arc.c revision 304138
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23277826Sdelphij * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24304138Savg * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25260835Sdelphij * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26286764Smav * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd/*
30168404Spjd * DVA-based Adjustable Replacement Cache
31168404Spjd *
32168404Spjd * While much of the theory of operation used here is
33168404Spjd * based on the self-tuning, low overhead replacement cache
34168404Spjd * presented by Megiddo and Modha at FAST 2003, there are some
35168404Spjd * significant differences:
36168404Spjd *
37168404Spjd * 1. The Megiddo and Modha model assumes any page is evictable.
38168404Spjd * Pages in its cache cannot be "locked" into memory.  This makes
39168404Spjd * the eviction algorithm simple: evict the last page in the list.
40168404Spjd * This also make the performance characteristics easy to reason
41168404Spjd * about.  Our cache is not so simple.  At any given moment, some
42168404Spjd * subset of the blocks in the cache are un-evictable because we
43168404Spjd * have handed out a reference to them.  Blocks are only evictable
44168404Spjd * when there are no external references active.  This makes
45168404Spjd * eviction far more problematic:  we choose to evict the evictable
46168404Spjd * blocks that are the "lowest" in the list.
47168404Spjd *
48168404Spjd * There are times when it is not possible to evict the requested
49168404Spjd * space.  In these circumstances we are unable to adjust the cache
50168404Spjd * size.  To prevent the cache growing unbounded at these times we
51185029Spjd * implement a "cache throttle" that slows the flow of new data
52185029Spjd * into the cache until we can make space available.
53168404Spjd *
54168404Spjd * 2. The Megiddo and Modha model assumes a fixed cache size.
55168404Spjd * Pages are evicted when the cache is full and there is a cache
56168404Spjd * miss.  Our model has a variable sized cache.  It grows with
57185029Spjd * high use, but also tries to react to memory pressure from the
58168404Spjd * operating system: decreasing its size when system memory is
59168404Spjd * tight.
60168404Spjd *
61168404Spjd * 3. The Megiddo and Modha model assumes a fixed page size. All
62251631Sdelphij * elements of the cache are therefore exactly the same size.  So
63168404Spjd * when adjusting the cache size following a cache miss, its simply
64168404Spjd * a matter of choosing a single page to evict.  In our model, we
65168404Spjd * have variable sized cache blocks (rangeing from 512 bytes to
66251631Sdelphij * 128K bytes).  We therefore choose a set of blocks to evict to make
67168404Spjd * space for a cache miss that approximates as closely as possible
68168404Spjd * the space used by the new block.
69168404Spjd *
70168404Spjd * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71168404Spjd * by N. Megiddo & D. Modha, FAST 2003
72168404Spjd */
73168404Spjd
74168404Spjd/*
75168404Spjd * The locking model:
76168404Spjd *
77168404Spjd * A new reference to a cache buffer can be obtained in two
78168404Spjd * ways: 1) via a hash table lookup using the DVA as a key,
79185029Spjd * or 2) via one of the ARC lists.  The arc_read() interface
80168404Spjd * uses method 1, while the internal arc algorithms for
81251631Sdelphij * adjusting the cache use method 2.  We therefore provide two
82168404Spjd * types of locks: 1) the hash table lock array, and 2) the
83168404Spjd * arc list locks.
84168404Spjd *
85286774Smav * Buffers do not have their own mutexes, rather they rely on the
86286774Smav * hash table mutexes for the bulk of their protection (i.e. most
87286774Smav * fields in the arc_buf_hdr_t are protected by these mutexes).
88168404Spjd *
89168404Spjd * buf_hash_find() returns the appropriate mutex (held) when it
90168404Spjd * locates the requested buffer in the hash table.  It returns
91168404Spjd * NULL for the mutex if the buffer was not in the table.
92168404Spjd *
93168404Spjd * buf_hash_remove() expects the appropriate hash mutex to be
94168404Spjd * already held before it is invoked.
95168404Spjd *
96168404Spjd * Each arc state also has a mutex which is used to protect the
97168404Spjd * buffer list associated with the state.  When attempting to
98168404Spjd * obtain a hash table lock while holding an arc list lock you
99168404Spjd * must use: mutex_tryenter() to avoid deadlock.  Also note that
100168404Spjd * the active state mutex must be held before the ghost state mutex.
101168404Spjd *
102168404Spjd * Arc buffers may have an associated eviction callback function.
103168404Spjd * This function will be invoked prior to removing the buffer (e.g.
104168404Spjd * in arc_do_user_evicts()).  Note however that the data associated
105168404Spjd * with the buffer may be evicted prior to the callback.  The callback
106168404Spjd * must be made with *no locks held* (to prevent deadlock).  Additionally,
107168404Spjd * the users of callbacks must ensure that their private data is
108268858Sdelphij * protected from simultaneous callbacks from arc_clear_callback()
109168404Spjd * and arc_do_user_evicts().
110168404Spjd *
111168404Spjd * Note that the majority of the performance stats are manipulated
112168404Spjd * with atomic operations.
113185029Spjd *
114286570Smav * The L2ARC uses the l2ad_mtx on each vdev for the following:
115185029Spjd *
116185029Spjd *	- L2ARC buflist creation
117185029Spjd *	- L2ARC buflist eviction
118185029Spjd *	- L2ARC write completion, which walks L2ARC buflists
119185029Spjd *	- ARC header destruction, as it removes from L2ARC buflists
120185029Spjd *	- ARC header release, as it removes from L2ARC buflists
121168404Spjd */
122168404Spjd
123168404Spjd#include <sys/spa.h>
124168404Spjd#include <sys/zio.h>
125251478Sdelphij#include <sys/zio_compress.h>
126168404Spjd#include <sys/zfs_context.h>
127168404Spjd#include <sys/arc.h>
128168404Spjd#include <sys/refcount.h>
129185029Spjd#include <sys/vdev.h>
130219089Spjd#include <sys/vdev_impl.h>
131258632Savg#include <sys/dsl_pool.h>
132286763Smav#include <sys/multilist.h>
133168404Spjd#ifdef _KERNEL
134168404Spjd#include <sys/dnlc.h>
135297633Strasz#include <sys/racct.h>
136168404Spjd#endif
137168404Spjd#include <sys/callb.h>
138168404Spjd#include <sys/kstat.h>
139248572Ssmh#include <sys/trim_map.h>
140219089Spjd#include <zfs_fletcher.h>
141168404Spjd#include <sys/sdt.h>
142168404Spjd
143272483Ssmh#include <machine/vmparam.h>
144191902Skmacy
145240133Smm#ifdef illumos
146240133Smm#ifndef _KERNEL
147240133Smm/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148240133Smmboolean_t arc_watch = B_FALSE;
149240133Smmint arc_procfd;
150240133Smm#endif
151240133Smm#endif /* illumos */
152240133Smm
153286763Smavstatic kmutex_t		arc_reclaim_lock;
154286763Smavstatic kcondvar_t	arc_reclaim_thread_cv;
155286763Smavstatic boolean_t	arc_reclaim_thread_exit;
156286763Smavstatic kcondvar_t	arc_reclaim_waiters_cv;
157168404Spjd
158286763Smavstatic kmutex_t		arc_user_evicts_lock;
159286763Smavstatic kcondvar_t	arc_user_evicts_cv;
160286763Smavstatic boolean_t	arc_user_evicts_thread_exit;
161286763Smav
162301997Skibstatic kmutex_t		arc_dnlc_evicts_lock;
163301997Skibstatic kcondvar_t	arc_dnlc_evicts_cv;
164301997Skibstatic boolean_t	arc_dnlc_evicts_thread_exit;
165301997Skib
166286625Smavuint_t arc_reduce_dnlc_percent = 3;
167168404Spjd
168258632Savg/*
169286763Smav * The number of headers to evict in arc_evict_state_impl() before
170286763Smav * dropping the sublist lock and evicting from another sublist. A lower
171286763Smav * value means we're more likely to evict the "correct" header (i.e. the
172286763Smav * oldest header in the arc state), but comes with higher overhead
173286763Smav * (i.e. more invocations of arc_evict_state_impl()).
174258632Savg */
175286763Smavint zfs_arc_evict_batch_limit = 10;
176258632Savg
177286763Smav/*
178286763Smav * The number of sublists used for each of the arc state lists. If this
179286763Smav * is not set to a suitable value by the user, it will be configured to
180286763Smav * the number of CPUs on the system in arc_init().
181286763Smav */
182286763Smavint zfs_arc_num_sublists_per_state = 0;
183286763Smav
184168404Spjd/* number of seconds before growing cache again */
185168404Spjdstatic int		arc_grow_retry = 60;
186168404Spjd
187286763Smav/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
188286763Smavint		zfs_arc_overflow_shift = 8;
189286763Smav
190208373Smm/* shift of arc_c for calculating both min and max arc_p */
191208373Smmstatic int		arc_p_min_shift = 4;
192208373Smm
193208373Smm/* log2(fraction of arc to reclaim) */
194286625Smavstatic int		arc_shrink_shift = 7;
195208373Smm
196168404Spjd/*
197286625Smav * log2(fraction of ARC which must be free to allow growing).
198286625Smav * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
199286625Smav * when reading a new block into the ARC, we will evict an equal-sized block
200286625Smav * from the ARC.
201286625Smav *
202286625Smav * This must be less than arc_shrink_shift, so that when we shrink the ARC,
203286625Smav * we will still not allow it to grow.
204286625Smav */
205286625Smavint			arc_no_grow_shift = 5;
206286625Smav
207286625Smav
208286625Smav/*
209168404Spjd * minimum lifespan of a prefetch block in clock ticks
210168404Spjd * (initialized in arc_init())
211168404Spjd */
212168404Spjdstatic int		arc_min_prefetch_lifespan;
213168404Spjd
214258632Savg/*
215258632Savg * If this percent of memory is free, don't throttle.
216258632Savg */
217258632Savgint arc_lotsfree_percent = 10;
218258632Savg
219208373Smmstatic int arc_dead;
220287702Sdelphijextern boolean_t zfs_prefetch_disable;
221168404Spjd
222168404Spjd/*
223185029Spjd * The arc has filled available memory and has now warmed up.
224185029Spjd */
225185029Spjdstatic boolean_t arc_warm;
226185029Spjd
227286762Smav/*
228286762Smav * These tunables are for performance analysis.
229286762Smav */
230185029Spjduint64_t zfs_arc_max;
231185029Spjduint64_t zfs_arc_min;
232185029Spjduint64_t zfs_arc_meta_limit = 0;
233275780Sdelphijuint64_t zfs_arc_meta_min = 0;
234208373Smmint zfs_arc_grow_retry = 0;
235208373Smmint zfs_arc_shrink_shift = 0;
236208373Smmint zfs_arc_p_min_shift = 0;
237242845Sdelphijint zfs_disable_dup_eviction = 0;
238269230Sdelphijuint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
239272483Ssmhu_int zfs_arc_free_target = 0;
240185029Spjd
241302265Ssmh/* Absolute min for arc min / max is 16MB. */
242302265Ssmhstatic uint64_t arc_abs_min = 16 << 20;
243302265Ssmh
244270759Ssmhstatic int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
245275748Sdelphijstatic int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
246302265Ssmhstatic int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
247302265Ssmhstatic int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
248270759Ssmh
249302265Ssmh#if defined(__FreeBSD__) && defined(_KERNEL)
250270759Ssmhstatic void
251270759Ssmharc_free_target_init(void *unused __unused)
252270759Ssmh{
253270759Ssmh
254272483Ssmh	zfs_arc_free_target = vm_pageout_wakeup_thresh;
255270759Ssmh}
256270759SsmhSYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
257270759Ssmh    arc_free_target_init, NULL);
258270759Ssmh
259185029SpjdTUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
260275780SdelphijTUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
261273026SdelphijTUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
262168473SpjdSYSCTL_DECL(_vfs_zfs);
263302265SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
264302265Ssmh    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
265302265SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
266302265Ssmh    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
267269230SdelphijSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
268269230Sdelphij    &zfs_arc_average_blocksize, 0,
269269230Sdelphij    "ARC average blocksize");
270273026SdelphijSYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
271273026Sdelphij    &arc_shrink_shift, 0,
272273026Sdelphij    "log2(fraction of arc to reclaim)");
273273026Sdelphij
274270759Ssmh/*
275270759Ssmh * We don't have a tunable for arc_free_target due to the dependency on
276270759Ssmh * pagedaemon initialisation.
277270759Ssmh */
278270759SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
279270759Ssmh    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
280270759Ssmh    sysctl_vfs_zfs_arc_free_target, "IU",
281270759Ssmh    "Desired number of free pages below which ARC triggers reclaim");
282168404Spjd
283270759Ssmhstatic int
284270759Ssmhsysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
285270759Ssmh{
286270759Ssmh	u_int val;
287270759Ssmh	int err;
288270759Ssmh
289270759Ssmh	val = zfs_arc_free_target;
290270759Ssmh	err = sysctl_handle_int(oidp, &val, 0, req);
291270759Ssmh	if (err != 0 || req->newptr == NULL)
292270759Ssmh		return (err);
293270759Ssmh
294272483Ssmh	if (val < minfree)
295270759Ssmh		return (EINVAL);
296272483Ssmh	if (val > vm_cnt.v_page_count)
297270759Ssmh		return (EINVAL);
298270759Ssmh
299270759Ssmh	zfs_arc_free_target = val;
300270759Ssmh
301270759Ssmh	return (0);
302270759Ssmh}
303275748Sdelphij
304275748Sdelphij/*
305275748Sdelphij * Must be declared here, before the definition of corresponding kstat
306275748Sdelphij * macro which uses the same names will confuse the compiler.
307275748Sdelphij */
308275748SdelphijSYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
309275748Sdelphij    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
310275748Sdelphij    sysctl_vfs_zfs_arc_meta_limit, "QU",
311275748Sdelphij    "ARC metadata limit");
312272483Ssmh#endif
313270759Ssmh
314168404Spjd/*
315185029Spjd * Note that buffers can be in one of 6 states:
316168404Spjd *	ARC_anon	- anonymous (discussed below)
317168404Spjd *	ARC_mru		- recently used, currently cached
318168404Spjd *	ARC_mru_ghost	- recentely used, no longer in cache
319168404Spjd *	ARC_mfu		- frequently used, currently cached
320168404Spjd *	ARC_mfu_ghost	- frequently used, no longer in cache
321185029Spjd *	ARC_l2c_only	- exists in L2ARC but not other states
322185029Spjd * When there are no active references to the buffer, they are
323185029Spjd * are linked onto a list in one of these arc states.  These are
324185029Spjd * the only buffers that can be evicted or deleted.  Within each
325185029Spjd * state there are multiple lists, one for meta-data and one for
326185029Spjd * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
327185029Spjd * etc.) is tracked separately so that it can be managed more
328185029Spjd * explicitly: favored over data, limited explicitly.
329168404Spjd *
330168404Spjd * Anonymous buffers are buffers that are not associated with
331168404Spjd * a DVA.  These are buffers that hold dirty block copies
332168404Spjd * before they are written to stable storage.  By definition,
333168404Spjd * they are "ref'd" and are considered part of arc_mru
334168404Spjd * that cannot be freed.  Generally, they will aquire a DVA
335168404Spjd * as they are written and migrate onto the arc_mru list.
336185029Spjd *
337185029Spjd * The ARC_l2c_only state is for buffers that are in the second
338185029Spjd * level ARC but no longer in any of the ARC_m* lists.  The second
339185029Spjd * level ARC itself may also contain buffers that are in any of
340185029Spjd * the ARC_m* states - meaning that a buffer can exist in two
341185029Spjd * places.  The reason for the ARC_l2c_only state is to keep the
342185029Spjd * buffer header in the hash table, so that reads that hit the
343185029Spjd * second level ARC benefit from these fast lookups.
344168404Spjd */
345168404Spjd
346168404Spjdtypedef struct arc_state {
347286763Smav	/*
348286763Smav	 * list of evictable buffers
349286763Smav	 */
350286763Smav	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
351286763Smav	/*
352286763Smav	 * total amount of evictable data in this state
353286763Smav	 */
354286763Smav	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
355286763Smav	/*
356286763Smav	 * total amount of data in this state; this includes: evictable,
357286763Smav	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
358286763Smav	 */
359286766Smav	refcount_t arcs_size;
360168404Spjd} arc_state_t;
361168404Spjd
362185029Spjd/* The 6 states: */
363168404Spjdstatic arc_state_t ARC_anon;
364168404Spjdstatic arc_state_t ARC_mru;
365168404Spjdstatic arc_state_t ARC_mru_ghost;
366168404Spjdstatic arc_state_t ARC_mfu;
367168404Spjdstatic arc_state_t ARC_mfu_ghost;
368185029Spjdstatic arc_state_t ARC_l2c_only;
369168404Spjd
370168404Spjdtypedef struct arc_stats {
371168404Spjd	kstat_named_t arcstat_hits;
372168404Spjd	kstat_named_t arcstat_misses;
373168404Spjd	kstat_named_t arcstat_demand_data_hits;
374168404Spjd	kstat_named_t arcstat_demand_data_misses;
375168404Spjd	kstat_named_t arcstat_demand_metadata_hits;
376168404Spjd	kstat_named_t arcstat_demand_metadata_misses;
377168404Spjd	kstat_named_t arcstat_prefetch_data_hits;
378168404Spjd	kstat_named_t arcstat_prefetch_data_misses;
379168404Spjd	kstat_named_t arcstat_prefetch_metadata_hits;
380168404Spjd	kstat_named_t arcstat_prefetch_metadata_misses;
381168404Spjd	kstat_named_t arcstat_mru_hits;
382168404Spjd	kstat_named_t arcstat_mru_ghost_hits;
383168404Spjd	kstat_named_t arcstat_mfu_hits;
384168404Spjd	kstat_named_t arcstat_mfu_ghost_hits;
385205231Skmacy	kstat_named_t arcstat_allocated;
386168404Spjd	kstat_named_t arcstat_deleted;
387251629Sdelphij	/*
388251629Sdelphij	 * Number of buffers that could not be evicted because the hash lock
389251629Sdelphij	 * was held by another thread.  The lock may not necessarily be held
390251629Sdelphij	 * by something using the same buffer, since hash locks are shared
391251629Sdelphij	 * by multiple buffers.
392251629Sdelphij	 */
393168404Spjd	kstat_named_t arcstat_mutex_miss;
394251629Sdelphij	/*
395251629Sdelphij	 * Number of buffers skipped because they have I/O in progress, are
396251629Sdelphij	 * indrect prefetch buffers that have not lived long enough, or are
397251629Sdelphij	 * not from the spa we're trying to evict from.
398251629Sdelphij	 */
399168404Spjd	kstat_named_t arcstat_evict_skip;
400286763Smav	/*
401286763Smav	 * Number of times arc_evict_state() was unable to evict enough
402286763Smav	 * buffers to reach it's target amount.
403286763Smav	 */
404286763Smav	kstat_named_t arcstat_evict_not_enough;
405208373Smm	kstat_named_t arcstat_evict_l2_cached;
406208373Smm	kstat_named_t arcstat_evict_l2_eligible;
407208373Smm	kstat_named_t arcstat_evict_l2_ineligible;
408286763Smav	kstat_named_t arcstat_evict_l2_skip;
409168404Spjd	kstat_named_t arcstat_hash_elements;
410168404Spjd	kstat_named_t arcstat_hash_elements_max;
411168404Spjd	kstat_named_t arcstat_hash_collisions;
412168404Spjd	kstat_named_t arcstat_hash_chains;
413168404Spjd	kstat_named_t arcstat_hash_chain_max;
414168404Spjd	kstat_named_t arcstat_p;
415168404Spjd	kstat_named_t arcstat_c;
416168404Spjd	kstat_named_t arcstat_c_min;
417168404Spjd	kstat_named_t arcstat_c_max;
418168404Spjd	kstat_named_t arcstat_size;
419286574Smav	/*
420286574Smav	 * Number of bytes consumed by internal ARC structures necessary
421286574Smav	 * for tracking purposes; these structures are not actually
422286574Smav	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
423286574Smav	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
424286574Smav	 * caches), and arc_buf_t structures (allocated via arc_buf_t
425286574Smav	 * cache).
426286574Smav	 */
427185029Spjd	kstat_named_t arcstat_hdr_size;
428286574Smav	/*
429286574Smav	 * Number of bytes consumed by ARC buffers of type equal to
430286574Smav	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
431286574Smav	 * on disk user data (e.g. plain file contents).
432286574Smav	 */
433208373Smm	kstat_named_t arcstat_data_size;
434286574Smav	/*
435286574Smav	 * Number of bytes consumed by ARC buffers of type equal to
436286574Smav	 * ARC_BUFC_METADATA. This is generally consumed by buffers
437286574Smav	 * backing on disk data that is used for internal ZFS
438286574Smav	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
439286574Smav	 */
440286574Smav	kstat_named_t arcstat_metadata_size;
441286574Smav	/*
442286574Smav	 * Number of bytes consumed by various buffers and structures
443286574Smav	 * not actually backed with ARC buffers. This includes bonus
444286574Smav	 * buffers (allocated directly via zio_buf_* functions),
445286574Smav	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
446286574Smav	 * cache), and dnode_t structures (allocated via dnode_t cache).
447286574Smav	 */
448208373Smm	kstat_named_t arcstat_other_size;
449286574Smav	/*
450286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
451286574Smav	 * arc_anon state. This includes *all* buffers in the arc_anon
452286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
453286574Smav	 * are all included in this value.
454286574Smav	 */
455286574Smav	kstat_named_t arcstat_anon_size;
456286574Smav	/*
457286574Smav	 * Number of bytes consumed by ARC buffers that meet the
458286574Smav	 * following criteria: backing buffers of type ARC_BUFC_DATA,
459286574Smav	 * residing in the arc_anon state, and are eligible for eviction
460286574Smav	 * (e.g. have no outstanding holds on the buffer).
461286574Smav	 */
462286574Smav	kstat_named_t arcstat_anon_evictable_data;
463286574Smav	/*
464286574Smav	 * Number of bytes consumed by ARC buffers that meet the
465286574Smav	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
466286574Smav	 * residing in the arc_anon state, and are eligible for eviction
467286574Smav	 * (e.g. have no outstanding holds on the buffer).
468286574Smav	 */
469286574Smav	kstat_named_t arcstat_anon_evictable_metadata;
470286574Smav	/*
471286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
472286574Smav	 * arc_mru state. This includes *all* buffers in the arc_mru
473286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
474286574Smav	 * are all included in this value.
475286574Smav	 */
476286574Smav	kstat_named_t arcstat_mru_size;
477286574Smav	/*
478286574Smav	 * Number of bytes consumed by ARC buffers that meet the
479286574Smav	 * following criteria: backing buffers of type ARC_BUFC_DATA,
480286574Smav	 * residing in the arc_mru state, and are eligible for eviction
481286574Smav	 * (e.g. have no outstanding holds on the buffer).
482286574Smav	 */
483286574Smav	kstat_named_t arcstat_mru_evictable_data;
484286574Smav	/*
485286574Smav	 * Number of bytes consumed by ARC buffers that meet the
486286574Smav	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
487286574Smav	 * residing in the arc_mru state, and are eligible for eviction
488286574Smav	 * (e.g. have no outstanding holds on the buffer).
489286574Smav	 */
490286574Smav	kstat_named_t arcstat_mru_evictable_metadata;
491286574Smav	/*
492286574Smav	 * Total number of bytes that *would have been* consumed by ARC
493286574Smav	 * buffers in the arc_mru_ghost state. The key thing to note
494286574Smav	 * here, is the fact that this size doesn't actually indicate
495286574Smav	 * RAM consumption. The ghost lists only consist of headers and
496286574Smav	 * don't actually have ARC buffers linked off of these headers.
497286574Smav	 * Thus, *if* the headers had associated ARC buffers, these
498286574Smav	 * buffers *would have* consumed this number of bytes.
499286574Smav	 */
500286574Smav	kstat_named_t arcstat_mru_ghost_size;
501286574Smav	/*
502286574Smav	 * Number of bytes that *would have been* consumed by ARC
503286574Smav	 * buffers that are eligible for eviction, of type
504286574Smav	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
505286574Smav	 */
506286574Smav	kstat_named_t arcstat_mru_ghost_evictable_data;
507286574Smav	/*
508286574Smav	 * Number of bytes that *would have been* consumed by ARC
509286574Smav	 * buffers that are eligible for eviction, of type
510286574Smav	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
511286574Smav	 */
512286574Smav	kstat_named_t arcstat_mru_ghost_evictable_metadata;
513286574Smav	/*
514286574Smav	 * Total number of bytes consumed by ARC buffers residing in the
515286574Smav	 * arc_mfu state. This includes *all* buffers in the arc_mfu
516286574Smav	 * state; e.g. data, metadata, evictable, and unevictable buffers
517286574Smav	 * are all included in this value.
518286574Smav	 */
519286574Smav	kstat_named_t arcstat_mfu_size;
520286574Smav	/*
521286574Smav	 * Number of bytes consumed by ARC buffers that are eligible for
522286574Smav	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
523286574Smav	 * state.
524286574Smav	 */
525286574Smav	kstat_named_t arcstat_mfu_evictable_data;
526286574Smav	/*
527286574Smav	 * Number of bytes consumed by ARC buffers that are eligible for
528286574Smav	 * eviction, of type ARC_BUFC_METADATA, and reside in the
529286574Smav	 * arc_mfu state.
530286574Smav	 */
531286574Smav	kstat_named_t arcstat_mfu_evictable_metadata;
532286574Smav	/*
533286574Smav	 * Total number of bytes that *would have been* consumed by ARC
534286574Smav	 * buffers in the arc_mfu_ghost state. See the comment above
535286574Smav	 * arcstat_mru_ghost_size for more details.
536286574Smav	 */
537286574Smav	kstat_named_t arcstat_mfu_ghost_size;
538286574Smav	/*
539286574Smav	 * Number of bytes that *would have been* consumed by ARC
540286574Smav	 * buffers that are eligible for eviction, of type
541286574Smav	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
542286574Smav	 */
543286574Smav	kstat_named_t arcstat_mfu_ghost_evictable_data;
544286574Smav	/*
545286574Smav	 * Number of bytes that *would have been* consumed by ARC
546286574Smav	 * buffers that are eligible for eviction, of type
547286574Smav	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
548286574Smav	 */
549286574Smav	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
550185029Spjd	kstat_named_t arcstat_l2_hits;
551185029Spjd	kstat_named_t arcstat_l2_misses;
552185029Spjd	kstat_named_t arcstat_l2_feeds;
553185029Spjd	kstat_named_t arcstat_l2_rw_clash;
554208373Smm	kstat_named_t arcstat_l2_read_bytes;
555208373Smm	kstat_named_t arcstat_l2_write_bytes;
556185029Spjd	kstat_named_t arcstat_l2_writes_sent;
557185029Spjd	kstat_named_t arcstat_l2_writes_done;
558185029Spjd	kstat_named_t arcstat_l2_writes_error;
559286763Smav	kstat_named_t arcstat_l2_writes_lock_retry;
560185029Spjd	kstat_named_t arcstat_l2_evict_lock_retry;
561185029Spjd	kstat_named_t arcstat_l2_evict_reading;
562286570Smav	kstat_named_t arcstat_l2_evict_l1cached;
563185029Spjd	kstat_named_t arcstat_l2_free_on_write;
564274172Savg	kstat_named_t arcstat_l2_cdata_free_on_write;
565185029Spjd	kstat_named_t arcstat_l2_abort_lowmem;
566185029Spjd	kstat_named_t arcstat_l2_cksum_bad;
567185029Spjd	kstat_named_t arcstat_l2_io_error;
568185029Spjd	kstat_named_t arcstat_l2_size;
569251478Sdelphij	kstat_named_t arcstat_l2_asize;
570185029Spjd	kstat_named_t arcstat_l2_hdr_size;
571251478Sdelphij	kstat_named_t arcstat_l2_compress_successes;
572251478Sdelphij	kstat_named_t arcstat_l2_compress_zeros;
573251478Sdelphij	kstat_named_t arcstat_l2_compress_failures;
574297848Savg	kstat_named_t arcstat_l2_padding_needed;
575205231Skmacy	kstat_named_t arcstat_l2_write_trylock_fail;
576205231Skmacy	kstat_named_t arcstat_l2_write_passed_headroom;
577205231Skmacy	kstat_named_t arcstat_l2_write_spa_mismatch;
578206796Spjd	kstat_named_t arcstat_l2_write_in_l2;
579205231Skmacy	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
580205231Skmacy	kstat_named_t arcstat_l2_write_not_cacheable;
581205231Skmacy	kstat_named_t arcstat_l2_write_full;
582205231Skmacy	kstat_named_t arcstat_l2_write_buffer_iter;
583205231Skmacy	kstat_named_t arcstat_l2_write_pios;
584205231Skmacy	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
585205231Skmacy	kstat_named_t arcstat_l2_write_buffer_list_iter;
586205231Skmacy	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
587242845Sdelphij	kstat_named_t arcstat_memory_throttle_count;
588242845Sdelphij	kstat_named_t arcstat_duplicate_buffers;
589242845Sdelphij	kstat_named_t arcstat_duplicate_buffers_size;
590242845Sdelphij	kstat_named_t arcstat_duplicate_reads;
591275748Sdelphij	kstat_named_t arcstat_meta_used;
592275748Sdelphij	kstat_named_t arcstat_meta_limit;
593275748Sdelphij	kstat_named_t arcstat_meta_max;
594275780Sdelphij	kstat_named_t arcstat_meta_min;
595287702Sdelphij	kstat_named_t arcstat_sync_wait_for_async;
596287702Sdelphij	kstat_named_t arcstat_demand_hit_predictive_prefetch;
597168404Spjd} arc_stats_t;
598168404Spjd
599168404Spjdstatic arc_stats_t arc_stats = {
600168404Spjd	{ "hits",			KSTAT_DATA_UINT64 },
601168404Spjd	{ "misses",			KSTAT_DATA_UINT64 },
602168404Spjd	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
603168404Spjd	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
604168404Spjd	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
605168404Spjd	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
606168404Spjd	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
607168404Spjd	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
608168404Spjd	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
609168404Spjd	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
610168404Spjd	{ "mru_hits",			KSTAT_DATA_UINT64 },
611168404Spjd	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
612168404Spjd	{ "mfu_hits",			KSTAT_DATA_UINT64 },
613168404Spjd	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
614205231Skmacy	{ "allocated",			KSTAT_DATA_UINT64 },
615168404Spjd	{ "deleted",			KSTAT_DATA_UINT64 },
616168404Spjd	{ "mutex_miss",			KSTAT_DATA_UINT64 },
617168404Spjd	{ "evict_skip",			KSTAT_DATA_UINT64 },
618286763Smav	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
619208373Smm	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
620208373Smm	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
621208373Smm	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
622286763Smav	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
623168404Spjd	{ "hash_elements",		KSTAT_DATA_UINT64 },
624168404Spjd	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
625168404Spjd	{ "hash_collisions",		KSTAT_DATA_UINT64 },
626168404Spjd	{ "hash_chains",		KSTAT_DATA_UINT64 },
627168404Spjd	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
628168404Spjd	{ "p",				KSTAT_DATA_UINT64 },
629168404Spjd	{ "c",				KSTAT_DATA_UINT64 },
630168404Spjd	{ "c_min",			KSTAT_DATA_UINT64 },
631168404Spjd	{ "c_max",			KSTAT_DATA_UINT64 },
632185029Spjd	{ "size",			KSTAT_DATA_UINT64 },
633185029Spjd	{ "hdr_size",			KSTAT_DATA_UINT64 },
634208373Smm	{ "data_size",			KSTAT_DATA_UINT64 },
635286574Smav	{ "metadata_size",		KSTAT_DATA_UINT64 },
636208373Smm	{ "other_size",			KSTAT_DATA_UINT64 },
637286574Smav	{ "anon_size",			KSTAT_DATA_UINT64 },
638286574Smav	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
639286574Smav	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
640286574Smav	{ "mru_size",			KSTAT_DATA_UINT64 },
641286574Smav	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
642286574Smav	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
643286574Smav	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
644286574Smav	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
645286574Smav	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
646286574Smav	{ "mfu_size",			KSTAT_DATA_UINT64 },
647286574Smav	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
648286574Smav	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
649286574Smav	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
650286574Smav	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
651286574Smav	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
652185029Spjd	{ "l2_hits",			KSTAT_DATA_UINT64 },
653185029Spjd	{ "l2_misses",			KSTAT_DATA_UINT64 },
654185029Spjd	{ "l2_feeds",			KSTAT_DATA_UINT64 },
655185029Spjd	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
656208373Smm	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
657208373Smm	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
658185029Spjd	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
659185029Spjd	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
660185029Spjd	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
661286763Smav	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
662185029Spjd	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
663185029Spjd	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
664286570Smav	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
665185029Spjd	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
666274172Savg	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
667185029Spjd	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
668185029Spjd	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
669185029Spjd	{ "l2_io_error",		KSTAT_DATA_UINT64 },
670185029Spjd	{ "l2_size",			KSTAT_DATA_UINT64 },
671251478Sdelphij	{ "l2_asize",			KSTAT_DATA_UINT64 },
672185029Spjd	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
673251478Sdelphij	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
674251478Sdelphij	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
675251478Sdelphij	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
676297848Savg	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
677206796Spjd	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
678206796Spjd	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
679206796Spjd	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
680206796Spjd	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
681206796Spjd	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
682206796Spjd	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
683206796Spjd	{ "l2_write_full",		KSTAT_DATA_UINT64 },
684206796Spjd	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
685206796Spjd	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
686206796Spjd	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
687206796Spjd	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
688242845Sdelphij	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
689242845Sdelphij	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
690242845Sdelphij	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
691242845Sdelphij	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
692275748Sdelphij	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
693275748Sdelphij	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
694275748Sdelphij	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
695275780Sdelphij	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
696287702Sdelphij	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
697287702Sdelphij	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
698287702Sdelphij	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
699168404Spjd};
700168404Spjd
701168404Spjd#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
702168404Spjd
703168404Spjd#define	ARCSTAT_INCR(stat, val) \
704251631Sdelphij	atomic_add_64(&arc_stats.stat.value.ui64, (val))
705168404Spjd
706206796Spjd#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
707168404Spjd#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
708168404Spjd
709168404Spjd#define	ARCSTAT_MAX(stat, val) {					\
710168404Spjd	uint64_t m;							\
711168404Spjd	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
712168404Spjd	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
713168404Spjd		continue;						\
714168404Spjd}
715168404Spjd
716168404Spjd#define	ARCSTAT_MAXSTAT(stat) \
717168404Spjd	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
718168404Spjd
719168404Spjd/*
720168404Spjd * We define a macro to allow ARC hits/misses to be easily broken down by
721168404Spjd * two separate conditions, giving a total of four different subtypes for
722168404Spjd * each of hits and misses (so eight statistics total).
723168404Spjd */
724168404Spjd#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
725168404Spjd	if (cond1) {							\
726168404Spjd		if (cond2) {						\
727168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
728168404Spjd		} else {						\
729168404Spjd			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
730168404Spjd		}							\
731168404Spjd	} else {							\
732168404Spjd		if (cond2) {						\
733168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
734168404Spjd		} else {						\
735168404Spjd			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
736168404Spjd		}							\
737168404Spjd	}
738168404Spjd
739168404Spjdkstat_t			*arc_ksp;
740206796Spjdstatic arc_state_t	*arc_anon;
741168404Spjdstatic arc_state_t	*arc_mru;
742168404Spjdstatic arc_state_t	*arc_mru_ghost;
743168404Spjdstatic arc_state_t	*arc_mfu;
744168404Spjdstatic arc_state_t	*arc_mfu_ghost;
745185029Spjdstatic arc_state_t	*arc_l2c_only;
746168404Spjd
747168404Spjd/*
748168404Spjd * There are several ARC variables that are critical to export as kstats --
749168404Spjd * but we don't want to have to grovel around in the kstat whenever we wish to
750168404Spjd * manipulate them.  For these variables, we therefore define them to be in
751168404Spjd * terms of the statistic variable.  This assures that we are not introducing
752168404Spjd * the possibility of inconsistency by having shadow copies of the variables,
753168404Spjd * while still allowing the code to be readable.
754168404Spjd */
755168404Spjd#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
756168404Spjd#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
757168404Spjd#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
758168404Spjd#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
759168404Spjd#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
760275748Sdelphij#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
761275780Sdelphij#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
762275748Sdelphij#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
763275748Sdelphij#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
764168404Spjd
765251478Sdelphij#define	L2ARC_IS_VALID_COMPRESS(_c_) \
766251478Sdelphij	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
767251478Sdelphij
768168404Spjdstatic int		arc_no_grow;	/* Don't try to grow cache size */
769168404Spjdstatic uint64_t		arc_tempreserve;
770209962Smmstatic uint64_t		arc_loaned_bytes;
771168404Spjd
772168404Spjdtypedef struct arc_callback arc_callback_t;
773168404Spjd
774168404Spjdstruct arc_callback {
775168404Spjd	void			*acb_private;
776168404Spjd	arc_done_func_t		*acb_done;
777168404Spjd	arc_buf_t		*acb_buf;
778168404Spjd	zio_t			*acb_zio_dummy;
779168404Spjd	arc_callback_t		*acb_next;
780168404Spjd};
781168404Spjd
782168404Spjdtypedef struct arc_write_callback arc_write_callback_t;
783168404Spjd
784168404Spjdstruct arc_write_callback {
785168404Spjd	void		*awcb_private;
786168404Spjd	arc_done_func_t	*awcb_ready;
787304138Savg	arc_done_func_t	*awcb_children_ready;
788258632Savg	arc_done_func_t	*awcb_physdone;
789168404Spjd	arc_done_func_t	*awcb_done;
790168404Spjd	arc_buf_t	*awcb_buf;
791168404Spjd};
792168404Spjd
793286570Smav/*
794286570Smav * ARC buffers are separated into multiple structs as a memory saving measure:
795286570Smav *   - Common fields struct, always defined, and embedded within it:
796286570Smav *       - L2-only fields, always allocated but undefined when not in L2ARC
797286570Smav *       - L1-only fields, only allocated when in L1ARC
798286570Smav *
799286570Smav *           Buffer in L1                     Buffer only in L2
800286570Smav *    +------------------------+          +------------------------+
801286570Smav *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
802286570Smav *    |                        |          |                        |
803286570Smav *    |                        |          |                        |
804286570Smav *    |                        |          |                        |
805286570Smav *    +------------------------+          +------------------------+
806286570Smav *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
807286570Smav *    | (undefined if L1-only) |          |                        |
808286570Smav *    +------------------------+          +------------------------+
809286570Smav *    | l1arc_buf_hdr_t        |
810286570Smav *    |                        |
811286570Smav *    |                        |
812286570Smav *    |                        |
813286570Smav *    |                        |
814286570Smav *    +------------------------+
815286570Smav *
816286570Smav * Because it's possible for the L2ARC to become extremely large, we can wind
817286570Smav * up eating a lot of memory in L2ARC buffer headers, so the size of a header
818286570Smav * is minimized by only allocating the fields necessary for an L1-cached buffer
819286570Smav * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
820286570Smav * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
821286570Smav * words in pointers. arc_hdr_realloc() is used to switch a header between
822286570Smav * these two allocation states.
823286570Smav */
824286570Smavtypedef struct l1arc_buf_hdr {
825168404Spjd	kmutex_t		b_freeze_lock;
826286570Smav#ifdef ZFS_DEBUG
827286570Smav	/*
828286570Smav	 * used for debugging wtih kmem_flags - by allocating and freeing
829286570Smav	 * b_thawed when the buffer is thawed, we get a record of the stack
830286570Smav	 * trace that thawed it.
831286570Smav	 */
832219089Spjd	void			*b_thawed;
833286570Smav#endif
834168404Spjd
835168404Spjd	arc_buf_t		*b_buf;
836168404Spjd	uint32_t		b_datacnt;
837286570Smav	/* for waiting on writes to complete */
838168404Spjd	kcondvar_t		b_cv;
839168404Spjd
840168404Spjd	/* protected by arc state mutex */
841168404Spjd	arc_state_t		*b_state;
842286763Smav	multilist_node_t	b_arc_node;
843168404Spjd
844168404Spjd	/* updated atomically */
845168404Spjd	clock_t			b_arc_access;
846168404Spjd
847168404Spjd	/* self protecting */
848168404Spjd	refcount_t		b_refcnt;
849185029Spjd
850286570Smav	arc_callback_t		*b_acb;
851297848Savg	/* temporary buffer holder for in-flight compressed or padded data */
852286570Smav	void			*b_tmp_cdata;
853286570Smav} l1arc_buf_hdr_t;
854286570Smav
855286570Smavtypedef struct l2arc_dev l2arc_dev_t;
856286570Smav
857286570Smavtypedef struct l2arc_buf_hdr {
858286570Smav	/* protected by arc_buf_hdr mutex */
859286570Smav	l2arc_dev_t		*b_dev;		/* L2ARC device */
860286570Smav	uint64_t		b_daddr;	/* disk address, offset byte */
861286570Smav	/* real alloc'd buffer size depending on b_compress applied */
862286570Smav	int32_t			b_asize;
863287706Sdelphij	uint8_t			b_compress;
864286570Smav
865185029Spjd	list_node_t		b_l2node;
866286570Smav} l2arc_buf_hdr_t;
867286570Smav
868286570Smavstruct arc_buf_hdr {
869286570Smav	/* protected by hash lock */
870286570Smav	dva_t			b_dva;
871286570Smav	uint64_t		b_birth;
872286570Smav	/*
873286570Smav	 * Even though this checksum is only set/verified when a buffer is in
874286570Smav	 * the L1 cache, it needs to be in the set of common fields because it
875286570Smav	 * must be preserved from the time before a buffer is written out to
876286570Smav	 * L2ARC until after it is read back in.
