1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dbuf.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dataset.h>
34#include <sys/dsl_dir.h>
35#include <sys/dsl_pool.h>
36#include <sys/zap_impl.h>
37#include <sys/spa.h>
38#include <sys/sa.h>
39#include <sys/sa_impl.h>
40#include <sys/zfs_context.h>
41#include <sys/varargs.h>
42
43typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44    uint64_t arg1, uint64_t arg2);
45
46
47dmu_tx_t *
48dmu_tx_create_dd(dsl_dir_t *dd)
49{
50	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
51	tx->tx_dir = dd;
52	if (dd != NULL)
53		tx->tx_pool = dd->dd_pool;
54	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
55	    offsetof(dmu_tx_hold_t, txh_node));
56	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
57	    offsetof(dmu_tx_callback_t, dcb_node));
58	tx->tx_start = gethrtime();
59	return (tx);
60}
61
62dmu_tx_t *
63dmu_tx_create(objset_t *os)
64{
65	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
66	tx->tx_objset = os;
67	return (tx);
68}
69
70dmu_tx_t *
71dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
72{
73	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
74
75	txg_verify(dp->dp_spa, txg);
76	tx->tx_pool = dp;
77	tx->tx_txg = txg;
78	tx->tx_anyobj = TRUE;
79
80	return (tx);
81}
82
83int
84dmu_tx_is_syncing(dmu_tx_t *tx)
85{
86	return (tx->tx_anyobj);
87}
88
89int
90dmu_tx_private_ok(dmu_tx_t *tx)
91{
92	return (tx->tx_anyobj);
93}
94
95static dmu_tx_hold_t *
96dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
97    uint64_t arg1, uint64_t arg2)
98{
99	dmu_tx_hold_t *txh;
100
101	if (dn != NULL) {
102		(void) refcount_add(&dn->dn_holds, tx);
103		if (tx->tx_txg != 0) {
104			mutex_enter(&dn->dn_mtx);
105			/*
106			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
107			 * problem, but there's no way for it to happen (for
108			 * now, at least).
109			 */
110			ASSERT(dn->dn_assigned_txg == 0);
111			dn->dn_assigned_txg = tx->tx_txg;
112			(void) refcount_add(&dn->dn_tx_holds, tx);
113			mutex_exit(&dn->dn_mtx);
114		}
115	}
116
117	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
118	txh->txh_tx = tx;
119	txh->txh_dnode = dn;
120	refcount_create(&txh->txh_space_towrite);
121	refcount_create(&txh->txh_memory_tohold);
122	txh->txh_type = type;
123	txh->txh_arg1 = arg1;
124	txh->txh_arg2 = arg2;
125	list_insert_tail(&tx->tx_holds, txh);
126
127	return (txh);
128}
129
130static dmu_tx_hold_t *
131dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
132    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
133{
134	dnode_t *dn = NULL;
135	dmu_tx_hold_t *txh;
136	int err;
137
138	if (object != DMU_NEW_OBJECT) {
139		err = dnode_hold(os, object, FTAG, &dn);
140		if (err != 0) {
141			tx->tx_err = err;
142			return (NULL);
143		}
144	}
145	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
146	if (dn != NULL)
147		dnode_rele(dn, FTAG);
148	return (txh);
149}
150
151void
152dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
153{
154	/*
155	 * If we're syncing, they can manipulate any object anyhow, and
156	 * the hold on the dnode_t can cause problems.
157	 */
158	if (!dmu_tx_is_syncing(tx))
159		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
160}
161
162/*
163 * This function reads specified data from disk.  The specified data will
164 * be needed to perform the transaction -- i.e, it will be read after
165 * we do dmu_tx_assign().  There are two reasons that we read the data now
166 * (before dmu_tx_assign()):
167 *
168 * 1. Reading it now has potentially better performance.  The transaction
169 * has not yet been assigned, so the TXG is not held open, and also the
170 * caller typically has less locks held when calling dmu_tx_hold_*() than
171 * after the transaction has been assigned.  This reduces the lock (and txg)
172 * hold times, thus reducing lock contention.
173 *
174 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
175 * that are detected before they start making changes to the DMU state
176 * (i.e. now).  Once the transaction has been assigned, and some DMU
177 * state has been changed, it can be difficult to recover from an i/o
178 * error (e.g. to undo the changes already made in memory at the DMU
179 * layer).  Typically code to do so does not exist in the caller -- it
180 * assumes that the data has already been cached and thus i/o errors are
181 * not possible.
182 *
183 * It has been observed that the i/o initiated here can be a performance
184 * problem, and it appears to be optional, because we don't look at the
185 * data which is read.  However, removing this read would only serve to
186 * move the work elsewhere (after the dmu_tx_assign()), where it may
187 * have a greater impact on performance (in addition to the impact on
188 * fault tolerance noted above).
