spa.c revision 168498
1109998Smarkm/*
2296465Sdelphij * CDDL HEADER START
3296465Sdelphij *
4296465Sdelphij * The contents of this file are subject to the terms of the
5109998Smarkm * Common Development and Distribution License (the "License").
6109998Smarkm * You may not use this file except in compliance with the License.
7109998Smarkm *
8109998Smarkm * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9109998Smarkm * or http://www.opensolaris.org/os/licensing.
10109998Smarkm * See the License for the specific language governing permissions
11109998Smarkm * and limitations under the License.
12109998Smarkm *
13109998Smarkm * When distributing Covered Code, include this CDDL HEADER in each
14296465Sdelphij * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15109998Smarkm * If applicable, add the following below this CDDL HEADER, with the
16109998Smarkm * fields enclosed by brackets "[]" replaced with your own identifying
17109998Smarkm * information: Portions Copyright [yyyy] [name of copyright owner]
18109998Smarkm *
19109998Smarkm * CDDL HEADER END
20109998Smarkm */
21109998Smarkm
22109998Smarkm/*
23109998Smarkm * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24109998Smarkm * Use is subject to license terms.
25109998Smarkm */
26109998Smarkm
27109998Smarkm#pragma ident	"%Z%%M%	%I%	%E% SMI"
28109998Smarkm
29109998Smarkm/*
30109998Smarkm * This file contains all the routines used when modifying on-disk SPA state.
31109998Smarkm * This includes opening, importing, destroying, exporting a pool, and syncing a
32109998Smarkm * pool.
33109998Smarkm */
34109998Smarkm
35109998Smarkm#include <sys/zfs_context.h>
36109998Smarkm#include <sys/fm/fs/zfs.h>
37109998Smarkm#include <sys/spa_impl.h>
38109998Smarkm#include <sys/zio.h>
39109998Smarkm#include <sys/zio_checksum.h>
40109998Smarkm#include <sys/zio_compress.h>
41109998Smarkm#include <sys/dmu.h>
42109998Smarkm#include <sys/dmu_tx.h>
43109998Smarkm#include <sys/zap.h>
44109998Smarkm#include <sys/zil.h>
45109998Smarkm#include <sys/vdev_impl.h>
46109998Smarkm#include <sys/metaslab.h>
47109998Smarkm#include <sys/uberblock_impl.h>
48109998Smarkm#include <sys/txg.h>
49109998Smarkm#include <sys/avl.h>
50109998Smarkm#include <sys/dmu_traverse.h>
51109998Smarkm#include <sys/dmu_objset.h>
52109998Smarkm#include <sys/unique.h>
53109998Smarkm#include <sys/dsl_pool.h>
54109998Smarkm#include <sys/dsl_dataset.h>
55109998Smarkm#include <sys/dsl_dir.h>
56109998Smarkm#include <sys/dsl_prop.h>
57109998Smarkm#include <sys/dsl_synctask.h>
58109998Smarkm#include <sys/fs/zfs.h>
59109998Smarkm#include <sys/callb.h>
60160817Ssimon
61109998Smarkmint zio_taskq_threads = 8;
62109998Smarkm
63109998Smarkm/*
64296465Sdelphij * ==========================================================================
65296465Sdelphij * SPA state manipulation (open/create/destroy/import/export)
66296465Sdelphij * ==========================================================================
67296465Sdelphij */
68296465Sdelphij
69296465Sdelphijstatic int
70296465Sdelphijspa_error_entry_compare(const void *a, const void *b)
71109998Smarkm{
72296465Sdelphij	spa_error_entry_t *sa = (spa_error_entry_t *)a;
73109998Smarkm	spa_error_entry_t *sb = (spa_error_entry_t *)b;
74167615Ssimon	int ret;
75296465Sdelphij
76167615Ssimon	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
77296465Sdelphij	    sizeof (zbookmark_t));
78160817Ssimon
79296465Sdelphij	if (ret < 0)
80296465Sdelphij		return (-1);
81296465Sdelphij	else if (ret > 0)
82296465Sdelphij		return (1);
83296465Sdelphij	else
84296465Sdelphij		return (0);
85296465Sdelphij}
86296465Sdelphij
87296465Sdelphij/*
88296465Sdelphij * Utility function which retrieves copies of the current logs and
89296465Sdelphij * re-initializes them in the process.
90296465Sdelphij */
91296465Sdelphijvoid
92296465Sdelphijspa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
93296465Sdelphij{
94296465Sdelphij	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
95296465Sdelphij
96296465Sdelphij	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
97296465Sdelphij	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
98296465Sdelphij
99296465Sdelphij	avl_create(&spa->spa_errlist_scrub,
100296465Sdelphij	    spa_error_entry_compare, sizeof (spa_error_entry_t),
101296465Sdelphij	    offsetof(spa_error_entry_t, se_avl));
102296465Sdelphij	avl_create(&spa->spa_errlist_last,
103296465Sdelphij	    spa_error_entry_compare, sizeof (spa_error_entry_t),
104296465Sdelphij	    offsetof(spa_error_entry_t, se_avl));
105296465Sdelphij}
106296465Sdelphij
107296465Sdelphij/*
108296465Sdelphij * Activate an uninitialized pool.
109296465Sdelphij */
110296465Sdelphijstatic void
111160817Ssimonspa_activate(spa_t *spa)
112167615Ssimon{
113296465Sdelphij	int t;
114296465Sdelphij
115296465Sdelphij	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
116109998Smarkm
117296465Sdelphij	spa->spa_state = POOL_STATE_ACTIVE;
118109998Smarkm
119110018Snectar	spa->spa_normal_class = metaslab_class_create();
120296465Sdelphij
121296465Sdelphij	for (t = 0; t < ZIO_TYPES; t++) {
122296465Sdelphij		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
123296465Sdelphij		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
124296465Sdelphij		    TASKQ_PREPOPULATE);
125296465Sdelphij		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
126296465Sdelphij		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127296465Sdelphij		    TASKQ_PREPOPULATE);
128109998Smarkm	}
129109998Smarkm
130	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
131
132	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
133	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
134	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
135	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
136	cv_init(&spa->spa_config_lock.scl_cv, NULL, CV_DEFAULT, NULL);
137	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
138	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
139	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
140
141	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
142	    offsetof(vdev_t, vdev_dirty_node));
143
144	txg_list_create(&spa->spa_vdev_txg_list,
145	    offsetof(struct vdev, vdev_txg_node));
146
147	avl_create(&spa->spa_errlist_scrub,
148	    spa_error_entry_compare, sizeof (spa_error_entry_t),
149	    offsetof(spa_error_entry_t, se_avl));
150	avl_create(&spa->spa_errlist_last,
151	    spa_error_entry_compare, sizeof (spa_error_entry_t),
152	    offsetof(spa_error_entry_t, se_avl));
153}
154
155/*
156 * Opposite of spa_activate().
157 */
158static void
159spa_deactivate(spa_t *spa)
160{
161	int t;
162
163	ASSERT(spa->spa_sync_on == B_FALSE);
164	ASSERT(spa->spa_dsl_pool == NULL);
165	ASSERT(spa->spa_root_vdev == NULL);
166
167	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
168
169	txg_list_destroy(&spa->spa_vdev_txg_list);
170
171	list_destroy(&spa->spa_dirty_list);
172
173	for (t = 0; t < ZIO_TYPES; t++) {
174		taskq_destroy(spa->spa_zio_issue_taskq[t]);
175		taskq_destroy(spa->spa_zio_intr_taskq[t]);
176		spa->spa_zio_issue_taskq[t] = NULL;
177		spa->spa_zio_intr_taskq[t] = NULL;
178	}
179
180	metaslab_class_destroy(spa->spa_normal_class);
181	spa->spa_normal_class = NULL;
182
183	/*
184	 * If this was part of an import or the open otherwise failed, we may
185	 * still have errors left in the queues.  Empty them just in case.
186	 */
187	spa_errlog_drain(spa);
188
189	avl_destroy(&spa->spa_errlist_scrub);
190	avl_destroy(&spa->spa_errlist_last);
191
192	rw_destroy(&spa->spa_traverse_lock);
193	mutex_destroy(&spa->spa_uberblock_lock);
194	mutex_destroy(&spa->spa_errlog_lock);
195	mutex_destroy(&spa->spa_errlist_lock);
196	mutex_destroy(&spa->spa_config_lock.scl_lock);
197	cv_destroy(&spa->spa_config_lock.scl_cv);
198	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
199	mutex_destroy(&spa->spa_history_lock);
200	mutex_destroy(&spa->spa_props_lock);
201
202	spa->spa_state = POOL_STATE_UNINITIALIZED;
203}
204
205/*
206 * Verify a pool configuration, and construct the vdev tree appropriately.  This
207 * will create all the necessary vdevs in the appropriate layout, with each vdev
208 * in the CLOSED state.  This will prep the pool before open/creation/import.
209 * All vdev validation is done by the vdev_alloc() routine.
210 */
211static int
212spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
213    uint_t id, int atype)
214{
215	nvlist_t **child;
216	uint_t c, children;
217	int error;
218
219	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
220		return (error);
221
222	if ((*vdp)->vdev_ops->vdev_op_leaf)
223		return (0);
224
225	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
226	    &child, &children) != 0) {
227		vdev_free(*vdp);
228		*vdp = NULL;
229		return (EINVAL);
230	}
231
232	for (c = 0; c < children; c++) {
233		vdev_t *vd;
234		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
235		    atype)) != 0) {
236			vdev_free(*vdp);
237			*vdp = NULL;
238			return (error);
239		}
240	}
241
242	ASSERT(*vdp != NULL);
243
244	return (0);
245}
246
247/*
248 * Opposite of spa_load().
249 */
250static void
251spa_unload(spa_t *spa)
252{
253	int i;
254
255	/*
256	 * Stop async tasks.
257	 */
258	spa_async_suspend(spa);
259
260	/*
261	 * Stop syncing.
262	 */
263	if (spa->spa_sync_on) {
264		txg_sync_stop(spa->spa_dsl_pool);
265		spa->spa_sync_on = B_FALSE;
266	}
267
268	/*
269	 * Wait for any outstanding prefetch I/O to complete.
270	 */
271	spa_config_enter(spa, RW_WRITER, FTAG);
272	spa_config_exit(spa, FTAG);
273
274	/*
275	 * Close the dsl pool.
276	 */
277	if (spa->spa_dsl_pool) {
278		dsl_pool_close(spa->spa_dsl_pool);
279		spa->spa_dsl_pool = NULL;
280	}
281
282	/*
283	 * Close all vdevs.
284	 */
285	if (spa->spa_root_vdev)
286		vdev_free(spa->spa_root_vdev);
287	ASSERT(spa->spa_root_vdev == NULL);
288
289	for (i = 0; i < spa->spa_nspares; i++)
290		vdev_free(spa->spa_spares[i]);
291	if (spa->spa_spares) {
292		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
293		spa->spa_spares = NULL;
294	}
295	if (spa->spa_sparelist) {
296		nvlist_free(spa->spa_sparelist);
297		spa->spa_sparelist = NULL;
298	}
299
300	spa->spa_async_suspended = 0;
301}
302
303/*
304 * Load (or re-load) the current list of vdevs describing the active spares for
305 * this pool.  When this is called, we have some form of basic information in
306 * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
307 * re-generate a more complete list including status information.
308 */
309static void
310spa_load_spares(spa_t *spa)
311{
312	nvlist_t **spares;
313	uint_t nspares;
314	int i;
315	vdev_t *vd, *tvd;
316
317	/*
318	 * First, close and free any existing spare vdevs.
319	 */
320	for (i = 0; i < spa->spa_nspares; i++) {
321		vd = spa->spa_spares[i];
322
323		/* Undo the call to spa_activate() below */
324		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
325		    tvd->vdev_isspare)
326			spa_spare_remove(tvd);
327		vdev_close(vd);
328		vdev_free(vd);
329	}
330
331	if (spa->spa_spares)
332		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
333
334	if (spa->spa_sparelist == NULL)
335		nspares = 0;
336	else
337		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
338		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
339
340	spa->spa_nspares = (int)nspares;
341	spa->spa_spares = NULL;
342
343	if (nspares == 0)
344		return;
345
346	/*
347	 * Construct the array of vdevs, opening them to get status in the
348	 * process.   For each spare, there is potentially two different vdev_t
349	 * structures associated with it: one in the list of spares (used only
350	 * for basic validation purposes) and one in the active vdev
351	 * configuration (if it's spared in).  During this phase we open and
352	 * validate each vdev on the spare list.  If the vdev also exists in the
353	 * active configuration, then we also mark this vdev as an active spare.