877286570Smav	 */
878286570Smav	zio_cksum_t		*b_freeze_cksum;
879286570Smav
880286570Smav	arc_buf_hdr_t		*b_hash_next;
881286570Smav	arc_flags_t		b_flags;
882286570Smav
883286570Smav	/* immutable */
884286570Smav	int32_t			b_size;
885286570Smav	uint64_t		b_spa;
886286570Smav
887286570Smav	/* L2ARC fields. Undefined when not in L2ARC. */
888286570Smav	l2arc_buf_hdr_t		b_l2hdr;
889286570Smav	/* L1ARC fields. Undefined when in l2arc_only state */
890286570Smav	l1arc_buf_hdr_t		b_l1hdr;
891168404Spjd};
892168404Spjd
893302265Ssmh#if defined(__FreeBSD__) && defined(_KERNEL)
894275748Sdelphijstatic int
895275748Sdelphijsysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
896275748Sdelphij{
897275748Sdelphij	uint64_t val;
898275748Sdelphij	int err;
899275748Sdelphij
900275748Sdelphij	val = arc_meta_limit;
901275748Sdelphij	err = sysctl_handle_64(oidp, &val, 0, req);
902275748Sdelphij	if (err != 0 || req->newptr == NULL)
903275748Sdelphij		return (err);
904275748Sdelphij
905275748Sdelphij        if (val <= 0 || val > arc_c_max)
906275748Sdelphij		return (EINVAL);
907275748Sdelphij
908275748Sdelphij	arc_meta_limit = val;
909275748Sdelphij	return (0);
910275748Sdelphij}
911302265Ssmh
912302265Ssmhstatic int
913302265Ssmhsysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
914302265Ssmh{
915302265Ssmh	uint64_t val;
916302265Ssmh	int err;
917302265Ssmh
918302265Ssmh	val = zfs_arc_max;
919302265Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
920302265Ssmh	if (err != 0 || req->newptr == NULL)
921302265Ssmh		return (err);
922302265Ssmh
923302382Ssmh	if (zfs_arc_max == 0) {
924302382Ssmh		/* Loader tunable so blindly set */
925302382Ssmh		zfs_arc_max = val;
926302382Ssmh		return (0);
927302382Ssmh	}
928302382Ssmh
929302265Ssmh	if (val < arc_abs_min || val > kmem_size())
930302265Ssmh		return (EINVAL);
931302265Ssmh	if (val < arc_c_min)
932302265Ssmh		return (EINVAL);
933302265Ssmh	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
934302265Ssmh		return (EINVAL);
935302265Ssmh
936302265Ssmh	arc_c_max = val;
937302265Ssmh
938302265Ssmh	arc_c = arc_c_max;
939302265Ssmh        arc_p = (arc_c >> 1);
940302265Ssmh
941302265Ssmh	if (zfs_arc_meta_limit == 0) {
942302265Ssmh		/* limit meta-data to 1/4 of the arc capacity */
943302265Ssmh		arc_meta_limit = arc_c_max / 4;
944302265Ssmh	}
945302265Ssmh
946302265Ssmh	/* if kmem_flags are set, lets try to use less memory */
947302265Ssmh	if (kmem_debugging())
948302265Ssmh		arc_c = arc_c / 2;
949302265Ssmh
950302265Ssmh	zfs_arc_max = arc_c;
951302265Ssmh
952302265Ssmh	return (0);
953302265Ssmh}
954302265Ssmh
955302265Ssmhstatic int
956302265Ssmhsysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
957302265Ssmh{
958302265Ssmh	uint64_t val;
959302265Ssmh	int err;
960302265Ssmh
961302265Ssmh	val = zfs_arc_min;
962302265Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
963302265Ssmh	if (err != 0 || req->newptr == NULL)
964302265Ssmh		return (err);
965302265Ssmh
966302382Ssmh	if (zfs_arc_min == 0) {
967302382Ssmh		/* Loader tunable so blindly set */
968302382Ssmh		zfs_arc_min = val;
969302382Ssmh		return (0);
970302382Ssmh	}
971302382Ssmh
972302265Ssmh	if (val < arc_abs_min || val > arc_c_max)
973302265Ssmh		return (EINVAL);
974302265Ssmh
975302265Ssmh	arc_c_min = val;
976302265Ssmh
977302265Ssmh	if (zfs_arc_meta_min == 0)
978302265Ssmh                arc_meta_min = arc_c_min / 2;
979302265Ssmh
980302265Ssmh	if (arc_c < arc_c_min)
981302265Ssmh                arc_c = arc_c_min;
982302265Ssmh
983302265Ssmh	zfs_arc_min = arc_c_min;
984302265Ssmh
985302265Ssmh	return (0);
986302265Ssmh}
987275748Sdelphij#endif
988275748Sdelphij
989168404Spjdstatic arc_buf_t *arc_eviction_list;
990168404Spjdstatic arc_buf_hdr_t arc_eviction_hdr;
991168404Spjd
992168404Spjd#define	GHOST_STATE(state)	\
993185029Spjd	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
994185029Spjd	(state) == arc_l2c_only)
995168404Spjd
996275811Sdelphij#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
997275811Sdelphij#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
998275811Sdelphij#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
999275811Sdelphij#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1000275811Sdelphij#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
1001275811Sdelphij#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
1002286570Smav
1003275811Sdelphij#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1004286570Smav#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
1005275811Sdelphij#define	HDR_L2_READING(hdr)	\
1006286570Smav	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1007286570Smav	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1008275811Sdelphij#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1009275811Sdelphij#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1010275811Sdelphij#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1011168404Spjd
1012286570Smav#define	HDR_ISTYPE_METADATA(hdr)	\
1013286570Smav	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1014286570Smav#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1015286570Smav
1016286570Smav#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1017286570Smav#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1018286570Smav
1019168404Spjd/*
1020185029Spjd * Other sizes
1021185029Spjd */
1022185029Spjd
1023286570Smav#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1024286570Smav#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1025185029Spjd
1026185029Spjd/*
1027168404Spjd * Hash table routines
1028168404Spjd */
1029168404Spjd
1030205253Skmacy#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1031168404Spjd
1032168404Spjdstruct ht_lock {
1033168404Spjd	kmutex_t	ht_lock;
1034168404Spjd#ifdef _KERNEL
1035168404Spjd	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1036168404Spjd#endif
1037168404Spjd};
1038168404Spjd
1039168404Spjd#define	BUF_LOCKS 256
1040168404Spjdtypedef struct buf_hash_table {
1041168404Spjd	uint64_t ht_mask;
1042168404Spjd	arc_buf_hdr_t **ht_table;
1043205264Skmacy	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1044168404Spjd} buf_hash_table_t;
1045168404Spjd
1046168404Spjdstatic buf_hash_table_t buf_hash_table;
1047168404Spjd
1048168404Spjd#define	BUF_HASH_INDEX(spa, dva, birth) \
1049168404Spjd	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1050168404Spjd#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1051168404Spjd#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1052219089Spjd#define	HDR_LOCK(hdr) \
1053219089Spjd	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1054168404Spjd
1055168404Spjduint64_t zfs_crc64_table[256];
1056168404Spjd
1057185029Spjd/*
1058185029Spjd * Level 2 ARC
1059185029Spjd */
1060185029Spjd
1061272707Savg#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1062251478Sdelphij#define	L2ARC_HEADROOM		2			/* num of writes */
1063251478Sdelphij/*
1064251478Sdelphij * If we discover during ARC scan any buffers to be compressed, we boost
1065251478Sdelphij * our headroom for the next scanning cycle by this percentage multiple.
1066251478Sdelphij */
1067251478Sdelphij#define	L2ARC_HEADROOM_BOOST	200
1068208373Smm#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1069208373Smm#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1070185029Spjd
1071286598Smav/*
1072286598Smav * Used to distinguish headers that are being process by
1073286598Smav * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
1074286598Smav * address. This can happen when the header is added to the l2arc's list
1075286598Smav * of buffers to write in the first stage of l2arc_write_buffers(), but
1076286598Smav * has not yet been written out which happens in the second stage of
1077286598Smav * l2arc_write_buffers().
1078286598Smav */
1079286598Smav#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
1080286598Smav
1081185029Spjd#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1082185029Spjd#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1083185029Spjd
1084251631Sdelphij/* L2ARC Performance Tunables */
1085185029Spjduint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1086185029Spjduint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1087185029Spjduint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1088251478Sdelphijuint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1089185029Spjduint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1090208373Smmuint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1091219089Spjdboolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1092208373Smmboolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1093208373Smmboolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1094185029Spjd
1095217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1096205231Skmacy    &l2arc_write_max, 0, "max write size");
1097217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1098205231Skmacy    &l2arc_write_boost, 0, "extra write during warmup");
1099217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1100205231Skmacy    &l2arc_headroom, 0, "number of dev writes");
1101217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1102205231Skmacy    &l2arc_feed_secs, 0, "interval seconds");
1103217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1104208373Smm    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1105205231Skmacy
1106205231SkmacySYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1107205231Skmacy    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1108208373SmmSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1109208373Smm    &l2arc_feed_again, 0, "turbo warmup");
1110208373SmmSYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1111208373Smm    &l2arc_norw, 0, "no reads during writes");
1112205231Skmacy
1113217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1114286770Smav    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1115217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1116205231Skmacy    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1117217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1118205231Skmacy    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1119205231Skmacy
1120217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1121286770Smav    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1122217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1123205231Skmacy    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1124217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1125205231Skmacy    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1126205231Skmacy
1127217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1128286770Smav    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1129217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1130205231Skmacy    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1131205231Skmacy    "size of metadata in mru ghost state");
1132217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1133205231Skmacy    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1134205231Skmacy    "size of data in mru ghost state");
1135205231Skmacy
1136217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1137286770Smav    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1138217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1139205231Skmacy    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1140217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1141205231Skmacy    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1142205231Skmacy
1143217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1144286770Smav    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1145217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1146205231Skmacy    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1147205231Skmacy    "size of metadata in mfu ghost state");
1148217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1149205231Skmacy    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1150205231Skmacy    "size of data in mfu ghost state");
1151205231Skmacy
1152217367SmdfSYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1153286770Smav    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1154205231Skmacy
1155185029Spjd/*
1156185029Spjd * L2ARC Internals
1157185029Spjd */
1158286570Smavstruct l2arc_dev {
1159185029Spjd	vdev_t			*l2ad_vdev;	/* vdev */
1160185029Spjd	spa_t			*l2ad_spa;	/* spa */
1161185029Spjd	uint64_t		l2ad_hand;	/* next write location */
1162185029Spjd	uint64_t		l2ad_start;	/* first addr on device */
1163185029Spjd	uint64_t		l2ad_end;	/* last addr on device */
1164185029Spjd	boolean_t		l2ad_first;	/* first sweep through */
1165208373Smm	boolean_t		l2ad_writing;	/* currently writing */
1166286570Smav	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1167286570Smav	list_t			l2ad_buflist;	/* buffer list */
1168185029Spjd	list_node_t		l2ad_node;	/* device list node */
1169286598Smav	refcount_t		l2ad_alloc;	/* allocated bytes */
1170286570Smav};
1171185029Spjd
1172185029Spjdstatic list_t L2ARC_dev_list;			/* device list */
1173185029Spjdstatic list_t *l2arc_dev_list;			/* device list pointer */
1174185029Spjdstatic kmutex_t l2arc_dev_mtx;			/* device list mutex */
1175185029Spjdstatic l2arc_dev_t *l2arc_dev_last;		/* last device used */
1176185029Spjdstatic list_t L2ARC_free_on_write;		/* free after write buf list */
1177185029Spjdstatic list_t *l2arc_free_on_write;		/* free after write list ptr */
1178185029Spjdstatic kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1179185029Spjdstatic uint64_t l2arc_ndev;			/* number of devices */
1180185029Spjd
1181185029Spjdtypedef struct l2arc_read_callback {
1182251478Sdelphij	arc_buf_t		*l2rcb_buf;		/* read buffer */
1183251478Sdelphij	spa_t			*l2rcb_spa;		/* spa */
1184251478Sdelphij	blkptr_t		l2rcb_bp;		/* original blkptr */
1185268123Sdelphij	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1186251478Sdelphij	int			l2rcb_flags;		/* original flags */
1187251478Sdelphij	enum zio_compress	l2rcb_compress;		/* applied compress */
1188297848Savg	void			*l2rcb_data;		/* temporary buffer */
1189185029Spjd} l2arc_read_callback_t;
1190185029Spjd
1191185029Spjdtypedef struct l2arc_write_callback {
1192185029Spjd	l2arc_dev_t	*l2wcb_dev;		/* device info */
1193185029Spjd	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1194185029Spjd} l2arc_write_callback_t;
1195185029Spjd
1196185029Spjdtypedef struct l2arc_data_free {
1197185029Spjd	/* protected by l2arc_free_on_write_mtx */
1198185029Spjd	void		*l2df_data;
1199185029Spjd	size_t		l2df_size;
1200185029Spjd	void		(*l2df_func)(void *, size_t);
1201185029Spjd	list_node_t	l2df_list_node;
1202185029Spjd} l2arc_data_free_t;
1203185029Spjd
1204185029Spjdstatic kmutex_t l2arc_feed_thr_lock;
1205185029Spjdstatic kcondvar_t l2arc_feed_thr_cv;
1206185029Spjdstatic uint8_t l2arc_thread_exit;
1207185029Spjd
1208275811Sdelphijstatic void arc_get_data_buf(arc_buf_t *);
1209275811Sdelphijstatic void arc_access(arc_buf_hdr_t *, kmutex_t *);
1210286763Smavstatic boolean_t arc_is_overflowing();
1211275811Sdelphijstatic void arc_buf_watch(arc_buf_t *);
1212275811Sdelphij
1213286570Smavstatic arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1214286570Smavstatic uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1215286570Smav
1216275811Sdelphijstatic boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1217275811Sdelphijstatic void l2arc_read_done(zio_t *);
1218185029Spjd
1219297848Savgstatic boolean_t l2arc_transform_buf(arc_buf_hdr_t *, boolean_t);
1220275811Sdelphijstatic void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1221275811Sdelphijstatic void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1222251478Sdelphij
1223290191Savgstatic void
1224290191Savgl2arc_trim(const arc_buf_hdr_t *hdr)
1225290191Savg{
1226290191Savg	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1227290191Savg
1228290191Savg	ASSERT(HDR_HAS_L2HDR(hdr));
1229290191Savg	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1230290191Savg
1231290191Savg	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1232290191Savg		return;
1233290191Savg	if (hdr->b_l2hdr.b_asize != 0) {
1234290191Savg		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1235290191Savg		    hdr->b_l2hdr.b_asize, 0);
1236290191Savg	} else {
1237290191Savg		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1238290191Savg	}
1239290191Savg}
1240290191Savg
1241168404Spjdstatic uint64_t
1242209962Smmbuf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1243168404Spjd{
1244168404Spjd	uint8_t *vdva = (uint8_t *)dva;
1245168404Spjd	uint64_t crc = -1ULL;
1246168404Spjd	int i;
1247168404Spjd
1248168404Spjd	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1249168404Spjd
1250168404Spjd	for (i = 0; i < sizeof (dva_t); i++)
1251168404Spjd		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1252168404Spjd
1253209962Smm	crc ^= (spa>>8) ^ birth;
1254168404Spjd
1255168404Spjd	return (crc);
1256168404Spjd}
1257168404Spjd
1258168404Spjd#define	BUF_EMPTY(buf)						\
1259168404Spjd	((buf)->b_dva.dva_word[0] == 0 &&			\
1260286570Smav	(buf)->b_dva.dva_word[1] == 0)
1261168404Spjd
1262168404Spjd#define	BUF_EQUAL(spa, dva, birth, buf)				\
1263168404Spjd	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1264168404Spjd	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1265168404Spjd	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1266168404Spjd
1267219089Spjdstatic void
1268219089Spjdbuf_discard_identity(arc_buf_hdr_t *hdr)
1269219089Spjd{
1270219089Spjd	hdr->b_dva.dva_word[0] = 0;
1271219089Spjd	hdr->b_dva.dva_word[1] = 0;
1272219089Spjd	hdr->b_birth = 0;
1273219089Spjd}
1274219089Spjd
1275168404Spjdstatic arc_buf_hdr_t *
1276268075Sdelphijbuf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1277168404Spjd{
1278268075Sdelphij	const dva_t *dva = BP_IDENTITY(bp);
1279268075Sdelphij	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1280168404Spjd	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1281168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1282275811Sdelphij	arc_buf_hdr_t *hdr;
1283168404Spjd
1284168404Spjd	mutex_enter(hash_lock);
1285275811Sdelphij	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1286275811Sdelphij	    hdr = hdr->b_hash_next) {
1287275811Sdelphij		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1288168404Spjd			*lockp = hash_lock;
1289275811Sdelphij			return (hdr);
1290168404Spjd		}
1291168404Spjd	}
1292168404Spjd	mutex_exit(hash_lock);
1293168404Spjd	*lockp = NULL;
1294168404Spjd	return (NULL);
1295168404Spjd}
1296168404Spjd
1297168404Spjd/*
1298168404Spjd * Insert an entry into the hash table.  If there is already an element
1299168404Spjd * equal to elem in the hash table, then the already existing element
1300168404Spjd * will be returned and the new element will not be inserted.
1301168404Spjd * Otherwise returns NULL.
1302286570Smav * If lockp == NULL, the caller is assumed to already hold the hash lock.
1303168404Spjd */
1304168404Spjdstatic arc_buf_hdr_t *
1305275811Sdelphijbuf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1306168404Spjd{
1307275811Sdelphij	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1308168404Spjd	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1309275811Sdelphij	arc_buf_hdr_t *fhdr;
1310168404Spjd	uint32_t i;
1311168404Spjd
1312275811Sdelphij	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1313275811Sdelphij	ASSERT(hdr->b_birth != 0);
1314275811Sdelphij	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1315286570Smav
1316286570Smav	if (lockp != NULL) {
1317286570Smav		*lockp = hash_lock;
1318286570Smav		mutex_enter(hash_lock);
1319286570Smav	} else {
1320286570Smav		ASSERT(MUTEX_HELD(hash_lock));
1321286570Smav	}
1322286570Smav
1323275811Sdelphij	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1324275811Sdelphij	    fhdr = fhdr->b_hash_next, i++) {
1325275811Sdelphij		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1326275811Sdelphij			return (fhdr);
1327168404Spjd	}
1328168404Spjd
1329275811Sdelphij	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1330275811Sdelphij	buf_hash_table.ht_table[idx] = hdr;
1331275811Sdelphij	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1332168404Spjd
1333168404Spjd	/* collect some hash table performance data */
1334168404Spjd	if (i > 0) {
1335168404Spjd		ARCSTAT_BUMP(arcstat_hash_collisions);
1336168404Spjd		if (i == 1)
1337168404Spjd			ARCSTAT_BUMP(arcstat_hash_chains);
1338168404Spjd
1339168404Spjd		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1340168404Spjd	}
1341168404Spjd
1342168404Spjd	ARCSTAT_BUMP(arcstat_hash_elements);
1343168404Spjd	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1344168404Spjd
1345168404Spjd	return (NULL);
1346168404Spjd}
1347168404Spjd
1348168404Spjdstatic void
1349275811Sdelphijbuf_hash_remove(arc_buf_hdr_t *hdr)
1350168404Spjd{
1351275811Sdelphij	arc_buf_hdr_t *fhdr, **hdrp;
1352275811Sdelphij	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1353168404Spjd
1354168404Spjd	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1355275811Sdelphij	ASSERT(HDR_IN_HASH_TABLE(hdr));
1356168404Spjd
1357275811Sdelphij	hdrp = &buf_hash_table.ht_table[idx];
1358275811Sdelphij	while ((fhdr = *hdrp) != hdr) {
1359275811Sdelphij		ASSERT(fhdr != NULL);
1360275811Sdelphij		hdrp = &fhdr->b_hash_next;
1361168404Spjd	}
1362275811Sdelphij	*hdrp = hdr->b_hash_next;
1363275811Sdelphij	hdr->b_hash_next = NULL;
1364275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1365168404Spjd
1366168404Spjd	/* collect some hash table performance data */
1367168404Spjd	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1368168404Spjd
1369168404Spjd	if (buf_hash_table.ht_table[idx] &&
1370168404Spjd	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1371168404Spjd		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1372168404Spjd}
1373168404Spjd
1374168404Spjd/*
1375168404Spjd * Global data structures and functions for the buf kmem cache.
1376168404Spjd */
1377286570Smavstatic kmem_cache_t *hdr_full_cache;
1378286570Smavstatic kmem_cache_t *hdr_l2only_cache;
1379168404Spjdstatic kmem_cache_t *buf_cache;
1380168404Spjd
1381168404Spjdstatic void
1382168404Spjdbuf_fini(void)
1383168404Spjd{
1384168404Spjd	int i;
1385168404Spjd
1386168404Spjd	kmem_free(buf_hash_table.ht_table,
1387168404Spjd	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1388168404Spjd	for (i = 0; i < BUF_LOCKS; i++)
1389168404Spjd		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1390286570Smav	kmem_cache_destroy(hdr_full_cache);
1391286570Smav	kmem_cache_destroy(hdr_l2only_cache);
1392168404Spjd	kmem_cache_destroy(buf_cache);
1393168404Spjd}
1394168404Spjd
1395168404Spjd/*
1396168404Spjd * Constructor callback - called when the cache is empty
1397168404Spjd * and a new buf is requested.
1398168404Spjd */
1399168404Spjd/* ARGSUSED */
1400168404Spjdstatic int
1401286570Smavhdr_full_cons(void *vbuf, void *unused, int kmflag)
1402168404Spjd{
1403275811Sdelphij	arc_buf_hdr_t *hdr = vbuf;
1404168404Spjd
1405286570Smav	bzero(hdr, HDR_FULL_SIZE);
1406286570Smav	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1407286570Smav	refcount_create(&hdr->b_l1hdr.b_refcnt);
1408286570Smav	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1409286763Smav	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1410286570Smav	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1411185029Spjd
1412168404Spjd	return (0);
1413168404Spjd}
1414168404Spjd
1415185029Spjd/* ARGSUSED */
1416185029Spjdstatic int
1417286570Smavhdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1418286570Smav{
1419286570Smav	arc_buf_hdr_t *hdr = vbuf;
1420286570Smav
1421286570Smav	bzero(hdr, HDR_L2ONLY_SIZE);
1422286570Smav	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1423286570Smav
1424286570Smav	return (0);
1425286570Smav}
1426286570Smav
1427286570Smav/* ARGSUSED */
1428286570Smavstatic int
1429185029Spjdbuf_cons(void *vbuf, void *unused, int kmflag)
1430185029Spjd{
1431185029Spjd	arc_buf_t *buf = vbuf;
1432185029Spjd
1433185029Spjd	bzero(buf, sizeof (arc_buf_t));
1434219089Spjd	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1435208373Smm	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1436208373Smm
1437185029Spjd	return (0);
1438185029Spjd}
1439185029Spjd
1440168404Spjd/*
1441168404Spjd * Destructor callback - called when a cached buf is
1442168404Spjd * no longer required.
1443168404Spjd */
1444168404Spjd/* ARGSUSED */
1445168404Spjdstatic void
1446286570Smavhdr_full_dest(void *vbuf, void *unused)
1447168404Spjd{
1448275811Sdelphij	arc_buf_hdr_t *hdr = vbuf;
1449168404Spjd
1450275811Sdelphij	ASSERT(BUF_EMPTY(hdr));
1451286570Smav	cv_destroy(&hdr->b_l1hdr.b_cv);
1452286570Smav	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1453286570Smav	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1454286763Smav	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1455286570Smav	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1456168404Spjd}
1457168404Spjd
1458185029Spjd/* ARGSUSED */
1459185029Spjdstatic void
1460286570Smavhdr_l2only_dest(void *vbuf, void *unused)
1461286570Smav{
1462286570Smav	arc_buf_hdr_t *hdr = vbuf;
1463286570Smav
1464286570Smav	ASSERT(BUF_EMPTY(hdr));
1465286570Smav	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1466286570Smav}
1467286570Smav
1468286570Smav/* ARGSUSED */
1469286570Smavstatic void
1470185029Spjdbuf_dest(void *vbuf, void *unused)
1471185029Spjd{
1472185029Spjd	arc_buf_t *buf = vbuf;
1473185029Spjd
1474219089Spjd	mutex_destroy(&buf->b_evict_lock);
1475208373Smm	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1476185029Spjd}
1477185029Spjd
1478168404Spjd/*
1479168404Spjd * Reclaim callback -- invoked when memory is low.
1480168404Spjd */
1481168404Spjd/* ARGSUSED */
1482168404Spjdstatic void
1483168404Spjdhdr_recl(void *unused)
1484168404Spjd{
1485168404Spjd	dprintf("hdr_recl called\n");
1486168404Spjd	/*
1487168404Spjd	 * umem calls the reclaim func when we destroy the buf cache,
1488168404Spjd	 * which is after we do arc_fini().
1489168404Spjd	 */
1490168404Spjd	if (!arc_dead)
1491286763Smav		cv_signal(&arc_reclaim_thread_cv);
1492168404Spjd}
1493168404Spjd
1494168404Spjdstatic void
1495168404Spjdbuf_init(void)
1496168404Spjd{
1497168404Spjd	uint64_t *ct;
1498168404Spjd	uint64_t hsize = 1ULL << 12;
1499168404Spjd	int i, j;
1500168404Spjd
1501168404Spjd	/*
1502168404Spjd	 * The hash table is big enough to fill all of physical memory
1503269230Sdelphij	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1504269230Sdelphij	 * By default, the table will take up
1505269230Sdelphij	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1506168404Spjd	 */
1507269230Sdelphij	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1508168404Spjd		hsize <<= 1;
1509168404Spjdretry:
1510168404Spjd	buf_hash_table.ht_mask = hsize - 1;
1511168404Spjd	buf_hash_table.ht_table =
1512168404Spjd	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1513168404Spjd	if (buf_hash_table.ht_table == NULL) {
1514168404Spjd		ASSERT(hsize > (1ULL << 8));
1515168404Spjd		hsize >>= 1;
1516168404Spjd		goto retry;
1517168404Spjd	}
1518168404Spjd
1519286570Smav	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1520286570Smav	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1521286570Smav	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1522286570Smav	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1523286570Smav	    NULL, NULL, 0);
1524168404Spjd	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1525185029Spjd	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1526168404Spjd
1527168404Spjd	for (i = 0; i < 256; i++)
1528168404Spjd		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1529168404Spjd			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1530168404Spjd
1531168404Spjd	for (i = 0; i < BUF_LOCKS; i++) {
1532168404Spjd		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1533168404Spjd		    NULL, MUTEX_DEFAULT, NULL);
1534168404Spjd	}
1535168404Spjd}
1536168404Spjd
1537286570Smav/*
1538286570Smav * Transition between the two allocation states for the arc_buf_hdr struct.
1539286570Smav * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1540286570Smav * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1541286570Smav * version is used when a cache buffer is only in the L2ARC in order to reduce
1542286570Smav * memory usage.
1543286570Smav */
1544286570Smavstatic arc_buf_hdr_t *
1545286570Smavarc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1546286570Smav{
1547286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
1548286570Smav
1549286570Smav	arc_buf_hdr_t *nhdr;
1550286570Smav	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1551286570Smav
1552286570Smav	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1553286570Smav	    (old == hdr_l2only_cache && new == hdr_full_cache));
1554286570Smav
1555286570Smav	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1556286570Smav
1557286570Smav	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1558286570Smav	buf_hash_remove(hdr);
1559286570Smav
1560286570Smav	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1561286598Smav
1562286570Smav	if (new == hdr_full_cache) {
1563286570Smav		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1564286570Smav		/*
1565286570Smav		 * arc_access and arc_change_state need to be aware that a
1566286570Smav		 * header has just come out of L2ARC, so we set its state to
1567286570Smav		 * l2c_only even though it's about to change.
1568286570Smav		 */
1569286570Smav		nhdr->b_l1hdr.b_state = arc_l2c_only;
1570286763Smav
1571286763Smav		/* Verify previous threads set to NULL before freeing */
1572286763Smav		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1573286570Smav	} else {
1574286570Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1575286570Smav		ASSERT0(hdr->b_l1hdr.b_datacnt);
1576286763Smav
1577286570Smav		/*
1578286763Smav		 * If we've reached here, We must have been called from
1579286763Smav		 * arc_evict_hdr(), as such we should have already been
1580286763Smav		 * removed from any ghost list we were previously on
1581286763Smav		 * (which protects us from racing with arc_evict_state),
1582286763Smav		 * thus no locking is needed during this check.
1583286570Smav		 */
1584286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1585286763Smav
1586286763Smav		/*
1587286763Smav		 * A buffer must not be moved into the arc_l2c_only
1588286763Smav		 * state if it's not finished being written out to the
1589286763Smav		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1590286763Smav		 * might try to be accessed, even though it was removed.
1591286763Smav		 */
1592286763Smav		VERIFY(!HDR_L2_WRITING(hdr));
1593286763Smav		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1594286763Smav
1595288064Savg#ifdef ZFS_DEBUG
1596288064Savg		if (hdr->b_l1hdr.b_thawed != NULL) {
1597288064Savg			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1598288064Savg			hdr->b_l1hdr.b_thawed = NULL;
1599288064Savg		}
1600288064Savg#endif
1601288064Savg
1602286570Smav		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1603286570Smav	}
1604286570Smav	/*
1605286570Smav	 * The header has been reallocated so we need to re-insert it into any
1606286570Smav	 * lists it was on.
1607286570Smav	 */
1608286570Smav	(void) buf_hash_insert(nhdr, NULL);
1609286570Smav
1610286570Smav	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1611286570Smav
1612286570Smav	mutex_enter(&dev->l2ad_mtx);
1613286570Smav
1614286570Smav	/*
1615286570Smav	 * We must place the realloc'ed header back into the list at
1616286570Smav	 * the same spot. Otherwise, if it's placed earlier in the list,
1617286570Smav	 * l2arc_write_buffers() could find it during the function's
1618286570Smav	 * write phase, and try to write it out to the l2arc.
1619286570Smav	 */
1620286570Smav	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1621286570Smav	list_remove(&dev->l2ad_buflist, hdr);
1622286570Smav
1623286570Smav	mutex_exit(&dev->l2ad_mtx);
1624286570Smav
1625286598Smav	/*
1626286598Smav	 * Since we're using the pointer address as the tag when
1627286598Smav	 * incrementing and decrementing the l2ad_alloc refcount, we
1628286598Smav	 * must remove the old pointer (that we're about to destroy) and
1629286598Smav	 * add the new pointer to the refcount. Otherwise we'd remove
1630286598Smav	 * the wrong pointer address when calling arc_hdr_destroy() later.
1631286598Smav	 */
1632286598Smav
1633286598Smav	(void) refcount_remove_many(&dev->l2ad_alloc,
1634286598Smav	    hdr->b_l2hdr.b_asize, hdr);
1635286598Smav
1636286598Smav	(void) refcount_add_many(&dev->l2ad_alloc,
1637286598Smav	    nhdr->b_l2hdr.b_asize, nhdr);
1638286598Smav
1639286570Smav	buf_discard_identity(hdr);
1640286570Smav	hdr->b_freeze_cksum = NULL;
1641286570Smav	kmem_cache_free(old, hdr);
1642286570Smav
1643286570Smav	return (nhdr);
1644286570Smav}
1645286570Smav
1646286570Smav
1647168404Spjd#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1648168404Spjd
1649168404Spjdstatic void
1650168404Spjdarc_cksum_verify(arc_buf_t *buf)
1651168404Spjd{
1652168404Spjd	zio_cksum_t zc;
1653168404Spjd
1654168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1655168404Spjd		return;
1656168404Spjd
1657286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1658286570Smav	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1659286570Smav		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1660168404Spjd		return;
1661168404Spjd	}
1662289422Smav	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1663168404Spjd	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1664168404Spjd		panic("buffer modified while frozen!");
1665286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1666168404Spjd}
1667168404Spjd
1668185029Spjdstatic int
1669185029Spjdarc_cksum_equal(arc_buf_t *buf)
1670185029Spjd{
1671185029Spjd	zio_cksum_t zc;
1672185029Spjd	int equal;
1673185029Spjd
1674286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675289422Smav	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1676185029Spjd	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1677286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1678185029Spjd
1679185029Spjd	return (equal);
1680185029Spjd}
1681185029Spjd
1682168404Spjdstatic void
1683185029Spjdarc_cksum_compute(arc_buf_t *buf, boolean_t force)
1684168404Spjd{
1685185029Spjd	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1686168404Spjd		return;
1687168404Spjd
1688286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1689168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
1690286570Smav		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1691168404Spjd		return;
1692168404Spjd	}
1693168404Spjd	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1694168404Spjd	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1695289422Smav	    NULL, buf->b_hdr->b_freeze_cksum);
1696286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1697240133Smm#ifdef illumos
1698240133Smm	arc_buf_watch(buf);
1699277300Ssmh#endif
1700168404Spjd}
1701168404Spjd
1702240133Smm#ifdef illumos
1703240133Smm#ifndef _KERNEL
1704240133Smmtypedef struct procctl {
1705240133Smm	long cmd;
1706240133Smm	prwatch_t prwatch;
1707240133Smm} procctl_t;
1708240133Smm#endif
1709240133Smm
1710240133Smm/* ARGSUSED */
1711240133Smmstatic void
1712240133Smmarc_buf_unwatch(arc_buf_t *buf)
1713240133Smm{
1714240133Smm#ifndef _KERNEL
1715240133Smm	if (arc_watch) {
1716240133Smm		int result;
1717240133Smm		procctl_t ctl;
1718240133Smm		ctl.cmd = PCWATCH;
1719240133Smm		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1720240133Smm		ctl.prwatch.pr_size = 0;
1721240133Smm		ctl.prwatch.pr_wflags = 0;
1722240133Smm		result = write(arc_procfd, &ctl, sizeof (ctl));
1723240133Smm		ASSERT3U(result, ==, sizeof (ctl));
1724240133Smm	}
1725240133Smm#endif
1726240133Smm}
1727240133Smm
1728240133Smm/* ARGSUSED */
1729240133Smmstatic void
1730240133Smmarc_buf_watch(arc_buf_t *buf)
1731240133Smm{
1732240133Smm#ifndef _KERNEL
1733240133Smm	if (arc_watch) {
1734240133Smm		int result;
1735240133Smm		procctl_t ctl;
1736240133Smm		ctl.cmd = PCWATCH;
1737240133Smm		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1738240133Smm		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1739240133Smm		ctl.prwatch.pr_wflags = WA_WRITE;
1740240133Smm		result = write(arc_procfd, &ctl, sizeof (ctl));
1741240133Smm		ASSERT3U(result, ==, sizeof (ctl));
1742240133Smm	}
1743240133Smm#endif
1744240133Smm}
1745240133Smm#endif /* illumos */
1746240133Smm
1747286570Smavstatic arc_buf_contents_t
1748286570Smavarc_buf_type(arc_buf_hdr_t *hdr)
1749286570Smav{
1750286570Smav	if (HDR_ISTYPE_METADATA(hdr)) {
1751286570Smav		return (ARC_BUFC_METADATA);
1752286570Smav	} else {
1753286570Smav		return (ARC_BUFC_DATA);
1754286570Smav	}
1755286570Smav}
1756286570Smav
1757286570Smavstatic uint32_t
1758286570Smavarc_bufc_to_flags(arc_buf_contents_t type)
1759286570Smav{
1760286570Smav	switch (type) {
1761286570Smav	case ARC_BUFC_DATA:
1762286570Smav		/* metadata field is 0 if buffer contains normal data */
1763286570Smav		return (0);
1764286570Smav	case ARC_BUFC_METADATA:
1765286570Smav		return (ARC_FLAG_BUFC_METADATA);
1766286570Smav	default:
1767286570Smav		break;
1768286570Smav	}
1769286570Smav	panic("undefined ARC buffer type!");
1770286570Smav	return ((uint32_t)-1);
1771286570Smav}
1772286570Smav
1773168404Spjdvoid
1774168404Spjdarc_buf_thaw(arc_buf_t *buf)
1775168404Spjd{
1776185029Spjd	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1777286570Smav		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1778185029Spjd			panic("modifying non-anon buffer!");
1779286570Smav		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1780185029Spjd			panic("modifying buffer while i/o in progress!");
1781185029Spjd		arc_cksum_verify(buf);
1782185029Spjd	}
1783168404Spjd
1784286570Smav	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1785168404Spjd	if (buf->b_hdr->b_freeze_cksum != NULL) {
1786168404Spjd		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1787168404Spjd		buf->b_hdr->b_freeze_cksum = NULL;
1788168404Spjd	}
1789219089Spjd
1790286570Smav#ifdef ZFS_DEBUG
1791219089Spjd	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1792286570Smav		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1793286570Smav			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1794286570Smav		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1795219089Spjd	}
1796286570Smav#endif
1797219089Spjd
1798286570Smav	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1799240133Smm
1800240133Smm#ifdef illumos
1801240133Smm	arc_buf_unwatch(buf);
1802277300Ssmh#endif
1803168404Spjd}
1804168404Spjd
1805168404Spjdvoid
1806168404Spjdarc_buf_freeze(arc_buf_t *buf)
1807168404Spjd{
1808219089Spjd	kmutex_t *hash_lock;
1809219089Spjd
1810168404Spjd	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1811168404Spjd		return;
1812168404Spjd
1813219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
1814219089Spjd	mutex_enter(hash_lock);
1815219089Spjd
1816168404Spjd	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1817286570Smav	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1818185029Spjd	arc_cksum_compute(buf, B_FALSE);
1819219089Spjd	mutex_exit(hash_lock);
1820240133Smm
1821168404Spjd}
1822168404Spjd
1823168404Spjdstatic void
1824275811Sdelphijadd_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1825168404Spjd{
1826286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
1827168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1828286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
1829168404Spjd
1830286570Smav	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1831286570Smav	    (state != arc_anon)) {
1832286570Smav		/* We don't use the L2-only state list. */
1833286570Smav		if (state != arc_l2c_only) {
1834286763Smav			arc_buf_contents_t type = arc_buf_type(hdr);
1835286570Smav			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1836286763Smav			multilist_t *list = &state->arcs_list[type];
1837286763Smav			uint64_t *size = &state->arcs_lsize[type];
1838168404Spjd
1839286763Smav			multilist_remove(list, hdr);
1840286763Smav
1841286570Smav			if (GHOST_STATE(state)) {
1842286570Smav				ASSERT0(hdr->b_l1hdr.b_datacnt);
1843286570Smav				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1844286570Smav				delta = hdr->b_size;
1845286570Smav			}
1846286570Smav			ASSERT(delta > 0);
1847286570Smav			ASSERT3U(*size, >=, delta);
1848286570Smav			atomic_add_64(size, -delta);
1849168404Spjd		}
1850185029Spjd		/* remove the prefetch flag if we get a reference */
1851286570Smav		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1852168404Spjd	}
1853168404Spjd}
1854168404Spjd
1855168404Spjdstatic int
1856275811Sdelphijremove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1857168404Spjd{
1858168404Spjd	int cnt;
1859286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
1860168404Spjd
1861286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
1862168404Spjd	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1863168404Spjd	ASSERT(!GHOST_STATE(state));
1864168404Spjd
1865286570Smav	/*
1866286570Smav	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1867286570Smav	 * check to prevent usage of the arc_l2c_only list.
1868286570Smav	 */
1869286570Smav	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1870168404Spjd	    (state != arc_anon)) {
1871286763Smav		arc_buf_contents_t type = arc_buf_type(hdr);
1872286763Smav		multilist_t *list = &state->arcs_list[type];
1873286763Smav		uint64_t *size = &state->arcs_lsize[type];
1874185029Spjd
1875286763Smav		multilist_insert(list, hdr);
1876286763Smav
1877286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1878286570Smav		atomic_add_64(size, hdr->b_size *
1879286570Smav		    hdr->b_l1hdr.b_datacnt);
1880168404Spjd	}
1881168404Spjd	return (cnt);
1882168404Spjd}
1883168404Spjd
1884168404Spjd/*
1885286763Smav * Move the supplied buffer to the indicated state. The hash lock
1886168404Spjd * for the buffer must be held by the caller.