189 */
190static int
191dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
192{
193	int err;
194	dmu_buf_impl_t *db;
195
196	rw_enter(&dn->dn_struct_rwlock, RW_READER);
197	db = dbuf_hold_level(dn, level, blkid, FTAG);
198	rw_exit(&dn->dn_struct_rwlock);
199	if (db == NULL)
200		return (SET_ERROR(EIO));
201	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
202	dbuf_rele(db, FTAG);
203	return (err);
204}
205
206/* ARGSUSED */
207static void
208dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
209{
210	dnode_t *dn = txh->txh_dnode;
211	int err = 0;
212
213	if (len == 0)
214		return;
215
216	(void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);
217
218	if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
219		err = SET_ERROR(EFBIG);
220
221	if (dn == NULL)
222		return;
223
224	/*
225	 * For i/o error checking, read the blocks that will be needed
226	 * to perform the write: the first and last level-0 blocks (if
227	 * they are not aligned, i.e. if they are partial-block writes),
228	 * and all the level-1 blocks.
229	 */
230	if (dn->dn_maxblkid == 0) {
231		if (off < dn->dn_datablksz &&
232		    (off > 0 || len < dn->dn_datablksz)) {
233			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
234			if (err != 0) {
235				txh->txh_tx->tx_err = err;
236			}
237		}
238	} else {
239		zio_t *zio = zio_root(dn->dn_objset->os_spa,
240		    NULL, NULL, ZIO_FLAG_CANFAIL);
241
242		/* first level-0 block */
243		uint64_t start = off >> dn->dn_datablkshift;
244		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
245			err = dmu_tx_check_ioerr(zio, dn, 0, start);
246			if (err != 0) {
247				txh->txh_tx->tx_err = err;
248			}
249		}
250
251		/* last level-0 block */
252		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
253		if (end != start && end <= dn->dn_maxblkid &&
254		    P2PHASE(off + len, dn->dn_datablksz)) {
255			err = dmu_tx_check_ioerr(zio, dn, 0, end);
256			if (err != 0) {
257				txh->txh_tx->tx_err = err;
258			}
259		}
260
261		/* level-1 blocks */
262		if (dn->dn_nlevels > 1) {
263			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
264			for (uint64_t i = (start >> shft) + 1;
265			    i < end >> shft; i++) {
266				err = dmu_tx_check_ioerr(zio, dn, 1, i);
267				if (err != 0) {
268					txh->txh_tx->tx_err = err;
269				}
270			}
271		}
272
273		err = zio_wait(zio);
274		if (err != 0) {
275			txh->txh_tx->tx_err = err;
276		}
277	}
278}
279
280static void
281dmu_tx_count_dnode(dmu_tx_hold_t *txh)
282{
283	(void) refcount_add_many(&txh->txh_space_towrite, DNODE_SIZE, FTAG);
284}
285
286void
287dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
288{
289	dmu_tx_hold_t *txh;
290
291	ASSERT0(tx->tx_txg);
292	ASSERT3U(len, <=, DMU_MAX_ACCESS);
293	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
294
295	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
296	    object, THT_WRITE, off, len);
297	if (txh != NULL) {
298		dmu_tx_count_write(txh, off, len);
299		dmu_tx_count_dnode(txh);
300	}
301}
302
303void
304dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object)
305{
306	dmu_tx_hold_t *txh;
307
308	ASSERT(tx->tx_txg == 0);
309	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
310	    object, THT_WRITE, 0, 0);
311	if (txh == NULL)
312		return;
313
314	dnode_t *dn = txh->txh_dnode;
315	(void) refcount_add_many(&txh->txh_space_towrite,
316	    1ULL << dn->dn_indblkshift, FTAG);
317	dmu_tx_count_dnode(txh);
318}
319
320void
321dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
322{
323	dmu_tx_hold_t *txh;
324
325	ASSERT0(tx->tx_txg);
326	ASSERT3U(len, <=, DMU_MAX_ACCESS);
327	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
328
329	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
330	if (txh != NULL) {
331		dmu_tx_count_write(txh, off, len);
332		dmu_tx_count_dnode(txh);
333	}
334}
335
336/*
337 * This function marks the transaction as being a "net free".  The end
338 * result is that refquotas will be disabled for this transaction, and
339 * this transaction will be able to use half of the pool space overhead
340 * (see dsl_pool_adjustedsize()).  Therefore this function should only
341 * be called for transactions that we expect will not cause a net increase
342 * in the amount of space used (but it's OK if that is occasionally not true).
343 */
344void
345dmu_tx_mark_netfree(dmu_tx_t *tx)
346{
347	tx->tx_netfree = B_TRUE;
348}
349
350static void
351dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
352{
353	dmu_tx_t *tx;
354	dnode_t *dn;
355	int err;
356
357	tx = txh->txh_tx;
358	ASSERT(tx->tx_txg == 0);
359
360	dn = txh->txh_dnode;
361	dmu_tx_count_dnode(txh);
362
363	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
364		return;
365	if (len == DMU_OBJECT_END)
366		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
367
368
369	/*
370	 * For i/o error checking, we read the first and last level-0
371	 * blocks if they are not aligned, and all the level-1 blocks.