354	 */
355	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
356	for (i = 0; i < spa->spa_nspares; i++) {
357		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
358		    VDEV_ALLOC_SPARE) == 0);
359		ASSERT(vd != NULL);
360
361		spa->spa_spares[i] = vd;
362
363		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
364			if (!tvd->vdev_isspare)
365				spa_spare_add(tvd);
366
367			/*
368			 * We only mark the spare active if we were successfully
369			 * able to load the vdev.  Otherwise, importing a pool
370			 * with a bad active spare would result in strange
371			 * behavior, because multiple pool would think the spare
372			 * is actively in use.
373			 *
374			 * There is a vulnerability here to an equally bizarre
375			 * circumstance, where a dead active spare is later
376			 * brought back to life (onlined or otherwise).  Given
377			 * the rarity of this scenario, and the extra complexity
378			 * it adds, we ignore the possibility.
379			 */
380			if (!vdev_is_dead(tvd))
381				spa_spare_activate(tvd);
382		}
383
384		if (vdev_open(vd) != 0)
385			continue;
386
387		vd->vdev_top = vd;
388		(void) vdev_validate_spare(vd);
389	}
390
391	/*
392	 * Recompute the stashed list of spares, with status information
393	 * this time.
394	 */
395	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
396	    DATA_TYPE_NVLIST_ARRAY) == 0);
397
398	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
399	for (i = 0; i < spa->spa_nspares; i++)
400		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
401		    B_TRUE, B_TRUE);
402	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
403	    spares, spa->spa_nspares) == 0);
404	for (i = 0; i < spa->spa_nspares; i++)
405		nvlist_free(spares[i]);
406	kmem_free(spares, spa->spa_nspares * sizeof (void *));
407}
408
409static int
410load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
411{
412	dmu_buf_t *db;
413	char *packed = NULL;
414	size_t nvsize = 0;
415	int error;
416	*value = NULL;
417
418	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
419	nvsize = *(uint64_t *)db->db_data;
420	dmu_buf_rele(db, FTAG);
421
422	packed = kmem_alloc(nvsize, KM_SLEEP);
423	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
424	if (error == 0)
425		error = nvlist_unpack(packed, nvsize, value, 0);
426	kmem_free(packed, nvsize);
427
428	return (error);
429}
430
431/*
432 * Load an existing storage pool, using the pool's builtin spa_config as a
433 * source of configuration information.
434 */
435static int
436spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
437{
438	int error = 0;
439	nvlist_t *nvroot = NULL;
440	vdev_t *rvd;
441	uberblock_t *ub = &spa->spa_uberblock;
442	uint64_t config_cache_txg = spa->spa_config_txg;
443	uint64_t pool_guid;
444	uint64_t version;
445	zio_t *zio;
446
447	spa->spa_load_state = state;
448
449	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
450	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
451		error = EINVAL;
452		goto out;
453	}
454
455	/*
456	 * Versioning wasn't explicitly added to the label until later, so if
457	 * it's not present treat it as the initial version.
458	 */
459	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
460		version = ZFS_VERSION_INITIAL;
461
462	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
463	    &spa->spa_config_txg);
464
465	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
466	    spa_guid_exists(pool_guid, 0)) {
467		error = EEXIST;
468		goto out;
469	}
470
471	spa->spa_load_guid = pool_guid;
472
473	/*
474	 * Parse the configuration into a vdev tree.  We explicitly set the
475	 * value that will be returned by spa_version() since parsing the
476	 * configuration requires knowing the version number.
477	 */
478	spa_config_enter(spa, RW_WRITER, FTAG);
479	spa->spa_ubsync.ub_version = version;
480	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
481	spa_config_exit(spa, FTAG);
482
483	if (error != 0)
484		goto out;
485
486	ASSERT(spa->spa_root_vdev == rvd);
487	ASSERT(spa_guid(spa) == pool_guid);
488
489	/*
490	 * Try to open all vdevs, loading each label in the process.
491	 */
492	if (vdev_open(rvd) != 0) {
493		error = ENXIO;
494		goto out;
495	}
496
497	/*
498	 * Validate the labels for all leaf vdevs.  We need to grab the config
499	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
500	 * flag.
501	 */
502	spa_config_enter(spa, RW_READER, FTAG);
503	error = vdev_validate(rvd);
504	spa_config_exit(spa, FTAG);
505
506	if (error != 0) {
507		error = EBADF;
508		goto out;
509	}
510
511	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
512		error = ENXIO;
513		goto out;
514	}
515
516	/*
517	 * Find the best uberblock.
518	 */
519	bzero(ub, sizeof (uberblock_t));
520
521	zio = zio_root(spa, NULL, NULL,
522	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
523	vdev_uberblock_load(zio, rvd, ub);
524	error = zio_wait(zio);
525
526	/*
527	 * If we weren't able to find a single valid uberblock, return failure.
528	 */
529	if (ub->ub_txg == 0) {
530		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
531		    VDEV_AUX_CORRUPT_DATA);
532		error = ENXIO;
533		goto out;
534	}
535
536	/*
537	 * If the pool is newer than the code, we can't open it.
538	 */
539	if (ub->ub_version > ZFS_VERSION) {
540		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
541		    VDEV_AUX_VERSION_NEWER);
542		error = ENOTSUP;
543		goto out;
544	}
545
546	/*
547	 * If the vdev guid sum doesn't match the uberblock, we have an
548	 * incomplete configuration.
549	 */
550	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
551		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
552		    VDEV_AUX_BAD_GUID_SUM);
553		error = ENXIO;
554		goto out;
555	}
556
557	/*
558	 * Initialize internal SPA structures.
559	 */
560	spa->spa_state = POOL_STATE_ACTIVE;
561	spa->spa_ubsync = spa->spa_uberblock;
562	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
563	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
564	if (error) {
565		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
566		    VDEV_AUX_CORRUPT_DATA);
567		goto out;
568	}
569	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
570
571	if (zap_lookup(spa->spa_meta_objset,
572	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
573	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
574		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
575		    VDEV_AUX_CORRUPT_DATA);
576		error = EIO;
577		goto out;
578	}
579
580	if (!mosconfig) {
581		nvlist_t *newconfig;
582		uint64_t hostid;
583
584		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
585			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
586			    VDEV_AUX_CORRUPT_DATA);
587			error = EIO;
588			goto out;
589		}
590
591		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
592		    &hostid) == 0) {
593			char *hostname;
594			unsigned long myhostid = 0;
595
596			VERIFY(nvlist_lookup_string(newconfig,
597			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
598
599			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
600			if ((unsigned long)hostid != myhostid) {
601				cmn_err(CE_WARN, "pool '%s' could not be "
602				    "loaded as it was last accessed by "
603				    "another system (host: %s hostid: 0x%lx).  "
604				    "See: http://www.sun.com/msg/ZFS-8000-EY",
605				    spa->spa_name, hostname,
606				    (unsigned long)hostid);
607				error = EBADF;
608				goto out;
609			}
610		}
611
612		spa_config_set(spa, newconfig);
613		spa_unload(spa);
614		spa_deactivate(spa);
615		spa_activate(spa);
616
617		return (spa_load(spa, newconfig, state, B_TRUE));
618	}
619
620	if (zap_lookup(spa->spa_meta_objset,
621	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
622	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
623		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
624		    VDEV_AUX_CORRUPT_DATA);
625		error = EIO;
626		goto out;
627	}
628
629	/*
630	 * Load the bit that tells us to use the new accounting function
631	 * (raid-z deflation).  If we have an older pool, this will not
632	 * be present.
633	 */
634	error = zap_lookup(spa->spa_meta_objset,
635	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
636	    sizeof (uint64_t), 1, &spa->spa_deflate);
637	if (error != 0 && error != ENOENT) {
638		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
639		    VDEV_AUX_CORRUPT_DATA);
640		error = EIO;
641		goto out;
642	}
643
644	/*
645	 * Load the persistent error log.  If we have an older pool, this will
646	 * not be present.
647	 */
648	error = zap_lookup(spa->spa_meta_objset,
649	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
650	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
651	if (error != 0 && error != ENOENT) {
652		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
653		    VDEV_AUX_CORRUPT_DATA);
654		error = EIO;
655		goto out;
656	}
657
658	error = zap_lookup(spa->spa_meta_objset,
659	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
660	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
661	if (error != 0 && error != ENOENT) {
662		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
663		    VDEV_AUX_CORRUPT_DATA);
664		error = EIO;
665		goto out;
666	}
667
668	/*
669	 * Load the history object.  If we have an older pool, this
670	 * will not be present.
671	 */
672	error = zap_lookup(spa->spa_meta_objset,
673	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
674	    sizeof (uint64_t), 1, &spa->spa_history);
675	if (error != 0 && error != ENOENT) {
676		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
677		    VDEV_AUX_CORRUPT_DATA);
678		error = EIO;
679		goto out;
680	}
681
682	/*
683	 * Load any hot spares for this pool.
684	 */
685	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
686	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
687	if (error != 0 && error != ENOENT) {
688		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
689		    VDEV_AUX_CORRUPT_DATA);
690		error = EIO;
691		goto out;
692	}
693	if (error == 0) {
694		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
695		if (load_nvlist(spa, spa->spa_spares_object,
696		    &spa->spa_sparelist) != 0) {
697			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
698			    VDEV_AUX_CORRUPT_DATA);
699			error = EIO;
700			goto out;
701		}
702
703		spa_config_enter(spa, RW_WRITER, FTAG);
704		spa_load_spares(spa);
705		spa_config_exit(spa, FTAG);
706	}
707
708	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
709	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
710
711	if (error && error != ENOENT) {
712		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
713		    VDEV_AUX_CORRUPT_DATA);
714		error = EIO;
715		goto out;
716	}
717
718	if (error == 0) {
719		(void) zap_lookup(spa->spa_meta_objset,
720		    spa->spa_pool_props_object,
721		    zpool_prop_to_name(ZFS_PROP_BOOTFS),
722		    sizeof (uint64_t), 1, &spa->spa_bootfs);
723	}
724
725	/*
726	 * Load the vdev state for all toplevel vdevs.
727	 */
728	vdev_load(rvd);
729
730	/*
731	 * Propagate the leaf DTLs we just loaded all the way up the tree.
732	 */
733	spa_config_enter(spa, RW_WRITER, FTAG);
734	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
735	spa_config_exit(spa, FTAG);
736
737	/*
738	 * Check the state of the root vdev.  If it can't be opened, it
739	 * indicates one or more toplevel vdevs are faulted.
740	 */
741	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
742		error = ENXIO;
743		goto out;
744	}
745
746	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
747		dmu_tx_t *tx;
748		int need_update = B_FALSE;
749		int c;
750
751		/*
752		 * Claim log blocks that haven't been committed yet.
753		 * This must all happen in a single txg.
754		 */
755		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
756		    spa_first_txg(spa));
757		(void) dmu_objset_find(spa->spa_name,
758		    zil_claim, tx, DS_FIND_CHILDREN);
759		dmu_tx_commit(tx);
760
761		spa->spa_sync_on = B_TRUE;
762		txg_sync_start(spa->spa_dsl_pool);
763
764		/*
765		 * Wait for all claims to sync.
766		 */
767		txg_wait_synced(spa->spa_dsl_pool, 0);
768
769		/*
770		 * If the config cache is stale, or we have uninitialized
771		 * metaslabs (see spa_vdev_add()), then update the config.
772		 */
773		if (config_cache_txg != spa->spa_config_txg ||
774		    state == SPA_LOAD_IMPORT)
775			need_update = B_TRUE;
776
777		for (c = 0; c < rvd->vdev_children; c++)
778			if (rvd->vdev_child[c]->vdev_ms_array == 0)
779				need_update = B_TRUE;
780
781		/*
782		 * Update the config cache asychronously in case we're the
783		 * root pool, in which case the config cache isn't writable yet.
784		 */
785		if (need_update)
786			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
787	}
788
789	error = 0;
790out:
791	if (error && error != EBADF)
792		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
793	spa->spa_load_state = SPA_LOAD_NONE;
794	spa->spa_ena = 0;
795
796	return (error);
797}
798
799/*
800 * Pool Open/Import
801 *
802 * The import case is identical to an open except that the configuration is sent
803 * down from userland, instead of grabbed from the configuration cache.  For the
804 * case of an open, the pool configuration will exist in the
805 * POOL_STATE_UNITIALIZED state.
