprinfo);
940	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
941		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
942	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
943
944	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
945	spa->spa_proc_state = SPA_PROC_GONE;
946	spa->spa_proc = &p0;
947	cv_broadcast(&spa->spa_proc_cv);
948	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
949
950	mutex_enter(&curproc->p_lock);
951	lwp_exit();
952}
953#endif	/* SPA_PROCESS */
954#endif
955
956/*
957 * Activate an uninitialized pool.
958 */
959static void
960spa_activate(spa_t *spa, int mode)
961{
962	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
963
964	spa->spa_state = POOL_STATE_ACTIVE;
965	spa->spa_mode = mode;
966
967	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
968	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
969
970	/* Try to create a covering process */
971	mutex_enter(&spa->spa_proc_lock);
972	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
973	ASSERT(spa->spa_proc == &p0);
974	spa->spa_did = 0;
975
976#ifdef SPA_PROCESS
977	/* Only create a process if we're going to be around a while. */
978	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
979		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
980		    NULL, 0) == 0) {
981			spa->spa_proc_state = SPA_PROC_CREATED;
982			while (spa->spa_proc_state == SPA_PROC_CREATED) {
983				cv_wait(&spa->spa_proc_cv,
984				    &spa->spa_proc_lock);
985			}
986			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
987			ASSERT(spa->spa_proc != &p0);
988			ASSERT(spa->spa_did != 0);
989		} else {
990#ifdef _KERNEL
991			cmn_err(CE_WARN,
992			    "Couldn't create process for zfs pool \"%s\"\n",
993			    spa->spa_name);
994#endif
995		}
996	}
997#endif	/* SPA_PROCESS */
998	mutex_exit(&spa->spa_proc_lock);
999
1000	/* If we didn't create a process, we need to create our taskqs. */
1001	ASSERT(spa->spa_proc == &p0);
1002	if (spa->spa_proc == &p0) {
1003		spa_create_zio_taskqs(spa);
1004	}
1005
1006	/*
1007	 * Start TRIM thread.
1008	 */
1009	trim_thread_create(spa);
1010
1011	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1012	    offsetof(vdev_t, vdev_config_dirty_node));
1013	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1014	    offsetof(vdev_t, vdev_state_dirty_node));
1015
1016	txg_list_create(&spa->spa_vdev_txg_list,
1017	    offsetof(struct vdev, vdev_txg_node));
1018
1019	avl_create(&spa->spa_errlist_scrub,
1020	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1021	    offsetof(spa_error_entry_t, se_avl));
1022	avl_create(&spa->spa_errlist_last,
1023	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1024	    offsetof(spa_error_entry_t, se_avl));
1025}
1026
1027/*
1028 * Opposite of spa_activate().
1029 */
1030static void
1031spa_deactivate(spa_t *spa)
1032{
1033	ASSERT(spa->spa_sync_on == B_FALSE);
1034	ASSERT(spa->spa_dsl_pool == NULL);
1035	ASSERT(spa->spa_root_vdev == NULL);
1036	ASSERT(spa->spa_async_zio_root == NULL);
1037	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1038
1039	/*
1040	 * Stop TRIM thread in case spa_unload() wasn't called directly
1041	 * before spa_deactivate().
1042	 */
1043	trim_thread_destroy(spa);
1044
1045	txg_list_destroy(&spa->spa_vdev_txg_list);
1046
1047	list_destroy(&spa->spa_config_dirty_list);
1048	list_destroy(&spa->spa_state_dirty_list);
1049
1050	for (int t = 0; t < ZIO_TYPES; t++) {
1051		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1052			if (spa->spa_zio_taskq[t][q] != NULL)
1053				taskq_destroy(spa->spa_zio_taskq[t][q]);
1054			spa->spa_zio_taskq[t][q] = NULL;
1055		}
1056	}
1057
1058	metaslab_class_destroy(spa->spa_normal_class);
1059	spa->spa_normal_class = NULL;
1060
1061	metaslab_class_destroy(spa->spa_log_class);
1062	spa->spa_log_class = NULL;
1063
1064	/*
1065	 * If this was part of an import or the open otherwise failed, we may
1066	 * still have errors left in the queues.  Empty them just in case.
1067	 */
1068	spa_errlog_drain(spa);
1069
1070	avl_destroy(&spa->spa_errlist_scrub);
1071	avl_destroy(&spa->spa_errlist_last);
1072
1073	spa->spa_state = POOL_STATE_UNINITIALIZED;
1074
1075	mutex_enter(&spa->spa_proc_lock);
1076	if (spa->spa_proc_state != SPA_PROC_NONE) {
1077		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1078		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1079		cv_broadcast(&spa->spa_proc_cv);
1080		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1081			ASSERT(spa->spa_proc != &p0);
1082			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1083		}
1084		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1085		spa->spa_proc_state = SPA_PROC_NONE;
1086	}
1087	ASSERT(spa->spa_proc == &p0);
1088	mutex_exit(&spa->spa_proc_lock);
1089
1090#ifdef SPA_PROCESS
1091	/*
1092	 * We want to make sure spa_thread() has actually exited the ZFS
1093	 * module, so that the module can't be unloaded out from underneath
1094	 * it.
1095	 */
1096	if (spa->spa_did != 0) {
1097		thread_join(spa->spa_did);
1098		spa->spa_did = 0;
1099	}
1100#endif	/* SPA_PROCESS */
1101}
1102
1103/*
1104 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1105 * will create all the necessary vdevs in the appropriate layout, with each vdev
1106 * in the CLOSED state.  This will prep the pool before open/creation/import.
1107 * All vdev validation is done by the vdev_alloc() routine.
1108 */
1109static int
1110spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1111    uint_t id, int atype)
1112{
1113	nvlist_t **child;
1114	uint_t children;
1115	int error;
1116
1117	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1118		return (error);
1119
1120	if ((*vdp)->vdev_ops->vdev_op_leaf)
1121		return (0);
1122
1123	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1124	    &child, &children);
1125
1126	if (error == ENOENT)
1127		return (0);
1128
1129	if (error) {
1130		vdev_free(*vdp);
1131		*vdp = NULL;
1132		return (EINVAL);
1133	}
1134
1135	for (int c = 0; c < children; c++) {
1136		vdev_t *vd;
1137		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1138		    atype)) != 0) {
1139			vdev_free(*vdp);
1140			*vdp = NULL;
1141			return (error);
1142		}
1143	}
1144
1145	ASSERT(*vdp != NULL);
1146
1147	return (0);
1148}
1149
1150/*
1151 * Opposite of spa_load().
1152 */
1153static void
1154spa_unload(spa_t *spa)
1155{
1156	int i;
1157
1158	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1159
1160	/*
1161	 * Stop TRIM thread.
1162	 */
1163	trim_thread_destroy(spa);
1164
1165	/*
1166	 * Stop async tasks.
1167	 */
1168	spa_async_suspend(spa);
1169
1170	/*
1171	 * Stop syncing.
1172	 */
1173	if (spa->spa_sync_on) {
1174		txg_sync_stop(spa->spa_dsl_pool);
1175		spa->spa_sync_on = B_FALSE;
1176	}
1177
1178	/*
1179	 * Wait for any outstanding async I/O to complete.
1180	 */
1181	if (spa->spa_async_zio_root != NULL) {
1182		(void) zio_wait(spa->spa_async_zio_root);
1183		spa->spa_async_zio_root = NULL;
1184	}
1185
1186	bpobj_close(&spa->spa_deferred_bpobj);
1187
1188	/*
1189	 * Close the dsl pool.
1190	 */
1191	if (spa->spa_dsl_pool) {
1192		dsl_pool_close(spa->spa_dsl_pool);
1193		spa->spa_dsl_pool = NULL;
1194		spa->spa_meta_objset = NULL;
1195	}
1196
1197	ddt_unload(spa);
1198
1199	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1200
1201	/*
1202	 * Drop and purge level 2 cache
1203	 */
1204	spa_l2cache_drop(spa);
1205
1206	/*
1207	 * Close all vdevs.
1208	 */
1209	if (spa->spa_root_vdev)
1210		vdev_free(spa->spa_root_vdev);
1211	ASSERT(spa->spa_root_vdev == NULL);
1212
1213	for (i = 0; i < spa->spa_spares.sav_count; i++)
1214		vdev_free(spa->spa_spares.sav_vdevs[i]);
1215	if (spa->spa_spares.sav_vdevs) {
1216		kmem_free(spa->spa_spares.sav_vdevs,
1217		    spa->spa_spares.sav_count * sizeof (void *));
1218		spa->spa_spares.sav_vdevs = NULL;
1219	}
1220	if (spa->spa_spares.sav_config) {
1221		nvlist_free(spa->spa_spares.sav_config);
1222		spa->spa_spares.sav_config = NULL;
1223	}
1224	spa->spa_spares.sav_count = 0;
1225
1226	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1227		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1228		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1229	}
1230	if (spa->spa_l2cache.sav_vdevs) {
1231		kmem_free(spa->spa_l2cache.sav_vdevs,
1232		    spa->spa_l2cache.sav_count * sizeof (void *));
1233		spa->spa_l2cache.sav_vdevs = NULL;
1234	}
1235	if (spa->spa_l2cache.sav_config) {
1236		nvlist_free(spa->spa_l2cache.sav_config);
1237		spa->spa_l2cache.sav_config = NULL;
1238	}
1239	spa->spa_l2cache.sav_count = 0;
1240
1241	spa->spa_async_suspended = 0;
1242
1243	if (spa->spa_comment != NULL) {
1244		spa_strfree(spa->spa_comment);
1245		spa->spa_comment = NULL;
1246	}
1247
1248	spa_config_exit(spa, SCL_ALL, FTAG);
1249}
1250
1251/*
1252 * Load (or re-load) the current list of vdevs describing the active spares for
1253 * this pool.  When this is called, we have some form of basic information in
1254 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1255 * then re-generate a more complete list including status information.
1256 */
1257static void
1258spa_load_spares(spa_t *spa)
1259{
1260	nvlist_t **spares;
1261	uint_t nspares;
1262	int i;
1263	vdev_t *vd, *tvd;
1264
1265	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1266
1267	/*
1268	 * First, close and free any existing spare vdevs.
1269	 */
1270	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1271		vd = spa->spa_spares.sav_vdevs[i];
1272
1273		/* Undo the call to spa_activate() below */
1274		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1275		    B_FALSE)) != NULL && tvd->vdev_isspare)
1276			spa_spare_remove(tvd);
1277		vdev_close(vd);
1278		vdev_free(vd);
1279	}
1280
1281	if (spa->spa_spares.sav_vdevs)
1282		kmem_free(spa->spa_spares.sav_vdevs,
1283		    spa->spa_spares.sav_count * sizeof (void *));
1284
1285	if (spa->spa_spares.sav_config == NULL)
1286		nspares = 0;
1287	else
1288		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1289		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1290
1291	spa->spa_spares.sav_count = (int)nspares;
1292	spa->spa_spares.sav_vdevs = NULL;
1293
1294	if (nspares == 0)
1295		return;
1296
1297	/*
1298	 * Construct the array of vdevs, opening them to get status in the
1299	 * process.   For each spare, there is potentially two different vdev_t
1300	 * structures associated with it: one in the list of spares (used only
1301	 * for basic validation purposes) and one in the active vdev
1302	 * configuration (if it's spared in).  During this phase we open and
1303	 * validate each vdev on the spare list.  If the vdev also exists in the
1304	 * active configuration, then we also mark this vdev as an active spare.
1305	 */
1306	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1307	    KM_SLEEP);
1308	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1309		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1310		    VDEV_ALLOC_SPARE) == 0);
1311		ASSERT(vd != NULL);
1312
1313		spa->spa_spares.sav_vdevs[i] = vd;
1314
1315		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1316		    B_FALSE)) != NULL) {
1317			if (!tvd->vdev_isspare)
1318				spa_spare_add(tvd);
1319
1320			/*
1321			 * We only mark the spare active if we were successfully
1322			 * able to load the vdev.  Otherwise, importing a pool
1323			 * with a bad active spare would result in strange
1324			 * behavior, because multiple pool would think the spare
1325			 * is actively in use.
1326			 *
1327			 * There is a vulnerability here to an equally bizarre
1328			 * circumstance, where a dead active spare is later
1329			 * brought back to life (onlined or otherwise).  Given
1330			 * the rarity of this scenario, and the extra complexity
1331			 * it adds, we ignore the possibility.
1332			 */
1333			if (!vdev_is_dead(tvd))
1334				spa_spare_activate(tvd);
1335		}
1336
1337		vd->vdev_top = vd;
1338		vd->vdev_aux = &spa->spa_spares;
1339
1340		if (vdev_open(vd) != 0)
1341			continue;
1342
1343		if (vdev_validate_aux(vd) == 0)
1344			spa_spare_add(vd);
1345	}
1346
1347	/*
1348	 * Recompute the stashed list of spares, with status information
1349	 * this time.
1350	 */
1351	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1352	    DATA_TYPE_NVLIST_ARRAY) == 0);
1353
1354	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1355	    KM_SLEEP);
1356	for (i = 0; i < spa->spa_spares.sav_count; i++)
1357		spares[i] = vdev_config_generate(spa,
1358		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1359	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1360	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1361	for (i = 0; i < spa->spa_spares.sav_count; i++)
1362		nvlist_free(spares[i]);
1363	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1364}
1365
1366/*
1367 * Load (or re-load) the current list of vdevs describing the active l2cache for
1368 * this pool.  When this is called, we have some form of basic information in
1369 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1370 * then re-generate a more complete list including status information.
1371 * Devices which are already active have their details maintained, and are
1372 * not re-opened.
1373 */
1374static void
1375spa_load_l2cache(spa_t *spa)
1376{
1377	nvlist_t **l2cache;
1378	uint_t nl2cache;
1379	int i, j, oldnvdevs;
1380	uint64_t guid;
1381	vdev_t *vd, **oldvdevs, **newvdevs;
1382	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1383
1384	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1385
1386	if (sav->sav_config != NULL) {
1387		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1388		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1389		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1390	} else {
1391		nl2cache = 0;
1392	}
1393
1394	oldvdevs = sav->sav_vdevs;
1395	oldnvdevs = sav->sav_count;
1396	sav->sav_vdevs = NULL;
1397	sav->sav_count = 0;
1398
1399	/*
1400	 * Process new nvlist of vdevs.
1401	 */
1402	for (i = 0; i < nl2cache; i++) {
1403		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1404		    &guid) == 0);
1405
1406		newvdevs[i] = NULL;
1407		for (j = 0; j < oldnvdevs; j++) {
1408			vd = oldvdevs[j];
1409			if (vd != NULL && guid == vd->vdev_guid) {
1410				/*
1411				 * Retain previous vdev for add/remove ops.
1412				 */
1413				newvdevs[i] = vd;
1414				oldvdevs[j] = NULL;
1415				break;
1416			}
1417		}
1418
1419		if (newvdevs[i] == NULL) {
1420			/*
1421			 * Create new vdev
1422			 */
1423			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1424			    VDEV_ALLOC_L2CACHE) == 0);
1425			ASSERT(vd != NULL);
1426			newvdevs[i] = vd;
1427
1428			/*
1429			 * Commit this vdev as an l2cache device,
1430			 * even if it fails to open.
1431			 */
1432			spa_l2cache_add(vd);
1433
1434			vd->vdev_top = vd;
1435			vd->vdev_aux = sav;
1436
1437			spa_l2cache_activate(vd);
1438
1439			if (vdev_open(vd) != 0)
1440				continue;
1441
1442			(void) vdev_validate_aux(vd);
1443
1444			if (!vdev_is_dead(vd))
1445				l2arc_add_vdev(spa, vd);
1446		}
1447	}
1448
1449	/*
1450	 * Purge vdevs that were dropped
1451	 */
1452	for (i = 0; i < oldnvdevs; i++) {
1453		uint64_t pool;
1454
1455		vd = oldvdevs[i];
1456		if (vd != NULL) {
1457			ASSERT(vd->vdev_isl2cache);
1458
1459			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1460			    pool != 0ULL && l2arc_vdev_present(vd))
1461				l2arc_remove_vdev(vd);
1462			vdev_clear_stats(vd);
1463			vdev_free(vd);
1464		}
1465	}
1466
1467	if (oldvdevs)
1468		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1469
1470	if (sav->sav_config == NULL)
1471		goto out;
1472
1473	sav->sav_vdevs = newvdevs;
1474	sav->sav_count = (int)nl2cache;
1475
1476	/*
1477	 * Recompute the stashed list of l2cache devices, with status
1478	 * information this time.
1479	 */
1480	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1481	    DATA_TYPE_NVLIST_ARRAY) == 0);
1482
1483	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1484	for (i = 0; i < sav->sav_count; i++)
1485		l2cache[i] = vdev_config_generate(spa,
1486		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1487	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1488	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1489out:
1490	for (i = 0; i < sav->sav_count; i++)
1491		nvlist_free(l2cache[i]);
1492	if (sav->sav_count)
1493		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1494}
1495
1496static int
1497load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1498{
1499	dmu_buf_t *db;
1500	char *packed = NULL;
1501	size_t nvsize = 0;
1502	int error;
1503	*value = NULL;
1504
1505	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1506	nvsize = *(uint64_t *)db->db_data;
1507	dmu_buf_rele(db, FTAG);
1508
1509	packed = kmem_alloc(nvsize, KM_SLEEP);
1510	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1511	    DMU_READ_PREFETCH);
1512	if (error == 0)
1513		error = nvlist_unpack(packed, nvsize, value, 0);
1514	kmem_free(packed, nvsize);
1515
1516	return (error);
1517}
1518
1519/*
1520 * Checks to see if the given vdev could not be opened, in which case we post a
1521 * sysevent to notify the autoreplace code that the device has been removed.
1522 */
1523static void
1524spa_check_removed(vdev_t *vd)
1525{
1526	for (int c = 0; c < vd->vdev_children; c++)
1527		spa_check_removed(vd->vdev_child[c]);
1528
1529	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1530		zfs_post_autoreplace(vd->vdev_spa, vd);
1531		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1532	}
1533}
1534
1535/*
1536 * Validate the current config against the MOS config
1537 */
1538static boolean_t
1539spa_config_valid(spa_t *spa, nvlist_t *config)
1540{
1541	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1542	nvlist_t *nv;
1543
1544	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1545
1546	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1547	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1548
1549	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1550
1551	/*
1552	 * If we're doing a normal import, then build up any additional
1553	 * diagnostic information about missing devices in this config.
1554	 * We'll pass this up to the user for further processing.
1555	 */
1556	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1557		nvlist_t **child, *nv;
1558		uint64_t idx = 0;
1559
1560		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1561		    KM_SLEEP);
1562		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1563
1564		for (int c = 0; c < rvd->vdev_children; c++) {
1565			vdev_t *tvd = rvd->vdev_child[c];
1566			vdev_t *mtvd  = mrvd->vdev_child[c];
1567
1568			if (tvd->vdev_ops == &vdev_missing_ops &&
1569			    mtvd->vdev_ops != &vdev_missing_ops &&
1570			    mtvd->vdev_islog)
1571				child[idx++] = vdev_config_generate(spa, mtvd,
1572				    B_FALSE, 0);
1573		}
1574
1575		if (idx) {
1576			VERIFY(nvlist_add_nvlist_array(nv,
1577			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1578			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1579			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1580
1581			for (int i = 0; i < idx; i++)
1582				nvlist_free(child[i]);
1583		}
1584		nvlist_free(nv);
1585		kmem_free(child, rvd->vdev_children * sizeof (char **));
1586	}
1587
1588	/*
1589	 * Compare the root vdev tree with the information we have
1590	 * from the MOS config (mrvd). Check each top-level vdev
1591	 * with the corresponding MOS config top-level (mtvd).
1592	 */
1593	for (int c = 0; c < rvd->vdev_children; c++) {
1594		vdev_t *tvd = rvd->vdev_child[c];
1595		vdev_t *mtvd  = mrvd->vdev_child[c];
1596
1597		/*
1598		 * Resolve any "missing" vdevs in the current configuration.
1599		 * If we find that the MOS config has more accurate information
1600		 * about the top-level vdev then use that vdev instead.
1601		 */
1602		if (tvd->vdev_ops == &vdev_missing_ops &&
1603		    mtvd->vdev_ops != &vdev_missing_ops) {
1604
1605			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1606				continue;
1607
1608			/*
1609			 * Device specific actions.
1610			 */
1611			if (mtvd->vdev_islog) {
1612				spa_set_log_state(spa, SPA_LOG_CLEAR);
1613			} else {
1614				/*
1615				 * XXX - once we have 'readonly' pool
1616				 * support we should be able to handle
1617				 * missing data devices by transitioning
1618				 * the pool to readonly.