372	 *
373	 * Note:  dbuf_free_range() assumes that we have not instantiated
374	 * any level-0 dbufs that will be completely freed.  Therefore we must
375	 * exercise care to not read or count the first and last blocks
376	 * if they are blocksize-aligned.
377	 */
378	if (dn->dn_datablkshift == 0) {
379		if (off != 0 || len < dn->dn_datablksz)
380			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
381	} else {
382		/* first block will be modified if it is not aligned */
383		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
384			dmu_tx_count_write(txh, off, 1);
385		/* last block will be modified if it is not aligned */
386		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
387			dmu_tx_count_write(txh, off + len, 1);
388	}
389
390	/*
391	 * Check level-1 blocks.
392	 */
393	if (dn->dn_nlevels > 1) {
394		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
395		    SPA_BLKPTRSHIFT;
396		uint64_t start = off >> shift;
397		uint64_t end = (off + len) >> shift;
398
399		ASSERT(dn->dn_indblkshift != 0);
400
401		/*
402		 * dnode_reallocate() can result in an object with indirect
403		 * blocks having an odd data block size.  In this case,
404		 * just check the single block.
405		 */
406		if (dn->dn_datablkshift == 0)
407			start = end = 0;
408
409		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
410		    NULL, NULL, ZIO_FLAG_CANFAIL);
411		for (uint64_t i = start; i <= end; i++) {
412			uint64_t ibyte = i << shift;
413			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
414			i = ibyte >> shift;
415			if (err == ESRCH || i > end)
416				break;
417			if (err != 0) {
418				tx->tx_err = err;
419				(void) zio_wait(zio);
420				return;
421			}
422
423			(void) refcount_add_many(&txh->txh_memory_tohold,
424			    1 << dn->dn_indblkshift, FTAG);
425
426			err = dmu_tx_check_ioerr(zio, dn, 1, i);
427			if (err != 0) {
428				tx->tx_err = err;
429				(void) zio_wait(zio);
430				return;
431			}
432		}
433		err = zio_wait(zio);
434		if (err != 0) {
435			tx->tx_err = err;
436			return;
437		}
438	}
439}
440
441void
442dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
443{
444	dmu_tx_hold_t *txh;
445
446	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
447	    object, THT_FREE, off, len);
448	if (txh != NULL)
449		(void) dmu_tx_hold_free_impl(txh, off, len);
450}
451
452void
453dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
454{
455	dmu_tx_hold_t *txh;
456
457	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
458	if (txh != NULL)
459		(void) dmu_tx_hold_free_impl(txh, off, len);
460}
461
462static void
463dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
464{
465	dmu_tx_t *tx = txh->txh_tx;
466	dnode_t *dn;
467	int err;
468
469	ASSERT(tx->tx_txg == 0);
470
471	dn = txh->txh_dnode;
472
473	dmu_tx_count_dnode(txh);
474
475	/*
476	 * Modifying a almost-full microzap is around the worst case (128KB)
477	 *
478	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
479	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
480	 * - 4 new blocks written if adding:
481	 *    - 2 blocks for possibly split leaves,
482	 *    - 2 grown ptrtbl blocks
483	 */
484	(void) refcount_add_many(&txh->txh_space_towrite,
485	    MZAP_MAX_BLKSZ, FTAG);
486
487	if (dn == NULL)
488		return;
489
490	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
491
492	if (dn->dn_maxblkid == 0 || name == NULL) {
493		/*
494		 * This is a microzap (only one block), or we don't know
495		 * the name.  Check the first block for i/o errors.
496		 */
497		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
498		if (err != 0) {
499			tx->tx_err = err;
500		}
501	} else {
502		/*
503		 * Access the name so that we'll check for i/o errors to
504		 * the leaf blocks, etc.  We ignore ENOENT, as this name
505		 * may not yet exist.