806 *
807 * The stats information (gen/count/ustats) is used to gather vdev statistics at
808 * the same time open the pool, without having to keep around the spa_t in some
809 * ambiguous state.
810 */
811static int
812spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
813{
814	spa_t *spa;
815	int error;
816	int loaded = B_FALSE;
817	int locked = B_FALSE;
818
819	*spapp = NULL;
820
821	/*
822	 * As disgusting as this is, we need to support recursive calls to this
823	 * function because dsl_dir_open() is called during spa_load(), and ends
824	 * up calling spa_open() again.  The real fix is to figure out how to
825	 * avoid dsl_dir_open() calling this in the first place.
826	 */
827	if (mutex_owner(&spa_namespace_lock) != curthread) {
828		mutex_enter(&spa_namespace_lock);
829		locked = B_TRUE;
830	}
831
832	if ((spa = spa_lookup(pool)) == NULL) {
833		if (locked)
834			mutex_exit(&spa_namespace_lock);
835		return (ENOENT);
836	}
837	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
838
839		spa_activate(spa);
840
841		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
842
843		if (error == EBADF) {
844			/*
845			 * If vdev_validate() returns failure (indicated by
846			 * EBADF), it indicates that one of the vdevs indicates
847			 * that the pool has been exported or destroyed.  If
848			 * this is the case, the config cache is out of sync and
849			 * we should remove the pool from the namespace.
850			 */
851			zfs_post_ok(spa, NULL);
852			spa_unload(spa);
853			spa_deactivate(spa);
854			spa_remove(spa);
855			spa_config_sync();
856			if (locked)
857				mutex_exit(&spa_namespace_lock);
858			return (ENOENT);
859		}
860
861		if (error) {
862			/*
863			 * We can't open the pool, but we still have useful
864			 * information: the state of each vdev after the
865			 * attempted vdev_open().  Return this to the user.
866			 */
867			if (config != NULL && spa->spa_root_vdev != NULL) {
868				spa_config_enter(spa, RW_READER, FTAG);
869				*config = spa_config_generate(spa, NULL, -1ULL,
870				    B_TRUE);
871				spa_config_exit(spa, FTAG);
872			}
873			spa_unload(spa);
874			spa_deactivate(spa);
875			spa->spa_last_open_failed = B_TRUE;
876			if (locked)
877				mutex_exit(&spa_namespace_lock);
878			*spapp = NULL;
879			return (error);
880		} else {
881			zfs_post_ok(spa, NULL);
882			spa->spa_last_open_failed = B_FALSE;
883		}
884
885		loaded = B_TRUE;
886	}
887
888	spa_open_ref(spa, tag);
889	if (locked)
890		mutex_exit(&spa_namespace_lock);
891
892	*spapp = spa;
893
894	if (config != NULL) {
895		spa_config_enter(spa, RW_READER, FTAG);
896		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
897		spa_config_exit(spa, FTAG);
898	}
899
900	/*
901	 * If we just loaded the pool, resilver anything that's out of date.
902	 */
903	if (loaded && (spa_mode & FWRITE))
904		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
905
906	return (0);
907}
908
909int
910spa_open(const char *name, spa_t **spapp, void *tag)
911{
912	return (spa_open_common(name, spapp, tag, NULL));
913}
914
915/*
916 * Lookup the given spa_t, incrementing the inject count in the process,
917 * preventing it from being exported or destroyed.
918 */
919spa_t *
920spa_inject_addref(char *name)
921{
922	spa_t *spa;
923
924	mutex_enter(&spa_namespace_lock);
925	if ((spa = spa_lookup(name)) == NULL) {
926		mutex_exit(&spa_namespace_lock);
927		return (NULL);
928	}
929	spa->spa_inject_ref++;
930	mutex_exit(&spa_namespace_lock);
931
932	return (spa);
933}
934
935void
936spa_inject_delref(spa_t *spa)
937{
938	mutex_enter(&spa_namespace_lock);
939	spa->spa_inject_ref--;
940	mutex_exit(&spa_namespace_lock);
941}
942
943static void
944spa_add_spares(spa_t *spa, nvlist_t *config)
945{
946	nvlist_t **spares;
947	uint_t i, nspares;
948	nvlist_t *nvroot;
949	uint64_t guid;
950	vdev_stat_t *vs;
951	uint_t vsc;
952	uint64_t pool;
953
954	if (spa->spa_nspares == 0)
955		return;
956
957	VERIFY(nvlist_lookup_nvlist(config,
958	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
959	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
960	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
961	if (nspares != 0) {
962		VERIFY(nvlist_add_nvlist_array(nvroot,
963		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
964		VERIFY(nvlist_lookup_nvlist_array(nvroot,
965		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
966
967		/*
968		 * Go through and find any spares which have since been
969		 * repurposed as an active spare.  If this is the case, update
970		 * their status appropriately.
971		 */
972		for (i = 0; i < nspares; i++) {
973			VERIFY(nvlist_lookup_uint64(spares[i],
974			    ZPOOL_CONFIG_GUID, &guid) == 0);
975			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
976				VERIFY(nvlist_lookup_uint64_array(
977				    spares[i], ZPOOL_CONFIG_STATS,
978				    (uint64_t **)&vs, &vsc) == 0);
979				vs->vs_state = VDEV_STATE_CANT_OPEN;
980				vs->vs_aux = VDEV_AUX_SPARED;
981			}
982		}
983	}
984}
985
986int
987spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
988{
989	int error;
990	spa_t *spa;
991
992	*config = NULL;
993	error = spa_open_common(name, &spa, FTAG, config);
994
995	if (spa && *config != NULL) {
996		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
997		    spa_get_errlog_size(spa)) == 0);
998
999		spa_add_spares(spa, *config);
1000	}
1001
1002	/*
1003	 * We want to get the alternate root even for faulted pools, so we cheat
1004	 * and call spa_lookup() directly.
1005	 */
1006	if (altroot) {
1007		if (spa == NULL) {
1008			mutex_enter(&spa_namespace_lock);
1009			spa = spa_lookup(name);
1010			if (spa)
1011				spa_altroot(spa, altroot, buflen);
1012			else
1013				altroot[0] = '\0';
1014			spa = NULL;
1015			mutex_exit(&spa_namespace_lock);
1016		} else {
1017			spa_altroot(spa, altroot, buflen);
1018		}
1019	}
1020
1021	if (spa != NULL)
1022		spa_close(spa, FTAG);
1023
1024	return (error);
1025}
1026
1027/*
1028 * Validate that the 'spares' array is well formed.  We must have an array of
1029 * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1030 * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1031 * as they are well-formed.
1032 */
1033static int
1034spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1035{
1036	nvlist_t **spares;
1037	uint_t i, nspares;
1038	vdev_t *vd;
1039	int error;
1040
1041	/*
1042	 * It's acceptable to have no spares specified.
1043	 */
1044	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1045	    &spares, &nspares) != 0)
1046		return (0);
1047
1048	if (nspares == 0)
1049		return (EINVAL);
1050
1051	/*
1052	 * Make sure the pool is formatted with a version that supports hot
1053	 * spares.
1054	 */
1055	if (spa_version(spa) < ZFS_VERSION_SPARES)
1056		return (ENOTSUP);
1057
1058	/*
1059	 * Set the pending spare list so we correctly handle device in-use
1060	 * checking.
1061	 */
1062	spa->spa_pending_spares = spares;
1063	spa->spa_pending_nspares = nspares;
1064
1065	for (i = 0; i < nspares; i++) {
1066		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1067		    mode)) != 0)
1068			goto out;
1069
1070		if (!vd->vdev_ops->vdev_op_leaf) {
1071			vdev_free(vd);
1072			error = EINVAL;
1073			goto out;
1074		}
1075
1076		vd->vdev_top = vd;
1077
1078		if ((error = vdev_open(vd)) == 0 &&
1079		    (error = vdev_label_init(vd, crtxg,
1080		    VDEV_LABEL_SPARE)) == 0) {
1081			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1082			    vd->vdev_guid) == 0);
1083		}
1084
1085		vdev_free(vd);
1086
1087		if (error && mode != VDEV_ALLOC_SPARE)
1088			goto out;
1089		else
1090			error = 0;
1091	}
1092
1093out:
1094	spa->spa_pending_spares = NULL;
1095	spa->spa_pending_nspares = 0;
1096	return (error);
1097}
1098
1099/*
1100 * Pool Creation
1101 */
1102int
1103spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1104{
1105	spa_t *spa;
1106	vdev_t *rvd;
1107	dsl_pool_t *dp;
1108	dmu_tx_t *tx;
1109	int c, error = 0;
1110	uint64_t txg = TXG_INITIAL;
1111	nvlist_t **spares;
1112	uint_t nspares;
1113
1114	/*
1115	 * If this pool already exists, return failure.
1116	 */
1117	mutex_enter(&spa_namespace_lock);
1118	if (spa_lookup(pool) != NULL) {
1119		mutex_exit(&spa_namespace_lock);
1120		return (EEXIST);
1121	}
1122
1123	/*
1124	 * Allocate a new spa_t structure.
1125	 */
1126	spa = spa_add(pool, altroot);
1127	spa_activate(spa);
1128
1129	spa->spa_uberblock.ub_txg = txg - 1;
1130	spa->spa_uberblock.ub_version = ZFS_VERSION;
1131	spa->spa_ubsync = spa->spa_uberblock;
1132
1133	/*
1134	 * Create the root vdev.
1135	 */
1136	spa_config_enter(spa, RW_WRITER, FTAG);
1137
1138	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1139
1140	ASSERT(error != 0 || rvd != NULL);
1141	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1142
1143	if (error == 0 && rvd->vdev_children == 0)
1144		error = EINVAL;
1145
1146	if (error == 0 &&
1147	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1148	    (error = spa_validate_spares(spa, nvroot, txg,
1149	    VDEV_ALLOC_ADD)) == 0) {
1150		for (c = 0; c < rvd->vdev_children; c++)
1151			vdev_init(rvd->vdev_child[c], txg);
1152		vdev_config_dirty(rvd);
1153	}
1154
1155	spa_config_exit(spa, FTAG);
1156
1157	if (error != 0) {
1158		spa_unload(spa);
1159		spa_deactivate(spa);
1160		spa_remove(spa);
1161		mutex_exit(&spa_namespace_lock);
1162		return (error);
1163	}
1164
1165	/*
1166	 * Get the list of spares, if specified.
1167	 */
1168	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1169	    &spares, &nspares) == 0) {
1170		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1171		    KM_SLEEP) == 0);
1172		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1173		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1174		spa_config_enter(spa, RW_WRITER, FTAG);
1175		spa_load_spares(spa);
1176		spa_config_exit(spa, FTAG);
1177		spa->spa_sync_spares = B_TRUE;
1178	}
1179
1180	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1181	spa->spa_meta_objset = dp->dp_meta_objset;
1182
1183	tx = dmu_tx_create_assigned(dp, txg);
1184
1185	/*
1186	 * Create the pool config object.
1187	 */
1188	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1189	    DMU_OT_PACKED_NVLIST, 1 << 14,
1190	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1191
1192	if (zap_add(spa->spa_meta_objset,
1193	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1194	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1195		cmn_err(CE_PANIC, "failed to add pool config");
1196	}
1197
1198	/* Newly created pools are always deflated. */
1199	spa->spa_deflate = TRUE;
1200	if (zap_add(spa->spa_meta_objset,
1201	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1202	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1203		cmn_err(CE_PANIC, "failed to add deflate");
1204	}
1205
1206	/*
1207	 * Create the deferred-free bplist object.  Turn off compression
1208	 * because sync-to-convergence takes longer if the blocksize
1209	 * keeps changing.
1210	 */
1211	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1212	    1 << 14, tx);
1213	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1214	    ZIO_COMPRESS_OFF, tx);
1215
1216	if (zap_add(spa->spa_meta_objset,
1217	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1218	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1219		cmn_err(CE_PANIC, "failed to add bplist");
1220	}
1221
1222	/*
1223	 * Create the pool's history object.
1224	 */
1225	spa_history_create_obj(spa, tx);
1226
1227	dmu_tx_commit(tx);
1228
1229	spa->spa_bootfs = zfs_prop_default_numeric(ZFS_PROP_BOOTFS);
1230	spa->spa_sync_on = B_TRUE;
1231	txg_sync_start(spa->spa_dsl_pool);
1232
1233	/*
1234	 * We explicitly wait for the first transaction to complete so that our
1235	 * bean counters are appropriately updated.