1619				 */
1620				continue;
1621			}
1622
1623			/*
1624			 * Swap the missing vdev with the data we were
1625			 * able to obtain from the MOS config.
1626			 */
1627			vdev_remove_child(rvd, tvd);
1628			vdev_remove_child(mrvd, mtvd);
1629
1630			vdev_add_child(rvd, mtvd);
1631			vdev_add_child(mrvd, tvd);
1632
1633			spa_config_exit(spa, SCL_ALL, FTAG);
1634			vdev_load(mtvd);
1635			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1636
1637			vdev_reopen(rvd);
1638		} else if (mtvd->vdev_islog) {
1639			/*
1640			 * Load the slog device's state from the MOS config
1641			 * since it's possible that the label does not
1642			 * contain the most up-to-date information.
1643			 */
1644			vdev_load_log_state(tvd, mtvd);
1645			vdev_reopen(tvd);
1646		}
1647	}
1648	vdev_free(mrvd);
1649	spa_config_exit(spa, SCL_ALL, FTAG);
1650
1651	/*
1652	 * Ensure we were able to validate the config.
1653	 */
1654	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1655}
1656
1657/*
1658 * Check for missing log devices
1659 */
1660static int
1661spa_check_logs(spa_t *spa)
1662{
1663	switch (spa->spa_log_state) {
1664	case SPA_LOG_MISSING:
1665		/* need to recheck in case slog has been restored */
1666	case SPA_LOG_UNKNOWN:
1667		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1668		    DS_FIND_CHILDREN)) {
1669			spa_set_log_state(spa, SPA_LOG_MISSING);
1670			return (1);
1671		}
1672		break;
1673	}
1674	return (0);
1675}
1676
1677static boolean_t
1678spa_passivate_log(spa_t *spa)
1679{
1680	vdev_t *rvd = spa->spa_root_vdev;
1681	boolean_t slog_found = B_FALSE;
1682
1683	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1684
1685	if (!spa_has_slogs(spa))
1686		return (B_FALSE);
1687
1688	for (int c = 0; c < rvd->vdev_children; c++) {
1689		vdev_t *tvd = rvd->vdev_child[c];
1690		metaslab_group_t *mg = tvd->vdev_mg;
1691
1692		if (tvd->vdev_islog) {
1693			metaslab_group_passivate(mg);
1694			slog_found = B_TRUE;
1695		}
1696	}
1697
1698	return (slog_found);
1699}
1700
1701static void
1702spa_activate_log(spa_t *spa)
1703{
1704	vdev_t *rvd = spa->spa_root_vdev;
1705
1706	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1707
1708	for (int c = 0; c < rvd->vdev_children; c++) {
1709		vdev_t *tvd = rvd->vdev_child[c];
1710		metaslab_group_t *mg = tvd->vdev_mg;
1711
1712		if (tvd->vdev_islog)
1713			metaslab_group_activate(mg);
1714	}
1715}
1716
1717int
1718spa_offline_log(spa_t *spa)
1719{
1720	int error = 0;
1721
1722	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1723	    NULL, DS_FIND_CHILDREN)) == 0) {
1724
1725		/*
1726		 * We successfully offlined the log device, sync out the
1727		 * current txg so that the "stubby" block can be removed
1728		 * by zil_sync().
1729		 */
1730		txg_wait_synced(spa->spa_dsl_pool, 0);
1731	}
1732	return (error);
1733}
1734
1735static void
1736spa_aux_check_removed(spa_aux_vdev_t *sav)
1737{
1738	int i;
1739
1740	for (i = 0; i < sav->sav_count; i++)
1741		spa_check_removed(sav->sav_vdevs[i]);
1742}
1743
1744void
1745spa_claim_notify(zio_t *zio)
1746{
1747	spa_t *spa = zio->io_spa;
1748
1749	if (zio->io_error)
1750		return;
1751
1752	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1753	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1754		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1755	mutex_exit(&spa->spa_props_lock);
1756}
1757
1758typedef struct spa_load_error {
1759	uint64_t	sle_meta_count;
1760	uint64_t	sle_data_count;
1761} spa_load_error_t;
1762
1763static void
1764spa_load_verify_done(zio_t *zio)
1765{
1766	blkptr_t *bp = zio->io_bp;
1767	spa_load_error_t *sle = zio->io_private;
1768	dmu_object_type_t type = BP_GET_TYPE(bp);
1769	int error = zio->io_error;
1770
1771	if (error) {
1772		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1773		    type != DMU_OT_INTENT_LOG)
1774			atomic_add_64(&sle->sle_meta_count, 1);
1775		else
1776			atomic_add_64(&sle->sle_data_count, 1);
1777	}
1778	zio_data_buf_free(zio->io_data, zio->io_size);
1779}
1780
1781/*ARGSUSED*/
1782static int
1783spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1784    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1785{
1786	if (bp != NULL) {
1787		zio_t *rio = arg;
1788		size_t size = BP_GET_PSIZE(bp);
1789		void *data = zio_data_buf_alloc(size);
1790
1791		zio_nowait(zio_read(rio, spa, bp, data, size,
1792		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1793		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1794		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1795	}
1796	return (0);
1797}
1798
1799static int
1800spa_load_verify(spa_t *spa)
1801{
1802	zio_t *rio;
1803	spa_load_error_t sle = { 0 };
1804	zpool_rewind_policy_t policy;
1805	boolean_t verify_ok = B_FALSE;
1806	int error;
1807
1808	zpool_get_rewind_policy(spa->spa_config, &policy);
1809
1810	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1811		return (0);
1812
1813	rio = zio_root(spa, NULL, &sle,
1814	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1815
1816	error = traverse_pool(spa, spa->spa_verify_min_txg,
1817	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1818
1819	(void) zio_wait(rio);
1820
1821	spa->spa_load_meta_errors = sle.sle_meta_count;
1822	spa->spa_load_data_errors = sle.sle_data_count;
1823
1824	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1825	    sle.sle_data_count <= policy.zrp_maxdata) {
1826		int64_t loss = 0;
1827
1828		verify_ok = B_TRUE;
1829		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1830		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1831
1832		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1833		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1834		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1835		VERIFY(nvlist_add_int64(spa->spa_load_info,
1836		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1837		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1838		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1839	} else {
1840		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1841	}
1842
1843	if (error) {
1844		if (error != ENXIO && error != EIO)
1845			error = EIO;
1846		return (error);
1847	}
1848
1849	return (verify_ok ? 0 : EIO);
1850}
1851
1852/*
1853 * Find a value in the pool props object.
1854 */
1855static void
1856spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1857{
1858	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1859	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1860}
1861
1862/*
1863 * Find a value in the pool directory object.
1864 */
1865static int
1866spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1867{
1868	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1869	    name, sizeof (uint64_t), 1, val));
1870}
1871
1872static int
1873spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1874{
1875	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1876	return (err);
1877}
1878
1879/*
1880 * Fix up config after a partly-completed split.  This is done with the
1881 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1882 * pool have that entry in their config, but only the splitting one contains
1883 * a list of all the guids of the vdevs that are being split off.
1884 *
1885 * This function determines what to do with that list: either rejoin
1886 * all the disks to the pool, or complete the splitting process.  To attempt
1887 * the rejoin, each disk that is offlined is marked online again, and
1888 * we do a reopen() call.  If the vdev label for every disk that was
1889 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1890 * then we call vdev_split() on each disk, and complete the split.
1891 *
1892 * Otherwise we leave the config alone, with all the vdevs in place in
1893 * the original pool.
1894 */
1895static void
1896spa_try_repair(spa_t *spa, nvlist_t *config)
1897{
1898	uint_t extracted;
1899	uint64_t *glist;
1900	uint_t i, gcount;
1901	nvlist_t *nvl;
1902	vdev_t **vd;
1903	boolean_t attempt_reopen;
1904
1905	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1906		return;
1907
1908	/* check that the config is complete */
1909	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1910	    &glist, &gcount) != 0)
1911		return;
1912
1913	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1914
1915	/* attempt to online all the vdevs & validate */
1916	attempt_reopen = B_TRUE;
1917	for (i = 0; i < gcount; i++) {
1918		if (glist[i] == 0)	/* vdev is hole */
1919			continue;
1920
1921		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1922		if (vd[i] == NULL) {
1923			/*
1924			 * Don't bother attempting to reopen the disks;
1925			 * just do the split.
1926			 */
1927			attempt_reopen = B_FALSE;
1928		} else {
1929			/* attempt to re-online it */
1930			vd[i]->vdev_offline = B_FALSE;
1931		}
1932	}
1933
1934	if (attempt_reopen) {
1935		vdev_reopen(spa->spa_root_vdev);
1936
1937		/* check each device to see what state it's in */
1938		for (extracted = 0, i = 0; i < gcount; i++) {
1939			if (vd[i] != NULL &&
1940			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1941				break;
1942			++extracted;
1943		}
1944	}
1945
1946	/*
1947	 * If every disk has been moved to the new pool, or if we never
1948	 * even attempted to look at them, then we split them off for
1949	 * good.
1950	 */
1951	if (!attempt_reopen || gcount == extracted) {
1952		for (i = 0; i < gcount; i++)
1953			if (vd[i] != NULL)
1954				vdev_split(vd[i]);
1955		vdev_reopen(spa->spa_root_vdev);
1956	}
1957
1958	kmem_free(vd, gcount * sizeof (vdev_t *));
1959}
1960
1961static int
1962spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1963    boolean_t mosconfig)
1964{
1965	nvlist_t *config = spa->spa_config;
1966	char *ereport = FM_EREPORT_ZFS_POOL;
1967	char *comment;
1968	int error;
1969	uint64_t pool_guid;
1970	nvlist_t *nvl;
1971
1972	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1973		return (EINVAL);
1974
1975	ASSERT(spa->spa_comment == NULL);
1976	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1977		spa->spa_comment = spa_strdup(comment);
1978
1979	/*
1980	 * Versioning wasn't explicitly added to the label until later, so if
1981	 * it's not present treat it as the initial version.
1982	 */
1983	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1984	    &spa->spa_ubsync.ub_version) != 0)
1985		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1986
1987	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1988	    &spa->spa_config_txg);
1989
1990	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1991	    spa_guid_exists(pool_guid, 0)) {
1992		error = EEXIST;
1993	} else {
1994		spa->spa_config_guid = pool_guid;
1995
1996		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1997		    &nvl) == 0) {
1998			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1999			    KM_SLEEP) == 0);
2000		}
2001
2002		nvlist_free(spa->spa_load_info);
2003		spa->spa_load_info = fnvlist_alloc();
2004
2005		gethrestime(&spa->spa_loaded_ts);
2006		error = spa_load_impl(spa, pool_guid, config, state, type,
2007		    mosconfig, &ereport);
2008	}
2009
2010	spa->spa_minref = refcount_count(&spa->spa_refcount);
2011	if (error) {
2012		if (error != EEXIST) {
2013			spa->spa_loaded_ts.tv_sec = 0;
2014			spa->spa_loaded_ts.tv_nsec = 0;
2015		}
2016		if (error != EBADF) {
2017			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2018		}
2019	}
2020	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2021	spa->spa_ena = 0;
2022
2023	return (error);
2024}
2025
2026/*
2027 * Load an existing storage pool, using the pool's builtin spa_config as a
2028 * source of configuration information.
2029 */
2030static int
2031spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2032    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2033    char **ereport)
2034{
2035	int error = 0;
2036	nvlist_t *nvroot = NULL;
2037	nvlist_t *label;
2038	vdev_t *rvd;
2039	uberblock_t *ub = &spa->spa_uberblock;
2040	uint64_t children, config_cache_txg = spa->spa_config_txg;
2041	int orig_mode = spa->spa_mode;
2042	int parse;
2043	uint64_t obj;
2044	boolean_t missing_feat_write = B_FALSE;
2045
2046	/*
2047	 * If this is an untrusted config, access the pool in read-only mode.
2048	 * This prevents things like resilvering recently removed devices.
2049	 */
2050	if (!mosconfig)
2051		spa->spa_mode = FREAD;
2052
2053	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2054
2055	spa->spa_load_state = state;
2056
2057	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2058		return (EINVAL);
2059
2060	parse = (type == SPA_IMPORT_EXISTING ?
2061	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2062
2063	/*
2064	 * Create "The Godfather" zio to hold all async IOs
2065	 */
2066	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2067	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2068
2069	/*
2070	 * Parse the configuration into a vdev tree.  We explicitly set the
2071	 * value that will be returned by spa_version() since parsing the
2072	 * configuration requires knowing the version number.
2073	 */
2074	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2075	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2076	spa_config_exit(spa, SCL_ALL, FTAG);
2077
2078	if (error != 0)
2079		return (error);
2080
2081	ASSERT(spa->spa_root_vdev == rvd);
2082
2083	if (type != SPA_IMPORT_ASSEMBLE) {
2084		ASSERT(spa_guid(spa) == pool_guid);
2085	}
2086
2087	/*
2088	 * Try to open all vdevs, loading each label in the process.
2089	 */
2090	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2091	error = vdev_open(rvd);
2092	spa_config_exit(spa, SCL_ALL, FTAG);
2093	if (error != 0)
2094		return (error);
2095
2096	/*
2097	 * We need to validate the vdev labels against the configuration that
2098	 * we have in hand, which is dependent on the setting of mosconfig. If
2099	 * mosconfig is true then we're validating the vdev labels based on
2100	 * that config.  Otherwise, we're validating against the cached config
2101	 * (zpool.cache) that was read when we loaded the zfs module, and then
2102	 * later we will recursively call spa_load() and validate against
2103	 * the vdev config.
2104	 *
2105	 * If we're assembling a new pool that's been split off from an
2106	 * existing pool, the labels haven't yet been updated so we skip
2107	 * validation for now.
2108	 */
2109	if (type != SPA_IMPORT_ASSEMBLE) {
2110		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2111		error = vdev_validate(rvd, mosconfig);
2112		spa_config_exit(spa, SCL_ALL, FTAG);
2113
2114		if (error != 0)
2115			return (error);
2116
2117		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2118			return (ENXIO);
2119	}
2120
2121	/*
2122	 * Find the best uberblock.
2123	 */
2124	vdev_uberblock_load(rvd, ub, &label);
2125
2126	/*
2127	 * If we weren't able to find a single valid uberblock, return failure.
2128	 */
2129	if (ub->ub_txg == 0) {
2130		nvlist_free(label);
2131		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2132	}
2133
2134	/*
2135	 * If the pool has an unsupported version we can't open it.
2136	 */
2137	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2138		nvlist_free(label);
2139		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2140	}
2141
2142	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2143		nvlist_t *features;
2144
2145		/*
2146		 * If we weren't able to find what's necessary for reading the
2147		 * MOS in the label, return failure.
2148		 */
2149		if (label == NULL || nvlist_lookup_nvlist(label,
2150		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2151			nvlist_free(label);
2152			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2153			    ENXIO));
2154		}
2155
2156		/*
2157		 * Update our in-core representation with the definitive values
2158		 * from the label.
2159		 */
2160		nvlist_free(spa->spa_label_features);
2161		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2162	}
2163
2164	nvlist_free(label);
2165
2166	/*
2167	 * Look through entries in the label nvlist's features_for_read. If
2168	 * there is a feature listed there which we don't understand then we
2169	 * cannot open a pool.
2170	 */
2171	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2172		nvlist_t *unsup_feat;
2173
2174		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2175		    0);
2176
2177		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2178		    NULL); nvp != NULL;
2179		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2180			if (!zfeature_is_supported(nvpair_name(nvp))) {
2181				VERIFY(nvlist_add_string(unsup_feat,
2182				    nvpair_name(nvp), "") == 0);
2183			}
2184		}
2185
2186		if (!nvlist_empty(unsup_feat)) {
2187			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2188			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2189			nvlist_free(unsup_feat);
2190			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2191			    ENOTSUP));
2192		}
2193
2194		nvlist_free(unsup_feat);
2195	}
2196
2197	/*
2198	 * If the vdev guid sum doesn't match the uberblock, we have an
2199	 * incomplete configuration.  We first check to see if the pool
2200	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2201	 * If it is, defer the vdev_guid_sum check till later so we
2202	 * can handle missing vdevs.
2203	 */
2204	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2205	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2206	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2207		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2208
2209	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2210		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2211		spa_try_repair(spa, config);
2212		spa_config_exit(spa, SCL_ALL, FTAG);
2213		nvlist_free(spa->spa_config_splitting);
2214		spa->spa_config_splitting = NULL;
2215	}
2216
2217	/*
2218	 * Initialize internal SPA structures.
2219	 */
2220	spa->spa_state = POOL_STATE_ACTIVE;
2221	spa->spa_ubsync = spa->spa_uberblock;
2222	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2223	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2224	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2225	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2226	spa->spa_claim_max_txg = spa->spa_first_txg;
2227	spa->spa_prev_software_version = ub->ub_software_version;
2228
2229	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2230	if (error)
2231		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2232	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2233
2234	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2235		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2236
2237	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2238		boolean_t missing_feat_read = B_FALSE;
2239		nvlist_t *unsup_feat, *enabled_feat;
2240
2241		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2242		    &spa->spa_feat_for_read_obj) != 0) {
2243			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2244		}
2245
2246		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2247		    &spa->spa_feat_for_write_obj) != 0) {
2248			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2249		}
2250
2251		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2252		    &spa->spa_feat_desc_obj) != 0) {
2253			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2254		}
2255
2256		enabled_feat = fnvlist_alloc();
2257		unsup_feat = fnvlist_alloc();
2258
2259		if (!feature_is_supported(spa->spa_meta_objset,
2260		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2261		    unsup_feat, enabled_feat))
2262			missing_feat_read = B_TRUE;
2263
2264		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2265			if (!feature_is_supported(spa->spa_meta_objset,
2266			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2267			    unsup_feat, enabled_feat)) {
2268				missing_feat_write = B_TRUE;
2269			}
2270		}
2271
2272		fnvlist_add_nvlist(spa->spa_load_info,
2273		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2274
2275		if (!nvlist_empty(unsup_feat)) {
2276			fnvlist_add_nvlist(spa->spa_load_info,
2277			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2278		}
2279
2280		fnvlist_free(enabled_feat);
2281		fnvlist_free(unsup_feat);
2282
2283		if (!missing_feat_read) {
2284			fnvlist_add_boolean(spa->spa_load_info,
2285			    ZPOOL_CONFIG_CAN_RDONLY);
2286		}
2287
2288		/*
2289		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2290		 * twofold: to determine whether the pool is available for
2291		 * import in read-write mode and (if it is not) whether the
2292		 * pool is available for import in read-only mode. If the pool
2293		 * is available for import in read-write mode, it is displayed
2294		 * as available in userland; if it is not available for import
2295		 * in read-only mode, it is displayed as unavailable in
2296		 * userland. If the pool is available for import in read-only
2297		 * mode but not read-write mode, it is displayed as unavailable
2298		 * in userland with a special note that the pool is actually
2299		 * available for open in read-only mode.
2300		 *
2301		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2302		 * missing a feature for write, we must first determine whether
2303		 * the pool can be opened read-only before returning to
2304		 * userland in order to know whether to display the
2305		 * abovementioned note.
2306		 */
2307		if (missing_feat_read || (missing_feat_write &&
2308		    spa_writeable(spa))) {
2309			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2310			    ENOTSUP));
2311		}
2312	}
2313
2314	spa->spa_is_initializing = B_TRUE;
2315	error = dsl_pool_open(spa->spa_dsl_pool);
2316	spa->spa_is_initializing = B_FALSE;
2317	if (error != 0)
2318		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2319
2320	if (!mosconfig) {
2321		uint64_t hostid;
2322		nvlist_t *policy = NULL, *nvconfig;
2323
2324		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2325			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326
2327		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2328		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2329			char *hostname;
2330			unsigned long myhostid = 0;
2331
2332			VERIFY(nvlist_lookup_string(nvconfig,
2333			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2334
2335#ifdef	_KERNEL
2336			myhostid = zone_get_hostid(NULL);
2337#else	/* _KERNEL */
2338			/*
2339			 * We're emulating the system's hostid in userland, so
2340			 * we can't use zone_get_hostid().