506		 */
507		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
508		if (err == EIO || err == ECKSUM || err == ENXIO) {
509			tx->tx_err = err;
510		}
511	}
512}
513
514void
515dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
516{
517	dmu_tx_hold_t *txh;
518
519	ASSERT0(tx->tx_txg);
520
521	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
522	    object, THT_ZAP, add, (uintptr_t)name);
523	if (txh != NULL)
524		dmu_tx_hold_zap_impl(txh, name);
525}
526
527void
528dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
529{
530	dmu_tx_hold_t *txh;
531
532	ASSERT0(tx->tx_txg);
533	ASSERT(dn != NULL);
534
535	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
536	if (txh != NULL)
537		dmu_tx_hold_zap_impl(txh, name);
538}
539
540void
541dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
542{
543	dmu_tx_hold_t *txh;
544
545	ASSERT(tx->tx_txg == 0);
546
547	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
548	    object, THT_BONUS, 0, 0);
549	if (txh)
550		dmu_tx_count_dnode(txh);
551}
552
553void
554dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
555{
556	dmu_tx_hold_t *txh;
557
558	ASSERT0(tx->tx_txg);
559
560	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
561	if (txh)
562		dmu_tx_count_dnode(txh);
563}
564
565void
566dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
567{
568	dmu_tx_hold_t *txh;
569	ASSERT(tx->tx_txg == 0);
570
571	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
572	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
573
574	(void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
575}
576
577#ifdef ZFS_DEBUG
578void
579dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
580{
581	boolean_t match_object = B_FALSE;
582	boolean_t match_offset = B_FALSE;
583
584	DB_DNODE_ENTER(db);
585	dnode_t *dn = DB_DNODE(db);
586	ASSERT(tx->tx_txg != 0);
587	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
588	ASSERT3U(dn->dn_object, ==, db->db.db_object);
589
590	if (tx->tx_anyobj) {
591		DB_DNODE_EXIT(db);
592		return;
593	}
594
595	/* XXX No checking on the meta dnode for now */
596	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
597		DB_DNODE_EXIT(db);
598		return;
599	}
600
601	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
602	    txh = list_next(&tx->tx_holds, txh)) {
603		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
604		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
605			match_object = TRUE;
606		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
607			int datablkshift = dn->dn_datablkshift ?
608			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
609			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
610			int shift = datablkshift + epbs * db->db_level;
611			uint64_t beginblk = shift >= 64 ? 0 :
612			    (txh->txh_arg1 >> shift);
613			uint64_t endblk = shift >= 64 ? 0 :
614			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
615			uint64_t blkid = db->db_blkid;
616
617			/* XXX txh_arg2 better not be zero... */
618
619			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
620			    txh->txh_type, beginblk, endblk);
621
622			switch (txh->txh_type) {
623			case THT_WRITE:
624				if (blkid >= beginblk && blkid <= endblk)
625					match_offset = TRUE;
626				/*
627				 * We will let this hold work for the bonus
628				 * or spill buffer so that we don't need to
629				 * hold it when creating a new object.
630				 */
631				if (blkid == DMU_BONUS_BLKID ||
632				    blkid == DMU_SPILL_BLKID)
633					match_offset = TRUE;
634				/*
635				 * They might have to increase nlevels,
636				 * thus dirtying the new TLIBs.  Or the
637				 * might have to change the block size,
638				 * thus dirying the new lvl=0 blk=0.
639				 */
640				if (blkid == 0)
641					match_offset = TRUE;
642				break;
643			case THT_FREE:
644				/*
645				 * We will dirty all the level 1 blocks in
646				 * the free range and perhaps the first and
647				 * last level 0 block.
648				 */
649				if (blkid >= beginblk && (blkid <= endblk ||
650				    txh->txh_arg2 == DMU_OBJECT_END))
651					match_offset = TRUE;
652				break;
653			case THT_SPILL:
654				if (blkid == DMU_SPILL_BLKID)
655					match_offset = TRUE;
656				break;
657			case THT_BONUS:
658				if (blkid == DMU_BONUS_BLKID)
659					match_offset = TRUE;
660				break;
661			case THT_ZAP:
662				match_offset = TRUE;
663				break;
664			case THT_NEWOBJECT:
665				match_object = TRUE;
666				break;
667			default:
668				ASSERT(!"bad txh_type");
669			}
670		}
671		if (match_object && match_offset) {
672			DB_DNODE_EXIT(db);
673			return;
674		}
675	}
676	DB_DNODE_EXIT(db);
677	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
678	    (u_longlong_t)db->db.db_object, db->db_level,
679	    (u_longlong_t)db->db_blkid);
680}
681#endif
682
683/*
684 * If we can't do 10 iops, something is wrong.  Let us go ahead
685 * and hit zfs_dirty_data_max.
686 */
687hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
688int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
689
690/*
691 * We delay transactions when we've determined that the backend storage
692 * isn't able to accommodate the rate of incoming writes.
693 *
694 * If there is already a transaction waiting, we delay relative to when
695 * that transaction finishes waiting.  This way the calculated min_time
696 * is independent of the number of threads concurrently executing
697 * transactions.
698 *
699 * If we are the only waiter, wait relative to when the transaction
700 * started, rather than the current time.  This credits the transaction for
701 * "time already served", e.g. reading indirect blocks.
702 *
703 * The minimum time for a transaction to take is calculated as:
704 *     min_time = scale * (dirty - min) / (max - dirty)
705 *     min_time is then capped at zfs_delay_max_ns.
706 *
707 * The delay has two degrees of freedom that can be adjusted via tunables.
708 * The percentage of dirty data at which we start to delay is defined by
709 * zfs_delay_min_dirty_percent. This should typically be at or above
710 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
711 * delay after writing at full speed has failed to keep up with the incoming
712 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
713 * speaking, this variable determines the amount of delay at the midpoint of
714 * the curve.