1236	 */
1237	txg_wait_synced(spa->spa_dsl_pool, txg);
1238
1239	spa_config_sync();
1240
1241	mutex_exit(&spa_namespace_lock);
1242
1243	return (0);
1244}
1245
1246/*
1247 * Import the given pool into the system.  We set up the necessary spa_t and
1248 * then call spa_load() to do the dirty work.
1249 */
1250int
1251spa_import(const char *pool, nvlist_t *config, const char *altroot)
1252{
1253	spa_t *spa;
1254	int error;
1255	nvlist_t *nvroot;
1256	nvlist_t **spares;
1257	uint_t nspares;
1258
1259	if (!(spa_mode & FWRITE))
1260		return (EROFS);
1261
1262	/*
1263	 * If a pool with this name exists, return failure.
1264	 */
1265	mutex_enter(&spa_namespace_lock);
1266	if (spa_lookup(pool) != NULL) {
1267		mutex_exit(&spa_namespace_lock);
1268		return (EEXIST);
1269	}
1270
1271	/*
1272	 * Create and initialize the spa structure.
1273	 */
1274	spa = spa_add(pool, altroot);
1275	spa_activate(spa);
1276
1277	/*
1278	 * Pass off the heavy lifting to spa_load().
1279	 * Pass TRUE for mosconfig because the user-supplied config
1280	 * is actually the one to trust when doing an import.
1281	 */
1282	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1283
1284	spa_config_enter(spa, RW_WRITER, FTAG);
1285	/*
1286	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1287	 * and conflicts with spa_has_spare().
1288	 */
1289	if (spa->spa_sparelist) {
1290		nvlist_free(spa->spa_sparelist);
1291		spa->spa_sparelist = NULL;
1292		spa_load_spares(spa);
1293	}
1294
1295	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1296	    &nvroot) == 0);
1297	if (error == 0)
1298		error = spa_validate_spares(spa, nvroot, -1ULL,
1299		    VDEV_ALLOC_SPARE);
1300	spa_config_exit(spa, FTAG);
1301
1302	if (error != 0) {
1303		spa_unload(spa);
1304		spa_deactivate(spa);
1305		spa_remove(spa);
1306		mutex_exit(&spa_namespace_lock);
1307		return (error);
1308	}
1309
1310	/*
1311	 * Override any spares as specified by the user, as these may have
1312	 * correct device names/devids, etc.
1313	 */
1314	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1315	    &spares, &nspares) == 0) {
1316		if (spa->spa_sparelist)
1317			VERIFY(nvlist_remove(spa->spa_sparelist,
1318			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1319		else
1320			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1321			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1322		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1323		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1324		spa_config_enter(spa, RW_WRITER, FTAG);
1325		spa_load_spares(spa);
1326		spa_config_exit(spa, FTAG);
1327		spa->spa_sync_spares = B_TRUE;
1328	}
1329
1330	/*
1331	 * Update the config cache to include the newly-imported pool.
1332	 */
1333	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1334
1335	mutex_exit(&spa_namespace_lock);
1336
1337	/*
1338	 * Resilver anything that's out of date.
1339	 */
1340	if (spa_mode & FWRITE)
1341		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1342
1343	return (0);
1344}
1345
1346/*
1347 * This (illegal) pool name is used when temporarily importing a spa_t in order
1348 * to get the vdev stats associated with the imported devices.
1349 */
1350#define	TRYIMPORT_NAME	"$import"
1351
1352nvlist_t *
1353spa_tryimport(nvlist_t *tryconfig)
1354{
1355	nvlist_t *config = NULL;
1356	char *poolname;
1357	spa_t *spa;
1358	uint64_t state;
1359
1360	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1361		return (NULL);
1362
1363	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1364		return (NULL);
1365
1366	/*
1367	 * Create and initialize the spa structure.
1368	 */
1369	mutex_enter(&spa_namespace_lock);
1370	spa = spa_add(TRYIMPORT_NAME, NULL);
1371	spa_activate(spa);
1372
1373	/*
1374	 * Pass off the heavy lifting to spa_load().
1375	 * Pass TRUE for mosconfig because the user-supplied config
1376	 * is actually the one to trust when doing an import.
1377	 */
1378	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1379
1380	/*
1381	 * If 'tryconfig' was at least parsable, return the current config.
1382	 */
1383	if (spa->spa_root_vdev != NULL) {
1384		spa_config_enter(spa, RW_READER, FTAG);
1385		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1386		spa_config_exit(spa, FTAG);
1387		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1388		    poolname) == 0);
1389		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1390		    state) == 0);
1391		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1392		    spa->spa_uberblock.ub_timestamp) == 0);
1393
1394		/*
1395		 * Add the list of hot spares.
1396		 */
1397		spa_add_spares(spa, config);
1398	}
1399
1400	spa_unload(spa);
1401	spa_deactivate(spa);
1402	spa_remove(spa);
1403	mutex_exit(&spa_namespace_lock);
1404
1405	return (config);
1406}
1407
1408/*
1409 * Pool export/destroy
1410 *
1411 * The act of destroying or exporting a pool is very simple.  We make sure there
1412 * is no more pending I/O and any references to the pool are gone.  Then, we
1413 * update the pool state and sync all the labels to disk, removing the
1414 * configuration from the cache afterwards.
1415 */
1416static int
1417spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1418{
1419	spa_t *spa;
1420
1421	if (oldconfig)
1422		*oldconfig = NULL;
1423
1424	if (!(spa_mode & FWRITE))
1425		return (EROFS);
1426
1427	mutex_enter(&spa_namespace_lock);
1428	if ((spa = spa_lookup(pool)) == NULL) {
1429		mutex_exit(&spa_namespace_lock);
1430		return (ENOENT);
1431	}
1432
1433	/*
1434	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1435	 * reacquire the namespace lock, and see if we can export.
1436	 */
1437	spa_open_ref(spa, FTAG);
1438	mutex_exit(&spa_namespace_lock);
1439	spa_async_suspend(spa);
1440	mutex_enter(&spa_namespace_lock);
1441	spa_close(spa, FTAG);
1442
1443	/*
1444	 * The pool will be in core if it's openable,
1445	 * in which case we can modify its state.
1446	 */
1447	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1448		/*
1449		 * Objsets may be open only because they're dirty, so we
1450		 * have to force it to sync before checking spa_refcnt.
1451		 */
1452		spa_scrub_suspend(spa);
1453		txg_wait_synced(spa->spa_dsl_pool, 0);
1454
1455		/*
1456		 * A pool cannot be exported or destroyed if there are active
1457		 * references.  If we are resetting a pool, allow references by
1458		 * fault injection handlers.
1459		 */
1460		if (!spa_refcount_zero(spa) ||
1461		    (spa->spa_inject_ref != 0 &&
1462		    new_state != POOL_STATE_UNINITIALIZED)) {
1463			spa_scrub_resume(spa);
1464			spa_async_resume(spa);
1465			mutex_exit(&spa_namespace_lock);
1466			return (EBUSY);
1467		}
1468
1469		spa_scrub_resume(spa);
1470		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1471
1472		/*
1473		 * We want this to be reflected on every label,
1474		 * so mark them all dirty.  spa_unload() will do the
1475		 * final sync that pushes these changes out.
1476		 */
1477		if (new_state != POOL_STATE_UNINITIALIZED) {
1478			spa_config_enter(spa, RW_WRITER, FTAG);
1479			spa->spa_state = new_state;
1480			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1481			vdev_config_dirty(spa->spa_root_vdev);
1482			spa_config_exit(spa, FTAG);
1483		}
1484	}
1485
1486	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1487		spa_unload(spa);
1488		spa_deactivate(spa);
1489	}
1490
1491	if (oldconfig && spa->spa_config)
1492		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1493
1494	if (new_state != POOL_STATE_UNINITIALIZED) {
1495		spa_remove(spa);
1496		spa_config_sync();
1497	}
1498	mutex_exit(&spa_namespace_lock);
1499
1500	return (0);
1501}
1502
1503/*
1504 * Destroy a storage pool.
1505 */
1506int
1507spa_destroy(char *pool)
1508{
1509	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1510}
1511
1512/*
1513 * Export a storage pool.
1514 */
1515int
1516spa_export(char *pool, nvlist_t **oldconfig)
1517{
1518	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1519}
1520
1521/*
1522 * Similar to spa_export(), this unloads the spa_t without actually removing it
1523 * from the namespace in any way.
1524 */
1525int
1526spa_reset(char *pool)
1527{
1528	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1529}
1530
1531
1532/*
1533 * ==========================================================================
1534 * Device manipulation
1535 * ==========================================================================
1536 */
1537
1538/*
1539 * Add capacity to a storage pool.
1540 */
1541int
1542spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1543{
1544	uint64_t txg;
1545	int c, error;
1546	vdev_t *rvd = spa->spa_root_vdev;
1547	vdev_t *vd, *tvd;
1548	nvlist_t **spares;
1549	uint_t i, nspares;
1550
1551	txg = spa_vdev_enter(spa);
1552
1553	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1554	    VDEV_ALLOC_ADD)) != 0)
1555		return (spa_vdev_exit(spa, NULL, txg, error));
1556
1557	spa->spa_pending_vdev = vd;
1558
1559	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1560	    &spares, &nspares) != 0)
1561		nspares = 0;
1562
1563	if (vd->vdev_children == 0 && nspares == 0) {
1564		spa->spa_pending_vdev = NULL;
1565		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1566	}
1567
1568	if (vd->vdev_children != 0) {
1569		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1570			spa->spa_pending_vdev = NULL;
1571			return (spa_vdev_exit(spa, vd, txg, error));
1572		}
1573	}
1574
1575	/*
1576	 * We must validate the spares after checking the children.  Otherwise,
1577	 * vdev_inuse() will blindly overwrite the spare.
1578	 */
1579	if ((error = spa_validate_spares(spa, nvroot, txg,
1580	    VDEV_ALLOC_ADD)) != 0) {
1581		spa->spa_pending_vdev = NULL;
1582		return (spa_vdev_exit(spa, vd, txg, error));
1583	}
1584
1585	spa->spa_pending_vdev = NULL;
1586
1587	/*
1588	 * Transfer each new top-level vdev from vd to rvd.
1589	 */
1590	for (c = 0; c < vd->vdev_children; c++) {
1591		tvd = vd->vdev_child[c];
1592		vdev_remove_child(vd, tvd);
1593		tvd->vdev_id = rvd->vdev_children;
1594		vdev_add_child(rvd, tvd);
1595		vdev_config_dirty(tvd);
1596	}
1597
1598	if (nspares != 0) {
1599		if (spa->spa_sparelist != NULL) {
1600			nvlist_t **oldspares;
1601			uint_t oldnspares;
1602			nvlist_t **newspares;
1603
1604			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1605			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1606
1607			newspares = kmem_alloc(sizeof (void *) *
1608			    (nspares + oldnspares), KM_SLEEP);
1609			for (i = 0; i < oldnspares; i++)
1610				VERIFY(nvlist_dup(oldspares[i],
1611				    &newspares[i], KM_SLEEP) == 0);
1612			for (i = 0; i < nspares; i++)
1613				VERIFY(nvlist_dup(spares[i],
1614				    &newspares[i + oldnspares],
1615				    KM_SLEEP) == 0);
1616
1617			VERIFY(nvlist_remove(spa->spa_sparelist,
1618			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1619
1620			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1621			    ZPOOL_CONFIG_SPARES, newspares,
1622			    nspares + oldnspares) == 0);
1623			for (i = 0; i < oldnspares + nspares; i++)
1624				nvlist_free(newspares[i]);
1625			kmem_free(newspares, (oldnspares + nspares) *
1626			    sizeof (void *));
1627		} else {
1628			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1629			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1630			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1631			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1632		}
1633
1634		spa_load_spares(spa);
1635		spa->spa_sync_spares = B_TRUE;
1636	}
1637
1638	/*
1639	 * We have to be careful when adding new vdevs to an existing pool.
1640	 * If other threads start allocating from these vdevs before we
1641	 * sync the config cache, and we lose power, then upon reboot we may
1642	 * fail to open the pool because there are DVAs that the config cache
1643	 * can't translate.  Therefore, we first add the vdevs without
1644	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1645	 * and then let spa_config_update() initialize the new metaslabs.
1646	 *
1647	 * spa_load() checks for added-but-not-initialized vdevs, so that
1648	 * if we lose power at any point in this sequence, the remaining
1649	 * steps will be completed the next time we load the pool.