2341			 */
2342			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2343#endif	/* _KERNEL */
2344			if (check_hostid && hostid != 0 && myhostid != 0 &&
2345			    hostid != myhostid) {
2346				nvlist_free(nvconfig);
2347				cmn_err(CE_WARN, "pool '%s' could not be "
2348				    "loaded as it was last accessed by "
2349				    "another system (host: %s hostid: 0x%lx). "
2350				    "See: http://illumos.org/msg/ZFS-8000-EY",
2351				    spa_name(spa), hostname,
2352				    (unsigned long)hostid);
2353				return (EBADF);
2354			}
2355		}
2356		if (nvlist_lookup_nvlist(spa->spa_config,
2357		    ZPOOL_REWIND_POLICY, &policy) == 0)
2358			VERIFY(nvlist_add_nvlist(nvconfig,
2359			    ZPOOL_REWIND_POLICY, policy) == 0);
2360
2361		spa_config_set(spa, nvconfig);
2362		spa_unload(spa);
2363		spa_deactivate(spa);
2364		spa_activate(spa, orig_mode);
2365
2366		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2367	}
2368
2369	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2370		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2371	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2372	if (error != 0)
2373		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2374
2375	/*
2376	 * Load the bit that tells us to use the new accounting function
2377	 * (raid-z deflation).  If we have an older pool, this will not
2378	 * be present.
2379	 */
2380	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2381	if (error != 0 && error != ENOENT)
2382		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2383
2384	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2385	    &spa->spa_creation_version);
2386	if (error != 0 && error != ENOENT)
2387		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2388
2389	/*
2390	 * Load the persistent error log.  If we have an older pool, this will
2391	 * not be present.
2392	 */
2393	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2394	if (error != 0 && error != ENOENT)
2395		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2396
2397	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2398	    &spa->spa_errlog_scrub);
2399	if (error != 0 && error != ENOENT)
2400		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2401
2402	/*
2403	 * Load the history object.  If we have an older pool, this
2404	 * will not be present.
2405	 */
2406	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2407	if (error != 0 && error != ENOENT)
2408		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409
2410	/*
2411	 * If we're assembling the pool from the split-off vdevs of
2412	 * an existing pool, we don't want to attach the spares & cache
2413	 * devices.
2414	 */
2415
2416	/*
2417	 * Load any hot spares for this pool.
2418	 */
2419	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2420	if (error != 0 && error != ENOENT)
2421		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2422	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2423		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2424		if (load_nvlist(spa, spa->spa_spares.sav_object,
2425		    &spa->spa_spares.sav_config) != 0)
2426			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427
2428		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2429		spa_load_spares(spa);
2430		spa_config_exit(spa, SCL_ALL, FTAG);
2431	} else if (error == 0) {
2432		spa->spa_spares.sav_sync = B_TRUE;
2433	}
2434
2435	/*
2436	 * Load any level 2 ARC devices for this pool.
2437	 */
2438	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2439	    &spa->spa_l2cache.sav_object);
2440	if (error != 0 && error != ENOENT)
2441		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2443		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2444		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2445		    &spa->spa_l2cache.sav_config) != 0)
2446			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447
2448		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2449		spa_load_l2cache(spa);
2450		spa_config_exit(spa, SCL_ALL, FTAG);
2451	} else if (error == 0) {
2452		spa->spa_l2cache.sav_sync = B_TRUE;
2453	}
2454
2455	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2456
2457	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2458	if (error && error != ENOENT)
2459		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460
2461	if (error == 0) {
2462		uint64_t autoreplace;
2463
2464		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2465		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2466		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2467		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2468		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2469		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2470		    &spa->spa_dedup_ditto);
2471
2472		spa->spa_autoreplace = (autoreplace != 0);
2473	}
2474
2475	/*
2476	 * If the 'autoreplace' property is set, then post a resource notifying
2477	 * the ZFS DE that it should not issue any faults for unopenable
2478	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2479	 * unopenable vdevs so that the normal autoreplace handler can take
2480	 * over.
2481	 */
2482	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2483		spa_check_removed(spa->spa_root_vdev);
2484		/*
2485		 * For the import case, this is done in spa_import(), because
2486		 * at this point we're using the spare definitions from
2487		 * the MOS config, not necessarily from the userland config.
2488		 */
2489		if (state != SPA_LOAD_IMPORT) {
2490			spa_aux_check_removed(&spa->spa_spares);
2491			spa_aux_check_removed(&spa->spa_l2cache);
2492		}
2493	}
2494
2495	/*
2496	 * Load the vdev state for all toplevel vdevs.
2497	 */
2498	vdev_load(rvd);
2499
2500	/*
2501	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2502	 */
2503	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2504	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2505	spa_config_exit(spa, SCL_ALL, FTAG);
2506
2507	/*
2508	 * Load the DDTs (dedup tables).
2509	 */
2510	error = ddt_load(spa);
2511	if (error != 0)
2512		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2513
2514	spa_update_dspace(spa);
2515
2516	/*
2517	 * Validate the config, using the MOS config to fill in any
2518	 * information which might be missing.  If we fail to validate
2519	 * the config then declare the pool unfit for use. If we're
2520	 * assembling a pool from a split, the log is not transferred
2521	 * over.
2522	 */
2523	if (type != SPA_IMPORT_ASSEMBLE) {
2524		nvlist_t *nvconfig;
2525
2526		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2527			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528
2529		if (!spa_config_valid(spa, nvconfig)) {
2530			nvlist_free(nvconfig);
2531			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2532			    ENXIO));
2533		}
2534		nvlist_free(nvconfig);
2535
2536		/*
2537		 * Now that we've validated the config, check the state of the
2538		 * root vdev.  If it can't be opened, it indicates one or
2539		 * more toplevel vdevs are faulted.
2540		 */
2541		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2542			return (ENXIO);
2543
2544		if (spa_check_logs(spa)) {
2545			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2546			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2547		}
2548	}
2549
2550	if (missing_feat_write) {
2551		ASSERT(state == SPA_LOAD_TRYIMPORT);
2552
2553		/*
2554		 * At this point, we know that we can open the pool in
2555		 * read-only mode but not read-write mode. We now have enough
2556		 * information and can return to userland.
2557		 */
2558		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2559	}
2560
2561	/*
2562	 * We've successfully opened the pool, verify that we're ready
2563	 * to start pushing transactions.
2564	 */
2565	if (state != SPA_LOAD_TRYIMPORT) {
2566		if (error = spa_load_verify(spa))
2567			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2568			    error));
2569	}
2570
2571	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2572	    spa->spa_load_max_txg == UINT64_MAX)) {
2573		dmu_tx_t *tx;
2574		int need_update = B_FALSE;
2575
2576		ASSERT(state != SPA_LOAD_TRYIMPORT);
2577
2578		/*
2579		 * Claim log blocks that haven't been committed yet.
2580		 * This must all happen in a single txg.
2581		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2582		 * invoked from zil_claim_log_block()'s i/o done callback.
2583		 * Price of rollback is that we abandon the log.
2584		 */
2585		spa->spa_claiming = B_TRUE;
2586
2587		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2588		    spa_first_txg(spa));
2589		(void) dmu_objset_find(spa_name(spa),
2590		    zil_claim, tx, DS_FIND_CHILDREN);
2591		dmu_tx_commit(tx);
2592
2593		spa->spa_claiming = B_FALSE;
2594
2595		spa_set_log_state(spa, SPA_LOG_GOOD);
2596		spa->spa_sync_on = B_TRUE;
2597		txg_sync_start(spa->spa_dsl_pool);
2598
2599		/*
2600		 * Wait for all claims to sync.  We sync up to the highest
2601		 * claimed log block birth time so that claimed log blocks
2602		 * don't appear to be from the future.  spa_claim_max_txg
2603		 * will have been set for us by either zil_check_log_chain()
2604		 * (invoked from spa_check_logs()) or zil_claim() above.
2605		 */
2606		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2607
2608		/*
2609		 * If the config cache is stale, or we have uninitialized
2610		 * metaslabs (see spa_vdev_add()), then update the config.
2611		 *
2612		 * If this is a verbatim import, trust the current
2613		 * in-core spa_config and update the disk labels.
2614		 */
2615		if (config_cache_txg != spa->spa_config_txg ||
2616		    state == SPA_LOAD_IMPORT ||
2617		    state == SPA_LOAD_RECOVER ||
2618		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2619			need_update = B_TRUE;
2620
2621		for (int c = 0; c < rvd->vdev_children; c++)
2622			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2623				need_update = B_TRUE;
2624
2625		/*
2626		 * Update the config cache asychronously in case we're the
2627		 * root pool, in which case the config cache isn't writable yet.
2628		 */
2629		if (need_update)
2630			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2631
2632		/*
2633		 * Check all DTLs to see if anything needs resilvering.
2634		 */
2635		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2636		    vdev_resilver_needed(rvd, NULL, NULL))
2637			spa_async_request(spa, SPA_ASYNC_RESILVER);
2638
2639		/*
2640		 * Delete any inconsistent datasets.
2641		 */
2642		(void) dmu_objset_find(spa_name(spa),
2643		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2644
2645		/*
2646		 * Clean up any stale temporary dataset userrefs.
2647		 */
2648		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2649	}
2650
2651	return (0);
2652}
2653
2654static int
2655spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2656{
2657	int mode = spa->spa_mode;
2658
2659	spa_unload(spa);
2660	spa_deactivate(spa);
2661
2662	spa->spa_load_max_txg--;
2663
2664	spa_activate(spa, mode);
2665	spa_async_suspend(spa);
2666
2667	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2668}
2669
2670/*
2671 * If spa_load() fails this function will try loading prior txg's. If
2672 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2673 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2674 * function will not rewind the pool and will return the same error as
2675 * spa_load().
2676 */
2677static int
2678spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2679    uint64_t max_request, int rewind_flags)
2680{
2681	nvlist_t *loadinfo = NULL;
2682	nvlist_t *config = NULL;
2683	int load_error, rewind_error;
2684	uint64_t safe_rewind_txg;
2685	uint64_t min_txg;
2686
2687	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2688		spa->spa_load_max_txg = spa->spa_load_txg;
2689		spa_set_log_state(spa, SPA_LOG_CLEAR);
2690	} else {
2691		spa->spa_load_max_txg = max_request;
2692	}
2693
2694	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2695	    mosconfig);
2696	if (load_error == 0)
2697		return (0);
2698
2699	if (spa->spa_root_vdev != NULL)
2700		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2701
2702	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2703	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2704
2705	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2706		nvlist_free(config);
2707		return (load_error);
2708	}
2709
2710	if (state == SPA_LOAD_RECOVER) {
2711		/* Price of rolling back is discarding txgs, including log */
2712		spa_set_log_state(spa, SPA_LOG_CLEAR);
2713	} else {
2714		/*
2715		 * If we aren't rolling back save the load info from our first
2716		 * import attempt so that we can restore it after attempting
2717		 * to rewind.
2718		 */
2719		loadinfo = spa->spa_load_info;
2720		spa->spa_load_info = fnvlist_alloc();
2721	}
2722
2723	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2724	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2725	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2726	    TXG_INITIAL : safe_rewind_txg;
2727
2728	/*
2729	 * Continue as long as we're finding errors, we're still within
2730	 * the acceptable rewind range, and we're still finding uberblocks
2731	 */
2732	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2733	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2734		if (spa->spa_load_max_txg < safe_rewind_txg)
2735			spa->spa_extreme_rewind = B_TRUE;
2736		rewind_error = spa_load_retry(spa, state, mosconfig);
2737	}
2738
2739	spa->spa_extreme_rewind = B_FALSE;
2740	spa->spa_load_max_txg = UINT64_MAX;
2741
2742	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2743		spa_config_set(spa, config);
2744
2745	if (state == SPA_LOAD_RECOVER) {
2746		ASSERT3P(loadinfo, ==, NULL);
2747		return (rewind_error);
2748	} else {
2749		/* Store the rewind info as part of the initial load info */
2750		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2751		    spa->spa_load_info);
2752
2753		/* Restore the initial load info */
2754		fnvlist_free(spa->spa_load_info);
2755		spa->spa_load_info = loadinfo;
2756
2757		return (load_error);
2758	}
2759}
2760
2761/*
2762 * Pool Open/Import
2763 *
2764 * The import case is identical to an open except that the configuration is sent
2765 * down from userland, instead of grabbed from the configuration cache.  For the
2766 * case of an open, the pool configuration will exist in the
2767 * POOL_STATE_UNINITIALIZED state.
2768 *
2769 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2770 * the same time open the pool, without having to keep around the spa_t in some
2771 * ambiguous state.
2772 */
2773static int
2774spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2775    nvlist_t **config)
2776{
2777	spa_t *spa;
2778	spa_load_state_t state = SPA_LOAD_OPEN;
2779	int error;
2780	int locked = B_FALSE;
2781	int firstopen = B_FALSE;
2782
2783	*spapp = NULL;
2784
2785	/*
2786	 * As disgusting as this is, we need to support recursive calls to this
2787	 * function because dsl_dir_open() is called during spa_load(), and ends
2788	 * up calling spa_open() again.  The real fix is to figure out how to
2789	 * avoid dsl_dir_open() calling this in the first place.
2790	 */
2791	if (mutex_owner(&spa_namespace_lock) != curthread) {
2792		mutex_enter(&spa_namespace_lock);
2793		locked = B_TRUE;
2794	}
2795
2796	if ((spa = spa_lookup(pool)) == NULL) {
2797		if (locked)
2798			mutex_exit(&spa_namespace_lock);
2799		return (ENOENT);
2800	}
2801
2802	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2803		zpool_rewind_policy_t policy;
2804
2805		firstopen = B_TRUE;
2806
2807		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2808		    &policy);
2809		if (policy.zrp_request & ZPOOL_DO_REWIND)
2810			state = SPA_LOAD_RECOVER;
2811
2812		spa_activate(spa, spa_mode_global);
2813
2814		if (state != SPA_LOAD_RECOVER)
2815			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2816
2817		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2818		    policy.zrp_request);
2819
2820		if (error == EBADF) {
2821			/*
2822			 * If vdev_validate() returns failure (indicated by
2823			 * EBADF), it indicates that one of the vdevs indicates
2824			 * that the pool has been exported or destroyed.  If
2825			 * this is the case, the config cache is out of sync and
2826			 * we should remove the pool from the namespace.
2827			 */
2828			spa_unload(spa);
2829			spa_deactivate(spa);
2830			spa_config_sync(spa, B_TRUE, B_TRUE);
2831			spa_remove(spa);
2832			if (locked)
2833				mutex_exit(&spa_namespace_lock);
2834			return (ENOENT);
2835		}
2836
2837		if (error) {
2838			/*
2839			 * We can't open the pool, but we still have useful
2840			 * information: the state of each vdev after the
2841			 * attempted vdev_open().  Return this to the user.
2842			 */
2843			if (config != NULL && spa->spa_config) {
2844				VERIFY(nvlist_dup(spa->spa_config, config,
2845				    KM_SLEEP) == 0);
2846				VERIFY(nvlist_add_nvlist(*config,
2847				    ZPOOL_CONFIG_LOAD_INFO,
2848				    spa->spa_load_info) == 0);
2849			}
2850			spa_unload(spa);
2851			spa_deactivate(spa);
2852			spa->spa_last_open_failed = error;
2853			if (locked)
2854				mutex_exit(&spa_namespace_lock);
2855			*spapp = NULL;
2856			return (error);
2857		}
2858	}
2859
2860	spa_open_ref(spa, tag);
2861
2862	if (config != NULL)
2863		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2864
2865	/*
2866	 * If we've recovered the pool, pass back any information we
2867	 * gathered while doing the load.
2868	 */
2869	if (state == SPA_LOAD_RECOVER) {
2870		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2871		    spa->spa_load_info) == 0);
2872	}
2873
2874	if (locked) {
2875		spa->spa_last_open_failed = 0;
2876		spa->spa_last_ubsync_txg = 0;
2877		spa->spa_load_txg = 0;
2878		mutex_exit(&spa_namespace_lock);
2879#ifdef __FreeBSD__
2880#ifdef _KERNEL
2881		if (firstopen)
2882			zvol_create_minors(pool);
2883#endif
2884#endif
2885	}
2886
2887	*spapp = spa;
2888
2889	return (0);
2890}
2891
2892int
2893spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2894    nvlist_t **config)
2895{
2896	return (spa_open_common(name, spapp, tag, policy, config));
2897}
2898
2899int
2900spa_open(const char *name, spa_t **spapp, void *tag)
2901{
2902	return (spa_open_common(name, spapp, tag, NULL, NULL));
2903}
2904
2905/*
2906 * Lookup the given spa_t, incrementing the inject count in the process,
2907 * preventing it from being exported or destroyed.
2908 */
2909spa_t *
2910spa_inject_addref(char *name)
2911{
2912	spa_t *spa;
2913
2914	mutex_enter(&spa_namespace_lock);
2915	if ((spa = spa_lookup(name)) == NULL) {
2916		mutex_exit(&spa_namespace_lock);
2917		return (NULL);
2918	}
2919	spa->spa_inject_ref++;
2920	mutex_exit(&spa_namespace_lock);
2921
2922	return (spa);
2923}
2924
2925void
2926spa_inject_delref(spa_t *spa)
2927{
2928	mutex_enter(&spa_namespace_lock);
2929	spa->spa_inject_ref--;
2930	mutex_exit(&spa_namespace_lock);
2931}
2932
2933/*
2934 * Add spares device information to the nvlist.
2935 */
2936static void
2937spa_add_spares(spa_t *spa, nvlist_t *config)
2938{
2939	nvlist_t **spares;
2940	uint_t i, nspares;
2941	nvlist_t *nvroot;
2942	uint64_t guid;
2943	vdev_stat_t *vs;
2944	uint_t vsc;
2945	uint64_t pool;
2946
2947	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2948
2949	if (spa->spa_spares.sav_count == 0)
2950		return;
2951
2952	VERIFY(nvlist_lookup_nvlist(config,
2953	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2954	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2955	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2956	if (nspares != 0) {
2957		VERIFY(nvlist_add_nvlist_array(nvroot,
2958		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2959		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2960		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2961
2962		/*
2963		 * Go through and find any spares which have since been
2964		 * repurposed as an active spare.  If this is the case, update
2965		 * their status appropriately.
2966		 */
2967		for (i = 0; i < nspares; i++) {
2968			VERIFY(nvlist_lookup_uint64(spares[i],
2969			    ZPOOL_CONFIG_GUID, &guid) == 0);
2970			if (spa_spare_exists(guid, &pool, NULL) &&
2971			    pool != 0ULL) {
2972				VERIFY(nvlist_lookup_uint64_array(
2973				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2974				    (uint64_t **)&vs, &vsc) == 0);
2975				vs->vs_state = VDEV_STATE_CANT_OPEN;
2976				vs->vs_aux = VDEV_AUX_SPARED;
2977			}
2978		}
2979	}
2980}
2981
2982/*
2983 * Add l2cache device information to the nvlist, including vdev stats.
2984 */
2985static void
2986spa_add_l2cache(spa_t *spa, nvlist_t *config)
2987{
2988	nvlist_t **l2cache;
2989	uint_t i, j, nl2cache;
2990	nvlist_t *nvroot;
2991	uint64_t guid;
2992	vdev_t *vd;
2993	vdev_stat_t *vs;
2994	uint_t vsc;
2995
2996	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2997
2998	if (spa->spa_l2cache.sav_count == 0)
2999		return;
3000
3001	VERIFY(nvlist_lookup_nvlist(config,
3002	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3003	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3004	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3005	if (nl2cache != 0) {
3006		VERIFY(nvlist_add_nvlist_array(nvroot,
3007		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3008		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3009		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3010
3011		/*
3012		 * Update level 2 cache device stats.
3013		 */
3014
3015		for (i = 0; i < nl2cache; i++) {
3016			VERIFY(nvlist_lookup_uint64(l2cache[i],
3017			    ZPOOL_CONFIG_GUID, &guid) == 0);
3018
3019			vd = NULL;
3020			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3021				if (guid ==
3022				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3023					vd = spa->spa_l2cache.sav_vdevs[j];
3024					break;
3025				}
3026			}
3027			ASSERT(vd != NULL);
3028
3029			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3030			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3031			    == 0);
3032			vdev_get_stats(vd, vs);
3033		}
3034	}
3035}
3036
3037static void
3038spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3039{
3040	nvlist_t *features;
3041	zap_cursor_t zc;
3042	zap_attribute_t za;
3043
3044	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3045	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3046
3047	if (spa->spa_feat_for_read_obj != 0) {
3048		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3049		    spa->spa_feat_for_read_obj);
3050		    zap_cursor_retrieve(&zc, &za) == 0;
3051		    zap_cursor_advance(&zc)) {
3052			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3053			    za.za_num_integers == 1);
3054			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3055			    za.za_first_integer));
3056		}
3057		zap_cursor_fini(&zc);
3058	}
3059
3060	if (spa->spa_feat_for_write_obj != 0) {
3061		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3062		    spa->spa_feat_for_write_obj);
3063		    zap_cursor_retrieve(&zc, &za) == 0;
3064		    zap_cursor_advance(&zc)) {
3065			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3066			    za.za_num_integers == 1);
3067			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3068			    za.za_first_integer));
3069		}
3070		zap_cursor_fini(&zc);
3071	}
3072
3073	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3074	    features) == 0);
3075	nvlist_free(features);
3076}
3077
3078int
3079spa_get_stats(const char *name, nvlist_t **config,
3080    char *altroot, size_t buflen)
3081{
3082	int error;
3083	spa_t *spa;
3084
3085	*config = NULL;
3086	error = spa_open_common(name, &spa, FTAG, NULL, config);
3087
3088	if (spa != NULL) {
3089		/*
3090		 * This still leaves a window of inconsistency where the spares
3091		 * or l2cache devices could change and the config would be
3092		 * self-inconsistent.