1887168404Spjd */
1888168404Spjdstatic void
1889275811Sdelphijarc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1890275811Sdelphij    kmutex_t *hash_lock)
1891168404Spjd{
1892286570Smav	arc_state_t *old_state;
1893286570Smav	int64_t refcnt;
1894286570Smav	uint32_t datacnt;
1895168404Spjd	uint64_t from_delta, to_delta;
1896286570Smav	arc_buf_contents_t buftype = arc_buf_type(hdr);
1897168404Spjd
1898286570Smav	/*
1899286570Smav	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1900286570Smav	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1901286570Smav	 * L1 hdr doesn't always exist when we change state to arc_anon before
1902286570Smav	 * destroying a header, in which case reallocating to add the L1 hdr is
1903286570Smav	 * pointless.
1904286570Smav	 */
1905286570Smav	if (HDR_HAS_L1HDR(hdr)) {
1906286570Smav		old_state = hdr->b_l1hdr.b_state;
1907286570Smav		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1908286570Smav		datacnt = hdr->b_l1hdr.b_datacnt;
1909286570Smav	} else {
1910286570Smav		old_state = arc_l2c_only;
1911286570Smav		refcnt = 0;
1912286570Smav		datacnt = 0;
1913286570Smav	}
1914286570Smav
1915168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
1916258632Savg	ASSERT3P(new_state, !=, old_state);
1917286570Smav	ASSERT(refcnt == 0 || datacnt > 0);
1918286570Smav	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1919286570Smav	ASSERT(old_state != arc_anon || datacnt <= 1);
1920168404Spjd
1921286570Smav	from_delta = to_delta = datacnt * hdr->b_size;
1922168404Spjd
1923168404Spjd	/*
1924168404Spjd	 * If this buffer is evictable, transfer it from the
1925168404Spjd	 * old state list to the new state list.
1926168404Spjd	 */
1927168404Spjd	if (refcnt == 0) {
1928286570Smav		if (old_state != arc_anon && old_state != arc_l2c_only) {
1929286570Smav			uint64_t *size = &old_state->arcs_lsize[buftype];
1930168404Spjd
1931286570Smav			ASSERT(HDR_HAS_L1HDR(hdr));
1932286763Smav			multilist_remove(&old_state->arcs_list[buftype], hdr);
1933168404Spjd
1934168404Spjd			/*
1935168404Spjd			 * If prefetching out of the ghost cache,
1936219089Spjd			 * we will have a non-zero datacnt.
1937168404Spjd			 */
1938286570Smav			if (GHOST_STATE(old_state) && datacnt == 0) {
1939168404Spjd				/* ghost elements have a ghost size */
1940286570Smav				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1941275811Sdelphij				from_delta = hdr->b_size;
1942168404Spjd			}
1943185029Spjd			ASSERT3U(*size, >=, from_delta);
1944185029Spjd			atomic_add_64(size, -from_delta);
1945168404Spjd		}
1946286570Smav		if (new_state != arc_anon && new_state != arc_l2c_only) {
1947286570Smav			uint64_t *size = &new_state->arcs_lsize[buftype];
1948168404Spjd
1949286570Smav			/*
1950286570Smav			 * An L1 header always exists here, since if we're
1951286570Smav			 * moving to some L1-cached state (i.e. not l2c_only or
1952286570Smav			 * anonymous), we realloc the header to add an L1hdr
1953286570Smav			 * beforehand.
1954286570Smav			 */
1955286570Smav			ASSERT(HDR_HAS_L1HDR(hdr));
1956286763Smav			multilist_insert(&new_state->arcs_list[buftype], hdr);
1957168404Spjd
1958168404Spjd			/* ghost elements have a ghost size */
1959168404Spjd			if (GHOST_STATE(new_state)) {
1960286762Smav				ASSERT0(datacnt);
1961286570Smav				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1962275811Sdelphij				to_delta = hdr->b_size;
1963168404Spjd			}
1964185029Spjd			atomic_add_64(size, to_delta);
1965168404Spjd		}
1966168404Spjd	}
1967168404Spjd
1968275811Sdelphij	ASSERT(!BUF_EMPTY(hdr));
1969275811Sdelphij	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1970275811Sdelphij		buf_hash_remove(hdr);
1971168404Spjd
1972286570Smav	/* adjust state sizes (ignore arc_l2c_only) */
1973286766Smav
1974286766Smav	if (to_delta && new_state != arc_l2c_only) {
1975286766Smav		ASSERT(HDR_HAS_L1HDR(hdr));
1976286766Smav		if (GHOST_STATE(new_state)) {
1977286766Smav			ASSERT0(datacnt);
1978286766Smav
1979286766Smav			/*
1980286766Smav			 * We moving a header to a ghost state, we first
1981286766Smav			 * remove all arc buffers. Thus, we'll have a
1982286766Smav			 * datacnt of zero, and no arc buffer to use for
1983286766Smav			 * the reference. As a result, we use the arc
1984286766Smav			 * header pointer for the reference.
1985286766Smav			 */
1986286766Smav			(void) refcount_add_many(&new_state->arcs_size,
1987286766Smav			    hdr->b_size, hdr);
1988286766Smav		} else {
1989286766Smav			ASSERT3U(datacnt, !=, 0);
1990286766Smav
1991286766Smav			/*
1992286766Smav			 * Each individual buffer holds a unique reference,
1993286766Smav			 * thus we must remove each of these references one
1994286766Smav			 * at a time.
1995286766Smav			 */
1996286766Smav			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1997286766Smav			    buf = buf->b_next) {
1998286766Smav				(void) refcount_add_many(&new_state->arcs_size,
1999286766Smav				    hdr->b_size, buf);
2000286766Smav			}
2001286766Smav		}
2002286766Smav	}
2003286766Smav
2004286570Smav	if (from_delta && old_state != arc_l2c_only) {
2005286766Smav		ASSERT(HDR_HAS_L1HDR(hdr));
2006286766Smav		if (GHOST_STATE(old_state)) {
2007286766Smav			/*
2008286766Smav			 * When moving a header off of a ghost state,
2009286766Smav			 * there's the possibility for datacnt to be
2010286766Smav			 * non-zero. This is because we first add the
2011286766Smav			 * arc buffer to the header prior to changing
2012286766Smav			 * the header's state. Since we used the header
2013286766Smav			 * for the reference when putting the header on
2014286766Smav			 * the ghost state, we must balance that and use
2015286766Smav			 * the header when removing off the ghost state
2016286766Smav			 * (even though datacnt is non zero).
2017286766Smav			 */
2018286766Smav
2019286766Smav			IMPLY(datacnt == 0, new_state == arc_anon ||
2020286766Smav			    new_state == arc_l2c_only);
2021286766Smav
2022286766Smav			(void) refcount_remove_many(&old_state->arcs_size,
2023286766Smav			    hdr->b_size, hdr);
2024286766Smav		} else {
2025286766Smav			ASSERT3P(datacnt, !=, 0);
2026286766Smav
2027286766Smav			/*
2028286766Smav			 * Each individual buffer holds a unique reference,
2029286766Smav			 * thus we must remove each of these references one
2030286766Smav			 * at a time.
2031286766Smav			 */
2032286766Smav			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2033286766Smav			    buf = buf->b_next) {
2034286766Smav				(void) refcount_remove_many(
2035286766Smav				    &old_state->arcs_size, hdr->b_size, buf);
2036286766Smav			}
2037286766Smav		}
2038168404Spjd	}
2039286766Smav
2040286570Smav	if (HDR_HAS_L1HDR(hdr))
2041286570Smav		hdr->b_l1hdr.b_state = new_state;
2042185029Spjd
2043286570Smav	/*
2044286570Smav	 * L2 headers should never be on the L2 state list since they don't
2045286570Smav	 * have L1 headers allocated.
2046286570Smav	 */
2047286763Smav	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2048286763Smav	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2049168404Spjd}
2050168404Spjd
2051185029Spjdvoid
2052208373Smmarc_space_consume(uint64_t space, arc_space_type_t type)
2053185029Spjd{
2054208373Smm	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2055208373Smm
2056208373Smm	switch (type) {
2057208373Smm	case ARC_SPACE_DATA:
2058208373Smm		ARCSTAT_INCR(arcstat_data_size, space);
2059208373Smm		break;
2060286574Smav	case ARC_SPACE_META:
2061286574Smav		ARCSTAT_INCR(arcstat_metadata_size, space);
2062286574Smav		break;
2063208373Smm	case ARC_SPACE_OTHER:
2064208373Smm		ARCSTAT_INCR(arcstat_other_size, space);
2065208373Smm		break;
2066208373Smm	case ARC_SPACE_HDRS:
2067208373Smm		ARCSTAT_INCR(arcstat_hdr_size, space);
2068208373Smm		break;
2069208373Smm	case ARC_SPACE_L2HDRS:
2070208373Smm		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2071208373Smm		break;
2072208373Smm	}
2073208373Smm
2074286574Smav	if (type != ARC_SPACE_DATA)
2075286574Smav		ARCSTAT_INCR(arcstat_meta_used, space);
2076286574Smav
2077185029Spjd	atomic_add_64(&arc_size, space);
2078185029Spjd}
2079185029Spjd
2080185029Spjdvoid
2081208373Smmarc_space_return(uint64_t space, arc_space_type_t type)
2082185029Spjd{
2083208373Smm	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2084208373Smm
2085208373Smm	switch (type) {
2086208373Smm	case ARC_SPACE_DATA:
2087208373Smm		ARCSTAT_INCR(arcstat_data_size, -space);
2088208373Smm		break;
2089286574Smav	case ARC_SPACE_META:
2090286574Smav		ARCSTAT_INCR(arcstat_metadata_size, -space);
2091286574Smav		break;
2092208373Smm	case ARC_SPACE_OTHER:
2093208373Smm		ARCSTAT_INCR(arcstat_other_size, -space);
2094208373Smm		break;
2095208373Smm	case ARC_SPACE_HDRS:
2096208373Smm		ARCSTAT_INCR(arcstat_hdr_size, -space);
2097208373Smm		break;
2098208373Smm	case ARC_SPACE_L2HDRS:
2099208373Smm		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2100208373Smm		break;
2101208373Smm	}
2102208373Smm
2103286574Smav	if (type != ARC_SPACE_DATA) {
2104286574Smav		ASSERT(arc_meta_used >= space);
2105286574Smav		if (arc_meta_max < arc_meta_used)
2106286574Smav			arc_meta_max = arc_meta_used;
2107286574Smav		ARCSTAT_INCR(arcstat_meta_used, -space);
2108286574Smav	}
2109286574Smav
2110185029Spjd	ASSERT(arc_size >= space);
2111185029Spjd	atomic_add_64(&arc_size, -space);
2112185029Spjd}
2113185029Spjd
2114168404Spjdarc_buf_t *
2115286570Smavarc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2116168404Spjd{
2117168404Spjd	arc_buf_hdr_t *hdr;
2118168404Spjd	arc_buf_t *buf;
2119168404Spjd
2120168404Spjd	ASSERT3U(size, >, 0);
2121286570Smav	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2122168404Spjd	ASSERT(BUF_EMPTY(hdr));
2123286570Smav	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2124168404Spjd	hdr->b_size = size;
2125228103Smm	hdr->b_spa = spa_load_guid(spa);
2126286570Smav
2127185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2128168404Spjd	buf->b_hdr = hdr;
2129168404Spjd	buf->b_data = NULL;
2130168404Spjd	buf->b_efunc = NULL;
2131168404Spjd	buf->b_private = NULL;
2132168404Spjd	buf->b_next = NULL;
2133286570Smav
2134286570Smav	hdr->b_flags = arc_bufc_to_flags(type);
2135286570Smav	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2136286570Smav
2137286570Smav	hdr->b_l1hdr.b_buf = buf;
2138286570Smav	hdr->b_l1hdr.b_state = arc_anon;
2139286570Smav	hdr->b_l1hdr.b_arc_access = 0;
2140286570Smav	hdr->b_l1hdr.b_datacnt = 1;
2141286763Smav	hdr->b_l1hdr.b_tmp_cdata = NULL;
2142286570Smav
2143168404Spjd	arc_get_data_buf(buf);
2144286570Smav	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2145286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2146168404Spjd
2147168404Spjd	return (buf);
2148168404Spjd}
2149168404Spjd
2150209962Smmstatic char *arc_onloan_tag = "onloan";
2151209962Smm
2152209962Smm/*
2153209962Smm * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2154209962Smm * flight data by arc_tempreserve_space() until they are "returned". Loaned
2155209962Smm * buffers must be returned to the arc before they can be used by the DMU or
2156209962Smm * freed.
2157209962Smm */
2158209962Smmarc_buf_t *
2159209962Smmarc_loan_buf(spa_t *spa, int size)
2160209962Smm{
2161209962Smm	arc_buf_t *buf;
2162209962Smm
2163209962Smm	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2164209962Smm
2165209962Smm	atomic_add_64(&arc_loaned_bytes, size);
2166209962Smm	return (buf);
2167209962Smm}
2168209962Smm
2169209962Smm/*
2170209962Smm * Return a loaned arc buffer to the arc.
2171209962Smm */
2172209962Smmvoid
2173209962Smmarc_return_buf(arc_buf_t *buf, void *tag)
2174209962Smm{
2175209962Smm	arc_buf_hdr_t *hdr = buf->b_hdr;
2176209962Smm
2177209962Smm	ASSERT(buf->b_data != NULL);
2178286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2179286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2180286570Smav	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2181209962Smm
2182209962Smm	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2183209962Smm}
2184209962Smm
2185219089Spjd/* Detach an arc_buf from a dbuf (tag) */
2186219089Spjdvoid
2187219089Spjdarc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2188219089Spjd{
2189286570Smav	arc_buf_hdr_t *hdr = buf->b_hdr;
2190219089Spjd
2191219089Spjd	ASSERT(buf->b_data != NULL);
2192286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2193286570Smav	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2194286570Smav	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2195219089Spjd	buf->b_efunc = NULL;
2196219089Spjd	buf->b_private = NULL;
2197219089Spjd
2198219089Spjd	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2199219089Spjd}
2200219089Spjd
2201168404Spjdstatic arc_buf_t *
2202168404Spjdarc_buf_clone(arc_buf_t *from)
2203168404Spjd{
2204168404Spjd	arc_buf_t *buf;
2205168404Spjd	arc_buf_hdr_t *hdr = from->b_hdr;
2206168404Spjd	uint64_t size = hdr->b_size;
2207168404Spjd
2208286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2209286570Smav	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2210219089Spjd
2211185029Spjd	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2212168404Spjd	buf->b_hdr = hdr;
2213168404Spjd	buf->b_data = NULL;
2214168404Spjd	buf->b_efunc = NULL;
2215168404Spjd	buf->b_private = NULL;
2216286570Smav	buf->b_next = hdr->b_l1hdr.b_buf;
2217286570Smav	hdr->b_l1hdr.b_buf = buf;
2218168404Spjd	arc_get_data_buf(buf);
2219168404Spjd	bcopy(from->b_data, buf->b_data, size);
2220242845Sdelphij
2221242845Sdelphij	/*
2222242845Sdelphij	 * This buffer already exists in the arc so create a duplicate
2223242845Sdelphij	 * copy for the caller.  If the buffer is associated with user data
2224242845Sdelphij	 * then track the size and number of duplicates.  These stats will be
2225242845Sdelphij	 * updated as duplicate buffers are created and destroyed.
2226242845Sdelphij	 */
2227286570Smav	if (HDR_ISTYPE_DATA(hdr)) {
2228242845Sdelphij		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2229242845Sdelphij		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2230242845Sdelphij	}
2231286570Smav	hdr->b_l1hdr.b_datacnt += 1;
2232168404Spjd	return (buf);
2233168404Spjd}
2234168404Spjd
2235168404Spjdvoid
2236168404Spjdarc_buf_add_ref(arc_buf_t *buf, void* tag)
2237168404Spjd{
2238168404Spjd	arc_buf_hdr_t *hdr;
2239168404Spjd	kmutex_t *hash_lock;
2240168404Spjd
2241168404Spjd	/*
2242185029Spjd	 * Check to see if this buffer is evicted.  Callers
2243185029Spjd	 * must verify b_data != NULL to know if the add_ref
2244185029Spjd	 * was successful.
2245168404Spjd	 */
2246219089Spjd	mutex_enter(&buf->b_evict_lock);
2247185029Spjd	if (buf->b_data == NULL) {
2248219089Spjd		mutex_exit(&buf->b_evict_lock);
2249168404Spjd		return;
2250168404Spjd	}
2251219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
2252219089Spjd	mutex_enter(hash_lock);
2253185029Spjd	hdr = buf->b_hdr;
2254286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2255219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2256219089Spjd	mutex_exit(&buf->b_evict_lock);
2257168404Spjd
2258286570Smav	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2259286570Smav	    hdr->b_l1hdr.b_state == arc_mfu);
2260286570Smav
2261168404Spjd	add_reference(hdr, hash_lock, tag);
2262208373Smm	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2263168404Spjd	arc_access(hdr, hash_lock);
2264168404Spjd	mutex_exit(hash_lock);
2265168404Spjd	ARCSTAT_BUMP(arcstat_hits);
2266286570Smav	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2267286570Smav	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2268168404Spjd	    data, metadata, hits);
2269168404Spjd}
2270168404Spjd
2271274172Savgstatic void
2272274172Savgarc_buf_free_on_write(void *data, size_t size,
2273274172Savg    void (*free_func)(void *, size_t))
2274274172Savg{
2275274172Savg	l2arc_data_free_t *df;
2276274172Savg
2277286763Smav	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2278274172Savg	df->l2df_data = data;
2279274172Savg	df->l2df_size = size;
2280274172Savg	df->l2df_func = free_func;
2281274172Savg	mutex_enter(&l2arc_free_on_write_mtx);
2282274172Savg	list_insert_head(l2arc_free_on_write, df);
2283274172Savg	mutex_exit(&l2arc_free_on_write_mtx);
2284274172Savg}
2285274172Savg
2286185029Spjd/*
2287185029Spjd * Free the arc data buffer.  If it is an l2arc write in progress,
2288185029Spjd * the buffer is placed on l2arc_free_on_write to be freed later.
2289185029Spjd */
2290168404Spjdstatic void
2291240133Smmarc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2292185029Spjd{
2293240133Smm	arc_buf_hdr_t *hdr = buf->b_hdr;
2294240133Smm
2295185029Spjd	if (HDR_L2_WRITING(hdr)) {
2296274172Savg		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2297185029Spjd		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2298185029Spjd	} else {
2299240133Smm		free_func(buf->b_data, hdr->b_size);
2300185029Spjd	}
2301185029Spjd}
2302185029Spjd
2303185029Spjdstatic void
2304274172Savgarc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2305274172Savg{
2306297848Savg	size_t align, asize, len;
2307297848Savg
2308286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
2309286570Smav	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2310274172Savg
2311286570Smav	/*
2312286570Smav	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2313286570Smav	 * that doesn't exist, the header is in the arc_l2c_only state,
2314286570Smav	 * and there isn't anything to free (it's already been freed).
2315286570Smav	 */
2316286570Smav	if (!HDR_HAS_L1HDR(hdr))
2317286570Smav		return;
2318274172Savg
2319286763Smav	/*
2320286763Smav	 * The header isn't being written to the l2arc device, thus it
2321286763Smav	 * shouldn't have a b_tmp_cdata to free.
2322286763Smav	 */
2323286763Smav	if (!HDR_L2_WRITING(hdr)) {
2324286763Smav		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2325274172Savg		return;
2326286763Smav	}
2327274172Savg
2328286763Smav	/*
2329297848Savg	 * The bufer has been chosen for writing to L2ARC, but it's
2330297848Savg	 * not being written just yet.  In other words,
2331297848Savg	 * b_tmp_cdata points to exactly the same buffer as b_data,
2332297848Savg	 * l2arc_transform_buf hasn't been called.
2333286763Smav	 */
2334297848Savg	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
2335297848Savg		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==,
2336297848Savg		    hdr->b_l1hdr.b_buf->b_data);
2337297848Savg		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_OFF);
2338301873Savg		hdr->b_l1hdr.b_tmp_cdata = NULL;
2339286763Smav		return;
2340286763Smav	}
2341286570Smav
2342286763Smav	/*
2343286763Smav	 * There's nothing to free since the buffer was all zero's and
2344286763Smav	 * compressed to a zero length buffer.
2345286763Smav	 */
2346287706Sdelphij	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2347286763Smav		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2348286763Smav		return;
2349286763Smav	}
2350286763Smav
2351297848Savg	/*
2352297848Savg	 * Nothing to do if the temporary buffer was not required.
2353297848Savg	 */
2354297848Savg	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2355297848Savg		return;
2356286763Smav
2357274172Savg	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2358297848Savg	len = hdr->b_size;
2359297848Savg	align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
2360297848Savg	asize = P2ROUNDUP(len, align);
2361297848Savg	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, asize,
2362297848Savg	    zio_data_buf_free);
2363286570Smav	hdr->b_l1hdr.b_tmp_cdata = NULL;
2364274172Savg}
2365274172Savg
2366286767Smav/*
2367286767Smav * Free up buf->b_data and if 'remove' is set, then pull the
2368286767Smav * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2369286767Smav */
2370274172Savgstatic void
2371286763Smavarc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2372168404Spjd{
2373168404Spjd	arc_buf_t **bufp;
2374168404Spjd
2375168404Spjd	/* free up data associated with the buf */
2376286570Smav	if (buf->b_data != NULL) {
2377286570Smav		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2378168404Spjd		uint64_t size = buf->b_hdr->b_size;
2379286570Smav		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2380168404Spjd
2381168404Spjd		arc_cksum_verify(buf);
2382240133Smm#ifdef illumos
2383240133Smm		arc_buf_unwatch(buf);
2384277300Ssmh#endif
2385219089Spjd
2386286763Smav		if (type == ARC_BUFC_METADATA) {
2387286763Smav			arc_buf_data_free(buf, zio_buf_free);
2388286763Smav			arc_space_return(size, ARC_SPACE_META);
2389286763Smav		} else {
2390286763Smav			ASSERT(type == ARC_BUFC_DATA);
2391286763Smav			arc_buf_data_free(buf, zio_data_buf_free);
2392286763Smav			arc_space_return(size, ARC_SPACE_DATA);
2393168404Spjd		}
2394286763Smav
2395286763Smav		/* protected by hash lock, if in the hash table */
2396286763Smav		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2397185029Spjd			uint64_t *cnt = &state->arcs_lsize[type];
2398185029Spjd
2399286570Smav			ASSERT(refcount_is_zero(
2400286570Smav			    &buf->b_hdr->b_l1hdr.b_refcnt));
2401286570Smav			ASSERT(state != arc_anon && state != arc_l2c_only);
2402185029Spjd
2403185029Spjd			ASSERT3U(*cnt, >=, size);
2404185029Spjd			atomic_add_64(cnt, -size);
2405168404Spjd		}
2406286766Smav
2407286766Smav		(void) refcount_remove_many(&state->arcs_size, size, buf);
2408168404Spjd		buf->b_data = NULL;
2409242845Sdelphij
2410242845Sdelphij		/*
2411242845Sdelphij		 * If we're destroying a duplicate buffer make sure
2412242845Sdelphij		 * that the appropriate statistics are updated.
2413242845Sdelphij		 */
2414286570Smav		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2415286570Smav		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2416242845Sdelphij			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2417242845Sdelphij			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2418242845Sdelphij		}
2419286570Smav		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2420286570Smav		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2421168404Spjd	}
2422168404Spjd
2423168404Spjd	/* only remove the buf if requested */
2424268858Sdelphij	if (!remove)
2425168404Spjd		return;
2426168404Spjd
2427168404Spjd	/* remove the buf from the hdr list */
2428286570Smav	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2429286570Smav	    bufp = &(*bufp)->b_next)
2430168404Spjd		continue;
2431168404Spjd	*bufp = buf->b_next;
2432219089Spjd	buf->b_next = NULL;
2433168404Spjd
2434168404Spjd	ASSERT(buf->b_efunc == NULL);
2435168404Spjd
2436168404Spjd	/* clean up the buf */
2437168404Spjd	buf->b_hdr = NULL;
2438168404Spjd	kmem_cache_free(buf_cache, buf);
2439168404Spjd}
2440168404Spjd
2441168404Spjdstatic void
2442286598Smavarc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2443286598Smav{
2444286598Smav	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2445286598Smav	l2arc_dev_t *dev = l2hdr->b_dev;
2446286598Smav
2447286598Smav	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2448286598Smav	ASSERT(HDR_HAS_L2HDR(hdr));
2449286598Smav
2450286598Smav	list_remove(&dev->l2ad_buflist, hdr);
2451286598Smav
2452286598Smav	/*
2453286598Smav	 * We don't want to leak the b_tmp_cdata buffer that was
2454286598Smav	 * allocated in l2arc_write_buffers()
2455286598Smav	 */
2456286598Smav	arc_buf_l2_cdata_free(hdr);
2457286598Smav
2458286598Smav	/*
2459286598Smav	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2460286598Smav	 * this header is being processed by l2arc_write_buffers() (i.e.
2461286598Smav	 * it's in the first stage of l2arc_write_buffers()).
2462286598Smav	 * Re-affirming that truth here, just to serve as a reminder. If
2463286598Smav	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2464286598Smav	 * may not have its HDR_L2_WRITING flag set. (the write may have
2465286598Smav	 * completed, in which case HDR_L2_WRITING will be false and the
2466286598Smav	 * b_daddr field will point to the address of the buffer on disk).
2467286598Smav	 */
2468286598Smav	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2469286598Smav
2470286598Smav	/*
2471286598Smav	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2472286598Smav	 * l2arc_write_buffers(). Since we've just removed this header
2473286598Smav	 * from the l2arc buffer list, this header will never reach the
2474286598Smav	 * second stage of l2arc_write_buffers(), which increments the
2475286598Smav	 * accounting stats for this header. Thus, we must be careful
2476286598Smav	 * not to decrement them for this header either.
2477286598Smav	 */
2478286598Smav	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2479286598Smav		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2480286598Smav		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2481286598Smav
2482286598Smav		vdev_space_update(dev->l2ad_vdev,
2483286598Smav		    -l2hdr->b_asize, 0, 0);
2484286598Smav
2485286598Smav		(void) refcount_remove_many(&dev->l2ad_alloc,
2486286598Smav		    l2hdr->b_asize, hdr);
2487286598Smav	}
2488286598Smav
2489286598Smav	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2490286598Smav}
2491286598Smav
2492286598Smavstatic void
2493168404Spjdarc_hdr_destroy(arc_buf_hdr_t *hdr)
2494168404Spjd{
2495286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2496286570Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2497286570Smav		    hdr->b_l1hdr.b_datacnt > 0);
2498286570Smav		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2499286570Smav		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2500286570Smav	}
2501168404Spjd	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2502286570Smav	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2503168404Spjd
2504286570Smav	if (HDR_HAS_L2HDR(hdr)) {
2505286598Smav		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2506286598Smav		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2507286570Smav
2508286598Smav		if (!buflist_held)
2509286598Smav			mutex_enter(&dev->l2ad_mtx);
2510219089Spjd
2511286570Smav		/*
2512286598Smav		 * Even though we checked this conditional above, we
2513286598Smav		 * need to check this again now that we have the
2514286598Smav		 * l2ad_mtx. This is because we could be racing with
2515286598Smav		 * another thread calling l2arc_evict() which might have
2516286598Smav		 * destroyed this header's L2 portion as we were waiting
2517286598Smav		 * to acquire the l2ad_mtx. If that happens, we don't
2518286598Smav		 * want to re-destroy the header's L2 portion.
2519286570Smav		 */
2520286598Smav		if (HDR_HAS_L2HDR(hdr)) {
2521290191Savg			l2arc_trim(hdr);
2522286598Smav			arc_hdr_l2hdr_destroy(hdr);
2523286598Smav		}
2524286570Smav
2525219089Spjd		if (!buflist_held)
2526286598Smav			mutex_exit(&dev->l2ad_mtx);
2527185029Spjd	}
2528185029Spjd
2529286570Smav	if (!BUF_EMPTY(hdr))
2530219089Spjd		buf_discard_identity(hdr);
2531286776Smav
2532168404Spjd	if (hdr->b_freeze_cksum != NULL) {
2533168404Spjd		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2534168404Spjd		hdr->b_freeze_cksum = NULL;
2535168404Spjd	}
2536286570Smav
2537286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2538286570Smav		while (hdr->b_l1hdr.b_buf) {
2539286570Smav			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2540286570Smav
2541286570Smav			if (buf->b_efunc != NULL) {
2542286763Smav				mutex_enter(&arc_user_evicts_lock);
2543286570Smav				mutex_enter(&buf->b_evict_lock);
2544286570Smav				ASSERT(buf->b_hdr != NULL);
2545286763Smav				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2546286570Smav				hdr->b_l1hdr.b_buf = buf->b_next;
2547286570Smav				buf->b_hdr = &arc_eviction_hdr;
2548286570Smav				buf->b_next = arc_eviction_list;
2549286570Smav				arc_eviction_list = buf;
2550286570Smav				mutex_exit(&buf->b_evict_lock);
2551286763Smav				cv_signal(&arc_user_evicts_cv);
2552286763Smav				mutex_exit(&arc_user_evicts_lock);
2553286570Smav			} else {
2554286763Smav				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2555286570Smav			}
2556286570Smav		}
2557286570Smav#ifdef ZFS_DEBUG
2558286570Smav		if (hdr->b_l1hdr.b_thawed != NULL) {
2559286570Smav			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2560286570Smav			hdr->b_l1hdr.b_thawed = NULL;
2561286570Smav		}
2562286570Smav#endif
2563219089Spjd	}
2564168404Spjd
2565168404Spjd	ASSERT3P(hdr->b_hash_next, ==, NULL);
2566286570Smav	if (HDR_HAS_L1HDR(hdr)) {
2567286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2568286570Smav		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2569286570Smav		kmem_cache_free(hdr_full_cache, hdr);
2570286570Smav	} else {
2571286570Smav		kmem_cache_free(hdr_l2only_cache, hdr);
2572286570Smav	}
2573168404Spjd}
2574168404Spjd
2575168404Spjdvoid
2576168404Spjdarc_buf_free(arc_buf_t *buf, void *tag)
2577168404Spjd{
2578168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2579286570Smav	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2580168404Spjd
2581168404Spjd	ASSERT(buf->b_efunc == NULL);
2582168404Spjd	ASSERT(buf->b_data != NULL);
2583168404Spjd
2584168404Spjd	if (hashed) {
2585168404Spjd		kmutex_t *hash_lock = HDR_LOCK(hdr);
2586168404Spjd
2587168404Spjd		mutex_enter(hash_lock);
2588219089Spjd		hdr = buf->b_hdr;
2589219089Spjd		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2590219089Spjd
2591168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
2592286570Smav		if (hdr->b_l1hdr.b_datacnt > 1) {
2593286763Smav			arc_buf_destroy(buf, TRUE);
2594219089Spjd		} else {
2595286570Smav			ASSERT(buf == hdr->b_l1hdr.b_buf);
2596219089Spjd			ASSERT(buf->b_efunc == NULL);
2597275811Sdelphij			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2598219089Spjd		}
2599168404Spjd		mutex_exit(hash_lock);
2600168404Spjd	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2601168404Spjd		int destroy_hdr;
2602168404Spjd		/*
2603168404Spjd		 * We are in the middle of an async write.  Don't destroy
2604168404Spjd		 * this buffer unless the write completes before we finish
2605168404Spjd		 * decrementing the reference count.
2606168404Spjd		 */
2607286763Smav		mutex_enter(&arc_user_evicts_lock);
2608168404Spjd		(void) remove_reference(hdr, NULL, tag);
2609286570Smav		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2610168404Spjd		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2611286763Smav		mutex_exit(&arc_user_evicts_lock);
2612168404Spjd		if (destroy_hdr)
2613168404Spjd			arc_hdr_destroy(hdr);
2614168404Spjd	} else {
2615219089Spjd		if (remove_reference(hdr, NULL, tag) > 0)
2616286763Smav			arc_buf_destroy(buf, TRUE);
2617219089Spjd		else
2618168404Spjd			arc_hdr_destroy(hdr);
2619168404Spjd	}
2620168404Spjd}
2621168404Spjd
2622248571Smmboolean_t
2623168404Spjdarc_buf_remove_ref(arc_buf_t *buf, void* tag)
2624168404Spjd{
2625168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
2626168404Spjd	kmutex_t *hash_lock = HDR_LOCK(hdr);
2627248571Smm	boolean_t no_callback = (buf->b_efunc == NULL);
2628168404Spjd
2629286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
2630286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2631168404Spjd		arc_buf_free(buf, tag);
2632168404Spjd		return (no_callback);
2633168404Spjd	}
2634168404Spjd
2635168404Spjd	mutex_enter(hash_lock);
2636219089Spjd	hdr = buf->b_hdr;
2637286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2638219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2639286570Smav	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2640168404Spjd	ASSERT(buf->b_data != NULL);
2641168404Spjd
2642168404Spjd	(void) remove_reference(hdr, hash_lock, tag);
2643286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
2644168404Spjd		if (no_callback)
2645286763Smav			arc_buf_destroy(buf, TRUE);
2646168404Spjd	} else if (no_callback) {
2647286570Smav		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2648219089Spjd		ASSERT(buf->b_efunc == NULL);
2649275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2650168404Spjd	}
2651286570Smav	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2652286570Smav	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2653168404Spjd	mutex_exit(hash_lock);
2654168404Spjd	return (no_callback);
2655168404Spjd}
2656168404Spjd
2657286570Smavint32_t
2658168404Spjdarc_buf_size(arc_buf_t *buf)
2659168404Spjd{
2660168404Spjd	return (buf->b_hdr->b_size);
2661168404Spjd}
2662168404Spjd
2663168404Spjd/*
2664242845Sdelphij * Called from the DMU to determine if the current buffer should be
2665242845Sdelphij * evicted. In order to ensure proper locking, the eviction must be initiated
2666242845Sdelphij * from the DMU. Return true if the buffer is associated with user data and
2667242845Sdelphij * duplicate buffers still exist.
2668242845Sdelphij */
2669242845Sdelphijboolean_t
2670242845Sdelphijarc_buf_eviction_needed(arc_buf_t *buf)
2671242845Sdelphij{
2672242845Sdelphij	arc_buf_hdr_t *hdr;
2673242845Sdelphij	boolean_t evict_needed = B_FALSE;
2674242845Sdelphij
2675242845Sdelphij	if (zfs_disable_dup_eviction)
2676242845Sdelphij		return (B_FALSE);
2677242845Sdelphij
2678242845Sdelphij	mutex_enter(&buf->b_evict_lock);
2679242845Sdelphij	hdr = buf->b_hdr;
2680242845Sdelphij	if (hdr == NULL) {
2681242845Sdelphij		/*
2682242845Sdelphij		 * We are in arc_do_user_evicts(); let that function
2683242845Sdelphij		 * perform the eviction.
2684242845Sdelphij		 */
2685242845Sdelphij		ASSERT(buf->b_data == NULL);
2686242845Sdelphij		mutex_exit(&buf->b_evict_lock);
2687242845Sdelphij		return (B_FALSE);
2688242845Sdelphij	} else if (buf->b_data == NULL) {
2689242845Sdelphij		/*
2690242845Sdelphij		 * We have already been added to the arc eviction list;
2691242845Sdelphij		 * recommend eviction.
2692242845Sdelphij		 */
2693242845Sdelphij		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2694242845Sdelphij		mutex_exit(&buf->b_evict_lock);
2695242845Sdelphij		return (B_TRUE);
2696242845Sdelphij	}
2697242845Sdelphij
2698286570Smav	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2699242845Sdelphij		evict_needed = B_TRUE;
2700242845Sdelphij
2701242845Sdelphij	mutex_exit(&buf->b_evict_lock);
2702242845Sdelphij	return (evict_needed);
2703242845Sdelphij}
2704242845Sdelphij
2705242845Sdelphij/*
2706286763Smav * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2707286763Smav * state of the header is dependent on it's state prior to entering this
2708286763Smav * function. The following transitions are possible:
2709185029Spjd *
2710286763Smav *    - arc_mru -> arc_mru_ghost
2711286763Smav *    - arc_mfu -> arc_mfu_ghost
2712286763Smav *    - arc_mru_ghost -> arc_l2c_only
2713286763Smav *    - arc_mru_ghost -> deleted
2714286763Smav *    - arc_mfu_ghost -> arc_l2c_only
2715286763Smav *    - arc_mfu_ghost -> deleted
2716168404Spjd */
2717286763Smavstatic int64_t
2718286763Smavarc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2719168404Spjd{
2720286763Smav	arc_state_t *evicted_state, *state;
2721286763Smav	int64_t bytes_evicted = 0;
2722168404Spjd
2723286763Smav	ASSERT(MUTEX_HELD(hash_lock));
2724286763Smav	ASSERT(HDR_HAS_L1HDR(hdr));
2725168404Spjd
2726286763Smav	state = hdr->b_l1hdr.b_state;
2727286763Smav	if (GHOST_STATE(state)) {
2728286763Smav		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2729286763Smav		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2730206796Spjd
2731286763Smav		/*
2732286763Smav		 * l2arc_write_buffers() relies on a header's L1 portion
2733286763Smav		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2734286763Smav		 * Thus, we cannot push a header onto the arc_l2c_only
2735286763Smav		 * state (removing it's L1 piece) until the header is
2736286763Smav		 * done being written to the l2arc.
2737286763Smav		 */
2738286763Smav		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2739286763Smav			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2740286763Smav			return (bytes_evicted);
2741286763Smav		}
2742286762Smav
2743286763Smav		ARCSTAT_BUMP(arcstat_deleted);
2744286763Smav		bytes_evicted += hdr->b_size;
2745286762Smav
2746286763Smav		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2747286763Smav
2748286763Smav		if (HDR_HAS_L2HDR(hdr)) {
2749275780Sdelphij			/*
2750286763Smav			 * This buffer is cached on the 2nd Level ARC;
2751286763Smav			 * don't destroy the header.
2752275780Sdelphij			 */
2753286763Smav			arc_change_state(arc_l2c_only, hdr, hash_lock);
2754286763Smav			/*
2755286763Smav			 * dropping from L1+L2 cached to L2-only,
2756286763Smav			 * realloc to remove the L1 header.
