arc.c revision 304138
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#include <sys/racct.h>
136#endif
137#include <sys/callb.h>
138#include <sys/kstat.h>
139#include <sys/trim_map.h>
140#include <zfs_fletcher.h>
141#include <sys/sdt.h>
142
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162static kmutex_t		arc_dnlc_evicts_lock;
163static kcondvar_t	arc_dnlc_evicts_cv;
164static boolean_t	arc_dnlc_evicts_thread_exit;
165
166uint_t arc_reduce_dnlc_percent = 3;
167
168/*
169 * The number of headers to evict in arc_evict_state_impl() before
170 * dropping the sublist lock and evicting from another sublist. A lower
171 * value means we're more likely to evict the "correct" header (i.e. the
172 * oldest header in the arc state), but comes with higher overhead
173 * (i.e. more invocations of arc_evict_state_impl()).
174 */
175int zfs_arc_evict_batch_limit = 10;
176
177/*
178 * The number of sublists used for each of the arc state lists. If this
179 * is not set to a suitable value by the user, it will be configured to
180 * the number of CPUs on the system in arc_init().
181 */
182int zfs_arc_num_sublists_per_state = 0;
183
184/* number of seconds before growing cache again */
185static int		arc_grow_retry = 60;
186
187/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
188int		zfs_arc_overflow_shift = 8;
189
190/* shift of arc_c for calculating both min and max arc_p */
191static int		arc_p_min_shift = 4;
192
193/* log2(fraction of arc to reclaim) */
194static int		arc_shrink_shift = 7;
195
196/*
197 * log2(fraction of ARC which must be free to allow growing).
198 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
199 * when reading a new block into the ARC, we will evict an equal-sized block
200 * from the ARC.
201 *
202 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
203 * we will still not allow it to grow.
204 */
205int			arc_no_grow_shift = 5;
206
207
208/*
209 * minimum lifespan of a prefetch block in clock ticks
210 * (initialized in arc_init())
211 */
212static int		arc_min_prefetch_lifespan;
213
214/*
215 * If this percent of memory is free, don't throttle.
216 */
217int arc_lotsfree_percent = 10;
218
219static int arc_dead;
220extern boolean_t zfs_prefetch_disable;
221
222/*
223 * The arc has filled available memory and has now warmed up.
224 */
225static boolean_t arc_warm;
226
227/*
228 * These tunables are for performance analysis.
229 */
230uint64_t zfs_arc_max;
231uint64_t zfs_arc_min;
232uint64_t zfs_arc_meta_limit = 0;
233uint64_t zfs_arc_meta_min = 0;
234int zfs_arc_grow_retry = 0;
235int zfs_arc_shrink_shift = 0;
236int zfs_arc_p_min_shift = 0;
237int zfs_disable_dup_eviction = 0;
238uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
239u_int zfs_arc_free_target = 0;
240
241/* Absolute min for arc min / max is 16MB. */
242static uint64_t arc_abs_min = 16 << 20;
243
244static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
245static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
246static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
247static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
248
249#if defined(__FreeBSD__) && defined(_KERNEL)
250static void
251arc_free_target_init(void *unused __unused)
252{
253
254	zfs_arc_free_target = vm_pageout_wakeup_thresh;
255}
256SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
257    arc_free_target_init, NULL);
258
259TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
260TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
261TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
262SYSCTL_DECL(_vfs_zfs);
263SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
264    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
265SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
266    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
267SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
268    &zfs_arc_average_blocksize, 0,
269    "ARC average blocksize");
270SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
271    &arc_shrink_shift, 0,
272    "log2(fraction of arc to reclaim)");
273
274/*
275 * We don't have a tunable for arc_free_target due to the dependency on
276 * pagedaemon initialisation.
277 */
278SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
279    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
280    sysctl_vfs_zfs_arc_free_target, "IU",
281    "Desired number of free pages below which ARC triggers reclaim");
282
283static int
284sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
285{
286	u_int val;
287	int err;
288
289	val = zfs_arc_free_target;
290	err = sysctl_handle_int(oidp, &val, 0, req);
291	if (err != 0 || req->newptr == NULL)
292		return (err);
293
294	if (val < minfree)
295		return (EINVAL);
296	if (val > vm_cnt.v_page_count)
297		return (EINVAL);
298
299	zfs_arc_free_target = val;
300
301	return (0);
302}
303
304/*
305 * Must be declared here, before the definition of corresponding kstat
306 * macro which uses the same names will confuse the compiler.
307 */
308SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
309    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
310    sysctl_vfs_zfs_arc_meta_limit, "QU",
311    "ARC metadata limit");
312#endif
313
314/*
315 * Note that buffers can be in one of 6 states:
316 *	ARC_anon	- anonymous (discussed below)
317 *	ARC_mru		- recently used, currently cached
318 *	ARC_mru_ghost	- recentely used, no longer in cache
319 *	ARC_mfu		- frequently used, currently cached
320 *	ARC_mfu_ghost	- frequently used, no longer in cache
321 *	ARC_l2c_only	- exists in L2ARC but not other states
322 * When there are no active references to the buffer, they are
323 * are linked onto a list in one of these arc states.  These are
324 * the only buffers that can be evicted or deleted.  Within each
325 * state there are multiple lists, one for meta-data and one for
326 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
327 * etc.) is tracked separately so that it can be managed more
328 * explicitly: favored over data, limited explicitly.
329 *
330 * Anonymous buffers are buffers that are not associated with
331 * a DVA.  These are buffers that hold dirty block copies
332 * before they are written to stable storage.  By definition,
333 * they are "ref'd" and are considered part of arc_mru
334 * that cannot be freed.  Generally, they will aquire a DVA
335 * as they are written and migrate onto the arc_mru list.
336 *
337 * The ARC_l2c_only state is for buffers that are in the second
338 * level ARC but no longer in any of the ARC_m* lists.  The second
339 * level ARC itself may also contain buffers that are in any of
340 * the ARC_m* states - meaning that a buffer can exist in two
341 * places.  The reason for the ARC_l2c_only state is to keep the
342 * buffer header in the hash table, so that reads that hit the
343 * second level ARC benefit from these fast lookups.
344 */
345
346typedef struct arc_state {
347	/*
348	 * list of evictable buffers
349	 */
350	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
351	/*
352	 * total amount of evictable data in this state
353	 */
354	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
355	/*
356	 * total amount of data in this state; this includes: evictable,
357	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
358	 */
359	refcount_t arcs_size;
360} arc_state_t;
361
362/* The 6 states: */
363static arc_state_t ARC_anon;
364static arc_state_t ARC_mru;
365static arc_state_t ARC_mru_ghost;
366static arc_state_t ARC_mfu;
367static arc_state_t ARC_mfu_ghost;
368static arc_state_t ARC_l2c_only;
369
370typedef struct arc_stats {
371	kstat_named_t arcstat_hits;
372	kstat_named_t arcstat_misses;
373	kstat_named_t arcstat_demand_data_hits;
374	kstat_named_t arcstat_demand_data_misses;
375	kstat_named_t arcstat_demand_metadata_hits;
376	kstat_named_t arcstat_demand_metadata_misses;
377	kstat_named_t arcstat_prefetch_data_hits;
378	kstat_named_t arcstat_prefetch_data_misses;
379	kstat_named_t arcstat_prefetch_metadata_hits;
380	kstat_named_t arcstat_prefetch_metadata_misses;
381	kstat_named_t arcstat_mru_hits;
382	kstat_named_t arcstat_mru_ghost_hits;
383	kstat_named_t arcstat_mfu_hits;
384	kstat_named_t arcstat_mfu_ghost_hits;
385	kstat_named_t arcstat_allocated;
386	kstat_named_t arcstat_deleted;
387	/*
388	 * Number of buffers that could not be evicted because the hash lock
389	 * was held by another thread.  The lock may not necessarily be held
390	 * by something using the same buffer, since hash locks are shared
391	 * by multiple buffers.
392	 */
393	kstat_named_t arcstat_mutex_miss;
394	/*
395	 * Number of buffers skipped because they have I/O in progress, are
396	 * indrect prefetch buffers that have not lived long enough, or are
397	 * not from the spa we're trying to evict from.
398	 */
399	kstat_named_t arcstat_evict_skip;
400	/*
401	 * Number of times arc_evict_state() was unable to evict enough
402	 * buffers to reach it's target amount.
403	 */
404	kstat_named_t arcstat_evict_not_enough;
405	kstat_named_t arcstat_evict_l2_cached;
406	kstat_named_t arcstat_evict_l2_eligible;
407	kstat_named_t arcstat_evict_l2_ineligible;
408	kstat_named_t arcstat_evict_l2_skip;
409	kstat_named_t arcstat_hash_elements;
410	kstat_named_t arcstat_hash_elements_max;
411	kstat_named_t arcstat_hash_collisions;
412	kstat_named_t arcstat_hash_chains;
413	kstat_named_t arcstat_hash_chain_max;
414	kstat_named_t arcstat_p;
415	kstat_named_t arcstat_c;
416	kstat_named_t arcstat_c_min;
417	kstat_named_t arcstat_c_max;
418	kstat_named_t arcstat_size;
419	/*
420	 * Number of bytes consumed by internal ARC structures necessary
421	 * for tracking purposes; these structures are not actually
422	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
423	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
424	 * caches), and arc_buf_t structures (allocated via arc_buf_t
425	 * cache).
426	 */
427	kstat_named_t arcstat_hdr_size;
428	/*
429	 * Number of bytes consumed by ARC buffers of type equal to
430	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
431	 * on disk user data (e.g. plain file contents).
432	 */
433	kstat_named_t arcstat_data_size;
434	/*
435	 * Number of bytes consumed by ARC buffers of type equal to
436	 * ARC_BUFC_METADATA. This is generally consumed by buffers
437	 * backing on disk data that is used for internal ZFS
438	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
439	 */
440	kstat_named_t arcstat_metadata_size;
441	/*
442	 * Number of bytes consumed by various buffers and structures
443	 * not actually backed with ARC buffers. This includes bonus
444	 * buffers (allocated directly via zio_buf_* functions),
445	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
446	 * cache), and dnode_t structures (allocated via dnode_t cache).
447	 */
448	kstat_named_t arcstat_other_size;
449	/*
450	 * Total number of bytes consumed by ARC buffers residing in the
451	 * arc_anon state. This includes *all* buffers in the arc_anon
452	 * state; e.g. data, metadata, evictable, and unevictable buffers
453	 * are all included in this value.
454	 */
455	kstat_named_t arcstat_anon_size;
456	/*
457	 * Number of bytes consumed by ARC buffers that meet the
458	 * following criteria: backing buffers of type ARC_BUFC_DATA,
459	 * residing in the arc_anon state, and are eligible for eviction
460	 * (e.g. have no outstanding holds on the buffer).
461	 */
462	kstat_named_t arcstat_anon_evictable_data;
463	/*
464	 * Number of bytes consumed by ARC buffers that meet the
465	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
466	 * residing in the arc_anon state, and are eligible for eviction
467	 * (e.g. have no outstanding holds on the buffer).
468	 */
469	kstat_named_t arcstat_anon_evictable_metadata;
470	/*
471	 * Total number of bytes consumed by ARC buffers residing in the
472	 * arc_mru state. This includes *all* buffers in the arc_mru
473	 * state; e.g. data, metadata, evictable, and unevictable buffers
474	 * are all included in this value.
475	 */
476	kstat_named_t arcstat_mru_size;
477	/*
478	 * Number of bytes consumed by ARC buffers that meet the
479	 * following criteria: backing buffers of type ARC_BUFC_DATA,
480	 * residing in the arc_mru state, and are eligible for eviction
481	 * (e.g. have no outstanding holds on the buffer).
482	 */
483	kstat_named_t arcstat_mru_evictable_data;
484	/*
485	 * Number of bytes consumed by ARC buffers that meet the
486	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
487	 * residing in the arc_mru state, and are eligible for eviction
488	 * (e.g. have no outstanding holds on the buffer).
489	 */
490	kstat_named_t arcstat_mru_evictable_metadata;
491	/*
492	 * Total number of bytes that *would have been* consumed by ARC
493	 * buffers in the arc_mru_ghost state. The key thing to note
494	 * here, is the fact that this size doesn't actually indicate
495	 * RAM consumption. The ghost lists only consist of headers and
496	 * don't actually have ARC buffers linked off of these headers.
497	 * Thus, *if* the headers had associated ARC buffers, these
498	 * buffers *would have* consumed this number of bytes.
499	 */
500	kstat_named_t arcstat_mru_ghost_size;
501	/*
502	 * Number of bytes that *would have been* consumed by ARC
503	 * buffers that are eligible for eviction, of type
504	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
505	 */
506	kstat_named_t arcstat_mru_ghost_evictable_data;
507	/*
508	 * Number of bytes that *would have been* consumed by ARC
509	 * buffers that are eligible for eviction, of type
510	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
511	 */
512	kstat_named_t arcstat_mru_ghost_evictable_metadata;
513	/*
514	 * Total number of bytes consumed by ARC buffers residing in the
515	 * arc_mfu state. This includes *all* buffers in the arc_mfu
516	 * state; e.g. data, metadata, evictable, and unevictable buffers
517	 * are all included in this value.
518	 */
519	kstat_named_t arcstat_mfu_size;
520	/*
521	 * Number of bytes consumed by ARC buffers that are eligible for
522	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
523	 * state.
524	 */
525	kstat_named_t arcstat_mfu_evictable_data;
526	/*
527	 * Number of bytes consumed by ARC buffers that are eligible for
528	 * eviction, of type ARC_BUFC_METADATA, and reside in the
529	 * arc_mfu state.
530	 */
531	kstat_named_t arcstat_mfu_evictable_metadata;
532	/*
533	 * Total number of bytes that *would have been* consumed by ARC
534	 * buffers in the arc_mfu_ghost state. See the comment above
535	 * arcstat_mru_ghost_size for more details.
536	 */
537	kstat_named_t arcstat_mfu_ghost_size;
538	/*
539	 * Number of bytes that *would have been* consumed by ARC
540	 * buffers that are eligible for eviction, of type
541	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
542	 */
543	kstat_named_t arcstat_mfu_ghost_evictable_data;
544	/*
545	 * Number of bytes that *would have been* consumed by ARC
546	 * buffers that are eligible for eviction, of type
547	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
548	 */
549	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
550	kstat_named_t arcstat_l2_hits;
551	kstat_named_t arcstat_l2_misses;
552	kstat_named_t arcstat_l2_feeds;
553	kstat_named_t arcstat_l2_rw_clash;
554	kstat_named_t arcstat_l2_read_bytes;
555	kstat_named_t arcstat_l2_write_bytes;
556	kstat_named_t arcstat_l2_writes_sent;
557	kstat_named_t arcstat_l2_writes_done;
558	kstat_named_t arcstat_l2_writes_error;
559	kstat_named_t arcstat_l2_writes_lock_retry;
560	kstat_named_t arcstat_l2_evict_lock_retry;
561	kstat_named_t arcstat_l2_evict_reading;
562	kstat_named_t arcstat_l2_evict_l1cached;
563	kstat_named_t arcstat_l2_free_on_write;
564	kstat_named_t arcstat_l2_cdata_free_on_write;
565	kstat_named_t arcstat_l2_abort_lowmem;
566	kstat_named_t arcstat_l2_cksum_bad;
567	kstat_named_t arcstat_l2_io_error;
568	kstat_named_t arcstat_l2_size;
569	kstat_named_t arcstat_l2_asize;
570	kstat_named_t arcstat_l2_hdr_size;
571	kstat_named_t arcstat_l2_compress_successes;
572	kstat_named_t arcstat_l2_compress_zeros;
573	kstat_named_t arcstat_l2_compress_failures;
574	kstat_named_t arcstat_l2_padding_needed;
575	kstat_named_t arcstat_l2_write_trylock_fail;
576	kstat_named_t arcstat_l2_write_passed_headroom;
577	kstat_named_t arcstat_l2_write_spa_mismatch;
578	kstat_named_t arcstat_l2_write_in_l2;
579	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
580	kstat_named_t arcstat_l2_write_not_cacheable;
581	kstat_named_t arcstat_l2_write_full;
582	kstat_named_t arcstat_l2_write_buffer_iter;
583	kstat_named_t arcstat_l2_write_pios;
584	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
585	kstat_named_t arcstat_l2_write_buffer_list_iter;
586	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
587	kstat_named_t arcstat_memory_throttle_count;
588	kstat_named_t arcstat_duplicate_buffers;
589	kstat_named_t arcstat_duplicate_buffers_size;
590	kstat_named_t arcstat_duplicate_reads;
591	kstat_named_t arcstat_meta_used;
592	kstat_named_t arcstat_meta_limit;
593	kstat_named_t arcstat_meta_max;
594	kstat_named_t arcstat_meta_min;
595	kstat_named_t arcstat_sync_wait_for_async;
596	kstat_named_t arcstat_demand_hit_predictive_prefetch;
597} arc_stats_t;
598
599static arc_stats_t arc_stats = {
600	{ "hits",			KSTAT_DATA_UINT64 },
601	{ "misses",			KSTAT_DATA_UINT64 },
602	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
603	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
604	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
605	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
606	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
607	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
608	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
609	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
610	{ "mru_hits",			KSTAT_DATA_UINT64 },
611	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
612	{ "mfu_hits",			KSTAT_DATA_UINT64 },
613	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
614	{ "allocated",			KSTAT_DATA_UINT64 },
615	{ "deleted",			KSTAT_DATA_UINT64 },
616	{ "mutex_miss",			KSTAT_DATA_UINT64 },
617	{ "evict_skip",			KSTAT_DATA_UINT64 },
618	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
619	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
620	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
621	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
622	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
623	{ "hash_elements",		KSTAT_DATA_UINT64 },
624	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
625	{ "hash_collisions",		KSTAT_DATA_UINT64 },
626	{ "hash_chains",		KSTAT_DATA_UINT64 },
627	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
628	{ "p",				KSTAT_DATA_UINT64 },
629	{ "c",				KSTAT_DATA_UINT64 },
630	{ "c_min",			KSTAT_DATA_UINT64 },
631	{ "c_max",			KSTAT_DATA_UINT64 },
632	{ "size",			KSTAT_DATA_UINT64 },
633	{ "hdr_size",			KSTAT_DATA_UINT64 },
634	{ "data_size",			KSTAT_DATA_UINT64 },
635	{ "metadata_size",		KSTAT_DATA_UINT64 },
636	{ "other_size",			KSTAT_DATA_UINT64 },
637	{ "anon_size",			KSTAT_DATA_UINT64 },
638	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
639	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
640	{ "mru_size",			KSTAT_DATA_UINT64 },
641	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
642	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
643	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
644	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
645	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
646	{ "mfu_size",			KSTAT_DATA_UINT64 },
647	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
648	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
649	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
650	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
651	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
652	{ "l2_hits",			KSTAT_DATA_UINT64 },
653	{ "l2_misses",			KSTAT_DATA_UINT64 },
654	{ "l2_feeds",			KSTAT_DATA_UINT64 },
655	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
656	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
657	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
658	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
659	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
660	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
661	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
662	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
663	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
664	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
665	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
666	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
667	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
668	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
669	{ "l2_io_error",		KSTAT_DATA_UINT64 },
670	{ "l2_size",			KSTAT_DATA_UINT64 },
671	{ "l2_asize",			KSTAT_DATA_UINT64 },
672	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
673	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
674	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
675	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
676	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
677	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
678	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
679	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
680	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
681	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
682	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
683	{ "l2_write_full",		KSTAT_DATA_UINT64 },
684	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
685	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
686	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
687	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
688	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
689	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
690	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
691	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
692	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
693	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
694	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
695	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
696	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
697	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
698	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
699};
700
701#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
702
703#define	ARCSTAT_INCR(stat, val) \
704	atomic_add_64(&arc_stats.stat.value.ui64, (val))
705
706#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
707#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
708
709#define	ARCSTAT_MAX(stat, val) {					\
710	uint64_t m;							\
711	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
712	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
713		continue;						\
714}
715
716#define	ARCSTAT_MAXSTAT(stat) \
717	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
718
719/*
720 * We define a macro to allow ARC hits/misses to be easily broken down by
721 * two separate conditions, giving a total of four different subtypes for
722 * each of hits and misses (so eight statistics total).
723 */
724#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
725	if (cond1) {							\
726		if (cond2) {						\
727			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
728		} else {						\
729			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
730		}							\
731	} else {							\
732		if (cond2) {						\
733			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
734		} else {						\
735			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
736		}							\
737	}
738
739kstat_t			*arc_ksp;
740static arc_state_t	*arc_anon;
741static arc_state_t	*arc_mru;
742static arc_state_t	*arc_mru_ghost;
743static arc_state_t	*arc_mfu;
744static arc_state_t	*arc_mfu_ghost;
745static arc_state_t	*arc_l2c_only;
746
747/*
748 * There are several ARC variables that are critical to export as kstats --
749 * but we don't want to have to grovel around in the kstat whenever we wish to
750 * manipulate them.  For these variables, we therefore define them to be in
751 * terms of the statistic variable.  This assures that we are not introducing
752 * the possibility of inconsistency by having shadow copies of the variables,
753 * while still allowing the code to be readable.
754 */
755#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
756#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
757#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
758#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
759#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
760#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
761#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
762#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
763#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
764
765#define	L2ARC_IS_VALID_COMPRESS(_c_) \
766	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
767
768static int		arc_no_grow;	/* Don't try to grow cache size */
769static uint64_t		arc_tempreserve;
770static uint64_t		arc_loaned_bytes;
771
772typedef struct arc_callback arc_callback_t;
773
774struct arc_callback {
775	void			*acb_private;
776	arc_done_func_t		*acb_done;
777	arc_buf_t		*acb_buf;
778	zio_t			*acb_zio_dummy;
779	arc_callback_t		*acb_next;
780};
781
782typedef struct arc_write_callback arc_write_callback_t;
783
784struct arc_write_callback {
785	void		*awcb_private;
786	arc_done_func_t	*awcb_ready;
787	arc_done_func_t	*awcb_children_ready;
788	arc_done_func_t	*awcb_physdone;
789	arc_done_func_t	*awcb_done;
790	arc_buf_t	*awcb_buf;
791};
792
793/*
794 * ARC buffers are separated into multiple structs as a memory saving measure:
795 *   - Common fields struct, always defined, and embedded within it:
796 *       - L2-only fields, always allocated but undefined when not in L2ARC
797 *       - L1-only fields, only allocated when in L1ARC
798 *
799 *           Buffer in L1                     Buffer only in L2
800 *    +------------------------+          +------------------------+
801 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
802 *    |                        |          |                        |
803 *    |                        |          |                        |
804 *    |                        |          |                        |
805 *    +------------------------+          +------------------------+
806 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
807 *    | (undefined if L1-only) |          |                        |
808 *    +------------------------+          +------------------------+
809 *    | l1arc_buf_hdr_t        |
810 *    |                        |
811 *    |                        |
812 *    |                        |
813 *    |                        |
814 *    +------------------------+
815 *
816 * Because it's possible for the L2ARC to become extremely large, we can wind
817 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
818 * is minimized by only allocating the fields necessary for an L1-cached buffer
819 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
820 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
821 * words in pointers. arc_hdr_realloc() is used to switch a header between
822 * these two allocation states.
823 */
824typedef struct l1arc_buf_hdr {
825	kmutex_t		b_freeze_lock;
826#ifdef ZFS_DEBUG
827	/*
828	 * used for debugging wtih kmem_flags - by allocating and freeing
829	 * b_thawed when the buffer is thawed, we get a record of the stack
830	 * trace that thawed it.
831	 */
832	void			*b_thawed;
833#endif
834
835	arc_buf_t		*b_buf;
836	uint32_t		b_datacnt;
837	/* for waiting on writes to complete */
838	kcondvar_t		b_cv;
839
840	/* protected by arc state mutex */
841	arc_state_t		*b_state;
842	multilist_node_t	b_arc_node;
843
844	/* updated atomically */
845	clock_t			b_arc_access;
846
847	/* self protecting */
848	refcount_t		b_refcnt;
849
850	arc_callback_t		*b_acb;
851	/* temporary buffer holder for in-flight compressed or padded data */
852	void			*b_tmp_cdata;
853} l1arc_buf_hdr_t;
854
855typedef struct l2arc_dev l2arc_dev_t;
856
857typedef struct l2arc_buf_hdr {
858	/* protected by arc_buf_hdr mutex */
859	l2arc_dev_t		*b_dev;		/* L2ARC device */
860	uint64_t		b_daddr;	/* disk address, offset byte */
861	/* real alloc'd buffer size depending on b_compress applied */
862	int32_t			b_asize;
863	uint8_t			b_compress;
864
865	list_node_t		b_l2node;
866} l2arc_buf_hdr_t;
867
868struct arc_buf_hdr {
869	/* protected by hash lock */
870	dva_t			b_dva;
871	uint64_t		b_birth;
872	/*
873	 * Even though this checksum is only set/verified when a buffer is in
874	 * the L1 cache, it needs to be in the set of common fields because it
875	 * must be preserved from the time before a buffer is written out to
876	 * L2ARC until after it is read back in.