3093		 */
3094		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3095
3096		if (*config != NULL) {
3097			uint64_t loadtimes[2];
3098
3099			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3100			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3101			VERIFY(nvlist_add_uint64_array(*config,
3102			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3103
3104			VERIFY(nvlist_add_uint64(*config,
3105			    ZPOOL_CONFIG_ERRCOUNT,
3106			    spa_get_errlog_size(spa)) == 0);
3107
3108			if (spa_suspended(spa))
3109				VERIFY(nvlist_add_uint64(*config,
3110				    ZPOOL_CONFIG_SUSPENDED,
3111				    spa->spa_failmode) == 0);
3112
3113			spa_add_spares(spa, *config);
3114			spa_add_l2cache(spa, *config);
3115			spa_add_feature_stats(spa, *config);
3116		}
3117	}
3118
3119	/*
3120	 * We want to get the alternate root even for faulted pools, so we cheat
3121	 * and call spa_lookup() directly.
3122	 */
3123	if (altroot) {
3124		if (spa == NULL) {
3125			mutex_enter(&spa_namespace_lock);
3126			spa = spa_lookup(name);
3127			if (spa)
3128				spa_altroot(spa, altroot, buflen);
3129			else
3130				altroot[0] = '\0';
3131			spa = NULL;
3132			mutex_exit(&spa_namespace_lock);
3133		} else {
3134			spa_altroot(spa, altroot, buflen);
3135		}
3136	}
3137
3138	if (spa != NULL) {
3139		spa_config_exit(spa, SCL_CONFIG, FTAG);
3140		spa_close(spa, FTAG);
3141	}
3142
3143	return (error);
3144}
3145
3146/*
3147 * Validate that the auxiliary device array is well formed.  We must have an
3148 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3149 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3150 * specified, as long as they are well-formed.
3151 */
3152static int
3153spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3154    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3155    vdev_labeltype_t label)
3156{
3157	nvlist_t **dev;
3158	uint_t i, ndev;
3159	vdev_t *vd;
3160	int error;
3161
3162	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3163
3164	/*
3165	 * It's acceptable to have no devs specified.
3166	 */
3167	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3168		return (0);
3169
3170	if (ndev == 0)
3171		return (EINVAL);
3172
3173	/*
3174	 * Make sure the pool is formatted with a version that supports this
3175	 * device type.
3176	 */
3177	if (spa_version(spa) < version)
3178		return (ENOTSUP);
3179
3180	/*
3181	 * Set the pending device list so we correctly handle device in-use
3182	 * checking.
3183	 */
3184	sav->sav_pending = dev;
3185	sav->sav_npending = ndev;
3186
3187	for (i = 0; i < ndev; i++) {
3188		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3189		    mode)) != 0)
3190			goto out;
3191
3192		if (!vd->vdev_ops->vdev_op_leaf) {
3193			vdev_free(vd);
3194			error = EINVAL;
3195			goto out;
3196		}
3197
3198		/*
3199		 * The L2ARC currently only supports disk devices in
3200		 * kernel context.  For user-level testing, we allow it.
3201		 */
3202#ifdef _KERNEL
3203		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3204		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3205			error = ENOTBLK;
3206			vdev_free(vd);
3207			goto out;
3208		}
3209#endif
3210		vd->vdev_top = vd;
3211
3212		if ((error = vdev_open(vd)) == 0 &&
3213		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3214			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3215			    vd->vdev_guid) == 0);
3216		}
3217
3218		vdev_free(vd);
3219
3220		if (error &&
3221		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3222			goto out;
3223		else
3224			error = 0;
3225	}
3226
3227out:
3228	sav->sav_pending = NULL;
3229	sav->sav_npending = 0;
3230	return (error);
3231}
3232
3233static int
3234spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3235{
3236	int error;
3237
3238	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3239
3240	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3241	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3242	    VDEV_LABEL_SPARE)) != 0) {
3243		return (error);
3244	}
3245
3246	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3247	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3248	    VDEV_LABEL_L2CACHE));
3249}
3250
3251static void
3252spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3253    const char *config)
3254{
3255	int i;
3256
3257	if (sav->sav_config != NULL) {
3258		nvlist_t **olddevs;
3259		uint_t oldndevs;
3260		nvlist_t **newdevs;
3261
3262		/*
3263		 * Generate new dev list by concatentating with the
3264		 * current dev list.
3265		 */
3266		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3267		    &olddevs, &oldndevs) == 0);
3268
3269		newdevs = kmem_alloc(sizeof (void *) *
3270		    (ndevs + oldndevs), KM_SLEEP);
3271		for (i = 0; i < oldndevs; i++)
3272			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3273			    KM_SLEEP) == 0);
3274		for (i = 0; i < ndevs; i++)
3275			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3276			    KM_SLEEP) == 0);
3277
3278		VERIFY(nvlist_remove(sav->sav_config, config,
3279		    DATA_TYPE_NVLIST_ARRAY) == 0);
3280
3281		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3282		    config, newdevs, ndevs + oldndevs) == 0);
3283		for (i = 0; i < oldndevs + ndevs; i++)
3284			nvlist_free(newdevs[i]);
3285		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3286	} else {
3287		/*
3288		 * Generate a new dev list.
3289		 */
3290		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3291		    KM_SLEEP) == 0);
3292		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3293		    devs, ndevs) == 0);
3294	}
3295}
3296
3297/*
3298 * Stop and drop level 2 ARC devices
3299 */
3300void
3301spa_l2cache_drop(spa_t *spa)
3302{
3303	vdev_t *vd;
3304	int i;
3305	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3306
3307	for (i = 0; i < sav->sav_count; i++) {
3308		uint64_t pool;
3309
3310		vd = sav->sav_vdevs[i];
3311		ASSERT(vd != NULL);
3312
3313		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3314		    pool != 0ULL && l2arc_vdev_present(vd))
3315			l2arc_remove_vdev(vd);
3316	}
3317}
3318
3319/*
3320 * Pool Creation
3321 */
3322int
3323spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3324    const char *history_str, nvlist_t *zplprops)
3325{
3326	spa_t *spa;
3327	char *altroot = NULL;
3328	vdev_t *rvd;
3329	dsl_pool_t *dp;
3330	dmu_tx_t *tx;
3331	int error = 0;
3332	uint64_t txg = TXG_INITIAL;
3333	nvlist_t **spares, **l2cache;
3334	uint_t nspares, nl2cache;
3335	uint64_t version, obj;
3336	boolean_t has_features;
3337
3338	/*
3339	 * If this pool already exists, return failure.
3340	 */
3341	mutex_enter(&spa_namespace_lock);
3342	if (spa_lookup(pool) != NULL) {
3343		mutex_exit(&spa_namespace_lock);
3344		return (EEXIST);
3345	}
3346
3347	/*
3348	 * Allocate a new spa_t structure.
3349	 */
3350	(void) nvlist_lookup_string(props,
3351	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3352	spa = spa_add(pool, NULL, altroot);
3353	spa_activate(spa, spa_mode_global);
3354
3355	if (props && (error = spa_prop_validate(spa, props))) {
3356		spa_deactivate(spa);
3357		spa_remove(spa);
3358		mutex_exit(&spa_namespace_lock);
3359		return (error);
3360	}
3361
3362	has_features = B_FALSE;
3363	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3364	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3365		if (zpool_prop_feature(nvpair_name(elem)))
3366			has_features = B_TRUE;
3367	}
3368
3369	if (has_features || nvlist_lookup_uint64(props,
3370	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3371		version = SPA_VERSION;
3372	}
3373	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3374
3375	spa->spa_first_txg = txg;
3376	spa->spa_uberblock.ub_txg = txg - 1;
3377	spa->spa_uberblock.ub_version = version;
3378	spa->spa_ubsync = spa->spa_uberblock;
3379
3380	/*
3381	 * Create "The Godfather" zio to hold all async IOs
3382	 */
3383	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3384	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3385
3386	/*
3387	 * Create the root vdev.
3388	 */
3389	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3390
3391	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3392
3393	ASSERT(error != 0 || rvd != NULL);
3394	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3395
3396	if (error == 0 && !zfs_allocatable_devs(nvroot))
3397		error = EINVAL;
3398
3399	if (error == 0 &&
3400	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3401	    (error = spa_validate_aux(spa, nvroot, txg,
3402	    VDEV_ALLOC_ADD)) == 0) {
3403		for (int c = 0; c < rvd->vdev_children; c++) {
3404			vdev_metaslab_set_size(rvd->vdev_child[c]);
3405			vdev_expand(rvd->vdev_child[c], txg);
3406		}
3407	}
3408
3409	spa_config_exit(spa, SCL_ALL, FTAG);
3410
3411	if (error != 0) {
3412		spa_unload(spa);
3413		spa_deactivate(spa);
3414		spa_remove(spa);
3415		mutex_exit(&spa_namespace_lock);
3416		return (error);
3417	}
3418
3419	/*
3420	 * Get the list of spares, if specified.
3421	 */
3422	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3423	    &spares, &nspares) == 0) {
3424		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3425		    KM_SLEEP) == 0);
3426		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3427		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3428		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3429		spa_load_spares(spa);
3430		spa_config_exit(spa, SCL_ALL, FTAG);
3431		spa->spa_spares.sav_sync = B_TRUE;
3432	}
3433
3434	/*
3435	 * Get the list of level 2 cache devices, if specified.
3436	 */
3437	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3438	    &l2cache, &nl2cache) == 0) {
3439		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3440		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3441		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3442		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3443		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3444		spa_load_l2cache(spa);
3445		spa_config_exit(spa, SCL_ALL, FTAG);
3446		spa->spa_l2cache.sav_sync = B_TRUE;
3447	}
3448
3449	spa->spa_is_initializing = B_TRUE;
3450	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3451	spa->spa_meta_objset = dp->dp_meta_objset;
3452	spa->spa_is_initializing = B_FALSE;
3453
3454	/*
3455	 * Create DDTs (dedup tables).
3456	 */
3457	ddt_create(spa);
3458
3459	spa_update_dspace(spa);
3460
3461	tx = dmu_tx_create_assigned(dp, txg);
3462
3463	/*
3464	 * Create the pool config object.
3465	 */
3466	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3467	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3468	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3469
3470	if (zap_add(spa->spa_meta_objset,
3471	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3472	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3473		cmn_err(CE_PANIC, "failed to add pool config");
3474	}
3475
3476	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3477		spa_feature_create_zap_objects(spa, tx);
3478
3479	if (zap_add(spa->spa_meta_objset,
3480	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3481	    sizeof (uint64_t), 1, &version, tx) != 0) {
3482		cmn_err(CE_PANIC, "failed to add pool version");
3483	}
3484
3485	/* Newly created pools with the right version are always deflated. */
3486	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3487		spa->spa_deflate = TRUE;
3488		if (zap_add(spa->spa_meta_objset,
3489		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3490		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3491			cmn_err(CE_PANIC, "failed to add deflate");
3492		}
3493	}
3494
3495	/*
3496	 * Create the deferred-free bpobj.  Turn off compression
3497	 * because sync-to-convergence takes longer if the blocksize
3498	 * keeps changing.
3499	 */
3500	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3501	dmu_object_set_compress(spa->spa_meta_objset, obj,
3502	    ZIO_COMPRESS_OFF, tx);
3503	if (zap_add(spa->spa_meta_objset,
3504	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3505	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3506		cmn_err(CE_PANIC, "failed to add bpobj");
3507	}
3508	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3509	    spa->spa_meta_objset, obj));
3510
3511	/*
3512	 * Create the pool's history object.
3513	 */
3514	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3515		spa_history_create_obj(spa, tx);
3516
3517	/*
3518	 * Set pool properties.
3519	 */
3520	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3521	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3522	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3523	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3524
3525	if (props != NULL) {
3526		spa_configfile_set(spa, props, B_FALSE);
3527		spa_sync_props(spa, props, tx);
3528	}
3529
3530	dmu_tx_commit(tx);
3531
3532	spa->spa_sync_on = B_TRUE;
3533	txg_sync_start(spa->spa_dsl_pool);
3534
3535	/*
3536	 * We explicitly wait for the first transaction to complete so that our
3537	 * bean counters are appropriately updated.
3538	 */
3539	txg_wait_synced(spa->spa_dsl_pool, txg);
3540
3541	spa_config_sync(spa, B_FALSE, B_TRUE);
3542
3543	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3544		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3545	spa_history_log_version(spa, LOG_POOL_CREATE);
3546
3547	spa->spa_minref = refcount_count(&spa->spa_refcount);
3548
3549	mutex_exit(&spa_namespace_lock);
3550
3551	return (0);
3552}
3553
3554#ifdef _KERNEL
3555#if defined(sun)
3556/*
3557 * Get the root pool information from the root disk, then import the root pool
3558 * during the system boot up time.
3559 */
3560extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3561
3562static nvlist_t *
3563spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3564{
3565	nvlist_t *config;
3566	nvlist_t *nvtop, *nvroot;
3567	uint64_t pgid;
3568
3569	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3570		return (NULL);
3571
3572	/*
3573	 * Add this top-level vdev to the child array.
3574	 */
3575	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3576	    &nvtop) == 0);
3577	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3578	    &pgid) == 0);
3579	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3580
3581	/*
3582	 * Put this pool's top-level vdevs into a root vdev.
3583	 */
3584	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3585	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3586	    VDEV_TYPE_ROOT) == 0);
3587	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3588	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3589	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3590	    &nvtop, 1) == 0);
3591
3592	/*
3593	 * Replace the existing vdev_tree with the new root vdev in
3594	 * this pool's configuration (remove the old, add the new).
3595	 */
3596	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3597	nvlist_free(nvroot);
3598	return (config);
3599}
3600
3601/*
3602 * Walk the vdev tree and see if we can find a device with "better"
3603 * configuration. A configuration is "better" if the label on that
3604 * device has a more recent txg.
3605 */
3606static void
3607spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3608{
3609	for (int c = 0; c < vd->vdev_children; c++)
3610		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3611
3612	if (vd->vdev_ops->vdev_op_leaf) {
3613		nvlist_t *label;
3614		uint64_t label_txg;
3615
3616		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3617		    &label) != 0)
3618			return;
3619
3620		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3621		    &label_txg) == 0);
3622
3623		/*
3624		 * Do we have a better boot device?
3625		 */
3626		if (label_txg > *txg) {
3627			*txg = label_txg;
3628			*avd = vd;
3629		}
3630		nvlist_free(label);
3631	}
3632}
3633
3634/*
3635 * Import a root pool.
3636 *
3637 * For x86. devpath_list will consist of devid and/or physpath name of
3638 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3639 * The GRUB "findroot" command will return the vdev we should boot.
3640 *
3641 * For Sparc, devpath_list consists the physpath name of the booting device
3642 * no matter the rootpool is a single device pool or a mirrored pool.
3643 * e.g.
3644 *	"/pci@1f,0/ide@d/disk@0,0:a"
3645 */
3646int
3647spa_import_rootpool(char *devpath, char *devid)
3648{
3649	spa_t *spa;
3650	vdev_t *rvd, *bvd, *avd = NULL;
3651	nvlist_t *config, *nvtop;
3652	uint64_t guid, txg;
3653	char *pname;
3654	int error;
3655
3656	/*
3657	 * Read the label from the boot device and generate a configuration.
3658	 */
3659	config = spa_generate_rootconf(devpath, devid, &guid);
3660#if defined(_OBP) && defined(_KERNEL)
3661	if (config == NULL) {
3662		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3663			/* iscsi boot */
3664			get_iscsi_bootpath_phy(devpath);
3665			config = spa_generate_rootconf(devpath, devid, &guid);
3666		}
3667	}
3668#endif
3669	if (config == NULL) {
3670		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3671		    devpath);
3672		return (EIO);
3673	}
3674
3675	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3676	    &pname) == 0);
3677	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3678
3679	mutex_enter(&spa_namespace_lock);
3680	if ((spa = spa_lookup(pname)) != NULL) {
3681		/*
3682		 * Remove the existing root pool from the namespace so that we
3683		 * can replace it with the correct config we just read in.
3684		 */
3685		spa_remove(spa);
3686	}
3687
3688	spa = spa_add(pname, config, NULL);
3689	spa->spa_is_root = B_TRUE;
3690	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3691
3692	/*
3693	 * Build up a vdev tree based on the boot device's label config.
3694	 */
3695	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3696	    &nvtop) == 0);
3697	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3698	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3699	    VDEV_ALLOC_ROOTPOOL);
3700	spa_config_exit(spa, SCL_ALL, FTAG);
3701	if (error) {
3702		mutex_exit(&spa_namespace_lock);
3703		nvlist_free(config);
3704		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3705		    pname);
3706		return (error);
3707	}
3708
3709	/*
3710	 * Get the boot vdev.
3711	 */
3712	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3713		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3714		    (u_longlong_t)guid);
3715		error = ENOENT;
3716		goto out;
3717	}
3718
3719	/*
3720	 * Determine if there is a better boot device.
3721	 */
3722	avd = bvd;
3723	spa_alt_rootvdev(rvd, &avd, &txg);
3724	if (avd != bvd) {
3725		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3726		    "try booting from '%s'", avd->vdev_path);
3727		error = EINVAL;
3728		goto out;
3729	}
3730
3731	/*
3732	 * If the boot device is part of a spare vdev then ensure that
3733	 * we're booting off the active spare.
3734	 */
3735	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3736	    !bvd->vdev_isspare) {
3737		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3738		    "try booting from '%s'",
3739		    bvd->vdev_parent->
3740		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3741		error = EINVAL;
3742		goto out;
3743	}
3744
3745	error = 0;
3746	spa_history_log_version(spa, LOG_POOL_IMPORT);
3747out:
3748	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3749	vdev_free(rvd);
3750	spa_config_exit(spa, SCL_ALL, FTAG);
3751	mutex_exit(&spa_namespace_lock);
3752
3753	nvlist_free(config);
3754	return (error);
3755}
3756
3757#else
3758
3759extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3760    uint64_t *count);
3761
3762static nvlist_t *
3763spa_generate_rootconf(const char *name)
3764{
3765	nvlist_t **configs, **tops;
3766	nvlist_t *config;
3767	nvlist_t *best_cfg, *nvtop, *nvroot;
3768	uint64_t *holes;
3769	uint64_t best_txg;
3770	uint64_t nchildren;
3771	uint64_t pgid;
3772	uint64_t count;
3773	uint64_t i;
3774	uint_t   nholes;
3775
3776	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3777		return (NULL);
3778
3779	ASSERT3U(count, !=, 0);
3780	best_txg = 0;
3781	for (i = 0; i < count; i++) {
3782		uint64_t txg;
3783
3784		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3785		    &txg) == 0);
3786		if (txg > best_txg) {
3787			best_txg = txg;
3788			best_cfg = configs[i];
3789		}
3790	}
3791
3792	/*
3793	 * Multi-vdev root pool configuration discovery is not supported yet.
3794	 */
3795	nchildren = 0;
3796	VERIFY(nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN,
3797	    &nchildren) == 0);
3798	holes = NULL;
3799	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3800	    &holes, &nholes);
3801
3802	tops = kmem_alloc(nchildren * sizeof(void *), KM_SLEEP | KM_ZERO);
3803	for (i = 0; i < nchildren; i++) {
3804		if (i >= count)
3805			break;
3806		if (configs[i] == NULL)
3807			continue;
3808		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3809		    &nvtop) == 0);
3810		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3811	}
3812	for (i = 0; holes != NULL && i < nholes; i++) {
3813		if (i >= nchildren)
3814			continue;
3815		if (tops[holes[i]] != NULL)
3816			continue;
3817		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3818		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3819		    VDEV_TYPE_HOLE) == 0);
3820		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3821		    holes[i]) == 0);
3822		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3823		    0) == 0);
3824	}
3825	for (i = 0; i < nchildren; i++) {
3826		if (tops[i] != NULL)
3827			continue;
3828		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3829		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3830		    VDEV_TYPE_MISSING) == 0);
3831		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3832		    i) == 0);
3833		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3834		    0) == 0);
3835	}
3836
3837	/*
3838	 * Create pool config based on the best vdev config.