2757286763Smav			 */
2758286763Smav			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2759286763Smav			    hdr_l2only_cache);
2760286763Smav		} else {
2761286763Smav			arc_change_state(arc_anon, hdr, hash_lock);
2762286763Smav			arc_hdr_destroy(hdr);
2763275780Sdelphij		}
2764286763Smav		return (bytes_evicted);
2765275780Sdelphij	}
2766275780Sdelphij
2767286763Smav	ASSERT(state == arc_mru || state == arc_mfu);
2768286763Smav	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2769206796Spjd
2770286763Smav	/* prefetch buffers have a minimum lifespan */
2771286763Smav	if (HDR_IO_IN_PROGRESS(hdr) ||
2772286763Smav	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2773286763Smav	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2774286763Smav	    arc_min_prefetch_lifespan)) {
2775286763Smav		ARCSTAT_BUMP(arcstat_evict_skip);
2776286763Smav		return (bytes_evicted);
2777286763Smav	}
2778286763Smav
2779286763Smav	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2780286763Smav	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2781286763Smav	while (hdr->b_l1hdr.b_buf) {
2782286763Smav		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2783286763Smav		if (!mutex_tryenter(&buf->b_evict_lock)) {
2784286763Smav			ARCSTAT_BUMP(arcstat_mutex_miss);
2785286763Smav			break;
2786168404Spjd		}
2787286763Smav		if (buf->b_data != NULL)
2788286763Smav			bytes_evicted += hdr->b_size;
2789286763Smav		if (buf->b_efunc != NULL) {
2790286763Smav			mutex_enter(&arc_user_evicts_lock);
2791286763Smav			arc_buf_destroy(buf, FALSE);
2792286763Smav			hdr->b_l1hdr.b_buf = buf->b_next;
2793286763Smav			buf->b_hdr = &arc_eviction_hdr;
2794286763Smav			buf->b_next = arc_eviction_list;
2795286763Smav			arc_eviction_list = buf;
2796286763Smav			cv_signal(&arc_user_evicts_cv);
2797286763Smav			mutex_exit(&arc_user_evicts_lock);
2798286763Smav			mutex_exit(&buf->b_evict_lock);
2799286763Smav		} else {
2800286763Smav			mutex_exit(&buf->b_evict_lock);
2801286763Smav			arc_buf_destroy(buf, TRUE);
2802286763Smav		}
2803286763Smav	}
2804258632Savg
2805286763Smav	if (HDR_HAS_L2HDR(hdr)) {
2806286763Smav		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2807286763Smav	} else {
2808286763Smav		if (l2arc_write_eligible(hdr->b_spa, hdr))
2809286763Smav			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2810286763Smav		else
2811286763Smav			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2812286763Smav	}
2813258632Savg
2814286763Smav	if (hdr->b_l1hdr.b_datacnt == 0) {
2815286763Smav		arc_change_state(evicted_state, hdr, hash_lock);
2816286763Smav		ASSERT(HDR_IN_HASH_TABLE(hdr));
2817286763Smav		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2818286763Smav		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2819286763Smav		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2820286763Smav	}
2821286763Smav
2822286763Smav	return (bytes_evicted);
2823286763Smav}
2824286763Smav
2825286763Smavstatic uint64_t
2826286763Smavarc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2827286763Smav    uint64_t spa, int64_t bytes)
2828286763Smav{
2829286763Smav	multilist_sublist_t *mls;
2830286763Smav	uint64_t bytes_evicted = 0;
2831286763Smav	arc_buf_hdr_t *hdr;
2832286763Smav	kmutex_t *hash_lock;
2833286763Smav	int evict_count = 0;
2834286763Smav
2835286763Smav	ASSERT3P(marker, !=, NULL);
2836286763Smav	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2837286763Smav
2838286763Smav	mls = multilist_sublist_lock(ml, idx);
2839286763Smav
2840286763Smav	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2841286763Smav	    hdr = multilist_sublist_prev(mls, marker)) {
2842286763Smav		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2843286763Smav		    (evict_count >= zfs_arc_evict_batch_limit))
2844286763Smav			break;
2845286763Smav
2846258632Savg		/*
2847286763Smav		 * To keep our iteration location, move the marker
2848286763Smav		 * forward. Since we're not holding hdr's hash lock, we
2849286763Smav		 * must be very careful and not remove 'hdr' from the
2850286763Smav		 * sublist. Otherwise, other consumers might mistake the
2851286763Smav		 * 'hdr' as not being on a sublist when they call the
2852286763Smav		 * multilist_link_active() function (they all rely on
2853286763Smav		 * the hash lock protecting concurrent insertions and
2854286763Smav		 * removals). multilist_sublist_move_forward() was
2855286763Smav		 * specifically implemented to ensure this is the case
2856286763Smav		 * (only 'marker' will be removed and re-inserted).
2857258632Savg		 */
2858286763Smav		multilist_sublist_move_forward(mls, marker);
2859286763Smav
2860286763Smav		/*
2861286763Smav		 * The only case where the b_spa field should ever be
2862286763Smav		 * zero, is the marker headers inserted by
2863286763Smav		 * arc_evict_state(). It's possible for multiple threads
2864286763Smav		 * to be calling arc_evict_state() concurrently (e.g.
2865286763Smav		 * dsl_pool_close() and zio_inject_fault()), so we must
2866286763Smav		 * skip any markers we see from these other threads.
2867286763Smav		 */
2868286763Smav		if (hdr->b_spa == 0)
2869258632Savg			continue;
2870286763Smav
2871286763Smav		/* we're only interested in evicting buffers of a certain spa */
2872286763Smav		if (spa != 0 && hdr->b_spa != spa) {
2873286763Smav			ARCSTAT_BUMP(arcstat_evict_skip);
2874286763Smav			continue;
2875258632Savg		}
2876258632Savg
2877275811Sdelphij		hash_lock = HDR_LOCK(hdr);
2878208373Smm
2879286763Smav		/*
2880286763Smav		 * We aren't calling this function from any code path
2881286763Smav		 * that would already be holding a hash lock, so we're
2882286763Smav		 * asserting on this assumption to be defensive in case
2883286763Smav		 * this ever changes. Without this check, it would be
2884286763Smav		 * possible to incorrectly increment arcstat_mutex_miss
2885286763Smav		 * below (e.g. if the code changed such that we called
2886286763Smav		 * this function with a hash lock held).
2887286763Smav		 */
2888286763Smav		ASSERT(!MUTEX_HELD(hash_lock));
2889208373Smm
2890286763Smav		if (mutex_tryenter(hash_lock)) {
2891286763Smav			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2892286763Smav			mutex_exit(hash_lock);
2893286763Smav
2894286763Smav			bytes_evicted += evicted;
2895286763Smav
2896286763Smav			/*
2897286763Smav			 * If evicted is zero, arc_evict_hdr() must have
2898286763Smav			 * decided to skip this header, don't increment
2899286763Smav			 * evict_count in this case.
2900286763Smav			 */
2901286763Smav			if (evicted != 0)
2902286763Smav				evict_count++;
2903286763Smav
2904286763Smav			/*
2905286763Smav			 * If arc_size isn't overflowing, signal any
2906286763Smav			 * threads that might happen to be waiting.
2907286763Smav			 *
2908286763Smav			 * For each header evicted, we wake up a single
2909286763Smav			 * thread. If we used cv_broadcast, we could
2910286763Smav			 * wake up "too many" threads causing arc_size
2911286763Smav			 * to significantly overflow arc_c; since
2912286763Smav			 * arc_get_data_buf() doesn't check for overflow
2913286763Smav			 * when it's woken up (it doesn't because it's
2914286763Smav			 * possible for the ARC to be overflowing while
2915286763Smav			 * full of un-evictable buffers, and the
2916286763Smav			 * function should proceed in this case).
2917286763Smav			 *
2918286763Smav			 * If threads are left sleeping, due to not
2919286763Smav			 * using cv_broadcast, they will be woken up
2920286763Smav			 * just before arc_reclaim_thread() sleeps.
2921286763Smav			 */
2922286763Smav			mutex_enter(&arc_reclaim_lock);
2923286763Smav			if (!arc_is_overflowing())
2924286763Smav				cv_signal(&arc_reclaim_waiters_cv);
2925286763Smav			mutex_exit(&arc_reclaim_lock);
2926168404Spjd		} else {
2927286763Smav			ARCSTAT_BUMP(arcstat_mutex_miss);
2928168404Spjd		}
2929168404Spjd	}
2930168404Spjd
2931286763Smav	multilist_sublist_unlock(mls);
2932206796Spjd
2933286763Smav	return (bytes_evicted);
2934286763Smav}
2935168404Spjd
2936286763Smav/*
2937286763Smav * Evict buffers from the given arc state, until we've removed the
2938286763Smav * specified number of bytes. Move the removed buffers to the
2939286763Smav * appropriate evict state.
2940286763Smav *
2941286763Smav * This function makes a "best effort". It skips over any buffers
2942286763Smav * it can't get a hash_lock on, and so, may not catch all candidates.
2943286763Smav * It may also return without evicting as much space as requested.
2944286763Smav *
2945286763Smav * If bytes is specified using the special value ARC_EVICT_ALL, this
2946286763Smav * will evict all available (i.e. unlocked and evictable) buffers from
2947286763Smav * the given arc state; which is used by arc_flush().
2948286763Smav */
2949286763Smavstatic uint64_t
2950286763Smavarc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2951286763Smav    arc_buf_contents_t type)
2952286763Smav{
2953286763Smav	uint64_t total_evicted = 0;
2954286763Smav	multilist_t *ml = &state->arcs_list[type];
2955286763Smav	int num_sublists;
2956286763Smav	arc_buf_hdr_t **markers;
2957168404Spjd
2958286763Smav	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2959168404Spjd
2960286763Smav	num_sublists = multilist_get_num_sublists(ml);
2961286763Smav
2962185029Spjd	/*
2963286763Smav	 * If we've tried to evict from each sublist, made some
2964286763Smav	 * progress, but still have not hit the target number of bytes
2965286763Smav	 * to evict, we want to keep trying. The markers allow us to
2966286763Smav	 * pick up where we left off for each individual sublist, rather
2967286763Smav	 * than starting from the tail each time.
2968185029Spjd	 */
2969286763Smav	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2970286763Smav	for (int i = 0; i < num_sublists; i++) {
2971286763Smav		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2972185029Spjd
2973286763Smav		/*
2974286763Smav		 * A b_spa of 0 is used to indicate that this header is
2975286763Smav		 * a marker. This fact is used in arc_adjust_type() and
2976286763Smav		 * arc_evict_state_impl().
2977286763Smav		 */
2978286763Smav		markers[i]->b_spa = 0;
2979168404Spjd
2980286763Smav		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2981286763Smav		multilist_sublist_insert_tail(mls, markers[i]);
2982286763Smav		multilist_sublist_unlock(mls);
2983286763Smav	}
2984168404Spjd
2985286763Smav	/*
2986286763Smav	 * While we haven't hit our target number of bytes to evict, or
2987286763Smav	 * we're evicting all available buffers.
2988286763Smav	 */
2989286763Smav	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2990286763Smav		/*
2991286763Smav		 * Start eviction using a randomly selected sublist,
2992286763Smav		 * this is to try and evenly balance eviction across all
2993286763Smav		 * sublists. Always starting at the same sublist
2994286763Smav		 * (e.g. index 0) would cause evictions to favor certain
2995286763Smav		 * sublists over others.
2996286763Smav		 */
2997286763Smav		int sublist_idx = multilist_get_random_index(ml);
2998286763Smav		uint64_t scan_evicted = 0;
2999219089Spjd
3000286763Smav		for (int i = 0; i < num_sublists; i++) {
3001286763Smav			uint64_t bytes_remaining;
3002286763Smav			uint64_t bytes_evicted;
3003219089Spjd
3004286763Smav			if (bytes == ARC_EVICT_ALL)
3005286763Smav				bytes_remaining = ARC_EVICT_ALL;
3006286763Smav			else if (total_evicted < bytes)
3007286763Smav				bytes_remaining = bytes - total_evicted;
3008286763Smav			else
3009286763Smav				break;
3010258632Savg
3011286763Smav			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3012286763Smav			    markers[sublist_idx], spa, bytes_remaining);
3013286763Smav
3014286763Smav			scan_evicted += bytes_evicted;
3015286763Smav			total_evicted += bytes_evicted;
3016286763Smav
3017286763Smav			/* we've reached the end, wrap to the beginning */
3018286763Smav			if (++sublist_idx >= num_sublists)
3019286763Smav				sublist_idx = 0;
3020286763Smav		}
3021286763Smav
3022258632Savg		/*
3023286763Smav		 * If we didn't evict anything during this scan, we have
3024286763Smav		 * no reason to believe we'll evict more during another
3025286763Smav		 * scan, so break the loop.
3026258632Savg		 */
3027286763Smav		if (scan_evicted == 0) {
3028286763Smav			/* This isn't possible, let's make that obvious */
3029286763Smav			ASSERT3S(bytes, !=, 0);
3030185029Spjd
3031286763Smav			/*
3032286763Smav			 * When bytes is ARC_EVICT_ALL, the only way to
3033286763Smav			 * break the loop is when scan_evicted is zero.
3034286763Smav			 * In that case, we actually have evicted enough,
3035286763Smav			 * so we don't want to increment the kstat.
3036286763Smav			 */
3037286763Smav			if (bytes != ARC_EVICT_ALL) {
3038286763Smav				ASSERT3S(total_evicted, <, bytes);
3039286763Smav				ARCSTAT_BUMP(arcstat_evict_not_enough);
3040185029Spjd			}
3041185029Spjd
3042286763Smav			break;
3043258632Savg		}
3044286763Smav	}
3045258632Savg
3046286763Smav	for (int i = 0; i < num_sublists; i++) {
3047286763Smav		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3048286763Smav		multilist_sublist_remove(mls, markers[i]);
3049286763Smav		multilist_sublist_unlock(mls);
3050286763Smav
3051286763Smav		kmem_cache_free(hdr_full_cache, markers[i]);
3052168404Spjd	}
3053286763Smav	kmem_free(markers, sizeof (*markers) * num_sublists);
3054206796Spjd
3055286763Smav	return (total_evicted);
3056286763Smav}
3057286763Smav
3058286763Smav/*
3059286763Smav * Flush all "evictable" data of the given type from the arc state
3060286763Smav * specified. This will not evict any "active" buffers (i.e. referenced).
3061286763Smav *
3062286763Smav * When 'retry' is set to FALSE, the function will make a single pass
3063286763Smav * over the state and evict any buffers that it can. Since it doesn't
3064286763Smav * continually retry the eviction, it might end up leaving some buffers
3065286763Smav * in the ARC due to lock misses.
3066286763Smav *
3067286763Smav * When 'retry' is set to TRUE, the function will continually retry the
3068286763Smav * eviction until *all* evictable buffers have been removed from the
3069286763Smav * state. As a result, if concurrent insertions into the state are
3070286763Smav * allowed (e.g. if the ARC isn't shutting down), this function might
3071286763Smav * wind up in an infinite loop, continually trying to evict buffers.
3072286763Smav */
3073286763Smavstatic uint64_t
3074286763Smavarc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3075286763Smav    boolean_t retry)
3076286763Smav{
3077286763Smav	uint64_t evicted = 0;
3078286763Smav
3079286763Smav	while (state->arcs_lsize[type] != 0) {
3080286763Smav		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3081286763Smav
3082286763Smav		if (!retry)
3083286763Smav			break;
3084185029Spjd	}
3085185029Spjd
3086286763Smav	return (evicted);
3087286763Smav}
3088286763Smav
3089286763Smav/*
3090286763Smav * Evict the specified number of bytes from the state specified,
3091286763Smav * restricting eviction to the spa and type given. This function
3092286763Smav * prevents us from trying to evict more from a state's list than
3093286763Smav * is "evictable", and to skip evicting altogether when passed a
3094286763Smav * negative value for "bytes". In contrast, arc_evict_state() will
3095286763Smav * evict everything it can, when passed a negative value for "bytes".
3096286763Smav */
3097286763Smavstatic uint64_t
3098286763Smavarc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3099286763Smav    arc_buf_contents_t type)
3100286763Smav{
3101286763Smav	int64_t delta;
3102286763Smav
3103286763Smav	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3104286763Smav		delta = MIN(state->arcs_lsize[type], bytes);
3105286763Smav		return (arc_evict_state(state, spa, delta, type));
3106168404Spjd	}
3107168404Spjd
3108286763Smav	return (0);
3109168404Spjd}
3110168404Spjd
3111286763Smav/*
3112286763Smav * Evict metadata buffers from the cache, such that arc_meta_used is
3113286763Smav * capped by the arc_meta_limit tunable.
3114286763Smav */
3115286763Smavstatic uint64_t
3116286763Smavarc_adjust_meta(void)
3117286763Smav{
3118286763Smav	uint64_t total_evicted = 0;
3119286763Smav	int64_t target;
3120286763Smav
3121286763Smav	/*
3122286763Smav	 * If we're over the meta limit, we want to evict enough
3123286763Smav	 * metadata to get back under the meta limit. We don't want to
3124286763Smav	 * evict so much that we drop the MRU below arc_p, though. If
3125286763Smav	 * we're over the meta limit more than we're over arc_p, we
3126286763Smav	 * evict some from the MRU here, and some from the MFU below.
3127286763Smav	 */
3128286763Smav	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3129286766Smav	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3130286766Smav	    refcount_count(&arc_mru->arcs_size) - arc_p));
3131286763Smav
3132286763Smav	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3133286763Smav
3134286763Smav	/*
3135286763Smav	 * Similar to the above, we want to evict enough bytes to get us
3136286763Smav	 * below the meta limit, but not so much as to drop us below the
3137286763Smav	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3138286763Smav	 */
3139286763Smav	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3140286766Smav	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3141286763Smav
3142286763Smav	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3143286763Smav
3144286763Smav	return (total_evicted);
3145286763Smav}
3146286763Smav
3147286763Smav/*
3148286763Smav * Return the type of the oldest buffer in the given arc state
3149286763Smav *
3150286763Smav * This function will select a random sublist of type ARC_BUFC_DATA and
3151286763Smav * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3152286763Smav * is compared, and the type which contains the "older" buffer will be
3153286763Smav * returned.
3154286763Smav */
3155286763Smavstatic arc_buf_contents_t
3156286763Smavarc_adjust_type(arc_state_t *state)
3157286763Smav{
3158286763Smav	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3159286763Smav	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3160286763Smav	int data_idx = multilist_get_random_index(data_ml);
3161286763Smav	int meta_idx = multilist_get_random_index(meta_ml);
3162286763Smav	multilist_sublist_t *data_mls;
3163286763Smav	multilist_sublist_t *meta_mls;
3164286763Smav	arc_buf_contents_t type;
3165286763Smav	arc_buf_hdr_t *data_hdr;
3166286763Smav	arc_buf_hdr_t *meta_hdr;
3167286763Smav
3168286763Smav	/*
3169286763Smav	 * We keep the sublist lock until we're finished, to prevent
3170286763Smav	 * the headers from being destroyed via arc_evict_state().
3171286763Smav	 */
3172286763Smav	data_mls = multilist_sublist_lock(data_ml, data_idx);
3173286763Smav	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3174286763Smav
3175286763Smav	/*
3176286763Smav	 * These two loops are to ensure we skip any markers that
3177286763Smav	 * might be at the tail of the lists due to arc_evict_state().
3178286763Smav	 */
3179286763Smav
3180286763Smav	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3181286763Smav	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3182286763Smav		if (data_hdr->b_spa != 0)
3183286763Smav			break;
3184286763Smav	}
3185286763Smav
3186286763Smav	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3187286763Smav	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3188286763Smav		if (meta_hdr->b_spa != 0)
3189286763Smav			break;
3190286763Smav	}
3191286763Smav
3192286763Smav	if (data_hdr == NULL && meta_hdr == NULL) {
3193286763Smav		type = ARC_BUFC_DATA;
3194286763Smav	} else if (data_hdr == NULL) {
3195286763Smav		ASSERT3P(meta_hdr, !=, NULL);
3196286763Smav		type = ARC_BUFC_METADATA;
3197286763Smav	} else if (meta_hdr == NULL) {
3198286763Smav		ASSERT3P(data_hdr, !=, NULL);
3199286763Smav		type = ARC_BUFC_DATA;
3200286763Smav	} else {
3201286763Smav		ASSERT3P(data_hdr, !=, NULL);
3202286763Smav		ASSERT3P(meta_hdr, !=, NULL);
3203286763Smav
3204286763Smav		/* The headers can't be on the sublist without an L1 header */
3205286763Smav		ASSERT(HDR_HAS_L1HDR(data_hdr));
3206286763Smav		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3207286763Smav
3208286763Smav		if (data_hdr->b_l1hdr.b_arc_access <
3209286763Smav		    meta_hdr->b_l1hdr.b_arc_access) {
3210286763Smav			type = ARC_BUFC_DATA;
3211286763Smav		} else {
3212286763Smav			type = ARC_BUFC_METADATA;
3213286763Smav		}
3214286763Smav	}
3215286763Smav
3216286763Smav	multilist_sublist_unlock(meta_mls);
3217286763Smav	multilist_sublist_unlock(data_mls);
3218286763Smav
3219286763Smav	return (type);
3220286763Smav}
3221286763Smav
3222286763Smav/*
3223286763Smav * Evict buffers from the cache, such that arc_size is capped by arc_c.
3224286763Smav */
3225286763Smavstatic uint64_t
3226168404Spjdarc_adjust(void)
3227168404Spjd{
3228286763Smav	uint64_t total_evicted = 0;
3229286763Smav	uint64_t bytes;
3230286763Smav	int64_t target;
3231168404Spjd
3232208373Smm	/*
3233286763Smav	 * If we're over arc_meta_limit, we want to correct that before
3234286763Smav	 * potentially evicting data buffers below.
3235286763Smav	 */
3236286763Smav	total_evicted += arc_adjust_meta();
3237286763Smav
3238286763Smav	/*
3239208373Smm	 * Adjust MRU size
3240286763Smav	 *
3241286763Smav	 * If we're over the target cache size, we want to evict enough
3242286763Smav	 * from the list to get back to our target size. We don't want
3243286763Smav	 * to evict too much from the MRU, such that it drops below
3244286763Smav	 * arc_p. So, if we're over our target cache size more than
3245286763Smav	 * the MRU is over arc_p, we'll evict enough to get back to
3246286763Smav	 * arc_p here, and then evict more from the MFU below.
3247208373Smm	 */
3248286763Smav	target = MIN((int64_t)(arc_size - arc_c),
3249286766Smav	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3250286766Smav	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3251208373Smm
3252286763Smav	/*
3253286763Smav	 * If we're below arc_meta_min, always prefer to evict data.
3254286763Smav	 * Otherwise, try to satisfy the requested number of bytes to
3255286763Smav	 * evict from the type which contains older buffers; in an
3256286763Smav	 * effort to keep newer buffers in the cache regardless of their
3257286763Smav	 * type. If we cannot satisfy the number of bytes from this
3258286763Smav	 * type, spill over into the next type.
3259286763Smav	 */
3260286763Smav	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3261286763Smav	    arc_meta_used > arc_meta_min) {
3262286763Smav		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3263286763Smav		total_evicted += bytes;
3264168404Spjd
3265286763Smav		/*
3266286763Smav		 * If we couldn't evict our target number of bytes from
3267286763Smav		 * metadata, we try to get the rest from data.
3268286763Smav		 */
3269286763Smav		target -= bytes;
3270286763Smav
3271286763Smav		total_evicted +=
3272286763Smav		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3273286763Smav	} else {
3274286763Smav		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3275286763Smav		total_evicted += bytes;
3276286763Smav
3277286763Smav		/*
3278286763Smav		 * If we couldn't evict our target number of bytes from
3279286763Smav		 * data, we try to get the rest from metadata.
3280286763Smav		 */
3281286763Smav		target -= bytes;
3282286763Smav
3283286763Smav		total_evicted +=
3284286763Smav		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3285185029Spjd	}
3286185029Spjd
3287208373Smm	/*
3288208373Smm	 * Adjust MFU size
3289286763Smav	 *
3290286763Smav	 * Now that we've tried to evict enough from the MRU to get its
3291286763Smav	 * size back to arc_p, if we're still above the target cache
3292286763Smav	 * size, we evict the rest from the MFU.
3293208373Smm	 */
3294286763Smav	target = arc_size - arc_c;
3295168404Spjd
3296286764Smav	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3297286763Smav	    arc_meta_used > arc_meta_min) {
3298286763Smav		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3299286763Smav		total_evicted += bytes;
3300208373Smm
3301286763Smav		/*
3302286763Smav		 * If we couldn't evict our target number of bytes from
3303286763Smav		 * metadata, we try to get the rest from data.
3304286763Smav		 */
3305286763Smav		target -= bytes;
3306168404Spjd
3307286763Smav		total_evicted +=
3308286763Smav		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3309286763Smav	} else {
3310286763Smav		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3311286763Smav		total_evicted += bytes;
3312286763Smav
3313286763Smav		/*
3314286763Smav		 * If we couldn't evict our target number of bytes from
3315286763Smav		 * data, we try to get the rest from data.
3316286763Smav		 */
3317286763Smav		target -= bytes;
3318286763Smav
3319286763Smav		total_evicted +=
3320286763Smav		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3321208373Smm	}
3322168404Spjd
3323208373Smm	/*
3324208373Smm	 * Adjust ghost lists
3325286763Smav	 *
3326286763Smav	 * In addition to the above, the ARC also defines target values
3327286763Smav	 * for the ghost lists. The sum of the mru list and mru ghost
3328286763Smav	 * list should never exceed the target size of the cache, and
3329286763Smav	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3330286763Smav	 * ghost list should never exceed twice the target size of the
3331286763Smav	 * cache. The following logic enforces these limits on the ghost
3332286763Smav	 * caches, and evicts from them as needed.
3333208373Smm	 */
3334286766Smav	target = refcount_count(&arc_mru->arcs_size) +
3335286766Smav	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3336168404Spjd
3337286763Smav	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3338286763Smav	total_evicted += bytes;
3339168404Spjd
3340286763Smav	target -= bytes;
3341185029Spjd
3342286763Smav	total_evicted +=
3343286763Smav	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3344208373Smm
3345286763Smav	/*
3346286763Smav	 * We assume the sum of the mru list and mfu list is less than
3347286763Smav	 * or equal to arc_c (we enforced this above), which means we
3348286763Smav	 * can use the simpler of the two equations below:
3349286763Smav	 *
3350286763Smav	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3351286763Smav	 *		    mru ghost + mfu ghost <= arc_c
3352286763Smav	 */
3353286766Smav	target = refcount_count(&arc_mru_ghost->arcs_size) +
3354286766Smav	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3355286763Smav
3356286763Smav	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3357286763Smav	total_evicted += bytes;
3358286763Smav
3359286763Smav	target -= bytes;
3360286763Smav
3361286763Smav	total_evicted +=
3362286763Smav	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3363286763Smav
3364286763Smav	return (total_evicted);
3365168404Spjd}
3366168404Spjd
3367168404Spjdstatic void
3368168404Spjdarc_do_user_evicts(void)
3369168404Spjd{
3370286763Smav	mutex_enter(&arc_user_evicts_lock);
3371286762Smav	while (arc_eviction_list != NULL) {
3372286762Smav		arc_buf_t *buf = arc_eviction_list;
3373286762Smav		arc_eviction_list = buf->b_next;
3374219089Spjd		mutex_enter(&buf->b_evict_lock);
3375168404Spjd		buf->b_hdr = NULL;
3376219089Spjd		mutex_exit(&buf->b_evict_lock);
3377286763Smav		mutex_exit(&arc_user_evicts_lock);
3378168404Spjd
3379168404Spjd		if (buf->b_efunc != NULL)
3380268858Sdelphij			VERIFY0(buf->b_efunc(buf->b_private));
3381168404Spjd
3382168404Spjd		buf->b_efunc = NULL;
3383168404Spjd		buf->b_private = NULL;
3384168404Spjd		kmem_cache_free(buf_cache, buf);
3385286763Smav		mutex_enter(&arc_user_evicts_lock);
3386168404Spjd	}
3387286763Smav	mutex_exit(&arc_user_evicts_lock);
3388168404Spjd}
3389168404Spjd
3390168404Spjdvoid
3391286763Smavarc_flush(spa_t *spa, boolean_t retry)
3392168404Spjd{
3393209962Smm	uint64_t guid = 0;
3394209962Smm
3395286763Smav	/*
3396286763Smav	 * If retry is TRUE, a spa must not be specified since we have
3397286763Smav	 * no good way to determine if all of a spa's buffers have been
3398286763Smav	 * evicted from an arc state.
3399286763Smav	 */
3400286763Smav	ASSERT(!retry || spa == 0);
3401286763Smav
3402286570Smav	if (spa != NULL)
3403228103Smm		guid = spa_load_guid(spa);
3404209962Smm
3405286763Smav	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3406286763Smav	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3407168404Spjd
3408286763Smav	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3409286763Smav	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3410168404Spjd
3411286763Smav	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3412286763Smav	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3413286763Smav
3414286763Smav	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3415286763Smav	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3416286763Smav
3417168404Spjd	arc_do_user_evicts();
3418185029Spjd	ASSERT(spa || arc_eviction_list == NULL);
3419168404Spjd}
3420168404Spjd
3421168404Spjdvoid
3422286625Smavarc_shrink(int64_t to_free)
3423168404Spjd{
3424168404Spjd	if (arc_c > arc_c_min) {
3425272483Ssmh		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3426272483Ssmh			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3427168404Spjd		if (arc_c > arc_c_min + to_free)
3428168404Spjd			atomic_add_64(&arc_c, -to_free);
3429168404Spjd		else
3430168404Spjd			arc_c = arc_c_min;
3431168404Spjd
3432168404Spjd		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3433168404Spjd		if (arc_c > arc_size)
3434168404Spjd			arc_c = MAX(arc_size, arc_c_min);
3435168404Spjd		if (arc_p > arc_c)
3436168404Spjd			arc_p = (arc_c >> 1);
3437272483Ssmh
3438272483Ssmh		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3439272483Ssmh			arc_p);
3440272483Ssmh
3441168404Spjd		ASSERT(arc_c >= arc_c_min);
3442168404Spjd		ASSERT((int64_t)arc_p >= 0);
3443168404Spjd	}
3444168404Spjd
3445270759Ssmh	if (arc_size > arc_c) {
3446270759Ssmh		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3447270759Ssmh			uint64_t, arc_c);
3448286763Smav		(void) arc_adjust();
3449270759Ssmh	}
3450168404Spjd}
3451168404Spjd
3452286625Smavstatic long needfree = 0;
3453168404Spjd
3454286625Smavtypedef enum free_memory_reason_t {
3455286625Smav	FMR_UNKNOWN,
3456286625Smav	FMR_NEEDFREE,
3457286625Smav	FMR_LOTSFREE,
3458286625Smav	FMR_SWAPFS_MINFREE,
3459286625Smav	FMR_PAGES_PP_MAXIMUM,
3460286625Smav	FMR_HEAP_ARENA,
3461286625Smav	FMR_ZIO_ARENA,
3462286625Smav	FMR_ZIO_FRAG,
3463286625Smav} free_memory_reason_t;
3464286625Smav
3465286625Smavint64_t last_free_memory;
3466286625Smavfree_memory_reason_t last_free_reason;
3467286625Smav
3468286625Smav/*
3469286625Smav * Additional reserve of pages for pp_reserve.
3470286625Smav */
3471286625Smavint64_t arc_pages_pp_reserve = 64;
3472286625Smav
3473286625Smav/*
3474286625Smav * Additional reserve of pages for swapfs.
3475286625Smav */
3476286625Smavint64_t arc_swapfs_reserve = 64;
3477286625Smav
3478286625Smav/*
3479286625Smav * Return the amount of memory that can be consumed before reclaim will be
3480286625Smav * needed.  Positive if there is sufficient free memory, negative indicates
3481286625Smav * the amount of memory that needs to be freed up.
3482286625Smav */
3483286625Smavstatic int64_t
3484286625Smavarc_available_memory(void)
3485168404Spjd{
3486286625Smav	int64_t lowest = INT64_MAX;
3487286625Smav	int64_t n;
3488286625Smav	free_memory_reason_t r = FMR_UNKNOWN;
3489168404Spjd
3490168404Spjd#ifdef _KERNEL
3491286625Smav	if (needfree > 0) {
3492286625Smav		n = PAGESIZE * (-needfree);
3493286625Smav		if (n < lowest) {
3494286625Smav			lowest = n;
3495286625Smav			r = FMR_NEEDFREE;
3496286625Smav		}
3497270759Ssmh	}
3498168404Spjd
3499191902Skmacy	/*
3500212780Savg	 * Cooperate with pagedaemon when it's time for it to scan
3501212780Savg	 * and reclaim some pages.
3502191902Skmacy	 */
3503286655Smav	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3504286625Smav	if (n < lowest) {
3505286625Smav		lowest = n;
3506286625Smav		r = FMR_LOTSFREE;
3507270759Ssmh	}
3508191902Skmacy
3509277300Ssmh#ifdef illumos
3510168404Spjd	/*
3511185029Spjd	 * check that we're out of range of the pageout scanner.  It starts to
3512185029Spjd	 * schedule paging if freemem is less than lotsfree and needfree.
3513185029Spjd	 * lotsfree is the high-water mark for pageout, and needfree is the
3514185029Spjd	 * number of needed free pages.  We add extra pages here to make sure
3515185029Spjd	 * the scanner doesn't start up while we're freeing memory.
3516185029Spjd	 */
3517286625Smav	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3518286625Smav	if (n < lowest) {
3519286625Smav		lowest = n;
3520286625Smav		r = FMR_LOTSFREE;
3521286625Smav	}
3522185029Spjd
3523185029Spjd	/*
3524168404Spjd	 * check to make sure that swapfs has enough space so that anon
3525185029Spjd	 * reservations can still succeed. anon_resvmem() checks that the
3526168404Spjd	 * availrmem is greater than swapfs_minfree, and the number of reserved
3527168404Spjd	 * swap pages.  We also add a bit of extra here just to prevent
3528168404Spjd	 * circumstances from getting really dire.
3529168404Spjd	 */
3530286625Smav	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3531286625Smav	    desfree - arc_swapfs_reserve);
3532286625Smav	if (n < lowest) {
3533286625Smav		lowest = n;
3534286625Smav		r = FMR_SWAPFS_MINFREE;
3535286625Smav	}
3536168404Spjd
3537286625Smav
3538168404Spjd	/*
3539272483Ssmh	 * Check that we have enough availrmem that memory locking (e.g., via
3540272483Ssmh	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3541272483Ssmh	 * stores the number of pages that cannot be locked; when availrmem
3542272483Ssmh	 * drops below pages_pp_maximum, page locking mechanisms such as
3543272483Ssmh	 * page_pp_lock() will fail.)
3544272483Ssmh	 */
3545286625Smav	n = PAGESIZE * (availrmem - pages_pp_maximum -
3546286625Smav	    arc_pages_pp_reserve);
3547286625Smav	if (n < lowest) {
3548286625Smav		lowest = n;
3549286625Smav		r = FMR_PAGES_PP_MAXIMUM;
3550286625Smav	}
3551272483Ssmh
3552277300Ssmh#endif	/* illumos */
3553272483Ssmh#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3554272483Ssmh	/*
3555168404Spjd	 * If we're on an i386 platform, it's possible that we'll exhaust the
3556168404Spjd	 * kernel heap space before we ever run out of available physical
3557168404Spjd	 * memory.  Most checks of the size of the heap_area compare against
3558168404Spjd	 * tune.t_minarmem, which is the minimum available real memory that we
3559168404Spjd	 * can have in the system.  However, this is generally fixed at 25 pages
3560168404Spjd	 * which is so low that it's useless.  In this comparison, we seek to
3561168404Spjd	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3562185029Spjd	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3563168404Spjd	 * free)
3564168404Spjd	 */
3565286655Smav	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3566286628Smav	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3567286625Smav	if (n < lowest) {
3568286625Smav		lowest = n;
3569286625Smav		r = FMR_HEAP_ARENA;
3570270861Ssmh	}
3571281026Smav#define	zio_arena	NULL
3572281026Smav#else
3573281026Smav#define	zio_arena	heap_arena
3574270861Ssmh#endif
3575281026Smav
3576272483Ssmh	/*
3577272483Ssmh	 * If zio data pages are being allocated out of a separate heap segment,
3578272483Ssmh	 * then enforce that the size of available vmem for this arena remains
3579272483Ssmh	 * above about 1/16th free.
3580272483Ssmh	 *
3581272483Ssmh	 * Note: The 1/16th arena free requirement was put in place
3582272483Ssmh	 * to aggressively evict memory from the arc in order to avoid
3583272483Ssmh	 * memory fragmentation issues.
3584272483Ssmh	 */
3585286625Smav	if (zio_arena != NULL) {
3586286655Smav		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3587286625Smav		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3588286625Smav		if (n < lowest) {
3589286625Smav			lowest = n;
3590286625Smav			r = FMR_ZIO_ARENA;
3591286625Smav		}
3592286625Smav	}
3593281026Smav
3594281026Smav	/*
3595281026Smav	 * Above limits know nothing about real level of KVA fragmentation.
3596281026Smav	 * Start aggressive reclamation if too little sequential KVA left.
3597281026Smav	 */
3598286625Smav	if (lowest > 0) {
3599286625Smav		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3600286655Smav		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3601286655Smav		    INT64_MAX;
3602286625Smav		if (n < lowest) {
3603286625Smav			lowest = n;
3604286625Smav			r = FMR_ZIO_FRAG;
3605286625Smav		}
3606281109Smav	}
3607281026Smav
3608272483Ssmh#else	/* _KERNEL */
3609286625Smav	/* Every 100 calls, free a small amount */
3610168404Spjd	if (spa_get_random(100) == 0)
3611286625Smav		lowest = -1024;
3612272483Ssmh#endif	/* _KERNEL */
3613270759Ssmh
3614286625Smav	last_free_memory = lowest;
3615286625Smav	last_free_reason = r;
3616286625Smav	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3617286625Smav	return (lowest);
3618168404Spjd}
3619168404Spjd
3620286625Smav
3621286625Smav/*
3622286625Smav * Determine if the system is under memory pressure and is asking
3623286625Smav * to reclaim memory. A return value of TRUE indicates that the system
3624286625Smav * is under memory pressure and that the arc should adjust accordingly.
3625286625Smav */
3626286625Smavstatic boolean_t
3627286625Smavarc_reclaim_needed(void)
3628286625Smav{
3629286625Smav	return (arc_available_memory() < 0);
3630286625Smav}
3631286625Smav
3632208454Spjdextern kmem_cache_t	*zio_buf_cache[];
3633208454Spjdextern kmem_cache_t	*zio_data_buf_cache[];
3634272527Sdelphijextern kmem_cache_t	*range_seg_cache;
3635208454Spjd
3636278040Ssmhstatic __noinline void
3637286625Smavarc_kmem_reap_now(void)
3638168404Spjd{
3639168404Spjd	size_t			i;
3640168404Spjd	kmem_cache_t		*prev_cache = NULL;
3641168404Spjd	kmem_cache_t		*prev_data_cache = NULL;
3642168404Spjd
3643272483Ssmh	DTRACE_PROBE(arc__kmem_reap_start);
3644168404Spjd#ifdef _KERNEL
3645185029Spjd	if (arc_meta_used >= arc_meta_limit) {
3646185029Spjd		/*
3647185029Spjd		 * We are exceeding our meta-data cache limit.
3648185029Spjd		 * Purge some DNLC entries to release holds on meta-data.
3649185029Spjd		 */
3650185029Spjd		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3651185029Spjd	}
3652168404Spjd#if defined(__i386)
3653168404Spjd	/*
3654168404Spjd	 * Reclaim unused memory from all kmem caches.
3655168404Spjd	 */
3656168404Spjd	kmem_reap();
3657168404Spjd#endif
3658168404Spjd#endif
3659168404Spjd
3660168404Spjd	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3661168404Spjd		if (zio_buf_cache[i] != prev_cache) {
3662168404Spjd			prev_cache = zio_buf_cache[i];
3663168404Spjd			kmem_cache_reap_now(zio_buf_cache[i]);
3664168404Spjd		}
3665168404Spjd		if (zio_data_buf_cache[i] != prev_data_cache) {
3666168404Spjd			prev_data_cache = zio_data_buf_cache[i];
3667168404Spjd			kmem_cache_reap_now(zio_data_buf_cache[i]);
3668168404Spjd		}
3669168404Spjd	}
3670168404Spjd	kmem_cache_reap_now(buf_cache);
3671286570Smav	kmem_cache_reap_now(hdr_full_cache);
3672286570Smav	kmem_cache_reap_now(hdr_l2only_cache);
3673272506Sdelphij	kmem_cache_reap_now(range_seg_cache);
3674272483Ssmh
3675277300Ssmh#ifdef illumos
3676286625Smav	if (zio_arena != NULL) {
3677286625Smav		/*
3678286625Smav		 * Ask the vmem arena to reclaim unused memory from its
3679286625Smav		 * quantum caches.
3680286625Smav		 */
3681272483Ssmh		vmem_qcache_reap(zio_arena);
3682286625Smav	}
3683272483Ssmh#endif
3684272483Ssmh	DTRACE_PROBE(arc__kmem_reap_end);
3685168404Spjd}
3686168404Spjd
3687286763Smav/*
3688286763Smav * Threads can block in arc_get_data_buf() waiting for this thread to evict
3689286763Smav * enough data and signal them to proceed. When this happens, the threads in
3690286763Smav * arc_get_data_buf() are sleeping while holding the hash lock for their
3691286763Smav * particular arc header. Thus, we must be careful to never sleep on a
3692286763Smav * hash lock in this thread. This is to prevent the following deadlock:
3693286763Smav *
3694286763Smav *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3695286763Smav *    waiting for the reclaim thread to signal it.
3696286763Smav *
3697286763Smav *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3698286763Smav *    fails, and goes to sleep forever.
3699286763Smav *
3700286763Smav * This possible deadlock is avoided by always acquiring a hash lock
3701286763Smav * using mutex_tryenter() from arc_reclaim_thread().
3702286763Smav */
3703168404Spjdstatic void
3704168404Spjdarc_reclaim_thread(void *dummy __unused)
3705168404Spjd{
3706296530Smav	hrtime_t		growtime = 0;
3707168404Spjd	callb_cpr_t		cpr;
3708168404Spjd
3709286763Smav	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3710168404Spjd
3711286763Smav	mutex_enter(&arc_reclaim_lock);
3712286763Smav	while (!arc_reclaim_thread_exit) {
3713286625Smav		int64_t free_memory = arc_available_memory();
3714286763Smav		uint64_t evicted = 0;
3715286763Smav
3716286763Smav		mutex_exit(&arc_reclaim_lock);
3717286763Smav
3718286625Smav		if (free_memory < 0) {
3719168404Spjd
3720286625Smav			arc_no_grow = B_TRUE;
3721286625Smav			arc_warm = B_TRUE;
3722168404Spjd
3723286625Smav			/*
3724286625Smav			 * Wait at least zfs_grow_retry (default 60) seconds
3725286625Smav			 * before considering growing.