877	 */
878	zio_cksum_t		*b_freeze_cksum;
879
880	arc_buf_hdr_t		*b_hash_next;
881	arc_flags_t		b_flags;
882
883	/* immutable */
884	int32_t			b_size;
885	uint64_t		b_spa;
886
887	/* L2ARC fields. Undefined when not in L2ARC. */
888	l2arc_buf_hdr_t		b_l2hdr;
889	/* L1ARC fields. Undefined when in l2arc_only state */
890	l1arc_buf_hdr_t		b_l1hdr;
891};
892
893#if defined(__FreeBSD__) && defined(_KERNEL)
894static int
895sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
896{
897	uint64_t val;
898	int err;
899
900	val = arc_meta_limit;
901	err = sysctl_handle_64(oidp, &val, 0, req);
902	if (err != 0 || req->newptr == NULL)
903		return (err);
904
905        if (val <= 0 || val > arc_c_max)
906		return (EINVAL);
907
908	arc_meta_limit = val;
909	return (0);
910}
911
912static int
913sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
914{
915	uint64_t val;
916	int err;
917
918	val = zfs_arc_max;
919	err = sysctl_handle_64(oidp, &val, 0, req);
920	if (err != 0 || req->newptr == NULL)
921		return (err);
922
923	if (zfs_arc_max == 0) {
924		/* Loader tunable so blindly set */
925		zfs_arc_max = val;
926		return (0);
927	}
928
929	if (val < arc_abs_min || val > kmem_size())
930		return (EINVAL);
931	if (val < arc_c_min)
932		return (EINVAL);
933	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
934		return (EINVAL);
935
936	arc_c_max = val;
937
938	arc_c = arc_c_max;
939        arc_p = (arc_c >> 1);
940
941	if (zfs_arc_meta_limit == 0) {
942		/* limit meta-data to 1/4 of the arc capacity */
943		arc_meta_limit = arc_c_max / 4;
944	}
945
946	/* if kmem_flags are set, lets try to use less memory */
947	if (kmem_debugging())
948		arc_c = arc_c / 2;
949
950	zfs_arc_max = arc_c;
951
952	return (0);
953}
954
955static int
956sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
957{
958	uint64_t val;
959	int err;
960
961	val = zfs_arc_min;
962	err = sysctl_handle_64(oidp, &val, 0, req);
963	if (err != 0 || req->newptr == NULL)
964		return (err);
965
966	if (zfs_arc_min == 0) {
967		/* Loader tunable so blindly set */
968		zfs_arc_min = val;
969		return (0);
970	}
971
972	if (val < arc_abs_min || val > arc_c_max)
973		return (EINVAL);
974
975	arc_c_min = val;
976
977	if (zfs_arc_meta_min == 0)
978                arc_meta_min = arc_c_min / 2;
979
980	if (arc_c < arc_c_min)
981                arc_c = arc_c_min;
982
983	zfs_arc_min = arc_c_min;
984
985	return (0);
986}
987#endif
988
989static arc_buf_t *arc_eviction_list;
990static arc_buf_hdr_t arc_eviction_hdr;
991
992#define	GHOST_STATE(state)	\
993	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
994	(state) == arc_l2c_only)
995
996#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
997#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
998#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
999#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1000#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
1001#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
1002
1003#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1004#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
1005#define	HDR_L2_READING(hdr)	\
1006	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1007	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1008#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1009#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1010#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1011
1012#define	HDR_ISTYPE_METADATA(hdr)	\
1013	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1014#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1015
1016#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1017#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1018
1019/*
1020 * Other sizes
1021 */
1022
1023#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1024#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1025
1026/*
1027 * Hash table routines
1028 */
1029
1030#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1031
1032struct ht_lock {
1033	kmutex_t	ht_lock;
1034#ifdef _KERNEL
1035	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1036#endif
1037};
1038
1039#define	BUF_LOCKS 256
1040typedef struct buf_hash_table {
1041	uint64_t ht_mask;
1042	arc_buf_hdr_t **ht_table;
1043	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1044} buf_hash_table_t;
1045
1046static buf_hash_table_t buf_hash_table;
1047
1048#define	BUF_HASH_INDEX(spa, dva, birth) \
1049	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1050#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1051#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1052#define	HDR_LOCK(hdr) \
1053	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1054
1055uint64_t zfs_crc64_table[256];
1056
1057/*
1058 * Level 2 ARC
1059 */
1060
1061#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1062#define	L2ARC_HEADROOM		2			/* num of writes */
1063/*
1064 * If we discover during ARC scan any buffers to be compressed, we boost
1065 * our headroom for the next scanning cycle by this percentage multiple.
1066 */
1067#define	L2ARC_HEADROOM_BOOST	200
1068#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1069#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1070
1071/*
1072 * Used to distinguish headers that are being process by
1073 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
1074 * address. This can happen when the header is added to the l2arc's list
1075 * of buffers to write in the first stage of l2arc_write_buffers(), but
1076 * has not yet been written out which happens in the second stage of
1077 * l2arc_write_buffers().
1078 */
1079#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
1080
1081#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1082#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1083
1084/* L2ARC Performance Tunables */
1085uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1086uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1087uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1088uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1089uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1090uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1091boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1092boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1093boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1094
1095SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1096    &l2arc_write_max, 0, "max write size");
1097SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1098    &l2arc_write_boost, 0, "extra write during warmup");
1099SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1100    &l2arc_headroom, 0, "number of dev writes");
1101SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1102    &l2arc_feed_secs, 0, "interval seconds");
1103SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1104    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1105
1106SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1107    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1108SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1109    &l2arc_feed_again, 0, "turbo warmup");
1110SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1111    &l2arc_norw, 0, "no reads during writes");
1112
1113SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1114    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1115SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1116    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1117SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1118    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1119
1120SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1121    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1122SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1123    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1124SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1125    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1126
1127SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1128    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1129SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1130    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1131    "size of metadata in mru ghost state");
1132SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1133    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1134    "size of data in mru ghost state");
1135
1136SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1137    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1138SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1139    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1140SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1141    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1142
1143SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1144    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1145SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1146    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1147    "size of metadata in mfu ghost state");
1148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1149    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1150    "size of data in mfu ghost state");
1151
1152SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1153    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1154
1155/*
1156 * L2ARC Internals
1157 */
1158struct l2arc_dev {
1159	vdev_t			*l2ad_vdev;	/* vdev */
1160	spa_t			*l2ad_spa;	/* spa */
1161	uint64_t		l2ad_hand;	/* next write location */
1162	uint64_t		l2ad_start;	/* first addr on device */
1163	uint64_t		l2ad_end;	/* last addr on device */
1164	boolean_t		l2ad_first;	/* first sweep through */
1165	boolean_t		l2ad_writing;	/* currently writing */
1166	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1167	list_t			l2ad_buflist;	/* buffer list */
1168	list_node_t		l2ad_node;	/* device list node */
1169	refcount_t		l2ad_alloc;	/* allocated bytes */
1170};
1171
1172static list_t L2ARC_dev_list;			/* device list */
1173static list_t *l2arc_dev_list;			/* device list pointer */
1174static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1175static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1176static list_t L2ARC_free_on_write;		/* free after write buf list */
1177static list_t *l2arc_free_on_write;		/* free after write list ptr */
1178static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1179static uint64_t l2arc_ndev;			/* number of devices */
1180
1181typedef struct l2arc_read_callback {
1182	arc_buf_t		*l2rcb_buf;		/* read buffer */
1183	spa_t			*l2rcb_spa;		/* spa */
1184	blkptr_t		l2rcb_bp;		/* original blkptr */
1185	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1186	int			l2rcb_flags;		/* original flags */
1187	enum zio_compress	l2rcb_compress;		/* applied compress */
1188	void			*l2rcb_data;		/* temporary buffer */
1189} l2arc_read_callback_t;
1190
1191typedef struct l2arc_write_callback {
1192	l2arc_dev_t	*l2wcb_dev;		/* device info */
1193	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1194} l2arc_write_callback_t;
1195
1196typedef struct l2arc_data_free {
1197	/* protected by l2arc_free_on_write_mtx */
1198	void		*l2df_data;
1199	size_t		l2df_size;
1200	void		(*l2df_func)(void *, size_t);
1201	list_node_t	l2df_list_node;
1202} l2arc_data_free_t;
1203
1204static kmutex_t l2arc_feed_thr_lock;
1205static kcondvar_t l2arc_feed_thr_cv;
1206static uint8_t l2arc_thread_exit;
1207
1208static void arc_get_data_buf(arc_buf_t *);
1209static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1210static boolean_t arc_is_overflowing();
1211static void arc_buf_watch(arc_buf_t *);
1212
1213static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1214static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1215
1216static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1217static void l2arc_read_done(zio_t *);
1218
1219static boolean_t l2arc_transform_buf(arc_buf_hdr_t *, boolean_t);
1220static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1221static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1222
1223static void
1224l2arc_trim(const arc_buf_hdr_t *hdr)
1225{
1226	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1227
1228	ASSERT(HDR_HAS_L2HDR(hdr));
1229	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1230
1231	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1232		return;
1233	if (hdr->b_l2hdr.b_asize != 0) {
1234		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1235		    hdr->b_l2hdr.b_asize, 0);
1236	} else {
1237		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1238	}
1239}
1240
1241static uint64_t
1242buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1243{
1244	uint8_t *vdva = (uint8_t *)dva;
1245	uint64_t crc = -1ULL;
1246	int i;
1247
1248	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1249
1250	for (i = 0; i < sizeof (dva_t); i++)
1251		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1252
1253	crc ^= (spa>>8) ^ birth;
1254
1255	return (crc);
1256}
1257
1258#define	BUF_EMPTY(buf)						\
1259	((buf)->b_dva.dva_word[0] == 0 &&			\
1260	(buf)->b_dva.dva_word[1] == 0)
1261
1262#define	BUF_EQUAL(spa, dva, birth, buf)				\
1263	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1264	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1265	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1266
1267static void
1268buf_discard_identity(arc_buf_hdr_t *hdr)
1269{
1270	hdr->b_dva.dva_word[0] = 0;
1271	hdr->b_dva.dva_word[1] = 0;
1272	hdr->b_birth = 0;
1273}
1274
1275static arc_buf_hdr_t *
1276buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1277{
1278	const dva_t *dva = BP_IDENTITY(bp);
1279	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1280	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1281	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1282	arc_buf_hdr_t *hdr;
1283
1284	mutex_enter(hash_lock);
1285	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1286	    hdr = hdr->b_hash_next) {
1287		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1288			*lockp = hash_lock;
1289			return (hdr);
1290		}
1291	}
1292	mutex_exit(hash_lock);
1293	*lockp = NULL;
1294	return (NULL);
1295}
1296
1297/*
1298 * Insert an entry into the hash table.  If there is already an element
1299 * equal to elem in the hash table, then the already existing element
1300 * will be returned and the new element will not be inserted.
1301 * Otherwise returns NULL.
1302 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1303 */
1304static arc_buf_hdr_t *
1305buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1306{
1307	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1308	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1309	arc_buf_hdr_t *fhdr;
1310	uint32_t i;
1311
1312	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1313	ASSERT(hdr->b_birth != 0);
1314	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1315
1316	if (lockp != NULL) {
1317		*lockp = hash_lock;
1318		mutex_enter(hash_lock);
1319	} else {
1320		ASSERT(MUTEX_HELD(hash_lock));
1321	}
1322
1323	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1324	    fhdr = fhdr->b_hash_next, i++) {
1325		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1326			return (fhdr);
1327	}
1328
1329	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1330	buf_hash_table.ht_table[idx] = hdr;
1331	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1332
1333	/* collect some hash table performance data */
1334	if (i > 0) {
1335		ARCSTAT_BUMP(arcstat_hash_collisions);
1336		if (i == 1)
1337			ARCSTAT_BUMP(arcstat_hash_chains);
1338
1339		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1340	}
1341
1342	ARCSTAT_BUMP(arcstat_hash_elements);
1343	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1344
1345	return (NULL);
1346}
1347
1348static void
1349buf_hash_remove(arc_buf_hdr_t *hdr)
1350{
1351	arc_buf_hdr_t *fhdr, **hdrp;
1352	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1353
1354	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1355	ASSERT(HDR_IN_HASH_TABLE(hdr));
1356
1357	hdrp = &buf_hash_table.ht_table[idx];
1358	while ((fhdr = *hdrp) != hdr) {
1359		ASSERT(fhdr != NULL);
1360		hdrp = &fhdr->b_hash_next;
1361	}
1362	*hdrp = hdr->b_hash_next;
1363	hdr->b_hash_next = NULL;
1364	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1365
1366	/* collect some hash table performance data */
1367	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1368
1369	if (buf_hash_table.ht_table[idx] &&
1370	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1371		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1372}
1373
1374/*
1375 * Global data structures and functions for the buf kmem cache.
1376 */
1377static kmem_cache_t *hdr_full_cache;
1378static kmem_cache_t *hdr_l2only_cache;
1379static kmem_cache_t *buf_cache;
1380
1381static void
1382buf_fini(void)
1383{
1384	int i;
1385
1386	kmem_free(buf_hash_table.ht_table,
1387	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1388	for (i = 0; i < BUF_LOCKS; i++)
1389		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1390	kmem_cache_destroy(hdr_full_cache);
1391	kmem_cache_destroy(hdr_l2only_cache);
1392	kmem_cache_destroy(buf_cache);
1393}
1394
1395/*
1396 * Constructor callback - called when the cache is empty
1397 * and a new buf is requested.
1398 */
1399/* ARGSUSED */
1400static int
1401hdr_full_cons(void *vbuf, void *unused, int kmflag)
1402{
1403	arc_buf_hdr_t *hdr = vbuf;
1404
1405	bzero(hdr, HDR_FULL_SIZE);
1406	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1407	refcount_create(&hdr->b_l1hdr.b_refcnt);
1408	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1409	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1410	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1411
1412	return (0);
1413}
1414
1415/* ARGSUSED */
1416static int
1417hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1418{
1419	arc_buf_hdr_t *hdr = vbuf;
1420
1421	bzero(hdr, HDR_L2ONLY_SIZE);
1422	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1423
1424	return (0);
1425}
1426
1427/* ARGSUSED */
1428static int
1429buf_cons(void *vbuf, void *unused, int kmflag)
1430{
1431	arc_buf_t *buf = vbuf;
1432
1433	bzero(buf, sizeof (arc_buf_t));
1434	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1435	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1436
1437	return (0);
1438}
1439
1440/*
1441 * Destructor callback - called when a cached buf is
1442 * no longer required.
1443 */
1444/* ARGSUSED */
1445static void
1446hdr_full_dest(void *vbuf, void *unused)
1447{
1448	arc_buf_hdr_t *hdr = vbuf;
1449
1450	ASSERT(BUF_EMPTY(hdr));
1451	cv_destroy(&hdr->b_l1hdr.b_cv);
1452	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1453	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1454	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1455	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1456}
1457
1458/* ARGSUSED */
1459static void
1460hdr_l2only_dest(void *vbuf, void *unused)
1461{
1462	arc_buf_hdr_t *hdr = vbuf;
1463
1464	ASSERT(BUF_EMPTY(hdr));
1465	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1466}
1467
1468/* ARGSUSED */
1469static void
1470buf_dest(void *vbuf, void *unused)
1471{
1472	arc_buf_t *buf = vbuf;
1473
1474	mutex_destroy(&buf->b_evict_lock);
1475	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1476}
1477
1478/*
1479 * Reclaim callback -- invoked when memory is low.
1480 */
1481/* ARGSUSED */
1482static void
1483hdr_recl(void *unused)
1484{
1485	dprintf("hdr_recl called\n");
1486	/*
1487	 * umem calls the reclaim func when we destroy the buf cache,
1488	 * which is after we do arc_fini().
1489	 */
1490	if (!arc_dead)
1491		cv_signal(&arc_reclaim_thread_cv);
1492}
1493
1494static void
1495buf_init(void)
1496{
1497	uint64_t *ct;
1498	uint64_t hsize = 1ULL << 12;
1499	int i, j;
1500
1501	/*
1502	 * The hash table is big enough to fill all of physical memory
1503	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1504	 * By default, the table will take up
1505	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1506	 */
1507	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1508		hsize <<= 1;
1509retry:
1510	buf_hash_table.ht_mask = hsize - 1;
1511	buf_hash_table.ht_table =
1512	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1513	if (buf_hash_table.ht_table == NULL) {
1514		ASSERT(hsize > (1ULL << 8));
1515		hsize >>= 1;
1516		goto retry;
1517	}
1518
1519	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1520	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1521	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1522	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1523	    NULL, NULL, 0);
1524	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1525	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1526
1527	for (i = 0; i < 256; i++)
1528		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1529			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1530
1531	for (i = 0; i < BUF_LOCKS; i++) {
1532		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1533		    NULL, MUTEX_DEFAULT, NULL);
1534	}
1535}
1536
1537/*
1538 * Transition between the two allocation states for the arc_buf_hdr struct.
1539 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1540 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1541 * version is used when a cache buffer is only in the L2ARC in order to reduce
1542 * memory usage.
1543 */
1544static arc_buf_hdr_t *
1545arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1546{
1547	ASSERT(HDR_HAS_L2HDR(hdr));
1548
1549	arc_buf_hdr_t *nhdr;
1550	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1551
1552	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1553	    (old == hdr_l2only_cache && new == hdr_full_cache));
1554
1555	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1556
1557	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1558	buf_hash_remove(hdr);
1559
1560	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1561
1562	if (new == hdr_full_cache) {
1563		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1564		/*
1565		 * arc_access and arc_change_state need to be aware that a
1566		 * header has just come out of L2ARC, so we set its state to
1567		 * l2c_only even though it's about to change.
1568		 */
1569		nhdr->b_l1hdr.b_state = arc_l2c_only;
1570
1571		/* Verify previous threads set to NULL before freeing */
1572		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1573	} else {
1574		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1575		ASSERT0(hdr->b_l1hdr.b_datacnt);
1576
1577		/*
1578		 * If we've reached here, We must have been called from
1579		 * arc_evict_hdr(), as such we should have already been
1580		 * removed from any ghost list we were previously on
1581		 * (which protects us from racing with arc_evict_state),
1582		 * thus no locking is needed during this check.
1583		 */
1584		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1585
1586		/*
1587		 * A buffer must not be moved into the arc_l2c_only
1588		 * state if it's not finished being written out to the
1589		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1590		 * might try to be accessed, even though it was removed.
1591		 */
1592		VERIFY(!HDR_L2_WRITING(hdr));
1593		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1594
1595#ifdef ZFS_DEBUG
1596		if (hdr->b_l1hdr.b_thawed != NULL) {
1597			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1598			hdr->b_l1hdr.b_thawed = NULL;
1599		}
1600#endif
1601
1602		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1603	}
1604	/*
1605	 * The header has been reallocated so we need to re-insert it into any
1606	 * lists it was on.
1607	 */
1608	(void) buf_hash_insert(nhdr, NULL);
1609
1610	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1611
1612	mutex_enter(&dev->l2ad_mtx);
1613
1614	/*
1615	 * We must place the realloc'ed header back into the list at
1616	 * the same spot. Otherwise, if it's placed earlier in the list,
1617	 * l2arc_write_buffers() could find it during the function's
1618	 * write phase, and try to write it out to the l2arc.
1619	 */
1620	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1621	list_remove(&dev->l2ad_buflist, hdr);
1622
1623	mutex_exit(&dev->l2ad_mtx);
1624
1625	/*
1626	 * Since we're using the pointer address as the tag when
1627	 * incrementing and decrementing the l2ad_alloc refcount, we
1628	 * must remove the old pointer (that we're about to destroy) and
1629	 * add the new pointer to the refcount. Otherwise we'd remove
1630	 * the wrong pointer address when calling arc_hdr_destroy() later.
1631	 */
1632
1633	(void) refcount_remove_many(&dev->l2ad_alloc,
1634	    hdr->b_l2hdr.b_asize, hdr);
1635
1636	(void) refcount_add_many(&dev->l2ad_alloc,
1637	    nhdr->b_l2hdr.b_asize, nhdr);
1638
1639	buf_discard_identity(hdr);
1640	hdr->b_freeze_cksum = NULL;
1641	kmem_cache_free(old, hdr);
1642
1643	return (nhdr);
1644}
1645
1646
1647#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1648
1649static void
1650arc_cksum_verify(arc_buf_t *buf)
1651{
1652	zio_cksum_t zc;
1653
1654	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1655		return;
1656
1657	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1658	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1659		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1660		return;
1661	}
1662	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1663	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1664		panic("buffer modified while frozen!");
1665	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1666}
1667
1668static int
1669arc_cksum_equal(arc_buf_t *buf)
1670{
1671	zio_cksum_t zc;
1672	int equal;
1673
1674	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1676	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1677	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1678
1679	return (equal);
1680}
1681
1682static void
1683arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1684{
1685	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1686		return;
1687
1688	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1689	if (buf->b_hdr->b_freeze_cksum != NULL) {
1690		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1691		return;
1692	}
1693	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1694	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1695	    NULL, buf->b_hdr->b_freeze_cksum);
1696	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1697#ifdef illumos
1698	arc_buf_watch(buf);
1699#endif
1700}
1701
1702#ifdef illumos
1703#ifndef _KERNEL
1704typedef struct procctl {
1705	long cmd;
1706	prwatch_t prwatch;
1707} procctl_t;
1708#endif
1709
1710/* ARGSUSED */
1711static void
1712arc_buf_unwatch(arc_buf_t *buf)
1713{
1714#ifndef _KERNEL
1715	if (arc_watch) {
1716		int result;
1717		procctl_t ctl;
1718		ctl.cmd = PCWATCH;
1719		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1720		ctl.prwatch.pr_size = 0;
1721		ctl.prwatch.pr_wflags = 0;
1722		result = write(arc_procfd, &ctl, sizeof (ctl));
1723		ASSERT3U(result, ==, sizeof (ctl));
1724	}
1725#endif
1726}
1727
1728/* ARGSUSED */
1729static void
1730arc_buf_watch(arc_buf_t *buf)
1731{
1732#ifndef _KERNEL
1733	if (arc_watch) {
1734		int result;
1735		procctl_t ctl;
1736		ctl.cmd = PCWATCH;
1737		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1738		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1739		ctl.prwatch.pr_wflags = WA_WRITE;
1740		result = write(arc_procfd, &ctl, sizeof (ctl));
1741		ASSERT3U(result, ==, sizeof (ctl));
1742	}
1743#endif
1744}
1745#endif /* illumos */
1746
1747static arc_buf_contents_t
1748arc_buf_type(arc_buf_hdr_t *hdr)
1749{
1750	if (HDR_ISTYPE_METADATA(hdr)) {
1751		return (ARC_BUFC_METADATA);
1752	} else {
1753		return (ARC_BUFC_DATA);
1754	}
1755}
1756
1757static uint32_t
1758arc_bufc_to_flags(arc_buf_contents_t type)
1759{
1760	switch (type) {
1761	case ARC_BUFC_DATA:
1762		/* metadata field is 0 if buffer contains normal data */
1763		return (0);
1764	case ARC_BUFC_METADATA:
1765		return (ARC_FLAG_BUFC_METADATA);
1766	default:
1767		break;
1768	}
1769	panic("undefined ARC buffer type!");
1770	return ((uint32_t)-1);
1771}
1772
1773void
1774arc_buf_thaw(arc_buf_t *buf)
1775{
1776	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1777		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1778			panic("modifying non-anon buffer!");
1779		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1780			panic("modifying buffer while i/o in progress!");
1781		arc_cksum_verify(buf);
1782	}
1783
1784	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1785	if (buf->b_hdr->b_freeze_cksum != NULL) {
1786		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1787		buf->b_hdr->b_freeze_cksum = NULL;
1788	}
1789
1790#ifdef ZFS_DEBUG
1791	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1792		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1793			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1794		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1795	}
1796#endif
1797
1798	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1799
1800#ifdef illumos
1801	arc_buf_unwatch(buf);
1802#endif
1803}
1804
1805void
1806arc_buf_freeze(arc_buf_t *buf)
1807{
1808	kmutex_t *hash_lock;
1809
1810	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1811		return;
1812
1813	hash_lock = HDR_LOCK(buf->b_hdr);
1814	mutex_enter(hash_lock);
1815
1816	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1817	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1818	arc_cksum_compute(buf, B_FALSE);
1819	mutex_exit(hash_lock);
1820
1821}
1822
1823static void
1824add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1825{
1826	ASSERT(HDR_HAS_L1HDR(hdr));
1827	ASSERT(MUTEX_HELD(hash_lock));
1828	arc_state_t *state = hdr->b_l1hdr.b_state;
1829
1830	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1831	    (state != arc_anon)) {
1832		/* We don't use the L2-only state list. */
1833		if (state != arc_l2c_only) {
1834			arc_buf_contents_t type = arc_buf_type(hdr);
1835			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1836			multilist_t *list = &state->arcs_list[type];
1837			uint64_t *size = &state->arcs_lsize[type];
1838
1839			multilist_remove(list, hdr);
1840
1841			if (GHOST_STATE(state)) {
1842				ASSERT0(hdr->b_l1hdr.b_datacnt);
1843				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1844				delta = hdr->b_size;
1845			}
1846			ASSERT(delta > 0);
1847			ASSERT3U(*size, >=, delta);
1848			atomic_add_64(size, -delta);
1849		}
1850		/* remove the prefetch flag if we get a reference */
1851		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1852	}
1853}
1854
1855static int
1856remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1857{
1858	int cnt;
1859	arc_state_t *state = hdr->b_l1hdr.b_state;
1860
1861	ASSERT(HDR_HAS_L1HDR(hdr));
1862	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1863	ASSERT(!GHOST_STATE(state));
1864
1865	/*
1866	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1867	 * check to prevent usage of the arc_l2c_only list.