3839	 */
3840	nvlist_dup(best_cfg, &config, KM_SLEEP);
3841
3842	/*
3843	 * Put this pool's top-level vdevs into a root vdev.
3844	 */
3845	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3846	    &pgid) == 0);
3847	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3848	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3849	    VDEV_TYPE_ROOT) == 0);
3850	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3851	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3852	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3853	    tops, nchildren) == 0);
3854
3855	/*
3856	 * Replace the existing vdev_tree with the new root vdev in
3857	 * this pool's configuration (remove the old, add the new).
3858	 */
3859	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3860
3861	/*
3862	 * Drop vdev config elements that should not be present at pool level.
3863	 */
3864	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3865	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3866
3867	for (i = 0; i < count; i++)
3868		nvlist_free(configs[i]);
3869	kmem_free(configs, count * sizeof(void *));
3870	for (i = 0; i < nchildren; i++)
3871		nvlist_free(tops[i]);
3872	kmem_free(tops, nchildren * sizeof(void *));
3873	nvlist_free(nvroot);
3874	return (config);
3875}
3876
3877int
3878spa_import_rootpool(const char *name)
3879{
3880	spa_t *spa;
3881	vdev_t *rvd, *bvd, *avd = NULL;
3882	nvlist_t *config, *nvtop;
3883	uint64_t txg;
3884	char *pname;
3885	int error;
3886
3887	/*
3888	 * Read the label from the boot device and generate a configuration.
3889	 */
3890	config = spa_generate_rootconf(name);
3891
3892	mutex_enter(&spa_namespace_lock);
3893	if (config != NULL) {
3894		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3895		    &pname) == 0 && strcmp(name, pname) == 0);
3896		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3897		    == 0);
3898
3899		if ((spa = spa_lookup(pname)) != NULL) {
3900			/*
3901			 * Remove the existing root pool from the namespace so
3902			 * that we can replace it with the correct config
3903			 * we just read in.
3904			 */
3905			spa_remove(spa);
3906		}
3907		spa = spa_add(pname, config, NULL);
3908
3909		/*
3910		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
3911		 * via spa_version().
3912		 */
3913		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3914		    &spa->spa_ubsync.ub_version) != 0)
3915			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3916	} else if ((spa = spa_lookup(name)) == NULL) {
3917		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
3918		    name);
3919		return (EIO);
3920	} else {
3921		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
3922	}
3923	spa->spa_is_root = B_TRUE;
3924	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3925
3926	/*
3927	 * Build up a vdev tree based on the boot device's label config.
3928	 */
3929	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3930	    &nvtop) == 0);
3931	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3932	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3933	    VDEV_ALLOC_ROOTPOOL);
3934	spa_config_exit(spa, SCL_ALL, FTAG);
3935	if (error) {
3936		mutex_exit(&spa_namespace_lock);
3937		nvlist_free(config);
3938		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3939		    pname);
3940		return (error);
3941	}
3942
3943	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3944	vdev_free(rvd);
3945	spa_config_exit(spa, SCL_ALL, FTAG);
3946	mutex_exit(&spa_namespace_lock);
3947
3948	nvlist_free(config);
3949	return (0);
3950}
3951
3952#endif	/* sun */
3953#endif
3954
3955/*
3956 * Import a non-root pool into the system.
3957 */
3958int
3959spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3960{
3961	spa_t *spa;
3962	char *altroot = NULL;
3963	spa_load_state_t state = SPA_LOAD_IMPORT;
3964	zpool_rewind_policy_t policy;
3965	uint64_t mode = spa_mode_global;
3966	uint64_t readonly = B_FALSE;
3967	int error;
3968	nvlist_t *nvroot;
3969	nvlist_t **spares, **l2cache;
3970	uint_t nspares, nl2cache;
3971
3972	/*
3973	 * If a pool with this name exists, return failure.
3974	 */
3975	mutex_enter(&spa_namespace_lock);
3976	if (spa_lookup(pool) != NULL) {
3977		mutex_exit(&spa_namespace_lock);
3978		return (EEXIST);
3979	}
3980
3981	/*
3982	 * Create and initialize the spa structure.
3983	 */
3984	(void) nvlist_lookup_string(props,
3985	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3986	(void) nvlist_lookup_uint64(props,
3987	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3988	if (readonly)
3989		mode = FREAD;
3990	spa = spa_add(pool, config, altroot);
3991	spa->spa_import_flags = flags;
3992
3993	/*
3994	 * Verbatim import - Take a pool and insert it into the namespace
3995	 * as if it had been loaded at boot.
3996	 */
3997	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3998		if (props != NULL)
3999			spa_configfile_set(spa, props, B_FALSE);
4000
4001		spa_config_sync(spa, B_FALSE, B_TRUE);
4002
4003		mutex_exit(&spa_namespace_lock);
4004		spa_history_log_version(spa, LOG_POOL_IMPORT);
4005
4006		return (0);
4007	}
4008
4009	spa_activate(spa, mode);
4010
4011	/*
4012	 * Don't start async tasks until we know everything is healthy.
4013	 */
4014	spa_async_suspend(spa);
4015
4016	zpool_get_rewind_policy(config, &policy);
4017	if (policy.zrp_request & ZPOOL_DO_REWIND)
4018		state = SPA_LOAD_RECOVER;
4019
4020	/*
4021	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4022	 * because the user-supplied config is actually the one to trust when
4023	 * doing an import.
4024	 */
4025	if (state != SPA_LOAD_RECOVER)
4026		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4027
4028	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4029	    policy.zrp_request);
4030
4031	/*
4032	 * Propagate anything learned while loading the pool and pass it
4033	 * back to caller (i.e. rewind info, missing devices, etc).
4034	 */
4035	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4036	    spa->spa_load_info) == 0);
4037
4038	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4039	/*
4040	 * Toss any existing sparelist, as it doesn't have any validity
4041	 * anymore, and conflicts with spa_has_spare().
4042	 */
4043	if (spa->spa_spares.sav_config) {
4044		nvlist_free(spa->spa_spares.sav_config);
4045		spa->spa_spares.sav_config = NULL;
4046		spa_load_spares(spa);
4047	}
4048	if (spa->spa_l2cache.sav_config) {
4049		nvlist_free(spa->spa_l2cache.sav_config);
4050		spa->spa_l2cache.sav_config = NULL;
4051		spa_load_l2cache(spa);
4052	}
4053
4054	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4055	    &nvroot) == 0);
4056	if (error == 0)
4057		error = spa_validate_aux(spa, nvroot, -1ULL,
4058		    VDEV_ALLOC_SPARE);
4059	if (error == 0)
4060		error = spa_validate_aux(spa, nvroot, -1ULL,
4061		    VDEV_ALLOC_L2CACHE);
4062	spa_config_exit(spa, SCL_ALL, FTAG);
4063
4064	if (props != NULL)
4065		spa_configfile_set(spa, props, B_FALSE);
4066
4067	if (error != 0 || (props && spa_writeable(spa) &&
4068	    (error = spa_prop_set(spa, props)))) {
4069		spa_unload(spa);
4070		spa_deactivate(spa);
4071		spa_remove(spa);
4072		mutex_exit(&spa_namespace_lock);
4073		return (error);
4074	}
4075
4076	spa_async_resume(spa);
4077
4078	/*
4079	 * Override any spares and level 2 cache devices as specified by
4080	 * the user, as these may have correct device names/devids, etc.
4081	 */
4082	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4083	    &spares, &nspares) == 0) {
4084		if (spa->spa_spares.sav_config)
4085			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4086			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4087		else
4088			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4089			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4090		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4091		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4092		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4093		spa_load_spares(spa);
4094		spa_config_exit(spa, SCL_ALL, FTAG);
4095		spa->spa_spares.sav_sync = B_TRUE;
4096	}
4097	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4098	    &l2cache, &nl2cache) == 0) {
4099		if (spa->spa_l2cache.sav_config)
4100			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4101			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4102		else
4103			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4104			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4105		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4106		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4107		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4108		spa_load_l2cache(spa);
4109		spa_config_exit(spa, SCL_ALL, FTAG);
4110		spa->spa_l2cache.sav_sync = B_TRUE;
4111	}
4112
4113	/*
4114	 * Check for any removed devices.
4115	 */
4116	if (spa->spa_autoreplace) {
4117		spa_aux_check_removed(&spa->spa_spares);
4118		spa_aux_check_removed(&spa->spa_l2cache);
4119	}
4120
4121	if (spa_writeable(spa)) {
4122		/*
4123		 * Update the config cache to include the newly-imported pool.
4124		 */
4125		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4126	}
4127
4128	/*
4129	 * It's possible that the pool was expanded while it was exported.
4130	 * We kick off an async task to handle this for us.
4131	 */
4132	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4133
4134	mutex_exit(&spa_namespace_lock);
4135	spa_history_log_version(spa, LOG_POOL_IMPORT);
4136
4137#ifdef __FreeBSD__
4138#ifdef _KERNEL
4139	zvol_create_minors(pool);
4140#endif
4141#endif
4142	return (0);
4143}
4144
4145nvlist_t *
4146spa_tryimport(nvlist_t *tryconfig)
4147{
4148	nvlist_t *config = NULL;
4149	char *poolname;
4150	spa_t *spa;
4151	uint64_t state;
4152	int error;
4153
4154	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4155		return (NULL);
4156
4157	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4158		return (NULL);
4159
4160	/*
4161	 * Create and initialize the spa structure.
4162	 */
4163	mutex_enter(&spa_namespace_lock);
4164	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4165	spa_activate(spa, FREAD);
4166
4167	/*
4168	 * Pass off the heavy lifting to spa_load().
4169	 * Pass TRUE for mosconfig because the user-supplied config
4170	 * is actually the one to trust when doing an import.
4171	 */
4172	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4173
4174	/*
4175	 * If 'tryconfig' was at least parsable, return the current config.
4176	 */
4177	if (spa->spa_root_vdev != NULL) {
4178		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4179		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4180		    poolname) == 0);
4181		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4182		    state) == 0);
4183		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4184		    spa->spa_uberblock.ub_timestamp) == 0);
4185		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4186		    spa->spa_load_info) == 0);
4187
4188		/*
4189		 * If the bootfs property exists on this pool then we
4190		 * copy it out so that external consumers can tell which
4191		 * pools are bootable.
4192		 */
4193		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4194			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4195
4196			/*
4197			 * We have to play games with the name since the
4198			 * pool was opened as TRYIMPORT_NAME.
4199			 */
4200			if (dsl_dsobj_to_dsname(spa_name(spa),
4201			    spa->spa_bootfs, tmpname) == 0) {
4202				char *cp;
4203				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4204
4205				cp = strchr(tmpname, '/');
4206				if (cp == NULL) {
4207					(void) strlcpy(dsname, tmpname,
4208					    MAXPATHLEN);
4209				} else {
4210					(void) snprintf(dsname, MAXPATHLEN,
4211					    "%s/%s", poolname, ++cp);
4212				}
4213				VERIFY(nvlist_add_string(config,
4214				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4215				kmem_free(dsname, MAXPATHLEN);
4216			}
4217			kmem_free(tmpname, MAXPATHLEN);
4218		}
4219
4220		/*
4221		 * Add the list of hot spares and level 2 cache devices.
4222		 */
4223		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4224		spa_add_spares(spa, config);
4225		spa_add_l2cache(spa, config);
4226		spa_config_exit(spa, SCL_CONFIG, FTAG);
4227	}
4228
4229	spa_unload(spa);
4230	spa_deactivate(spa);
4231	spa_remove(spa);
4232	mutex_exit(&spa_namespace_lock);
4233
4234	return (config);
4235}
4236
4237/*
4238 * Pool export/destroy
4239 *
4240 * The act of destroying or exporting a pool is very simple.  We make sure there
4241 * is no more pending I/O and any references to the pool are gone.  Then, we
4242 * update the pool state and sync all the labels to disk, removing the
4243 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4244 * we don't sync the labels or remove the configuration cache.
4245 */
4246static int
4247spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4248    boolean_t force, boolean_t hardforce)
4249{
4250	spa_t *spa;
4251
4252	if (oldconfig)
4253		*oldconfig = NULL;
4254
4255	if (!(spa_mode_global & FWRITE))
4256		return (EROFS);
4257
4258	mutex_enter(&spa_namespace_lock);
4259	if ((spa = spa_lookup(pool)) == NULL) {
4260		mutex_exit(&spa_namespace_lock);
4261		return (ENOENT);
4262	}
4263
4264	/*
4265	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4266	 * reacquire the namespace lock, and see if we can export.
4267	 */
4268	spa_open_ref(spa, FTAG);
4269	mutex_exit(&spa_namespace_lock);
4270	spa_async_suspend(spa);
4271	mutex_enter(&spa_namespace_lock);
4272	spa_close(spa, FTAG);
4273
4274	/*
4275	 * The pool will be in core if it's openable,
4276	 * in which case we can modify its state.
4277	 */
4278	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4279		/*
4280		 * Objsets may be open only because they're dirty, so we
4281		 * have to force it to sync before checking spa_refcnt.
4282		 */
4283		txg_wait_synced(spa->spa_dsl_pool, 0);
4284
4285		/*
4286		 * A pool cannot be exported or destroyed if there are active
4287		 * references.  If we are resetting a pool, allow references by
4288		 * fault injection handlers.
4289		 */
4290		if (!spa_refcount_zero(spa) ||
4291		    (spa->spa_inject_ref != 0 &&
4292		    new_state != POOL_STATE_UNINITIALIZED)) {
4293			spa_async_resume(spa);
4294			mutex_exit(&spa_namespace_lock);
4295			return (EBUSY);
4296		}
4297
4298		/*
4299		 * A pool cannot be exported if it has an active shared spare.
4300		 * This is to prevent other pools stealing the active spare
4301		 * from an exported pool. At user's own will, such pool can
4302		 * be forcedly exported.
4303		 */
4304		if (!force && new_state == POOL_STATE_EXPORTED &&
4305		    spa_has_active_shared_spare(spa)) {
4306			spa_async_resume(spa);
4307			mutex_exit(&spa_namespace_lock);
4308			return (EXDEV);
4309		}
4310
4311		/*
4312		 * We want this to be reflected on every label,
4313		 * so mark them all dirty.  spa_unload() will do the
4314		 * final sync that pushes these changes out.
4315		 */
4316		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4317			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4318			spa->spa_state = new_state;
4319			spa->spa_final_txg = spa_last_synced_txg(spa) +
4320			    TXG_DEFER_SIZE + 1;
4321			vdev_config_dirty(spa->spa_root_vdev);
4322			spa_config_exit(spa, SCL_ALL, FTAG);
4323		}
4324	}
4325
4326	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4327
4328	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4329		spa_unload(spa);
4330		spa_deactivate(spa);
4331	}
4332
4333	if (oldconfig && spa->spa_config)
4334		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4335
4336	if (new_state != POOL_STATE_UNINITIALIZED) {
4337		if (!hardforce)
4338			spa_config_sync(spa, B_TRUE, B_TRUE);
4339		spa_remove(spa);
4340	}
4341	mutex_exit(&spa_namespace_lock);
4342
4343	return (0);
4344}
4345
4346/*
4347 * Destroy a storage pool.
4348 */
4349int
4350spa_destroy(char *pool)
4351{
4352	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4353	    B_FALSE, B_FALSE));
4354}
4355
4356/*
4357 * Export a storage pool.
4358 */
4359int
4360spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4361    boolean_t hardforce)
4362{
4363	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4364	    force, hardforce));
4365}
4366
4367/*
4368 * Similar to spa_export(), this unloads the spa_t without actually removing it
4369 * from the namespace in any way.
4370 */
4371int
4372spa_reset(char *pool)
4373{
4374	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4375	    B_FALSE, B_FALSE));
4376}
4377
4378/*
4379 * ==========================================================================
4380 * Device manipulation
4381 * ==========================================================================
4382 */
4383
4384/*
4385 * Add a device to a storage pool.
4386 */
4387int
4388spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4389{
4390	uint64_t txg, id;
4391	int error;
4392	vdev_t *rvd = spa->spa_root_vdev;
4393	vdev_t *vd, *tvd;
4394	nvlist_t **spares, **l2cache;
4395	uint_t nspares, nl2cache;
4396
4397	ASSERT(spa_writeable(spa));
4398
4399	txg = spa_vdev_enter(spa);
4400
4401	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4402	    VDEV_ALLOC_ADD)) != 0)
4403		return (spa_vdev_exit(spa, NULL, txg, error));
4404
4405	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4406
4407	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4408	    &nspares) != 0)
4409		nspares = 0;
4410
4411	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4412	    &nl2cache) != 0)
4413		nl2cache = 0;
4414
4415	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4416		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4417
4418	if (vd->vdev_children != 0 &&
4419	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4420		return (spa_vdev_exit(spa, vd, txg, error));
4421
4422	/*
4423	 * We must validate the spares and l2cache devices after checking the
4424	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4425	 */
4426	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4427		return (spa_vdev_exit(spa, vd, txg, error));
4428
4429	/*
4430	 * Transfer each new top-level vdev from vd to rvd.
4431	 */
4432	for (int c = 0; c < vd->vdev_children; c++) {
4433
4434		/*
4435		 * Set the vdev id to the first hole, if one exists.
4436		 */
4437		for (id = 0; id < rvd->vdev_children; id++) {
4438			if (rvd->vdev_child[id]->vdev_ishole) {
4439				vdev_free(rvd->vdev_child[id]);
4440				break;
4441			}
4442		}
4443		tvd = vd->vdev_child[c];
4444		vdev_remove_child(vd, tvd);
4445		tvd->vdev_id = id;
4446		vdev_add_child(rvd, tvd);
4447		vdev_config_dirty(tvd);
4448	}
4449
4450	if (nspares != 0) {
4451		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4452		    ZPOOL_CONFIG_SPARES);
4453		spa_load_spares(spa);
4454		spa->spa_spares.sav_sync = B_TRUE;
4455	}
4456
4457	if (nl2cache != 0) {
4458		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4459		    ZPOOL_CONFIG_L2CACHE);
4460		spa_load_l2cache(spa);
4461		spa->spa_l2cache.sav_sync = B_TRUE;
4462	}
4463
4464	/*
4465	 * We have to be careful when adding new vdevs to an existing pool.
4466	 * If other threads start allocating from these vdevs before we
4467	 * sync the config cache, and we lose power, then upon reboot we may
4468	 * fail to open the pool because there are DVAs that the config cache
4469	 * can't translate.  Therefore, we first add the vdevs without
4470	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4471	 * and then let spa_config_update() initialize the new metaslabs.
4472	 *
4473	 * spa_load() checks for added-but-not-initialized vdevs, so that
4474	 * if we lose power at any point in this sequence, the remaining
4475	 * steps will be completed the next time we load the pool.
4476	 */
4477	(void) spa_vdev_exit(spa, vd, txg, 0);
4478
4479	mutex_enter(&spa_namespace_lock);
4480	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4481	mutex_exit(&spa_namespace_lock);
4482
4483	return (0);
4484}
4485
4486/*
4487 * Attach a device to a mirror.  The arguments are the path to any device
4488 * in the mirror, and the nvroot for the new device.  If the path specifies
4489 * a device that is not mirrored, we automatically insert the mirror vdev.
4490 *
4491 * If 'replacing' is specified, the new device is intended to replace the
4492 * existing device; in this case the two devices are made into their own
4493 * mirror using the 'replacing' vdev, which is functionally identical to
4494 * the mirror vdev (it actually reuses all the same ops) but has a few
4495 * extra rules: you can't attach to it after it's been created, and upon
4496 * completion of resilvering, the first disk (the one being replaced)
4497 * is automatically detached.
4498 */
4499int
4500spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4501{
4502	uint64_t txg, dtl_max_txg;
4503	vdev_t *rvd = spa->spa_root_vdev;
4504	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4505	vdev_ops_t *pvops;
4506	char *oldvdpath, *newvdpath;
4507	int newvd_isspare;
4508	int error;
4509
4510	ASSERT(spa_writeable(spa));
4511
4512	txg = spa_vdev_enter(spa);
4513
4514	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4515
4516	if (oldvd == NULL)
4517		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4518
4519	if (!oldvd->vdev_ops->vdev_op_leaf)
4520		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4521
4522	pvd = oldvd->vdev_parent;
4523
4524	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4525	    VDEV_ALLOC_ATTACH)) != 0)
4526		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4527
4528	if (newrootvd->vdev_children != 1)
4529		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4530
4531	newvd = newrootvd->vdev_child[0];
4532
4533	if (!newvd->vdev_ops->vdev_op_leaf)
4534		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4535
4536	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4537		return (spa_vdev_exit(spa, newrootvd, txg, error));
4538
4539	/*
4540	 * Spares can't replace logs
4541	 */
4542	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4543		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4544
4545	if (!replacing) {
4546		/*
4547		 * For attach, the only allowable parent is a mirror or the root
4548		 * vdev.