3726286625Smav			 */
3727296530Smav			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3728168404Spjd
3729286625Smav			arc_kmem_reap_now();
3730286625Smav
3731286625Smav			/*
3732286625Smav			 * If we are still low on memory, shrink the ARC
3733286625Smav			 * so that we have arc_shrink_min free space.
3734286625Smav			 */
3735286625Smav			free_memory = arc_available_memory();
3736286625Smav
3737286625Smav			int64_t to_free =
3738286625Smav			    (arc_c >> arc_shrink_shift) - free_memory;
3739286625Smav			if (to_free > 0) {
3740286625Smav#ifdef _KERNEL
3741286625Smav				to_free = MAX(to_free, ptob(needfree));
3742286625Smav#endif
3743286625Smav				arc_shrink(to_free);
3744168404Spjd			}
3745286625Smav		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3746286625Smav			arc_no_grow = B_TRUE;
3747296530Smav		} else if (gethrtime() >= growtime) {
3748286625Smav			arc_no_grow = B_FALSE;
3749168404Spjd		}
3750168404Spjd
3751286763Smav		evicted = arc_adjust();
3752168404Spjd
3753286763Smav		mutex_enter(&arc_reclaim_lock);
3754168404Spjd
3755286763Smav		/*
3756286763Smav		 * If evicted is zero, we couldn't evict anything via
3757286763Smav		 * arc_adjust(). This could be due to hash lock
3758286763Smav		 * collisions, but more likely due to the majority of
3759286763Smav		 * arc buffers being unevictable. Therefore, even if
3760286763Smav		 * arc_size is above arc_c, another pass is unlikely to
3761286763Smav		 * be helpful and could potentially cause us to enter an
3762286763Smav		 * infinite loop.
3763286763Smav		 */
3764286763Smav		if (arc_size <= arc_c || evicted == 0) {
3765211762Savg#ifdef _KERNEL
3766185029Spjd			needfree = 0;
3767168404Spjd#endif
3768286763Smav			/*
3769286763Smav			 * We're either no longer overflowing, or we
3770286763Smav			 * can't evict anything more, so we should wake
3771286763Smav			 * up any threads before we go to sleep.
3772286763Smav			 */
3773286763Smav			cv_broadcast(&arc_reclaim_waiters_cv);
3774168404Spjd
3775286763Smav			/*
3776286763Smav			 * Block until signaled, or after one second (we
3777286763Smav			 * might need to perform arc_kmem_reap_now()
3778286763Smav			 * even if we aren't being signalled)
3779286763Smav			 */
3780286763Smav			CALLB_CPR_SAFE_BEGIN(&cpr);
3781296530Smav			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3782296530Smav			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3783286763Smav			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3784286763Smav		}
3785286763Smav	}
3786286763Smav
3787286763Smav	arc_reclaim_thread_exit = FALSE;
3788286763Smav	cv_broadcast(&arc_reclaim_thread_cv);
3789286763Smav	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3790286763Smav	thread_exit();
3791286763Smav}
3792286763Smav
3793286763Smavstatic void
3794286763Smavarc_user_evicts_thread(void *dummy __unused)
3795286763Smav{
3796286763Smav	callb_cpr_t cpr;
3797286763Smav
3798286763Smav	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3799286763Smav
3800286763Smav	mutex_enter(&arc_user_evicts_lock);
3801286763Smav	while (!arc_user_evicts_thread_exit) {
3802286763Smav		mutex_exit(&arc_user_evicts_lock);
3803286763Smav
3804286763Smav		arc_do_user_evicts();
3805286763Smav
3806286574Smav		/*
3807286574Smav		 * This is necessary in order for the mdb ::arc dcmd to
3808286574Smav		 * show up to date information. Since the ::arc command
3809286574Smav		 * does not call the kstat's update function, without
3810286574Smav		 * this call, the command may show stale stats for the
3811286574Smav		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3812286574Smav		 * with this change, the data might be up to 1 second
3813286574Smav		 * out of date; but that should suffice. The arc_state_t
3814286574Smav		 * structures can be queried directly if more accurate
3815286574Smav		 * information is needed.
3816286574Smav		 */
3817286574Smav		if (arc_ksp != NULL)
3818286574Smav			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3819286574Smav
3820286763Smav		mutex_enter(&arc_user_evicts_lock);
3821286763Smav
3822286763Smav		/*
3823286763Smav		 * Block until signaled, or after one second (we need to
3824286763Smav		 * call the arc's kstat update function regularly).
3825286763Smav		 */
3826168404Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
3827286763Smav		(void) cv_timedwait(&arc_user_evicts_cv,
3828286763Smav		    &arc_user_evicts_lock, hz);
3829286763Smav		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3830168404Spjd	}
3831168404Spjd
3832286763Smav	arc_user_evicts_thread_exit = FALSE;
3833286763Smav	cv_broadcast(&arc_user_evicts_cv);
3834286763Smav	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3835168404Spjd	thread_exit();
3836168404Spjd}
3837168404Spjd
3838301997Skibstatic u_int arc_dnlc_evicts_arg;
3839301997Skibextern struct vfsops zfs_vfsops;
3840301997Skib
3841301997Skibstatic void
3842301997Skibarc_dnlc_evicts_thread(void *dummy __unused)
3843301997Skib{
3844301997Skib	callb_cpr_t cpr;
3845301997Skib	u_int percent;
3846301997Skib
3847301997Skib	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
3848301997Skib
3849301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
3850301997Skib	while (!arc_dnlc_evicts_thread_exit) {
3851301997Skib		CALLB_CPR_SAFE_BEGIN(&cpr);
3852301997Skib		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
3853301997Skib		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
3854301997Skib		if (arc_dnlc_evicts_arg != 0) {
3855301997Skib			percent = arc_dnlc_evicts_arg;
3856301997Skib			mutex_exit(&arc_dnlc_evicts_lock);
3857301997Skib#ifdef _KERNEL
3858301997Skib			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
3859301997Skib#endif
3860301997Skib			mutex_enter(&arc_dnlc_evicts_lock);
3861301997Skib			/*
3862301997Skib			 * Clear our token only after vnlru_free()
3863301997Skib			 * pass is done, to avoid false queueing of
3864301997Skib			 * the requests.
3865301997Skib			 */
3866301997Skib			arc_dnlc_evicts_arg = 0;
3867301997Skib		}
3868301997Skib	}
3869301997Skib	arc_dnlc_evicts_thread_exit = FALSE;
3870301997Skib	cv_broadcast(&arc_dnlc_evicts_cv);
3871301997Skib	CALLB_CPR_EXIT(&cpr);
3872301997Skib	thread_exit();
3873301997Skib}
3874301997Skib
3875301997Skibvoid
3876301997Skibdnlc_reduce_cache(void *arg)
3877301997Skib{
3878301997Skib	u_int percent;
3879301997Skib
3880302012Skib	percent = (u_int)(uintptr_t)arg;
3881301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
3882301997Skib	if (arc_dnlc_evicts_arg == 0) {
3883301997Skib		arc_dnlc_evicts_arg = percent;
3884301997Skib		cv_broadcast(&arc_dnlc_evicts_cv);
3885301997Skib	}
3886301997Skib	mutex_exit(&arc_dnlc_evicts_lock);
3887301997Skib}
3888301997Skib
3889168404Spjd/*
3890168404Spjd * Adapt arc info given the number of bytes we are trying to add and
3891168404Spjd * the state that we are comming from.  This function is only called
3892168404Spjd * when we are adding new content to the cache.
3893168404Spjd */
3894168404Spjdstatic void
3895168404Spjdarc_adapt(int bytes, arc_state_t *state)
3896168404Spjd{
3897168404Spjd	int mult;
3898208373Smm	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3899286766Smav	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3900286766Smav	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3901168404Spjd
3902185029Spjd	if (state == arc_l2c_only)
3903185029Spjd		return;
3904185029Spjd
3905168404Spjd	ASSERT(bytes > 0);
3906168404Spjd	/*
3907168404Spjd	 * Adapt the target size of the MRU list:
3908168404Spjd	 *	- if we just hit in the MRU ghost list, then increase
3909168404Spjd	 *	  the target size of the MRU list.
3910168404Spjd	 *	- if we just hit in the MFU ghost list, then increase
3911168404Spjd	 *	  the target size of the MFU list by decreasing the
3912168404Spjd	 *	  target size of the MRU list.
3913168404Spjd	 */
3914168404Spjd	if (state == arc_mru_ghost) {
3915286766Smav		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3916209275Smm		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3917168404Spjd
3918208373Smm		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3919168404Spjd	} else if (state == arc_mfu_ghost) {
3920208373Smm		uint64_t delta;
3921208373Smm
3922286766Smav		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3923209275Smm		mult = MIN(mult, 10);
3924168404Spjd
3925208373Smm		delta = MIN(bytes * mult, arc_p);
3926208373Smm		arc_p = MAX(arc_p_min, arc_p - delta);
3927168404Spjd	}
3928168404Spjd	ASSERT((int64_t)arc_p >= 0);
3929168404Spjd
3930168404Spjd	if (arc_reclaim_needed()) {
3931286763Smav		cv_signal(&arc_reclaim_thread_cv);
3932168404Spjd		return;
3933168404Spjd	}
3934168404Spjd
3935168404Spjd	if (arc_no_grow)
3936168404Spjd		return;
3937168404Spjd
3938168404Spjd	if (arc_c >= arc_c_max)
3939168404Spjd		return;
3940168404Spjd
3941168404Spjd	/*
3942168404Spjd	 * If we're within (2 * maxblocksize) bytes of the target
3943168404Spjd	 * cache size, increment the target cache size
3944168404Spjd	 */
3945168404Spjd	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3946272483Ssmh		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3947168404Spjd		atomic_add_64(&arc_c, (int64_t)bytes);
3948168404Spjd		if (arc_c > arc_c_max)
3949168404Spjd			arc_c = arc_c_max;
3950168404Spjd		else if (state == arc_anon)
3951168404Spjd			atomic_add_64(&arc_p, (int64_t)bytes);
3952168404Spjd		if (arc_p > arc_c)
3953168404Spjd			arc_p = arc_c;
3954168404Spjd	}
3955168404Spjd	ASSERT((int64_t)arc_p >= 0);
3956168404Spjd}
3957168404Spjd
3958168404Spjd/*
3959286763Smav * Check if arc_size has grown past our upper threshold, determined by
3960286763Smav * zfs_arc_overflow_shift.
3961168404Spjd */
3962286763Smavstatic boolean_t
3963286763Smavarc_is_overflowing(void)
3964168404Spjd{
3965286763Smav	/* Always allow at least one block of overflow */
3966286763Smav	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3967286763Smav	    arc_c >> zfs_arc_overflow_shift);
3968185029Spjd
3969286763Smav	return (arc_size >= arc_c + overflow);
3970168404Spjd}
3971168404Spjd
3972168404Spjd/*
3973286763Smav * The buffer, supplied as the first argument, needs a data block. If we
3974286763Smav * are hitting the hard limit for the cache size, we must sleep, waiting
3975286763Smav * for the eviction thread to catch up. If we're past the target size
3976286763Smav * but below the hard limit, we'll only signal the reclaim thread and
3977286763Smav * continue on.
3978168404Spjd */
3979168404Spjdstatic void
3980168404Spjdarc_get_data_buf(arc_buf_t *buf)
3981168404Spjd{
3982286570Smav	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3983168404Spjd	uint64_t		size = buf->b_hdr->b_size;
3984286570Smav	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3985168404Spjd
3986168404Spjd	arc_adapt(size, state);
3987168404Spjd
3988168404Spjd	/*
3989286763Smav	 * If arc_size is currently overflowing, and has grown past our
3990286763Smav	 * upper limit, we must be adding data faster than the evict
3991286763Smav	 * thread can evict. Thus, to ensure we don't compound the
3992286763Smav	 * problem by adding more data and forcing arc_size to grow even
3993286763Smav	 * further past it's target size, we halt and wait for the
3994286763Smav	 * eviction thread to catch up.
3995286763Smav	 *
3996286763Smav	 * It's also possible that the reclaim thread is unable to evict
3997286763Smav	 * enough buffers to get arc_size below the overflow limit (e.g.
3998286763Smav	 * due to buffers being un-evictable, or hash lock collisions).
3999286763Smav	 * In this case, we want to proceed regardless if we're
4000286763Smav	 * overflowing; thus we don't use a while loop here.
4001168404Spjd	 */
4002286763Smav	if (arc_is_overflowing()) {
4003286763Smav		mutex_enter(&arc_reclaim_lock);
4004286763Smav
4005286763Smav		/*
4006286763Smav		 * Now that we've acquired the lock, we may no longer be
4007286763Smav		 * over the overflow limit, lets check.
4008286763Smav		 *
4009286763Smav		 * We're ignoring the case of spurious wake ups. If that
4010286763Smav		 * were to happen, it'd let this thread consume an ARC
4011286763Smav		 * buffer before it should have (i.e. before we're under
4012286763Smav		 * the overflow limit and were signalled by the reclaim
4013286763Smav		 * thread). As long as that is a rare occurrence, it
4014286763Smav		 * shouldn't cause any harm.
4015286763Smav		 */
4016286763Smav		if (arc_is_overflowing()) {
4017286763Smav			cv_signal(&arc_reclaim_thread_cv);
4018286763Smav			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4019168404Spjd		}
4020286763Smav
4021286763Smav		mutex_exit(&arc_reclaim_lock);
4022168404Spjd	}
4023168404Spjd
4024286763Smav	if (type == ARC_BUFC_METADATA) {
4025286763Smav		buf->b_data = zio_buf_alloc(size);
4026286763Smav		arc_space_consume(size, ARC_SPACE_META);
4027168404Spjd	} else {
4028286763Smav		ASSERT(type == ARC_BUFC_DATA);
4029286763Smav		buf->b_data = zio_data_buf_alloc(size);
4030286763Smav		arc_space_consume(size, ARC_SPACE_DATA);
4031168404Spjd	}
4032286763Smav
4033168404Spjd	/*
4034168404Spjd	 * Update the state size.  Note that ghost states have a
4035168404Spjd	 * "ghost size" and so don't need to be updated.
4036168404Spjd	 */
4037286570Smav	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
4038168404Spjd		arc_buf_hdr_t *hdr = buf->b_hdr;
4039286766Smav		arc_state_t *state = hdr->b_l1hdr.b_state;
4040168404Spjd
4041286766Smav		(void) refcount_add_many(&state->arcs_size, size, buf);
4042286763Smav
4043286763Smav		/*
4044286763Smav		 * If this is reached via arc_read, the link is
4045286763Smav		 * protected by the hash lock. If reached via
4046286763Smav		 * arc_buf_alloc, the header should not be accessed by
4047286763Smav		 * any other thread. And, if reached via arc_read_done,
4048286763Smav		 * the hash lock will protect it if it's found in the
4049286763Smav		 * hash table; otherwise no other thread should be
4050286763Smav		 * trying to [add|remove]_reference it.
4051286763Smav		 */
4052286763Smav		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4053286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4054286570Smav			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4055286570Smav			    size);
4056168404Spjd		}
4057168404Spjd		/*
4058168404Spjd		 * If we are growing the cache, and we are adding anonymous
4059168404Spjd		 * data, and we have outgrown arc_p, update arc_p
4060168404Spjd		 */
4061286570Smav		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4062286766Smav		    (refcount_count(&arc_anon->arcs_size) +
4063286766Smav		    refcount_count(&arc_mru->arcs_size) > arc_p))
4064168404Spjd			arc_p = MIN(arc_c, arc_p + size);
4065168404Spjd	}
4066205231Skmacy	ARCSTAT_BUMP(arcstat_allocated);
4067168404Spjd}
4068168404Spjd
4069168404Spjd/*
4070168404Spjd * This routine is called whenever a buffer is accessed.
4071168404Spjd * NOTE: the hash lock is dropped in this function.
4072168404Spjd */
4073168404Spjdstatic void
4074275811Sdelphijarc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4075168404Spjd{
4076219089Spjd	clock_t now;
4077219089Spjd
4078168404Spjd	ASSERT(MUTEX_HELD(hash_lock));
4079286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
4080168404Spjd
4081286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
4082168404Spjd		/*
4083168404Spjd		 * This buffer is not in the cache, and does not
4084168404Spjd		 * appear in our "ghost" list.  Add the new buffer
4085168404Spjd		 * to the MRU state.
4086168404Spjd		 */
4087168404Spjd
4088286570Smav		ASSERT0(hdr->b_l1hdr.b_arc_access);
4089286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4090275811Sdelphij		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4091275811Sdelphij		arc_change_state(arc_mru, hdr, hash_lock);
4092168404Spjd
4093286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4094219089Spjd		now = ddi_get_lbolt();
4095219089Spjd
4096168404Spjd		/*
4097168404Spjd		 * If this buffer is here because of a prefetch, then either:
4098168404Spjd		 * - clear the flag if this is a "referencing" read
4099168404Spjd		 *   (any subsequent access will bump this into the MFU state).
4100168404Spjd		 * or
4101168404Spjd		 * - move the buffer to the head of the list if this is
4102168404Spjd		 *   another prefetch (to make it less likely to be evicted).
4103168404Spjd		 */
4104286570Smav		if (HDR_PREFETCH(hdr)) {
4105286570Smav			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4106286763Smav				/* link protected by hash lock */
4107286763Smav				ASSERT(multilist_link_active(
4108286570Smav				    &hdr->b_l1hdr.b_arc_node));
4109168404Spjd			} else {
4110275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4111168404Spjd				ARCSTAT_BUMP(arcstat_mru_hits);
4112168404Spjd			}
4113286570Smav			hdr->b_l1hdr.b_arc_access = now;
4114168404Spjd			return;
4115168404Spjd		}
4116168404Spjd
4117168404Spjd		/*
4118168404Spjd		 * This buffer has been "accessed" only once so far,
4119168404Spjd		 * but it is still in the cache. Move it to the MFU
4120168404Spjd		 * state.
4121168404Spjd		 */
4122286570Smav		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4123168404Spjd			/*
4124168404Spjd			 * More than 125ms have passed since we
4125168404Spjd			 * instantiated this buffer.  Move it to the
4126168404Spjd			 * most frequently used state.
4127168404Spjd			 */
4128286570Smav			hdr->b_l1hdr.b_arc_access = now;
4129275811Sdelphij			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4130275811Sdelphij			arc_change_state(arc_mfu, hdr, hash_lock);
4131168404Spjd		}
4132168404Spjd		ARCSTAT_BUMP(arcstat_mru_hits);
4133286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4134168404Spjd		arc_state_t	*new_state;
4135168404Spjd		/*
4136168404Spjd		 * This buffer has been "accessed" recently, but
4137168404Spjd		 * was evicted from the cache.  Move it to the
4138168404Spjd		 * MFU state.
4139168404Spjd		 */
4140168404Spjd
4141286570Smav		if (HDR_PREFETCH(hdr)) {
4142168404Spjd			new_state = arc_mru;
4143286570Smav			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4144275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4145275811Sdelphij			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4146168404Spjd		} else {
4147168404Spjd			new_state = arc_mfu;
4148275811Sdelphij			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4149168404Spjd		}
4150168404Spjd
4151286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4152275811Sdelphij		arc_change_state(new_state, hdr, hash_lock);
4153168404Spjd
4154168404Spjd		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4155286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4156168404Spjd		/*
4157168404Spjd		 * This buffer has been accessed more than once and is
4158168404Spjd		 * still in the cache.  Keep it in the MFU state.
4159168404Spjd		 *
4160168404Spjd		 * NOTE: an add_reference() that occurred when we did
4161168404Spjd		 * the arc_read() will have kicked this off the list.
4162168404Spjd		 * If it was a prefetch, we will explicitly move it to
4163168404Spjd		 * the head of the list now.
4164168404Spjd		 */
4165286570Smav		if ((HDR_PREFETCH(hdr)) != 0) {
4166286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4167286763Smav			/* link protected by hash_lock */
4168286763Smav			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4169168404Spjd		}
4170168404Spjd		ARCSTAT_BUMP(arcstat_mfu_hits);
4171286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4172286570Smav	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4173168404Spjd		arc_state_t	*new_state = arc_mfu;
4174168404Spjd		/*
4175168404Spjd		 * This buffer has been accessed more than once but has
4176168404Spjd		 * been evicted from the cache.  Move it back to the
4177168404Spjd		 * MFU state.
4178168404Spjd		 */
4179168404Spjd
4180286570Smav		if (HDR_PREFETCH(hdr)) {
4181168404Spjd			/*
4182168404Spjd			 * This is a prefetch access...
4183168404Spjd			 * move this block back to the MRU state.
4184168404Spjd			 */
4185286570Smav			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4186168404Spjd			new_state = arc_mru;
4187168404Spjd		}
4188168404Spjd
4189286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4190275811Sdelphij		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4191275811Sdelphij		arc_change_state(new_state, hdr, hash_lock);
4192168404Spjd
4193168404Spjd		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4194286570Smav	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4195185029Spjd		/*
4196185029Spjd		 * This buffer is on the 2nd Level ARC.
4197185029Spjd		 */
4198185029Spjd
4199286570Smav		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4200275811Sdelphij		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4201275811Sdelphij		arc_change_state(arc_mfu, hdr, hash_lock);
4202168404Spjd	} else {
4203168404Spjd		ASSERT(!"invalid arc state");
4204168404Spjd	}
4205168404Spjd}
4206168404Spjd
4207168404Spjd/* a generic arc_done_func_t which you can use */
4208168404Spjd/* ARGSUSED */
4209168404Spjdvoid
4210168404Spjdarc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4211168404Spjd{
4212219089Spjd	if (zio == NULL || zio->io_error == 0)
4213219089Spjd		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4214248571Smm	VERIFY(arc_buf_remove_ref(buf, arg));
4215168404Spjd}
4216168404Spjd
4217185029Spjd/* a generic arc_done_func_t */
4218168404Spjdvoid
4219168404Spjdarc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4220168404Spjd{
4221168404Spjd	arc_buf_t **bufp = arg;
4222168404Spjd	if (zio && zio->io_error) {
4223248571Smm		VERIFY(arc_buf_remove_ref(buf, arg));
4224168404Spjd		*bufp = NULL;
4225168404Spjd	} else {
4226168404Spjd		*bufp = buf;
4227219089Spjd		ASSERT(buf->b_data);
4228168404Spjd	}
4229168404Spjd}
4230168404Spjd
4231168404Spjdstatic void
4232168404Spjdarc_read_done(zio_t *zio)
4233168404Spjd{
4234268075Sdelphij	arc_buf_hdr_t	*hdr;
4235168404Spjd	arc_buf_t	*buf;
4236168404Spjd	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4237268075Sdelphij	kmutex_t	*hash_lock = NULL;
4238168404Spjd	arc_callback_t	*callback_list, *acb;
4239168404Spjd	int		freeable = FALSE;
4240168404Spjd
4241168404Spjd	buf = zio->io_private;
4242168404Spjd	hdr = buf->b_hdr;
4243168404Spjd
4244168404Spjd	/*
4245168404Spjd	 * The hdr was inserted into hash-table and removed from lists
4246168404Spjd	 * prior to starting I/O.  We should find this header, since
4247168404Spjd	 * it's in the hash table, and it should be legit since it's
4248168404Spjd	 * not possible to evict it during the I/O.  The only possible
4249168404Spjd	 * reason for it not to be found is if we were freed during the
4250168404Spjd	 * read.
4251168404Spjd	 */
4252268075Sdelphij	if (HDR_IN_HASH_TABLE(hdr)) {
4253268075Sdelphij		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4254268075Sdelphij		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4255268075Sdelphij		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4256268075Sdelphij		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4257268075Sdelphij		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4258168404Spjd
4259268075Sdelphij		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4260268075Sdelphij		    &hash_lock);
4261168404Spjd
4262268075Sdelphij		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4263268075Sdelphij		    hash_lock == NULL) ||
4264268075Sdelphij		    (found == hdr &&
4265268075Sdelphij		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4266268075Sdelphij		    (found == hdr && HDR_L2_READING(hdr)));
4267268075Sdelphij	}
4268268075Sdelphij
4269275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4270286570Smav	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4271275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4272206796Spjd
4273168404Spjd	/* byteswap if necessary */
4274286570Smav	callback_list = hdr->b_l1hdr.b_acb;
4275168404Spjd	ASSERT(callback_list != NULL);
4276209101Smm	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4277236884Smm		dmu_object_byteswap_t bswap =
4278236884Smm		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4279185029Spjd		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4280185029Spjd		    byteswap_uint64_array :
4281236884Smm		    dmu_ot_byteswap[bswap].ob_func;
4282185029Spjd		func(buf->b_data, hdr->b_size);
4283185029Spjd	}
4284168404Spjd
4285185029Spjd	arc_cksum_compute(buf, B_FALSE);
4286240133Smm#ifdef illumos
4287240133Smm	arc_buf_watch(buf);
4288277300Ssmh#endif
4289168404Spjd
4290286570Smav	if (hash_lock && zio->io_error == 0 &&
4291286570Smav	    hdr->b_l1hdr.b_state == arc_anon) {
4292219089Spjd		/*
4293219089Spjd		 * Only call arc_access on anonymous buffers.  This is because
4294219089Spjd		 * if we've issued an I/O for an evicted buffer, we've already
4295219089Spjd		 * called arc_access (to prevent any simultaneous readers from
4296219089Spjd		 * getting confused).
4297219089Spjd		 */
4298219089Spjd		arc_access(hdr, hash_lock);
4299219089Spjd	}
4300219089Spjd
4301168404Spjd	/* create copies of the data buffer for the callers */
4302168404Spjd	abuf = buf;
4303168404Spjd	for (acb = callback_list; acb; acb = acb->acb_next) {
4304168404Spjd		if (acb->acb_done) {
4305242845Sdelphij			if (abuf == NULL) {
4306242845Sdelphij				ARCSTAT_BUMP(arcstat_duplicate_reads);
4307168404Spjd				abuf = arc_buf_clone(buf);
4308242845Sdelphij			}
4309168404Spjd			acb->acb_buf = abuf;
4310168404Spjd			abuf = NULL;
4311168404Spjd		}
4312168404Spjd	}
4313286570Smav	hdr->b_l1hdr.b_acb = NULL;
4314275811Sdelphij	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4315168404Spjd	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4316219089Spjd	if (abuf == buf) {
4317219089Spjd		ASSERT(buf->b_efunc == NULL);
4318286570Smav		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4319275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4320219089Spjd	}
4321168404Spjd
4322286570Smav	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4323286570Smav	    callback_list != NULL);
4324168404Spjd
4325168404Spjd	if (zio->io_error != 0) {
4326275811Sdelphij		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4327286570Smav		if (hdr->b_l1hdr.b_state != arc_anon)
4328168404Spjd			arc_change_state(arc_anon, hdr, hash_lock);
4329168404Spjd		if (HDR_IN_HASH_TABLE(hdr))
4330168404Spjd			buf_hash_remove(hdr);
4331286570Smav		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4332168404Spjd	}
4333168404Spjd
4334168404Spjd	/*
4335168404Spjd	 * Broadcast before we drop the hash_lock to avoid the possibility
4336168404Spjd	 * that the hdr (and hence the cv) might be freed before we get to
4337168404Spjd	 * the cv_broadcast().
4338168404Spjd	 */
4339286570Smav	cv_broadcast(&hdr->b_l1hdr.b_cv);
4340168404Spjd
4341286570Smav	if (hash_lock != NULL) {
4342168404Spjd		mutex_exit(hash_lock);
4343168404Spjd	} else {
4344168404Spjd		/*
4345168404Spjd		 * This block was freed while we waited for the read to
4346168404Spjd		 * complete.  It has been removed from the hash table and
4347168404Spjd		 * moved to the anonymous state (so that it won't show up
4348168404Spjd		 * in the cache).
4349168404Spjd		 */
4350286570Smav		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4351286570Smav		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4352168404Spjd	}
4353168404Spjd
4354168404Spjd	/* execute each callback and free its structure */
4355168404Spjd	while ((acb = callback_list) != NULL) {
4356168404Spjd		if (acb->acb_done)
4357168404Spjd			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4358168404Spjd
4359168404Spjd		if (acb->acb_zio_dummy != NULL) {
4360168404Spjd			acb->acb_zio_dummy->io_error = zio->io_error;
4361168404Spjd			zio_nowait(acb->acb_zio_dummy);
4362168404Spjd		}
4363168404Spjd
4364168404Spjd		callback_list = acb->acb_next;
4365168404Spjd		kmem_free(acb, sizeof (arc_callback_t));
4366168404Spjd	}
4367168404Spjd
4368168404Spjd	if (freeable)
4369168404Spjd		arc_hdr_destroy(hdr);
4370168404Spjd}
4371168404Spjd
4372168404Spjd/*
4373286762Smav * "Read" the block at the specified DVA (in bp) via the
4374168404Spjd * cache.  If the block is found in the cache, invoke the provided
4375168404Spjd * callback immediately and return.  Note that the `zio' parameter
4376168404Spjd * in the callback will be NULL in this case, since no IO was
4377168404Spjd * required.  If the block is not in the cache pass the read request
4378168404Spjd * on to the spa with a substitute callback function, so that the
4379168404Spjd * requested block will be added to the cache.
4380168404Spjd *
4381168404Spjd * If a read request arrives for a block that has a read in-progress,
4382168404Spjd * either wait for the in-progress read to complete (and return the
4383168404Spjd * results); or, if this is a read with a "done" func, add a record
4384168404Spjd * to the read to invoke the "done" func when the read completes,
4385168404Spjd * and return; or just return.
4386168404Spjd *
4387168404Spjd * arc_read_done() will invoke all the requested "done" functions
4388168404Spjd * for readers of this block.
4389168404Spjd */
4390168404Spjdint
4391246666Smmarc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4392275811Sdelphij    void *private, zio_priority_t priority, int zio_flags,
4393275811Sdelphij    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4394168404Spjd{
4395268075Sdelphij	arc_buf_hdr_t *hdr = NULL;
4396247187Smm	arc_buf_t *buf = NULL;
4397268075Sdelphij	kmutex_t *hash_lock = NULL;
4398185029Spjd	zio_t *rzio;
4399228103Smm	uint64_t guid = spa_load_guid(spa);
4400168404Spjd
4401268075Sdelphij	ASSERT(!BP_IS_EMBEDDED(bp) ||
4402268075Sdelphij	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4403268075Sdelphij
4404168404Spjdtop:
4405268075Sdelphij	if (!BP_IS_EMBEDDED(bp)) {
4406268075Sdelphij		/*
4407268075Sdelphij		 * Embedded BP's have no DVA and require no I/O to "read".
4408268075Sdelphij		 * Create an anonymous arc buf to back it.
4409268075Sdelphij		 */
4410268075Sdelphij		hdr = buf_hash_find(guid, bp, &hash_lock);
4411268075Sdelphij	}
4412168404Spjd
4413286570Smav	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4414268075Sdelphij
4415275811Sdelphij		*arc_flags |= ARC_FLAG_CACHED;
4416168404Spjd
4417168404Spjd		if (HDR_IO_IN_PROGRESS(hdr)) {
4418168404Spjd
4419287702Sdelphij			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4420287702Sdelphij			    priority == ZIO_PRIORITY_SYNC_READ) {
4421287702Sdelphij				/*
4422287702Sdelphij				 * This sync read must wait for an
4423287702Sdelphij				 * in-progress async read (e.g. a predictive
4424287702Sdelphij				 * prefetch).  Async reads are queued
4425287702Sdelphij				 * separately at the vdev_queue layer, so
4426287702Sdelphij				 * this is a form of priority inversion.
4427287702Sdelphij				 * Ideally, we would "inherit" the demand
4428287702Sdelphij				 * i/o's priority by moving the i/o from
4429287702Sdelphij				 * the async queue to the synchronous queue,
4430287702Sdelphij				 * but there is currently no mechanism to do
4431287702Sdelphij				 * so.  Track this so that we can evaluate
4432287702Sdelphij				 * the magnitude of this potential performance
4433287702Sdelphij				 * problem.
4434287702Sdelphij				 *
4435287702Sdelphij				 * Note that if the prefetch i/o is already
4436287702Sdelphij				 * active (has been issued to the device),
4437287702Sdelphij				 * the prefetch improved performance, because
4438287702Sdelphij				 * we issued it sooner than we would have
4439287702Sdelphij				 * without the prefetch.
4440287702Sdelphij				 */
4441287702Sdelphij				DTRACE_PROBE1(arc__sync__wait__for__async,
4442287702Sdelphij				    arc_buf_hdr_t *, hdr);
4443287702Sdelphij				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4444287702Sdelphij			}
4445287702Sdelphij			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4446287702Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4447287702Sdelphij			}
4448287702Sdelphij
4449275811Sdelphij			if (*arc_flags & ARC_FLAG_WAIT) {
4450286570Smav				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4451168404Spjd				mutex_exit(hash_lock);
4452168404Spjd				goto top;
4453168404Spjd			}
4454275811Sdelphij			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4455168404Spjd
4456168404Spjd			if (done) {
4457287702Sdelphij				arc_callback_t *acb = NULL;
4458168404Spjd
4459168404Spjd				acb = kmem_zalloc(sizeof (arc_callback_t),
4460168404Spjd				    KM_SLEEP);
4461168404Spjd				acb->acb_done = done;
4462168404Spjd				acb->acb_private = private;
4463168404Spjd				if (pio != NULL)
4464168404Spjd					acb->acb_zio_dummy = zio_null(pio,
4465209962Smm					    spa, NULL, NULL, NULL, zio_flags);
4466168404Spjd
4467168404Spjd				ASSERT(acb->acb_done != NULL);
4468286570Smav				acb->acb_next = hdr->b_l1hdr.b_acb;
4469286570Smav				hdr->b_l1hdr.b_acb = acb;
4470168404Spjd				add_reference(hdr, hash_lock, private);
4471168404Spjd				mutex_exit(hash_lock);
4472168404Spjd				return (0);
4473168404Spjd			}
4474168404Spjd			mutex_exit(hash_lock);
4475168404Spjd			return (0);
4476168404Spjd		}
4477168404Spjd
4478286570Smav		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4479286570Smav		    hdr->b_l1hdr.b_state == arc_mfu);
4480168404Spjd
4481168404Spjd		if (done) {
4482287702Sdelphij			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4483287702Sdelphij				/*
4484287702Sdelphij				 * This is a demand read which does not have to
4485287702Sdelphij				 * wait for i/o because we did a predictive
4486287702Sdelphij				 * prefetch i/o for it, which has completed.
4487287702Sdelphij				 */
4488287702Sdelphij				DTRACE_PROBE1(
4489287702Sdelphij				    arc__demand__hit__predictive__prefetch,
4490287702Sdelphij				    arc_buf_hdr_t *, hdr);
4491287702Sdelphij				ARCSTAT_BUMP(
4492287702Sdelphij				    arcstat_demand_hit_predictive_prefetch);
4493287702Sdelphij				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4494287702Sdelphij			}
4495168404Spjd			add_reference(hdr, hash_lock, private);
4496168404Spjd			/*
4497168404Spjd			 * If this block is already in use, create a new
4498168404Spjd			 * copy of the data so that we will be guaranteed
4499168404Spjd			 * that arc_release() will always succeed.
4500168404Spjd			 */
4501286570Smav			buf = hdr->b_l1hdr.b_buf;
4502168404Spjd			ASSERT(buf);
4503168404Spjd			ASSERT(buf->b_data);
4504168404Spjd			if (HDR_BUF_AVAILABLE(hdr)) {
4505168404Spjd				ASSERT(buf->b_efunc == NULL);
4506275811Sdelphij				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4507168404Spjd			} else {
4508168404Spjd				buf = arc_buf_clone(buf);
4509168404Spjd			}
4510219089Spjd
4511275811Sdelphij		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4512286570Smav		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4513275811Sdelphij			hdr->b_flags |= ARC_FLAG_PREFETCH;
4514168404Spjd		}
4515168404Spjd		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4516168404Spjd		arc_access(hdr, hash_lock);
4517275811Sdelphij		if (*arc_flags & ARC_FLAG_L2CACHE)
4518275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2CACHE;
4519275811Sdelphij		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4520275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4521168404Spjd		mutex_exit(hash_lock);
4522168404Spjd		ARCSTAT_BUMP(arcstat_hits);
4523286570Smav		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4524286570Smav		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4525168404Spjd		    data, metadata, hits);
4526168404Spjd
4527168404Spjd		if (done)
4528168404Spjd			done(NULL, buf, private);
4529168404Spjd	} else {
4530168404Spjd		uint64_t size = BP_GET_LSIZE(bp);
4531268075Sdelphij		arc_callback_t *acb;
4532185029Spjd		vdev_t *vd = NULL;
4533247187Smm		uint64_t addr = 0;
4534208373Smm		boolean_t devw = B_FALSE;
4535258389Savg		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4536286570Smav		int32_t b_asize = 0;
4537168404Spjd
4538168404Spjd		if (hdr == NULL) {
4539168404Spjd			/* this block is not in the cache */
4540268075Sdelphij			arc_buf_hdr_t *exists = NULL;
4541168404Spjd			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4542168404Spjd			buf = arc_buf_alloc(spa, size, private, type);
4543168404Spjd			hdr = buf->b_hdr;
4544268075Sdelphij			if (!BP_IS_EMBEDDED(bp)) {
4545268075Sdelphij				hdr->b_dva = *BP_IDENTITY(bp);
4546268075Sdelphij				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4547268075Sdelphij				exists = buf_hash_insert(hdr, &hash_lock);
4548268075Sdelphij			}
4549268075Sdelphij			if (exists != NULL) {
4550168404Spjd				/* somebody beat us to the hash insert */
4551168404Spjd				mutex_exit(hash_lock);
4552219089Spjd				buf_discard_identity(hdr);
4553168404Spjd				(void) arc_buf_remove_ref(buf, private);
4554168404Spjd				goto top; /* restart the IO request */
4555168404Spjd			}
4556275811Sdelphij
4557287702Sdelphij			/*
4558287702Sdelphij			 * If there is a callback, we pass our reference to
4559287702Sdelphij			 * it; otherwise we remove our reference.
4560287702Sdelphij			 */
4561287702Sdelphij			if (done == NULL) {
4562168404Spjd				(void) remove_reference(hdr, hash_lock,
4563168404Spjd				    private);
4564287702Sdelphij			}
4565287702Sdelphij			if (*arc_flags & ARC_FLAG_PREFETCH)
4566275811Sdelphij				hdr->b_flags |= ARC_FLAG_PREFETCH;
4567275811Sdelphij			if (*arc_flags & ARC_FLAG_L2CACHE)
4568275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2CACHE;
4569275811Sdelphij			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4570275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4571168404Spjd			if (BP_GET_LEVEL(bp) > 0)
4572275811Sdelphij				hdr->b_flags |= ARC_FLAG_INDIRECT;
4573168404Spjd		} else {
4574286570Smav			/*
4575286570Smav			 * This block is in the ghost cache. If it was L2-only
4576286570Smav			 * (and thus didn't have an L1 hdr), we realloc the
4577286570Smav			 * header to add an L1 hdr.
4578286570Smav			 */
4579286570Smav			if (!HDR_HAS_L1HDR(hdr)) {
4580286570Smav				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4581286570Smav				    hdr_full_cache);
4582286570Smav			}
4583286570Smav
4584286570Smav			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4585168404Spjd			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4586286570Smav			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4587286763Smav			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4588168404Spjd
4589287702Sdelphij			/*
4590287702Sdelphij			 * If there is a callback, we pass a reference to it.
4591287702Sdelphij			 */
4592287702Sdelphij			if (done != NULL)
4593287702Sdelphij				add_reference(hdr, hash_lock, private);
4594275811Sdelphij			if (*arc_flags & ARC_FLAG_PREFETCH)
4595275811Sdelphij				hdr->b_flags |= ARC_FLAG_PREFETCH;
4596275811Sdelphij			if (*arc_flags & ARC_FLAG_L2CACHE)
4597275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2CACHE;
4598275811Sdelphij			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4599275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4600185029Spjd			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4601168404Spjd			buf->b_hdr = hdr;
4602168404Spjd			buf->b_data = NULL;
4603168404Spjd			buf->b_efunc = NULL;
4604168404Spjd			buf->b_private = NULL;
4605168404Spjd			buf->b_next = NULL;
4606286570Smav			hdr->b_l1hdr.b_buf = buf;
4607286570Smav			ASSERT0(hdr->b_l1hdr.b_datacnt);
4608286570Smav			hdr->b_l1hdr.b_datacnt = 1;
4609219089Spjd			arc_get_data_buf(buf);
4610219089Spjd			arc_access(hdr, hash_lock);
4611168404Spjd		}
4612168404Spjd
4613287702Sdelphij		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4614287702Sdelphij			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4615286570Smav		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4616219089Spjd
4617168404Spjd		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4618168404Spjd		acb->acb_done = done;
4619168404Spjd		acb->acb_private = private;
4620168404Spjd
4621286570Smav		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4622286570Smav		hdr->b_l1hdr.b_acb = acb;
4623275811Sdelphij		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4624168404Spjd
4625286570Smav		if (HDR_HAS_L2HDR(hdr) &&
4626286570Smav		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4627286570Smav			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4628286570Smav			addr = hdr->b_l2hdr.b_daddr;
4629287706Sdelphij			b_compress = hdr->b_l2hdr.b_compress;
4630286570Smav			b_asize = hdr->b_l2hdr.b_asize;
4631185029Spjd			/*
4632185029Spjd			 * Lock out device removal.