1868	 */
1869	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1870	    (state != arc_anon)) {
1871		arc_buf_contents_t type = arc_buf_type(hdr);
1872		multilist_t *list = &state->arcs_list[type];
1873		uint64_t *size = &state->arcs_lsize[type];
1874
1875		multilist_insert(list, hdr);
1876
1877		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1878		atomic_add_64(size, hdr->b_size *
1879		    hdr->b_l1hdr.b_datacnt);
1880	}
1881	return (cnt);
1882}
1883
1884/*
1885 * Move the supplied buffer to the indicated state. The hash lock
1886 * for the buffer must be held by the caller.
1887 */
1888static void
1889arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1890    kmutex_t *hash_lock)
1891{
1892	arc_state_t *old_state;
1893	int64_t refcnt;
1894	uint32_t datacnt;
1895	uint64_t from_delta, to_delta;
1896	arc_buf_contents_t buftype = arc_buf_type(hdr);
1897
1898	/*
1899	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1900	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1901	 * L1 hdr doesn't always exist when we change state to arc_anon before
1902	 * destroying a header, in which case reallocating to add the L1 hdr is
1903	 * pointless.
1904	 */
1905	if (HDR_HAS_L1HDR(hdr)) {
1906		old_state = hdr->b_l1hdr.b_state;
1907		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1908		datacnt = hdr->b_l1hdr.b_datacnt;
1909	} else {
1910		old_state = arc_l2c_only;
1911		refcnt = 0;
1912		datacnt = 0;
1913	}
1914
1915	ASSERT(MUTEX_HELD(hash_lock));
1916	ASSERT3P(new_state, !=, old_state);
1917	ASSERT(refcnt == 0 || datacnt > 0);
1918	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1919	ASSERT(old_state != arc_anon || datacnt <= 1);
1920
1921	from_delta = to_delta = datacnt * hdr->b_size;
1922
1923	/*
1924	 * If this buffer is evictable, transfer it from the
1925	 * old state list to the new state list.
1926	 */
1927	if (refcnt == 0) {
1928		if (old_state != arc_anon && old_state != arc_l2c_only) {
1929			uint64_t *size = &old_state->arcs_lsize[buftype];
1930
1931			ASSERT(HDR_HAS_L1HDR(hdr));
1932			multilist_remove(&old_state->arcs_list[buftype], hdr);
1933
1934			/*
1935			 * If prefetching out of the ghost cache,
1936			 * we will have a non-zero datacnt.
1937			 */
1938			if (GHOST_STATE(old_state) && datacnt == 0) {
1939				/* ghost elements have a ghost size */
1940				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1941				from_delta = hdr->b_size;
1942			}
1943			ASSERT3U(*size, >=, from_delta);
1944			atomic_add_64(size, -from_delta);
1945		}
1946		if (new_state != arc_anon && new_state != arc_l2c_only) {
1947			uint64_t *size = &new_state->arcs_lsize[buftype];
1948
1949			/*
1950			 * An L1 header always exists here, since if we're
1951			 * moving to some L1-cached state (i.e. not l2c_only or
1952			 * anonymous), we realloc the header to add an L1hdr
1953			 * beforehand.
1954			 */
1955			ASSERT(HDR_HAS_L1HDR(hdr));
1956			multilist_insert(&new_state->arcs_list[buftype], hdr);
1957
1958			/* ghost elements have a ghost size */
1959			if (GHOST_STATE(new_state)) {
1960				ASSERT0(datacnt);
1961				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1962				to_delta = hdr->b_size;
1963			}
1964			atomic_add_64(size, to_delta);
1965		}
1966	}
1967
1968	ASSERT(!BUF_EMPTY(hdr));
1969	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1970		buf_hash_remove(hdr);
1971
1972	/* adjust state sizes (ignore arc_l2c_only) */
1973
1974	if (to_delta && new_state != arc_l2c_only) {
1975		ASSERT(HDR_HAS_L1HDR(hdr));
1976		if (GHOST_STATE(new_state)) {
1977			ASSERT0(datacnt);
1978
1979			/*
1980			 * We moving a header to a ghost state, we first
1981			 * remove all arc buffers. Thus, we'll have a
1982			 * datacnt of zero, and no arc buffer to use for
1983			 * the reference. As a result, we use the arc
1984			 * header pointer for the reference.
1985			 */
1986			(void) refcount_add_many(&new_state->arcs_size,
1987			    hdr->b_size, hdr);
1988		} else {
1989			ASSERT3U(datacnt, !=, 0);
1990
1991			/*
1992			 * Each individual buffer holds a unique reference,
1993			 * thus we must remove each of these references one
1994			 * at a time.
1995			 */
1996			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1997			    buf = buf->b_next) {
1998				(void) refcount_add_many(&new_state->arcs_size,
1999				    hdr->b_size, buf);
2000			}
2001		}
2002	}
2003
2004	if (from_delta && old_state != arc_l2c_only) {
2005		ASSERT(HDR_HAS_L1HDR(hdr));
2006		if (GHOST_STATE(old_state)) {
2007			/*
2008			 * When moving a header off of a ghost state,
2009			 * there's the possibility for datacnt to be
2010			 * non-zero. This is because we first add the
2011			 * arc buffer to the header prior to changing
2012			 * the header's state. Since we used the header
2013			 * for the reference when putting the header on
2014			 * the ghost state, we must balance that and use
2015			 * the header when removing off the ghost state
2016			 * (even though datacnt is non zero).
2017			 */
2018
2019			IMPLY(datacnt == 0, new_state == arc_anon ||
2020			    new_state == arc_l2c_only);
2021
2022			(void) refcount_remove_many(&old_state->arcs_size,
2023			    hdr->b_size, hdr);
2024		} else {
2025			ASSERT3P(datacnt, !=, 0);
2026
2027			/*
2028			 * Each individual buffer holds a unique reference,
2029			 * thus we must remove each of these references one
2030			 * at a time.
2031			 */
2032			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2033			    buf = buf->b_next) {
2034				(void) refcount_remove_many(
2035				    &old_state->arcs_size, hdr->b_size, buf);
2036			}
2037		}
2038	}
2039
2040	if (HDR_HAS_L1HDR(hdr))
2041		hdr->b_l1hdr.b_state = new_state;
2042
2043	/*
2044	 * L2 headers should never be on the L2 state list since they don't
2045	 * have L1 headers allocated.
2046	 */
2047	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2048	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2049}
2050
2051void
2052arc_space_consume(uint64_t space, arc_space_type_t type)
2053{
2054	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2055
2056	switch (type) {
2057	case ARC_SPACE_DATA:
2058		ARCSTAT_INCR(arcstat_data_size, space);
2059		break;
2060	case ARC_SPACE_META:
2061		ARCSTAT_INCR(arcstat_metadata_size, space);
2062		break;
2063	case ARC_SPACE_OTHER:
2064		ARCSTAT_INCR(arcstat_other_size, space);
2065		break;
2066	case ARC_SPACE_HDRS:
2067		ARCSTAT_INCR(arcstat_hdr_size, space);
2068		break;
2069	case ARC_SPACE_L2HDRS:
2070		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2071		break;
2072	}
2073
2074	if (type != ARC_SPACE_DATA)
2075		ARCSTAT_INCR(arcstat_meta_used, space);
2076
2077	atomic_add_64(&arc_size, space);
2078}
2079
2080void
2081arc_space_return(uint64_t space, arc_space_type_t type)
2082{
2083	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2084
2085	switch (type) {
2086	case ARC_SPACE_DATA:
2087		ARCSTAT_INCR(arcstat_data_size, -space);
2088		break;
2089	case ARC_SPACE_META:
2090		ARCSTAT_INCR(arcstat_metadata_size, -space);
2091		break;
2092	case ARC_SPACE_OTHER:
2093		ARCSTAT_INCR(arcstat_other_size, -space);
2094		break;
2095	case ARC_SPACE_HDRS:
2096		ARCSTAT_INCR(arcstat_hdr_size, -space);
2097		break;
2098	case ARC_SPACE_L2HDRS:
2099		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2100		break;
2101	}
2102
2103	if (type != ARC_SPACE_DATA) {
2104		ASSERT(arc_meta_used >= space);
2105		if (arc_meta_max < arc_meta_used)
2106			arc_meta_max = arc_meta_used;
2107		ARCSTAT_INCR(arcstat_meta_used, -space);
2108	}
2109
2110	ASSERT(arc_size >= space);
2111	atomic_add_64(&arc_size, -space);
2112}
2113
2114arc_buf_t *
2115arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2116{
2117	arc_buf_hdr_t *hdr;
2118	arc_buf_t *buf;
2119
2120	ASSERT3U(size, >, 0);
2121	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2122	ASSERT(BUF_EMPTY(hdr));
2123	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2124	hdr->b_size = size;
2125	hdr->b_spa = spa_load_guid(spa);
2126
2127	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2128	buf->b_hdr = hdr;
2129	buf->b_data = NULL;
2130	buf->b_efunc = NULL;
2131	buf->b_private = NULL;
2132	buf->b_next = NULL;
2133
2134	hdr->b_flags = arc_bufc_to_flags(type);
2135	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2136
2137	hdr->b_l1hdr.b_buf = buf;
2138	hdr->b_l1hdr.b_state = arc_anon;
2139	hdr->b_l1hdr.b_arc_access = 0;
2140	hdr->b_l1hdr.b_datacnt = 1;
2141	hdr->b_l1hdr.b_tmp_cdata = NULL;
2142
2143	arc_get_data_buf(buf);
2144	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2145	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2146
2147	return (buf);
2148}
2149
2150static char *arc_onloan_tag = "onloan";
2151
2152/*
2153 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2154 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2155 * buffers must be returned to the arc before they can be used by the DMU or
2156 * freed.
2157 */
2158arc_buf_t *
2159arc_loan_buf(spa_t *spa, int size)
2160{
2161	arc_buf_t *buf;
2162
2163	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2164
2165	atomic_add_64(&arc_loaned_bytes, size);
2166	return (buf);
2167}
2168
2169/*
2170 * Return a loaned arc buffer to the arc.
2171 */
2172void
2173arc_return_buf(arc_buf_t *buf, void *tag)
2174{
2175	arc_buf_hdr_t *hdr = buf->b_hdr;
2176
2177	ASSERT(buf->b_data != NULL);
2178	ASSERT(HDR_HAS_L1HDR(hdr));
2179	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2180	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2181
2182	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2183}
2184
2185/* Detach an arc_buf from a dbuf (tag) */
2186void
2187arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2188{
2189	arc_buf_hdr_t *hdr = buf->b_hdr;
2190
2191	ASSERT(buf->b_data != NULL);
2192	ASSERT(HDR_HAS_L1HDR(hdr));
2193	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2194	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2195	buf->b_efunc = NULL;
2196	buf->b_private = NULL;
2197
2198	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2199}
2200
2201static arc_buf_t *
2202arc_buf_clone(arc_buf_t *from)
2203{
2204	arc_buf_t *buf;
2205	arc_buf_hdr_t *hdr = from->b_hdr;
2206	uint64_t size = hdr->b_size;
2207
2208	ASSERT(HDR_HAS_L1HDR(hdr));
2209	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2210
2211	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2212	buf->b_hdr = hdr;
2213	buf->b_data = NULL;
2214	buf->b_efunc = NULL;
2215	buf->b_private = NULL;
2216	buf->b_next = hdr->b_l1hdr.b_buf;
2217	hdr->b_l1hdr.b_buf = buf;
2218	arc_get_data_buf(buf);
2219	bcopy(from->b_data, buf->b_data, size);
2220
2221	/*
2222	 * This buffer already exists in the arc so create a duplicate
2223	 * copy for the caller.  If the buffer is associated with user data
2224	 * then track the size and number of duplicates.  These stats will be
2225	 * updated as duplicate buffers are created and destroyed.
2226	 */
2227	if (HDR_ISTYPE_DATA(hdr)) {
2228		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2229		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2230	}
2231	hdr->b_l1hdr.b_datacnt += 1;
2232	return (buf);
2233}
2234
2235void
2236arc_buf_add_ref(arc_buf_t *buf, void* tag)
2237{
2238	arc_buf_hdr_t *hdr;
2239	kmutex_t *hash_lock;
2240
2241	/*
2242	 * Check to see if this buffer is evicted.  Callers
2243	 * must verify b_data != NULL to know if the add_ref
2244	 * was successful.
2245	 */
2246	mutex_enter(&buf->b_evict_lock);
2247	if (buf->b_data == NULL) {
2248		mutex_exit(&buf->b_evict_lock);
2249		return;
2250	}
2251	hash_lock = HDR_LOCK(buf->b_hdr);
2252	mutex_enter(hash_lock);
2253	hdr = buf->b_hdr;
2254	ASSERT(HDR_HAS_L1HDR(hdr));
2255	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2256	mutex_exit(&buf->b_evict_lock);
2257
2258	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2259	    hdr->b_l1hdr.b_state == arc_mfu);
2260
2261	add_reference(hdr, hash_lock, tag);
2262	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2263	arc_access(hdr, hash_lock);
2264	mutex_exit(hash_lock);
2265	ARCSTAT_BUMP(arcstat_hits);
2266	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2267	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2268	    data, metadata, hits);
2269}
2270
2271static void
2272arc_buf_free_on_write(void *data, size_t size,
2273    void (*free_func)(void *, size_t))
2274{
2275	l2arc_data_free_t *df;
2276
2277	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2278	df->l2df_data = data;
2279	df->l2df_size = size;
2280	df->l2df_func = free_func;
2281	mutex_enter(&l2arc_free_on_write_mtx);
2282	list_insert_head(l2arc_free_on_write, df);
2283	mutex_exit(&l2arc_free_on_write_mtx);
2284}
2285
2286/*
2287 * Free the arc data buffer.  If it is an l2arc write in progress,
2288 * the buffer is placed on l2arc_free_on_write to be freed later.
2289 */
2290static void
2291arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2292{
2293	arc_buf_hdr_t *hdr = buf->b_hdr;
2294
2295	if (HDR_L2_WRITING(hdr)) {
2296		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2297		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2298	} else {
2299		free_func(buf->b_data, hdr->b_size);
2300	}
2301}
2302
2303static void
2304arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2305{
2306	size_t align, asize, len;
2307
2308	ASSERT(HDR_HAS_L2HDR(hdr));
2309	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2310
2311	/*
2312	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2313	 * that doesn't exist, the header is in the arc_l2c_only state,
2314	 * and there isn't anything to free (it's already been freed).
2315	 */
2316	if (!HDR_HAS_L1HDR(hdr))
2317		return;
2318
2319	/*
2320	 * The header isn't being written to the l2arc device, thus it
2321	 * shouldn't have a b_tmp_cdata to free.
2322	 */
2323	if (!HDR_L2_WRITING(hdr)) {
2324		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2325		return;
2326	}
2327
2328	/*
2329	 * The bufer has been chosen for writing to L2ARC, but it's
2330	 * not being written just yet.  In other words,
2331	 * b_tmp_cdata points to exactly the same buffer as b_data,
2332	 * l2arc_transform_buf hasn't been called.
2333	 */
2334	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
2335		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==,
2336		    hdr->b_l1hdr.b_buf->b_data);
2337		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_OFF);
2338		hdr->b_l1hdr.b_tmp_cdata = NULL;
2339		return;
2340	}
2341
2342	/*
2343	 * There's nothing to free since the buffer was all zero's and
2344	 * compressed to a zero length buffer.
2345	 */
2346	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2347		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2348		return;
2349	}
2350
2351	/*
2352	 * Nothing to do if the temporary buffer was not required.
2353	 */
2354	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2355		return;
2356
2357	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2358	len = hdr->b_size;
2359	align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
2360	asize = P2ROUNDUP(len, align);
2361	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, asize,
2362	    zio_data_buf_free);
2363	hdr->b_l1hdr.b_tmp_cdata = NULL;
2364}
2365
2366/*
2367 * Free up buf->b_data and if 'remove' is set, then pull the
2368 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2369 */
2370static void
2371arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2372{
2373	arc_buf_t **bufp;
2374
2375	/* free up data associated with the buf */
2376	if (buf->b_data != NULL) {
2377		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2378		uint64_t size = buf->b_hdr->b_size;
2379		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2380
2381		arc_cksum_verify(buf);
2382#ifdef illumos
2383		arc_buf_unwatch(buf);
2384#endif
2385
2386		if (type == ARC_BUFC_METADATA) {
2387			arc_buf_data_free(buf, zio_buf_free);
2388			arc_space_return(size, ARC_SPACE_META);
2389		} else {
2390			ASSERT(type == ARC_BUFC_DATA);
2391			arc_buf_data_free(buf, zio_data_buf_free);
2392			arc_space_return(size, ARC_SPACE_DATA);
2393		}
2394
2395		/* protected by hash lock, if in the hash table */
2396		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2397			uint64_t *cnt = &state->arcs_lsize[type];
2398
2399			ASSERT(refcount_is_zero(
2400			    &buf->b_hdr->b_l1hdr.b_refcnt));
2401			ASSERT(state != arc_anon && state != arc_l2c_only);
2402
2403			ASSERT3U(*cnt, >=, size);
2404			atomic_add_64(cnt, -size);
2405		}
2406
2407		(void) refcount_remove_many(&state->arcs_size, size, buf);
2408		buf->b_data = NULL;
2409
2410		/*
2411		 * If we're destroying a duplicate buffer make sure
2412		 * that the appropriate statistics are updated.
2413		 */
2414		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2415		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2416			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2417			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2418		}
2419		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2420		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2421	}
2422
2423	/* only remove the buf if requested */
2424	if (!remove)
2425		return;
2426
2427	/* remove the buf from the hdr list */
2428	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2429	    bufp = &(*bufp)->b_next)
2430		continue;
2431	*bufp = buf->b_next;
2432	buf->b_next = NULL;
2433
2434	ASSERT(buf->b_efunc == NULL);
2435
2436	/* clean up the buf */
2437	buf->b_hdr = NULL;
2438	kmem_cache_free(buf_cache, buf);
2439}
2440
2441static void
2442arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2443{
2444	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2445	l2arc_dev_t *dev = l2hdr->b_dev;
2446
2447	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2448	ASSERT(HDR_HAS_L2HDR(hdr));
2449
2450	list_remove(&dev->l2ad_buflist, hdr);
2451
2452	/*
2453	 * We don't want to leak the b_tmp_cdata buffer that was
2454	 * allocated in l2arc_write_buffers()
2455	 */
2456	arc_buf_l2_cdata_free(hdr);
2457
2458	/*
2459	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2460	 * this header is being processed by l2arc_write_buffers() (i.e.
2461	 * it's in the first stage of l2arc_write_buffers()).
2462	 * Re-affirming that truth here, just to serve as a reminder. If
2463	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2464	 * may not have its HDR_L2_WRITING flag set. (the write may have
2465	 * completed, in which case HDR_L2_WRITING will be false and the
2466	 * b_daddr field will point to the address of the buffer on disk).
2467	 */
2468	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2469
2470	/*
2471	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2472	 * l2arc_write_buffers(). Since we've just removed this header
2473	 * from the l2arc buffer list, this header will never reach the
2474	 * second stage of l2arc_write_buffers(), which increments the
2475	 * accounting stats for this header. Thus, we must be careful
2476	 * not to decrement them for this header either.
2477	 */
2478	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2479		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2480		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2481
2482		vdev_space_update(dev->l2ad_vdev,
2483		    -l2hdr->b_asize, 0, 0);
2484
2485		(void) refcount_remove_many(&dev->l2ad_alloc,
2486		    l2hdr->b_asize, hdr);
2487	}
2488
2489	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2490}
2491
2492static void
2493arc_hdr_destroy(arc_buf_hdr_t *hdr)
2494{
2495	if (HDR_HAS_L1HDR(hdr)) {
2496		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2497		    hdr->b_l1hdr.b_datacnt > 0);
2498		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2499		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2500	}
2501	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2502	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2503
2504	if (HDR_HAS_L2HDR(hdr)) {
2505		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2506		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2507
2508		if (!buflist_held)
2509			mutex_enter(&dev->l2ad_mtx);
2510
2511		/*
2512		 * Even though we checked this conditional above, we
2513		 * need to check this again now that we have the
2514		 * l2ad_mtx. This is because we could be racing with
2515		 * another thread calling l2arc_evict() which might have
2516		 * destroyed this header's L2 portion as we were waiting
2517		 * to acquire the l2ad_mtx. If that happens, we don't
2518		 * want to re-destroy the header's L2 portion.
2519		 */
2520		if (HDR_HAS_L2HDR(hdr)) {
2521			l2arc_trim(hdr);
2522			arc_hdr_l2hdr_destroy(hdr);
2523		}
2524
2525		if (!buflist_held)
2526			mutex_exit(&dev->l2ad_mtx);
2527	}
2528
2529	if (!BUF_EMPTY(hdr))
2530		buf_discard_identity(hdr);
2531
2532	if (hdr->b_freeze_cksum != NULL) {
2533		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2534		hdr->b_freeze_cksum = NULL;
2535	}
2536
2537	if (HDR_HAS_L1HDR(hdr)) {
2538		while (hdr->b_l1hdr.b_buf) {
2539			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2540
2541			if (buf->b_efunc != NULL) {
2542				mutex_enter(&arc_user_evicts_lock);
2543				mutex_enter(&buf->b_evict_lock);
2544				ASSERT(buf->b_hdr != NULL);
2545				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2546				hdr->b_l1hdr.b_buf = buf->b_next;
2547				buf->b_hdr = &arc_eviction_hdr;
2548				buf->b_next = arc_eviction_list;
2549				arc_eviction_list = buf;
2550				mutex_exit(&buf->b_evict_lock);
2551				cv_signal(&arc_user_evicts_cv);
2552				mutex_exit(&arc_user_evicts_lock);
2553			} else {
2554				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2555			}
2556		}
2557#ifdef ZFS_DEBUG
2558		if (hdr->b_l1hdr.b_thawed != NULL) {
2559			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2560			hdr->b_l1hdr.b_thawed = NULL;
2561		}
2562#endif
2563	}
2564
2565	ASSERT3P(hdr->b_hash_next, ==, NULL);
2566	if (HDR_HAS_L1HDR(hdr)) {
2567		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2568		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2569		kmem_cache_free(hdr_full_cache, hdr);
2570	} else {
2571		kmem_cache_free(hdr_l2only_cache, hdr);
2572	}
2573}
2574
2575void
2576arc_buf_free(arc_buf_t *buf, void *tag)
2577{
2578	arc_buf_hdr_t *hdr = buf->b_hdr;
2579	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2580
2581	ASSERT(buf->b_efunc == NULL);
2582	ASSERT(buf->b_data != NULL);
2583
2584	if (hashed) {
2585		kmutex_t *hash_lock = HDR_LOCK(hdr);
2586
2587		mutex_enter(hash_lock);
2588		hdr = buf->b_hdr;
2589		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2590
2591		(void) remove_reference(hdr, hash_lock, tag);
2592		if (hdr->b_l1hdr.b_datacnt > 1) {
2593			arc_buf_destroy(buf, TRUE);
2594		} else {
2595			ASSERT(buf == hdr->b_l1hdr.b_buf);
2596			ASSERT(buf->b_efunc == NULL);
2597			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2598		}
2599		mutex_exit(hash_lock);
2600	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2601		int destroy_hdr;
2602		/*
2603		 * We are in the middle of an async write.  Don't destroy
2604		 * this buffer unless the write completes before we finish
2605		 * decrementing the reference count.