4549		 */
4550		if (pvd->vdev_ops != &vdev_mirror_ops &&
4551		    pvd->vdev_ops != &vdev_root_ops)
4552			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4553
4554		pvops = &vdev_mirror_ops;
4555	} else {
4556		/*
4557		 * Active hot spares can only be replaced by inactive hot
4558		 * spares.
4559		 */
4560		if (pvd->vdev_ops == &vdev_spare_ops &&
4561		    oldvd->vdev_isspare &&
4562		    !spa_has_spare(spa, newvd->vdev_guid))
4563			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4564
4565		/*
4566		 * If the source is a hot spare, and the parent isn't already a
4567		 * spare, then we want to create a new hot spare.  Otherwise, we
4568		 * want to create a replacing vdev.  The user is not allowed to
4569		 * attach to a spared vdev child unless the 'isspare' state is
4570		 * the same (spare replaces spare, non-spare replaces
4571		 * non-spare).
4572		 */
4573		if (pvd->vdev_ops == &vdev_replacing_ops &&
4574		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4575			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4576		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4577		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4578			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4579		}
4580
4581		if (newvd->vdev_isspare)
4582			pvops = &vdev_spare_ops;
4583		else
4584			pvops = &vdev_replacing_ops;
4585	}
4586
4587	/*
4588	 * Make sure the new device is big enough.
4589	 */
4590	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4591		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4592
4593	/*
4594	 * The new device cannot have a higher alignment requirement
4595	 * than the top-level vdev.
4596	 */
4597	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4598		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4599
4600	/*
4601	 * If this is an in-place replacement, update oldvd's path and devid
4602	 * to make it distinguishable from newvd, and unopenable from now on.
4603	 */
4604	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4605		spa_strfree(oldvd->vdev_path);
4606		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4607		    KM_SLEEP);
4608		(void) sprintf(oldvd->vdev_path, "%s/%s",
4609		    newvd->vdev_path, "old");
4610		if (oldvd->vdev_devid != NULL) {
4611			spa_strfree(oldvd->vdev_devid);
4612			oldvd->vdev_devid = NULL;
4613		}
4614	}
4615
4616	/* mark the device being resilvered */
4617	newvd->vdev_resilvering = B_TRUE;
4618
4619	/*
4620	 * If the parent is not a mirror, or if we're replacing, insert the new
4621	 * mirror/replacing/spare vdev above oldvd.
4622	 */
4623	if (pvd->vdev_ops != pvops)
4624		pvd = vdev_add_parent(oldvd, pvops);
4625
4626	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4627	ASSERT(pvd->vdev_ops == pvops);
4628	ASSERT(oldvd->vdev_parent == pvd);
4629
4630	/*
4631	 * Extract the new device from its root and add it to pvd.
4632	 */
4633	vdev_remove_child(newrootvd, newvd);
4634	newvd->vdev_id = pvd->vdev_children;
4635	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4636	vdev_add_child(pvd, newvd);
4637
4638	tvd = newvd->vdev_top;
4639	ASSERT(pvd->vdev_top == tvd);
4640	ASSERT(tvd->vdev_parent == rvd);
4641
4642	vdev_config_dirty(tvd);
4643
4644	/*
4645	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4646	 * for any dmu_sync-ed blocks.  It will propagate upward when
4647	 * spa_vdev_exit() calls vdev_dtl_reassess().
4648	 */
4649	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4650
4651	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4652	    dtl_max_txg - TXG_INITIAL);
4653
4654	if (newvd->vdev_isspare) {
4655		spa_spare_activate(newvd);
4656		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4657	}
4658
4659	oldvdpath = spa_strdup(oldvd->vdev_path);
4660	newvdpath = spa_strdup(newvd->vdev_path);
4661	newvd_isspare = newvd->vdev_isspare;
4662
4663	/*
4664	 * Mark newvd's DTL dirty in this txg.
4665	 */
4666	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4667
4668	/*
4669	 * Restart the resilver
4670	 */
4671	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4672
4673	/*
4674	 * Commit the config
4675	 */
4676	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4677
4678	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4679	    "%s vdev=%s %s vdev=%s",
4680	    replacing && newvd_isspare ? "spare in" :
4681	    replacing ? "replace" : "attach", newvdpath,
4682	    replacing ? "for" : "to", oldvdpath);
4683
4684	spa_strfree(oldvdpath);
4685	spa_strfree(newvdpath);
4686
4687	if (spa->spa_bootfs)
4688		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4689
4690	return (0);
4691}
4692
4693/*
4694 * Detach a device from a mirror or replacing vdev.
4695 * If 'replace_done' is specified, only detach if the parent
4696 * is a replacing vdev.
4697 */
4698int
4699spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4700{
4701	uint64_t txg;
4702	int error;
4703	vdev_t *rvd = spa->spa_root_vdev;
4704	vdev_t *vd, *pvd, *cvd, *tvd;
4705	boolean_t unspare = B_FALSE;
4706	uint64_t unspare_guid;
4707	char *vdpath;
4708
4709	ASSERT(spa_writeable(spa));
4710
4711	txg = spa_vdev_enter(spa);
4712
4713	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4714
4715	if (vd == NULL)
4716		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4717
4718	if (!vd->vdev_ops->vdev_op_leaf)
4719		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4720
4721	pvd = vd->vdev_parent;
4722
4723	/*
4724	 * If the parent/child relationship is not as expected, don't do it.
4725	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4726	 * vdev that's replacing B with C.  The user's intent in replacing
4727	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4728	 * the replace by detaching C, the expected behavior is to end up
4729	 * M(A,B).  But suppose that right after deciding to detach C,
4730	 * the replacement of B completes.  We would have M(A,C), and then
4731	 * ask to detach C, which would leave us with just A -- not what
4732	 * the user wanted.  To prevent this, we make sure that the
4733	 * parent/child relationship hasn't changed -- in this example,
4734	 * that C's parent is still the replacing vdev R.
4735	 */
4736	if (pvd->vdev_guid != pguid && pguid != 0)
4737		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4738
4739	/*
4740	 * Only 'replacing' or 'spare' vdevs can be replaced.
4741	 */
4742	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4743	    pvd->vdev_ops != &vdev_spare_ops)
4744		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4745
4746	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4747	    spa_version(spa) >= SPA_VERSION_SPARES);
4748
4749	/*
4750	 * Only mirror, replacing, and spare vdevs support detach.
4751	 */
4752	if (pvd->vdev_ops != &vdev_replacing_ops &&
4753	    pvd->vdev_ops != &vdev_mirror_ops &&
4754	    pvd->vdev_ops != &vdev_spare_ops)
4755		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4756
4757	/*
4758	 * If this device has the only valid copy of some data,
4759	 * we cannot safely detach it.
4760	 */
4761	if (vdev_dtl_required(vd))
4762		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4763
4764	ASSERT(pvd->vdev_children >= 2);
4765
4766	/*
4767	 * If we are detaching the second disk from a replacing vdev, then
4768	 * check to see if we changed the original vdev's path to have "/old"
4769	 * at the end in spa_vdev_attach().  If so, undo that change now.
4770	 */
4771	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4772	    vd->vdev_path != NULL) {
4773		size_t len = strlen(vd->vdev_path);
4774
4775		for (int c = 0; c < pvd->vdev_children; c++) {
4776			cvd = pvd->vdev_child[c];
4777
4778			if (cvd == vd || cvd->vdev_path == NULL)
4779				continue;
4780
4781			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4782			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4783				spa_strfree(cvd->vdev_path);
4784				cvd->vdev_path = spa_strdup(vd->vdev_path);
4785				break;
4786			}
4787		}
4788	}
4789
4790	/*
4791	 * If we are detaching the original disk from a spare, then it implies
4792	 * that the spare should become a real disk, and be removed from the
4793	 * active spare list for the pool.
4794	 */
4795	if (pvd->vdev_ops == &vdev_spare_ops &&
4796	    vd->vdev_id == 0 &&
4797	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4798		unspare = B_TRUE;
4799
4800	/*
4801	 * Erase the disk labels so the disk can be used for other things.
4802	 * This must be done after all other error cases are handled,
4803	 * but before we disembowel vd (so we can still do I/O to it).
4804	 * But if we can't do it, don't treat the error as fatal --
4805	 * it may be that the unwritability of the disk is the reason
4806	 * it's being detached!
4807	 */
4808	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4809
4810	/*
4811	 * Remove vd from its parent and compact the parent's children.
4812	 */
4813	vdev_remove_child(pvd, vd);
4814	vdev_compact_children(pvd);
4815
4816	/*
4817	 * Remember one of the remaining children so we can get tvd below.
4818	 */
4819	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4820
4821	/*
4822	 * If we need to remove the remaining child from the list of hot spares,
4823	 * do it now, marking the vdev as no longer a spare in the process.
4824	 * We must do this before vdev_remove_parent(), because that can
4825	 * change the GUID if it creates a new toplevel GUID.  For a similar
4826	 * reason, we must remove the spare now, in the same txg as the detach;
4827	 * otherwise someone could attach a new sibling, change the GUID, and
4828	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4829	 */
4830	if (unspare) {
4831		ASSERT(cvd->vdev_isspare);
4832		spa_spare_remove(cvd);
4833		unspare_guid = cvd->vdev_guid;
4834		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4835		cvd->vdev_unspare = B_TRUE;
4836	}
4837
4838	/*
4839	 * If the parent mirror/replacing vdev only has one child,
4840	 * the parent is no longer needed.  Remove it from the tree.
4841	 */
4842	if (pvd->vdev_children == 1) {
4843		if (pvd->vdev_ops == &vdev_spare_ops)
4844			cvd->vdev_unspare = B_FALSE;
4845		vdev_remove_parent(cvd);
4846		cvd->vdev_resilvering = B_FALSE;
4847	}
4848
4849
4850	/*
4851	 * We don't set tvd until now because the parent we just removed
4852	 * may have been the previous top-level vdev.
4853	 */
4854	tvd = cvd->vdev_top;
4855	ASSERT(tvd->vdev_parent == rvd);
4856
4857	/*
4858	 * Reevaluate the parent vdev state.
4859	 */
4860	vdev_propagate_state(cvd);
4861
4862	/*
4863	 * If the 'autoexpand' property is set on the pool then automatically
4864	 * try to expand the size of the pool. For example if the device we
4865	 * just detached was smaller than the others, it may be possible to
4866	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4867	 * first so that we can obtain the updated sizes of the leaf vdevs.
4868	 */
4869	if (spa->spa_autoexpand) {
4870		vdev_reopen(tvd);
4871		vdev_expand(tvd, txg);
4872	}
4873
4874	vdev_config_dirty(tvd);
4875
4876	/*
4877	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4878	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4879	 * But first make sure we're not on any *other* txg's DTL list, to
4880	 * prevent vd from being accessed after it's freed.
4881	 */
4882	vdpath = spa_strdup(vd->vdev_path);
4883	for (int t = 0; t < TXG_SIZE; t++)
4884		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4885	vd->vdev_detached = B_TRUE;
4886	vdev_dirty(tvd, VDD_DTL, vd, txg);
4887
4888	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4889
4890	/* hang on to the spa before we release the lock */
4891	spa_open_ref(spa, FTAG);
4892
4893	error = spa_vdev_exit(spa, vd, txg, 0);
4894
4895	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4896	    "vdev=%s", vdpath);
4897	spa_strfree(vdpath);
4898
4899	/*
4900	 * If this was the removal of the original device in a hot spare vdev,
4901	 * then we want to go through and remove the device from the hot spare
4902	 * list of every other pool.
4903	 */
4904	if (unspare) {
4905		spa_t *altspa = NULL;
4906
4907		mutex_enter(&spa_namespace_lock);
4908		while ((altspa = spa_next(altspa)) != NULL) {
4909			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4910			    altspa == spa)
4911				continue;
4912
4913			spa_open_ref(altspa, FTAG);
4914			mutex_exit(&spa_namespace_lock);
4915			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4916			mutex_enter(&spa_namespace_lock);
4917			spa_close(altspa, FTAG);
4918		}
4919		mutex_exit(&spa_namespace_lock);
4920
4921		/* search the rest of the vdevs for spares to remove */
4922		spa_vdev_resilver_done(spa);
4923	}
4924
4925	/* all done with the spa; OK to release */
4926	mutex_enter(&spa_namespace_lock);
4927	spa_close(spa, FTAG);
4928	mutex_exit(&spa_namespace_lock);
4929
4930	return (error);
4931}
4932
4933/*
4934 * Split a set of devices from their mirrors, and create a new pool from them.
4935 */
4936int
4937spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4938    nvlist_t *props, boolean_t exp)
4939{
4940	int error = 0;
4941	uint64_t txg, *glist;
4942	spa_t *newspa;
4943	uint_t c, children, lastlog;
4944	nvlist_t **child, *nvl, *tmp;
4945	dmu_tx_t *tx;
4946	char *altroot = NULL;
4947	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4948	boolean_t activate_slog;
4949
4950	ASSERT(spa_writeable(spa));
4951
4952	txg = spa_vdev_enter(spa);
4953
4954	/* clear the log and flush everything up to now */
4955	activate_slog = spa_passivate_log(spa);
4956	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4957	error = spa_offline_log(spa);
4958	txg = spa_vdev_config_enter(spa);
4959
4960	if (activate_slog)
4961		spa_activate_log(spa);
4962
4963	if (error != 0)
4964		return (spa_vdev_exit(spa, NULL, txg, error));
4965
4966	/* check new spa name before going any further */
4967	if (spa_lookup(newname) != NULL)
4968		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4969
4970	/*
4971	 * scan through all the children to ensure they're all mirrors
4972	 */
4973	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4974	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4975	    &children) != 0)
4976		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4977
4978	/* first, check to ensure we've got the right child count */
4979	rvd = spa->spa_root_vdev;
4980	lastlog = 0;
4981	for (c = 0; c < rvd->vdev_children; c++) {
4982		vdev_t *vd = rvd->vdev_child[c];
4983
4984		/* don't count the holes & logs as children */
4985		if (vd->vdev_islog || vd->vdev_ishole) {
4986			if (lastlog == 0)
4987				lastlog = c;
4988			continue;
4989		}
4990
4991		lastlog = 0;
4992	}
4993	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4994		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4995
4996	/* next, ensure no spare or cache devices are part of the split */
4997	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4998	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4999		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5000
5001	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5002	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5003
5004	/* then, loop over each vdev and validate it */
5005	for (c = 0; c < children; c++) {
5006		uint64_t is_hole = 0;
5007
5008		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5009		    &is_hole);
5010
5011		if (is_hole != 0) {
5012			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5013			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5014				continue;
5015			} else {
5016				error = EINVAL;
5017				break;
5018			}
5019		}
5020
5021		/* which disk is going to be split? */
5022		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5023		    &glist[c]) != 0) {
5024			error = EINVAL;
5025			break;
5026		}
5027
5028		/* look it up in the spa */
5029		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5030		if (vml[c] == NULL) {
5031			error = ENODEV;
5032			break;
5033		}
5034
5035		/* make sure there's nothing stopping the split */
5036		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5037		    vml[c]->vdev_islog ||
5038		    vml[c]->vdev_ishole ||
5039		    vml[c]->vdev_isspare ||
5040		    vml[c]->vdev_isl2cache ||
5041		    !vdev_writeable(vml[c]) ||
5042		    vml[c]->vdev_children != 0 ||
5043		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5044		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5045			error = EINVAL;
5046			break;
5047		}
5048
5049		if (vdev_dtl_required(vml[c])) {
5050			error = EBUSY;
5051			break;
5052		}
5053
5054		/* we need certain info from the top level */
5055		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5056		    vml[c]->vdev_top->vdev_ms_array) == 0);
5057		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5058		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5059		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5060		    vml[c]->vdev_top->vdev_asize) == 0);
5061		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5062		    vml[c]->vdev_top->vdev_ashift) == 0);
5063	}
5064
5065	if (error != 0) {
5066		kmem_free(vml, children * sizeof (vdev_t *));
5067		kmem_free(glist, children * sizeof (uint64_t));
5068		return (spa_vdev_exit(spa, NULL, txg, error));
5069	}
5070
5071	/* stop writers from using the disks */
5072	for (c = 0; c < children; c++) {
5073		if (vml[c] != NULL)
5074			vml[c]->vdev_offline = B_TRUE;
5075	}
5076	vdev_reopen(spa->spa_root_vdev);
5077
5078	/*
5079	 * Temporarily record the splitting vdevs in the spa config.  This
5080	 * will disappear once the config is regenerated.
5081	 */
5082	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5083	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5084	    glist, children) == 0);
5085	kmem_free(glist, children * sizeof (uint64_t));
5086
5087	mutex_enter(&spa->spa_props_lock);
5088	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5089	    nvl) == 0);
5090	mutex_exit(&spa->spa_props_lock);
5091	spa->spa_config_splitting = nvl;
5092	vdev_config_dirty(spa->spa_root_vdev);
5093
5094	/* configure and create the new pool */
5095	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5096	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5097	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5098	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5099	    spa_version(spa)) == 0);
5100	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5101	    spa->spa_config_txg) == 0);
5102	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5103	    spa_generate_guid(NULL)) == 0);
5104	(void) nvlist_lookup_string(props,
5105	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5106
5107	/* add the new pool to the namespace */
5108	newspa = spa_add(newname, config, altroot);
5109	newspa->spa_config_txg = spa->spa_config_txg;
5110	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5111
5112	/* release the spa config lock, retaining the namespace lock */
5113	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5114
5115	if (zio_injection_enabled)
5116		zio_handle_panic_injection(spa, FTAG, 1);
5117
5118	spa_activate(newspa, spa_mode_global);
5119	spa_async_suspend(newspa);
5120
5121#ifndef sun
5122	/* mark that we are creating new spa by splitting */
5123	newspa->spa_splitting_newspa = B_TRUE;
5124#endif
5125	/* create the new pool from the disks of the original pool */
5126	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5127#ifndef sun
5128	newspa->spa_splitting_newspa = B_FALSE;
5129#endif
5130	if (error)
5131		goto out;
5132
5133	/* if that worked, generate a real config for the new pool */
5134	if (newspa->spa_root_vdev != NULL) {
5135		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5136		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5137		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5138		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5139		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5140		    B_TRUE));
5141	}
5142
5143	/* set the props */
5144	if (props != NULL) {
5145		spa_configfile_set(newspa, props, B_FALSE);
5146		error = spa_prop_set(newspa, props);
5147		if (error)
5148			goto out;
5149	}
5150
5151	/* flush everything */
5152	txg = spa_vdev_config_enter(newspa);
5153	vdev_config_dirty(newspa->spa_root_vdev);
5154	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5155
5156	if (zio_injection_enabled)
5157		zio_handle_panic_injection(spa, FTAG, 2);
5158
5159	spa_async_resume(newspa);
5160
5161	/* finally, update the original pool's config */
5162	txg = spa_vdev_config_enter(spa);
5163	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5164	error = dmu_tx_assign(tx, TXG_WAIT);
5165	if (error != 0)
5166		dmu_tx_abort(tx);
5167	for (c = 0; c < children; c++) {
5168		if (vml[c] != NULL) {
5169			vdev_split(vml[c]);
5170			if (error == 0)
5171				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
5172				    spa, tx, "vdev=%s",
5173				    vml[c]->vdev_path);
5174			vdev_free(vml[c]);
5175		}
5176	}
5177	vdev_config_dirty(spa->spa_root_vdev);
5178	spa->spa_config_splitting = NULL;
5179	nvlist_free(nvl);
5180	if (error == 0)
5181		dmu_tx_commit(tx);
5182	(void) spa_vdev_exit(spa, NULL, txg, 0);
5183
5184	if (zio_injection_enabled)
5185		zio_handle_panic_injection(spa, FTAG, 3);
5186
5187	/* split is complete; log a history record */
5188	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
5189	    "split new pool %s from pool %s", newname, spa_name(spa));
5190
5191	kmem_free(vml, children * sizeof (vdev_t *));
5192
5193	/* if we're not going to mount the filesystems in userland, export */
5194	if (exp)
5195		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5196		    B_FALSE, B_FALSE);
5197
5198	return (error);
5199
5200out:
5201	spa_unload(newspa);
5202	spa_deactivate(newspa);
5203	spa_remove(newspa);
5204
5205	txg = spa_vdev_config_enter(spa);
5206
5207	/* re-online all offlined disks */
5208	for (c = 0; c < children; c++) {
5209		if (vml[c] != NULL)
5210			vml[c]->vdev_offline = B_FALSE;
5211	}
5212	vdev_reopen(spa->spa_root_vdev);
5213
5214	nvlist_free(spa->spa_config_splitting);
5215	spa->spa_config_splitting = NULL;
5216	(void) spa_vdev_exit(spa, NULL, txg, error);
5217
5218	kmem_free(vml, children * sizeof (vdev_t *));
5219	return (error);
5220}
5221
5222static nvlist_t *
5223spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5224{
5225	for (int i = 0; i < count; i++) {
5226		uint64_t guid;
5227
5228		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5229		    &guid) == 0);
5230
5231		if (guid == target_guid)
5232			return (nvpp[i]);
5233	}
5234
5235	return (NULL);
5236}
5237
5238static void
5239spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5240	nvlist_t *dev_to_remove)
5241{
5242	nvlist_t **newdev = NULL;
5243
5244	if (count > 1)
5245		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5246
5247	for (int i = 0, j = 0; i < count; i++) {
5248		if (dev[i] == dev_to_remove)
5249			continue;
5250		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5251	}
5252
5253	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5254	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5255
5256	for (int i = 0; i < count - 1; i++)
5257		nvlist_free(newdev[i]);
5258
5259	if (count > 1)
5260		kmem_free(newdev, (count - 1) * sizeof (void *));
5261}
5262
5263/*
5264 * Evacuate the device.