4633185029Spjd			 */
4634185029Spjd			if (vdev_is_dead(vd) ||
4635185029Spjd			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4636185029Spjd				vd = NULL;
4637185029Spjd		}
4638185029Spjd
4639268075Sdelphij		if (hash_lock != NULL)
4640268075Sdelphij			mutex_exit(hash_lock);
4641168404Spjd
4642251629Sdelphij		/*
4643251629Sdelphij		 * At this point, we have a level 1 cache miss.  Try again in
4644251629Sdelphij		 * L2ARC if possible.
4645251629Sdelphij		 */
4646168404Spjd		ASSERT3U(hdr->b_size, ==, size);
4647219089Spjd		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4648268123Sdelphij		    uint64_t, size, zbookmark_phys_t *, zb);
4649168404Spjd		ARCSTAT_BUMP(arcstat_misses);
4650286570Smav		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4651286570Smav		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4652168404Spjd		    data, metadata, misses);
4653228392Spjd#ifdef _KERNEL
4654297633Strasz#ifdef RACCT
4655297633Strasz		if (racct_enable) {
4656297633Strasz			PROC_LOCK(curproc);
4657297633Strasz			racct_add_force(curproc, RACCT_READBPS, size);
4658297633Strasz			racct_add_force(curproc, RACCT_READIOPS, 1);
4659297633Strasz			PROC_UNLOCK(curproc);
4660297633Strasz		}
4661297633Strasz#endif /* RACCT */
4662228392Spjd		curthread->td_ru.ru_inblock++;
4663228392Spjd#endif
4664168404Spjd
4665287702Sdelphij		if (priority == ZIO_PRIORITY_ASYNC_READ)
4666287702Sdelphij			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4667287702Sdelphij		else
4668287702Sdelphij			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4669287702Sdelphij
4670208373Smm		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4671185029Spjd			/*
4672185029Spjd			 * Read from the L2ARC if the following are true:
4673185029Spjd			 * 1. The L2ARC vdev was previously cached.
4674185029Spjd			 * 2. This buffer still has L2ARC metadata.
4675185029Spjd			 * 3. This buffer isn't currently writing to the L2ARC.
4676185029Spjd			 * 4. The L2ARC entry wasn't evicted, which may
4677185029Spjd			 *    also have invalidated the vdev.
4678208373Smm			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4679185029Spjd			 */
4680286570Smav			if (HDR_HAS_L2HDR(hdr) &&
4681208373Smm			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4682208373Smm			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4683185029Spjd				l2arc_read_callback_t *cb;
4684297848Savg				void* b_data;
4685185029Spjd
4686185029Spjd				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4687185029Spjd				ARCSTAT_BUMP(arcstat_l2_hits);
4688185029Spjd
4689185029Spjd				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4690185029Spjd				    KM_SLEEP);
4691185029Spjd				cb->l2rcb_buf = buf;
4692185029Spjd				cb->l2rcb_spa = spa;
4693185029Spjd				cb->l2rcb_bp = *bp;
4694185029Spjd				cb->l2rcb_zb = *zb;
4695185029Spjd				cb->l2rcb_flags = zio_flags;
4696258389Savg				cb->l2rcb_compress = b_compress;
4697297848Savg				if (b_asize > hdr->b_size) {
4698297848Savg					ASSERT3U(b_compress, ==,
4699297848Savg					    ZIO_COMPRESS_OFF);
4700297848Savg					b_data = zio_data_buf_alloc(b_asize);
4701297848Savg					cb->l2rcb_data = b_data;
4702297848Savg				} else {
4703297848Savg					b_data = buf->b_data;
4704297848Savg				}
4705185029Spjd
4706247187Smm				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4707247187Smm				    addr + size < vd->vdev_psize -
4708247187Smm				    VDEV_LABEL_END_SIZE);
4709247187Smm
4710185029Spjd				/*
4711185029Spjd				 * l2arc read.  The SCL_L2ARC lock will be
4712185029Spjd				 * released by l2arc_read_done().
4713251478Sdelphij				 * Issue a null zio if the underlying buffer
4714251478Sdelphij				 * was squashed to zero size by compression.
4715185029Spjd				 */
4716258389Savg				if (b_compress == ZIO_COMPRESS_EMPTY) {
4717297848Savg					ASSERT3U(b_asize, ==, 0);
4718251478Sdelphij					rzio = zio_null(pio, spa, vd,
4719251478Sdelphij					    l2arc_read_done, cb,
4720251478Sdelphij					    zio_flags | ZIO_FLAG_DONT_CACHE |
4721251478Sdelphij					    ZIO_FLAG_CANFAIL |
4722251478Sdelphij					    ZIO_FLAG_DONT_PROPAGATE |
4723251478Sdelphij					    ZIO_FLAG_DONT_RETRY);
4724251478Sdelphij				} else {
4725251478Sdelphij					rzio = zio_read_phys(pio, vd, addr,
4726297848Savg					    b_asize, b_data,
4727258389Savg					    ZIO_CHECKSUM_OFF,
4728251478Sdelphij					    l2arc_read_done, cb, priority,
4729251478Sdelphij					    zio_flags | ZIO_FLAG_DONT_CACHE |
4730251478Sdelphij					    ZIO_FLAG_CANFAIL |
4731251478Sdelphij					    ZIO_FLAG_DONT_PROPAGATE |
4732251478Sdelphij					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4733251478Sdelphij				}
4734185029Spjd				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4735185029Spjd				    zio_t *, rzio);
4736258389Savg				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4737185029Spjd
4738275811Sdelphij				if (*arc_flags & ARC_FLAG_NOWAIT) {
4739185029Spjd					zio_nowait(rzio);
4740185029Spjd					return (0);
4741185029Spjd				}
4742185029Spjd
4743275811Sdelphij				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4744185029Spjd				if (zio_wait(rzio) == 0)
4745185029Spjd					return (0);
4746185029Spjd
4747185029Spjd				/* l2arc read error; goto zio_read() */
4748185029Spjd			} else {
4749185029Spjd				DTRACE_PROBE1(l2arc__miss,
4750185029Spjd				    arc_buf_hdr_t *, hdr);
4751185029Spjd				ARCSTAT_BUMP(arcstat_l2_misses);
4752185029Spjd				if (HDR_L2_WRITING(hdr))
4753185029Spjd					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4754185029Spjd				spa_config_exit(spa, SCL_L2ARC, vd);
4755185029Spjd			}
4756208373Smm		} else {
4757208373Smm			if (vd != NULL)
4758208373Smm				spa_config_exit(spa, SCL_L2ARC, vd);
4759208373Smm			if (l2arc_ndev != 0) {
4760208373Smm				DTRACE_PROBE1(l2arc__miss,
4761208373Smm				    arc_buf_hdr_t *, hdr);
4762208373Smm				ARCSTAT_BUMP(arcstat_l2_misses);
4763208373Smm			}
4764185029Spjd		}
4765185029Spjd
4766168404Spjd		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4767185029Spjd		    arc_read_done, buf, priority, zio_flags, zb);
4768168404Spjd
4769275811Sdelphij		if (*arc_flags & ARC_FLAG_WAIT)
4770168404Spjd			return (zio_wait(rzio));
4771168404Spjd
4772275811Sdelphij		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4773168404Spjd		zio_nowait(rzio);
4774168404Spjd	}
4775168404Spjd	return (0);
4776168404Spjd}
4777168404Spjd
4778168404Spjdvoid
4779168404Spjdarc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4780168404Spjd{
4781168404Spjd	ASSERT(buf->b_hdr != NULL);
4782286570Smav	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4783286570Smav	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4784286570Smav	    func == NULL);
4785219089Spjd	ASSERT(buf->b_efunc == NULL);
4786219089Spjd	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4787219089Spjd
4788168404Spjd	buf->b_efunc = func;
4789168404Spjd	buf->b_private = private;
4790168404Spjd}
4791168404Spjd
4792168404Spjd/*
4793251520Sdelphij * Notify the arc that a block was freed, and thus will never be used again.
4794251520Sdelphij */
4795251520Sdelphijvoid
4796251520Sdelphijarc_freed(spa_t *spa, const blkptr_t *bp)
4797251520Sdelphij{
4798251520Sdelphij	arc_buf_hdr_t *hdr;
4799251520Sdelphij	kmutex_t *hash_lock;
4800251520Sdelphij	uint64_t guid = spa_load_guid(spa);
4801251520Sdelphij
4802268075Sdelphij	ASSERT(!BP_IS_EMBEDDED(bp));
4803268075Sdelphij
4804268075Sdelphij	hdr = buf_hash_find(guid, bp, &hash_lock);
4805251520Sdelphij	if (hdr == NULL)
4806251520Sdelphij		return;
4807251520Sdelphij	if (HDR_BUF_AVAILABLE(hdr)) {
4808286570Smav		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4809251520Sdelphij		add_reference(hdr, hash_lock, FTAG);
4810275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4811251520Sdelphij		mutex_exit(hash_lock);
4812251520Sdelphij
4813251520Sdelphij		arc_release(buf, FTAG);
4814251520Sdelphij		(void) arc_buf_remove_ref(buf, FTAG);
4815251520Sdelphij	} else {
4816251520Sdelphij		mutex_exit(hash_lock);
4817251520Sdelphij	}
4818251520Sdelphij
4819251520Sdelphij}
4820251520Sdelphij
4821251520Sdelphij/*
4822268858Sdelphij * Clear the user eviction callback set by arc_set_callback(), first calling
4823268858Sdelphij * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4824268858Sdelphij * clearing the callback may result in the arc_buf being destroyed.  However,
4825268858Sdelphij * it will not result in the *last* arc_buf being destroyed, hence the data
4826268858Sdelphij * will remain cached in the ARC. We make a copy of the arc buffer here so
4827268858Sdelphij * that we can process the callback without holding any locks.
4828268858Sdelphij *
4829268858Sdelphij * It's possible that the callback is already in the process of being cleared
4830268858Sdelphij * by another thread.  In this case we can not clear the callback.
4831268858Sdelphij *
4832268858Sdelphij * Returns B_TRUE if the callback was successfully called and cleared.
4833168404Spjd */
4834268858Sdelphijboolean_t
4835268858Sdelphijarc_clear_callback(arc_buf_t *buf)
4836168404Spjd{
4837168404Spjd	arc_buf_hdr_t *hdr;
4838168404Spjd	kmutex_t *hash_lock;
4839268858Sdelphij	arc_evict_func_t *efunc = buf->b_efunc;
4840268858Sdelphij	void *private = buf->b_private;
4841206796Spjd
4842219089Spjd	mutex_enter(&buf->b_evict_lock);
4843168404Spjd	hdr = buf->b_hdr;
4844168404Spjd	if (hdr == NULL) {
4845168404Spjd		/*
4846168404Spjd		 * We are in arc_do_user_evicts().
4847168404Spjd		 */
4848168404Spjd		ASSERT(buf->b_data == NULL);
4849219089Spjd		mutex_exit(&buf->b_evict_lock);
4850268858Sdelphij		return (B_FALSE);
4851185029Spjd	} else if (buf->b_data == NULL) {
4852185029Spjd		/*
4853185029Spjd		 * We are on the eviction list; process this buffer now
4854185029Spjd		 * but let arc_do_user_evicts() do the reaping.
4855185029Spjd		 */
4856185029Spjd		buf->b_efunc = NULL;
4857219089Spjd		mutex_exit(&buf->b_evict_lock);
4858268858Sdelphij		VERIFY0(efunc(private));
4859268858Sdelphij		return (B_TRUE);
4860168404Spjd	}
4861168404Spjd	hash_lock = HDR_LOCK(hdr);
4862168404Spjd	mutex_enter(hash_lock);
4863219089Spjd	hdr = buf->b_hdr;
4864219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4865168404Spjd
4866286570Smav	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4867286570Smav	    hdr->b_l1hdr.b_datacnt);
4868286570Smav	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4869286570Smav	    hdr->b_l1hdr.b_state == arc_mfu);
4870168404Spjd
4871268858Sdelphij	buf->b_efunc = NULL;
4872268858Sdelphij	buf->b_private = NULL;
4873168404Spjd
4874286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
4875268858Sdelphij		mutex_exit(&buf->b_evict_lock);
4876286763Smav		arc_buf_destroy(buf, TRUE);
4877268858Sdelphij	} else {
4878286570Smav		ASSERT(buf == hdr->b_l1hdr.b_buf);
4879275811Sdelphij		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4880268858Sdelphij		mutex_exit(&buf->b_evict_lock);
4881268858Sdelphij	}
4882168404Spjd
4883168404Spjd	mutex_exit(hash_lock);
4884268858Sdelphij	VERIFY0(efunc(private));
4885268858Sdelphij	return (B_TRUE);
4886168404Spjd}
4887168404Spjd
4888168404Spjd/*
4889251629Sdelphij * Release this buffer from the cache, making it an anonymous buffer.  This
4890251629Sdelphij * must be done after a read and prior to modifying the buffer contents.
4891168404Spjd * If the buffer has more than one reference, we must make
4892185029Spjd * a new hdr for the buffer.
4893168404Spjd */
4894168404Spjdvoid
4895168404Spjdarc_release(arc_buf_t *buf, void *tag)
4896168404Spjd{
4897286570Smav	arc_buf_hdr_t *hdr = buf->b_hdr;
4898168404Spjd
4899219089Spjd	/*
4900219089Spjd	 * It would be nice to assert that if it's DMU metadata (level >
4901219089Spjd	 * 0 || it's the dnode file), then it must be syncing context.
4902219089Spjd	 * But we don't know that information at this level.
4903219089Spjd	 */
4904219089Spjd
4905219089Spjd	mutex_enter(&buf->b_evict_lock);
4906286776Smav
4907286776Smav	ASSERT(HDR_HAS_L1HDR(hdr));
4908286776Smav
4909286570Smav	/*
4910286570Smav	 * We don't grab the hash lock prior to this check, because if
4911286570Smav	 * the buffer's header is in the arc_anon state, it won't be
4912286570Smav	 * linked into the hash table.
4913286570Smav	 */
4914286570Smav	if (hdr->b_l1hdr.b_state == arc_anon) {
4915286570Smav		mutex_exit(&buf->b_evict_lock);
4916286570Smav		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4917286570Smav		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4918286570Smav		ASSERT(!HDR_HAS_L2HDR(hdr));
4919286570Smav		ASSERT(BUF_EMPTY(hdr));
4920286570Smav		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4921286570Smav		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4922286570Smav		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4923185029Spjd
4924286570Smav		ASSERT3P(buf->b_efunc, ==, NULL);
4925286570Smav		ASSERT3P(buf->b_private, ==, NULL);
4926168404Spjd
4927286570Smav		hdr->b_l1hdr.b_arc_access = 0;
4928286570Smav		arc_buf_thaw(buf);
4929286570Smav
4930286570Smav		return;
4931168404Spjd	}
4932168404Spjd
4933286570Smav	kmutex_t *hash_lock = HDR_LOCK(hdr);
4934286570Smav	mutex_enter(hash_lock);
4935286570Smav
4936286570Smav	/*
4937286570Smav	 * This assignment is only valid as long as the hash_lock is
4938286570Smav	 * held, we must be careful not to reference state or the
4939286570Smav	 * b_state field after dropping the lock.
4940286570Smav	 */
4941286570Smav	arc_state_t *state = hdr->b_l1hdr.b_state;
4942286570Smav	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4943286570Smav	ASSERT3P(state, !=, arc_anon);
4944286570Smav
4945286570Smav	/* this buffer is not on any list */
4946286570Smav	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4947286570Smav
4948286570Smav	if (HDR_HAS_L2HDR(hdr)) {
4949286570Smav		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4950286570Smav
4951286570Smav		/*
4952286598Smav		 * We have to recheck this conditional again now that
4953286598Smav		 * we're holding the l2ad_mtx to prevent a race with
4954286598Smav		 * another thread which might be concurrently calling
4955286598Smav		 * l2arc_evict(). In that case, l2arc_evict() might have
4956286598Smav		 * destroyed the header's L2 portion as we were waiting
4957286598Smav		 * to acquire the l2ad_mtx.
4958286570Smav		 */
4959286598Smav		if (HDR_HAS_L2HDR(hdr)) {
4960290191Savg			l2arc_trim(hdr);
4961286598Smav			arc_hdr_l2hdr_destroy(hdr);
4962286598Smav		}
4963286570Smav
4964286570Smav		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4965185029Spjd	}
4966185029Spjd
4967168404Spjd	/*
4968168404Spjd	 * Do we have more than one buf?
4969168404Spjd	 */
4970286570Smav	if (hdr->b_l1hdr.b_datacnt > 1) {
4971168404Spjd		arc_buf_hdr_t *nhdr;
4972168404Spjd		arc_buf_t **bufp;
4973168404Spjd		uint64_t blksz = hdr->b_size;
4974209962Smm		uint64_t spa = hdr->b_spa;
4975286570Smav		arc_buf_contents_t type = arc_buf_type(hdr);
4976185029Spjd		uint32_t flags = hdr->b_flags;
4977168404Spjd
4978286570Smav		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4979168404Spjd		/*
4980219089Spjd		 * Pull the data off of this hdr and attach it to
4981219089Spjd		 * a new anonymous hdr.
4982168404Spjd		 */
4983168404Spjd		(void) remove_reference(hdr, hash_lock, tag);
4984286570Smav		bufp = &hdr->b_l1hdr.b_buf;
4985168404Spjd		while (*bufp != buf)
4986168404Spjd			bufp = &(*bufp)->b_next;
4987219089Spjd		*bufp = buf->b_next;
4988168404Spjd		buf->b_next = NULL;
4989168404Spjd
4990286570Smav		ASSERT3P(state, !=, arc_l2c_only);
4991286766Smav
4992286766Smav		(void) refcount_remove_many(
4993286766Smav		    &state->arcs_size, hdr->b_size, buf);
4994286766Smav
4995286570Smav		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4996286570Smav			ASSERT3P(state, !=, arc_l2c_only);
4997286570Smav			uint64_t *size = &state->arcs_lsize[type];
4998185029Spjd			ASSERT3U(*size, >=, hdr->b_size);
4999185029Spjd			atomic_add_64(size, -hdr->b_size);
5000168404Spjd		}
5001242845Sdelphij
5002242845Sdelphij		/*
5003242845Sdelphij		 * We're releasing a duplicate user data buffer, update
5004242845Sdelphij		 * our statistics accordingly.
5005242845Sdelphij		 */
5006286570Smav		if (HDR_ISTYPE_DATA(hdr)) {
5007242845Sdelphij			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
5008242845Sdelphij			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
5009242845Sdelphij			    -hdr->b_size);
5010242845Sdelphij		}
5011286570Smav		hdr->b_l1hdr.b_datacnt -= 1;
5012168404Spjd		arc_cksum_verify(buf);
5013240133Smm#ifdef illumos
5014240133Smm		arc_buf_unwatch(buf);
5015277300Ssmh#endif
5016168404Spjd
5017168404Spjd		mutex_exit(hash_lock);
5018168404Spjd
5019286570Smav		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
5020168404Spjd		nhdr->b_size = blksz;
5021168404Spjd		nhdr->b_spa = spa;
5022286570Smav
5023275811Sdelphij		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
5024286570Smav		nhdr->b_flags |= arc_bufc_to_flags(type);
5025286570Smav		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
5026286570Smav
5027286570Smav		nhdr->b_l1hdr.b_buf = buf;
5028286570Smav		nhdr->b_l1hdr.b_datacnt = 1;
5029286570Smav		nhdr->b_l1hdr.b_state = arc_anon;
5030286570Smav		nhdr->b_l1hdr.b_arc_access = 0;
5031286763Smav		nhdr->b_l1hdr.b_tmp_cdata = NULL;
5032168404Spjd		nhdr->b_freeze_cksum = NULL;
5033286570Smav
5034286570Smav		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5035168404Spjd		buf->b_hdr = nhdr;
5036219089Spjd		mutex_exit(&buf->b_evict_lock);
5037286766Smav		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
5038168404Spjd	} else {
5039219089Spjd		mutex_exit(&buf->b_evict_lock);
5040286570Smav		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5041286763Smav		/* protected by hash lock, or hdr is on arc_anon */
5042286763Smav		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5043168404Spjd		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5044286570Smav		arc_change_state(arc_anon, hdr, hash_lock);
5045286570Smav		hdr->b_l1hdr.b_arc_access = 0;
5046286570Smav		mutex_exit(hash_lock);
5047185029Spjd
5048219089Spjd		buf_discard_identity(hdr);
5049168404Spjd		arc_buf_thaw(buf);
5050168404Spjd	}
5051168404Spjd	buf->b_efunc = NULL;
5052168404Spjd	buf->b_private = NULL;
5053168404Spjd}
5054168404Spjd
5055168404Spjdint
5056168404Spjdarc_released(arc_buf_t *buf)
5057168404Spjd{
5058185029Spjd	int released;
5059185029Spjd
5060219089Spjd	mutex_enter(&buf->b_evict_lock);
5061286570Smav	released = (buf->b_data != NULL &&
5062286570Smav	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5063219089Spjd	mutex_exit(&buf->b_evict_lock);
5064185029Spjd	return (released);
5065168404Spjd}
5066168404Spjd
5067168404Spjd#ifdef ZFS_DEBUG
5068168404Spjdint
5069168404Spjdarc_referenced(arc_buf_t *buf)
5070168404Spjd{
5071185029Spjd	int referenced;
5072185029Spjd
5073219089Spjd	mutex_enter(&buf->b_evict_lock);
5074286570Smav	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5075219089Spjd	mutex_exit(&buf->b_evict_lock);
5076185029Spjd	return (referenced);
5077168404Spjd}
5078168404Spjd#endif
5079168404Spjd
5080168404Spjdstatic void
5081168404Spjdarc_write_ready(zio_t *zio)
5082168404Spjd{
5083168404Spjd	arc_write_callback_t *callback = zio->io_private;
5084168404Spjd	arc_buf_t *buf = callback->awcb_buf;
5085185029Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5086168404Spjd
5087286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
5088286570Smav	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5089286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5090185029Spjd	callback->awcb_ready(zio, buf, callback->awcb_private);
5091185029Spjd
5092185029Spjd	/*
5093185029Spjd	 * If the IO is already in progress, then this is a re-write
5094185029Spjd	 * attempt, so we need to thaw and re-compute the cksum.
5095185029Spjd	 * It is the responsibility of the callback to handle the
5096185029Spjd	 * accounting for any re-write attempt.
5097185029Spjd	 */
5098185029Spjd	if (HDR_IO_IN_PROGRESS(hdr)) {
5099286570Smav		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
5100185029Spjd		if (hdr->b_freeze_cksum != NULL) {
5101185029Spjd			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5102185029Spjd			hdr->b_freeze_cksum = NULL;
5103185029Spjd		}
5104286570Smav		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
5105168404Spjd	}
5106185029Spjd	arc_cksum_compute(buf, B_FALSE);
5107275811Sdelphij	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
5108168404Spjd}
5109168404Spjd
5110304138Savgstatic void
5111304138Savgarc_write_children_ready(zio_t *zio)
5112304138Savg{
5113304138Savg	arc_write_callback_t *callback = zio->io_private;
5114304138Savg	arc_buf_t *buf = callback->awcb_buf;
5115304138Savg
5116304138Savg	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5117304138Savg}
5118304138Savg
5119258632Savg/*
5120258632Savg * The SPA calls this callback for each physical write that happens on behalf
5121258632Savg * of a logical write.  See the comment in dbuf_write_physdone() for details.
5122258632Savg */
5123168404Spjdstatic void
5124258632Savgarc_write_physdone(zio_t *zio)
5125258632Savg{
5126258632Savg	arc_write_callback_t *cb = zio->io_private;
5127258632Savg	if (cb->awcb_physdone != NULL)
5128258632Savg		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5129258632Savg}
5130258632Savg
5131258632Savgstatic void
5132168404Spjdarc_write_done(zio_t *zio)
5133168404Spjd{
5134168404Spjd	arc_write_callback_t *callback = zio->io_private;
5135168404Spjd	arc_buf_t *buf = callback->awcb_buf;
5136168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5137168404Spjd
5138286570Smav	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5139168404Spjd
5140219089Spjd	if (zio->io_error == 0) {
5141268075Sdelphij		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5142260150Sdelphij			buf_discard_identity(hdr);
5143260150Sdelphij		} else {
5144260150Sdelphij			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5145260150Sdelphij			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5146260150Sdelphij		}
5147219089Spjd	} else {
5148219089Spjd		ASSERT(BUF_EMPTY(hdr));
5149219089Spjd	}
5150219089Spjd
5151168404Spjd	/*
5152268075Sdelphij	 * If the block to be written was all-zero or compressed enough to be
5153268075Sdelphij	 * embedded in the BP, no write was performed so there will be no
5154268075Sdelphij	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5155268075Sdelphij	 * (and uncached).
5156168404Spjd	 */
5157168404Spjd	if (!BUF_EMPTY(hdr)) {
5158168404Spjd		arc_buf_hdr_t *exists;
5159168404Spjd		kmutex_t *hash_lock;
5160168404Spjd
5161219089Spjd		ASSERT(zio->io_error == 0);
5162219089Spjd
5163168404Spjd		arc_cksum_verify(buf);
5164168404Spjd
5165168404Spjd		exists = buf_hash_insert(hdr, &hash_lock);
5166286570Smav		if (exists != NULL) {
5167168404Spjd			/*
5168168404Spjd			 * This can only happen if we overwrite for
5169168404Spjd			 * sync-to-convergence, because we remove
5170168404Spjd			 * buffers from the hash table when we arc_free().
5171168404Spjd			 */
5172219089Spjd			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5173219089Spjd				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5174219089Spjd					panic("bad overwrite, hdr=%p exists=%p",
5175219089Spjd					    (void *)hdr, (void *)exists);
5176286570Smav				ASSERT(refcount_is_zero(
5177286570Smav				    &exists->b_l1hdr.b_refcnt));
5178219089Spjd				arc_change_state(arc_anon, exists, hash_lock);
5179219089Spjd				mutex_exit(hash_lock);
5180219089Spjd				arc_hdr_destroy(exists);
5181219089Spjd				exists = buf_hash_insert(hdr, &hash_lock);
5182219089Spjd				ASSERT3P(exists, ==, NULL);
5183243524Smm			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5184243524Smm				/* nopwrite */
5185243524Smm				ASSERT(zio->io_prop.zp_nopwrite);
5186243524Smm				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5187243524Smm					panic("bad nopwrite, hdr=%p exists=%p",
5188243524Smm					    (void *)hdr, (void *)exists);
5189219089Spjd			} else {
5190219089Spjd				/* Dedup */
5191286570Smav				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5192286570Smav				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5193219089Spjd				ASSERT(BP_GET_DEDUP(zio->io_bp));
5194219089Spjd				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5195219089Spjd			}
5196168404Spjd		}
5197275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5198185029Spjd		/* if it's not anon, we are doing a scrub */
5199286570Smav		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5200185029Spjd			arc_access(hdr, hash_lock);
5201168404Spjd		mutex_exit(hash_lock);
5202168404Spjd	} else {
5203275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5204168404Spjd	}
5205168404Spjd
5206286570Smav	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5207219089Spjd	callback->awcb_done(zio, buf, callback->awcb_private);
5208168404Spjd
5209168404Spjd	kmem_free(callback, sizeof (arc_write_callback_t));
5210168404Spjd}
5211168404Spjd
5212168404Spjdzio_t *
5213219089Spjdarc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5214251478Sdelphij    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5215304138Savg    const zio_prop_t *zp, arc_done_func_t *ready,
5216304138Savg    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5217258632Savg    arc_done_func_t *done, void *private, zio_priority_t priority,
5218268123Sdelphij    int zio_flags, const zbookmark_phys_t *zb)
5219168404Spjd{
5220168404Spjd	arc_buf_hdr_t *hdr = buf->b_hdr;
5221168404Spjd	arc_write_callback_t *callback;
5222185029Spjd	zio_t *zio;
5223168404Spjd
5224185029Spjd	ASSERT(ready != NULL);
5225219089Spjd	ASSERT(done != NULL);
5226168404Spjd	ASSERT(!HDR_IO_ERROR(hdr));
5227286570Smav	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5228286570Smav	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5229286570Smav	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5230185029Spjd	if (l2arc)
5231275811Sdelphij		hdr->b_flags |= ARC_FLAG_L2CACHE;
5232251478Sdelphij	if (l2arc_compress)
5233275811Sdelphij		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5234168404Spjd	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5235168404Spjd	callback->awcb_ready = ready;
5236304138Savg	callback->awcb_children_ready = children_ready;
5237258632Savg	callback->awcb_physdone = physdone;
5238168404Spjd	callback->awcb_done = done;
5239168404Spjd	callback->awcb_private = private;
5240168404Spjd	callback->awcb_buf = buf;
5241168404Spjd
5242219089Spjd	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5243304138Savg	    arc_write_ready,
5244304138Savg	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5245304138Savg	    arc_write_physdone, arc_write_done, callback,
5246258632Savg	    priority, zio_flags, zb);
5247185029Spjd
5248168404Spjd	return (zio);
5249168404Spjd}
5250168404Spjd
5251185029Spjdstatic int
5252258632Savgarc_memory_throttle(uint64_t reserve, uint64_t txg)
5253185029Spjd{
5254185029Spjd#ifdef _KERNEL
5255272483Ssmh	uint64_t available_memory = ptob(freemem);
5256185029Spjd	static uint64_t page_load = 0;
5257185029Spjd	static uint64_t last_txg = 0;
5258185029Spjd
5259272483Ssmh#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5260185029Spjd	available_memory =
5261272483Ssmh	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5262185029Spjd#endif
5263258632Savg
5264272483Ssmh	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5265185029Spjd		return (0);
5266185029Spjd
5267185029Spjd	if (txg > last_txg) {
5268185029Spjd		last_txg = txg;
5269185029Spjd		page_load = 0;
5270185029Spjd	}
5271185029Spjd	/*
5272185029Spjd	 * If we are in pageout, we know that memory is already tight,
5273185029Spjd	 * the arc is already going to be evicting, so we just want to
5274185029Spjd	 * continue to let page writes occur as quickly as possible.
5275185029Spjd	 */
5276185029Spjd	if (curproc == pageproc) {
5277272483Ssmh		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5278249195Smm			return (SET_ERROR(ERESTART));
5279185029Spjd		/* Note: reserve is inflated, so we deflate */
5280185029Spjd		page_load += reserve / 8;
5281185029Spjd		return (0);
5282185029Spjd	} else if (page_load > 0 && arc_reclaim_needed()) {
5283185029Spjd		/* memory is low, delay before restarting */
5284185029Spjd		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5285249195Smm		return (SET_ERROR(EAGAIN));
5286185029Spjd	}
5287185029Spjd	page_load = 0;
5288185029Spjd#endif
5289185029Spjd	return (0);
5290185029Spjd}
5291185029Spjd
5292168404Spjdvoid
5293185029Spjdarc_tempreserve_clear(uint64_t reserve)
5294168404Spjd{
5295185029Spjd	atomic_add_64(&arc_tempreserve, -reserve);
5296168404Spjd	ASSERT((int64_t)arc_tempreserve >= 0);
5297168404Spjd}
5298168404Spjd
5299168404Spjdint
5300185029Spjdarc_tempreserve_space(uint64_t reserve, uint64_t txg)
5301168404Spjd{
5302185029Spjd	int error;
5303209962Smm	uint64_t anon_size;
5304185029Spjd
5305272483Ssmh	if (reserve > arc_c/4 && !arc_no_grow) {
5306185029Spjd		arc_c = MIN(arc_c_max, reserve * 4);
5307272483Ssmh		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5308272483Ssmh	}
5309185029Spjd	if (reserve > arc_c)
5310249195Smm		return (SET_ERROR(ENOMEM));
5311168404Spjd
5312168404Spjd	/*
5313209962Smm	 * Don't count loaned bufs as in flight dirty data to prevent long
5314209962Smm	 * network delays from blocking transactions that are ready to be
5315209962Smm	 * assigned to a txg.
5316209962Smm	 */
5317286766Smav	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5318286766Smav	    arc_loaned_bytes), 0);
5319209962Smm
5320209962Smm	/*
5321185029Spjd	 * Writes will, almost always, require additional memory allocations
5322251631Sdelphij	 * in order to compress/encrypt/etc the data.  We therefore need to
5323185029Spjd	 * make sure that there is sufficient available memory for this.
5324185029Spjd	 */
5325258632Savg	error = arc_memory_throttle(reserve, txg);
5326258632Savg	if (error != 0)
5327185029Spjd		return (error);
5328185029Spjd
5329185029Spjd	/*
5330168404Spjd	 * Throttle writes when the amount of dirty data in the cache
5331168404Spjd	 * gets too large.  We try to keep the cache less than half full
5332168404Spjd	 * of dirty blocks so that our sync times don't grow too large.
5333168404Spjd	 * Note: if two requests come in concurrently, we might let them
5334168404Spjd	 * both succeed, when one of them should fail.  Not a huge deal.
5335168404Spjd	 */
5336209962Smm
5337209962Smm	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5338209962Smm	    anon_size > arc_c / 4) {
5339185029Spjd		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5340185029Spjd		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5341185029Spjd		    arc_tempreserve>>10,
5342185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5343185029Spjd		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5344185029Spjd		    reserve>>10, arc_c>>10);
5345249195Smm		return (SET_ERROR(ERESTART));
5346168404Spjd	}
5347185029Spjd	atomic_add_64(&arc_tempreserve, reserve);
5348168404Spjd	return (0);
5349168404Spjd}
5350168404Spjd
5351286626Smavstatic void
5352286626Smavarc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5353286626Smav    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5354286626Smav{
5355286766Smav	size->value.ui64 = refcount_count(&state->arcs_size);
5356286626Smav	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5357286626Smav	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5358286626Smav}
5359286626Smav
5360286626Smavstatic int
5361286626Smavarc_kstat_update(kstat_t *ksp, int rw)
5362286626Smav{
5363286626Smav	arc_stats_t *as = ksp->ks_data;
5364286626Smav
5365286626Smav	if (rw == KSTAT_WRITE) {
5366286626Smav		return (EACCES);
5367286626Smav	} else {
5368286626Smav		arc_kstat_update_state(arc_anon,
5369286626Smav		    &as->arcstat_anon_size,
5370286626Smav		    &as->arcstat_anon_evictable_data,
5371286626Smav		    &as->arcstat_anon_evictable_metadata);
5372286626Smav		arc_kstat_update_state(arc_mru,
5373286626Smav		    &as->arcstat_mru_size,
5374286626Smav		    &as->arcstat_mru_evictable_data,
5375286626Smav		    &as->arcstat_mru_evictable_metadata);
5376286626Smav		arc_kstat_update_state(arc_mru_ghost,
5377286626Smav		    &as->arcstat_mru_ghost_size,
5378286626Smav		    &as->arcstat_mru_ghost_evictable_data,
5379286626Smav		    &as->arcstat_mru_ghost_evictable_metadata);
5380286626Smav		arc_kstat_update_state(arc_mfu,
5381286626Smav		    &as->arcstat_mfu_size,
5382286626Smav		    &as->arcstat_mfu_evictable_data,
5383286626Smav		    &as->arcstat_mfu_evictable_metadata);
5384286626Smav		arc_kstat_update_state(arc_mfu_ghost,
5385286626Smav		    &as->arcstat_mfu_ghost_size,
5386286626Smav		    &as->arcstat_mfu_ghost_evictable_data,
5387286626Smav		    &as->arcstat_mfu_ghost_evictable_metadata);
5388286626Smav	}
5389286626Smav
5390286626Smav	return (0);
5391286626Smav}
5392286626Smav
5393286763Smav/*
5394286763Smav * This function *must* return indices evenly distributed between all
5395286763Smav * sublists of the multilist. This is needed due to how the ARC eviction
5396286763Smav * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5397286763Smav * distributed between all sublists and uses this assumption when
5398286763Smav * deciding which sublist to evict from and how much to evict from it.
5399286763Smav */
5400286763Smavunsigned int
5401286763Smavarc_state_multilist_index_func(multilist_t *ml, void *obj)
5402286763Smav{
5403286763Smav	arc_buf_hdr_t *hdr = obj;
5404286763Smav
5405286763Smav	/*
5406286763Smav	 * We rely on b_dva to generate evenly distributed index
5407286763Smav	 * numbers using buf_hash below. So, as an added precaution,
5408286763Smav	 * let's make sure we never add empty buffers to the arc lists.
5409286763Smav	 */
5410286763Smav	ASSERT(!BUF_EMPTY(hdr));
5411286763Smav
5412286763Smav	/*
5413286763Smav	 * The assumption here, is the hash value for a given
5414286763Smav	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5415286763Smav	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5416286763Smav	 * Thus, we don't need to store the header's sublist index
5417286763Smav	 * on insertion, as this index can be recalculated on removal.
5418286763Smav	 *
5419286763Smav	 * Also, the low order bits of the hash value are thought to be
5420286763Smav	 * distributed evenly. Otherwise, in the case that the multilist
5421286763Smav	 * has a power of two number of sublists, each sublists' usage
5422286763Smav	 * would not be evenly distributed.
5423286763Smav	 */
5424286763Smav	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5425286763Smav	    multilist_get_num_sublists(ml));
5426286763Smav}
5427286763Smav
5428168404Spjd#ifdef _KERNEL
5429168566Spjdstatic eventhandler_tag arc_event_lowmem = NULL;
5430168404Spjd
5431168404Spjdstatic void
5432168566Spjdarc_lowmem(void *arg __unused, int howto __unused)
5433168404Spjd{
5434168404Spjd
5435286763Smav	mutex_enter(&arc_reclaim_lock);
5436286625Smav	/* XXX: Memory deficit should be passed as argument. */
5437286625Smav	needfree = btoc(arc_c >> arc_shrink_shift);
5438272483Ssmh	DTRACE_PROBE(arc__needfree);
5439286763Smav	cv_signal(&arc_reclaim_thread_cv);
5440241773Savg
5441241773Savg	/*
5442241773Savg	 * It is unsafe to block here in arbitrary threads, because we can come
5443241773Savg	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5444241773Savg	 * with ARC reclaim thread.
5445241773Savg	 */
5446286623Smav	if (curproc == pageproc)
5447286763Smav		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5448286763Smav	mutex_exit(&arc_reclaim_lock);
5449168404Spjd}
5450168404Spjd#endif
5451168404Spjd
5452168404Spjdvoid
5453168404Spjdarc_init(void)
5454168404Spjd{
5455219089Spjd	int i, prefetch_tunable_set = 0;
5456205231Skmacy
5457286763Smav	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5458286763Smav	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5459286763Smav	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5460168404Spjd
5461286763Smav	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5462286763Smav	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5463286763Smav
5464301997Skib	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5465301997Skib	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
5466301997Skib
5467168404Spjd	/* Convert seconds to clock ticks */
5468168404Spjd	arc_min_prefetch_lifespan = 1 * hz;
5469168404Spjd
5470168404Spjd	/* Start out with 1/8 of all memory */
5471168566Spjd	arc_c = kmem_size() / 8;
5472219089Spjd
5473277300Ssmh#ifdef illumos
5474192360Skmacy#ifdef _KERNEL
5475192360Skmacy	/*
5476192360Skmacy	 * On architectures where the physical memory can be larger
5477192360Skmacy	 * than the addressable space (intel in 32-bit mode), we may
5478192360Skmacy	 * need to limit the cache to 1/8 of VM size.
5479192360Skmacy	 */
5480192360Skmacy	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5481192360Skmacy#endif
5482277300Ssmh#endif	/* illumos */
5483302265Ssmh	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5484302265Ssmh	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5485168566Spjd	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5486280822Smav	if (arc_c * 8 >= 1 << 30)
5487280822Smav		arc_c_max = (arc_c * 8) - (1 << 30);
5488168404Spjd	else
5489168404Spjd		arc_c_max = arc_c_min;
5490175633Spjd	arc_c_max = MAX(arc_c * 5, arc_c_max);
5491219089Spjd
5492289305Smav	/*
5493289305Smav	 * In userland, there's only the memory pressure that we artificially
5494289305Smav	 * create (see arc_available_memory()).  Don't let arc_c get too
5495289305Smav	 * small, because it can cause transactions to be larger than
5496289305Smav	 * arc_c, causing arc_tempreserve_space() to fail.