715 *
716 * delay
717 *  10ms +-------------------------------------------------------------*+
718 *       |                                                             *|
719 *   9ms +                                                             *+
720 *       |                                                             *|
721 *   8ms +                                                             *+
722 *       |                                                            * |
723 *   7ms +                                                            * +
724 *       |                                                            * |
725 *   6ms +                                                            * +
726 *       |                                                            * |
727 *   5ms +                                                           *  +
728 *       |                                                           *  |
729 *   4ms +                                                           *  +
730 *       |                                                           *  |
731 *   3ms +                                                          *   +
732 *       |                                                          *   |
733 *   2ms +                                              (midpoint) *    +
734 *       |                                                  |    **     |
735 *   1ms +                                                  v ***       +
736 *       |             zfs_delay_scale ---------->     ********         |
737 *     0 +-------------------------------------*********----------------+
738 *       0%                    <- zfs_dirty_data_max ->               100%
739 *
740 * Note that since the delay is added to the outstanding time remaining on the
741 * most recent transaction, the delay is effectively the inverse of IOPS.
742 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
743 * was chosen such that small changes in the amount of accumulated dirty data
744 * in the first 3/4 of the curve yield relatively small differences in the
745 * amount of delay.
746 *
747 * The effects can be easier to understand when the amount of delay is
748 * represented on a log scale:
749 *
750 * delay
751 * 100ms +-------------------------------------------------------------++
752 *       +                                                              +
753 *       |                                                              |
754 *       +                                                             *+
755 *  10ms +                                                             *+
756 *       +                                                           ** +
757 *       |                                              (midpoint)  **  |
758 *       +                                                  |     **    +
759 *   1ms +                                                  v ****      +
760 *       +             zfs_delay_scale ---------->        *****         +
761 *       |                                             ****             |
762 *       +                                          ****                +
763 * 100us +                                        **                    +
764 *       +                                       *                      +
765 *       |                                      *                       |
766 *       +                                     *                        +
767 *  10us +                                     *                        +
768 *       +                                                              +
769 *       |                                                              |
770 *       +                                                              +
771 *       +--------------------------------------------------------------+
772 *       0%                    <- zfs_dirty_data_max ->               100%
773 *
774 * Note here that only as the amount of dirty data approaches its limit does
775 * the delay start to increase rapidly. The goal of a properly tuned system
776 * should be to keep the amount of dirty data out of that range by first
777 * ensuring that the appropriate limits are set for the I/O scheduler to reach
778 * optimal throughput on the backend storage, and then by changing the value
779 * of zfs_delay_scale to increase the steepness of the curve.
780 */
781static void
782dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
783{
784	dsl_pool_t *dp = tx->tx_pool;
785	uint64_t delay_min_bytes =
786	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
787	hrtime_t wakeup, min_tx_time, now;
788
789	if (dirty <= delay_min_bytes)
790		return;
791
792	/*
793	 * The caller has already waited until we are under the max.
794	 * We make them pass us the amount of dirty data so we don't
795	 * have to handle the case of it being >= the max, which could
796	 * cause a divide-by-zero if it's == the max.
797	 */
798	ASSERT3U(dirty, <, zfs_dirty_data_max);
799
800	now = gethrtime();
801	min_tx_time = zfs_delay_scale *
802	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
803	if (now > tx->tx_start + min_tx_time)
804		return;
805
806	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
807
808	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
809	    uint64_t, min_tx_time);
810
811	mutex_enter(&dp->dp_lock);
812	wakeup = MAX(tx->tx_start + min_tx_time,
813	    dp->dp_last_wakeup + min_tx_time);
814	dp->dp_last_wakeup = wakeup;
815	mutex_exit(&dp->dp_lock);
816
817#ifdef _KERNEL
818#ifdef illumos
819	mutex_enter(&curthread->t_delay_lock);
820	while (cv_timedwait_hires(&curthread->t_delay_cv,
821	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
822	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
823		continue;
824	mutex_exit(&curthread->t_delay_lock);
825#else
826	pause_sbt("dmu_tx_delay", nstosbt(wakeup),
827	    nstosbt(zfs_delay_resolution_ns), C_ABSOLUTE);
828#endif
829#else
830	hrtime_t delta = wakeup - gethrtime();
831	struct timespec ts;
832	ts.tv_sec = delta / NANOSEC;
833	ts.tv_nsec = delta % NANOSEC;
834	(void) nanosleep(&ts, NULL);
835#endif
836}
837
838/*
839 * This routine attempts to assign the transaction to a transaction group.
840 * To do so, we must determine if there is sufficient free space on disk.
841 *
842 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
843 * on it), then it is assumed that there is sufficient free space,
844 * unless there's insufficient slop space in the pool (see the comment
845 * above spa_slop_shift in spa_misc.c).