1650	 */
1651	(void) spa_vdev_exit(spa, vd, txg, 0);
1652
1653	mutex_enter(&spa_namespace_lock);
1654	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1655	mutex_exit(&spa_namespace_lock);
1656
1657	return (0);
1658}
1659
1660/*
1661 * Attach a device to a mirror.  The arguments are the path to any device
1662 * in the mirror, and the nvroot for the new device.  If the path specifies
1663 * a device that is not mirrored, we automatically insert the mirror vdev.
1664 *
1665 * If 'replacing' is specified, the new device is intended to replace the
1666 * existing device; in this case the two devices are made into their own
1667 * mirror using the 'replacing' vdev, which is functionally idendical to
1668 * the mirror vdev (it actually reuses all the same ops) but has a few
1669 * extra rules: you can't attach to it after it's been created, and upon
1670 * completion of resilvering, the first disk (the one being replaced)
1671 * is automatically detached.
1672 */
1673int
1674spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1675{
1676	uint64_t txg, open_txg;
1677	int error;
1678	vdev_t *rvd = spa->spa_root_vdev;
1679	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1680	vdev_ops_t *pvops;
1681
1682	txg = spa_vdev_enter(spa);
1683
1684	oldvd = vdev_lookup_by_guid(rvd, guid);
1685
1686	if (oldvd == NULL)
1687		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1688
1689	if (!oldvd->vdev_ops->vdev_op_leaf)
1690		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1691
1692	pvd = oldvd->vdev_parent;
1693
1694	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1695	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1696		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1697
1698	newvd = newrootvd->vdev_child[0];
1699
1700	if (!newvd->vdev_ops->vdev_op_leaf)
1701		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1702
1703	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1704		return (spa_vdev_exit(spa, newrootvd, txg, error));
1705
1706	if (!replacing) {
1707		/*
1708		 * For attach, the only allowable parent is a mirror or the root
1709		 * vdev.
1710		 */
1711		if (pvd->vdev_ops != &vdev_mirror_ops &&
1712		    pvd->vdev_ops != &vdev_root_ops)
1713			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1714
1715		pvops = &vdev_mirror_ops;
1716	} else {
1717		/*
1718		 * Active hot spares can only be replaced by inactive hot
1719		 * spares.
1720		 */
1721		if (pvd->vdev_ops == &vdev_spare_ops &&
1722		    pvd->vdev_child[1] == oldvd &&
1723		    !spa_has_spare(spa, newvd->vdev_guid))
1724			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1725
1726		/*
1727		 * If the source is a hot spare, and the parent isn't already a
1728		 * spare, then we want to create a new hot spare.  Otherwise, we
1729		 * want to create a replacing vdev.  The user is not allowed to
1730		 * attach to a spared vdev child unless the 'isspare' state is
1731		 * the same (spare replaces spare, non-spare replaces
1732		 * non-spare).
1733		 */
1734		if (pvd->vdev_ops == &vdev_replacing_ops)
1735			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1736		else if (pvd->vdev_ops == &vdev_spare_ops &&
1737		    newvd->vdev_isspare != oldvd->vdev_isspare)
1738			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1739		else if (pvd->vdev_ops != &vdev_spare_ops &&
1740		    newvd->vdev_isspare)
1741			pvops = &vdev_spare_ops;
1742		else
1743			pvops = &vdev_replacing_ops;
1744	}
1745
1746	/*
1747	 * Compare the new device size with the replaceable/attachable
1748	 * device size.
1749	 */
1750	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1751		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1752
1753	/*
1754	 * The new device cannot have a higher alignment requirement
1755	 * than the top-level vdev.
1756	 */
1757	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1758		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1759
1760	/*
1761	 * If this is an in-place replacement, update oldvd's path and devid
1762	 * to make it distinguishable from newvd, and unopenable from now on.
1763	 */
1764	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1765		spa_strfree(oldvd->vdev_path);
1766		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1767		    KM_SLEEP);
1768		(void) sprintf(oldvd->vdev_path, "%s/%s",
1769		    newvd->vdev_path, "old");
1770		if (oldvd->vdev_devid != NULL) {
1771			spa_strfree(oldvd->vdev_devid);
1772			oldvd->vdev_devid = NULL;
1773		}
1774	}
1775
1776	/*
1777	 * If the parent is not a mirror, or if we're replacing, insert the new
1778	 * mirror/replacing/spare vdev above oldvd.
1779	 */
1780	if (pvd->vdev_ops != pvops)
1781		pvd = vdev_add_parent(oldvd, pvops);
1782
1783	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1784	ASSERT(pvd->vdev_ops == pvops);
1785	ASSERT(oldvd->vdev_parent == pvd);
1786
1787	/*
1788	 * Extract the new device from its root and add it to pvd.
1789	 */
1790	vdev_remove_child(newrootvd, newvd);
1791	newvd->vdev_id = pvd->vdev_children;
1792	vdev_add_child(pvd, newvd);
1793
1794	/*
1795	 * If newvd is smaller than oldvd, but larger than its rsize,
1796	 * the addition of newvd may have decreased our parent's asize.
1797	 */
1798	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1799
1800	tvd = newvd->vdev_top;
1801	ASSERT(pvd->vdev_top == tvd);
1802	ASSERT(tvd->vdev_parent == rvd);
1803
1804	vdev_config_dirty(tvd);
1805
1806	/*
1807	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1808	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1809	 */
1810	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1811
1812	mutex_enter(&newvd->vdev_dtl_lock);
1813	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1814	    open_txg - TXG_INITIAL + 1);
1815	mutex_exit(&newvd->vdev_dtl_lock);
1816
1817	if (newvd->vdev_isspare)
1818		spa_spare_activate(newvd);
1819
1820	/*
1821	 * Mark newvd's DTL dirty in this txg.
1822	 */
1823	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1824
1825	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1826
1827	/*
1828	 * Kick off a resilver to update newvd.
1829	 */
1830	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1831
1832	return (0);
1833}
1834
1835/*
1836 * Detach a device from a mirror or replacing vdev.
1837 * If 'replace_done' is specified, only detach if the parent
1838 * is a replacing vdev.
1839 */
1840int
1841spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1842{
1843	uint64_t txg;
1844	int c, t, error;
1845	vdev_t *rvd = spa->spa_root_vdev;
1846	vdev_t *vd, *pvd, *cvd, *tvd;
1847	boolean_t unspare = B_FALSE;
1848	uint64_t unspare_guid;
1849
1850	txg = spa_vdev_enter(spa);
1851
1852	vd = vdev_lookup_by_guid(rvd, guid);
1853
1854	if (vd == NULL)
1855		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1856
1857	if (!vd->vdev_ops->vdev_op_leaf)
1858		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1859
1860	pvd = vd->vdev_parent;
1861
1862	/*
1863	 * If replace_done is specified, only remove this device if it's
1864	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1865	 * disk can be removed.
1866	 */
1867	if (replace_done) {
1868		if (pvd->vdev_ops == &vdev_replacing_ops) {
1869			if (vd->vdev_id != 0)
1870				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1871		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1872			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1873		}
1874	}
1875
1876	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1877	    spa_version(spa) >= ZFS_VERSION_SPARES);
1878
1879	/*
1880	 * Only mirror, replacing, and spare vdevs support detach.
1881	 */
1882	if (pvd->vdev_ops != &vdev_replacing_ops &&
1883	    pvd->vdev_ops != &vdev_mirror_ops &&
1884	    pvd->vdev_ops != &vdev_spare_ops)
1885		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1886
1887	/*
1888	 * If there's only one replica, you can't detach it.
1889	 */
1890	if (pvd->vdev_children <= 1)
1891		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1892
1893	/*
1894	 * If all siblings have non-empty DTLs, this device may have the only
1895	 * valid copy of the data, which means we cannot safely detach it.
1896	 *
1897	 * XXX -- as in the vdev_offline() case, we really want a more
1898	 * precise DTL check.
1899	 */
1900	for (c = 0; c < pvd->vdev_children; c++) {
1901		uint64_t dirty;
1902
1903		cvd = pvd->vdev_child[c];
1904		if (cvd == vd)
1905			continue;
1906		if (vdev_is_dead(cvd))
1907			continue;
1908		mutex_enter(&cvd->vdev_dtl_lock);
1909		dirty = cvd->vdev_dtl_map.sm_space |
1910		    cvd->vdev_dtl_scrub.sm_space;
1911		mutex_exit(&cvd->vdev_dtl_lock);
1912		if (!dirty)
1913			break;
1914	}
1915
1916	/*
1917	 * If we are a replacing or spare vdev, then we can always detach the
1918	 * latter child, as that is how one cancels the operation.
1919	 */
1920	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1921	    c == pvd->vdev_children)
1922		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1923
1924	/*
1925	 * If we are detaching the original disk from a spare, then it implies
1926	 * that the spare should become a real disk, and be removed from the
1927	 * active spare list for the pool.
1928	 */
1929	if (pvd->vdev_ops == &vdev_spare_ops &&
1930	    vd->vdev_id == 0)
1931		unspare = B_TRUE;
1932
1933	/*
1934	 * Erase the disk labels so the disk can be used for other things.
1935	 * This must be done after all other error cases are handled,
1936	 * but before we disembowel vd (so we can still do I/O to it).
1937	 * But if we can't do it, don't treat the error as fatal --
1938	 * it may be that the unwritability of the disk is the reason
1939	 * it's being detached!
1940	 */
1941	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1942
1943	/*
1944	 * Remove vd from its parent and compact the parent's children.
1945	 */
1946	vdev_remove_child(pvd, vd);
1947	vdev_compact_children(pvd);
1948
1949	/*
1950	 * Remember one of the remaining children so we can get tvd below.
1951	 */
1952	cvd = pvd->vdev_child[0];
1953
1954	/*
1955	 * If we need to remove the remaining child from the list of hot spares,
1956	 * do it now, marking the vdev as no longer a spare in the process.  We
1957	 * must do this before vdev_remove_parent(), because that can change the
1958	 * GUID if it creates a new toplevel GUID.
1959	 */
1960	if (unspare) {
1961		ASSERT(cvd->vdev_isspare);
1962		spa_spare_remove(cvd);
1963		unspare_guid = cvd->vdev_guid;
1964	}
1965
1966	/*
1967	 * If the parent mirror/replacing vdev only has one child,
1968	 * the parent is no longer needed.  Remove it from the tree.
1969	 */
1970	if (pvd->vdev_children == 1)
1971		vdev_remove_parent(cvd);
1972
1973	/*
1974	 * We don't set tvd until now because the parent we just removed
1975	 * may have been the previous top-level vdev.
1976	 */
1977	tvd = cvd->vdev_top;
1978	ASSERT(tvd->vdev_parent == rvd);
1979
1980	/*
1981	 * Reevaluate the parent vdev state.
1982	 */
1983	vdev_propagate_state(cvd->vdev_parent);
1984
1985	/*
1986	 * If the device we just detached was smaller than the others, it may be
1987	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
1988	 * can't fail because the existing metaslabs are already in core, so
1989	 * there's nothing to read from disk.
1990	 */
1991	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1992
1993	vdev_config_dirty(tvd);
1994
1995	/*
1996	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
1997	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
1998	 * But first make sure we're not on any *other* txg's DTL list, to
1999	 * prevent vd from being accessed after it's freed.
2000	 */
2001	for (t = 0; t < TXG_SIZE; t++)
2002		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2003	vd->vdev_detached = B_TRUE;
2004	vdev_dirty(tvd, VDD_DTL, vd, txg);
2005
2006	error = spa_vdev_exit(spa, vd, txg, 0);
2007
2008	/*
2009	 * If this was the removal of the original device in a hot spare vdev,
2010	 * then we want to go through and remove the device from the hot spare
2011	 * list of every other pool.
2012	 */
2013	if (unspare) {
2014		spa = NULL;
2015		mutex_enter(&spa_namespace_lock);
2016		while ((spa = spa_next(spa)) != NULL) {
2017			if (spa->spa_state != POOL_STATE_ACTIVE)
2018				continue;
2019
2020			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2021		}
2022		mutex_exit(&spa_namespace_lock);
2023	}
2024
2025	return (error);
2026}
2027
2028/*
2029 * Remove a device from the pool.  Currently, this supports removing only hot
2030 * spares.