2606		 */
2607		mutex_enter(&arc_user_evicts_lock);
2608		(void) remove_reference(hdr, NULL, tag);
2609		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2610		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2611		mutex_exit(&arc_user_evicts_lock);
2612		if (destroy_hdr)
2613			arc_hdr_destroy(hdr);
2614	} else {
2615		if (remove_reference(hdr, NULL, tag) > 0)
2616			arc_buf_destroy(buf, TRUE);
2617		else
2618			arc_hdr_destroy(hdr);
2619	}
2620}
2621
2622boolean_t
2623arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2624{
2625	arc_buf_hdr_t *hdr = buf->b_hdr;
2626	kmutex_t *hash_lock = HDR_LOCK(hdr);
2627	boolean_t no_callback = (buf->b_efunc == NULL);
2628
2629	if (hdr->b_l1hdr.b_state == arc_anon) {
2630		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2631		arc_buf_free(buf, tag);
2632		return (no_callback);
2633	}
2634
2635	mutex_enter(hash_lock);
2636	hdr = buf->b_hdr;
2637	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2638	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2639	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2640	ASSERT(buf->b_data != NULL);
2641
2642	(void) remove_reference(hdr, hash_lock, tag);
2643	if (hdr->b_l1hdr.b_datacnt > 1) {
2644		if (no_callback)
2645			arc_buf_destroy(buf, TRUE);
2646	} else if (no_callback) {
2647		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2648		ASSERT(buf->b_efunc == NULL);
2649		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2650	}
2651	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2652	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2653	mutex_exit(hash_lock);
2654	return (no_callback);
2655}
2656
2657int32_t
2658arc_buf_size(arc_buf_t *buf)
2659{
2660	return (buf->b_hdr->b_size);
2661}
2662
2663/*
2664 * Called from the DMU to determine if the current buffer should be
2665 * evicted. In order to ensure proper locking, the eviction must be initiated
2666 * from the DMU. Return true if the buffer is associated with user data and
2667 * duplicate buffers still exist.
2668 */
2669boolean_t
2670arc_buf_eviction_needed(arc_buf_t *buf)
2671{
2672	arc_buf_hdr_t *hdr;
2673	boolean_t evict_needed = B_FALSE;
2674
2675	if (zfs_disable_dup_eviction)
2676		return (B_FALSE);
2677
2678	mutex_enter(&buf->b_evict_lock);
2679	hdr = buf->b_hdr;
2680	if (hdr == NULL) {
2681		/*
2682		 * We are in arc_do_user_evicts(); let that function
2683		 * perform the eviction.
2684		 */
2685		ASSERT(buf->b_data == NULL);
2686		mutex_exit(&buf->b_evict_lock);
2687		return (B_FALSE);
2688	} else if (buf->b_data == NULL) {
2689		/*
2690		 * We have already been added to the arc eviction list;
2691		 * recommend eviction.
2692		 */
2693		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2694		mutex_exit(&buf->b_evict_lock);
2695		return (B_TRUE);
2696	}
2697
2698	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2699		evict_needed = B_TRUE;
2700
2701	mutex_exit(&buf->b_evict_lock);
2702	return (evict_needed);
2703}
2704
2705/*
2706 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2707 * state of the header is dependent on it's state prior to entering this
2708 * function. The following transitions are possible:
2709 *
2710 *    - arc_mru -> arc_mru_ghost
2711 *    - arc_mfu -> arc_mfu_ghost
2712 *    - arc_mru_ghost -> arc_l2c_only
2713 *    - arc_mru_ghost -> deleted
2714 *    - arc_mfu_ghost -> arc_l2c_only
2715 *    - arc_mfu_ghost -> deleted
2716 */
2717static int64_t
2718arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2719{
2720	arc_state_t *evicted_state, *state;
2721	int64_t bytes_evicted = 0;
2722
2723	ASSERT(MUTEX_HELD(hash_lock));
2724	ASSERT(HDR_HAS_L1HDR(hdr));
2725
2726	state = hdr->b_l1hdr.b_state;
2727	if (GHOST_STATE(state)) {
2728		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2729		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2730
2731		/*
2732		 * l2arc_write_buffers() relies on a header's L1 portion
2733		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2734		 * Thus, we cannot push a header onto the arc_l2c_only
2735		 * state (removing it's L1 piece) until the header is
2736		 * done being written to the l2arc.
2737		 */
2738		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2739			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2740			return (bytes_evicted);
2741		}
2742
2743		ARCSTAT_BUMP(arcstat_deleted);
2744		bytes_evicted += hdr->b_size;
2745
2746		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2747
2748		if (HDR_HAS_L2HDR(hdr)) {
2749			/*
2750			 * This buffer is cached on the 2nd Level ARC;
2751			 * don't destroy the header.
2752			 */
2753			arc_change_state(arc_l2c_only, hdr, hash_lock);
2754			/*
2755			 * dropping from L1+L2 cached to L2-only,
2756			 * realloc to remove the L1 header.
2757			 */
2758			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2759			    hdr_l2only_cache);
2760		} else {
2761			arc_change_state(arc_anon, hdr, hash_lock);
2762			arc_hdr_destroy(hdr);
2763		}
2764		return (bytes_evicted);
2765	}
2766
2767	ASSERT(state == arc_mru || state == arc_mfu);
2768	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2769
2770	/* prefetch buffers have a minimum lifespan */
2771	if (HDR_IO_IN_PROGRESS(hdr) ||
2772	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2773	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2774	    arc_min_prefetch_lifespan)) {
2775		ARCSTAT_BUMP(arcstat_evict_skip);
2776		return (bytes_evicted);
2777	}
2778
2779	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2780	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2781	while (hdr->b_l1hdr.b_buf) {
2782		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2783		if (!mutex_tryenter(&buf->b_evict_lock)) {
2784			ARCSTAT_BUMP(arcstat_mutex_miss);
2785			break;
2786		}
2787		if (buf->b_data != NULL)
2788			bytes_evicted += hdr->b_size;
2789		if (buf->b_efunc != NULL) {
2790			mutex_enter(&arc_user_evicts_lock);
2791			arc_buf_destroy(buf, FALSE);
2792			hdr->b_l1hdr.b_buf = buf->b_next;
2793			buf->b_hdr = &arc_eviction_hdr;
2794			buf->b_next = arc_eviction_list;
2795			arc_eviction_list = buf;
2796			cv_signal(&arc_user_evicts_cv);
2797			mutex_exit(&arc_user_evicts_lock);
2798			mutex_exit(&buf->b_evict_lock);
2799		} else {
2800			mutex_exit(&buf->b_evict_lock);
2801			arc_buf_destroy(buf, TRUE);
2802		}
2803	}
2804
2805	if (HDR_HAS_L2HDR(hdr)) {
2806		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2807	} else {
2808		if (l2arc_write_eligible(hdr->b_spa, hdr))
2809			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2810		else
2811			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2812	}
2813
2814	if (hdr->b_l1hdr.b_datacnt == 0) {
2815		arc_change_state(evicted_state, hdr, hash_lock);
2816		ASSERT(HDR_IN_HASH_TABLE(hdr));
2817		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2818		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2819		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2820	}
2821
2822	return (bytes_evicted);
2823}
2824
2825static uint64_t
2826arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2827    uint64_t spa, int64_t bytes)
2828{
2829	multilist_sublist_t *mls;
2830	uint64_t bytes_evicted = 0;
2831	arc_buf_hdr_t *hdr;
2832	kmutex_t *hash_lock;
2833	int evict_count = 0;
2834
2835	ASSERT3P(marker, !=, NULL);
2836	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2837
2838	mls = multilist_sublist_lock(ml, idx);
2839
2840	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2841	    hdr = multilist_sublist_prev(mls, marker)) {
2842		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2843		    (evict_count >= zfs_arc_evict_batch_limit))
2844			break;
2845
2846		/*
2847		 * To keep our iteration location, move the marker
2848		 * forward. Since we're not holding hdr's hash lock, we
2849		 * must be very careful and not remove 'hdr' from the
2850		 * sublist. Otherwise, other consumers might mistake the
2851		 * 'hdr' as not being on a sublist when they call the
2852		 * multilist_link_active() function (they all rely on
2853		 * the hash lock protecting concurrent insertions and
2854		 * removals). multilist_sublist_move_forward() was
2855		 * specifically implemented to ensure this is the case
2856		 * (only 'marker' will be removed and re-inserted).
2857		 */
2858		multilist_sublist_move_forward(mls, marker);
2859
2860		/*
2861		 * The only case where the b_spa field should ever be
2862		 * zero, is the marker headers inserted by
2863		 * arc_evict_state(). It's possible for multiple threads
2864		 * to be calling arc_evict_state() concurrently (e.g.
2865		 * dsl_pool_close() and zio_inject_fault()), so we must
2866		 * skip any markers we see from these other threads.
2867		 */
2868		if (hdr->b_spa == 0)
2869			continue;
2870
2871		/* we're only interested in evicting buffers of a certain spa */
2872		if (spa != 0 && hdr->b_spa != spa) {
2873			ARCSTAT_BUMP(arcstat_evict_skip);
2874			continue;
2875		}
2876
2877		hash_lock = HDR_LOCK(hdr);
2878
2879		/*
2880		 * We aren't calling this function from any code path
2881		 * that would already be holding a hash lock, so we're
2882		 * asserting on this assumption to be defensive in case
2883		 * this ever changes. Without this check, it would be
2884		 * possible to incorrectly increment arcstat_mutex_miss
2885		 * below (e.g. if the code changed such that we called
2886		 * this function with a hash lock held).
2887		 */
2888		ASSERT(!MUTEX_HELD(hash_lock));
2889
2890		if (mutex_tryenter(hash_lock)) {
2891			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2892			mutex_exit(hash_lock);
2893
2894			bytes_evicted += evicted;
2895
2896			/*
2897			 * If evicted is zero, arc_evict_hdr() must have
2898			 * decided to skip this header, don't increment
2899			 * evict_count in this case.
2900			 */
2901			if (evicted != 0)
2902				evict_count++;
2903
2904			/*
2905			 * If arc_size isn't overflowing, signal any
2906			 * threads that might happen to be waiting.
2907			 *
2908			 * For each header evicted, we wake up a single
2909			 * thread. If we used cv_broadcast, we could
2910			 * wake up "too many" threads causing arc_size
2911			 * to significantly overflow arc_c; since
2912			 * arc_get_data_buf() doesn't check for overflow
2913			 * when it's woken up (it doesn't because it's
2914			 * possible for the ARC to be overflowing while
2915			 * full of un-evictable buffers, and the
2916			 * function should proceed in this case).
2917			 *
2918			 * If threads are left sleeping, due to not
2919			 * using cv_broadcast, they will be woken up
2920			 * just before arc_reclaim_thread() sleeps.
2921			 */
2922			mutex_enter(&arc_reclaim_lock);
2923			if (!arc_is_overflowing())
2924				cv_signal(&arc_reclaim_waiters_cv);
2925			mutex_exit(&arc_reclaim_lock);
2926		} else {
2927			ARCSTAT_BUMP(arcstat_mutex_miss);
2928		}
2929	}
2930
2931	multilist_sublist_unlock(mls);
2932
2933	return (bytes_evicted);
2934}
2935
2936/*
2937 * Evict buffers from the given arc state, until we've removed the
2938 * specified number of bytes. Move the removed buffers to the
2939 * appropriate evict state.
2940 *
2941 * This function makes a "best effort". It skips over any buffers
2942 * it can't get a hash_lock on, and so, may not catch all candidates.
2943 * It may also return without evicting as much space as requested.
2944 *
2945 * If bytes is specified using the special value ARC_EVICT_ALL, this
2946 * will evict all available (i.e. unlocked and evictable) buffers from
2947 * the given arc state; which is used by arc_flush().
2948 */
2949static uint64_t
2950arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2951    arc_buf_contents_t type)
2952{
2953	uint64_t total_evicted = 0;
2954	multilist_t *ml = &state->arcs_list[type];
2955	int num_sublists;
2956	arc_buf_hdr_t **markers;
2957
2958	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2959
2960	num_sublists = multilist_get_num_sublists(ml);
2961
2962	/*
2963	 * If we've tried to evict from each sublist, made some
2964	 * progress, but still have not hit the target number of bytes
2965	 * to evict, we want to keep trying. The markers allow us to
2966	 * pick up where we left off for each individual sublist, rather
2967	 * than starting from the tail each time.
2968	 */
2969	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2970	for (int i = 0; i < num_sublists; i++) {
2971		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2972
2973		/*
2974		 * A b_spa of 0 is used to indicate that this header is
2975		 * a marker. This fact is used in arc_adjust_type() and
2976		 * arc_evict_state_impl().
2977		 */
2978		markers[i]->b_spa = 0;
2979
2980		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2981		multilist_sublist_insert_tail(mls, markers[i]);
2982		multilist_sublist_unlock(mls);
2983	}
2984
2985	/*
2986	 * While we haven't hit our target number of bytes to evict, or
2987	 * we're evicting all available buffers.
2988	 */
2989	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2990		/*
2991		 * Start eviction using a randomly selected sublist,
2992		 * this is to try and evenly balance eviction across all
2993		 * sublists. Always starting at the same sublist
2994		 * (e.g. index 0) would cause evictions to favor certain
2995		 * sublists over others.
2996		 */
2997		int sublist_idx = multilist_get_random_index(ml);
2998		uint64_t scan_evicted = 0;
2999
3000		for (int i = 0; i < num_sublists; i++) {
3001			uint64_t bytes_remaining;
3002			uint64_t bytes_evicted;
3003
3004			if (bytes == ARC_EVICT_ALL)
3005				bytes_remaining = ARC_EVICT_ALL;
3006			else if (total_evicted < bytes)
3007				bytes_remaining = bytes - total_evicted;
3008			else
3009				break;
3010
3011			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3012			    markers[sublist_idx], spa, bytes_remaining);
3013
3014			scan_evicted += bytes_evicted;
3015			total_evicted += bytes_evicted;
3016
3017			/* we've reached the end, wrap to the beginning */
3018			if (++sublist_idx >= num_sublists)
3019				sublist_idx = 0;
3020		}
3021
3022		/*
3023		 * If we didn't evict anything during this scan, we have
3024		 * no reason to believe we'll evict more during another
3025		 * scan, so break the loop.
3026		 */
3027		if (scan_evicted == 0) {
3028			/* This isn't possible, let's make that obvious */
3029			ASSERT3S(bytes, !=, 0);
3030
3031			/*
3032			 * When bytes is ARC_EVICT_ALL, the only way to
3033			 * break the loop is when scan_evicted is zero.
3034			 * In that case, we actually have evicted enough,
3035			 * so we don't want to increment the kstat.
3036			 */
3037			if (bytes != ARC_EVICT_ALL) {
3038				ASSERT3S(total_evicted, <, bytes);
3039				ARCSTAT_BUMP(arcstat_evict_not_enough);
3040			}
3041
3042			break;
3043		}
3044	}
3045
3046	for (int i = 0; i < num_sublists; i++) {
3047		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3048		multilist_sublist_remove(mls, markers[i]);
3049		multilist_sublist_unlock(mls);
3050
3051		kmem_cache_free(hdr_full_cache, markers[i]);
3052	}
3053	kmem_free(markers, sizeof (*markers) * num_sublists);
3054
3055	return (total_evicted);
3056}
3057
3058/*
3059 * Flush all "evictable" data of the given type from the arc state
3060 * specified. This will not evict any "active" buffers (i.e. referenced).
3061 *
3062 * When 'retry' is set to FALSE, the function will make a single pass
3063 * over the state and evict any buffers that it can. Since it doesn't
3064 * continually retry the eviction, it might end up leaving some buffers
3065 * in the ARC due to lock misses.
3066 *
3067 * When 'retry' is set to TRUE, the function will continually retry the
3068 * eviction until *all* evictable buffers have been removed from the
3069 * state. As a result, if concurrent insertions into the state are
3070 * allowed (e.g. if the ARC isn't shutting down), this function might
3071 * wind up in an infinite loop, continually trying to evict buffers.
3072 */
3073static uint64_t
3074arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3075    boolean_t retry)
3076{
3077	uint64_t evicted = 0;
3078
3079	while (state->arcs_lsize[type] != 0) {
3080		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3081
3082		if (!retry)
3083			break;
3084	}
3085
3086	return (evicted);
3087}
3088
3089/*
3090 * Evict the specified number of bytes from the state specified,
3091 * restricting eviction to the spa and type given. This function
3092 * prevents us from trying to evict more from a state's list than
3093 * is "evictable", and to skip evicting altogether when passed a
3094 * negative value for "bytes". In contrast, arc_evict_state() will
3095 * evict everything it can, when passed a negative value for "bytes".
3096 */
3097static uint64_t
3098arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3099    arc_buf_contents_t type)
3100{
3101	int64_t delta;
3102
3103	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3104		delta = MIN(state->arcs_lsize[type], bytes);
3105		return (arc_evict_state(state, spa, delta, type));
3106	}
3107
3108	return (0);
3109}
3110
3111/*
3112 * Evict metadata buffers from the cache, such that arc_meta_used is
3113 * capped by the arc_meta_limit tunable.
3114 */
3115static uint64_t
3116arc_adjust_meta(void)
3117{
3118	uint64_t total_evicted = 0;
3119	int64_t target;
3120
3121	/*
3122	 * If we're over the meta limit, we want to evict enough
3123	 * metadata to get back under the meta limit. We don't want to
3124	 * evict so much that we drop the MRU below arc_p, though. If
3125	 * we're over the meta limit more than we're over arc_p, we
3126	 * evict some from the MRU here, and some from the MFU below.
3127	 */
3128	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3129	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3130	    refcount_count(&arc_mru->arcs_size) - arc_p));
3131
3132	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3133
3134	/*
3135	 * Similar to the above, we want to evict enough bytes to get us
3136	 * below the meta limit, but not so much as to drop us below the
3137	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3138	 */
3139	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3140	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3141
3142	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3143
3144	return (total_evicted);
3145}
3146
3147/*
3148 * Return the type of the oldest buffer in the given arc state
3149 *
3150 * This function will select a random sublist of type ARC_BUFC_DATA and
3151 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3152 * is compared, and the type which contains the "older" buffer will be
3153 * returned.
3154 */
3155static arc_buf_contents_t
3156arc_adjust_type(arc_state_t *state)
3157{
3158	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3159	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3160	int data_idx = multilist_get_random_index(data_ml);
3161	int meta_idx = multilist_get_random_index(meta_ml);
3162	multilist_sublist_t *data_mls;
3163	multilist_sublist_t *meta_mls;
3164	arc_buf_contents_t type;
3165	arc_buf_hdr_t *data_hdr;
3166	arc_buf_hdr_t *meta_hdr;
3167
3168	/*
3169	 * We keep the sublist lock until we're finished, to prevent
3170	 * the headers from being destroyed via arc_evict_state().
3171	 */
3172	data_mls = multilist_sublist_lock(data_ml, data_idx);
3173	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3174
3175	/*
3176	 * These two loops are to ensure we skip any markers that
3177	 * might be at the tail of the lists due to arc_evict_state().
3178	 */
3179
3180	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3181	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3182		if (data_hdr->b_spa != 0)
3183			break;
3184	}
3185
3186	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3187	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3188		if (meta_hdr->b_spa != 0)
3189			break;
3190	}
3191
3192	if (data_hdr == NULL && meta_hdr == NULL) {
3193		type = ARC_BUFC_DATA;
3194	} else if (data_hdr == NULL) {
3195		ASSERT3P(meta_hdr, !=, NULL);
3196		type = ARC_BUFC_METADATA;
3197	} else if (meta_hdr == NULL) {
3198		ASSERT3P(data_hdr, !=, NULL);
3199		type = ARC_BUFC_DATA;
3200	} else {
3201		ASSERT3P(data_hdr, !=, NULL);
3202		ASSERT3P(meta_hdr, !=, NULL);
3203
3204		/* The headers can't be on the sublist without an L1 header */
3205		ASSERT(HDR_HAS_L1HDR(data_hdr));
3206		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3207
3208		if (data_hdr->b_l1hdr.b_arc_access <
3209		    meta_hdr->b_l1hdr.b_arc_access) {
3210			type = ARC_BUFC_DATA;
3211		} else {
3212			type = ARC_BUFC_METADATA;
3213		}
3214	}
3215
3216	multilist_sublist_unlock(meta_mls);
3217	multilist_sublist_unlock(data_mls);
3218
3219	return (type);
3220}
3221
3222/*
3223 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3224 */
3225static uint64_t
3226arc_adjust(void)
3227{
3228	uint64_t total_evicted = 0;
3229	uint64_t bytes;
3230	int64_t target;
3231
3232	/*
3233	 * If we're over arc_meta_limit, we want to correct that before
3234	 * potentially evicting data buffers below.
3235	 */
3236	total_evicted += arc_adjust_meta();
3237
3238	/*
3239	 * Adjust MRU size
3240	 *
3241	 * If we're over the target cache size, we want to evict enough
3242	 * from the list to get back to our target size. We don't want
3243	 * to evict too much from the MRU, such that it drops below
3244	 * arc_p. So, if we're over our target cache size more than
3245	 * the MRU is over arc_p, we'll evict enough to get back to
3246	 * arc_p here, and then evict more from the MFU below.
3247	 */
3248	target = MIN((int64_t)(arc_size - arc_c),
3249	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3250	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3251
3252	/*
3253	 * If we're below arc_meta_min, always prefer to evict data.
3254	 * Otherwise, try to satisfy the requested number of bytes to
3255	 * evict from the type which contains older buffers; in an
3256	 * effort to keep newer buffers in the cache regardless of their
3257	 * type. If we cannot satisfy the number of bytes from this
3258	 * type, spill over into the next type.
3259	 */
3260	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3261	    arc_meta_used > arc_meta_min) {
3262		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3263		total_evicted += bytes;
3264
3265		/*
3266		 * If we couldn't evict our target number of bytes from
3267		 * metadata, we try to get the rest from data.
3268		 */
3269		target -= bytes;
3270
3271		total_evicted +=
3272		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3273	} else {
3274		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3275		total_evicted += bytes;
3276
3277		/*
3278		 * If we couldn't evict our target number of bytes from
3279		 * data, we try to get the rest from metadata.
3280		 */
3281		target -= bytes;
3282
3283		total_evicted +=
3284		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3285	}
3286
3287	/*
3288	 * Adjust MFU size
3289	 *
3290	 * Now that we've tried to evict enough from the MRU to get its
3291	 * size back to arc_p, if we're still above the target cache
3292	 * size, we evict the rest from the MFU.
3293	 */
3294	target = arc_size - arc_c;
3295
3296	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3297	    arc_meta_used > arc_meta_min) {
3298		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3299		total_evicted += bytes;
3300
3301		/*
3302		 * If we couldn't evict our target number of bytes from
3303		 * metadata, we try to get the rest from data.
3304		 */
3305		target -= bytes;
3306
3307		total_evicted +=
3308		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3309	} else {
3310		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3311		total_evicted += bytes;
3312
3313		/*
3314		 * If we couldn't evict our target number of bytes from
3315		 * data, we try to get the rest from data.
3316		 */
3317		target -= bytes;
3318
3319		total_evicted +=
3320		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3321	}
3322
3323	/*
3324	 * Adjust ghost lists
3325	 *
3326	 * In addition to the above, the ARC also defines target values
3327	 * for the ghost lists. The sum of the mru list and mru ghost
3328	 * list should never exceed the target size of the cache, and
3329	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3330	 * ghost list should never exceed twice the target size of the
3331	 * cache. The following logic enforces these limits on the ghost
3332	 * caches, and evicts from them as needed.