5497289305Smav	 */
5498289305Smav#ifndef _KERNEL
5499289305Smav	arc_c_min = arc_c_max / 2;
5500289305Smav#endif
5501289305Smav
5502168481Spjd#ifdef _KERNEL
5503168404Spjd	/*
5504168404Spjd	 * Allow the tunables to override our calculations if they are
5505302265Ssmh	 * reasonable.
5506168404Spjd	 */
5507302265Ssmh	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size())
5508168404Spjd		arc_c_max = zfs_arc_max;
5509302265Ssmh	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
5510168404Spjd		arc_c_min = zfs_arc_min;
5511168481Spjd#endif
5512219089Spjd
5513168404Spjd	arc_c = arc_c_max;
5514168404Spjd	arc_p = (arc_c >> 1);
5515168404Spjd
5516185029Spjd	/* limit meta-data to 1/4 of the arc capacity */
5517185029Spjd	arc_meta_limit = arc_c_max / 4;
5518185029Spjd
5519185029Spjd	/* Allow the tunable to override if it is reasonable */
5520185029Spjd	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5521185029Spjd		arc_meta_limit = zfs_arc_meta_limit;
5522185029Spjd
5523185029Spjd	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5524185029Spjd		arc_c_min = arc_meta_limit / 2;
5525185029Spjd
5526275780Sdelphij	if (zfs_arc_meta_min > 0) {
5527275780Sdelphij		arc_meta_min = zfs_arc_meta_min;
5528275780Sdelphij	} else {
5529275780Sdelphij		arc_meta_min = arc_c_min / 2;
5530275780Sdelphij	}
5531275780Sdelphij
5532208373Smm	if (zfs_arc_grow_retry > 0)
5533208373Smm		arc_grow_retry = zfs_arc_grow_retry;
5534208373Smm
5535208373Smm	if (zfs_arc_shrink_shift > 0)
5536208373Smm		arc_shrink_shift = zfs_arc_shrink_shift;
5537208373Smm
5538286625Smav	/*
5539286625Smav	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5540286625Smav	 */
5541286625Smav	if (arc_no_grow_shift >= arc_shrink_shift)
5542286625Smav		arc_no_grow_shift = arc_shrink_shift - 1;
5543286625Smav
5544208373Smm	if (zfs_arc_p_min_shift > 0)
5545208373Smm		arc_p_min_shift = zfs_arc_p_min_shift;
5546208373Smm
5547286763Smav	if (zfs_arc_num_sublists_per_state < 1)
5548286763Smav		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5549286763Smav
5550168404Spjd	/* if kmem_flags are set, lets try to use less memory */
5551168404Spjd	if (kmem_debugging())
5552168404Spjd		arc_c = arc_c / 2;
5553168404Spjd	if (arc_c < arc_c_min)
5554168404Spjd		arc_c = arc_c_min;
5555168404Spjd
5556168473Spjd	zfs_arc_min = arc_c_min;
5557168473Spjd	zfs_arc_max = arc_c_max;
5558168473Spjd
5559168404Spjd	arc_anon = &ARC_anon;
5560168404Spjd	arc_mru = &ARC_mru;
5561168404Spjd	arc_mru_ghost = &ARC_mru_ghost;
5562168404Spjd	arc_mfu = &ARC_mfu;
5563168404Spjd	arc_mfu_ghost = &ARC_mfu_ghost;
5564185029Spjd	arc_l2c_only = &ARC_l2c_only;
5565168404Spjd	arc_size = 0;
5566168404Spjd
5567286763Smav	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5568286762Smav	    sizeof (arc_buf_hdr_t),
5569286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5570286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5571286763Smav	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5572286762Smav	    sizeof (arc_buf_hdr_t),
5573286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5574286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5575286763Smav	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5576286762Smav	    sizeof (arc_buf_hdr_t),
5577286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5578286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5579286763Smav	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5580286762Smav	    sizeof (arc_buf_hdr_t),
5581286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5582286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5583286763Smav	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5584286762Smav	    sizeof (arc_buf_hdr_t),
5585286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5586286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5587286763Smav	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5588286762Smav	    sizeof (arc_buf_hdr_t),
5589286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5590286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5591286763Smav	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5592286762Smav	    sizeof (arc_buf_hdr_t),
5593286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5594286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5595286763Smav	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5596286762Smav	    sizeof (arc_buf_hdr_t),
5597286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5598286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5599286763Smav	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5600286762Smav	    sizeof (arc_buf_hdr_t),
5601286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5602286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5603286763Smav	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5604286762Smav	    sizeof (arc_buf_hdr_t),
5605286763Smav	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5606286763Smav	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5607168404Spjd
5608286766Smav	refcount_create(&arc_anon->arcs_size);
5609286766Smav	refcount_create(&arc_mru->arcs_size);
5610286766Smav	refcount_create(&arc_mru_ghost->arcs_size);
5611286766Smav	refcount_create(&arc_mfu->arcs_size);
5612286766Smav	refcount_create(&arc_mfu_ghost->arcs_size);
5613286766Smav	refcount_create(&arc_l2c_only->arcs_size);
5614286766Smav
5615168404Spjd	buf_init();
5616168404Spjd
5617286763Smav	arc_reclaim_thread_exit = FALSE;
5618286763Smav	arc_user_evicts_thread_exit = FALSE;
5619301997Skib	arc_dnlc_evicts_thread_exit = FALSE;
5620168404Spjd	arc_eviction_list = NULL;
5621168404Spjd	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5622168404Spjd
5623168404Spjd	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5624168404Spjd	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5625168404Spjd
5626168404Spjd	if (arc_ksp != NULL) {
5627168404Spjd		arc_ksp->ks_data = &arc_stats;
5628286574Smav		arc_ksp->ks_update = arc_kstat_update;
5629168404Spjd		kstat_install(arc_ksp);
5630168404Spjd	}
5631168404Spjd
5632168404Spjd	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5633168404Spjd	    TS_RUN, minclsyspri);
5634168404Spjd
5635168404Spjd#ifdef _KERNEL
5636168566Spjd	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5637168404Spjd	    EVENTHANDLER_PRI_FIRST);
5638168404Spjd#endif
5639168404Spjd
5640286763Smav	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5641286763Smav	    TS_RUN, minclsyspri);
5642286763Smav
5643301997Skib	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
5644301997Skib	    TS_RUN, minclsyspri);
5645301997Skib
5646168404Spjd	arc_dead = FALSE;
5647185029Spjd	arc_warm = B_FALSE;
5648168566Spjd
5649258632Savg	/*
5650258632Savg	 * Calculate maximum amount of dirty data per pool.
5651258632Savg	 *
5652258632Savg	 * If it has been set by /etc/system, take that.
5653258632Savg	 * Otherwise, use a percentage of physical memory defined by
5654258632Savg	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5655258632Savg	 * zfs_dirty_data_max_max (default 4GB).
5656258632Savg	 */
5657258632Savg	if (zfs_dirty_data_max == 0) {
5658258632Savg		zfs_dirty_data_max = ptob(physmem) *
5659258632Savg		    zfs_dirty_data_max_percent / 100;
5660258632Savg		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5661258632Savg		    zfs_dirty_data_max_max);
5662258632Savg	}
5663185029Spjd
5664168566Spjd#ifdef _KERNEL
5665194043Skmacy	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5666193953Skmacy		prefetch_tunable_set = 1;
5667206796Spjd
5668193878Skmacy#ifdef __i386__
5669193953Skmacy	if (prefetch_tunable_set == 0) {
5670196863Strasz		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5671196863Strasz		    "-- to enable,\n");
5672196863Strasz		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5673196863Strasz		    "to /boot/loader.conf.\n");
5674219089Spjd		zfs_prefetch_disable = 1;
5675193878Skmacy	}
5676206796Spjd#else
5677193878Skmacy	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5678193953Skmacy	    prefetch_tunable_set == 0) {
5679196863Strasz		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5680196941Strasz		    "than 4GB of RAM is present;\n"
5681196863Strasz		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5682196863Strasz		    "to /boot/loader.conf.\n");
5683219089Spjd		zfs_prefetch_disable = 1;
5684193878Skmacy	}
5685206796Spjd#endif
5686175633Spjd	/* Warn about ZFS memory and address space requirements. */
5687168696Spjd	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5688168987Sbmah		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5689168987Sbmah		    "expect unstable behavior.\n");
5690175633Spjd	}
5691175633Spjd	if (kmem_size() < 512 * (1 << 20)) {
5692173419Spjd		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5693168987Sbmah		    "expect unstable behavior.\n");
5694185029Spjd		printf("             Consider tuning vm.kmem_size and "
5695173419Spjd		    "vm.kmem_size_max\n");
5696185029Spjd		printf("             in /boot/loader.conf.\n");
5697168566Spjd	}
5698168566Spjd#endif
5699168404Spjd}
5700168404Spjd
5701168404Spjdvoid
5702168404Spjdarc_fini(void)
5703168404Spjd{
5704286763Smav	mutex_enter(&arc_reclaim_lock);
5705286763Smav	arc_reclaim_thread_exit = TRUE;
5706286763Smav	/*
5707286763Smav	 * The reclaim thread will set arc_reclaim_thread_exit back to
5708286763Smav	 * FALSE when it is finished exiting; we're waiting for that.
5709286763Smav	 */
5710286763Smav	while (arc_reclaim_thread_exit) {
5711286763Smav		cv_signal(&arc_reclaim_thread_cv);
5712286763Smav		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5713286763Smav	}
5714286763Smav	mutex_exit(&arc_reclaim_lock);
5715168404Spjd
5716286763Smav	mutex_enter(&arc_user_evicts_lock);
5717286763Smav	arc_user_evicts_thread_exit = TRUE;
5718286763Smav	/*
5719286763Smav	 * The user evicts thread will set arc_user_evicts_thread_exit
5720286763Smav	 * to FALSE when it is finished exiting; we're waiting for that.
5721286763Smav	 */
5722286763Smav	while (arc_user_evicts_thread_exit) {
5723286763Smav		cv_signal(&arc_user_evicts_cv);
5724286763Smav		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5725286763Smav	}
5726286763Smav	mutex_exit(&arc_user_evicts_lock);
5727168404Spjd
5728301997Skib	mutex_enter(&arc_dnlc_evicts_lock);
5729301997Skib	arc_dnlc_evicts_thread_exit = TRUE;
5730301997Skib	/*
5731301997Skib	 * The user evicts thread will set arc_user_evicts_thread_exit
5732301997Skib	 * to FALSE when it is finished exiting; we're waiting for that.
5733301997Skib	 */
5734301997Skib	while (arc_dnlc_evicts_thread_exit) {
5735301997Skib		cv_signal(&arc_dnlc_evicts_cv);
5736301997Skib		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
5737301997Skib	}
5738301997Skib	mutex_exit(&arc_dnlc_evicts_lock);
5739301997Skib
5740286763Smav	/* Use TRUE to ensure *all* buffers are evicted */
5741286763Smav	arc_flush(NULL, TRUE);
5742286763Smav
5743168404Spjd	arc_dead = TRUE;
5744168404Spjd
5745168404Spjd	if (arc_ksp != NULL) {
5746168404Spjd		kstat_delete(arc_ksp);
5747168404Spjd		arc_ksp = NULL;
5748168404Spjd	}
5749168404Spjd
5750286763Smav	mutex_destroy(&arc_reclaim_lock);
5751286763Smav	cv_destroy(&arc_reclaim_thread_cv);
5752286763Smav	cv_destroy(&arc_reclaim_waiters_cv);
5753168404Spjd
5754286763Smav	mutex_destroy(&arc_user_evicts_lock);
5755286763Smav	cv_destroy(&arc_user_evicts_cv);
5756168404Spjd
5757301997Skib	mutex_destroy(&arc_dnlc_evicts_lock);
5758301997Skib	cv_destroy(&arc_dnlc_evicts_cv);
5759301997Skib
5760286766Smav	refcount_destroy(&arc_anon->arcs_size);
5761286766Smav	refcount_destroy(&arc_mru->arcs_size);
5762286766Smav	refcount_destroy(&arc_mru_ghost->arcs_size);
5763286766Smav	refcount_destroy(&arc_mfu->arcs_size);
5764286766Smav	refcount_destroy(&arc_mfu_ghost->arcs_size);
5765286766Smav	refcount_destroy(&arc_l2c_only->arcs_size);
5766286766Smav
5767286763Smav	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5768286763Smav	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5769286763Smav	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5770286763Smav	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5771294809Smav	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5772286763Smav	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5773286763Smav	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5774286763Smav	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5775286763Smav	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5776294809Smav	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5777206796Spjd
5778168404Spjd	buf_fini();
5779168404Spjd
5780286570Smav	ASSERT0(arc_loaned_bytes);
5781209962Smm
5782168404Spjd#ifdef _KERNEL
5783168566Spjd	if (arc_event_lowmem != NULL)
5784168566Spjd		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5785168404Spjd#endif
5786168404Spjd}
5787185029Spjd
5788185029Spjd/*
5789185029Spjd * Level 2 ARC
5790185029Spjd *
5791185029Spjd * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5792185029Spjd * It uses dedicated storage devices to hold cached data, which are populated
5793185029Spjd * using large infrequent writes.  The main role of this cache is to boost
5794185029Spjd * the performance of random read workloads.  The intended L2ARC devices
5795185029Spjd * include short-stroked disks, solid state disks, and other media with
5796185029Spjd * substantially faster read latency than disk.
5797185029Spjd *
5798185029Spjd *                 +-----------------------+
5799185029Spjd *                 |         ARC           |
5800185029Spjd *                 +-----------------------+
5801185029Spjd *                    |         ^     ^
5802185029Spjd *                    |         |     |
5803185029Spjd *      l2arc_feed_thread()    arc_read()
5804185029Spjd *                    |         |     |
5805185029Spjd *                    |  l2arc read   |
5806185029Spjd *                    V         |     |
5807185029Spjd *               +---------------+    |
5808185029Spjd *               |     L2ARC     |    |
5809185029Spjd *               +---------------+    |
5810185029Spjd *                   |    ^           |
5811185029Spjd *          l2arc_write() |           |
5812185029Spjd *                   |    |           |
5813185029Spjd *                   V    |           |
5814185029Spjd *                 +-------+      +-------+
5815185029Spjd *                 | vdev  |      | vdev  |
5816185029Spjd *                 | cache |      | cache |
5817185029Spjd *                 +-------+      +-------+
5818185029Spjd *                 +=========+     .-----.
5819185029Spjd *                 :  L2ARC  :    |-_____-|
5820185029Spjd *                 : devices :    | Disks |
5821185029Spjd *                 +=========+    `-_____-'
5822185029Spjd *
5823185029Spjd * Read requests are satisfied from the following sources, in order:
5824185029Spjd *
5825185029Spjd *	1) ARC
5826185029Spjd *	2) vdev cache of L2ARC devices
5827185029Spjd *	3) L2ARC devices
5828185029Spjd *	4) vdev cache of disks
5829185029Spjd *	5) disks
5830185029Spjd *
5831185029Spjd * Some L2ARC device types exhibit extremely slow write performance.
5832185029Spjd * To accommodate for this there are some significant differences between
5833185029Spjd * the L2ARC and traditional cache design:
5834185029Spjd *
5835185029Spjd * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5836185029Spjd * the ARC behave as usual, freeing buffers and placing headers on ghost
5837185029Spjd * lists.  The ARC does not send buffers to the L2ARC during eviction as
5838185029Spjd * this would add inflated write latencies for all ARC memory pressure.
5839185029Spjd *
5840185029Spjd * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5841185029Spjd * It does this by periodically scanning buffers from the eviction-end of
5842185029Spjd * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5843251478Sdelphij * not already there. It scans until a headroom of buffers is satisfied,
5844251478Sdelphij * which itself is a buffer for ARC eviction. If a compressible buffer is
5845251478Sdelphij * found during scanning and selected for writing to an L2ARC device, we
5846251478Sdelphij * temporarily boost scanning headroom during the next scan cycle to make
5847251478Sdelphij * sure we adapt to compression effects (which might significantly reduce
5848251478Sdelphij * the data volume we write to L2ARC). The thread that does this is
5849185029Spjd * l2arc_feed_thread(), illustrated below; example sizes are included to
5850185029Spjd * provide a better sense of ratio than this diagram:
5851185029Spjd *
5852185029Spjd *	       head -->                        tail
5853185029Spjd *	        +---------------------+----------+
5854185029Spjd *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5855185029Spjd *	        +---------------------+----------+   |   o L2ARC eligible
5856185029Spjd *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5857185029Spjd *	        +---------------------+----------+   |
5858185029Spjd *	             15.9 Gbytes      ^ 32 Mbytes    |
5859185029Spjd *	                           headroom          |
5860185029Spjd *	                                      l2arc_feed_thread()
5861185029Spjd *	                                             |
5862185029Spjd *	                 l2arc write hand <--[oooo]--'
5863185029Spjd *	                         |           8 Mbyte
5864185029Spjd *	                         |          write max
5865185029Spjd *	                         V
5866185029Spjd *		  +==============================+
5867185029Spjd *	L2ARC dev |####|#|###|###|    |####| ... |
5868185029Spjd *	          +==============================+
5869185029Spjd *	                     32 Gbytes
5870185029Spjd *
5871185029Spjd * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5872185029Spjd * evicted, then the L2ARC has cached a buffer much sooner than it probably
5873185029Spjd * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5874185029Spjd * safe to say that this is an uncommon case, since buffers at the end of
5875185029Spjd * the ARC lists have moved there due to inactivity.
5876185029Spjd *
5877185029Spjd * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5878185029Spjd * then the L2ARC simply misses copying some buffers.  This serves as a
5879185029Spjd * pressure valve to prevent heavy read workloads from both stalling the ARC
5880185029Spjd * with waits and clogging the L2ARC with writes.  This also helps prevent
5881185029Spjd * the potential for the L2ARC to churn if it attempts to cache content too
5882185029Spjd * quickly, such as during backups of the entire pool.
5883185029Spjd *
5884185029Spjd * 5. After system boot and before the ARC has filled main memory, there are
5885185029Spjd * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5886185029Spjd * lists can remain mostly static.  Instead of searching from tail of these
5887185029Spjd * lists as pictured, the l2arc_feed_thread() will search from the list heads
5888185029Spjd * for eligible buffers, greatly increasing its chance of finding them.
5889185029Spjd *
5890185029Spjd * The L2ARC device write speed is also boosted during this time so that
5891185029Spjd * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5892185029Spjd * there are no L2ARC reads, and no fear of degrading read performance
5893185029Spjd * through increased writes.
5894185029Spjd *
5895185029Spjd * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5896185029Spjd * the vdev queue can aggregate them into larger and fewer writes.  Each
5897185029Spjd * device is written to in a rotor fashion, sweeping writes through
5898185029Spjd * available space then repeating.
5899185029Spjd *
5900185029Spjd * 7. The L2ARC does not store dirty content.  It never needs to flush
5901185029Spjd * write buffers back to disk based storage.
5902185029Spjd *
5903185029Spjd * 8. If an ARC buffer is written (and dirtied) which also exists in the
5904185029Spjd * L2ARC, the now stale L2ARC buffer is immediately dropped.
5905185029Spjd *
5906185029Spjd * The performance of the L2ARC can be tweaked by a number of tunables, which
5907185029Spjd * may be necessary for different workloads:
5908185029Spjd *
5909185029Spjd *	l2arc_write_max		max write bytes per interval
5910185029Spjd *	l2arc_write_boost	extra write bytes during device warmup
5911185029Spjd *	l2arc_noprefetch	skip caching prefetched buffers
5912185029Spjd *	l2arc_headroom		number of max device writes to precache
5913251478Sdelphij *	l2arc_headroom_boost	when we find compressed buffers during ARC
5914251478Sdelphij *				scanning, we multiply headroom by this
5915251478Sdelphij *				percentage factor for the next scan cycle,
5916251478Sdelphij *				since more compressed buffers are likely to
5917251478Sdelphij *				be present
5918185029Spjd *	l2arc_feed_secs		seconds between L2ARC writing
5919185029Spjd *
5920185029Spjd * Tunables may be removed or added as future performance improvements are
5921185029Spjd * integrated, and also may become zpool properties.
5922208373Smm *
5923208373Smm * There are three key functions that control how the L2ARC warms up:
5924208373Smm *
5925208373Smm *	l2arc_write_eligible()	check if a buffer is eligible to cache
5926208373Smm *	l2arc_write_size()	calculate how much to write
5927208373Smm *	l2arc_write_interval()	calculate sleep delay between writes
5928208373Smm *
5929208373Smm * These three functions determine what to write, how much, and how quickly
5930208373Smm * to send writes.
5931185029Spjd */
5932185029Spjd
5933208373Smmstatic boolean_t
5934275811Sdelphijl2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5935208373Smm{
5936208373Smm	/*
5937208373Smm	 * A buffer is *not* eligible for the L2ARC if it:
5938208373Smm	 * 1. belongs to a different spa.
5939208373Smm	 * 2. is already cached on the L2ARC.
5940208373Smm	 * 3. has an I/O in progress (it may be an incomplete read).
5941208373Smm	 * 4. is flagged not eligible (zfs property).
5942208373Smm	 */
5943275811Sdelphij	if (hdr->b_spa != spa_guid) {
5944208373Smm		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5945208373Smm		return (B_FALSE);
5946208373Smm	}
5947286570Smav	if (HDR_HAS_L2HDR(hdr)) {
5948208373Smm		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5949208373Smm		return (B_FALSE);
5950208373Smm	}
5951275811Sdelphij	if (HDR_IO_IN_PROGRESS(hdr)) {
5952208373Smm		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5953208373Smm		return (B_FALSE);
5954208373Smm	}
5955275811Sdelphij	if (!HDR_L2CACHE(hdr)) {
5956208373Smm		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5957208373Smm		return (B_FALSE);
5958208373Smm	}
5959208373Smm
5960208373Smm	return (B_TRUE);
5961208373Smm}
5962208373Smm
5963208373Smmstatic uint64_t
5964251478Sdelphijl2arc_write_size(void)
5965208373Smm{
5966208373Smm	uint64_t size;
5967208373Smm
5968251478Sdelphij	/*
5969251478Sdelphij	 * Make sure our globals have meaningful values in case the user
5970251478Sdelphij	 * altered them.
5971251478Sdelphij	 */
5972251478Sdelphij	size = l2arc_write_max;
5973251478Sdelphij	if (size == 0) {
5974251478Sdelphij		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5975251478Sdelphij		    "be greater than zero, resetting it to the default (%d)",
5976251478Sdelphij		    L2ARC_WRITE_SIZE);
5977251478Sdelphij		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5978251478Sdelphij	}
5979208373Smm
5980208373Smm	if (arc_warm == B_FALSE)
5981251478Sdelphij		size += l2arc_write_boost;
5982208373Smm
5983208373Smm	return (size);
5984208373Smm
5985208373Smm}
5986208373Smm
5987208373Smmstatic clock_t
5988208373Smml2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5989208373Smm{
5990219089Spjd	clock_t interval, next, now;
5991208373Smm
5992208373Smm	/*
5993208373Smm	 * If the ARC lists are busy, increase our write rate; if the
5994208373Smm	 * lists are stale, idle back.  This is achieved by checking
5995208373Smm	 * how much we previously wrote - if it was more than half of
5996208373Smm	 * what we wanted, schedule the next write much sooner.
5997208373Smm	 */
5998208373Smm	if (l2arc_feed_again && wrote > (wanted / 2))
5999208373Smm		interval = (hz * l2arc_feed_min_ms) / 1000;
6000208373Smm	else
6001208373Smm		interval = hz * l2arc_feed_secs;
6002208373Smm
6003219089Spjd	now = ddi_get_lbolt();
6004219089Spjd	next = MAX(now, MIN(now + interval, began + interval));
6005208373Smm
6006208373Smm	return (next);
6007208373Smm}
6008208373Smm
6009185029Spjd/*
6010185029Spjd * Cycle through L2ARC devices.  This is how L2ARC load balances.
6011185029Spjd * If a device is returned, this also returns holding the spa config lock.
6012185029Spjd */
6013185029Spjdstatic l2arc_dev_t *
6014185029Spjdl2arc_dev_get_next(void)
6015185029Spjd{
6016185029Spjd	l2arc_dev_t *first, *next = NULL;
6017185029Spjd
6018185029Spjd	/*
6019185029Spjd	 * Lock out the removal of spas (spa_namespace_lock), then removal
6020185029Spjd	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6021185029Spjd	 * both locks will be dropped and a spa config lock held instead.
6022185029Spjd	 */
6023185029Spjd	mutex_enter(&spa_namespace_lock);
6024185029Spjd	mutex_enter(&l2arc_dev_mtx);
6025185029Spjd
6026185029Spjd	/* if there are no vdevs, there is nothing to do */
6027185029Spjd	if (l2arc_ndev == 0)
6028185029Spjd		goto out;
6029185029Spjd
6030185029Spjd	first = NULL;
6031185029Spjd	next = l2arc_dev_last;
6032185029Spjd	do {
6033185029Spjd		/* loop around the list looking for a non-faulted vdev */
6034185029Spjd		if (next == NULL) {
6035185029Spjd			next = list_head(l2arc_dev_list);
6036185029Spjd		} else {
6037185029Spjd			next = list_next(l2arc_dev_list, next);
6038185029Spjd			if (next == NULL)
6039185029Spjd				next = list_head(l2arc_dev_list);
6040185029Spjd		}
6041185029Spjd
6042185029Spjd		/* if we have come back to the start, bail out */
6043185029Spjd		if (first == NULL)
6044185029Spjd			first = next;
6045185029Spjd		else if (next == first)
6046185029Spjd			break;
6047185029Spjd
6048185029Spjd	} while (vdev_is_dead(next->l2ad_vdev));
6049185029Spjd
6050185029Spjd	/* if we were unable to find any usable vdevs, return NULL */
6051185029Spjd	if (vdev_is_dead(next->l2ad_vdev))
6052185029Spjd		next = NULL;
6053185029Spjd
6054185029Spjd	l2arc_dev_last = next;
6055185029Spjd
6056185029Spjdout:
6057185029Spjd	mutex_exit(&l2arc_dev_mtx);
6058185029Spjd
6059185029Spjd	/*
6060185029Spjd	 * Grab the config lock to prevent the 'next' device from being
6061185029Spjd	 * removed while we are writing to it.
6062185029Spjd	 */
6063185029Spjd	if (next != NULL)
6064185029Spjd		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6065185029Spjd	mutex_exit(&spa_namespace_lock);
6066185029Spjd
6067185029Spjd	return (next);
6068185029Spjd}
6069185029Spjd
6070185029Spjd/*
6071185029Spjd * Free buffers that were tagged for destruction.
6072185029Spjd */
6073185029Spjdstatic void
6074185029Spjdl2arc_do_free_on_write()
6075185029Spjd{
6076185029Spjd	list_t *buflist;
6077185029Spjd	l2arc_data_free_t *df, *df_prev;
6078185029Spjd
6079185029Spjd	mutex_enter(&l2arc_free_on_write_mtx);
6080185029Spjd	buflist = l2arc_free_on_write;
6081185029Spjd
6082185029Spjd	for (df = list_tail(buflist); df; df = df_prev) {
6083185029Spjd		df_prev = list_prev(buflist, df);
6084185029Spjd		ASSERT(df->l2df_data != NULL);
6085185029Spjd		ASSERT(df->l2df_func != NULL);
6086185029Spjd		df->l2df_func(df->l2df_data, df->l2df_size);
6087185029Spjd		list_remove(buflist, df);
6088185029Spjd		kmem_free(df, sizeof (l2arc_data_free_t));
6089185029Spjd	}
6090185029Spjd
6091185029Spjd	mutex_exit(&l2arc_free_on_write_mtx);
6092185029Spjd}
6093185029Spjd
6094185029Spjd/*
6095185029Spjd * A write to a cache device has completed.  Update all headers to allow
6096185029Spjd * reads from these buffers to begin.
6097185029Spjd */
6098185029Spjdstatic void
6099185029Spjdl2arc_write_done(zio_t *zio)
6100185029Spjd{
6101185029Spjd	l2arc_write_callback_t *cb;
6102185029Spjd	l2arc_dev_t *dev;
6103185029Spjd	list_t *buflist;
6104275811Sdelphij	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6105185029Spjd	kmutex_t *hash_lock;
6106268085Sdelphij	int64_t bytes_dropped = 0;
6107185029Spjd
6108185029Spjd	cb = zio->io_private;
6109185029Spjd	ASSERT(cb != NULL);
6110185029Spjd	dev = cb->l2wcb_dev;
6111185029Spjd	ASSERT(dev != NULL);
6112185029Spjd	head = cb->l2wcb_head;
6113185029Spjd	ASSERT(head != NULL);
6114286570Smav	buflist = &dev->l2ad_buflist;
6115185029Spjd	ASSERT(buflist != NULL);
6116185029Spjd	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6117185029Spjd	    l2arc_write_callback_t *, cb);
6118185029Spjd
6119185029Spjd	if (zio->io_error != 0)
6120185029Spjd		ARCSTAT_BUMP(arcstat_l2_writes_error);
6121185029Spjd
6122185029Spjd	/*
6123185029Spjd	 * All writes completed, or an error was hit.
6124185029Spjd	 */
6125286763Smavtop:
6126286763Smav	mutex_enter(&dev->l2ad_mtx);
6127275811Sdelphij	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6128275811Sdelphij		hdr_prev = list_prev(buflist, hdr);
6129185029Spjd
6130275811Sdelphij		hash_lock = HDR_LOCK(hdr);
6131286763Smav
6132286763Smav		/*
6133286763Smav		 * We cannot use mutex_enter or else we can deadlock
6134286763Smav		 * with l2arc_write_buffers (due to swapping the order
6135286763Smav		 * the hash lock and l2ad_mtx are taken).
6136286763Smav		 */
6137185029Spjd		if (!mutex_tryenter(hash_lock)) {
6138185029Spjd			/*
6139286763Smav			 * Missed the hash lock. We must retry so we
6140286763Smav			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6141185029Spjd			 */
6142286763Smav			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6143286763Smav
6144286763Smav			/*
6145286763Smav			 * We don't want to rescan the headers we've
6146286763Smav			 * already marked as having been written out, so
6147286763Smav			 * we reinsert the head node so we can pick up
6148286763Smav			 * where we left off.
6149286763Smav			 */
6150286763Smav			list_remove(buflist, head);
6151286763Smav			list_insert_after(buflist, hdr, head);
6152286763Smav
6153286763Smav			mutex_exit(&dev->l2ad_mtx);
6154286763Smav
6155286763Smav			/*
6156286763Smav			 * We wait for the hash lock to become available
6157286763Smav			 * to try and prevent busy waiting, and increase
6158286763Smav			 * the chance we'll be able to acquire the lock
6159286763Smav			 * the next time around.
6160286763Smav			 */
6161286763Smav			mutex_enter(hash_lock);
6162286763Smav			mutex_exit(hash_lock);
6163286763Smav			goto top;
6164185029Spjd		}
6165185029Spjd
6166286570Smav		/*
6167286763Smav		 * We could not have been moved into the arc_l2c_only
6168286763Smav		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6169286763Smav		 * bit being set. Let's just ensure that's being enforced.
6170286570Smav		 */
6171286763Smav		ASSERT(HDR_HAS_L1HDR(hdr));
6172286570Smav
6173286763Smav		/*
6174286763Smav		 * We may have allocated a buffer for L2ARC compression,
6175286763Smav		 * we must release it to avoid leaking this data.
6176286763Smav		 */
6177286763Smav		l2arc_release_cdata_buf(hdr);
6178286763Smav
6179185029Spjd		if (zio->io_error != 0) {
6180185029Spjd			/*
6181185029Spjd			 * Error - drop L2ARC entry.
6182185029Spjd			 */
6183286776Smav			list_remove(buflist, hdr);
6184290191Savg			l2arc_trim(hdr);
6185286570Smav			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6186286570Smav
6187286570Smav			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6188275811Sdelphij			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6189286598Smav
6190286598Smav			bytes_dropped += hdr->b_l2hdr.b_asize;
6191286598Smav			(void) refcount_remove_many(&dev->l2ad_alloc,
6192286598Smav			    hdr->b_l2hdr.b_asize, hdr);
6193185029Spjd		}
6194185029Spjd
6195185029Spjd		/*
6196286763Smav		 * Allow ARC to begin reads and ghost list evictions to
6197286763Smav		 * this L2ARC entry.
6198185029Spjd		 */
6199275811Sdelphij		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6200185029Spjd
6201185029Spjd		mutex_exit(hash_lock);
6202185029Spjd	}
6203185029Spjd
6204185029Spjd	atomic_inc_64(&l2arc_writes_done);
6205185029Spjd	list_remove(buflist, head);
6206286570Smav	ASSERT(!HDR_HAS_L1HDR(head));
6207286570Smav	kmem_cache_free(hdr_l2only_cache, head);
6208286570Smav	mutex_exit(&dev->l2ad_mtx);
6209185029Spjd
6210268085Sdelphij	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6211268085Sdelphij
6212185029Spjd	l2arc_do_free_on_write();
6213185029Spjd
6214185029Spjd	kmem_free(cb, sizeof (l2arc_write_callback_t));
6215185029Spjd}
6216185029Spjd
6217185029Spjd/*
6218185029Spjd * A read to a cache device completed.  Validate buffer contents before
6219185029Spjd * handing over to the regular ARC routines.
6220185029Spjd */
6221185029Spjdstatic void
6222185029Spjdl2arc_read_done(zio_t *zio)
6223185029Spjd{
6224185029Spjd	l2arc_read_callback_t *cb;
6225185029Spjd	arc_buf_hdr_t *hdr;
6226185029Spjd	arc_buf_t *buf;
6227185029Spjd	kmutex_t *hash_lock;
6228185029Spjd	int equal;
6229185029Spjd
6230185029Spjd	ASSERT(zio->io_vd != NULL);
6231185029Spjd	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6232185029Spjd
6233185029Spjd	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6234185029Spjd
6235185029Spjd	cb = zio->io_private;
6236185029Spjd	ASSERT(cb != NULL);
6237185029Spjd	buf = cb->l2rcb_buf;
6238185029Spjd	ASSERT(buf != NULL);
6239185029Spjd
6240219089Spjd	hash_lock = HDR_LOCK(buf->b_hdr);
6241185029Spjd	mutex_enter(hash_lock);
6242219089Spjd	hdr = buf->b_hdr;
6243219089Spjd	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6244185029Spjd
6245185029Spjd	/*
6246297848Savg	 * If the data was read into a temporary buffer,
6247297848Savg	 * move it and free the buffer.
6248297848Savg	 */
6249297848Savg	if (cb->l2rcb_data != NULL) {
6250297848Savg		ASSERT3U(hdr->b_size, <, zio->io_size);
6251297848Savg		ASSERT3U(cb->l2rcb_compress, ==, ZIO_COMPRESS_OFF);
6252297848Savg		if (zio->io_error == 0)
6253297848Savg			bcopy(cb->l2rcb_data, buf->b_data, hdr->b_size);
6254297848Savg
6255297848Savg		/*
6256297848Savg		 * The following must be done regardless of whether
6257297848Savg		 * there was an error:
6258297848Savg		 * - free the temporary buffer
6259297848Savg		 * - point zio to the real ARC buffer
6260297848Savg		 * - set zio size accordingly
6261297848Savg		 * These are required because zio is either re-used for
6262297848Savg		 * an I/O of the block in the case of the error
6263297848Savg		 * or the zio is passed to arc_read_done() and it
6264297848Savg		 * needs real data.
6265297848Savg		 */
6266297848Savg		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6267297848Savg		zio->io_size = zio->io_orig_size = hdr->b_size;
6268297848Savg		zio->io_data = zio->io_orig_data = buf->b_data;
6269297848Savg	}
6270297848Savg
6271297848Savg	/*
6272251478Sdelphij	 * If the buffer was compressed, decompress it first.
6273251478Sdelphij	 */
6274251478Sdelphij	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6275251478Sdelphij		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6276251478Sdelphij	ASSERT(zio->io_data != NULL);
6277287706Sdelphij	ASSERT3U(zio->io_size, ==, hdr->b_size);
6278287706Sdelphij	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6279251478Sdelphij
6280251478Sdelphij	/*
6281185029Spjd	 * Check this survived the L2ARC journey.
6282185029Spjd	 */
6283185029Spjd	equal = arc_cksum_equal(buf);
6284185029Spjd	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6285185029Spjd		mutex_exit(hash_lock);
6286185029Spjd		zio->io_private = buf;
6287185029Spjd		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6288185029Spjd		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6289185029Spjd		arc_read_done(zio);
6290185029Spjd	} else {
6291185029Spjd		mutex_exit(hash_lock);
6292185029Spjd		/*
6293185029Spjd		 * Buffer didn't survive caching.  Increment stats and
6294185029Spjd		 * reissue to the original storage device.
6295185029Spjd		 */
6296185029Spjd		if (zio->io_error != 0) {
6297185029Spjd			ARCSTAT_BUMP(arcstat_l2_io_error);
6298185029Spjd		} else {
6299249195Smm			zio->io_error = SET_ERROR(EIO);
6300185029Spjd		}
6301185029Spjd		if (!equal)
6302185029Spjd			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6303185029Spjd
6304185029Spjd		/*
6305185029Spjd		 * If there's no waiter, issue an async i/o to the primary
6306185029Spjd		 * storage now.  If there *is* a waiter, the caller must
6307185029Spjd		 * issue the i/o in a context where it's OK to block.
6308185029Spjd		 */
6309209962Smm		if (zio->io_waiter == NULL) {
6310209962Smm			zio_t *pio = zio_unique_parent(zio);
6311209962Smm
6312209962Smm			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6313209962Smm
6314209962Smm			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6315287706Sdelphij			    buf->b_data, hdr->b_size, arc_read_done, buf,
6316185029Spjd			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6317209962Smm		}
6318185029Spjd	}
6319185029Spjd
6320185029Spjd	kmem_free(cb, sizeof (l2arc_read_callback_t));
6321185029Spjd}
6322185029Spjd
6323185029Spjd/*
6324185029Spjd * This is the list priority from which the L2ARC will search for pages to
6325185029Spjd * cache.  This is used within loops (0..3) to cycle through lists in the
6326185029Spjd * desired order.  This order can have a significant effect on cache
6327185029Spjd * performance.
6328185029Spjd *
6329185029Spjd * Currently the metadata lists are hit first, MFU then MRU, followed by
6330185029Spjd * the data lists.  This function returns a locked list, and also returns
6331185029Spjd * the lock pointer.
6332185029Spjd */
6333286763Smavstatic multilist_sublist_t *
6334286763Smavl2arc_sublist_lock(int list_num)
6335185029Spjd{
6336286763Smav	multilist_t *ml = NULL;
6337286763Smav	unsigned int idx;
6338185029Spjd
6339286762Smav	ASSERT(list_num >= 0 && list_num <= 3);
6340206796Spjd
6341286762Smav	switch (list_num) {
6342286762Smav	case 0:
6343286763Smav		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6344286762Smav		break;
6345286762Smav	case 1:
6346286763Smav		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6347286762Smav		break;
6348286762Smav	case 2:
6349286763Smav		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6350286762Smav		break;
6351286762Smav	case 3:
6352286763Smav		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6353286762Smav		break;
6354185029Spjd	}
6355185029Spjd
6356286763Smav	/*
6357286763Smav	 * Return a randomly-selected sublist. This is acceptable
6358286763Smav	 * because the caller feeds only a little bit of data for each
6359286763Smav	 * call (8MB). Subsequent calls will result in different
6360286763Smav	 * sublists being selected.
6361286763Smav	 */
6362286763Smav	idx = multilist_get_random_index(ml);
6363286763Smav	return (multilist_sublist_lock(ml, idx));
6364185029Spjd}
6365185029Spjd
6366185029Spjd/*
6367185029Spjd * Evict buffers from the device write hand to the distance specified in
6368185029Spjd * bytes.  This distance may span populated buffers, it may span nothing.
6369185029Spjd * This is clearing a region on the L2ARC device ready for writing.
6370185029Spjd * If the 'all' boolean is set, every buffer is evicted.
6371185029Spjd */
6372185029Spjdstatic void
6373185029Spjdl2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6374185029Spjd{
6375185029Spjd	list_t *buflist;
6376275811Sdelphij	arc_buf_hdr_t *hdr, *hdr_prev;
6377185029Spjd	kmutex_t *hash_lock;
6378185029Spjd	uint64_t taddr;
6379185029Spjd
6380286570Smav	buflist = &dev->l2ad_buflist;
6381185029Spjd
6382185029Spjd	if (!all && dev->l2ad_first) {
6383185029Spjd		/*
6384185029Spjd		 * This is the first sweep through the device.  There is
6385185029Spjd		 * nothing to evict.