846 *
847 * If it is not a "netfree" transaction, then if the data already on disk
848 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
849 * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
850 * plus the rough estimate of this transaction's changes, may exceed the
851 * allowed usage, then this will fail with ERESTART, which will cause the
852 * caller to wait for the pending changes to be written to disk (by waiting
853 * for the next TXG to open), and then check the space usage again.
854 *
855 * The rough estimate of pending changes is comprised of the sum of:
856 *
857 *  - this transaction's holds' txh_space_towrite
858 *
859 *  - dd_tempreserved[], which is the sum of in-flight transactions'
860 *    holds' txh_space_towrite (i.e. those transactions that have called
861 *    dmu_tx_assign() but not yet called dmu_tx_commit()).
862 *
863 *  - dd_space_towrite[], which is the amount of dirtied dbufs.
864 *
865 * Note that all of these values are inflated by spa_get_worst_case_asize(),
866 * which means that we may get ERESTART well before we are actually in danger
867 * of running out of space, but this also mitigates any small inaccuracies
868 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
869 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
870 * to the MOS).
871 *
872 * Note that due to this algorithm, it is possible to exceed the allowed
873 * usage by one transaction.  Also, as we approach the allowed usage,
874 * we will allow a very limited amount of changes into each TXG, thus
875 * decreasing performance.
876 */
877static int
878dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
879{
880	spa_t *spa = tx->tx_pool->dp_spa;
881
882	ASSERT0(tx->tx_txg);
883
884	if (tx->tx_err)
885		return (tx->tx_err);
886
887	if (spa_suspended(spa)) {
888		/*
889		 * If the user has indicated a blocking failure mode
890		 * then return ERESTART which will block in dmu_tx_wait().
891		 * Otherwise, return EIO so that an error can get
892		 * propagated back to the VOP calls.
893		 *
894		 * Note that we always honor the txg_how flag regardless
895		 * of the failuremode setting.
896		 */
897		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
898		    !(txg_how & TXG_WAIT))
899			return (SET_ERROR(EIO));
900
901		return (SET_ERROR(ERESTART));
902	}
903
904	if (!tx->tx_dirty_delayed &&
905	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
906		tx->tx_wait_dirty = B_TRUE;
907		return (SET_ERROR(ERESTART));
908	}
909
910	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
911	tx->tx_needassign_txh = NULL;
912
913	/*
914	 * NB: No error returns are allowed after txg_hold_open, but
915	 * before processing the dnode holds, due to the
916	 * dmu_tx_unassign() logic.
917	 */
918
919	uint64_t towrite = 0;
920	uint64_t tohold = 0;
921	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
922	    txh = list_next(&tx->tx_holds, txh)) {
923		dnode_t *dn = txh->txh_dnode;
924		if (dn != NULL) {
925			mutex_enter(&dn->dn_mtx);
926			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
927				mutex_exit(&dn->dn_mtx);
928				tx->tx_needassign_txh = txh;
929				return (SET_ERROR(ERESTART));
930			}
931			if (dn->dn_assigned_txg == 0)
932				dn->dn_assigned_txg = tx->tx_txg;
933			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
934			(void) refcount_add(&dn->dn_tx_holds, tx);
935			mutex_exit(&dn->dn_mtx);
936		}
937		towrite += refcount_count(&txh->txh_space_towrite);
938		tohold += refcount_count(&txh->txh_memory_tohold);
939	}
940
941	/* needed allocation: worst-case estimate of write space */
942	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
943	/* calculate memory footprint estimate */
944	uint64_t memory = towrite + tohold;
945
946	if (tx->tx_dir != NULL && asize != 0) {
947		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
948		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
949		if (err != 0)
950			return (err);
951	}
952
953	return (0);
954}
955
956static void
957dmu_tx_unassign(dmu_tx_t *tx)
958{
959	if (tx->tx_txg == 0)
960		return;
961
962	txg_rele_to_quiesce(&tx->tx_txgh);
963
964	/*
965	 * Walk the transaction's hold list, removing the hold on the
966	 * associated dnode, and notifying waiters if the refcount drops to 0.
967	 */
968	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
969	    txh != tx->tx_needassign_txh;
970	    txh = list_next(&tx->tx_holds, txh)) {
971		dnode_t *dn = txh->txh_dnode;
972
973		if (dn == NULL)
974			continue;
975		mutex_enter(&dn->dn_mtx);
976		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
977
978		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
979			dn->dn_assigned_txg = 0;
980			cv_broadcast(&dn->dn_notxholds);
981		}
982		mutex_exit(&dn->dn_mtx);
983	}
984
985	txg_rele_to_sync(&tx->tx_txgh);
986
987	tx->tx_lasttried_txg = tx->tx_txg;
988	tx->tx_txg = 0;
989}
990
991/*
992 * Assign tx to a transaction group; txg_how is a bitmask:
993 *
994 * If TXG_WAIT is set and the currently open txg is full, this function
995 * will wait until there's a new txg. This should be used when no locks
996 * are being held. With this bit set, this function will only fail if
997 * we're truly out of space (or over quota).