3333	 */
3334	target = refcount_count(&arc_mru->arcs_size) +
3335	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3336
3337	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3338	total_evicted += bytes;
3339
3340	target -= bytes;
3341
3342	total_evicted +=
3343	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3344
3345	/*
3346	 * We assume the sum of the mru list and mfu list is less than
3347	 * or equal to arc_c (we enforced this above), which means we
3348	 * can use the simpler of the two equations below:
3349	 *
3350	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3351	 *		    mru ghost + mfu ghost <= arc_c
3352	 */
3353	target = refcount_count(&arc_mru_ghost->arcs_size) +
3354	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3355
3356	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3357	total_evicted += bytes;
3358
3359	target -= bytes;
3360
3361	total_evicted +=
3362	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3363
3364	return (total_evicted);
3365}
3366
3367static void
3368arc_do_user_evicts(void)
3369{
3370	mutex_enter(&arc_user_evicts_lock);
3371	while (arc_eviction_list != NULL) {
3372		arc_buf_t *buf = arc_eviction_list;
3373		arc_eviction_list = buf->b_next;
3374		mutex_enter(&buf->b_evict_lock);
3375		buf->b_hdr = NULL;
3376		mutex_exit(&buf->b_evict_lock);
3377		mutex_exit(&arc_user_evicts_lock);
3378
3379		if (buf->b_efunc != NULL)
3380			VERIFY0(buf->b_efunc(buf->b_private));
3381
3382		buf->b_efunc = NULL;
3383		buf->b_private = NULL;
3384		kmem_cache_free(buf_cache, buf);
3385		mutex_enter(&arc_user_evicts_lock);
3386	}
3387	mutex_exit(&arc_user_evicts_lock);
3388}
3389
3390void
3391arc_flush(spa_t *spa, boolean_t retry)
3392{
3393	uint64_t guid = 0;
3394
3395	/*
3396	 * If retry is TRUE, a spa must not be specified since we have
3397	 * no good way to determine if all of a spa's buffers have been
3398	 * evicted from an arc state.
3399	 */
3400	ASSERT(!retry || spa == 0);
3401
3402	if (spa != NULL)
3403		guid = spa_load_guid(spa);
3404
3405	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3406	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3407
3408	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3409	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3410
3411	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3412	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3413
3414	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3415	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3416
3417	arc_do_user_evicts();
3418	ASSERT(spa || arc_eviction_list == NULL);
3419}
3420
3421void
3422arc_shrink(int64_t to_free)
3423{
3424	if (arc_c > arc_c_min) {
3425		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3426			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3427		if (arc_c > arc_c_min + to_free)
3428			atomic_add_64(&arc_c, -to_free);
3429		else
3430			arc_c = arc_c_min;
3431
3432		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3433		if (arc_c > arc_size)
3434			arc_c = MAX(arc_size, arc_c_min);
3435		if (arc_p > arc_c)
3436			arc_p = (arc_c >> 1);
3437
3438		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3439			arc_p);
3440
3441		ASSERT(arc_c >= arc_c_min);
3442		ASSERT((int64_t)arc_p >= 0);
3443	}
3444
3445	if (arc_size > arc_c) {
3446		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3447			uint64_t, arc_c);
3448		(void) arc_adjust();
3449	}
3450}
3451
3452static long needfree = 0;
3453
3454typedef enum free_memory_reason_t {
3455	FMR_UNKNOWN,
3456	FMR_NEEDFREE,
3457	FMR_LOTSFREE,
3458	FMR_SWAPFS_MINFREE,
3459	FMR_PAGES_PP_MAXIMUM,
3460	FMR_HEAP_ARENA,
3461	FMR_ZIO_ARENA,
3462	FMR_ZIO_FRAG,
3463} free_memory_reason_t;
3464
3465int64_t last_free_memory;
3466free_memory_reason_t last_free_reason;
3467
3468/*
3469 * Additional reserve of pages for pp_reserve.
3470 */
3471int64_t arc_pages_pp_reserve = 64;
3472
3473/*
3474 * Additional reserve of pages for swapfs.
3475 */
3476int64_t arc_swapfs_reserve = 64;
3477
3478/*
3479 * Return the amount of memory that can be consumed before reclaim will be
3480 * needed.  Positive if there is sufficient free memory, negative indicates
3481 * the amount of memory that needs to be freed up.
3482 */
3483static int64_t
3484arc_available_memory(void)
3485{
3486	int64_t lowest = INT64_MAX;
3487	int64_t n;
3488	free_memory_reason_t r = FMR_UNKNOWN;
3489
3490#ifdef _KERNEL
3491	if (needfree > 0) {
3492		n = PAGESIZE * (-needfree);
3493		if (n < lowest) {
3494			lowest = n;
3495			r = FMR_NEEDFREE;
3496		}
3497	}
3498
3499	/*
3500	 * Cooperate with pagedaemon when it's time for it to scan
3501	 * and reclaim some pages.
3502	 */
3503	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3504	if (n < lowest) {
3505		lowest = n;
3506		r = FMR_LOTSFREE;
3507	}
3508
3509#ifdef illumos
3510	/*
3511	 * check that we're out of range of the pageout scanner.  It starts to
3512	 * schedule paging if freemem is less than lotsfree and needfree.
3513	 * lotsfree is the high-water mark for pageout, and needfree is the
3514	 * number of needed free pages.  We add extra pages here to make sure
3515	 * the scanner doesn't start up while we're freeing memory.
3516	 */
3517	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3518	if (n < lowest) {
3519		lowest = n;
3520		r = FMR_LOTSFREE;
3521	}
3522
3523	/*
3524	 * check to make sure that swapfs has enough space so that anon
3525	 * reservations can still succeed. anon_resvmem() checks that the
3526	 * availrmem is greater than swapfs_minfree, and the number of reserved
3527	 * swap pages.  We also add a bit of extra here just to prevent
3528	 * circumstances from getting really dire.
3529	 */
3530	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3531	    desfree - arc_swapfs_reserve);
3532	if (n < lowest) {
3533		lowest = n;
3534		r = FMR_SWAPFS_MINFREE;
3535	}
3536
3537
3538	/*
3539	 * Check that we have enough availrmem that memory locking (e.g., via
3540	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3541	 * stores the number of pages that cannot be locked; when availrmem
3542	 * drops below pages_pp_maximum, page locking mechanisms such as
3543	 * page_pp_lock() will fail.)
3544	 */
3545	n = PAGESIZE * (availrmem - pages_pp_maximum -
3546	    arc_pages_pp_reserve);
3547	if (n < lowest) {
3548		lowest = n;
3549		r = FMR_PAGES_PP_MAXIMUM;
3550	}
3551
3552#endif	/* illumos */
3553#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3554	/*
3555	 * If we're on an i386 platform, it's possible that we'll exhaust the
3556	 * kernel heap space before we ever run out of available physical
3557	 * memory.  Most checks of the size of the heap_area compare against
3558	 * tune.t_minarmem, which is the minimum available real memory that we
3559	 * can have in the system.  However, this is generally fixed at 25 pages
3560	 * which is so low that it's useless.  In this comparison, we seek to
3561	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3562	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3563	 * free)
3564	 */
3565	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3566	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3567	if (n < lowest) {
3568		lowest = n;
3569		r = FMR_HEAP_ARENA;
3570	}
3571#define	zio_arena	NULL
3572#else
3573#define	zio_arena	heap_arena
3574#endif
3575
3576	/*
3577	 * If zio data pages are being allocated out of a separate heap segment,
3578	 * then enforce that the size of available vmem for this arena remains
3579	 * above about 1/16th free.
3580	 *
3581	 * Note: The 1/16th arena free requirement was put in place
3582	 * to aggressively evict memory from the arc in order to avoid
3583	 * memory fragmentation issues.
3584	 */
3585	if (zio_arena != NULL) {
3586		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3587		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3588		if (n < lowest) {
3589			lowest = n;
3590			r = FMR_ZIO_ARENA;
3591		}
3592	}
3593
3594	/*
3595	 * Above limits know nothing about real level of KVA fragmentation.
3596	 * Start aggressive reclamation if too little sequential KVA left.
3597	 */
3598	if (lowest > 0) {
3599		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3600		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3601		    INT64_MAX;
3602		if (n < lowest) {
3603			lowest = n;
3604			r = FMR_ZIO_FRAG;
3605		}
3606	}
3607
3608#else	/* _KERNEL */
3609	/* Every 100 calls, free a small amount */
3610	if (spa_get_random(100) == 0)
3611		lowest = -1024;
3612#endif	/* _KERNEL */
3613
3614	last_free_memory = lowest;
3615	last_free_reason = r;
3616	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3617	return (lowest);
3618}
3619
3620
3621/*
3622 * Determine if the system is under memory pressure and is asking
3623 * to reclaim memory. A return value of TRUE indicates that the system
3624 * is under memory pressure and that the arc should adjust accordingly.
3625 */
3626static boolean_t
3627arc_reclaim_needed(void)
3628{
3629	return (arc_available_memory() < 0);
3630}
3631
3632extern kmem_cache_t	*zio_buf_cache[];
3633extern kmem_cache_t	*zio_data_buf_cache[];
3634extern kmem_cache_t	*range_seg_cache;
3635
3636static __noinline void
3637arc_kmem_reap_now(void)
3638{
3639	size_t			i;
3640	kmem_cache_t		*prev_cache = NULL;
3641	kmem_cache_t		*prev_data_cache = NULL;
3642
3643	DTRACE_PROBE(arc__kmem_reap_start);
3644#ifdef _KERNEL
3645	if (arc_meta_used >= arc_meta_limit) {
3646		/*
3647		 * We are exceeding our meta-data cache limit.
3648		 * Purge some DNLC entries to release holds on meta-data.
3649		 */
3650		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3651	}
3652#if defined(__i386)
3653	/*
3654	 * Reclaim unused memory from all kmem caches.
3655	 */
3656	kmem_reap();
3657#endif
3658#endif
3659
3660	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3661		if (zio_buf_cache[i] != prev_cache) {
3662			prev_cache = zio_buf_cache[i];
3663			kmem_cache_reap_now(zio_buf_cache[i]);
3664		}
3665		if (zio_data_buf_cache[i] != prev_data_cache) {
3666			prev_data_cache = zio_data_buf_cache[i];
3667			kmem_cache_reap_now(zio_data_buf_cache[i]);
3668		}
3669	}
3670	kmem_cache_reap_now(buf_cache);
3671	kmem_cache_reap_now(hdr_full_cache);
3672	kmem_cache_reap_now(hdr_l2only_cache);
3673	kmem_cache_reap_now(range_seg_cache);
3674
3675#ifdef illumos
3676	if (zio_arena != NULL) {
3677		/*
3678		 * Ask the vmem arena to reclaim unused memory from its
3679		 * quantum caches.
3680		 */
3681		vmem_qcache_reap(zio_arena);
3682	}
3683#endif
3684	DTRACE_PROBE(arc__kmem_reap_end);
3685}
3686
3687/*
3688 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3689 * enough data and signal them to proceed. When this happens, the threads in
3690 * arc_get_data_buf() are sleeping while holding the hash lock for their
3691 * particular arc header. Thus, we must be careful to never sleep on a
3692 * hash lock in this thread. This is to prevent the following deadlock:
3693 *
3694 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3695 *    waiting for the reclaim thread to signal it.
3696 *
3697 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3698 *    fails, and goes to sleep forever.
3699 *
3700 * This possible deadlock is avoided by always acquiring a hash lock
3701 * using mutex_tryenter() from arc_reclaim_thread().
3702 */
3703static void
3704arc_reclaim_thread(void *dummy __unused)
3705{
3706	hrtime_t		growtime = 0;
3707	callb_cpr_t		cpr;
3708
3709	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3710
3711	mutex_enter(&arc_reclaim_lock);
3712	while (!arc_reclaim_thread_exit) {
3713		int64_t free_memory = arc_available_memory();
3714		uint64_t evicted = 0;
3715
3716		mutex_exit(&arc_reclaim_lock);
3717
3718		if (free_memory < 0) {
3719
3720			arc_no_grow = B_TRUE;
3721			arc_warm = B_TRUE;
3722
3723			/*
3724			 * Wait at least zfs_grow_retry (default 60) seconds
3725			 * before considering growing.
3726			 */
3727			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3728
3729			arc_kmem_reap_now();
3730
3731			/*
3732			 * If we are still low on memory, shrink the ARC
3733			 * so that we have arc_shrink_min free space.
3734			 */
3735			free_memory = arc_available_memory();
3736
3737			int64_t to_free =
3738			    (arc_c >> arc_shrink_shift) - free_memory;
3739			if (to_free > 0) {
3740#ifdef _KERNEL
3741				to_free = MAX(to_free, ptob(needfree));
3742#endif
3743				arc_shrink(to_free);
3744			}
3745		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3746			arc_no_grow = B_TRUE;
3747		} else if (gethrtime() >= growtime) {
3748			arc_no_grow = B_FALSE;
3749		}
3750
3751		evicted = arc_adjust();
3752
3753		mutex_enter(&arc_reclaim_lock);
3754
3755		/*
3756		 * If evicted is zero, we couldn't evict anything via
3757		 * arc_adjust(). This could be due to hash lock
3758		 * collisions, but more likely due to the majority of
3759		 * arc buffers being unevictable. Therefore, even if
3760		 * arc_size is above arc_c, another pass is unlikely to
3761		 * be helpful and could potentially cause us to enter an
3762		 * infinite loop.
3763		 */
3764		if (arc_size <= arc_c || evicted == 0) {
3765#ifdef _KERNEL
3766			needfree = 0;
3767#endif
3768			/*
3769			 * We're either no longer overflowing, or we
3770			 * can't evict anything more, so we should wake
3771			 * up any threads before we go to sleep.
3772			 */
3773			cv_broadcast(&arc_reclaim_waiters_cv);
3774
3775			/*
3776			 * Block until signaled, or after one second (we
3777			 * might need to perform arc_kmem_reap_now()
3778			 * even if we aren't being signalled)
3779			 */
3780			CALLB_CPR_SAFE_BEGIN(&cpr);
3781			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3782			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3783			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3784		}
3785	}
3786
3787	arc_reclaim_thread_exit = FALSE;
3788	cv_broadcast(&arc_reclaim_thread_cv);
3789	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3790	thread_exit();
3791}
3792
3793static void
3794arc_user_evicts_thread(void *dummy __unused)
3795{
3796	callb_cpr_t cpr;
3797
3798	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3799
3800	mutex_enter(&arc_user_evicts_lock);
3801	while (!arc_user_evicts_thread_exit) {
3802		mutex_exit(&arc_user_evicts_lock);
3803
3804		arc_do_user_evicts();
3805
3806		/*
3807		 * This is necessary in order for the mdb ::arc dcmd to
3808		 * show up to date information. Since the ::arc command
3809		 * does not call the kstat's update function, without
3810		 * this call, the command may show stale stats for the
3811		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3812		 * with this change, the data might be up to 1 second
3813		 * out of date; but that should suffice. The arc_state_t
3814		 * structures can be queried directly if more accurate
3815		 * information is needed.
3816		 */
3817		if (arc_ksp != NULL)
3818			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3819
3820		mutex_enter(&arc_user_evicts_lock);
3821
3822		/*
3823		 * Block until signaled, or after one second (we need to
3824		 * call the arc's kstat update function regularly).
3825		 */
3826		CALLB_CPR_SAFE_BEGIN(&cpr);
3827		(void) cv_timedwait(&arc_user_evicts_cv,
3828		    &arc_user_evicts_lock, hz);
3829		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3830	}
3831
3832	arc_user_evicts_thread_exit = FALSE;
3833	cv_broadcast(&arc_user_evicts_cv);
3834	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3835	thread_exit();
3836}
3837
3838static u_int arc_dnlc_evicts_arg;
3839extern struct vfsops zfs_vfsops;
3840
3841static void
3842arc_dnlc_evicts_thread(void *dummy __unused)
3843{
3844	callb_cpr_t cpr;
3845	u_int percent;
3846
3847	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
3848
3849	mutex_enter(&arc_dnlc_evicts_lock);
3850	while (!arc_dnlc_evicts_thread_exit) {
3851		CALLB_CPR_SAFE_BEGIN(&cpr);
3852		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
3853		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
3854		if (arc_dnlc_evicts_arg != 0) {
3855			percent = arc_dnlc_evicts_arg;
3856			mutex_exit(&arc_dnlc_evicts_lock);
3857#ifdef _KERNEL
3858			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
3859#endif
3860			mutex_enter(&arc_dnlc_evicts_lock);
3861			/*
3862			 * Clear our token only after vnlru_free()
3863			 * pass is done, to avoid false queueing of
3864			 * the requests.
3865			 */
3866			arc_dnlc_evicts_arg = 0;
3867		}
3868	}
3869	arc_dnlc_evicts_thread_exit = FALSE;
3870	cv_broadcast(&arc_dnlc_evicts_cv);
3871	CALLB_CPR_EXIT(&cpr);
3872	thread_exit();
3873}
3874
3875void
3876dnlc_reduce_cache(void *arg)
3877{
3878	u_int percent;
3879
3880	percent = (u_int)(uintptr_t)arg;
3881	mutex_enter(&arc_dnlc_evicts_lock);
3882	if (arc_dnlc_evicts_arg == 0) {
3883		arc_dnlc_evicts_arg = percent;
3884		cv_broadcast(&arc_dnlc_evicts_cv);
3885	}
3886	mutex_exit(&arc_dnlc_evicts_lock);
3887}
3888
3889/*
3890 * Adapt arc info given the number of bytes we are trying to add and
3891 * the state that we are comming from.  This function is only called
3892 * when we are adding new content to the cache.
3893 */
3894static void
3895arc_adapt(int bytes, arc_state_t *state)
3896{
3897	int mult;
3898	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3899	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3900	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3901
3902	if (state == arc_l2c_only)
3903		return;
3904
3905	ASSERT(bytes > 0);
3906	/*
3907	 * Adapt the target size of the MRU list:
3908	 *	- if we just hit in the MRU ghost list, then increase
3909	 *	  the target size of the MRU list.
3910	 *	- if we just hit in the MFU ghost list, then increase
3911	 *	  the target size of the MFU list by decreasing the
3912	 *	  target size of the MRU list.
3913	 */
3914	if (state == arc_mru_ghost) {
3915		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3916		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3917
3918		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3919	} else if (state == arc_mfu_ghost) {
3920		uint64_t delta;
3921
3922		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3923		mult = MIN(mult, 10);
3924
3925		delta = MIN(bytes * mult, arc_p);
3926		arc_p = MAX(arc_p_min, arc_p - delta);
3927	}
3928	ASSERT((int64_t)arc_p >= 0);
3929
3930	if (arc_reclaim_needed()) {
3931		cv_signal(&arc_reclaim_thread_cv);
3932		return;
3933	}
3934
3935	if (arc_no_grow)
3936		return;
3937
3938	if (arc_c >= arc_c_max)
3939		return;
3940
3941	/*
3942	 * If we're within (2 * maxblocksize) bytes of the target
3943	 * cache size, increment the target cache size
3944	 */
3945	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3946		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3947		atomic_add_64(&arc_c, (int64_t)bytes);
3948		if (arc_c > arc_c_max)
3949			arc_c = arc_c_max;
3950		else if (state == arc_anon)
3951			atomic_add_64(&arc_p, (int64_t)bytes);
3952		if (arc_p > arc_c)
3953			arc_p = arc_c;
3954	}
3955	ASSERT((int64_t)arc_p >= 0);
3956}
3957
3958/*
3959 * Check if arc_size has grown past our upper threshold, determined by
3960 * zfs_arc_overflow_shift.
3961 */
3962static boolean_t
3963arc_is_overflowing(void)
3964{
3965	/* Always allow at least one block of overflow */
3966	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3967	    arc_c >> zfs_arc_overflow_shift);
3968
3969	return (arc_size >= arc_c + overflow);
3970}
3971
3972/*
3973 * The buffer, supplied as the first argument, needs a data block. If we
3974 * are hitting the hard limit for the cache size, we must sleep, waiting
3975 * for the eviction thread to catch up. If we're past the target size
3976 * but below the hard limit, we'll only signal the reclaim thread and
3977 * continue on.
3978 */
3979static void
3980arc_get_data_buf(arc_buf_t *buf)
3981{
3982	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3983	uint64_t		size = buf->b_hdr->b_size;
3984	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3985
3986	arc_adapt(size, state);
3987
3988	/*
3989	 * If arc_size is currently overflowing, and has grown past our
3990	 * upper limit, we must be adding data faster than the evict
3991	 * thread can evict. Thus, to ensure we don't compound the
3992	 * problem by adding more data and forcing arc_size to grow even
3993	 * further past it's target size, we halt and wait for the
3994	 * eviction thread to catch up.
3995	 *
3996	 * It's also possible that the reclaim thread is unable to evict
3997	 * enough buffers to get arc_size below the overflow limit (e.g.
3998	 * due to buffers being un-evictable, or hash lock collisions).
3999	 * In this case, we want to proceed regardless if we're
4000	 * overflowing; thus we don't use a while loop here.
4001	 */
4002	if (arc_is_overflowing()) {
4003		mutex_enter(&arc_reclaim_lock);
4004
4005		/*
4006		 * Now that we've acquired the lock, we may no longer be
4007		 * over the overflow limit, lets check.
4008		 *
4009		 * We're ignoring the case of spurious wake ups. If that
4010		 * were to happen, it'd let this thread consume an ARC
4011		 * buffer before it should have (i.e. before we're under
4012		 * the overflow limit and were signalled by the reclaim
4013		 * thread). As long as that is a rare occurrence, it
4014		 * shouldn't cause any harm.
4015		 */
4016		if (arc_is_overflowing()) {
4017			cv_signal(&arc_reclaim_thread_cv);
4018			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4019		}
4020
4021		mutex_exit(&arc_reclaim_lock);
4022	}
4023
4024	if (type == ARC_BUFC_METADATA) {
4025		buf->b_data = zio_buf_alloc(size);
4026		arc_space_consume(size, ARC_SPACE_META);
4027	} else {
4028		ASSERT(type == ARC_BUFC_DATA);
4029		buf->b_data = zio_data_buf_alloc(size);
4030		arc_space_consume(size, ARC_SPACE_DATA);
4031	}
4032
4033	/*
4034	 * Update the state size.  Note that ghost states have a
4035	 * "ghost size" and so don't need to be updated.
4036	 */
4037	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
4038		arc_buf_hdr_t *hdr = buf->b_hdr;
4039		arc_state_t *state = hdr->b_l1hdr.b_state;
4040
4041		(void) refcount_add_many(&state->arcs_size, size, buf);
4042
4043		/*
4044		 * If this is reached via arc_read, the link is
4045		 * protected by the hash lock. If reached via
4046		 * arc_buf_alloc, the header should not be accessed by
4047		 * any other thread. And, if reached via arc_read_done,
4048		 * the hash lock will protect it if it's found in the
4049		 * hash table; otherwise no other thread should be
4050		 * trying to [add|remove]_reference it.
4051		 */
4052		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4053			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4054			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4055			    size);
4056		}
4057		/*
4058		 * If we are growing the cache, and we are adding anonymous
4059		 * data, and we have outgrown arc_p, update arc_p
4060		 */
4061		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4062		    (refcount_count(&arc_anon->arcs_size) +
4063		    refcount_count(&arc_mru->arcs_size) > arc_p))
4064			arc_p = MIN(arc_c, arc_p + size);
4065	}
4066	ARCSTAT_BUMP(arcstat_allocated);
4067}
4068
4069/*
4070 * This routine is called whenever a buffer is accessed.
4071 * NOTE: the hash lock is dropped in this function.
4072 */
4073static void
4074arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4075{
4076	clock_t now;
4077
4078	ASSERT(MUTEX_HELD(hash_lock));
4079	ASSERT(HDR_HAS_L1HDR(hdr));
4080
4081	if (hdr->b_l1hdr.b_state == arc_anon) {
4082		/*
4083		 * This buffer is not in the cache, and does not
4084		 * appear in our "ghost" list.  Add the new buffer
4085		 * to the MRU state.
4086		 */
4087
4088		ASSERT0(hdr->b_l1hdr.b_arc_access);
4089		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4090		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4091		arc_change_state(arc_mru, hdr, hash_lock);
4092
4093	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4094		now = ddi_get_lbolt();
4095
4096		/*
4097		 * If this buffer is here because of a prefetch, then either:
4098		 * - clear the flag if this is a "referencing" read
4099		 *   (any subsequent access will bump this into the MFU state).
4100		 * or
4101		 * - move the buffer to the head of the list if this is
4102		 *   another prefetch (to make it less likely to be evicted).
4103		 */
4104		if (HDR_PREFETCH(hdr)) {
4105			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4106				/* link protected by hash lock */
4107				ASSERT(multilist_link_active(
4108				    &hdr->b_l1hdr.b_arc_node));
4109			} else {
4110				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4111				ARCSTAT_BUMP(arcstat_mru_hits);
4112			}
4113			hdr->b_l1hdr.b_arc_access = now;
4114			return;
4115		}
4116
4117		/*
4118		 * This buffer has been "accessed" only once so far,
4119		 * but it is still in the cache. Move it to the MFU
4120		 * state.