5265 */
5266static int
5267spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5268{
5269	uint64_t txg;
5270	int error = 0;
5271
5272	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5273	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5274	ASSERT(vd == vd->vdev_top);
5275
5276	/*
5277	 * Evacuate the device.  We don't hold the config lock as writer
5278	 * since we need to do I/O but we do keep the
5279	 * spa_namespace_lock held.  Once this completes the device
5280	 * should no longer have any blocks allocated on it.
5281	 */
5282	if (vd->vdev_islog) {
5283		if (vd->vdev_stat.vs_alloc != 0)
5284			error = spa_offline_log(spa);
5285	} else {
5286		error = ENOTSUP;
5287	}
5288
5289	if (error)
5290		return (error);
5291
5292	/*
5293	 * The evacuation succeeded.  Remove any remaining MOS metadata
5294	 * associated with this vdev, and wait for these changes to sync.
5295	 */
5296	ASSERT0(vd->vdev_stat.vs_alloc);
5297	txg = spa_vdev_config_enter(spa);
5298	vd->vdev_removing = B_TRUE;
5299	vdev_dirty(vd, 0, NULL, txg);
5300	vdev_config_dirty(vd);
5301	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5302
5303	return (0);
5304}
5305
5306/*
5307 * Complete the removal by cleaning up the namespace.
5308 */
5309static void
5310spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5311{
5312	vdev_t *rvd = spa->spa_root_vdev;
5313	uint64_t id = vd->vdev_id;
5314	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5315
5316	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5317	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5318	ASSERT(vd == vd->vdev_top);
5319
5320	/*
5321	 * Only remove any devices which are empty.
5322	 */
5323	if (vd->vdev_stat.vs_alloc != 0)
5324		return;
5325
5326	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5327
5328	if (list_link_active(&vd->vdev_state_dirty_node))
5329		vdev_state_clean(vd);
5330	if (list_link_active(&vd->vdev_config_dirty_node))
5331		vdev_config_clean(vd);
5332
5333	vdev_free(vd);
5334
5335	if (last_vdev) {
5336		vdev_compact_children(rvd);
5337	} else {
5338		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5339		vdev_add_child(rvd, vd);
5340	}
5341	vdev_config_dirty(rvd);
5342
5343	/*
5344	 * Reassess the health of our root vdev.
5345	 */
5346	vdev_reopen(rvd);
5347}
5348
5349/*
5350 * Remove a device from the pool -
5351 *
5352 * Removing a device from the vdev namespace requires several steps
5353 * and can take a significant amount of time.  As a result we use
5354 * the spa_vdev_config_[enter/exit] functions which allow us to
5355 * grab and release the spa_config_lock while still holding the namespace
5356 * lock.  During each step the configuration is synced out.
5357 */
5358
5359/*
5360 * Remove a device from the pool.  Currently, this supports removing only hot
5361 * spares, slogs, and level 2 ARC devices.
5362 */
5363int
5364spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5365{
5366	vdev_t *vd;
5367	metaslab_group_t *mg;
5368	nvlist_t **spares, **l2cache, *nv;
5369	uint64_t txg = 0;
5370	uint_t nspares, nl2cache;
5371	int error = 0;
5372	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5373
5374	ASSERT(spa_writeable(spa));
5375
5376	if (!locked)
5377		txg = spa_vdev_enter(spa);
5378
5379	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5380
5381	if (spa->spa_spares.sav_vdevs != NULL &&
5382	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5383	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5384	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5385		/*
5386		 * Only remove the hot spare if it's not currently in use
5387		 * in this pool.
5388		 */
5389		if (vd == NULL || unspare) {
5390			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5391			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5392			spa_load_spares(spa);
5393			spa->spa_spares.sav_sync = B_TRUE;
5394		} else {
5395			error = EBUSY;
5396		}
5397	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5398	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5399	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5400	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5401		/*
5402		 * Cache devices can always be removed.
5403		 */
5404		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5405		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5406		spa_load_l2cache(spa);
5407		spa->spa_l2cache.sav_sync = B_TRUE;
5408	} else if (vd != NULL && vd->vdev_islog) {
5409		ASSERT(!locked);
5410		ASSERT(vd == vd->vdev_top);
5411
5412		/*
5413		 * XXX - Once we have bp-rewrite this should
5414		 * become the common case.
5415		 */
5416
5417		mg = vd->vdev_mg;
5418
5419		/*
5420		 * Stop allocating from this vdev.
5421		 */
5422		metaslab_group_passivate(mg);
5423
5424		/*
5425		 * Wait for the youngest allocations and frees to sync,
5426		 * and then wait for the deferral of those frees to finish.
5427		 */
5428		spa_vdev_config_exit(spa, NULL,
5429		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5430
5431		/*
5432		 * Attempt to evacuate the vdev.
5433		 */
5434		error = spa_vdev_remove_evacuate(spa, vd);
5435
5436		txg = spa_vdev_config_enter(spa);
5437
5438		/*
5439		 * If we couldn't evacuate the vdev, unwind.
5440		 */
5441		if (error) {
5442			metaslab_group_activate(mg);
5443			return (spa_vdev_exit(spa, NULL, txg, error));
5444		}
5445
5446		/*
5447		 * Clean up the vdev namespace.
5448		 */
5449		spa_vdev_remove_from_namespace(spa, vd);
5450
5451	} else if (vd != NULL) {
5452		/*
5453		 * Normal vdevs cannot be removed (yet).
5454		 */
5455		error = ENOTSUP;
5456	} else {
5457		/*
5458		 * There is no vdev of any kind with the specified guid.
5459		 */
5460		error = ENOENT;
5461	}
5462
5463	if (!locked)
5464		return (spa_vdev_exit(spa, NULL, txg, error));
5465
5466	return (error);
5467}
5468
5469/*
5470 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5471 * current spared, so we can detach it.
5472 */
5473static vdev_t *
5474spa_vdev_resilver_done_hunt(vdev_t *vd)
5475{
5476	vdev_t *newvd, *oldvd;
5477
5478	for (int c = 0; c < vd->vdev_children; c++) {
5479		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5480		if (oldvd != NULL)
5481			return (oldvd);
5482	}
5483
5484	/*
5485	 * Check for a completed replacement.  We always consider the first
5486	 * vdev in the list to be the oldest vdev, and the last one to be
5487	 * the newest (see spa_vdev_attach() for how that works).  In
5488	 * the case where the newest vdev is faulted, we will not automatically
5489	 * remove it after a resilver completes.  This is OK as it will require
5490	 * user intervention to determine which disk the admin wishes to keep.
5491	 */
5492	if (vd->vdev_ops == &vdev_replacing_ops) {
5493		ASSERT(vd->vdev_children > 1);
5494
5495		newvd = vd->vdev_child[vd->vdev_children - 1];
5496		oldvd = vd->vdev_child[0];
5497
5498		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5499		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5500		    !vdev_dtl_required(oldvd))
5501			return (oldvd);
5502	}
5503
5504	/*
5505	 * Check for a completed resilver with the 'unspare' flag set.
5506	 */
5507	if (vd->vdev_ops == &vdev_spare_ops) {
5508		vdev_t *first = vd->vdev_child[0];
5509		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5510
5511		if (last->vdev_unspare) {
5512			oldvd = first;
5513			newvd = last;
5514		} else if (first->vdev_unspare) {
5515			oldvd = last;
5516			newvd = first;
5517		} else {
5518			oldvd = NULL;
5519		}
5520
5521		if (oldvd != NULL &&
5522		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5523		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5524		    !vdev_dtl_required(oldvd))
5525			return (oldvd);
5526
5527		/*
5528		 * If there are more than two spares attached to a disk,
5529		 * and those spares are not required, then we want to
5530		 * attempt to free them up now so that they can be used
5531		 * by other pools.  Once we're back down to a single
5532		 * disk+spare, we stop removing them.
5533		 */
5534		if (vd->vdev_children > 2) {
5535			newvd = vd->vdev_child[1];
5536
5537			if (newvd->vdev_isspare && last->vdev_isspare &&
5538			    vdev_dtl_empty(last, DTL_MISSING) &&
5539			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5540			    !vdev_dtl_required(newvd))
5541				return (newvd);
5542		}
5543	}
5544
5545	return (NULL);
5546}
5547
5548static void
5549spa_vdev_resilver_done(spa_t *spa)
5550{
5551	vdev_t *vd, *pvd, *ppvd;
5552	uint64_t guid, sguid, pguid, ppguid;
5553
5554	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5555
5556	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5557		pvd = vd->vdev_parent;
5558		ppvd = pvd->vdev_parent;
5559		guid = vd->vdev_guid;
5560		pguid = pvd->vdev_guid;
5561		ppguid = ppvd->vdev_guid;
5562		sguid = 0;
5563		/*
5564		 * If we have just finished replacing a hot spared device, then
5565		 * we need to detach the parent's first child (the original hot
5566		 * spare) as well.
5567		 */
5568		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5569		    ppvd->vdev_children == 2) {
5570			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5571			sguid = ppvd->vdev_child[1]->vdev_guid;
5572		}
5573		spa_config_exit(spa, SCL_ALL, FTAG);
5574		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5575			return;
5576		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5577			return;
5578		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5579	}
5580
5581	spa_config_exit(spa, SCL_ALL, FTAG);
5582}
5583
5584/*
5585 * Update the stored path or FRU for this vdev.
5586 */
5587int
5588spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5589    boolean_t ispath)
5590{
5591	vdev_t *vd;
5592	boolean_t sync = B_FALSE;
5593
5594	ASSERT(spa_writeable(spa));
5595
5596	spa_vdev_state_enter(spa, SCL_ALL);
5597
5598	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5599		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5600
5601	if (!vd->vdev_ops->vdev_op_leaf)
5602		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5603
5604	if (ispath) {
5605		if (strcmp(value, vd->vdev_path) != 0) {
5606			spa_strfree(vd->vdev_path);
5607			vd->vdev_path = spa_strdup(value);
5608			sync = B_TRUE;
5609		}
5610	} else {
5611		if (vd->vdev_fru == NULL) {
5612			vd->vdev_fru = spa_strdup(value);
5613			sync = B_TRUE;
5614		} else if (strcmp(value, vd->vdev_fru) != 0) {
5615			spa_strfree(vd->vdev_fru);
5616			vd->vdev_fru = spa_strdup(value);
5617			sync = B_TRUE;
5618		}
5619	}
5620
5621	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5622}
5623
5624int
5625spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5626{
5627	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5628}
5629
5630int
5631spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5632{
5633	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5634}
5635
5636/*
5637 * ==========================================================================
5638 * SPA Scanning
5639 * ==========================================================================
5640 */
5641
5642int
5643spa_scan_stop(spa_t *spa)
5644{
5645	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5646	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5647		return (EBUSY);
5648	return (dsl_scan_cancel(spa->spa_dsl_pool));
5649}
5650
5651int
5652spa_scan(spa_t *spa, pool_scan_func_t func)
5653{
5654	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5655
5656	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5657		return (ENOTSUP);
5658
5659	/*
5660	 * If a resilver was requested, but there is no DTL on a
5661	 * writeable leaf device, we have nothing to do.
5662	 */
5663	if (func == POOL_SCAN_RESILVER &&
5664	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5665		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5666		return (0);
5667	}
5668
5669	return (dsl_scan(spa->spa_dsl_pool, func));
5670}
5671
5672/*
5673 * ==========================================================================
5674 * SPA async task processing
5675 * ==========================================================================
5676 */
5677
5678static void
5679spa_async_remove(spa_t *spa, vdev_t *vd)
5680{
5681	if (vd->vdev_remove_wanted) {
5682		vd->vdev_remove_wanted = B_FALSE;
5683		vd->vdev_delayed_close = B_FALSE;
5684		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5685
5686		/*
5687		 * We want to clear the stats, but we don't want to do a full
5688		 * vdev_clear() as that will cause us to throw away
5689		 * degraded/faulted state as well as attempt to reopen the
5690		 * device, all of which is a waste.
5691		 */
5692		vd->vdev_stat.vs_read_errors = 0;
5693		vd->vdev_stat.vs_write_errors = 0;
5694		vd->vdev_stat.vs_checksum_errors = 0;
5695
5696		vdev_state_dirty(vd->vdev_top);
5697	}
5698
5699	for (int c = 0; c < vd->vdev_children; c++)
5700		spa_async_remove(spa, vd->vdev_child[c]);
5701}
5702
5703static void
5704spa_async_probe(spa_t *spa, vdev_t *vd)
5705{
5706	if (vd->vdev_probe_wanted) {
5707		vd->vdev_probe_wanted = B_FALSE;
5708		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5709	}
5710
5711	for (int c = 0; c < vd->vdev_children; c++)
5712		spa_async_probe(spa, vd->vdev_child[c]);
5713}
5714
5715static void
5716spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5717{
5718	sysevent_id_t eid;
5719	nvlist_t *attr;
5720	char *physpath;
5721
5722	if (!spa->spa_autoexpand)
5723		return;
5724
5725	for (int c = 0; c < vd->vdev_children; c++) {
5726		vdev_t *cvd = vd->vdev_child[c];
5727		spa_async_autoexpand(spa, cvd);
5728	}
5729
5730	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5731		return;
5732
5733	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5734	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5735
5736	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5737	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5738
5739	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5740	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5741
5742	nvlist_free(attr);
5743	kmem_free(physpath, MAXPATHLEN);
5744}
5745
5746static void
5747spa_async_thread(void *arg)
5748{
5749	spa_t *spa = arg;
5750	int tasks;
5751
5752	ASSERT(spa->spa_sync_on);
5753
5754	mutex_enter(&spa->spa_async_lock);
5755	tasks = spa->spa_async_tasks;
5756	spa->spa_async_tasks = 0;
5757	mutex_exit(&spa->spa_async_lock);
5758
5759	/*
5760	 * See if the config needs to be updated.
5761	 */
5762	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5763		uint64_t old_space, new_space;
5764
5765		mutex_enter(&spa_namespace_lock);
5766		old_space = metaslab_class_get_space(spa_normal_class(spa));
5767		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5768		new_space = metaslab_class_get_space(spa_normal_class(spa));
5769		mutex_exit(&spa_namespace_lock);
5770
5771		/*
5772		 * If the pool grew as a result of the config update,
5773		 * then log an internal history event.
5774		 */
5775		if (new_space != old_space) {
5776			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5777			    spa, NULL,
5778			    "pool '%s' size: %llu(+%llu)",
5779			    spa_name(spa), new_space, new_space - old_space);
5780		}
5781	}
5782
5783	/*
5784	 * See if any devices need to be marked REMOVED.
5785	 */
5786	if (tasks & SPA_ASYNC_REMOVE) {
5787		spa_vdev_state_enter(spa, SCL_NONE);
5788		spa_async_remove(spa, spa->spa_root_vdev);
5789		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5790			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5791		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5792			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5793		(void) spa_vdev_state_exit(spa, NULL, 0);
5794	}
5795
5796	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5797		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5798		spa_async_autoexpand(spa, spa->spa_root_vdev);
5799		spa_config_exit(spa, SCL_CONFIG, FTAG);
5800	}
5801
5802	/*
5803	 * See if any devices need to be probed.
5804	 */
5805	if (tasks & SPA_ASYNC_PROBE) {
5806		spa_vdev_state_enter(spa, SCL_NONE);
5807		spa_async_probe(spa, spa->spa_root_vdev);
5808		(void) spa_vdev_state_exit(spa, NULL, 0);
5809	}
5810
5811	/*
5812	 * If any devices are done replacing, detach them.
5813	 */
5814	if (tasks & SPA_ASYNC_RESILVER_DONE)
5815		spa_vdev_resilver_done(spa);
5816
5817	/*
5818	 * Kick off a resilver.
5819	 */
5820	if (tasks & SPA_ASYNC_RESILVER)
5821		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5822
5823	/*
5824	 * Let the world know that we're done.
5825	 */
5826	mutex_enter(&spa->spa_async_lock);
5827	spa->spa_async_thread = NULL;
5828	cv_broadcast(&spa->spa_async_cv);
5829	mutex_exit(&spa->spa_async_lock);
5830	thread_exit();
5831}
5832
5833void
5834spa_async_suspend(spa_t *spa)
5835{
5836	mutex_enter(&spa->spa_async_lock);
5837	spa->spa_async_suspended++;
5838	while (spa->spa_async_thread != NULL)
5839		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5840	mutex_exit(&spa->spa_async_lock);
5841}
5842
5843void
5844spa_async_resume(spa_t *spa)
5845{
5846	mutex_enter(&spa->spa_async_lock);
5847	ASSERT(spa->spa_async_suspended != 0);
5848	spa->spa_async_suspended--;
5849	mutex_exit(&spa->spa_async_lock);
5850}
5851
5852static void
5853spa_async_dispatch(spa_t *spa)
5854{
5855	mutex_enter(&spa->spa_async_lock);
5856	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5857	    spa->spa_async_thread == NULL &&
5858	    rootdir != NULL && !vn_is_readonly(rootdir))
5859		spa->spa_async_thread = thread_create(NULL, 0,
5860		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5861	mutex_exit(&spa->spa_async_lock);
5862}
5863
5864void
5865spa_async_request(spa_t *spa, int task)
5866{
5867	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5868	mutex_enter(&spa->spa_async_lock);
5869	spa->spa_async_tasks |= task;
5870	mutex_exit(&spa->spa_async_lock);
5871}
5872
5873/*
5874 * ==========================================================================
5875 * SPA syncing routines
5876 * ==========================================================================
5877 */
5878
5879static int
5880bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5881{
5882	bpobj_t *bpo = arg;
5883	bpobj_enqueue(bpo, bp, tx);
5884	return (0);
5885}
5886
5887static int
5888spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5889{
5890	zio_t *zio = arg;
5891
5892	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5893	    BP_GET_PSIZE(bp), zio->io_flags));
5894	return (0);
5895}
5896
5897static void
5898spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5899{
5900	char *packed = NULL;
5901	size_t bufsize;
5902	size_t nvsize = 0;
5903	dmu_buf_t *db;
5904
5905	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5906
5907	/*
5908	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5909	 * information.  This avoids the dbuf_will_dirty() path and
5910	 * saves us a pre-read to get data we don't actually care about.
5911	 */
5912	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5913	packed = kmem_alloc(bufsize, KM_SLEEP);
5914
5915	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5916	    KM_SLEEP) == 0);
5917	bzero(packed + nvsize, bufsize - nvsize);
5918
5919	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5920
5921	kmem_free(packed, bufsize);
5922
5923	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5924	dmu_buf_will_dirty(db, tx);
5925	*(uint64_t *)db->db_data = nvsize;
5926	dmu_buf_rele(db, FTAG);
5927}
5928
5929static void
5930spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5931    const char *config, const char *entry)
5932{
5933	nvlist_t *nvroot;
5934	nvlist_t **list;
5935	int i;
5936
5937	if (!sav->sav_sync)
5938		return;
5939
5940	/*
5941	 * Update the MOS nvlist describing the list of available devices.
5942	 * spa_validate_aux() will have already made sure this nvlist is
5943	 * valid and the vdevs are labeled appropriately.