2031 */
2032int
2033spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2034{
2035	vdev_t *vd;
2036	nvlist_t **spares, *nv, **newspares;
2037	uint_t i, j, nspares;
2038	int ret = 0;
2039
2040	spa_config_enter(spa, RW_WRITER, FTAG);
2041
2042	vd = spa_lookup_by_guid(spa, guid);
2043
2044	nv = NULL;
2045	if (spa->spa_spares != NULL &&
2046	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2047	    &spares, &nspares) == 0) {
2048		for (i = 0; i < nspares; i++) {
2049			uint64_t theguid;
2050
2051			VERIFY(nvlist_lookup_uint64(spares[i],
2052			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2053			if (theguid == guid) {
2054				nv = spares[i];
2055				break;
2056			}
2057		}
2058	}
2059
2060	/*
2061	 * We only support removing a hot spare, and only if it's not currently
2062	 * in use in this pool.
2063	 */
2064	if (nv == NULL && vd == NULL) {
2065		ret = ENOENT;
2066		goto out;
2067	}
2068
2069	if (nv == NULL && vd != NULL) {
2070		ret = ENOTSUP;
2071		goto out;
2072	}
2073
2074	if (!unspare && nv != NULL && vd != NULL) {
2075		ret = EBUSY;
2076		goto out;
2077	}
2078
2079	if (nspares == 1) {
2080		newspares = NULL;
2081	} else {
2082		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2083		    KM_SLEEP);
2084		for (i = 0, j = 0; i < nspares; i++) {
2085			if (spares[i] != nv)
2086				VERIFY(nvlist_dup(spares[i],
2087				    &newspares[j++], KM_SLEEP) == 0);
2088		}
2089	}
2090
2091	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2092	    DATA_TYPE_NVLIST_ARRAY) == 0);
2093	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2094	    newspares, nspares - 1) == 0);
2095	for (i = 0; i < nspares - 1; i++)
2096		nvlist_free(newspares[i]);
2097	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2098	spa_load_spares(spa);
2099	spa->spa_sync_spares = B_TRUE;
2100
2101out:
2102	spa_config_exit(spa, FTAG);
2103
2104	return (ret);
2105}
2106
2107/*
2108 * Find any device that's done replacing, so we can detach it.
2109 */
2110static vdev_t *
2111spa_vdev_replace_done_hunt(vdev_t *vd)
2112{
2113	vdev_t *newvd, *oldvd;
2114	int c;
2115
2116	for (c = 0; c < vd->vdev_children; c++) {
2117		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
2118		if (oldvd != NULL)
2119			return (oldvd);
2120	}
2121
2122	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2123		oldvd = vd->vdev_child[0];
2124		newvd = vd->vdev_child[1];
2125
2126		mutex_enter(&newvd->vdev_dtl_lock);
2127		if (newvd->vdev_dtl_map.sm_space == 0 &&
2128		    newvd->vdev_dtl_scrub.sm_space == 0) {
2129			mutex_exit(&newvd->vdev_dtl_lock);
2130			return (oldvd);
2131		}
2132		mutex_exit(&newvd->vdev_dtl_lock);
2133	}
2134
2135	return (NULL);
2136}
2137
2138static void
2139spa_vdev_replace_done(spa_t *spa)
2140{
2141	vdev_t *vd;
2142	vdev_t *pvd;
2143	uint64_t guid;
2144	uint64_t pguid = 0;
2145
2146	spa_config_enter(spa, RW_READER, FTAG);
2147
2148	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2149		guid = vd->vdev_guid;
2150		/*
2151		 * If we have just finished replacing a hot spared device, then
2152		 * we need to detach the parent's first child (the original hot
2153		 * spare) as well.
2154		 */
2155		pvd = vd->vdev_parent;
2156		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2157		    pvd->vdev_id == 0) {
2158			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2159			ASSERT(pvd->vdev_parent->vdev_children == 2);
2160			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2161		}
2162		spa_config_exit(spa, FTAG);
2163		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2164			return;
2165		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2166			return;
2167		spa_config_enter(spa, RW_READER, FTAG);
2168	}
2169
2170	spa_config_exit(spa, FTAG);
2171}
2172
2173/*
2174 * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2175 * on spa_vdev_enter/exit() to synchronize the labels and cache.
2176 */
2177int
2178spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2179{
2180	vdev_t *rvd, *vd;
2181	uint64_t txg;
2182
2183	rvd = spa->spa_root_vdev;
2184
2185	txg = spa_vdev_enter(spa);
2186
2187	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2188		/*
2189		 * Determine if this is a reference to a hot spare.  In that
2190		 * case, update the path as stored in the spare list.
2191		 */
2192		nvlist_t **spares;
2193		uint_t i, nspares;
2194		if (spa->spa_sparelist != NULL) {
2195			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2196			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2197			for (i = 0; i < nspares; i++) {
2198				uint64_t theguid;
2199				VERIFY(nvlist_lookup_uint64(spares[i],
2200				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2201				if (theguid == guid)
2202					break;
2203			}
2204
2205			if (i == nspares)
2206				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2207
2208			VERIFY(nvlist_add_string(spares[i],
2209			    ZPOOL_CONFIG_PATH, newpath) == 0);
2210			spa_load_spares(spa);
2211			spa->spa_sync_spares = B_TRUE;
2212			return (spa_vdev_exit(spa, NULL, txg, 0));
2213		} else {
2214			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2215		}
2216	}
2217
2218	if (!vd->vdev_ops->vdev_op_leaf)
2219		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2220
2221	spa_strfree(vd->vdev_path);
2222	vd->vdev_path = spa_strdup(newpath);
2223
2224	vdev_config_dirty(vd->vdev_top);
2225
2226	return (spa_vdev_exit(spa, NULL, txg, 0));
2227}
2228
2229/*
2230 * ==========================================================================
2231 * SPA Scrubbing
2232 * ==========================================================================
2233 */
2234
2235static void
2236spa_scrub_io_done(zio_t *zio)
2237{
2238	spa_t *spa = zio->io_spa;
2239
2240	zio_data_buf_free(zio->io_data, zio->io_size);
2241
2242	mutex_enter(&spa->spa_scrub_lock);
2243	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2244		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2245		spa->spa_scrub_errors++;
2246		mutex_enter(&vd->vdev_stat_lock);
2247		vd->vdev_stat.vs_scrub_errors++;
2248		mutex_exit(&vd->vdev_stat_lock);
2249	}
2250
2251	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2252		cv_broadcast(&spa->spa_scrub_io_cv);
2253
2254	ASSERT(spa->spa_scrub_inflight >= 0);
2255
2256	mutex_exit(&spa->spa_scrub_lock);
2257}
2258
2259static void
2260spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2261    zbookmark_t *zb)
2262{
2263	size_t size = BP_GET_LSIZE(bp);
2264	void *data;
2265
2266	mutex_enter(&spa->spa_scrub_lock);
2267	/*
2268	 * Do not give too much work to vdev(s).
2269	 */
2270	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2271		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2272	}
2273	spa->spa_scrub_inflight++;
2274	mutex_exit(&spa->spa_scrub_lock);
2275
2276	data = zio_data_buf_alloc(size);
2277
2278	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2279		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2280
2281	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2282
2283	zio_nowait(zio_read(NULL, spa, bp, data, size,
2284	    spa_scrub_io_done, NULL, priority, flags, zb));
2285}
2286
2287/* ARGSUSED */
2288static int
2289spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2290{
2291	blkptr_t *bp = &bc->bc_blkptr;
2292	vdev_t *vd = spa->spa_root_vdev;
2293	dva_t *dva = bp->blk_dva;
2294	int needs_resilver = B_FALSE;
2295	int d;
2296
2297	if (bc->bc_errno) {
2298		/*
2299		 * We can't scrub this block, but we can continue to scrub
2300		 * the rest of the pool.  Note the error and move along.
2301		 */
2302		mutex_enter(&spa->spa_scrub_lock);
2303		spa->spa_scrub_errors++;
2304		mutex_exit(&spa->spa_scrub_lock);
2305
2306		mutex_enter(&vd->vdev_stat_lock);
2307		vd->vdev_stat.vs_scrub_errors++;
2308		mutex_exit(&vd->vdev_stat_lock);
2309
2310		return (ERESTART);
2311	}
2312
2313	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2314
2315	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2316		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2317
2318		ASSERT(vd != NULL);
2319
2320		/*
2321		 * Keep track of how much data we've examined so that
2322		 * zpool(1M) status can make useful progress reports.
2323		 */
2324		mutex_enter(&vd->vdev_stat_lock);
2325		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2326		mutex_exit(&vd->vdev_stat_lock);
2327
2328		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2329			if (DVA_GET_GANG(&dva[d])) {
2330				/*
2331				 * Gang members may be spread across multiple
2332				 * vdevs, so the best we can do is look at the
2333				 * pool-wide DTL.
2334				 * XXX -- it would be better to change our
2335				 * allocation policy to ensure that this can't
2336				 * happen.
2337				 */
2338				vd = spa->spa_root_vdev;
2339			}
2340			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2341			    bp->blk_birth, 1))
2342				needs_resilver = B_TRUE;
2343		}
2344	}
2345
2346	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2347		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2348		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2349	else if (needs_resilver)
2350		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2351		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2352
2353	return (0);
2354}
2355
2356static void
2357spa_scrub_thread(void *arg)
2358{
2359	spa_t *spa = arg;
2360	callb_cpr_t cprinfo;
2361	traverse_handle_t *th = spa->spa_scrub_th;
2362	vdev_t *rvd = spa->spa_root_vdev;
2363	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2364	int error = 0;
2365	boolean_t complete;
2366
2367	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2368
2369	/*
2370	 * If we're restarting due to a snapshot create/delete,
2371	 * wait for that to complete.
2372	 */
2373	txg_wait_synced(spa_get_dsl(spa), 0);
2374
2375	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2376	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2377	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2378
2379	spa_config_enter(spa, RW_WRITER, FTAG);
2380	vdev_reopen(rvd);		/* purge all vdev caches */
2381	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2382	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2383	spa_config_exit(spa, FTAG);
2384
2385	mutex_enter(&spa->spa_scrub_lock);
2386	spa->spa_scrub_errors = 0;
2387	spa->spa_scrub_active = 1;
2388	ASSERT(spa->spa_scrub_inflight == 0);
2389
2390	while (!spa->spa_scrub_stop) {
2391		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2392		while (spa->spa_scrub_suspended) {
2393			spa->spa_scrub_active = 0;
2394			cv_broadcast(&spa->spa_scrub_cv);
2395			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2396			spa->spa_scrub_active = 1;
2397		}
2398		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2399
2400		if (spa->spa_scrub_restart_txg != 0)
2401			break;
2402
2403		mutex_exit(&spa->spa_scrub_lock);
2404		error = traverse_more(th);
2405		mutex_enter(&spa->spa_scrub_lock);
2406		if (error != EAGAIN)
2407			break;
2408	}
2409
2410	while (spa->spa_scrub_inflight)
2411		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2412
2413	spa->spa_scrub_active = 0;
2414	cv_broadcast(&spa->spa_scrub_cv);
2415
2416	mutex_exit(&spa->spa_scrub_lock);
2417
2418	spa_config_enter(spa, RW_WRITER, FTAG);
2419
2420	mutex_enter(&spa->spa_scrub_lock);
2421
2422	/*
2423	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2424	 * AND the spa config lock to synchronize with any config changes
2425	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2426	 */
2427	if (spa->spa_scrub_restart_txg != 0)
2428		error = ERESTART;
2429
2430	if (spa->spa_scrub_stop)
2431		error = EINTR;
2432
2433	/*
2434	 * Even if there were uncorrectable errors, we consider the scrub
2435	 * completed.  The downside is that if there is a transient error during
2436	 * a resilver, we won't resilver the data properly to the target.  But
2437	 * if the damage is permanent (more likely) we will resilver forever,
2438	 * which isn't really acceptable.  Since there is enough information for
2439	 * the user to know what has failed and why, this seems like a more
2440	 * tractable approach.
2441	 */
2442	complete = (error == 0);
2443
2444	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2445	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2446	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2447	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2448
2449	mutex_exit(&spa->spa_scrub_lock);
2450
2451	/*
2452	 * If the scrub/resilver completed, update all DTLs to reflect this.
2453	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2454	 */
2455	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2456	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2457	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2458	spa_errlog_rotate(spa);
2459
2460	spa_config_exit(spa, FTAG);
2461
2462	mutex_enter(&spa->spa_scrub_lock);
2463
2464	/*
2465	 * We may have finished replacing a device.
2466	 * Let the async thread assess this and handle the detach.