4121		 */
4122		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4123			/*
4124			 * More than 125ms have passed since we
4125			 * instantiated this buffer.  Move it to the
4126			 * most frequently used state.
4127			 */
4128			hdr->b_l1hdr.b_arc_access = now;
4129			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4130			arc_change_state(arc_mfu, hdr, hash_lock);
4131		}
4132		ARCSTAT_BUMP(arcstat_mru_hits);
4133	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4134		arc_state_t	*new_state;
4135		/*
4136		 * This buffer has been "accessed" recently, but
4137		 * was evicted from the cache.  Move it to the
4138		 * MFU state.
4139		 */
4140
4141		if (HDR_PREFETCH(hdr)) {
4142			new_state = arc_mru;
4143			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4144				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4145			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4146		} else {
4147			new_state = arc_mfu;
4148			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4149		}
4150
4151		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4152		arc_change_state(new_state, hdr, hash_lock);
4153
4154		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4155	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4156		/*
4157		 * This buffer has been accessed more than once and is
4158		 * still in the cache.  Keep it in the MFU state.
4159		 *
4160		 * NOTE: an add_reference() that occurred when we did
4161		 * the arc_read() will have kicked this off the list.
4162		 * If it was a prefetch, we will explicitly move it to
4163		 * the head of the list now.
4164		 */
4165		if ((HDR_PREFETCH(hdr)) != 0) {
4166			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4167			/* link protected by hash_lock */
4168			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4169		}
4170		ARCSTAT_BUMP(arcstat_mfu_hits);
4171		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4172	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4173		arc_state_t	*new_state = arc_mfu;
4174		/*
4175		 * This buffer has been accessed more than once but has
4176		 * been evicted from the cache.  Move it back to the
4177		 * MFU state.
4178		 */
4179
4180		if (HDR_PREFETCH(hdr)) {
4181			/*
4182			 * This is a prefetch access...
4183			 * move this block back to the MRU state.
4184			 */
4185			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4186			new_state = arc_mru;
4187		}
4188
4189		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4190		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4191		arc_change_state(new_state, hdr, hash_lock);
4192
4193		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4194	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4195		/*
4196		 * This buffer is on the 2nd Level ARC.
4197		 */
4198
4199		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4200		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4201		arc_change_state(arc_mfu, hdr, hash_lock);
4202	} else {
4203		ASSERT(!"invalid arc state");
4204	}
4205}
4206
4207/* a generic arc_done_func_t which you can use */
4208/* ARGSUSED */
4209void
4210arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4211{
4212	if (zio == NULL || zio->io_error == 0)
4213		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4214	VERIFY(arc_buf_remove_ref(buf, arg));
4215}
4216
4217/* a generic arc_done_func_t */
4218void
4219arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4220{
4221	arc_buf_t **bufp = arg;
4222	if (zio && zio->io_error) {
4223		VERIFY(arc_buf_remove_ref(buf, arg));
4224		*bufp = NULL;
4225	} else {
4226		*bufp = buf;
4227		ASSERT(buf->b_data);
4228	}
4229}
4230
4231static void
4232arc_read_done(zio_t *zio)
4233{
4234	arc_buf_hdr_t	*hdr;
4235	arc_buf_t	*buf;
4236	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4237	kmutex_t	*hash_lock = NULL;
4238	arc_callback_t	*callback_list, *acb;
4239	int		freeable = FALSE;
4240
4241	buf = zio->io_private;
4242	hdr = buf->b_hdr;
4243
4244	/*
4245	 * The hdr was inserted into hash-table and removed from lists
4246	 * prior to starting I/O.  We should find this header, since
4247	 * it's in the hash table, and it should be legit since it's
4248	 * not possible to evict it during the I/O.  The only possible
4249	 * reason for it not to be found is if we were freed during the
4250	 * read.
4251	 */
4252	if (HDR_IN_HASH_TABLE(hdr)) {
4253		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4254		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4255		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4256		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4257		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4258
4259		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4260		    &hash_lock);
4261
4262		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4263		    hash_lock == NULL) ||
4264		    (found == hdr &&
4265		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4266		    (found == hdr && HDR_L2_READING(hdr)));
4267	}
4268
4269	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4270	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4271		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4272
4273	/* byteswap if necessary */
4274	callback_list = hdr->b_l1hdr.b_acb;
4275	ASSERT(callback_list != NULL);
4276	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4277		dmu_object_byteswap_t bswap =
4278		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4279		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4280		    byteswap_uint64_array :
4281		    dmu_ot_byteswap[bswap].ob_func;
4282		func(buf->b_data, hdr->b_size);
4283	}
4284
4285	arc_cksum_compute(buf, B_FALSE);
4286#ifdef illumos
4287	arc_buf_watch(buf);
4288#endif
4289
4290	if (hash_lock && zio->io_error == 0 &&
4291	    hdr->b_l1hdr.b_state == arc_anon) {
4292		/*
4293		 * Only call arc_access on anonymous buffers.  This is because
4294		 * if we've issued an I/O for an evicted buffer, we've already
4295		 * called arc_access (to prevent any simultaneous readers from
4296		 * getting confused).
4297		 */
4298		arc_access(hdr, hash_lock);
4299	}
4300
4301	/* create copies of the data buffer for the callers */
4302	abuf = buf;
4303	for (acb = callback_list; acb; acb = acb->acb_next) {
4304		if (acb->acb_done) {
4305			if (abuf == NULL) {
4306				ARCSTAT_BUMP(arcstat_duplicate_reads);
4307				abuf = arc_buf_clone(buf);
4308			}
4309			acb->acb_buf = abuf;
4310			abuf = NULL;
4311		}
4312	}
4313	hdr->b_l1hdr.b_acb = NULL;
4314	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4315	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4316	if (abuf == buf) {
4317		ASSERT(buf->b_efunc == NULL);
4318		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4319		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4320	}
4321
4322	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4323	    callback_list != NULL);
4324
4325	if (zio->io_error != 0) {
4326		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4327		if (hdr->b_l1hdr.b_state != arc_anon)
4328			arc_change_state(arc_anon, hdr, hash_lock);
4329		if (HDR_IN_HASH_TABLE(hdr))
4330			buf_hash_remove(hdr);
4331		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4332	}
4333
4334	/*
4335	 * Broadcast before we drop the hash_lock to avoid the possibility
4336	 * that the hdr (and hence the cv) might be freed before we get to
4337	 * the cv_broadcast().
4338	 */
4339	cv_broadcast(&hdr->b_l1hdr.b_cv);
4340
4341	if (hash_lock != NULL) {
4342		mutex_exit(hash_lock);
4343	} else {
4344		/*
4345		 * This block was freed while we waited for the read to
4346		 * complete.  It has been removed from the hash table and
4347		 * moved to the anonymous state (so that it won't show up
4348		 * in the cache).
4349		 */
4350		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4351		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4352	}
4353
4354	/* execute each callback and free its structure */
4355	while ((acb = callback_list) != NULL) {
4356		if (acb->acb_done)
4357			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4358
4359		if (acb->acb_zio_dummy != NULL) {
4360			acb->acb_zio_dummy->io_error = zio->io_error;
4361			zio_nowait(acb->acb_zio_dummy);
4362		}
4363
4364		callback_list = acb->acb_next;
4365		kmem_free(acb, sizeof (arc_callback_t));
4366	}
4367
4368	if (freeable)
4369		arc_hdr_destroy(hdr);
4370}
4371
4372/*
4373 * "Read" the block at the specified DVA (in bp) via the
4374 * cache.  If the block is found in the cache, invoke the provided
4375 * callback immediately and return.  Note that the `zio' parameter
4376 * in the callback will be NULL in this case, since no IO was
4377 * required.  If the block is not in the cache pass the read request
4378 * on to the spa with a substitute callback function, so that the
4379 * requested block will be added to the cache.
4380 *
4381 * If a read request arrives for a block that has a read in-progress,
4382 * either wait for the in-progress read to complete (and return the
4383 * results); or, if this is a read with a "done" func, add a record
4384 * to the read to invoke the "done" func when the read completes,
4385 * and return; or just return.
4386 *
4387 * arc_read_done() will invoke all the requested "done" functions
4388 * for readers of this block.
4389 */
4390int
4391arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4392    void *private, zio_priority_t priority, int zio_flags,
4393    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4394{
4395	arc_buf_hdr_t *hdr = NULL;
4396	arc_buf_t *buf = NULL;
4397	kmutex_t *hash_lock = NULL;
4398	zio_t *rzio;
4399	uint64_t guid = spa_load_guid(spa);
4400
4401	ASSERT(!BP_IS_EMBEDDED(bp) ||
4402	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4403
4404top:
4405	if (!BP_IS_EMBEDDED(bp)) {
4406		/*
4407		 * Embedded BP's have no DVA and require no I/O to "read".
4408		 * Create an anonymous arc buf to back it.
4409		 */
4410		hdr = buf_hash_find(guid, bp, &hash_lock);
4411	}
4412
4413	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4414
4415		*arc_flags |= ARC_FLAG_CACHED;
4416
4417		if (HDR_IO_IN_PROGRESS(hdr)) {
4418
4419			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4420			    priority == ZIO_PRIORITY_SYNC_READ) {
4421				/*
4422				 * This sync read must wait for an
4423				 * in-progress async read (e.g. a predictive
4424				 * prefetch).  Async reads are queued
4425				 * separately at the vdev_queue layer, so
4426				 * this is a form of priority inversion.
4427				 * Ideally, we would "inherit" the demand
4428				 * i/o's priority by moving the i/o from
4429				 * the async queue to the synchronous queue,
4430				 * but there is currently no mechanism to do
4431				 * so.  Track this so that we can evaluate
4432				 * the magnitude of this potential performance
4433				 * problem.
4434				 *
4435				 * Note that if the prefetch i/o is already
4436				 * active (has been issued to the device),
4437				 * the prefetch improved performance, because
4438				 * we issued it sooner than we would have
4439				 * without the prefetch.
4440				 */
4441				DTRACE_PROBE1(arc__sync__wait__for__async,
4442				    arc_buf_hdr_t *, hdr);
4443				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4444			}
4445			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4446				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4447			}
4448
4449			if (*arc_flags & ARC_FLAG_WAIT) {
4450				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4451				mutex_exit(hash_lock);
4452				goto top;
4453			}
4454			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4455
4456			if (done) {
4457				arc_callback_t *acb = NULL;
4458
4459				acb = kmem_zalloc(sizeof (arc_callback_t),
4460				    KM_SLEEP);
4461				acb->acb_done = done;
4462				acb->acb_private = private;
4463				if (pio != NULL)
4464					acb->acb_zio_dummy = zio_null(pio,
4465					    spa, NULL, NULL, NULL, zio_flags);
4466
4467				ASSERT(acb->acb_done != NULL);
4468				acb->acb_next = hdr->b_l1hdr.b_acb;
4469				hdr->b_l1hdr.b_acb = acb;
4470				add_reference(hdr, hash_lock, private);
4471				mutex_exit(hash_lock);
4472				return (0);
4473			}
4474			mutex_exit(hash_lock);
4475			return (0);
4476		}
4477
4478		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4479		    hdr->b_l1hdr.b_state == arc_mfu);
4480
4481		if (done) {
4482			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4483				/*
4484				 * This is a demand read which does not have to
4485				 * wait for i/o because we did a predictive
4486				 * prefetch i/o for it, which has completed.
4487				 */
4488				DTRACE_PROBE1(
4489				    arc__demand__hit__predictive__prefetch,
4490				    arc_buf_hdr_t *, hdr);
4491				ARCSTAT_BUMP(
4492				    arcstat_demand_hit_predictive_prefetch);
4493				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4494			}
4495			add_reference(hdr, hash_lock, private);
4496			/*
4497			 * If this block is already in use, create a new
4498			 * copy of the data so that we will be guaranteed
4499			 * that arc_release() will always succeed.
4500			 */
4501			buf = hdr->b_l1hdr.b_buf;
4502			ASSERT(buf);
4503			ASSERT(buf->b_data);
4504			if (HDR_BUF_AVAILABLE(hdr)) {
4505				ASSERT(buf->b_efunc == NULL);
4506				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4507			} else {
4508				buf = arc_buf_clone(buf);
4509			}
4510
4511		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4512		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4513			hdr->b_flags |= ARC_FLAG_PREFETCH;
4514		}
4515		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4516		arc_access(hdr, hash_lock);
4517		if (*arc_flags & ARC_FLAG_L2CACHE)
4518			hdr->b_flags |= ARC_FLAG_L2CACHE;
4519		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4520			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4521		mutex_exit(hash_lock);
4522		ARCSTAT_BUMP(arcstat_hits);
4523		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4524		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4525		    data, metadata, hits);
4526
4527		if (done)
4528			done(NULL, buf, private);
4529	} else {
4530		uint64_t size = BP_GET_LSIZE(bp);
4531		arc_callback_t *acb;
4532		vdev_t *vd = NULL;
4533		uint64_t addr = 0;
4534		boolean_t devw = B_FALSE;
4535		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4536		int32_t b_asize = 0;
4537
4538		if (hdr == NULL) {
4539			/* this block is not in the cache */
4540			arc_buf_hdr_t *exists = NULL;
4541			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4542			buf = arc_buf_alloc(spa, size, private, type);
4543			hdr = buf->b_hdr;
4544			if (!BP_IS_EMBEDDED(bp)) {
4545				hdr->b_dva = *BP_IDENTITY(bp);
4546				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4547				exists = buf_hash_insert(hdr, &hash_lock);
4548			}
4549			if (exists != NULL) {
4550				/* somebody beat us to the hash insert */
4551				mutex_exit(hash_lock);
4552				buf_discard_identity(hdr);
4553				(void) arc_buf_remove_ref(buf, private);
4554				goto top; /* restart the IO request */
4555			}
4556
4557			/*
4558			 * If there is a callback, we pass our reference to
4559			 * it; otherwise we remove our reference.
4560			 */
4561			if (done == NULL) {
4562				(void) remove_reference(hdr, hash_lock,
4563				    private);
4564			}
4565			if (*arc_flags & ARC_FLAG_PREFETCH)
4566				hdr->b_flags |= ARC_FLAG_PREFETCH;
4567			if (*arc_flags & ARC_FLAG_L2CACHE)
4568				hdr->b_flags |= ARC_FLAG_L2CACHE;
4569			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4570				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4571			if (BP_GET_LEVEL(bp) > 0)
4572				hdr->b_flags |= ARC_FLAG_INDIRECT;
4573		} else {
4574			/*
4575			 * This block is in the ghost cache. If it was L2-only
4576			 * (and thus didn't have an L1 hdr), we realloc the
4577			 * header to add an L1 hdr.
4578			 */
4579			if (!HDR_HAS_L1HDR(hdr)) {
4580				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4581				    hdr_full_cache);
4582			}
4583
4584			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4585			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4586			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4587			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4588
4589			/*
4590			 * If there is a callback, we pass a reference to it.
4591			 */
4592			if (done != NULL)
4593				add_reference(hdr, hash_lock, private);
4594			if (*arc_flags & ARC_FLAG_PREFETCH)
4595				hdr->b_flags |= ARC_FLAG_PREFETCH;
4596			if (*arc_flags & ARC_FLAG_L2CACHE)
4597				hdr->b_flags |= ARC_FLAG_L2CACHE;
4598			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4599				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4600			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4601			buf->b_hdr = hdr;
4602			buf->b_data = NULL;
4603			buf->b_efunc = NULL;
4604			buf->b_private = NULL;
4605			buf->b_next = NULL;
4606			hdr->b_l1hdr.b_buf = buf;
4607			ASSERT0(hdr->b_l1hdr.b_datacnt);
4608			hdr->b_l1hdr.b_datacnt = 1;
4609			arc_get_data_buf(buf);
4610			arc_access(hdr, hash_lock);
4611		}
4612
4613		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4614			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4615		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4616
4617		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4618		acb->acb_done = done;
4619		acb->acb_private = private;
4620
4621		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4622		hdr->b_l1hdr.b_acb = acb;
4623		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4624
4625		if (HDR_HAS_L2HDR(hdr) &&
4626		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4627			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4628			addr = hdr->b_l2hdr.b_daddr;
4629			b_compress = hdr->b_l2hdr.b_compress;
4630			b_asize = hdr->b_l2hdr.b_asize;
4631			/*
4632			 * Lock out device removal.
4633			 */
4634			if (vdev_is_dead(vd) ||
4635			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4636				vd = NULL;
4637		}
4638
4639		if (hash_lock != NULL)
4640			mutex_exit(hash_lock);
4641
4642		/*
4643		 * At this point, we have a level 1 cache miss.  Try again in
4644		 * L2ARC if possible.
4645		 */
4646		ASSERT3U(hdr->b_size, ==, size);
4647		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4648		    uint64_t, size, zbookmark_phys_t *, zb);
4649		ARCSTAT_BUMP(arcstat_misses);
4650		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4651		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4652		    data, metadata, misses);
4653#ifdef _KERNEL
4654#ifdef RACCT
4655		if (racct_enable) {
4656			PROC_LOCK(curproc);
4657			racct_add_force(curproc, RACCT_READBPS, size);
4658			racct_add_force(curproc, RACCT_READIOPS, 1);
4659			PROC_UNLOCK(curproc);
4660		}
4661#endif /* RACCT */
4662		curthread->td_ru.ru_inblock++;
4663#endif
4664
4665		if (priority == ZIO_PRIORITY_ASYNC_READ)
4666			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4667		else
4668			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4669
4670		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4671			/*
4672			 * Read from the L2ARC if the following are true:
4673			 * 1. The L2ARC vdev was previously cached.
4674			 * 2. This buffer still has L2ARC metadata.
4675			 * 3. This buffer isn't currently writing to the L2ARC.
4676			 * 4. The L2ARC entry wasn't evicted, which may
4677			 *    also have invalidated the vdev.
4678			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4679			 */
4680			if (HDR_HAS_L2HDR(hdr) &&
4681			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4682			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4683				l2arc_read_callback_t *cb;
4684				void* b_data;
4685
4686				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4687				ARCSTAT_BUMP(arcstat_l2_hits);
4688
4689				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4690				    KM_SLEEP);
4691				cb->l2rcb_buf = buf;
4692				cb->l2rcb_spa = spa;
4693				cb->l2rcb_bp = *bp;
4694				cb->l2rcb_zb = *zb;
4695				cb->l2rcb_flags = zio_flags;
4696				cb->l2rcb_compress = b_compress;
4697				if (b_asize > hdr->b_size) {
4698					ASSERT3U(b_compress, ==,
4699					    ZIO_COMPRESS_OFF);
4700					b_data = zio_data_buf_alloc(b_asize);
4701					cb->l2rcb_data = b_data;
4702				} else {
4703					b_data = buf->b_data;
4704				}
4705
4706				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4707				    addr + size < vd->vdev_psize -
4708				    VDEV_LABEL_END_SIZE);
4709
4710				/*
4711				 * l2arc read.  The SCL_L2ARC lock will be
4712				 * released by l2arc_read_done().
4713				 * Issue a null zio if the underlying buffer
4714				 * was squashed to zero size by compression.
4715				 */
4716				if (b_compress == ZIO_COMPRESS_EMPTY) {
4717					ASSERT3U(b_asize, ==, 0);
4718					rzio = zio_null(pio, spa, vd,
4719					    l2arc_read_done, cb,
4720					    zio_flags | ZIO_FLAG_DONT_CACHE |
4721					    ZIO_FLAG_CANFAIL |
4722					    ZIO_FLAG_DONT_PROPAGATE |
4723					    ZIO_FLAG_DONT_RETRY);
4724				} else {
4725					rzio = zio_read_phys(pio, vd, addr,
4726					    b_asize, b_data,
4727					    ZIO_CHECKSUM_OFF,
4728					    l2arc_read_done, cb, priority,
4729					    zio_flags | ZIO_FLAG_DONT_CACHE |
4730					    ZIO_FLAG_CANFAIL |
4731					    ZIO_FLAG_DONT_PROPAGATE |
4732					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4733				}
4734				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4735				    zio_t *, rzio);
4736				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4737
4738				if (*arc_flags & ARC_FLAG_NOWAIT) {
4739					zio_nowait(rzio);
4740					return (0);
4741				}
4742
4743				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4744				if (zio_wait(rzio) == 0)
4745					return (0);
4746
4747				/* l2arc read error; goto zio_read() */
4748			} else {
4749				DTRACE_PROBE1(l2arc__miss,
4750				    arc_buf_hdr_t *, hdr);
4751				ARCSTAT_BUMP(arcstat_l2_misses);
4752				if (HDR_L2_WRITING(hdr))
4753					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4754				spa_config_exit(spa, SCL_L2ARC, vd);
4755			}
4756		} else {
4757			if (vd != NULL)
4758				spa_config_exit(spa, SCL_L2ARC, vd);
4759			if (l2arc_ndev != 0) {
4760				DTRACE_PROBE1(l2arc__miss,
4761				    arc_buf_hdr_t *, hdr);
4762				ARCSTAT_BUMP(arcstat_l2_misses);
4763			}
4764		}
4765
4766		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4767		    arc_read_done, buf, priority, zio_flags, zb);
4768
4769		if (*arc_flags & ARC_FLAG_WAIT)
4770			return (zio_wait(rzio));
4771
4772		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4773		zio_nowait(rzio);
4774	}
4775	return (0);
4776}
4777
4778void
4779arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4780{
4781	ASSERT(buf->b_hdr != NULL);
4782	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4783	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4784	    func == NULL);
4785	ASSERT(buf->b_efunc == NULL);
4786	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4787
4788	buf->b_efunc = func;
4789	buf->b_private = private;
4790}
4791
4792/*
4793 * Notify the arc that a block was freed, and thus will never be used again.
4794 */
4795void
4796arc_freed(spa_t *spa, const blkptr_t *bp)
4797{
4798	arc_buf_hdr_t *hdr;
4799	kmutex_t *hash_lock;
4800	uint64_t guid = spa_load_guid(spa);
4801
4802	ASSERT(!BP_IS_EMBEDDED(bp));
4803
4804	hdr = buf_hash_find(guid, bp, &hash_lock);
4805	if (hdr == NULL)
4806		return;
4807	if (HDR_BUF_AVAILABLE(hdr)) {
4808		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4809		add_reference(hdr, hash_lock, FTAG);
4810		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4811		mutex_exit(hash_lock);
4812
4813		arc_release(buf, FTAG);
4814		(void) arc_buf_remove_ref(buf, FTAG);
4815	} else {
4816		mutex_exit(hash_lock);
4817	}
4818
4819}
4820
4821/*
4822 * Clear the user eviction callback set by arc_set_callback(), first calling
4823 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4824 * clearing the callback may result in the arc_buf being destroyed.  However,
4825 * it will not result in the *last* arc_buf being destroyed, hence the data
4826 * will remain cached in the ARC. We make a copy of the arc buffer here so
4827 * that we can process the callback without holding any locks.
4828 *
4829 * It's possible that the callback is already in the process of being cleared
4830 * by another thread.  In this case we can not clear the callback.
4831 *
4832 * Returns B_TRUE if the callback was successfully called and cleared.
4833 */
4834boolean_t
4835arc_clear_callback(arc_buf_t *buf)
4836{
4837	arc_buf_hdr_t *hdr;
4838	kmutex_t *hash_lock;
4839	arc_evict_func_t *efunc = buf->b_efunc;
4840	void *private = buf->b_private;
4841
4842	mutex_enter(&buf->b_evict_lock);
4843	hdr = buf->b_hdr;
4844	if (hdr == NULL) {
4845		/*
4846		 * We are in arc_do_user_evicts().
4847		 */
4848		ASSERT(buf->b_data == NULL);
4849		mutex_exit(&buf->b_evict_lock);
4850		return (B_FALSE);
4851	} else if (buf->b_data == NULL) {
4852		/*
4853		 * We are on the eviction list; process this buffer now
4854		 * but let arc_do_user_evicts() do the reaping.