5944	 */
5945	if (sav->sav_object == 0) {
5946		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5947		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5948		    sizeof (uint64_t), tx);
5949		VERIFY(zap_update(spa->spa_meta_objset,
5950		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5951		    &sav->sav_object, tx) == 0);
5952	}
5953
5954	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5955	if (sav->sav_count == 0) {
5956		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5957	} else {
5958		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5959		for (i = 0; i < sav->sav_count; i++)
5960			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5961			    B_FALSE, VDEV_CONFIG_L2CACHE);
5962		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5963		    sav->sav_count) == 0);
5964		for (i = 0; i < sav->sav_count; i++)
5965			nvlist_free(list[i]);
5966		kmem_free(list, sav->sav_count * sizeof (void *));
5967	}
5968
5969	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5970	nvlist_free(nvroot);
5971
5972	sav->sav_sync = B_FALSE;
5973}
5974
5975static void
5976spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5977{
5978	nvlist_t *config;
5979
5980	if (list_is_empty(&spa->spa_config_dirty_list))
5981		return;
5982
5983	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5984
5985	config = spa_config_generate(spa, spa->spa_root_vdev,
5986	    dmu_tx_get_txg(tx), B_FALSE);
5987
5988	/*
5989	 * If we're upgrading the spa version then make sure that
5990	 * the config object gets updated with the correct version.
5991	 */
5992	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5993		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5994		    spa->spa_uberblock.ub_version);
5995
5996	spa_config_exit(spa, SCL_STATE, FTAG);
5997
5998	if (spa->spa_config_syncing)
5999		nvlist_free(spa->spa_config_syncing);
6000	spa->spa_config_syncing = config;
6001
6002	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6003}
6004
6005static void
6006spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
6007{
6008	spa_t *spa = arg1;
6009	uint64_t version = *(uint64_t *)arg2;
6010
6011	/*
6012	 * Setting the version is special cased when first creating the pool.
6013	 */
6014	ASSERT(tx->tx_txg != TXG_INITIAL);
6015
6016	ASSERT(version <= SPA_VERSION);
6017	ASSERT(version >= spa_version(spa));
6018
6019	spa->spa_uberblock.ub_version = version;
6020	vdev_config_dirty(spa->spa_root_vdev);
6021}
6022
6023/*
6024 * Set zpool properties.
6025 */
6026static void
6027spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
6028{
6029	spa_t *spa = arg1;
6030	objset_t *mos = spa->spa_meta_objset;
6031	nvlist_t *nvp = arg2;
6032	nvpair_t *elem = NULL;
6033
6034	mutex_enter(&spa->spa_props_lock);
6035
6036	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6037		uint64_t intval;
6038		char *strval, *fname;
6039		zpool_prop_t prop;
6040		const char *propname;
6041		zprop_type_t proptype;
6042		zfeature_info_t *feature;
6043
6044		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6045		case ZPROP_INVAL:
6046			/*
6047			 * We checked this earlier in spa_prop_validate().
6048			 */
6049			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6050
6051			fname = strchr(nvpair_name(elem), '@') + 1;
6052			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
6053
6054			spa_feature_enable(spa, feature, tx);
6055			break;
6056
6057		case ZPOOL_PROP_VERSION:
6058			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6059			/*
6060			 * The version is synced seperatly before other
6061			 * properties and should be correct by now.
6062			 */
6063			ASSERT3U(spa_version(spa), >=, intval);
6064			break;
6065
6066		case ZPOOL_PROP_ALTROOT:
6067			/*
6068			 * 'altroot' is a non-persistent property. It should
6069			 * have been set temporarily at creation or import time.
6070			 */
6071			ASSERT(spa->spa_root != NULL);
6072			break;
6073
6074		case ZPOOL_PROP_READONLY:
6075		case ZPOOL_PROP_CACHEFILE:
6076			/*
6077			 * 'readonly' and 'cachefile' are also non-persisitent
6078			 * properties.
6079			 */
6080			break;
6081		case ZPOOL_PROP_COMMENT:
6082			VERIFY(nvpair_value_string(elem, &strval) == 0);
6083			if (spa->spa_comment != NULL)
6084				spa_strfree(spa->spa_comment);
6085			spa->spa_comment = spa_strdup(strval);
6086			/*
6087			 * We need to dirty the configuration on all the vdevs
6088			 * so that their labels get updated.  It's unnecessary
6089			 * to do this for pool creation since the vdev's
6090			 * configuratoin has already been dirtied.
6091			 */
6092			if (tx->tx_txg != TXG_INITIAL)
6093				vdev_config_dirty(spa->spa_root_vdev);
6094			break;
6095		default:
6096			/*
6097			 * Set pool property values in the poolprops mos object.
6098			 */
6099			if (spa->spa_pool_props_object == 0) {
6100				spa->spa_pool_props_object =
6101				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6102				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6103				    tx);
6104			}
6105
6106			/* normalize the property name */
6107			propname = zpool_prop_to_name(prop);
6108			proptype = zpool_prop_get_type(prop);
6109
6110			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6111				ASSERT(proptype == PROP_TYPE_STRING);
6112				VERIFY(nvpair_value_string(elem, &strval) == 0);
6113				VERIFY(zap_update(mos,
6114				    spa->spa_pool_props_object, propname,
6115				    1, strlen(strval) + 1, strval, tx) == 0);
6116
6117			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6118				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6119
6120				if (proptype == PROP_TYPE_INDEX) {
6121					const char *unused;
6122					VERIFY(zpool_prop_index_to_string(
6123					    prop, intval, &unused) == 0);
6124				}
6125				VERIFY(zap_update(mos,
6126				    spa->spa_pool_props_object, propname,
6127				    8, 1, &intval, tx) == 0);
6128			} else {
6129				ASSERT(0); /* not allowed */
6130			}
6131
6132			switch (prop) {
6133			case ZPOOL_PROP_DELEGATION:
6134				spa->spa_delegation = intval;
6135				break;
6136			case ZPOOL_PROP_BOOTFS:
6137				spa->spa_bootfs = intval;
6138				break;
6139			case ZPOOL_PROP_FAILUREMODE:
6140				spa->spa_failmode = intval;
6141				break;
6142			case ZPOOL_PROP_AUTOEXPAND:
6143				spa->spa_autoexpand = intval;
6144				if (tx->tx_txg != TXG_INITIAL)
6145					spa_async_request(spa,
6146					    SPA_ASYNC_AUTOEXPAND);
6147				break;
6148			case ZPOOL_PROP_DEDUPDITTO:
6149				spa->spa_dedup_ditto = intval;
6150				break;
6151			default:
6152				break;
6153			}
6154		}
6155
6156		/* log internal history if this is not a zpool create */
6157		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
6158		    tx->tx_txg != TXG_INITIAL) {
6159			spa_history_log_internal(LOG_POOL_PROPSET,
6160			    spa, tx, "%s %lld %s",
6161			    nvpair_name(elem), intval, spa_name(spa));
6162		}
6163	}
6164
6165	mutex_exit(&spa->spa_props_lock);
6166}
6167
6168/*
6169 * Perform one-time upgrade on-disk changes.  spa_version() does not
6170 * reflect the new version this txg, so there must be no changes this
6171 * txg to anything that the upgrade code depends on after it executes.
6172 * Therefore this must be called after dsl_pool_sync() does the sync
6173 * tasks.
6174 */
6175static void
6176spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6177{
6178	dsl_pool_t *dp = spa->spa_dsl_pool;
6179
6180	ASSERT(spa->spa_sync_pass == 1);
6181
6182	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6183	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6184		dsl_pool_create_origin(dp, tx);
6185
6186		/* Keeping the origin open increases spa_minref */
6187		spa->spa_minref += 3;
6188	}
6189
6190	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6191	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6192		dsl_pool_upgrade_clones(dp, tx);
6193	}
6194
6195	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6196	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6197		dsl_pool_upgrade_dir_clones(dp, tx);
6198
6199		/* Keeping the freedir open increases spa_minref */
6200		spa->spa_minref += 3;
6201	}
6202
6203	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6204	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6205		spa_feature_create_zap_objects(spa, tx);
6206	}
6207}
6208
6209/*
6210 * Sync the specified transaction group.  New blocks may be dirtied as
6211 * part of the process, so we iterate until it converges.
6212 */
6213void
6214spa_sync(spa_t *spa, uint64_t txg)
6215{
6216	dsl_pool_t *dp = spa->spa_dsl_pool;
6217	objset_t *mos = spa->spa_meta_objset;
6218	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6219	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6220	vdev_t *rvd = spa->spa_root_vdev;
6221	vdev_t *vd;
6222	dmu_tx_t *tx;
6223	int error;
6224
6225	VERIFY(spa_writeable(spa));
6226
6227	/*
6228	 * Lock out configuration changes.
6229	 */
6230	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6231
6232	spa->spa_syncing_txg = txg;
6233	spa->spa_sync_pass = 0;
6234
6235	/*
6236	 * If there are any pending vdev state changes, convert them
6237	 * into config changes that go out with this transaction group.
6238	 */
6239	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6240	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6241		/*
6242		 * We need the write lock here because, for aux vdevs,
6243		 * calling vdev_config_dirty() modifies sav_config.
6244		 * This is ugly and will become unnecessary when we
6245		 * eliminate the aux vdev wart by integrating all vdevs
6246		 * into the root vdev tree.
6247		 */
6248		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6249		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6250		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6251			vdev_state_clean(vd);
6252			vdev_config_dirty(vd);
6253		}
6254		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6255		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6256	}
6257	spa_config_exit(spa, SCL_STATE, FTAG);
6258
6259	tx = dmu_tx_create_assigned(dp, txg);
6260
6261	/*
6262	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6263	 * set spa_deflate if we have no raid-z vdevs.
6264	 */
6265	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6266	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6267		int i;
6268
6269		for (i = 0; i < rvd->vdev_children; i++) {
6270			vd = rvd->vdev_child[i];
6271			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6272				break;
6273		}
6274		if (i == rvd->vdev_children) {
6275			spa->spa_deflate = TRUE;
6276			VERIFY(0 == zap_add(spa->spa_meta_objset,
6277			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6278			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6279		}
6280	}
6281
6282	/*
6283	 * If anything has changed in this txg, or if someone is waiting
6284	 * for this txg to sync (eg, spa_vdev_remove()), push the
6285	 * deferred frees from the previous txg.  If not, leave them
6286	 * alone so that we don't generate work on an otherwise idle
6287	 * system.
6288	 */
6289	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6290	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6291	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6292	    ((dsl_scan_active(dp->dp_scan) ||
6293	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6294		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6295		VERIFY3U(bpobj_iterate(defer_bpo,
6296		    spa_free_sync_cb, zio, tx), ==, 0);
6297		VERIFY0(zio_wait(zio));
6298	}
6299
6300	/*
6301	 * Iterate to convergence.
6302	 */
6303	do {
6304		int pass = ++spa->spa_sync_pass;
6305
6306		spa_sync_config_object(spa, tx);
6307		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6308		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6309		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6310		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6311		spa_errlog_sync(spa, txg);
6312		dsl_pool_sync(dp, txg);
6313
6314		if (pass < zfs_sync_pass_deferred_free) {
6315			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6316			bplist_iterate(free_bpl, spa_free_sync_cb,
6317			    zio, tx);
6318			VERIFY(zio_wait(zio) == 0);
6319		} else {
6320			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6321			    defer_bpo, tx);
6322		}
6323
6324		ddt_sync(spa, txg);
6325		dsl_scan_sync(dp, tx);
6326
6327		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6328			vdev_sync(vd, txg);
6329
6330		if (pass == 1)
6331			spa_sync_upgrades(spa, tx);
6332
6333	} while (dmu_objset_is_dirty(mos, txg));
6334
6335	/*
6336	 * Rewrite the vdev configuration (which includes the uberblock)
6337	 * to commit the transaction group.
6338	 *
6339	 * If there are no dirty vdevs, we sync the uberblock to a few
6340	 * random top-level vdevs that are known to be visible in the
6341	 * config cache (see spa_vdev_add() for a complete description).
6342	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6343	 */
6344	for (;;) {
6345		/*
6346		 * We hold SCL_STATE to prevent vdev open/close/etc.
6347		 * while we're attempting to write the vdev labels.
6348		 */
6349		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6350
6351		if (list_is_empty(&spa->spa_config_dirty_list)) {
6352			vdev_t *svd[SPA_DVAS_PER_BP];
6353			int svdcount = 0;
6354			int children = rvd->vdev_children;
6355			int c0 = spa_get_random(children);
6356
6357			for (int c = 0; c < children; c++) {
6358				vd = rvd->vdev_child[(c0 + c) % children];
6359				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6360					continue;
6361				svd[svdcount++] = vd;
6362				if (svdcount == SPA_DVAS_PER_BP)
6363					break;
6364			}
6365			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6366			if (error != 0)
6367				error = vdev_config_sync(svd, svdcount, txg,
6368				    B_TRUE);
6369		} else {
6370			error = vdev_config_sync(rvd->vdev_child,
6371			    rvd->vdev_children, txg, B_FALSE);
6372			if (error != 0)
6373				error = vdev_config_sync(rvd->vdev_child,
6374				    rvd->vdev_children, txg, B_TRUE);
6375		}
6376
6377		if (error == 0)
6378			spa->spa_last_synced_guid = rvd->vdev_guid;
6379
6380		spa_config_exit(spa, SCL_STATE, FTAG);
6381
6382		if (error == 0)
6383			break;
6384		zio_suspend(spa, NULL);
6385		zio_resume_wait(spa);
6386	}
6387	dmu_tx_commit(tx);
6388
6389	/*
6390	 * Clear the dirty config list.
6391	 */
6392	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6393		vdev_config_clean(vd);
6394
6395	/*
6396	 * Now that the new config has synced transactionally,
6397	 * let it become visible to the config cache.
6398	 */
6399	if (spa->spa_config_syncing != NULL) {
6400		spa_config_set(spa, spa->spa_config_syncing);
6401		spa->spa_config_txg = txg;
6402		spa->spa_config_syncing = NULL;
6403	}
6404
6405	spa->spa_ubsync = spa->spa_uberblock;
6406
6407	dsl_pool_sync_done(dp, txg);
6408
6409	/*
6410	 * Update usable space statistics.
6411	 */
6412	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6413		vdev_sync_done(vd, txg);
6414
6415	spa_update_dspace(spa);
6416
6417	/*
6418	 * It had better be the case that we didn't dirty anything
6419	 * since vdev_config_sync().
6420	 */
6421	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6422	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6423	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6424
6425	spa->spa_sync_pass = 0;
6426
6427	spa_config_exit(spa, SCL_CONFIG, FTAG);
6428
6429	spa_handle_ignored_writes(spa);
6430
6431	/*
6432	 * If any async tasks have been requested, kick them off.
6433	 */
6434	spa_async_dispatch(spa);
6435}
6436
6437/*
6438 * Sync all pools.  We don't want to hold the namespace lock across these
6439 * operations, so we take a reference on the spa_t and drop the lock during the
6440 * sync.
6441 */
6442void
6443spa_sync_allpools(void)
6444{
6445	spa_t *spa = NULL;
6446	mutex_enter(&spa_namespace_lock);
6447	while ((spa = spa_next(spa)) != NULL) {
6448		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6449		    !spa_writeable(spa) || spa_suspended(spa))
6450			continue;
6451		spa_open_ref(spa, FTAG);
6452		mutex_exit(&spa_namespace_lock);
6453		txg_wait_synced(spa_get_dsl(spa), 0);
6454		mutex_enter(&spa_namespace_lock);
6455		spa_close(spa, FTAG);
6456	}
6457	mutex_exit(&spa_namespace_lock);
6458}
6459
6460/*
6461 * ==========================================================================
6462 * Miscellaneous routines
6463 * ==========================================================================
6464 */
6465
6466/*
6467 * Remove all pools in the system.
6468 */
6469void
6470spa_evict_all(void)
6471{
6472	spa_t *spa;
6473
6474	/*
6475	 * Remove all cached state.  All pools should be closed now,
6476	 * so every spa in the AVL tree should be unreferenced.
6477	 */
6478	mutex_enter(&spa_namespace_lock);
6479	while ((spa = spa_next(NULL)) != NULL) {
6480		/*
6481		 * Stop async tasks.  The async thread may need to detach
6482		 * a device that's been replaced, which requires grabbing
6483		 * spa_namespace_lock, so we must drop it here.
6484		 */
6485		spa_open_ref(spa, FTAG);
6486		mutex_exit(&spa_namespace_lock);
6487		spa_async_suspend(spa);
6488		mutex_enter(&spa_namespace_lock);
6489		spa_close(spa, FTAG);
6490
6491		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6492			spa_unload(spa);
6493			spa_deactivate(spa);
6494		}
6495		spa_remove(spa);
6496	}
6497	mutex_exit(&spa_namespace_lock);
6498}
6499
6500vdev_t *
6501spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6502{
6503	vdev_t *vd;
6504	int i;
6505
6506	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6507		return (vd);
6508
6509	if (aux) {
6510		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6511			vd = spa->spa_l2cache.sav_vdevs[i];
6512			if (vd->vdev_guid == guid)
6513				return (vd);
6514		}
6515
6516		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6517			vd = spa->spa_spares.sav_vdevs[i];
6518			if (vd->vdev_guid == guid)
6519				return (vd);
6520		}
6521	}
6522
6523	return (NULL);
6524}
6525
6526void
6527spa_upgrade(spa_t *spa, uint64_t version)
6528{
6529	ASSERT(spa_writeable(spa));
6530
6531	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6532
6533	/*
6534	 * This should only be called for a non-faulted pool, and since a
6535	 * future version would result in an unopenable pool, this shouldn't be
6536	 * possible.
6537	 */
6538	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6539	ASSERT(version >= spa->spa_uberblock.ub_version);
6540
6541	spa->spa_uberblock.ub_version = version;
6542	vdev_config_dirty(spa->spa_root_vdev);
6543
6544	spa_config_exit(spa, SCL_ALL, FTAG);
6545
6546	txg_wait_synced(spa_get_dsl(spa), 0);
6547}
6548
6549boolean_t
6550spa_has_spare(spa_t *spa, uint64_t guid)
6551{
6552	int i;
6553	uint64_t spareguid;
6554	spa_aux_vdev_t *sav = &spa->spa_spares;
6555
6556	for (i = 0; i < sav->sav_count; i++)
6557		if (sav->sav_vdevs[i]->vdev_guid == guid)
6558			return (B_TRUE);
6559
6560	for (i = 0; i < sav->sav_npending; i++) {
6561		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6562		    &spareguid) == 0 && spareguid == guid)
6563			return (B_TRUE);
6564	}
6565
6566	return (B_FALSE);
6567}
6568
6569/*
6570 * Check if a pool has an active shared spare device.
6571 * Note: reference count of an active spare is 2, as a spare and as a replace
6572 */
6573static boolean_t
6574spa_has_active_shared_spare(spa_t *spa)
6575{
6576	int i, refcnt;
6577	uint64_t pool;
6578	spa_aux_vdev_t *sav = &spa->spa_spares;
6579
6580	for (i = 0; i < sav->sav_count; i++) {
6581		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6582		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6583		    refcnt > 2)
6584			return (B_TRUE);
6585	}
6586
6587	return (B_FALSE);
6588}
6589
6590/*
6591 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6592 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6593 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6594 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6595 * or zdb as real changes.
6596 */
6597void
6598spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6599{
6600#ifdef _KERNEL
6601	sysevent_t		*ev;
6602	sysevent_attr_list_t	*attr = NULL;
6603	sysevent_value_t	value;
6604	sysevent_id_t		eid;
6605
6606	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6607	    SE_SLEEP);
6608
6609	value.value_type = SE_DATA_TYPE_STRING;
6610	value.value.sv_string = spa_name(spa);
6611	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6612		goto done;
6613
6614	value.value_type = SE_DATA_TYPE_UINT64;
6615	value.value.sv_uint64 = spa_guid(spa);
6616	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6617		goto done;
6618
6619	if (vd) {
6620		value.value_type = SE_DATA_TYPE_UINT64;
6621		value.value.sv_uint64 = vd->vdev_guid;
6622		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6623		    SE_SLEEP) != 0)
6624			goto done;
6625
6626		if (vd->vdev_path) {
6627			value.value_type = SE_DATA_TYPE_STRING;
6628			value.value.sv_string = vd->vdev_path;
6629			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6630			    &value, SE_SLEEP) != 0)
6631				goto done;
6632		}
6633	}
6634
6635	if (sysevent_attach_attributes(ev, attr) != 0)
6636		goto done;
6637	attr = NULL;
6638
6639	(void) log_sysevent(ev, SE_SLEEP, &eid);
6640
6641done:
6642	if (attr)
6643		sysevent_free_attr(attr);
6644	sysevent_free(ev);
6645#endif
6646}
6647