2467	 */
2468	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2469
2470	/*
2471	 * If we were told to restart, our final act is to start a new scrub.
2472	 */
2473	if (error == ERESTART)
2474		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2475		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2476
2477	spa->spa_scrub_type = POOL_SCRUB_NONE;
2478	spa->spa_scrub_active = 0;
2479	spa->spa_scrub_thread = NULL;
2480	cv_broadcast(&spa->spa_scrub_cv);
2481	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2482	thread_exit();
2483}
2484
2485void
2486spa_scrub_suspend(spa_t *spa)
2487{
2488	mutex_enter(&spa->spa_scrub_lock);
2489	spa->spa_scrub_suspended++;
2490	while (spa->spa_scrub_active) {
2491		cv_broadcast(&spa->spa_scrub_cv);
2492		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2493	}
2494	while (spa->spa_scrub_inflight)
2495		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2496	mutex_exit(&spa->spa_scrub_lock);
2497}
2498
2499void
2500spa_scrub_resume(spa_t *spa)
2501{
2502	mutex_enter(&spa->spa_scrub_lock);
2503	ASSERT(spa->spa_scrub_suspended != 0);
2504	if (--spa->spa_scrub_suspended == 0)
2505		cv_broadcast(&spa->spa_scrub_cv);
2506	mutex_exit(&spa->spa_scrub_lock);
2507}
2508
2509void
2510spa_scrub_restart(spa_t *spa, uint64_t txg)
2511{
2512	/*
2513	 * Something happened (e.g. snapshot create/delete) that means
2514	 * we must restart any in-progress scrubs.  The itinerary will
2515	 * fix this properly.
2516	 */
2517	mutex_enter(&spa->spa_scrub_lock);
2518	spa->spa_scrub_restart_txg = txg;
2519	mutex_exit(&spa->spa_scrub_lock);
2520}
2521
2522int
2523spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2524{
2525	space_seg_t *ss;
2526	uint64_t mintxg, maxtxg;
2527	vdev_t *rvd = spa->spa_root_vdev;
2528
2529	if ((uint_t)type >= POOL_SCRUB_TYPES)
2530		return (ENOTSUP);
2531
2532	mutex_enter(&spa->spa_scrub_lock);
2533
2534	/*
2535	 * If there's a scrub or resilver already in progress, stop it.
2536	 */
2537	while (spa->spa_scrub_thread != NULL) {
2538		/*
2539		 * Don't stop a resilver unless forced.
2540		 */
2541		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2542			mutex_exit(&spa->spa_scrub_lock);
2543			return (EBUSY);
2544		}
2545		spa->spa_scrub_stop = 1;
2546		cv_broadcast(&spa->spa_scrub_cv);
2547		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2548	}
2549
2550	/*
2551	 * Terminate the previous traverse.
2552	 */
2553	if (spa->spa_scrub_th != NULL) {
2554		traverse_fini(spa->spa_scrub_th);
2555		spa->spa_scrub_th = NULL;
2556	}
2557
2558	if (rvd == NULL) {
2559		ASSERT(spa->spa_scrub_stop == 0);
2560		ASSERT(spa->spa_scrub_type == type);
2561		ASSERT(spa->spa_scrub_restart_txg == 0);
2562		mutex_exit(&spa->spa_scrub_lock);
2563		return (0);
2564	}
2565
2566	mintxg = TXG_INITIAL - 1;
2567	maxtxg = spa_last_synced_txg(spa) + 1;
2568
2569	mutex_enter(&rvd->vdev_dtl_lock);
2570
2571	if (rvd->vdev_dtl_map.sm_space == 0) {
2572		/*
2573		 * The pool-wide DTL is empty.
2574		 * If this is a resilver, there's nothing to do except
2575		 * check whether any in-progress replacements have completed.
2576		 */
2577		if (type == POOL_SCRUB_RESILVER) {
2578			type = POOL_SCRUB_NONE;
2579			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2580		}
2581	} else {
2582		/*
2583		 * The pool-wide DTL is non-empty.
2584		 * If this is a normal scrub, upgrade to a resilver instead.
2585		 */
2586		if (type == POOL_SCRUB_EVERYTHING)
2587			type = POOL_SCRUB_RESILVER;
2588	}
2589
2590	if (type == POOL_SCRUB_RESILVER) {
2591		/*
2592		 * Determine the resilvering boundaries.
2593		 *
2594		 * Note: (mintxg, maxtxg) is an open interval,
2595		 * i.e. mintxg and maxtxg themselves are not included.
2596		 *
2597		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2598		 * so we don't claim to resilver a txg that's still changing.
2599		 */
2600		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2601		mintxg = ss->ss_start - 1;
2602		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2603		maxtxg = MIN(ss->ss_end, maxtxg);
2604	}
2605
2606	mutex_exit(&rvd->vdev_dtl_lock);
2607
2608	spa->spa_scrub_stop = 0;
2609	spa->spa_scrub_type = type;
2610	spa->spa_scrub_restart_txg = 0;
2611
2612	if (type != POOL_SCRUB_NONE) {
2613		spa->spa_scrub_mintxg = mintxg;
2614		spa->spa_scrub_maxtxg = maxtxg;
2615		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2616		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2617		    ZIO_FLAG_CANFAIL);
2618		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2619		spa->spa_scrub_thread = thread_create(NULL, 0,
2620		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2621	}
2622
2623	mutex_exit(&spa->spa_scrub_lock);
2624
2625	return (0);
2626}
2627
2628/*
2629 * ==========================================================================
2630 * SPA async task processing
2631 * ==========================================================================
2632 */
2633
2634static void
2635spa_async_reopen(spa_t *spa)
2636{
2637	vdev_t *rvd = spa->spa_root_vdev;
2638	vdev_t *tvd;
2639	int c;
2640
2641	spa_config_enter(spa, RW_WRITER, FTAG);
2642
2643	for (c = 0; c < rvd->vdev_children; c++) {
2644		tvd = rvd->vdev_child[c];
2645		if (tvd->vdev_reopen_wanted) {
2646			tvd->vdev_reopen_wanted = 0;
2647			vdev_reopen(tvd);
2648		}
2649	}
2650
2651	spa_config_exit(spa, FTAG);
2652}
2653
2654static void
2655spa_async_thread(void *arg)
2656{
2657	spa_t *spa = arg;
2658	int tasks;
2659
2660	ASSERT(spa->spa_sync_on);
2661
2662	mutex_enter(&spa->spa_async_lock);
2663	tasks = spa->spa_async_tasks;
2664	spa->spa_async_tasks = 0;
2665	mutex_exit(&spa->spa_async_lock);
2666
2667	/*
2668	 * See if the config needs to be updated.
2669	 */
2670	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2671		mutex_enter(&spa_namespace_lock);
2672		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2673		mutex_exit(&spa_namespace_lock);
2674	}
2675
2676	/*
2677	 * See if any devices need to be reopened.
2678	 */
2679	if (tasks & SPA_ASYNC_REOPEN)
2680		spa_async_reopen(spa);
2681
2682	/*
2683	 * If any devices are done replacing, detach them.
2684	 */
2685	if (tasks & SPA_ASYNC_REPLACE_DONE)
2686		spa_vdev_replace_done(spa);
2687
2688	/*
2689	 * Kick off a scrub.
2690	 */
2691	if (tasks & SPA_ASYNC_SCRUB)
2692		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2693
2694	/*
2695	 * Kick off a resilver.
2696	 */
2697	if (tasks & SPA_ASYNC_RESILVER)
2698		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2699
2700	/*
2701	 * Let the world know that we're done.
2702	 */
2703	mutex_enter(&spa->spa_async_lock);
2704	spa->spa_async_thread = NULL;
2705	cv_broadcast(&spa->spa_async_cv);
2706	mutex_exit(&spa->spa_async_lock);
2707	thread_exit();
2708}
2709
2710void
2711spa_async_suspend(spa_t *spa)
2712{
2713	mutex_enter(&spa->spa_async_lock);
2714	spa->spa_async_suspended++;
2715	while (spa->spa_async_thread != NULL)
2716		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2717	mutex_exit(&spa->spa_async_lock);
2718}
2719
2720void
2721spa_async_resume(spa_t *spa)
2722{
2723	mutex_enter(&spa->spa_async_lock);
2724	ASSERT(spa->spa_async_suspended != 0);
2725	spa->spa_async_suspended--;
2726	mutex_exit(&spa->spa_async_lock);
2727}
2728
2729static void
2730spa_async_dispatch(spa_t *spa)
2731{
2732	mutex_enter(&spa->spa_async_lock);
2733	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2734	    spa->spa_async_thread == NULL &&
2735	    rootdir != NULL && !vn_is_readonly(rootdir))
2736		spa->spa_async_thread = thread_create(NULL, 0,
2737		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2738	mutex_exit(&spa->spa_async_lock);
2739}
2740
2741void
2742spa_async_request(spa_t *spa, int task)
2743{
2744	mutex_enter(&spa->spa_async_lock);
2745	spa->spa_async_tasks |= task;
2746	mutex_exit(&spa->spa_async_lock);
2747}
2748
2749/*
2750 * ==========================================================================
2751 * SPA syncing routines
2752 * ==========================================================================
2753 */
2754
2755static void
2756spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2757{
2758	bplist_t *bpl = &spa->spa_sync_bplist;
2759	dmu_tx_t *tx;
2760	blkptr_t blk;
2761	uint64_t itor = 0;
2762	zio_t *zio;
2763	int error;
2764	uint8_t c = 1;
2765
2766	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2767
2768	while (bplist_iterate(bpl, &itor, &blk) == 0)
2769		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2770
2771	error = zio_wait(zio);
2772	ASSERT3U(error, ==, 0);
2773
2774	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2775	bplist_vacate(bpl, tx);
2776
2777	/*
2778	 * Pre-dirty the first block so we sync to convergence faster.
2779	 * (Usually only the first block is needed.)
2780	 */
2781	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2782	dmu_tx_commit(tx);
2783}
2784
2785static void
2786spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2787{
2788	char *packed = NULL;
2789	size_t nvsize = 0;
2790	dmu_buf_t *db;
2791
2792	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2793
2794	packed = kmem_alloc(nvsize, KM_SLEEP);
2795
2796	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2797	    KM_SLEEP) == 0);
2798
2799	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2800
2801	kmem_free(packed, nvsize);
2802
2803	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2804	dmu_buf_will_dirty(db, tx);
2805	*(uint64_t *)db->db_data = nvsize;
2806	dmu_buf_rele(db, FTAG);
2807}
2808
2809static void
2810spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2811{
2812	nvlist_t *nvroot;
2813	nvlist_t **spares;
2814	int i;
2815
2816	if (!spa->spa_sync_spares)
2817		return;
2818
2819	/*
2820	 * Update the MOS nvlist describing the list of available spares.
2821	 * spa_validate_spares() will have already made sure this nvlist is
2822	 * valid and the vdevs are labelled appropriately.
2823	 */
2824	if (spa->spa_spares_object == 0) {
2825		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2826		    DMU_OT_PACKED_NVLIST, 1 << 14,
2827		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2828		VERIFY(zap_update(spa->spa_meta_objset,
2829		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2830		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2831	}
2832
2833	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2834	if (spa->spa_nspares == 0) {
2835		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2836		    NULL, 0) == 0);
2837	} else {
2838		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2839		    KM_SLEEP);
2840		for (i = 0; i < spa->spa_nspares; i++)
2841			spares[i] = vdev_config_generate(spa,
2842			    spa->spa_spares[i], B_FALSE, B_TRUE);
2843		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2844		    spares, spa->spa_nspares) == 0);
2845		for (i = 0; i < spa->spa_nspares; i++)
2846			nvlist_free(spares[i]);
2847		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2848	}
2849
2850	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2851	nvlist_free(nvroot);
2852
2853	spa->spa_sync_spares = B_FALSE;
2854}
2855
2856static void
2857spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2858{
2859	nvlist_t *config;
2860
2861	if (list_is_empty(&spa->spa_dirty_list))
2862		return;
2863
2864	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2865
2866	if (spa->spa_config_syncing)
2867		nvlist_free(spa->spa_config_syncing);
2868	spa->spa_config_syncing = config;
2869
2870	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2871}
2872
2873static void
2874spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
2875{
2876	spa_t *spa = arg1;
2877	nvlist_t *nvp = arg2;
2878	nvpair_t *nvpair;
2879	objset_t *mos = spa->spa_meta_objset;
2880	uint64_t zapobj;
2881
2882	mutex_enter(&spa->spa_props_lock);
2883	if (spa->spa_pool_props_object == 0) {
2884		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2885		VERIFY(zapobj > 0);
2886
2887		spa->spa_pool_props_object = zapobj;
2888
2889		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2890		    DMU_POOL_PROPS, 8, 1,
2891		    &spa->spa_pool_props_object, tx) == 0);
2892	}
2893	mutex_exit(&spa->spa_props_lock);
2894
2895	nvpair = NULL;
2896	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2897		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2898		case ZFS_PROP_BOOTFS:
2899			VERIFY(nvlist_lookup_uint64(nvp,
2900			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
2901			VERIFY(zap_update(mos,
2902			    spa->spa_pool_props_object,
2903			    zpool_prop_to_name(ZFS_PROP_BOOTFS), 8, 1,
2904			    &spa->spa_bootfs, tx) == 0);
2905			break;
2906		}
2907	}
2908}
2909
2910/*
2911 * Sync the specified transaction group.  New blocks may be dirtied as
2912 * part of the process, so we iterate until it converges.