6386185029Spjd		 */
6387185029Spjd		return;
6388185029Spjd	}
6389185029Spjd
6390185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6391185029Spjd		/*
6392185029Spjd		 * When nearing the end of the device, evict to the end
6393185029Spjd		 * before the device write hand jumps to the start.
6394185029Spjd		 */
6395185029Spjd		taddr = dev->l2ad_end;
6396185029Spjd	} else {
6397185029Spjd		taddr = dev->l2ad_hand + distance;
6398185029Spjd	}
6399185029Spjd	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6400185029Spjd	    uint64_t, taddr, boolean_t, all);
6401185029Spjd
6402185029Spjdtop:
6403286570Smav	mutex_enter(&dev->l2ad_mtx);
6404275811Sdelphij	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6405275811Sdelphij		hdr_prev = list_prev(buflist, hdr);
6406185029Spjd
6407275811Sdelphij		hash_lock = HDR_LOCK(hdr);
6408286763Smav
6409286763Smav		/*
6410286763Smav		 * We cannot use mutex_enter or else we can deadlock
6411286763Smav		 * with l2arc_write_buffers (due to swapping the order
6412286763Smav		 * the hash lock and l2ad_mtx are taken).
6413286763Smav		 */
6414185029Spjd		if (!mutex_tryenter(hash_lock)) {
6415185029Spjd			/*
6416185029Spjd			 * Missed the hash lock.  Retry.
6417185029Spjd			 */
6418185029Spjd			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6419286570Smav			mutex_exit(&dev->l2ad_mtx);
6420185029Spjd			mutex_enter(hash_lock);
6421185029Spjd			mutex_exit(hash_lock);
6422185029Spjd			goto top;
6423185029Spjd		}
6424185029Spjd
6425275811Sdelphij		if (HDR_L2_WRITE_HEAD(hdr)) {
6426185029Spjd			/*
6427185029Spjd			 * We hit a write head node.  Leave it for
6428185029Spjd			 * l2arc_write_done().
6429185029Spjd			 */
6430275811Sdelphij			list_remove(buflist, hdr);
6431185029Spjd			mutex_exit(hash_lock);
6432185029Spjd			continue;
6433185029Spjd		}
6434185029Spjd
6435286570Smav		if (!all && HDR_HAS_L2HDR(hdr) &&
6436286570Smav		    (hdr->b_l2hdr.b_daddr > taddr ||
6437286570Smav		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6438185029Spjd			/*
6439185029Spjd			 * We've evicted to the target address,
6440185029Spjd			 * or the end of the device.
6441185029Spjd			 */
6442185029Spjd			mutex_exit(hash_lock);
6443185029Spjd			break;
6444185029Spjd		}
6445185029Spjd
6446286570Smav		ASSERT(HDR_HAS_L2HDR(hdr));
6447286570Smav		if (!HDR_HAS_L1HDR(hdr)) {
6448275811Sdelphij			ASSERT(!HDR_L2_READING(hdr));
6449185029Spjd			/*
6450185029Spjd			 * This doesn't exist in the ARC.  Destroy.
6451185029Spjd			 * arc_hdr_destroy() will call list_remove()
6452185029Spjd			 * and decrement arcstat_l2_size.
6453185029Spjd			 */
6454275811Sdelphij			arc_change_state(arc_anon, hdr, hash_lock);
6455275811Sdelphij			arc_hdr_destroy(hdr);
6456185029Spjd		} else {
6457286570Smav			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6458286570Smav			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6459185029Spjd			/*
6460185029Spjd			 * Invalidate issued or about to be issued
6461185029Spjd			 * reads, since we may be about to write
6462185029Spjd			 * over this location.
6463185029Spjd			 */
6464275811Sdelphij			if (HDR_L2_READING(hdr)) {
6465185029Spjd				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6466275811Sdelphij				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6467185029Spjd			}
6468185029Spjd
6469286763Smav			/* Ensure this header has finished being written */
6470286763Smav			ASSERT(!HDR_L2_WRITING(hdr));
6471286763Smav			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6472286763Smav
6473286598Smav			arc_hdr_l2hdr_destroy(hdr);
6474185029Spjd		}
6475185029Spjd		mutex_exit(hash_lock);
6476185029Spjd	}
6477286570Smav	mutex_exit(&dev->l2ad_mtx);
6478185029Spjd}
6479185029Spjd
6480185029Spjd/*
6481185029Spjd * Find and write ARC buffers to the L2ARC device.
6482185029Spjd *
6483275811Sdelphij * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6484185029Spjd * for reading until they have completed writing.
6485251478Sdelphij * The headroom_boost is an in-out parameter used to maintain headroom boost
6486251478Sdelphij * state between calls to this function.
6487251478Sdelphij *
6488251478Sdelphij * Returns the number of bytes actually written (which may be smaller than
6489251478Sdelphij * the delta by which the device hand has changed due to alignment).
6490185029Spjd */
6491208373Smmstatic uint64_t
6492251478Sdelphijl2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6493251478Sdelphij    boolean_t *headroom_boost)
6494185029Spjd{
6495275811Sdelphij	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6496289295Smav	uint64_t write_asize, write_sz, headroom,
6497289295Smav	    buf_compress_minsz;
6498185029Spjd	void *buf_data;
6499251478Sdelphij	boolean_t full;
6500185029Spjd	l2arc_write_callback_t *cb;
6501185029Spjd	zio_t *pio, *wzio;
6502228103Smm	uint64_t guid = spa_load_guid(spa);
6503251478Sdelphij	const boolean_t do_headroom_boost = *headroom_boost;
6504185029Spjd	int try;
6505185029Spjd
6506185029Spjd	ASSERT(dev->l2ad_vdev != NULL);
6507185029Spjd
6508251478Sdelphij	/* Lower the flag now, we might want to raise it again later. */
6509251478Sdelphij	*headroom_boost = B_FALSE;
6510251478Sdelphij
6511185029Spjd	pio = NULL;
6512287099Savg	write_sz = write_asize = 0;
6513185029Spjd	full = B_FALSE;
6514286570Smav	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6515275811Sdelphij	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6516286570Smav	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6517185029Spjd
6518205231Skmacy	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6519185029Spjd	/*
6520251478Sdelphij	 * We will want to try to compress buffers that are at least 2x the
6521251478Sdelphij	 * device sector size.
6522251478Sdelphij	 */
6523251478Sdelphij	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6524251478Sdelphij
6525251478Sdelphij	/*
6526185029Spjd	 * Copy buffers for L2ARC writing.
6527185029Spjd	 */
6528286762Smav	for (try = 0; try <= 3; try++) {
6529286763Smav		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6530251478Sdelphij		uint64_t passed_sz = 0;
6531251478Sdelphij
6532205231Skmacy		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6533185029Spjd
6534185029Spjd		/*
6535185029Spjd		 * L2ARC fast warmup.
6536185029Spjd		 *
6537185029Spjd		 * Until the ARC is warm and starts to evict, read from the
6538185029Spjd		 * head of the ARC lists rather than the tail.
6539185029Spjd		 */
6540185029Spjd		if (arc_warm == B_FALSE)
6541286763Smav			hdr = multilist_sublist_head(mls);
6542185029Spjd		else
6543286763Smav			hdr = multilist_sublist_tail(mls);
6544275811Sdelphij		if (hdr == NULL)
6545205231Skmacy			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6546185029Spjd
6547286762Smav		headroom = target_sz * l2arc_headroom;
6548251478Sdelphij		if (do_headroom_boost)
6549251478Sdelphij			headroom = (headroom * l2arc_headroom_boost) / 100;
6550251478Sdelphij
6551275811Sdelphij		for (; hdr; hdr = hdr_prev) {
6552251478Sdelphij			kmutex_t *hash_lock;
6553251478Sdelphij			uint64_t buf_sz;
6554287099Savg			uint64_t buf_a_sz;
6555297848Savg			size_t align;
6556251478Sdelphij
6557185029Spjd			if (arc_warm == B_FALSE)
6558286763Smav				hdr_prev = multilist_sublist_next(mls, hdr);
6559185029Spjd			else
6560286763Smav				hdr_prev = multilist_sublist_prev(mls, hdr);
6561275811Sdelphij			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6562206796Spjd
6563275811Sdelphij			hash_lock = HDR_LOCK(hdr);
6564251478Sdelphij			if (!mutex_tryenter(hash_lock)) {
6565205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6566185029Spjd				/*
6567185029Spjd				 * Skip this buffer rather than waiting.
6568185029Spjd				 */
6569185029Spjd				continue;
6570185029Spjd			}
6571185029Spjd
6572275811Sdelphij			passed_sz += hdr->b_size;
6573185029Spjd			if (passed_sz > headroom) {
6574185029Spjd				/*
6575185029Spjd				 * Searched too far.
6576185029Spjd				 */
6577185029Spjd				mutex_exit(hash_lock);
6578205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6579185029Spjd				break;
6580185029Spjd			}
6581185029Spjd
6582275811Sdelphij			if (!l2arc_write_eligible(guid, hdr)) {
6583185029Spjd				mutex_exit(hash_lock);
6584185029Spjd				continue;
6585185029Spjd			}
6586185029Spjd
6587287099Savg			/*
6588287099Savg			 * Assume that the buffer is not going to be compressed
6589287099Savg			 * and could take more space on disk because of a larger
6590287099Savg			 * disk block size.
6591287099Savg			 */
6592287099Savg			buf_sz = hdr->b_size;
6593297848Savg			align = (size_t)1 << dev->l2ad_vdev->vdev_ashift;
6594297848Savg			buf_a_sz = P2ROUNDUP(buf_sz, align);
6595287099Savg
6596287099Savg			if ((write_asize + buf_a_sz) > target_sz) {
6597185029Spjd				full = B_TRUE;
6598185029Spjd				mutex_exit(hash_lock);
6599205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_full);
6600185029Spjd				break;
6601185029Spjd			}
6602185029Spjd
6603185029Spjd			if (pio == NULL) {
6604185029Spjd				/*
6605185029Spjd				 * Insert a dummy header on the buflist so
6606185029Spjd				 * l2arc_write_done() can find where the
6607185029Spjd				 * write buffers begin without searching.
6608185029Spjd				 */
6609286763Smav				mutex_enter(&dev->l2ad_mtx);
6610286570Smav				list_insert_head(&dev->l2ad_buflist, head);
6611286763Smav				mutex_exit(&dev->l2ad_mtx);
6612185029Spjd
6613185029Spjd				cb = kmem_alloc(
6614185029Spjd				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6615185029Spjd				cb->l2wcb_dev = dev;
6616185029Spjd				cb->l2wcb_head = head;
6617185029Spjd				pio = zio_root(spa, l2arc_write_done, cb,
6618185029Spjd				    ZIO_FLAG_CANFAIL);
6619205231Skmacy				ARCSTAT_BUMP(arcstat_l2_write_pios);
6620185029Spjd			}
6621185029Spjd
6622185029Spjd			/*
6623185029Spjd			 * Create and add a new L2ARC header.
6624185029Spjd			 */
6625286570Smav			hdr->b_l2hdr.b_dev = dev;
6626275811Sdelphij			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6627251478Sdelphij			/*
6628251478Sdelphij			 * Temporarily stash the data buffer in b_tmp_cdata.
6629251478Sdelphij			 * The subsequent write step will pick it up from
6630286570Smav			 * there. This is because can't access b_l1hdr.b_buf
6631251478Sdelphij			 * without holding the hash_lock, which we in turn
6632251478Sdelphij			 * can't access without holding the ARC list locks
6633251478Sdelphij			 * (which we want to avoid during compression/writing).
6634251478Sdelphij			 */
6635287706Sdelphij			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6636286570Smav			hdr->b_l2hdr.b_asize = hdr->b_size;
6637286570Smav			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6638251478Sdelphij
6639286598Smav			/*
6640286598Smav			 * Explicitly set the b_daddr field to a known
6641286598Smav			 * value which means "invalid address". This
6642286598Smav			 * enables us to differentiate which stage of
6643286598Smav			 * l2arc_write_buffers() the particular header
6644286598Smav			 * is in (e.g. this loop, or the one below).
6645286598Smav			 * ARC_FLAG_L2_WRITING is not enough to make
6646286598Smav			 * this distinction, and we need to know in
6647286598Smav			 * order to do proper l2arc vdev accounting in
6648286598Smav			 * arc_release() and arc_hdr_destroy().
6649286598Smav			 *
6650286598Smav			 * Note, we can't use a new flag to distinguish
6651286598Smav			 * the two stages because we don't hold the
6652286598Smav			 * header's hash_lock below, in the second stage
6653286598Smav			 * of this function. Thus, we can't simply
6654286598Smav			 * change the b_flags field to denote that the
6655286598Smav			 * IO has been sent. We can change the b_daddr
6656286598Smav			 * field of the L2 portion, though, since we'll
6657286598Smav			 * be holding the l2ad_mtx; which is why we're
6658286598Smav			 * using it to denote the header's state change.
6659286598Smav			 */
6660286598Smav			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6661289295Smav
6662286570Smav			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6663185029Spjd
6664286763Smav			mutex_enter(&dev->l2ad_mtx);
6665286570Smav			list_insert_head(&dev->l2ad_buflist, hdr);
6666286763Smav			mutex_exit(&dev->l2ad_mtx);
6667251478Sdelphij
6668185029Spjd			/*
6669185029Spjd			 * Compute and store the buffer cksum before
6670185029Spjd			 * writing.  On debug the cksum is verified first.
6671185029Spjd			 */
6672286570Smav			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6673286570Smav			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6674185029Spjd
6675185029Spjd			mutex_exit(hash_lock);
6676185029Spjd
6677251478Sdelphij			write_sz += buf_sz;
6678287099Savg			write_asize += buf_a_sz;
6679251478Sdelphij		}
6680251478Sdelphij
6681286763Smav		multilist_sublist_unlock(mls);
6682251478Sdelphij
6683251478Sdelphij		if (full == B_TRUE)
6684251478Sdelphij			break;
6685251478Sdelphij	}
6686251478Sdelphij
6687251478Sdelphij	/* No buffers selected for writing? */
6688251478Sdelphij	if (pio == NULL) {
6689251478Sdelphij		ASSERT0(write_sz);
6690286570Smav		ASSERT(!HDR_HAS_L1HDR(head));
6691286570Smav		kmem_cache_free(hdr_l2only_cache, head);
6692251478Sdelphij		return (0);
6693251478Sdelphij	}
6694251478Sdelphij
6695286763Smav	mutex_enter(&dev->l2ad_mtx);
6696286763Smav
6697251478Sdelphij	/*
6698251478Sdelphij	 * Now start writing the buffers. We're starting at the write head
6699251478Sdelphij	 * and work backwards, retracing the course of the buffer selector
6700251478Sdelphij	 * loop above.
6701251478Sdelphij	 */
6702297848Savg	write_asize = 0;
6703286570Smav	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6704286570Smav	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6705251478Sdelphij		uint64_t buf_sz;
6706297848Savg		boolean_t compress;
6707251478Sdelphij
6708251478Sdelphij		/*
6709286763Smav		 * We rely on the L1 portion of the header below, so
6710286763Smav		 * it's invalid for this header to have been evicted out
6711286763Smav		 * of the ghost cache, prior to being written out. The
6712286763Smav		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6713286763Smav		 */
6714286763Smav		ASSERT(HDR_HAS_L1HDR(hdr));
6715286763Smav
6716286763Smav		/*
6717251478Sdelphij		 * We shouldn't need to lock the buffer here, since we flagged
6718275811Sdelphij		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6719275811Sdelphij		 * take care to only access its L2 cache parameters. In
6720286570Smav		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6721275811Sdelphij		 * ARC eviction.
6722251478Sdelphij		 */
6723286570Smav		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6724251478Sdelphij
6725297848Savg		/*
6726297848Savg		 * Save a pointer to the original buffer data we had previously
6727297848Savg		 * stashed away.
6728297848Savg		 */
6729297848Savg		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6730297848Savg
6731297848Savg		compress = HDR_L2COMPRESS(hdr) &&
6732297848Savg		    hdr->b_l2hdr.b_asize >= buf_compress_minsz;
6733297848Savg		if (l2arc_transform_buf(hdr, compress)) {
6734297848Savg			/*
6735297848Savg			 * If compression succeeded, enable headroom
6736297848Savg			 * boost on the next scan cycle.
6737297848Savg			 */
6738297848Savg			*headroom_boost = B_TRUE;
6739251478Sdelphij		}
6740251478Sdelphij
6741251478Sdelphij		/*
6742297848Savg		 * Get the new buffer size that accounts for compression
6743297848Savg		 * and padding.
6744251478Sdelphij		 */
6745286570Smav		buf_sz = hdr->b_l2hdr.b_asize;
6746251478Sdelphij
6747274172Savg		/*
6748286598Smav		 * We need to do this regardless if buf_sz is zero or
6749286598Smav		 * not, otherwise, when this l2hdr is evicted we'll
6750286598Smav		 * remove a reference that was never added.
6751286598Smav		 */
6752286598Smav		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6753286598Smav
6754251478Sdelphij		/* Compression may have squashed the buffer to zero length. */
6755251478Sdelphij		if (buf_sz != 0) {
6756297848Savg			/*
6757297848Savg			 * If the data was padded or compressed, then it
6758297848Savg			 * it is in a new buffer.
6759297848Savg			 */
6760297848Savg			if (hdr->b_l1hdr.b_tmp_cdata != NULL)
6761297848Savg				buf_data = hdr->b_l1hdr.b_tmp_cdata;
6762185029Spjd			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6763185029Spjd			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6764185029Spjd			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6765185029Spjd			    ZIO_FLAG_CANFAIL, B_FALSE);
6766185029Spjd
6767185029Spjd			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6768185029Spjd			    zio_t *, wzio);
6769185029Spjd			(void) zio_nowait(wzio);
6770185029Spjd
6771297848Savg			write_asize += buf_sz;
6772297848Savg			dev->l2ad_hand += buf_sz;
6773185029Spjd		}
6774251478Sdelphij	}
6775185029Spjd
6776286570Smav	mutex_exit(&dev->l2ad_mtx);
6777185029Spjd
6778251478Sdelphij	ASSERT3U(write_asize, <=, target_sz);
6779185029Spjd	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6780251478Sdelphij	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6781185029Spjd	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6782297848Savg	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6783297848Savg	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6784185029Spjd
6785185029Spjd	/*
6786185029Spjd	 * Bump device hand to the device start if it is approaching the end.
6787185029Spjd	 * l2arc_evict() will already have evicted ahead for this case.
6788185029Spjd	 */
6789185029Spjd	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6790185029Spjd		dev->l2ad_hand = dev->l2ad_start;
6791185029Spjd		dev->l2ad_first = B_FALSE;
6792185029Spjd	}
6793185029Spjd
6794208373Smm	dev->l2ad_writing = B_TRUE;
6795185029Spjd	(void) zio_wait(pio);
6796208373Smm	dev->l2ad_writing = B_FALSE;
6797208373Smm
6798251478Sdelphij	return (write_asize);
6799185029Spjd}
6800185029Spjd
6801185029Spjd/*
6802297848Savg * Transforms, possibly compresses and pads, an L2ARC buffer.
6803286570Smav * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6804251478Sdelphij * size in l2hdr->b_asize. This routine tries to compress the data and
6805251478Sdelphij * depending on the compression result there are three possible outcomes:
6806297848Savg * *) The buffer was incompressible. The buffer size was already ashift aligned.
6807297848Savg *    The original hdr contents were left untouched except for b_tmp_cdata,
6808297848Savg *    which is reset to NULL. The caller must keep a pointer to the original
6809297848Savg *    data.
6810297848Savg * *) The buffer was incompressible. The buffer size was not ashift aligned.
6811297848Savg *    b_tmp_cdata was replaced with a temporary data buffer which holds a padded
6812297848Savg *    (aligned) copy of the data. Once writing is done, invoke
6813297848Savg *    l2arc_release_cdata_buf on this hdr to free the temporary buffer.
6814251478Sdelphij * *) The buffer was all-zeros, so there is no need to write it to an L2
6815251478Sdelphij *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6816251478Sdelphij *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6817251478Sdelphij * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6818251478Sdelphij *    data buffer which holds the compressed data to be written, and b_asize
6819251478Sdelphij *    tells us how much data there is. b_compress is set to the appropriate
6820251478Sdelphij *    compression algorithm. Once writing is done, invoke
6821251478Sdelphij *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6822251478Sdelphij *
6823251478Sdelphij * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6824251478Sdelphij * buffer was incompressible).
6825251478Sdelphij */
6826251478Sdelphijstatic boolean_t
6827297848Savgl2arc_transform_buf(arc_buf_hdr_t *hdr, boolean_t compress)
6828251478Sdelphij{
6829251478Sdelphij	void *cdata;
6830297848Savg	size_t align, asize, csize, len, rounded;
6831297848Savg
6832286570Smav	ASSERT(HDR_HAS_L2HDR(hdr));
6833286570Smav	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6834251478Sdelphij
6835286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
6836287706Sdelphij	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6837286570Smav	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6838251478Sdelphij
6839251478Sdelphij	len = l2hdr->b_asize;
6840297848Savg	align = (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift;
6841297848Savg	asize = P2ROUNDUP(len, align);
6842297848Savg	cdata = zio_data_buf_alloc(asize);
6843286570Smav	ASSERT3P(cdata, !=, NULL);
6844297848Savg	if (compress)
6845297848Savg		csize = zio_compress_data(ZIO_COMPRESS_LZ4,
6846297848Savg		    hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6847297848Savg	else
6848297848Savg		csize = len;
6849251478Sdelphij
6850251478Sdelphij	if (csize == 0) {
6851251478Sdelphij		/* zero block, indicate that there's nothing to write */
6852297848Savg		zio_data_buf_free(cdata, asize);
6853287706Sdelphij		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6854251478Sdelphij		l2hdr->b_asize = 0;
6855286570Smav		hdr->b_l1hdr.b_tmp_cdata = NULL;
6856251478Sdelphij		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6857251478Sdelphij		return (B_TRUE);
6858287283Sdelphij	}
6859287283Sdelphij
6860297848Savg	rounded = P2ROUNDUP(csize, align);
6861297848Savg	ASSERT3U(rounded, <=, asize);
6862287283Sdelphij	if (rounded < len) {
6863251478Sdelphij		/*
6864251478Sdelphij		 * Compression succeeded, we'll keep the cdata around for
6865251478Sdelphij		 * writing and release it afterwards.
6866251478Sdelphij		 */
6867287283Sdelphij		if (rounded > csize) {
6868287283Sdelphij			bzero((char *)cdata + csize, rounded - csize);
6869287283Sdelphij			csize = rounded;
6870287283Sdelphij		}
6871287706Sdelphij		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6872251478Sdelphij		l2hdr->b_asize = csize;
6873286570Smav		hdr->b_l1hdr.b_tmp_cdata = cdata;
6874251478Sdelphij		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6875251478Sdelphij		return (B_TRUE);
6876251478Sdelphij	} else {
6877251478Sdelphij		/*
6878297848Savg		 * Compression did not save space.
6879251478Sdelphij		 */
6880297848Savg		if (P2PHASE(len, align) != 0) {
6881297848Savg			/*
6882297848Savg			 * Use compression buffer for a copy of data padded to
6883297848Savg			 * the proper size.  Compression algorithm remains set
6884297848Savg			 * to ZIO_COMPRESS_OFF.
6885297848Savg			 */
6886297848Savg			ASSERT3U(len, <, asize);
6887297848Savg			bcopy(hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6888297848Savg			bzero((char *)cdata + len, asize - len);
6889297848Savg			l2hdr->b_asize = asize;
6890297848Savg			hdr->b_l1hdr.b_tmp_cdata = cdata;
6891297848Savg			ARCSTAT_BUMP(arcstat_l2_padding_needed);
6892297848Savg		} else {
6893297848Savg			ASSERT3U(len, ==, asize);
6894297848Savg			/*
6895297848Savg			 * The original buffer is good as is,
6896297848Savg			 * release the compressed buffer.
6897297848Savg			 * l2hdr will be left unmodified except for b_tmp_cdata.
6898297848Savg			 */
6899297848Savg			zio_data_buf_free(cdata, asize);
6900297848Savg			hdr->b_l1hdr.b_tmp_cdata = NULL;
6901297848Savg		}
6902297848Savg		if (compress)
6903297848Savg			ARCSTAT_BUMP(arcstat_l2_compress_failures);
6904251478Sdelphij		return (B_FALSE);
6905251478Sdelphij	}
6906251478Sdelphij}
6907251478Sdelphij
6908251478Sdelphij/*
6909251478Sdelphij * Decompresses a zio read back from an l2arc device. On success, the
6910251478Sdelphij * underlying zio's io_data buffer is overwritten by the uncompressed
6911251478Sdelphij * version. On decompression error (corrupt compressed stream), the
6912251478Sdelphij * zio->io_error value is set to signal an I/O error.
6913251478Sdelphij *
6914251478Sdelphij * Please note that the compressed data stream is not checksummed, so
6915251478Sdelphij * if the underlying device is experiencing data corruption, we may feed
6916251478Sdelphij * corrupt data to the decompressor, so the decompressor needs to be
6917251478Sdelphij * able to handle this situation (LZ4 does).
6918251478Sdelphij */
6919251478Sdelphijstatic void
6920251478Sdelphijl2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6921251478Sdelphij{
6922251478Sdelphij	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6923251478Sdelphij
6924251478Sdelphij	if (zio->io_error != 0) {
6925251478Sdelphij		/*
6926251478Sdelphij		 * An io error has occured, just restore the original io
6927251478Sdelphij		 * size in preparation for a main pool read.
6928251478Sdelphij		 */
6929251478Sdelphij		zio->io_orig_size = zio->io_size = hdr->b_size;
6930251478Sdelphij		return;
6931251478Sdelphij	}
6932251478Sdelphij
6933251478Sdelphij	if (c == ZIO_COMPRESS_EMPTY) {
6934251478Sdelphij		/*
6935251478Sdelphij		 * An empty buffer results in a null zio, which means we
6936251478Sdelphij		 * need to fill its io_data after we're done restoring the
6937251478Sdelphij		 * buffer's contents.
6938251478Sdelphij		 */
6939286570Smav		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6940286570Smav		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6941286570Smav		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6942251478Sdelphij	} else {
6943251478Sdelphij		ASSERT(zio->io_data != NULL);
6944251478Sdelphij		/*
6945251478Sdelphij		 * We copy the compressed data from the start of the arc buffer
6946251478Sdelphij		 * (the zio_read will have pulled in only what we need, the
6947251478Sdelphij		 * rest is garbage which we will overwrite at decompression)
6948251478Sdelphij		 * and then decompress back to the ARC data buffer. This way we
6949251478Sdelphij		 * can minimize copying by simply decompressing back over the
6950251478Sdelphij		 * original compressed data (rather than decompressing to an
6951251478Sdelphij		 * aux buffer and then copying back the uncompressed buffer,
6952251478Sdelphij		 * which is likely to be much larger).
6953251478Sdelphij		 */
6954251478Sdelphij		uint64_t csize;
6955251478Sdelphij		void *cdata;
6956251478Sdelphij
6957251478Sdelphij		csize = zio->io_size;
6958251478Sdelphij		cdata = zio_data_buf_alloc(csize);
6959251478Sdelphij		bcopy(zio->io_data, cdata, csize);
6960251478Sdelphij		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6961251478Sdelphij		    hdr->b_size) != 0)
6962251478Sdelphij			zio->io_error = EIO;
6963251478Sdelphij		zio_data_buf_free(cdata, csize);
6964251478Sdelphij	}
6965251478Sdelphij
6966251478Sdelphij	/* Restore the expected uncompressed IO size. */
6967251478Sdelphij	zio->io_orig_size = zio->io_size = hdr->b_size;
6968251478Sdelphij}
6969251478Sdelphij
6970251478Sdelphij/*
6971251478Sdelphij * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6972297848Savg * This buffer serves as a temporary holder of compressed or padded data while
6973251478Sdelphij * the buffer entry is being written to an l2arc device. Once that is
6974251478Sdelphij * done, we can dispose of it.
6975251478Sdelphij */
6976251478Sdelphijstatic void
6977275811Sdelphijl2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6978251478Sdelphij{
6979297848Savg	size_t align, asize, len;
6980287706Sdelphij	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6981286763Smav
6982297848Savg	ASSERT(HDR_HAS_L2HDR(hdr));
6983286570Smav	ASSERT(HDR_HAS_L1HDR(hdr));
6984286763Smav	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6985286763Smav
6986297848Savg	if (hdr->b_l1hdr.b_tmp_cdata != NULL) {
6987297848Savg		ASSERT(comp != ZIO_COMPRESS_EMPTY);
6988297848Savg		len = hdr->b_size;
6989297848Savg		align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
6990297848Savg		asize = P2ROUNDUP(len, align);
6991297848Savg		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, asize);
6992286763Smav		hdr->b_l1hdr.b_tmp_cdata = NULL;
6993286763Smav	} else {
6994297848Savg		ASSERT(comp == ZIO_COMPRESS_OFF || comp == ZIO_COMPRESS_EMPTY);
6995251478Sdelphij	}
6996251478Sdelphij}
6997251478Sdelphij
6998251478Sdelphij/*
6999185029Spjd * This thread feeds the L2ARC at regular intervals.  This is the beating
7000185029Spjd * heart of the L2ARC.
7001185029Spjd */
7002185029Spjdstatic void
7003185029Spjdl2arc_feed_thread(void *dummy __unused)
7004185029Spjd{
7005185029Spjd	callb_cpr_t cpr;
7006185029Spjd	l2arc_dev_t *dev;
7007185029Spjd	spa_t *spa;
7008208373Smm	uint64_t size, wrote;
7009219089Spjd	clock_t begin, next = ddi_get_lbolt();
7010251478Sdelphij	boolean_t headroom_boost = B_FALSE;
7011185029Spjd
7012185029Spjd	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7013185029Spjd
7014185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
7015185029Spjd
7016185029Spjd	while (l2arc_thread_exit == 0) {
7017185029Spjd		CALLB_CPR_SAFE_BEGIN(&cpr);
7018185029Spjd		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7019219089Spjd		    next - ddi_get_lbolt());
7020185029Spjd		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7021219089Spjd		next = ddi_get_lbolt() + hz;
7022185029Spjd
7023185029Spjd		/*
7024185029Spjd		 * Quick check for L2ARC devices.
7025185029Spjd		 */
7026185029Spjd		mutex_enter(&l2arc_dev_mtx);
7027185029Spjd		if (l2arc_ndev == 0) {
7028185029Spjd			mutex_exit(&l2arc_dev_mtx);
7029185029Spjd			continue;
7030185029Spjd		}
7031185029Spjd		mutex_exit(&l2arc_dev_mtx);
7032219089Spjd		begin = ddi_get_lbolt();
7033185029Spjd
7034185029Spjd		/*
7035185029Spjd		 * This selects the next l2arc device to write to, and in
7036185029Spjd		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7037185029Spjd		 * will return NULL if there are now no l2arc devices or if
7038185029Spjd		 * they are all faulted.
7039185029Spjd		 *
7040185029Spjd		 * If a device is returned, its spa's config lock is also
7041185029Spjd		 * held to prevent device removal.  l2arc_dev_get_next()
7042185029Spjd		 * will grab and release l2arc_dev_mtx.
7043185029Spjd		 */
7044185029Spjd		if ((dev = l2arc_dev_get_next()) == NULL)
7045185029Spjd			continue;
7046185029Spjd
7047185029Spjd		spa = dev->l2ad_spa;
7048185029Spjd		ASSERT(spa != NULL);
7049185029Spjd
7050185029Spjd		/*
7051219089Spjd		 * If the pool is read-only then force the feed thread to
7052219089Spjd		 * sleep a little longer.
7053219089Spjd		 */
7054219089Spjd		if (!spa_writeable(spa)) {
7055219089Spjd			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7056219089Spjd			spa_config_exit(spa, SCL_L2ARC, dev);
7057219089Spjd			continue;
7058219089Spjd		}
7059219089Spjd
7060219089Spjd		/*
7061185029Spjd		 * Avoid contributing to memory pressure.
7062185029Spjd		 */
7063185029Spjd		if (arc_reclaim_needed()) {
7064185029Spjd			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7065185029Spjd			spa_config_exit(spa, SCL_L2ARC, dev);
7066185029Spjd			continue;
7067185029Spjd		}
7068185029Spjd
7069185029Spjd		ARCSTAT_BUMP(arcstat_l2_feeds);
7070185029Spjd
7071251478Sdelphij		size = l2arc_write_size();
7072185029Spjd
7073185029Spjd		/*
7074185029Spjd		 * Evict L2ARC buffers that will be overwritten.
7075185029Spjd		 */
7076185029Spjd		l2arc_evict(dev, size, B_FALSE);
7077185029Spjd
7078185029Spjd		/*
7079185029Spjd		 * Write ARC buffers.
7080185029Spjd		 */
7081251478Sdelphij		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
7082208373Smm
7083208373Smm		/*
7084208373Smm		 * Calculate interval between writes.
7085208373Smm		 */
7086208373Smm		next = l2arc_write_interval(begin, size, wrote);
7087185029Spjd		spa_config_exit(spa, SCL_L2ARC, dev);
7088185029Spjd	}
7089185029Spjd
7090185029Spjd	l2arc_thread_exit = 0;
7091185029Spjd	cv_broadcast(&l2arc_feed_thr_cv);
7092185029Spjd	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7093185029Spjd	thread_exit();
7094185029Spjd}
7095185029Spjd
7096185029Spjdboolean_t
7097185029Spjdl2arc_vdev_present(vdev_t *vd)
7098185029Spjd{
7099185029Spjd	l2arc_dev_t *dev;
7100185029Spjd
7101185029Spjd	mutex_enter(&l2arc_dev_mtx);
7102185029Spjd	for (dev = list_head(l2arc_dev_list); dev != NULL;
7103185029Spjd	    dev = list_next(l2arc_dev_list, dev)) {
7104185029Spjd		if (dev->l2ad_vdev == vd)
7105185029Spjd			break;
7106185029Spjd	}
7107185029Spjd	mutex_exit(&l2arc_dev_mtx);
7108185029Spjd
7109185029Spjd	return (dev != NULL);
7110185029Spjd}
7111185029Spjd
7112185029Spjd/*
7113185029Spjd * Add a vdev for use by the L2ARC.  By this point the spa has already
7114185029Spjd * validated the vdev and opened it.
7115185029Spjd */
7116185029Spjdvoid
7117219089Spjdl2arc_add_vdev(spa_t *spa, vdev_t *vd)
7118185029Spjd{
7119185029Spjd	l2arc_dev_t *adddev;
7120185029Spjd
7121185029Spjd	ASSERT(!l2arc_vdev_present(vd));
7122185029Spjd
7123255753Sgibbs	vdev_ashift_optimize(vd);
7124255753Sgibbs
7125185029Spjd	/*
7126185029Spjd	 * Create a new l2arc device entry.
7127185029Spjd	 */
7128185029Spjd	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7129185029Spjd	adddev->l2ad_spa = spa;
7130185029Spjd	adddev->l2ad_vdev = vd;
7131219089Spjd	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7132219089Spjd	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7133185029Spjd	adddev->l2ad_hand = adddev->l2ad_start;
7134185029Spjd	adddev->l2ad_first = B_TRUE;
7135208373Smm	adddev->l2ad_writing = B_FALSE;
7136185029Spjd
7137286570Smav	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7138185029Spjd	/*
7139185029Spjd	 * This is a list of all ARC buffers that are still valid on the
7140185029Spjd	 * device.
7141185029Spjd	 */
7142286570Smav	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7143286570Smav	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7144185029Spjd
7145219089Spjd	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7146286598Smav	refcount_create(&adddev->l2ad_alloc);
7147185029Spjd
7148185029Spjd	/*
7149185029Spjd	 * Add device to global list
7150185029Spjd	 */
7151185029Spjd	mutex_enter(&l2arc_dev_mtx);
7152185029Spjd	list_insert_head(l2arc_dev_list, adddev);
7153185029Spjd	atomic_inc_64(&l2arc_ndev);
7154185029Spjd	mutex_exit(&l2arc_dev_mtx);
7155185029Spjd}
7156185029Spjd
7157185029Spjd/*
7158185029Spjd * Remove a vdev from the L2ARC.
7159185029Spjd */
7160185029Spjdvoid
7161185029Spjdl2arc_remove_vdev(vdev_t *vd)
7162185029Spjd{
7163185029Spjd	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7164185029Spjd
7165185029Spjd	/*
7166185029Spjd	 * Find the device by vdev
7167185029Spjd	 */
7168185029Spjd	mutex_enter(&l2arc_dev_mtx);
7169185029Spjd	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7170185029Spjd		nextdev = list_next(l2arc_dev_list, dev);
7171185029Spjd		if (vd == dev->l2ad_vdev) {
7172185029Spjd			remdev = dev;
7173185029Spjd			break;
7174185029Spjd		}
7175185029Spjd	}
7176185029Spjd	ASSERT(remdev != NULL);
7177185029Spjd
7178185029Spjd	/*
7179185029Spjd	 * Remove device from global list
7180185029Spjd	 */
7181185029Spjd	list_remove(l2arc_dev_list, remdev);
7182185029Spjd	l2arc_dev_last = NULL;		/* may have been invalidated */
7183185029Spjd	atomic_dec_64(&l2arc_ndev);
7184185029Spjd	mutex_exit(&l2arc_dev_mtx);
7185185029Spjd
7186185029Spjd	/*
7187185029Spjd	 * Clear all buflists and ARC references.  L2ARC device flush.
7188185029Spjd	 */
7189185029Spjd	l2arc_evict(remdev, 0, B_TRUE);
7190286570Smav	list_destroy(&remdev->l2ad_buflist);
7191286570Smav	mutex_destroy(&remdev->l2ad_mtx);
7192286598Smav	refcount_destroy(&remdev->l2ad_alloc);
7193185029Spjd	kmem_free(remdev, sizeof (l2arc_dev_t));
7194185029Spjd}
7195185029Spjd
7196185029Spjdvoid
7197185029Spjdl2arc_init(void)
7198185029Spjd{
7199185029Spjd	l2arc_thread_exit = 0;
7200185029Spjd	l2arc_ndev = 0;
7201185029Spjd	l2arc_writes_sent = 0;
7202185029Spjd	l2arc_writes_done = 0;
7203185029Spjd
7204185029Spjd	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7205185029Spjd	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7206185029Spjd	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7207185029Spjd	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7208185029Spjd
7209185029Spjd	l2arc_dev_list = &L2ARC_dev_list;
7210185029Spjd	l2arc_free_on_write = &L2ARC_free_on_write;
7211185029Spjd	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7212185029Spjd	    offsetof(l2arc_dev_t, l2ad_node));
7213185029Spjd	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7214185029Spjd	    offsetof(l2arc_data_free_t, l2df_list_node));
7215185029Spjd}
7216185029Spjd
7217185029Spjdvoid
7218185029Spjdl2arc_fini(void)
7219185029Spjd{
7220185029Spjd	/*
7221185029Spjd	 * This is called from dmu_fini(), which is called from spa_fini();
7222185029Spjd	 * Because of this, we can assume that all l2arc devices have
7223185029Spjd	 * already been removed when the pools themselves were removed.
7224185029Spjd	 */
7225185029Spjd
7226185029Spjd	l2arc_do_free_on_write();
7227185029Spjd
7228185029Spjd	mutex_destroy(&l2arc_feed_thr_lock);
7229185029Spjd	cv_destroy(&l2arc_feed_thr_cv);
7230185029Spjd	mutex_destroy(&l2arc_dev_mtx);
7231185029Spjd	mutex_destroy(&l2arc_free_on_write_mtx);
7232185029Spjd
7233185029Spjd	list_destroy(l2arc_dev_list);
7234185029Spjd	list_destroy(l2arc_free_on_write);
7235185029Spjd}
7236185029Spjd
7237185029Spjdvoid
7238185029Spjdl2arc_start(void)
7239185029Spjd{
7240209962Smm	if (!(spa_mode_global & FWRITE))
7241185029Spjd		return;
7242185029Spjd
7243185029Spjd	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7244185029Spjd	    TS_RUN, minclsyspri);
7245185029Spjd}
7246185029Spjd
7247185029Spjdvoid
7248185029Spjdl2arc_stop(void)
7249185029Spjd{
7250209962Smm	if (!(spa_mode_global & FWRITE))
7251185029Spjd		return;
7252185029Spjd
7253185029Spjd	mutex_enter(&l2arc_feed_thr_lock);
7254185029Spjd	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7255185029Spjd	l2arc_thread_exit = 1;
7256185029Spjd	while (l2arc_thread_exit != 0)
7257185029Spjd		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7258185029Spjd	mutex_exit(&l2arc_feed_thr_lock);
7259185029Spjd}
7260