4855		 */
4856		buf->b_efunc = NULL;
4857		mutex_exit(&buf->b_evict_lock);
4858		VERIFY0(efunc(private));
4859		return (B_TRUE);
4860	}
4861	hash_lock = HDR_LOCK(hdr);
4862	mutex_enter(hash_lock);
4863	hdr = buf->b_hdr;
4864	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4865
4866	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4867	    hdr->b_l1hdr.b_datacnt);
4868	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4869	    hdr->b_l1hdr.b_state == arc_mfu);
4870
4871	buf->b_efunc = NULL;
4872	buf->b_private = NULL;
4873
4874	if (hdr->b_l1hdr.b_datacnt > 1) {
4875		mutex_exit(&buf->b_evict_lock);
4876		arc_buf_destroy(buf, TRUE);
4877	} else {
4878		ASSERT(buf == hdr->b_l1hdr.b_buf);
4879		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4880		mutex_exit(&buf->b_evict_lock);
4881	}
4882
4883	mutex_exit(hash_lock);
4884	VERIFY0(efunc(private));
4885	return (B_TRUE);
4886}
4887
4888/*
4889 * Release this buffer from the cache, making it an anonymous buffer.  This
4890 * must be done after a read and prior to modifying the buffer contents.
4891 * If the buffer has more than one reference, we must make
4892 * a new hdr for the buffer.
4893 */
4894void
4895arc_release(arc_buf_t *buf, void *tag)
4896{
4897	arc_buf_hdr_t *hdr = buf->b_hdr;
4898
4899	/*
4900	 * It would be nice to assert that if it's DMU metadata (level >
4901	 * 0 || it's the dnode file), then it must be syncing context.
4902	 * But we don't know that information at this level.
4903	 */
4904
4905	mutex_enter(&buf->b_evict_lock);
4906
4907	ASSERT(HDR_HAS_L1HDR(hdr));
4908
4909	/*
4910	 * We don't grab the hash lock prior to this check, because if
4911	 * the buffer's header is in the arc_anon state, it won't be
4912	 * linked into the hash table.
4913	 */
4914	if (hdr->b_l1hdr.b_state == arc_anon) {
4915		mutex_exit(&buf->b_evict_lock);
4916		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4917		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4918		ASSERT(!HDR_HAS_L2HDR(hdr));
4919		ASSERT(BUF_EMPTY(hdr));
4920		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4921		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4922		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4923
4924		ASSERT3P(buf->b_efunc, ==, NULL);
4925		ASSERT3P(buf->b_private, ==, NULL);
4926
4927		hdr->b_l1hdr.b_arc_access = 0;
4928		arc_buf_thaw(buf);
4929
4930		return;
4931	}
4932
4933	kmutex_t *hash_lock = HDR_LOCK(hdr);
4934	mutex_enter(hash_lock);
4935
4936	/*
4937	 * This assignment is only valid as long as the hash_lock is
4938	 * held, we must be careful not to reference state or the
4939	 * b_state field after dropping the lock.
4940	 */
4941	arc_state_t *state = hdr->b_l1hdr.b_state;
4942	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4943	ASSERT3P(state, !=, arc_anon);
4944
4945	/* this buffer is not on any list */
4946	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4947
4948	if (HDR_HAS_L2HDR(hdr)) {
4949		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4950
4951		/*
4952		 * We have to recheck this conditional again now that
4953		 * we're holding the l2ad_mtx to prevent a race with
4954		 * another thread which might be concurrently calling
4955		 * l2arc_evict(). In that case, l2arc_evict() might have
4956		 * destroyed the header's L2 portion as we were waiting
4957		 * to acquire the l2ad_mtx.
4958		 */
4959		if (HDR_HAS_L2HDR(hdr)) {
4960			l2arc_trim(hdr);
4961			arc_hdr_l2hdr_destroy(hdr);
4962		}
4963
4964		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4965	}
4966
4967	/*
4968	 * Do we have more than one buf?
4969	 */
4970	if (hdr->b_l1hdr.b_datacnt > 1) {
4971		arc_buf_hdr_t *nhdr;
4972		arc_buf_t **bufp;
4973		uint64_t blksz = hdr->b_size;
4974		uint64_t spa = hdr->b_spa;
4975		arc_buf_contents_t type = arc_buf_type(hdr);
4976		uint32_t flags = hdr->b_flags;
4977
4978		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4979		/*
4980		 * Pull the data off of this hdr and attach it to
4981		 * a new anonymous hdr.
4982		 */
4983		(void) remove_reference(hdr, hash_lock, tag);
4984		bufp = &hdr->b_l1hdr.b_buf;
4985		while (*bufp != buf)
4986			bufp = &(*bufp)->b_next;
4987		*bufp = buf->b_next;
4988		buf->b_next = NULL;
4989
4990		ASSERT3P(state, !=, arc_l2c_only);
4991
4992		(void) refcount_remove_many(
4993		    &state->arcs_size, hdr->b_size, buf);
4994
4995		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4996			ASSERT3P(state, !=, arc_l2c_only);
4997			uint64_t *size = &state->arcs_lsize[type];
4998			ASSERT3U(*size, >=, hdr->b_size);
4999			atomic_add_64(size, -hdr->b_size);
5000		}
5001
5002		/*
5003		 * We're releasing a duplicate user data buffer, update
5004		 * our statistics accordingly.
5005		 */
5006		if (HDR_ISTYPE_DATA(hdr)) {
5007			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
5008			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
5009			    -hdr->b_size);
5010		}
5011		hdr->b_l1hdr.b_datacnt -= 1;
5012		arc_cksum_verify(buf);
5013#ifdef illumos
5014		arc_buf_unwatch(buf);
5015#endif
5016
5017		mutex_exit(hash_lock);
5018
5019		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
5020		nhdr->b_size = blksz;
5021		nhdr->b_spa = spa;
5022
5023		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
5024		nhdr->b_flags |= arc_bufc_to_flags(type);
5025		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
5026
5027		nhdr->b_l1hdr.b_buf = buf;
5028		nhdr->b_l1hdr.b_datacnt = 1;
5029		nhdr->b_l1hdr.b_state = arc_anon;
5030		nhdr->b_l1hdr.b_arc_access = 0;
5031		nhdr->b_l1hdr.b_tmp_cdata = NULL;
5032		nhdr->b_freeze_cksum = NULL;
5033
5034		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5035		buf->b_hdr = nhdr;
5036		mutex_exit(&buf->b_evict_lock);
5037		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
5038	} else {
5039		mutex_exit(&buf->b_evict_lock);
5040		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5041		/* protected by hash lock, or hdr is on arc_anon */
5042		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5043		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5044		arc_change_state(arc_anon, hdr, hash_lock);
5045		hdr->b_l1hdr.b_arc_access = 0;
5046		mutex_exit(hash_lock);
5047
5048		buf_discard_identity(hdr);
5049		arc_buf_thaw(buf);
5050	}
5051	buf->b_efunc = NULL;
5052	buf->b_private = NULL;
5053}
5054
5055int
5056arc_released(arc_buf_t *buf)
5057{
5058	int released;
5059
5060	mutex_enter(&buf->b_evict_lock);
5061	released = (buf->b_data != NULL &&
5062	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5063	mutex_exit(&buf->b_evict_lock);
5064	return (released);
5065}
5066
5067#ifdef ZFS_DEBUG
5068int
5069arc_referenced(arc_buf_t *buf)
5070{
5071	int referenced;
5072
5073	mutex_enter(&buf->b_evict_lock);
5074	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5075	mutex_exit(&buf->b_evict_lock);
5076	return (referenced);
5077}
5078#endif
5079
5080static void
5081arc_write_ready(zio_t *zio)
5082{
5083	arc_write_callback_t *callback = zio->io_private;
5084	arc_buf_t *buf = callback->awcb_buf;
5085	arc_buf_hdr_t *hdr = buf->b_hdr;
5086
5087	ASSERT(HDR_HAS_L1HDR(hdr));
5088	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5089	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5090	callback->awcb_ready(zio, buf, callback->awcb_private);
5091
5092	/*
5093	 * If the IO is already in progress, then this is a re-write
5094	 * attempt, so we need to thaw and re-compute the cksum.
5095	 * It is the responsibility of the callback to handle the
5096	 * accounting for any re-write attempt.
5097	 */
5098	if (HDR_IO_IN_PROGRESS(hdr)) {
5099		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
5100		if (hdr->b_freeze_cksum != NULL) {
5101			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5102			hdr->b_freeze_cksum = NULL;
5103		}
5104		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
5105	}
5106	arc_cksum_compute(buf, B_FALSE);
5107	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
5108}
5109
5110static void
5111arc_write_children_ready(zio_t *zio)
5112{
5113	arc_write_callback_t *callback = zio->io_private;
5114	arc_buf_t *buf = callback->awcb_buf;
5115
5116	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5117}
5118
5119/*
5120 * The SPA calls this callback for each physical write that happens on behalf
5121 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5122 */
5123static void
5124arc_write_physdone(zio_t *zio)
5125{
5126	arc_write_callback_t *cb = zio->io_private;
5127	if (cb->awcb_physdone != NULL)
5128		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5129}
5130
5131static void
5132arc_write_done(zio_t *zio)
5133{
5134	arc_write_callback_t *callback = zio->io_private;
5135	arc_buf_t *buf = callback->awcb_buf;
5136	arc_buf_hdr_t *hdr = buf->b_hdr;
5137
5138	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5139
5140	if (zio->io_error == 0) {
5141		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5142			buf_discard_identity(hdr);
5143		} else {
5144			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5145			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5146		}
5147	} else {
5148		ASSERT(BUF_EMPTY(hdr));
5149	}
5150
5151	/*
5152	 * If the block to be written was all-zero or compressed enough to be
5153	 * embedded in the BP, no write was performed so there will be no
5154	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5155	 * (and uncached).
5156	 */
5157	if (!BUF_EMPTY(hdr)) {
5158		arc_buf_hdr_t *exists;
5159		kmutex_t *hash_lock;
5160
5161		ASSERT(zio->io_error == 0);
5162
5163		arc_cksum_verify(buf);
5164
5165		exists = buf_hash_insert(hdr, &hash_lock);
5166		if (exists != NULL) {
5167			/*
5168			 * This can only happen if we overwrite for
5169			 * sync-to-convergence, because we remove
5170			 * buffers from the hash table when we arc_free().
5171			 */
5172			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5173				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5174					panic("bad overwrite, hdr=%p exists=%p",
5175					    (void *)hdr, (void *)exists);
5176				ASSERT(refcount_is_zero(
5177				    &exists->b_l1hdr.b_refcnt));
5178				arc_change_state(arc_anon, exists, hash_lock);
5179				mutex_exit(hash_lock);
5180				arc_hdr_destroy(exists);
5181				exists = buf_hash_insert(hdr, &hash_lock);
5182				ASSERT3P(exists, ==, NULL);
5183			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5184				/* nopwrite */
5185				ASSERT(zio->io_prop.zp_nopwrite);
5186				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5187					panic("bad nopwrite, hdr=%p exists=%p",
5188					    (void *)hdr, (void *)exists);
5189			} else {
5190				/* Dedup */
5191				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5192				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5193				ASSERT(BP_GET_DEDUP(zio->io_bp));
5194				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5195			}
5196		}
5197		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5198		/* if it's not anon, we are doing a scrub */
5199		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5200			arc_access(hdr, hash_lock);
5201		mutex_exit(hash_lock);
5202	} else {
5203		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5204	}
5205
5206	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5207	callback->awcb_done(zio, buf, callback->awcb_private);
5208
5209	kmem_free(callback, sizeof (arc_write_callback_t));
5210}
5211
5212zio_t *
5213arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5214    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5215    const zio_prop_t *zp, arc_done_func_t *ready,
5216    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5217    arc_done_func_t *done, void *private, zio_priority_t priority,
5218    int zio_flags, const zbookmark_phys_t *zb)
5219{
5220	arc_buf_hdr_t *hdr = buf->b_hdr;
5221	arc_write_callback_t *callback;
5222	zio_t *zio;
5223
5224	ASSERT(ready != NULL);
5225	ASSERT(done != NULL);
5226	ASSERT(!HDR_IO_ERROR(hdr));
5227	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5228	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5229	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5230	if (l2arc)
5231		hdr->b_flags |= ARC_FLAG_L2CACHE;
5232	if (l2arc_compress)
5233		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5234	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5235	callback->awcb_ready = ready;
5236	callback->awcb_children_ready = children_ready;
5237	callback->awcb_physdone = physdone;
5238	callback->awcb_done = done;
5239	callback->awcb_private = private;
5240	callback->awcb_buf = buf;
5241
5242	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5243	    arc_write_ready,
5244	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5245	    arc_write_physdone, arc_write_done, callback,
5246	    priority, zio_flags, zb);
5247
5248	return (zio);
5249}
5250
5251static int
5252arc_memory_throttle(uint64_t reserve, uint64_t txg)
5253{
5254#ifdef _KERNEL
5255	uint64_t available_memory = ptob(freemem);
5256	static uint64_t page_load = 0;
5257	static uint64_t last_txg = 0;
5258
5259#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5260	available_memory =
5261	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5262#endif
5263
5264	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5265		return (0);
5266
5267	if (txg > last_txg) {
5268		last_txg = txg;
5269		page_load = 0;
5270	}
5271	/*
5272	 * If we are in pageout, we know that memory is already tight,
5273	 * the arc is already going to be evicting, so we just want to
5274	 * continue to let page writes occur as quickly as possible.
5275	 */
5276	if (curproc == pageproc) {
5277		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5278			return (SET_ERROR(ERESTART));
5279		/* Note: reserve is inflated, so we deflate */
5280		page_load += reserve / 8;
5281		return (0);
5282	} else if (page_load > 0 && arc_reclaim_needed()) {
5283		/* memory is low, delay before restarting */
5284		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5285		return (SET_ERROR(EAGAIN));
5286	}
5287	page_load = 0;
5288#endif
5289	return (0);
5290}
5291
5292void
5293arc_tempreserve_clear(uint64_t reserve)
5294{
5295	atomic_add_64(&arc_tempreserve, -reserve);
5296	ASSERT((int64_t)arc_tempreserve >= 0);
5297}
5298
5299int
5300arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5301{
5302	int error;
5303	uint64_t anon_size;
5304
5305	if (reserve > arc_c/4 && !arc_no_grow) {
5306		arc_c = MIN(arc_c_max, reserve * 4);
5307		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5308	}
5309	if (reserve > arc_c)
5310		return (SET_ERROR(ENOMEM));
5311
5312	/*
5313	 * Don't count loaned bufs as in flight dirty data to prevent long
5314	 * network delays from blocking transactions that are ready to be
5315	 * assigned to a txg.
5316	 */
5317	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5318	    arc_loaned_bytes), 0);
5319
5320	/*
5321	 * Writes will, almost always, require additional memory allocations
5322	 * in order to compress/encrypt/etc the data.  We therefore need to
5323	 * make sure that there is sufficient available memory for this.
5324	 */
5325	error = arc_memory_throttle(reserve, txg);
5326	if (error != 0)
5327		return (error);
5328
5329	/*
5330	 * Throttle writes when the amount of dirty data in the cache
5331	 * gets too large.  We try to keep the cache less than half full
5332	 * of dirty blocks so that our sync times don't grow too large.
5333	 * Note: if two requests come in concurrently, we might let them
5334	 * both succeed, when one of them should fail.  Not a huge deal.
5335	 */
5336
5337	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5338	    anon_size > arc_c / 4) {
5339		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5340		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5341		    arc_tempreserve>>10,
5342		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5343		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5344		    reserve>>10, arc_c>>10);
5345		return (SET_ERROR(ERESTART));
5346	}
5347	atomic_add_64(&arc_tempreserve, reserve);
5348	return (0);
5349}
5350
5351static void
5352arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5353    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5354{
5355	size->value.ui64 = refcount_count(&state->arcs_size);
5356	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5357	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5358}
5359
5360static int
5361arc_kstat_update(kstat_t *ksp, int rw)
5362{
5363	arc_stats_t *as = ksp->ks_data;
5364
5365	if (rw == KSTAT_WRITE) {
5366		return (EACCES);
5367	} else {
5368		arc_kstat_update_state(arc_anon,
5369		    &as->arcstat_anon_size,
5370		    &as->arcstat_anon_evictable_data,
5371		    &as->arcstat_anon_evictable_metadata);
5372		arc_kstat_update_state(arc_mru,
5373		    &as->arcstat_mru_size,
5374		    &as->arcstat_mru_evictable_data,
5375		    &as->arcstat_mru_evictable_metadata);
5376		arc_kstat_update_state(arc_mru_ghost,
5377		    &as->arcstat_mru_ghost_size,
5378		    &as->arcstat_mru_ghost_evictable_data,
5379		    &as->arcstat_mru_ghost_evictable_metadata);
5380		arc_kstat_update_state(arc_mfu,
5381		    &as->arcstat_mfu_size,
5382		    &as->arcstat_mfu_evictable_data,
5383		    &as->arcstat_mfu_evictable_metadata);
5384		arc_kstat_update_state(arc_mfu_ghost,
5385		    &as->arcstat_mfu_ghost_size,
5386		    &as->arcstat_mfu_ghost_evictable_data,
5387		    &as->arcstat_mfu_ghost_evictable_metadata);
5388	}
5389
5390	return (0);
5391}
5392
5393/*
5394 * This function *must* return indices evenly distributed between all
5395 * sublists of the multilist. This is needed due to how the ARC eviction
5396 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5397 * distributed between all sublists and uses this assumption when
5398 * deciding which sublist to evict from and how much to evict from it.
5399 */
5400unsigned int
5401arc_state_multilist_index_func(multilist_t *ml, void *obj)
5402{
5403	arc_buf_hdr_t *hdr = obj;
5404
5405	/*
5406	 * We rely on b_dva to generate evenly distributed index
5407	 * numbers using buf_hash below. So, as an added precaution,
5408	 * let's make sure we never add empty buffers to the arc lists.
5409	 */
5410	ASSERT(!BUF_EMPTY(hdr));
5411
5412	/*
5413	 * The assumption here, is the hash value for a given
5414	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5415	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5416	 * Thus, we don't need to store the header's sublist index
5417	 * on insertion, as this index can be recalculated on removal.
5418	 *
5419	 * Also, the low order bits of the hash value are thought to be
5420	 * distributed evenly. Otherwise, in the case that the multilist
5421	 * has a power of two number of sublists, each sublists' usage
5422	 * would not be evenly distributed.
5423	 */
5424	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5425	    multilist_get_num_sublists(ml));
5426}
5427
5428#ifdef _KERNEL
5429static eventhandler_tag arc_event_lowmem = NULL;
5430
5431static void
5432arc_lowmem(void *arg __unused, int howto __unused)
5433{
5434
5435	mutex_enter(&arc_reclaim_lock);
5436	/* XXX: Memory deficit should be passed as argument. */
5437	needfree = btoc(arc_c >> arc_shrink_shift);
5438	DTRACE_PROBE(arc__needfree);
5439	cv_signal(&arc_reclaim_thread_cv);
5440
5441	/*
5442	 * It is unsafe to block here in arbitrary threads, because we can come
5443	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5444	 * with ARC reclaim thread.
5445	 */
5446	if (curproc == pageproc)
5447		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5448	mutex_exit(&arc_reclaim_lock);
5449}
5450#endif
5451
5452void
5453arc_init(void)
5454{
5455	int i, prefetch_tunable_set = 0;
5456
5457	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5458	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5459	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5460
5461	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5462	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5463
5464	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5465	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
5466
5467	/* Convert seconds to clock ticks */
5468	arc_min_prefetch_lifespan = 1 * hz;
5469
5470	/* Start out with 1/8 of all memory */
5471	arc_c = kmem_size() / 8;
5472
5473#ifdef illumos
5474#ifdef _KERNEL
5475	/*
5476	 * On architectures where the physical memory can be larger
5477	 * than the addressable space (intel in 32-bit mode), we may
5478	 * need to limit the cache to 1/8 of VM size.
5479	 */
5480	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5481#endif
5482#endif	/* illumos */
5483	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5484	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5485	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5486	if (arc_c * 8 >= 1 << 30)
5487		arc_c_max = (arc_c * 8) - (1 << 30);
5488	else
5489		arc_c_max = arc_c_min;
5490	arc_c_max = MAX(arc_c * 5, arc_c_max);
5491
5492	/*
5493	 * In userland, there's only the memory pressure that we artificially
5494	 * create (see arc_available_memory()).  Don't let arc_c get too
5495	 * small, because it can cause transactions to be larger than
5496	 * arc_c, causing arc_tempreserve_space() to fail.
5497	 */
5498#ifndef _KERNEL
5499	arc_c_min = arc_c_max / 2;
5500#endif
5501
5502#ifdef _KERNEL
5503	/*
5504	 * Allow the tunables to override our calculations if they are
5505	 * reasonable.
5506	 */
5507	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size())
5508		arc_c_max = zfs_arc_max;
5509	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
5510		arc_c_min = zfs_arc_min;
5511#endif
5512
5513	arc_c = arc_c_max;
5514	arc_p = (arc_c >> 1);
5515
5516	/* limit meta-data to 1/4 of the arc capacity */
5517	arc_meta_limit = arc_c_max / 4;
5518
5519	/* Allow the tunable to override if it is reasonable */
5520	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5521		arc_meta_limit = zfs_arc_meta_limit;
5522
5523	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5524		arc_c_min = arc_meta_limit / 2;
5525
5526	if (zfs_arc_meta_min > 0) {
5527		arc_meta_min = zfs_arc_meta_min;
5528	} else {
5529		arc_meta_min = arc_c_min / 2;
5530	}
5531
5532	if (zfs_arc_grow_retry > 0)
5533		arc_grow_retry = zfs_arc_grow_retry;
5534
5535	if (zfs_arc_shrink_shift > 0)
5536		arc_shrink_shift = zfs_arc_shrink_shift;
5537
5538	/*
5539	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5540	 */
5541	if (arc_no_grow_shift >= arc_shrink_shift)
5542		arc_no_grow_shift = arc_shrink_shift - 1;
5543
5544	if (zfs_arc_p_min_shift > 0)
5545		arc_p_min_shift = zfs_arc_p_min_shift;
5546
5547	if (zfs_arc_num_sublists_per_state < 1)
5548		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5549
5550	/* if kmem_flags are set, lets try to use less memory */
5551	if (kmem_debugging())
5552		arc_c = arc_c / 2;
5553	if (arc_c < arc_c_min)
5554		arc_c = arc_c_min;
5555
5556	zfs_arc_min = arc_c_min;
5557	zfs_arc_max = arc_c_max;
5558
5559	arc_anon = &ARC_anon;
5560	arc_mru = &ARC_mru;
5561	arc_mru_ghost = &ARC_mru_ghost;
5562	arc_mfu = &ARC_mfu;
5563	arc_mfu_ghost = &ARC_mfu_ghost;
5564	arc_l2c_only = &ARC_l2c_only;
5565	arc_size = 0;
5566
5567	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5568	    sizeof (arc_buf_hdr_t),
5569	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5570	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5571	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5572	    sizeof (arc_buf_hdr_t),
5573	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5574	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5575	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5576	    sizeof (arc_buf_hdr_t),
5577	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5578	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5579	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5580	    sizeof (arc_buf_hdr_t),
5581	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5582	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5583	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5584	    sizeof (arc_buf_hdr_t),
5585	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5586	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5587	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5588	    sizeof (arc_buf_hdr_t),
5589	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5590	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5591	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5592	    sizeof (arc_buf_hdr_t),
5593	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5594	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5595	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5596	    sizeof (arc_buf_hdr_t),
5597	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5598	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5599	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5600	    sizeof (arc_buf_hdr_t),
5601	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5602	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5603	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5604	    sizeof (arc_buf_hdr_t),
5605	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5606	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5607
5608	refcount_create(&arc_anon->arcs_size);
5609	refcount_create(&arc_mru->arcs_size);
5610	refcount_create(&arc_mru_ghost->arcs_size);
5611	refcount_create(&arc_mfu->arcs_size);
5612	refcount_create(&arc_mfu_ghost->arcs_size);
5613	refcount_create(&arc_l2c_only->arcs_size);
5614
5615	buf_init();
5616
5617	arc_reclaim_thread_exit = FALSE;
5618	arc_user_evicts_thread_exit = FALSE;
5619	arc_dnlc_evicts_thread_exit = FALSE;
5620	arc_eviction_list = NULL;
5621	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5622
5623	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5624	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5625
5626	if (arc_ksp != NULL) {
5627		arc_ksp->ks_data = &arc_stats;
5628		arc_ksp->ks_update = arc_kstat_update;
5629		kstat_install(arc_ksp);
5630	}
5631
5632	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5633	    TS_RUN, minclsyspri);
5634
5635#ifdef _KERNEL
5636	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5637	    EVENTHANDLER_PRI_FIRST);
5638#endif
5639
5640	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5641	    TS_RUN, minclsyspri);
5642
5643	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
5644	    TS_RUN, minclsyspri);
5645
5646	arc_dead = FALSE;
5647	arc_warm = B_FALSE;
5648
5649	/*
5650	 * Calculate maximum amount of dirty data per pool.