998 *
999 * If TXG_WAIT is *not* set and we can't assign into the currently open
1000 * txg without blocking, this function will return immediately with
1001 * ERESTART. This should be used whenever locks are being held.  On an
1002 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1003 * and try again.
1004 *
1005 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1006 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1007 * details on the throttle). This is used by the VFS operations, after
1008 * they have already called dmu_tx_wait() (though most likely on a
1009 * different tx).
1010 */
1011int
1012dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1013{
1014	int err;
1015
1016	ASSERT(tx->tx_txg == 0);
1017	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1018	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1019
1020	/* If we might wait, we must not hold the config lock. */
1021	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1022
1023	if ((txg_how & TXG_NOTHROTTLE))
1024		tx->tx_dirty_delayed = B_TRUE;
1025
1026	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1027		dmu_tx_unassign(tx);
1028
1029		if (err != ERESTART || !(txg_how & TXG_WAIT))
1030			return (err);
1031
1032		dmu_tx_wait(tx);
1033	}
1034
1035	txg_rele_to_quiesce(&tx->tx_txgh);
1036
1037	return (0);
1038}
1039
1040void
1041dmu_tx_wait(dmu_tx_t *tx)
1042{
1043	spa_t *spa = tx->tx_pool->dp_spa;
1044	dsl_pool_t *dp = tx->tx_pool;
1045
1046	ASSERT(tx->tx_txg == 0);
1047	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1048
1049	if (tx->tx_wait_dirty) {
1050		/*
1051		 * dmu_tx_try_assign() has determined that we need to wait
1052		 * because we've consumed much or all of the dirty buffer
1053		 * space.
1054		 */
1055		mutex_enter(&dp->dp_lock);
1056		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1057			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1058		uint64_t dirty = dp->dp_dirty_total;
1059		mutex_exit(&dp->dp_lock);
1060
1061		dmu_tx_delay(tx, dirty);
1062
1063		tx->tx_wait_dirty = B_FALSE;
1064
1065		/*
1066		 * Note: setting tx_dirty_delayed only has effect if the
1067		 * caller used TX_WAIT.  Otherwise they are going to
1068		 * destroy this tx and try again.  The common case,
1069		 * zfs_write(), uses TX_WAIT.
1070		 */
1071		tx->tx_dirty_delayed = B_TRUE;
1072	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1073		/*
1074		 * If the pool is suspended we need to wait until it
1075		 * is resumed.  Note that it's possible that the pool
1076		 * has become active after this thread has tried to
1077		 * obtain a tx.  If that's the case then tx_lasttried_txg
1078		 * would not have been set.
1079		 */
1080		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1081	} else if (tx->tx_needassign_txh) {
1082		/*
1083		 * A dnode is assigned to the quiescing txg.  Wait for its
1084		 * transaction to complete.
1085		 */
1086		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1087
1088		mutex_enter(&dn->dn_mtx);
1089		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1090			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1091		mutex_exit(&dn->dn_mtx);
1092		tx->tx_needassign_txh = NULL;
1093	} else {
1094		/*
1095		 * If we have a lot of dirty data just wait until we sync
1096		 * out a TXG at which point we'll hopefully have synced
1097		 * a portion of the changes.
1098		 */
1099		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1100	}
1101}
1102
1103static void
1104dmu_tx_destroy(dmu_tx_t *tx)
1105{
1106	dmu_tx_hold_t *txh;
1107
1108	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1109		dnode_t *dn = txh->txh_dnode;
1110
1111		list_remove(&tx->tx_holds, txh);
1112		refcount_destroy_many(&txh->txh_space_towrite,
1113		    refcount_count(&txh->txh_space_towrite));
1114		refcount_destroy_many(&txh->txh_memory_tohold,
1115		    refcount_count(&txh->txh_memory_tohold));
1116		kmem_free(txh, sizeof (dmu_tx_hold_t));
1117		if (dn != NULL)
1118			dnode_rele(dn, tx);
1119	}
1120
1121	list_destroy(&tx->tx_callbacks);
1122	list_destroy(&tx->tx_holds);
1123	kmem_free(tx, sizeof (dmu_tx_t));
1124}
1125
1126void
1127dmu_tx_commit(dmu_tx_t *tx)
1128{
1129	ASSERT(tx->tx_txg != 0);
1130
1131	/*
1132	 * Go through the transaction's hold list and remove holds on
1133	 * associated dnodes, notifying waiters if no holds remain.