2913 */
2914void
2915spa_sync(spa_t *spa, uint64_t txg)
2916{
2917	dsl_pool_t *dp = spa->spa_dsl_pool;
2918	objset_t *mos = spa->spa_meta_objset;
2919	bplist_t *bpl = &spa->spa_sync_bplist;
2920	vdev_t *rvd = spa->spa_root_vdev;
2921	vdev_t *vd;
2922	dmu_tx_t *tx;
2923	int dirty_vdevs;
2924
2925	/*
2926	 * Lock out configuration changes.
2927	 */
2928	spa_config_enter(spa, RW_READER, FTAG);
2929
2930	spa->spa_syncing_txg = txg;
2931	spa->spa_sync_pass = 0;
2932
2933	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2934
2935	tx = dmu_tx_create_assigned(dp, txg);
2936
2937	/*
2938	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2939	 * set spa_deflate if we have no raid-z vdevs.
2940	 */
2941	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2942	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2943		int i;
2944
2945		for (i = 0; i < rvd->vdev_children; i++) {
2946			vd = rvd->vdev_child[i];
2947			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2948				break;
2949		}
2950		if (i == rvd->vdev_children) {
2951			spa->spa_deflate = TRUE;
2952			VERIFY(0 == zap_add(spa->spa_meta_objset,
2953			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2954			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2955		}
2956	}
2957
2958	/*
2959	 * If anything has changed in this txg, push the deferred frees
2960	 * from the previous txg.  If not, leave them alone so that we
2961	 * don't generate work on an otherwise idle system.
2962	 */
2963	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2964	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2965	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2966		spa_sync_deferred_frees(spa, txg);
2967
2968	/*
2969	 * Iterate to convergence.
2970	 */
2971	do {
2972		spa->spa_sync_pass++;
2973
2974		spa_sync_config_object(spa, tx);
2975		spa_sync_spares(spa, tx);
2976		spa_errlog_sync(spa, txg);
2977		dsl_pool_sync(dp, txg);
2978
2979		dirty_vdevs = 0;
2980		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2981			vdev_sync(vd, txg);
2982			dirty_vdevs++;
2983		}
2984
2985		bplist_sync(bpl, tx);
2986	} while (dirty_vdevs);
2987
2988	bplist_close(bpl);
2989
2990	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2991
2992	/*
2993	 * Rewrite the vdev configuration (which includes the uberblock)
2994	 * to commit the transaction group.
2995	 *
2996	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2997	 * Otherwise, pick a random top-level vdev that's known to be
2998	 * visible in the config cache (see spa_vdev_add() for details).
2999	 * If the write fails, try the next vdev until we're tried them all.
3000	 */
3001	if (!list_is_empty(&spa->spa_dirty_list)) {
3002		VERIFY(vdev_config_sync(rvd, txg) == 0);
3003	} else {
3004		int children = rvd->vdev_children;
3005		int c0 = spa_get_random(children);
3006		int c;
3007
3008		for (c = 0; c < children; c++) {
3009			vd = rvd->vdev_child[(c0 + c) % children];
3010			if (vd->vdev_ms_array == 0)
3011				continue;
3012			if (vdev_config_sync(vd, txg) == 0)
3013				break;
3014		}
3015		if (c == children)
3016			VERIFY(vdev_config_sync(rvd, txg) == 0);
3017	}
3018
3019	dmu_tx_commit(tx);
3020
3021	/*
3022	 * Clear the dirty config list.
3023	 */
3024	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3025		vdev_config_clean(vd);
3026
3027	/*
3028	 * Now that the new config has synced transactionally,
3029	 * let it become visible to the config cache.
3030	 */
3031	if (spa->spa_config_syncing != NULL) {
3032		spa_config_set(spa, spa->spa_config_syncing);
3033		spa->spa_config_txg = txg;
3034		spa->spa_config_syncing = NULL;
3035	}
3036
3037	/*
3038	 * Make a stable copy of the fully synced uberblock.
3039	 * We use this as the root for pool traversals.
3040	 */
3041	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3042
3043	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3044
3045	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3046	spa->spa_traverse_wanted = 0;
3047	spa->spa_ubsync = spa->spa_uberblock;
3048	rw_exit(&spa->spa_traverse_lock);
3049
3050	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3051
3052	/*
3053	 * Clean up the ZIL records for the synced txg.
3054	 */
3055	dsl_pool_zil_clean(dp);
3056
3057	/*
3058	 * Update usable space statistics.
3059	 */
3060	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3061		vdev_sync_done(vd, txg);
3062
3063	/*
3064	 * It had better be the case that we didn't dirty anything
3065	 * since vdev_config_sync().
3066	 */
3067	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3068	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3069	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3070	ASSERT(bpl->bpl_queue == NULL);
3071
3072	spa_config_exit(spa, FTAG);
3073
3074	/*
3075	 * If any async tasks have been requested, kick them off.
3076	 */
3077	spa_async_dispatch(spa);
3078}
3079
3080/*
3081 * Sync all pools.  We don't want to hold the namespace lock across these
3082 * operations, so we take a reference on the spa_t and drop the lock during the
3083 * sync.
3084 */
3085void
3086spa_sync_allpools(void)
3087{
3088	spa_t *spa = NULL;
3089	mutex_enter(&spa_namespace_lock);
3090	while ((spa = spa_next(spa)) != NULL) {
3091		if (spa_state(spa) != POOL_STATE_ACTIVE)
3092			continue;
3093		spa_open_ref(spa, FTAG);
3094		mutex_exit(&spa_namespace_lock);
3095		txg_wait_synced(spa_get_dsl(spa), 0);
3096		mutex_enter(&spa_namespace_lock);
3097		spa_close(spa, FTAG);
3098	}
3099	mutex_exit(&spa_namespace_lock);
3100}
3101
3102/*
3103 * ==========================================================================
3104 * Miscellaneous routines
3105 * ==========================================================================
3106 */
3107
3108/*
3109 * Remove all pools in the system.
3110 */
3111void
3112spa_evict_all(void)
3113{
3114	spa_t *spa;
3115
3116	/*
3117	 * Remove all cached state.  All pools should be closed now,
3118	 * so every spa in the AVL tree should be unreferenced.
3119	 */
3120	mutex_enter(&spa_namespace_lock);
3121	while ((spa = spa_next(NULL)) != NULL) {
3122		/*
3123		 * Stop async tasks.  The async thread may need to detach
3124		 * a device that's been replaced, which requires grabbing
3125		 * spa_namespace_lock, so we must drop it here.
3126		 */
3127		spa_open_ref(spa, FTAG);
3128		mutex_exit(&spa_namespace_lock);
3129		spa_async_suspend(spa);
3130		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3131		mutex_enter(&spa_namespace_lock);
3132		spa_close(spa, FTAG);
3133
3134		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3135			spa_unload(spa);
3136			spa_deactivate(spa);
3137		}
3138		spa_remove(spa);
3139	}
3140	mutex_exit(&spa_namespace_lock);
3141}
3142
3143vdev_t *
3144spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3145{
3146	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3147}
3148
3149void
3150spa_upgrade(spa_t *spa)
3151{
3152	spa_config_enter(spa, RW_WRITER, FTAG);
3153
3154	/*
3155	 * This should only be called for a non-faulted pool, and since a
3156	 * future version would result in an unopenable pool, this shouldn't be
3157	 * possible.
3158	 */
3159	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
3160
3161	spa->spa_uberblock.ub_version = ZFS_VERSION;
3162	vdev_config_dirty(spa->spa_root_vdev);
3163
3164	spa_config_exit(spa, FTAG);
3165
3166	txg_wait_synced(spa_get_dsl(spa), 0);
3167}
3168
3169boolean_t
3170spa_has_spare(spa_t *spa, uint64_t guid)
3171{
3172	int i;
3173	uint64_t spareguid;
3174
3175	for (i = 0; i < spa->spa_nspares; i++)
3176		if (spa->spa_spares[i]->vdev_guid == guid)
3177			return (B_TRUE);
3178
3179	for (i = 0; i < spa->spa_pending_nspares; i++) {
3180		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3181		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3182		    spareguid == guid)
3183			return (B_TRUE);
3184	}
3185
3186	return (B_FALSE);
3187}
3188
3189int
3190spa_set_props(spa_t *spa, nvlist_t *nvp)
3191{
3192	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3193	    spa, nvp, 3));
3194}
3195
3196int
3197spa_get_props(spa_t *spa, nvlist_t **nvp)
3198{
3199	zap_cursor_t zc;
3200	zap_attribute_t za;
3201	objset_t *mos = spa->spa_meta_objset;
3202	zfs_source_t src;
3203	zfs_prop_t prop;
3204	nvlist_t *propval;
3205	uint64_t value;
3206	int err;
3207
3208	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3209
3210	mutex_enter(&spa->spa_props_lock);
3211	/* If no props object, then just return empty nvlist */
3212	if (spa->spa_pool_props_object == 0) {
3213		mutex_exit(&spa->spa_props_lock);
3214		return (0);
3215	}
3216
3217	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3218	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3219	    zap_cursor_advance(&zc)) {
3220
3221		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3222			continue;
3223
3224		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3225		switch (za.za_integer_length) {
3226		case 8:
3227			if (zfs_prop_default_numeric(prop) ==
3228			    za.za_first_integer)
3229				src = ZFS_SRC_DEFAULT;
3230			else
3231				src = ZFS_SRC_LOCAL;
3232			value = za.za_first_integer;
3233
3234			if (prop == ZFS_PROP_BOOTFS) {
3235				dsl_pool_t *dp;
3236				dsl_dataset_t *ds = NULL;
3237				char strval[MAXPATHLEN];
3238
3239				dp = spa_get_dsl(spa);
3240				rw_enter(&dp->dp_config_rwlock, RW_READER);
3241				if ((err = dsl_dataset_open_obj(dp,
3242				    za.za_first_integer, NULL, DS_MODE_NONE,
3243				    FTAG, &ds)) != 0) {
3244					rw_exit(&dp->dp_config_rwlock);
3245					break;
3246				}
3247				dsl_dataset_name(ds, strval);
3248				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3249				rw_exit(&dp->dp_config_rwlock);
3250
3251				VERIFY(nvlist_add_uint64(propval,
3252				    ZFS_PROP_SOURCE, src) == 0);
3253				VERIFY(nvlist_add_string(propval,
3254				    ZFS_PROP_VALUE, strval) == 0);
3255			} else {
3256				VERIFY(nvlist_add_uint64(propval,
3257				    ZFS_PROP_SOURCE, src) == 0);
3258				VERIFY(nvlist_add_uint64(propval,
3259				    ZFS_PROP_VALUE, value) == 0);
3260			}
3261			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3262			    propval) == 0);
3263			break;
3264		}
3265		nvlist_free(propval);
3266	}
3267	zap_cursor_fini(&zc);
3268	mutex_exit(&spa->spa_props_lock);
3269	if (err && err != ENOENT) {
3270		nvlist_free(*nvp);
3271		return (err);
3272	}
3273
3274	return (0);
3275}
3276
3277/*
3278 * If the bootfs property value is dsobj, clear it.
3279 */
3280void
3281spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3282{
3283	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3284		VERIFY(zap_remove(spa->spa_meta_objset,
3285		    spa->spa_pool_props_object,
3286		    zpool_prop_to_name(ZFS_PROP_BOOTFS), tx) == 0);
3287		spa->spa_bootfs = 0;
3288	}
3289}
3290