1134	 */
1135	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1136	    txh = list_next(&tx->tx_holds, txh)) {
1137		dnode_t *dn = txh->txh_dnode;
1138
1139		if (dn == NULL)
1140			continue;
1141
1142		mutex_enter(&dn->dn_mtx);
1143		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1144
1145		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1146			dn->dn_assigned_txg = 0;
1147			cv_broadcast(&dn->dn_notxholds);
1148		}
1149		mutex_exit(&dn->dn_mtx);
1150	}
1151
1152	if (tx->tx_tempreserve_cookie)
1153		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1154
1155	if (!list_is_empty(&tx->tx_callbacks))
1156		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1157
1158	if (tx->tx_anyobj == FALSE)
1159		txg_rele_to_sync(&tx->tx_txgh);
1160
1161	dmu_tx_destroy(tx);
1162}
1163
1164void
1165dmu_tx_abort(dmu_tx_t *tx)
1166{
1167	ASSERT(tx->tx_txg == 0);
1168
1169	/*
1170	 * Call any registered callbacks with an error code.
1171	 */
1172	if (!list_is_empty(&tx->tx_callbacks))
1173		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1174
1175	dmu_tx_destroy(tx);
1176}
1177
1178uint64_t
1179dmu_tx_get_txg(dmu_tx_t *tx)
1180{
1181	ASSERT(tx->tx_txg != 0);
1182	return (tx->tx_txg);
1183}
1184
1185dsl_pool_t *
1186dmu_tx_pool(dmu_tx_t *tx)
1187{
1188	ASSERT(tx->tx_pool != NULL);
1189	return (tx->tx_pool);
1190}
1191
1192void
1193dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1194{
1195	dmu_tx_callback_t *dcb;
1196
1197	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1198
1199	dcb->dcb_func = func;
1200	dcb->dcb_data = data;
1201
1202	list_insert_tail(&tx->tx_callbacks, dcb);
1203}
1204
1205/*
1206 * Call all the commit callbacks on a list, with a given error code.
1207 */
1208void
1209dmu_tx_do_callbacks(list_t *cb_list, int error)
1210{
1211	dmu_tx_callback_t *dcb;
1212
1213	while ((dcb = list_head(cb_list)) != NULL) {
1214		list_remove(cb_list, dcb);
1215		dcb->dcb_func(dcb->dcb_data, error);
1216		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1217	}
1218}
1219
1220/*
1221 * Interface to hold a bunch of attributes.
1222 * used for creating new files.
1223 * attrsize is the total size of all attributes
1224 * to be added during object creation
1225 *
1226 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1227 */
1228
1229/*
1230 * hold necessary attribute name for attribute registration.
1231 * should be a very rare case where this is needed.  If it does
1232 * happen it would only happen on the first write to the file system.
1233 */
1234static void
1235dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1236{
1237	if (!sa->sa_need_attr_registration)
1238		return;
1239
1240	for (int i = 0; i != sa->sa_num_attrs; i++) {
1241		if (!sa->sa_attr_table[i].sa_registered) {
1242			if (sa->sa_reg_attr_obj)
1243				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1244				    B_TRUE, sa->sa_attr_table[i].sa_name);
1245			else
1246				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1247				    B_TRUE, sa->sa_attr_table[i].sa_name);
1248		}
1249	}
1250}
1251
1252void
1253dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1254{
1255	dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx,
1256	    tx->tx_objset, object, THT_SPILL, 0, 0);
1257
1258	(void) refcount_add_many(&txh->txh_space_towrite,
1259	    SPA_OLD_MAXBLOCKSIZE, FTAG);
1260}
1261
1262void
1263dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1264{
1265	sa_os_t *sa = tx->tx_objset->os_sa;
1266
1267	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1268
1269	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1270		return;
1271
1272	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1273		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1274	} else {
1275		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1276		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1277		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1278		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1279	}
1280
1281	dmu_tx_sa_registration_hold(sa, tx);
1282
1283	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1284		return;
1285
1286	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1287	    THT_SPILL, 0, 0);
1288}
1289
1290/*
1291 * Hold SA attribute
1292 *
1293 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1294 *
1295 * variable_size is the total size of all variable sized attributes
1296 * passed to this function.  It is not the total size of all
1297 * variable size attributes that *may* exist on this object.
1298 */
1299void
1300dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1301{
1302	uint64_t object;
1303	sa_os_t *sa = tx->tx_objset->os_sa;
1304
1305	ASSERT(hdl != NULL);
1306
1307	object = sa_handle_object(hdl);
1308
1309	dmu_tx_hold_bonus(tx, object);
1310
1311	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1312		return;
1313
1314	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1315	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1316		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1317		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1318		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1319		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1320	}
1321
1322	dmu_tx_sa_registration_hold(sa, tx);
1323
1324	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1325		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1326
1327	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1328		ASSERT(tx->tx_txg == 0);
1329		dmu_tx_hold_spill(tx, object);
1330	} else {
1331		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1332		dnode_t *dn;
1333
1334		DB_DNODE_ENTER(db);
1335		dn = DB_DNODE(db);
1336		if (dn->dn_have_spill) {
1337			ASSERT(tx->tx_txg == 0);
1338			dmu_tx_hold_spill(tx, object);
1339		}
1340		DB_DNODE_EXIT(db);
1341	}
1342}
1343