5651	 *
5652	 * If it has been set by /etc/system, take that.
5653	 * Otherwise, use a percentage of physical memory defined by
5654	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5655	 * zfs_dirty_data_max_max (default 4GB).
5656	 */
5657	if (zfs_dirty_data_max == 0) {
5658		zfs_dirty_data_max = ptob(physmem) *
5659		    zfs_dirty_data_max_percent / 100;
5660		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5661		    zfs_dirty_data_max_max);
5662	}
5663
5664#ifdef _KERNEL
5665	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5666		prefetch_tunable_set = 1;
5667
5668#ifdef __i386__
5669	if (prefetch_tunable_set == 0) {
5670		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5671		    "-- to enable,\n");
5672		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5673		    "to /boot/loader.conf.\n");
5674		zfs_prefetch_disable = 1;
5675	}
5676#else
5677	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5678	    prefetch_tunable_set == 0) {
5679		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5680		    "than 4GB of RAM is present;\n"
5681		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5682		    "to /boot/loader.conf.\n");
5683		zfs_prefetch_disable = 1;
5684	}
5685#endif
5686	/* Warn about ZFS memory and address space requirements. */
5687	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5688		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5689		    "expect unstable behavior.\n");
5690	}
5691	if (kmem_size() < 512 * (1 << 20)) {
5692		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5693		    "expect unstable behavior.\n");
5694		printf("             Consider tuning vm.kmem_size and "
5695		    "vm.kmem_size_max\n");
5696		printf("             in /boot/loader.conf.\n");
5697	}
5698#endif
5699}
5700
5701void
5702arc_fini(void)
5703{
5704	mutex_enter(&arc_reclaim_lock);
5705	arc_reclaim_thread_exit = TRUE;
5706	/*
5707	 * The reclaim thread will set arc_reclaim_thread_exit back to
5708	 * FALSE when it is finished exiting; we're waiting for that.
5709	 */
5710	while (arc_reclaim_thread_exit) {
5711		cv_signal(&arc_reclaim_thread_cv);
5712		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5713	}
5714	mutex_exit(&arc_reclaim_lock);
5715
5716	mutex_enter(&arc_user_evicts_lock);
5717	arc_user_evicts_thread_exit = TRUE;
5718	/*
5719	 * The user evicts thread will set arc_user_evicts_thread_exit
5720	 * to FALSE when it is finished exiting; we're waiting for that.
5721	 */
5722	while (arc_user_evicts_thread_exit) {
5723		cv_signal(&arc_user_evicts_cv);
5724		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5725	}
5726	mutex_exit(&arc_user_evicts_lock);
5727
5728	mutex_enter(&arc_dnlc_evicts_lock);
5729	arc_dnlc_evicts_thread_exit = TRUE;
5730	/*
5731	 * The user evicts thread will set arc_user_evicts_thread_exit
5732	 * to FALSE when it is finished exiting; we're waiting for that.
5733	 */
5734	while (arc_dnlc_evicts_thread_exit) {
5735		cv_signal(&arc_dnlc_evicts_cv);
5736		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
5737	}
5738	mutex_exit(&arc_dnlc_evicts_lock);
5739
5740	/* Use TRUE to ensure *all* buffers are evicted */
5741	arc_flush(NULL, TRUE);
5742
5743	arc_dead = TRUE;
5744
5745	if (arc_ksp != NULL) {
5746		kstat_delete(arc_ksp);
5747		arc_ksp = NULL;
5748	}
5749
5750	mutex_destroy(&arc_reclaim_lock);
5751	cv_destroy(&arc_reclaim_thread_cv);
5752	cv_destroy(&arc_reclaim_waiters_cv);
5753
5754	mutex_destroy(&arc_user_evicts_lock);
5755	cv_destroy(&arc_user_evicts_cv);
5756
5757	mutex_destroy(&arc_dnlc_evicts_lock);
5758	cv_destroy(&arc_dnlc_evicts_cv);
5759
5760	refcount_destroy(&arc_anon->arcs_size);
5761	refcount_destroy(&arc_mru->arcs_size);
5762	refcount_destroy(&arc_mru_ghost->arcs_size);
5763	refcount_destroy(&arc_mfu->arcs_size);
5764	refcount_destroy(&arc_mfu_ghost->arcs_size);
5765	refcount_destroy(&arc_l2c_only->arcs_size);
5766
5767	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5768	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5769	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5770	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5771	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5772	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5773	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5774	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5775	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5776	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5777
5778	buf_fini();
5779
5780	ASSERT0(arc_loaned_bytes);
5781
5782#ifdef _KERNEL
5783	if (arc_event_lowmem != NULL)
5784		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5785#endif
5786}
5787
5788/*
5789 * Level 2 ARC
5790 *
5791 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5792 * It uses dedicated storage devices to hold cached data, which are populated
5793 * using large infrequent writes.  The main role of this cache is to boost
5794 * the performance of random read workloads.  The intended L2ARC devices
5795 * include short-stroked disks, solid state disks, and other media with
5796 * substantially faster read latency than disk.
5797 *
5798 *                 +-----------------------+
5799 *                 |         ARC           |
5800 *                 +-----------------------+
5801 *                    |         ^     ^
5802 *                    |         |     |
5803 *      l2arc_feed_thread()    arc_read()
5804 *                    |         |     |
5805 *                    |  l2arc read   |
5806 *                    V         |     |
5807 *               +---------------+    |
5808 *               |     L2ARC     |    |
5809 *               +---------------+    |
5810 *                   |    ^           |
5811 *          l2arc_write() |           |
5812 *                   |    |           |
5813 *                   V    |           |
5814 *                 +-------+      +-------+
5815 *                 | vdev  |      | vdev  |
5816 *                 | cache |      | cache |
5817 *                 +-------+      +-------+
5818 *                 +=========+     .-----.
5819 *                 :  L2ARC  :    |-_____-|
5820 *                 : devices :    | Disks |
5821 *                 +=========+    `-_____-'
5822 *
5823 * Read requests are satisfied from the following sources, in order:
5824 *
5825 *	1) ARC
5826 *	2) vdev cache of L2ARC devices
5827 *	3) L2ARC devices
5828 *	4) vdev cache of disks
5829 *	5) disks
5830 *
5831 * Some L2ARC device types exhibit extremely slow write performance.
5832 * To accommodate for this there are some significant differences between
5833 * the L2ARC and traditional cache design:
5834 *
5835 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5836 * the ARC behave as usual, freeing buffers and placing headers on ghost
5837 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5838 * this would add inflated write latencies for all ARC memory pressure.
5839 *
5840 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5841 * It does this by periodically scanning buffers from the eviction-end of
5842 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5843 * not already there. It scans until a headroom of buffers is satisfied,
5844 * which itself is a buffer for ARC eviction. If a compressible buffer is
5845 * found during scanning and selected for writing to an L2ARC device, we
5846 * temporarily boost scanning headroom during the next scan cycle to make
5847 * sure we adapt to compression effects (which might significantly reduce
5848 * the data volume we write to L2ARC). The thread that does this is
5849 * l2arc_feed_thread(), illustrated below; example sizes are included to
5850 * provide a better sense of ratio than this diagram:
5851 *
5852 *	       head -->                        tail
5853 *	        +---------------------+----------+
5854 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5855 *	        +---------------------+----------+   |   o L2ARC eligible
5856 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5857 *	        +---------------------+----------+   |
5858 *	             15.9 Gbytes      ^ 32 Mbytes    |
5859 *	                           headroom          |
5860 *	                                      l2arc_feed_thread()
5861 *	                                             |
5862 *	                 l2arc write hand <--[oooo]--'
5863 *	                         |           8 Mbyte
5864 *	                         |          write max
5865 *	                         V
5866 *		  +==============================+
5867 *	L2ARC dev |####|#|###|###|    |####| ... |
5868 *	          +==============================+
5869 *	                     32 Gbytes
5870 *
5871 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5872 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5873 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5874 * safe to say that this is an uncommon case, since buffers at the end of
5875 * the ARC lists have moved there due to inactivity.
5876 *
5877 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5878 * then the L2ARC simply misses copying some buffers.  This serves as a
5879 * pressure valve to prevent heavy read workloads from both stalling the ARC
5880 * with waits and clogging the L2ARC with writes.  This also helps prevent
5881 * the potential for the L2ARC to churn if it attempts to cache content too
5882 * quickly, such as during backups of the entire pool.
5883 *
5884 * 5. After system boot and before the ARC has filled main memory, there are
5885 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5886 * lists can remain mostly static.  Instead of searching from tail of these
5887 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5888 * for eligible buffers, greatly increasing its chance of finding them.
5889 *
5890 * The L2ARC device write speed is also boosted during this time so that
5891 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5892 * there are no L2ARC reads, and no fear of degrading read performance
5893 * through increased writes.
5894 *
5895 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5896 * the vdev queue can aggregate them into larger and fewer writes.  Each
5897 * device is written to in a rotor fashion, sweeping writes through
5898 * available space then repeating.
5899 *
5900 * 7. The L2ARC does not store dirty content.  It never needs to flush
5901 * write buffers back to disk based storage.
5902 *
5903 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5904 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5905 *
5906 * The performance of the L2ARC can be tweaked by a number of tunables, which
5907 * may be necessary for different workloads:
5908 *
5909 *	l2arc_write_max		max write bytes per interval
5910 *	l2arc_write_boost	extra write bytes during device warmup
5911 *	l2arc_noprefetch	skip caching prefetched buffers
5912 *	l2arc_headroom		number of max device writes to precache
5913 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5914 *				scanning, we multiply headroom by this
5915 *				percentage factor for the next scan cycle,
5916 *				since more compressed buffers are likely to
5917 *				be present
5918 *	l2arc_feed_secs		seconds between L2ARC writing
5919 *
5920 * Tunables may be removed or added as future performance improvements are
5921 * integrated, and also may become zpool properties.
5922 *
5923 * There are three key functions that control how the L2ARC warms up:
5924 *
5925 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5926 *	l2arc_write_size()	calculate how much to write
5927 *	l2arc_write_interval()	calculate sleep delay between writes
5928 *
5929 * These three functions determine what to write, how much, and how quickly
5930 * to send writes.
5931 */
5932
5933static boolean_t
5934l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5935{
5936	/*
5937	 * A buffer is *not* eligible for the L2ARC if it:
5938	 * 1. belongs to a different spa.
5939	 * 2. is already cached on the L2ARC.
5940	 * 3. has an I/O in progress (it may be an incomplete read).
5941	 * 4. is flagged not eligible (zfs property).
5942	 */
5943	if (hdr->b_spa != spa_guid) {
5944		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5945		return (B_FALSE);
5946	}
5947	if (HDR_HAS_L2HDR(hdr)) {
5948		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5949		return (B_FALSE);
5950	}
5951	if (HDR_IO_IN_PROGRESS(hdr)) {
5952		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5953		return (B_FALSE);
5954	}
5955	if (!HDR_L2CACHE(hdr)) {
5956		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5957		return (B_FALSE);
5958	}
5959
5960	return (B_TRUE);
5961}
5962
5963static uint64_t
5964l2arc_write_size(void)
5965{
5966	uint64_t size;
5967
5968	/*
5969	 * Make sure our globals have meaningful values in case the user
5970	 * altered them.
5971	 */
5972	size = l2arc_write_max;
5973	if (size == 0) {
5974		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5975		    "be greater than zero, resetting it to the default (%d)",
5976		    L2ARC_WRITE_SIZE);
5977		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5978	}
5979
5980	if (arc_warm == B_FALSE)
5981		size += l2arc_write_boost;
5982
5983	return (size);
5984
5985}
5986
5987static clock_t
5988l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5989{
5990	clock_t interval, next, now;
5991
5992	/*
5993	 * If the ARC lists are busy, increase our write rate; if the
5994	 * lists are stale, idle back.  This is achieved by checking
5995	 * how much we previously wrote - if it was more than half of
5996	 * what we wanted, schedule the next write much sooner.
5997	 */
5998	if (l2arc_feed_again && wrote > (wanted / 2))
5999		interval = (hz * l2arc_feed_min_ms) / 1000;
6000	else
6001		interval = hz * l2arc_feed_secs;
6002
6003	now = ddi_get_lbolt();
6004	next = MAX(now, MIN(now + interval, began + interval));
6005
6006	return (next);
6007}
6008
6009/*
6010 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6011 * If a device is returned, this also returns holding the spa config lock.
6012 */
6013static l2arc_dev_t *
6014l2arc_dev_get_next(void)
6015{
6016	l2arc_dev_t *first, *next = NULL;
6017
6018	/*
6019	 * Lock out the removal of spas (spa_namespace_lock), then removal
6020	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6021	 * both locks will be dropped and a spa config lock held instead.
6022	 */
6023	mutex_enter(&spa_namespace_lock);
6024	mutex_enter(&l2arc_dev_mtx);
6025
6026	/* if there are no vdevs, there is nothing to do */
6027	if (l2arc_ndev == 0)
6028		goto out;
6029
6030	first = NULL;
6031	next = l2arc_dev_last;
6032	do {
6033		/* loop around the list looking for a non-faulted vdev */
6034		if (next == NULL) {
6035			next = list_head(l2arc_dev_list);
6036		} else {
6037			next = list_next(l2arc_dev_list, next);
6038			if (next == NULL)
6039				next = list_head(l2arc_dev_list);
6040		}
6041
6042		/* if we have come back to the start, bail out */
6043		if (first == NULL)
6044			first = next;
6045		else if (next == first)
6046			break;
6047
6048	} while (vdev_is_dead(next->l2ad_vdev));
6049
6050	/* if we were unable to find any usable vdevs, return NULL */
6051	if (vdev_is_dead(next->l2ad_vdev))
6052		next = NULL;
6053
6054	l2arc_dev_last = next;
6055
6056out:
6057	mutex_exit(&l2arc_dev_mtx);
6058
6059	/*
6060	 * Grab the config lock to prevent the 'next' device from being
6061	 * removed while we are writing to it.
6062	 */
6063	if (next != NULL)
6064		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6065	mutex_exit(&spa_namespace_lock);
6066
6067	return (next);
6068}
6069
6070/*
6071 * Free buffers that were tagged for destruction.
6072 */
6073static void
6074l2arc_do_free_on_write()
6075{
6076	list_t *buflist;
6077	l2arc_data_free_t *df, *df_prev;
6078
6079	mutex_enter(&l2arc_free_on_write_mtx);
6080	buflist = l2arc_free_on_write;
6081
6082	for (df = list_tail(buflist); df; df = df_prev) {
6083		df_prev = list_prev(buflist, df);
6084		ASSERT(df->l2df_data != NULL);
6085		ASSERT(df->l2df_func != NULL);
6086		df->l2df_func(df->l2df_data, df->l2df_size);
6087		list_remove(buflist, df);
6088		kmem_free(df, sizeof (l2arc_data_free_t));
6089	}
6090
6091	mutex_exit(&l2arc_free_on_write_mtx);
6092}
6093
6094/*
6095 * A write to a cache device has completed.  Update all headers to allow
6096 * reads from these buffers to begin.
6097 */
6098static void
6099l2arc_write_done(zio_t *zio)
6100{
6101	l2arc_write_callback_t *cb;
6102	l2arc_dev_t *dev;
6103	list_t *buflist;
6104	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6105	kmutex_t *hash_lock;
6106	int64_t bytes_dropped = 0;
6107
6108	cb = zio->io_private;
6109	ASSERT(cb != NULL);
6110	dev = cb->l2wcb_dev;
6111	ASSERT(dev != NULL);
6112	head = cb->l2wcb_head;
6113	ASSERT(head != NULL);
6114	buflist = &dev->l2ad_buflist;
6115	ASSERT(buflist != NULL);
6116	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6117	    l2arc_write_callback_t *, cb);
6118
6119	if (zio->io_error != 0)
6120		ARCSTAT_BUMP(arcstat_l2_writes_error);
6121
6122	/*
6123	 * All writes completed, or an error was hit.
6124	 */
6125top:
6126	mutex_enter(&dev->l2ad_mtx);
6127	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6128		hdr_prev = list_prev(buflist, hdr);
6129
6130		hash_lock = HDR_LOCK(hdr);
6131
6132		/*
6133		 * We cannot use mutex_enter or else we can deadlock
6134		 * with l2arc_write_buffers (due to swapping the order
6135		 * the hash lock and l2ad_mtx are taken).
6136		 */
6137		if (!mutex_tryenter(hash_lock)) {
6138			/*
6139			 * Missed the hash lock. We must retry so we
6140			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6141			 */
6142			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6143
6144			/*
6145			 * We don't want to rescan the headers we've
6146			 * already marked as having been written out, so
6147			 * we reinsert the head node so we can pick up
6148			 * where we left off.
6149			 */
6150			list_remove(buflist, head);
6151			list_insert_after(buflist, hdr, head);
6152
6153			mutex_exit(&dev->l2ad_mtx);
6154
6155			/*
6156			 * We wait for the hash lock to become available
6157			 * to try and prevent busy waiting, and increase
6158			 * the chance we'll be able to acquire the lock
6159			 * the next time around.
6160			 */
6161			mutex_enter(hash_lock);
6162			mutex_exit(hash_lock);
6163			goto top;
6164		}
6165
6166		/*
6167		 * We could not have been moved into the arc_l2c_only
6168		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6169		 * bit being set. Let's just ensure that's being enforced.
6170		 */
6171		ASSERT(HDR_HAS_L1HDR(hdr));
6172
6173		/*
6174		 * We may have allocated a buffer for L2ARC compression,
6175		 * we must release it to avoid leaking this data.
6176		 */
6177		l2arc_release_cdata_buf(hdr);
6178
6179		if (zio->io_error != 0) {
6180			/*
6181			 * Error - drop L2ARC entry.
6182			 */
6183			list_remove(buflist, hdr);
6184			l2arc_trim(hdr);
6185			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6186
6187			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6188			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6189
6190			bytes_dropped += hdr->b_l2hdr.b_asize;
6191			(void) refcount_remove_many(&dev->l2ad_alloc,
6192			    hdr->b_l2hdr.b_asize, hdr);
6193		}
6194
6195		/*
6196		 * Allow ARC to begin reads and ghost list evictions to
6197		 * this L2ARC entry.
6198		 */
6199		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6200
6201		mutex_exit(hash_lock);
6202	}
6203
6204	atomic_inc_64(&l2arc_writes_done);
6205	list_remove(buflist, head);
6206	ASSERT(!HDR_HAS_L1HDR(head));
6207	kmem_cache_free(hdr_l2only_cache, head);
6208	mutex_exit(&dev->l2ad_mtx);
6209
6210	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6211
6212	l2arc_do_free_on_write();
6213
6214	kmem_free(cb, sizeof (l2arc_write_callback_t));
6215}
6216
6217/*
6218 * A read to a cache device completed.  Validate buffer contents before
6219 * handing over to the regular ARC routines.
6220 */
6221static void
6222l2arc_read_done(zio_t *zio)
6223{
6224	l2arc_read_callback_t *cb;
6225	arc_buf_hdr_t *hdr;
6226	arc_buf_t *buf;
6227	kmutex_t *hash_lock;
6228	int equal;
6229
6230	ASSERT(zio->io_vd != NULL);
6231	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6232
6233	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6234
6235	cb = zio->io_private;
6236	ASSERT(cb != NULL);
6237	buf = cb->l2rcb_buf;
6238	ASSERT(buf != NULL);
6239
6240	hash_lock = HDR_LOCK(buf->b_hdr);
6241	mutex_enter(hash_lock);
6242	hdr = buf->b_hdr;
6243	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6244
6245	/*
6246	 * If the data was read into a temporary buffer,
6247	 * move it and free the buffer.
6248	 */
6249	if (cb->l2rcb_data != NULL) {
6250		ASSERT3U(hdr->b_size, <, zio->io_size);
6251		ASSERT3U(cb->l2rcb_compress, ==, ZIO_COMPRESS_OFF);
6252		if (zio->io_error == 0)
6253			bcopy(cb->l2rcb_data, buf->b_data, hdr->b_size);
6254
6255		/*
6256		 * The following must be done regardless of whether
6257		 * there was an error:
6258		 * - free the temporary buffer
6259		 * - point zio to the real ARC buffer
6260		 * - set zio size accordingly
6261		 * These are required because zio is either re-used for
6262		 * an I/O of the block in the case of the error
6263		 * or the zio is passed to arc_read_done() and it
6264		 * needs real data.
6265		 */
6266		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6267		zio->io_size = zio->io_orig_size = hdr->b_size;
6268		zio->io_data = zio->io_orig_data = buf->b_data;
6269	}
6270
6271	/*
6272	 * If the buffer was compressed, decompress it first.
6273	 */
6274	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6275		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6276	ASSERT(zio->io_data != NULL);
6277	ASSERT3U(zio->io_size, ==, hdr->b_size);
6278	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6279
6280	/*
6281	 * Check this survived the L2ARC journey.
6282	 */
6283	equal = arc_cksum_equal(buf);
6284	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6285		mutex_exit(hash_lock);
6286		zio->io_private = buf;
6287		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6288		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6289		arc_read_done(zio);
6290	} else {
6291		mutex_exit(hash_lock);
6292		/*
6293		 * Buffer didn't survive caching.  Increment stats and
6294		 * reissue to the original storage device.
6295		 */
6296		if (zio->io_error != 0) {
6297			ARCSTAT_BUMP(arcstat_l2_io_error);
6298		} else {
6299			zio->io_error = SET_ERROR(EIO);
6300		}
6301		if (!equal)
6302			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6303
6304		/*
6305		 * If there's no waiter, issue an async i/o to the primary
6306		 * storage now.  If there *is* a waiter, the caller must
6307		 * issue the i/o in a context where it's OK to block.
6308		 */
6309		if (zio->io_waiter == NULL) {
6310			zio_t *pio = zio_unique_parent(zio);
6311
6312			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6313
6314			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6315			    buf->b_data, hdr->b_size, arc_read_done, buf,
6316			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6317		}
6318	}
6319
6320	kmem_free(cb, sizeof (l2arc_read_callback_t));
6321}
6322
6323/*
6324 * This is the list priority from which the L2ARC will search for pages to
6325 * cache.  This is used within loops (0..3) to cycle through lists in the
6326 * desired order.  This order can have a significant effect on cache
6327 * performance.
6328 *
6329 * Currently the metadata lists are hit first, MFU then MRU, followed by
6330 * the data lists.  This function returns a locked list, and also returns
6331 * the lock pointer.
6332 */
6333static multilist_sublist_t *
6334l2arc_sublist_lock(int list_num)
6335{
6336	multilist_t *ml = NULL;
6337	unsigned int idx;
6338
6339	ASSERT(list_num >= 0 && list_num <= 3);
6340
6341	switch (list_num) {
6342	case 0:
6343		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6344		break;
6345	case 1:
6346		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6347		break;
6348	case 2:
6349		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6350		break;
6351	case 3:
6352		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6353		break;
6354	}
6355
6356	/*
6357	 * Return a randomly-selected sublist. This is acceptable
6358	 * because the caller feeds only a little bit of data for each
6359	 * call (8MB). Subsequent calls will result in different
6360	 * sublists being selected.
6361	 */
6362	idx = multilist_get_random_index(ml);
6363	return (multilist_sublist_lock(ml, idx));
6364}
6365
6366/*
6367 * Evict buffers from the device write hand to the distance specified in
6368 * bytes.  This distance may span populated buffers, it may span nothing.
6369 * This is clearing a region on the L2ARC device ready for writing.
6370 * If the 'all' boolean is set, every buffer is evicted.
6371 */
6372static void
6373l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6374{
6375	list_t *buflist;
6376	arc_buf_hdr_t *hdr, *hdr_prev;
6377	kmutex_t *hash_lock;
6378	uint64_t taddr;
6379
6380	buflist = &dev->l2ad_buflist;
6381
6382	if (!all && dev->l2ad_first) {
6383		/*
6384		 * This is the first sweep through the device.  There is
6385		 * nothing to evict.
6386		 */
6387		return;
6388	}
6389
6390	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6391		/*
6392		 * When nearing the end of the device, evict to the end
6393		 * before the device write hand jumps to the start.
6394		 */
6395		taddr = dev->l2ad_end;
6396	} else {
6397		taddr = dev->l2ad_hand + distance;
6398	}
6399	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6400	    uint64_t, taddr, boolean_t, all);
6401
6402top:
6403	mutex_enter(&dev->l2ad_mtx);
6404	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6405		hdr_prev = list_prev(buflist, hdr);
6406
6407		hash_lock = HDR_LOCK(hdr);
6408
6409		/*
6410		 * We cannot use mutex_enter or else we can deadlock
6411		 * with l2arc_write_buffers (due to swapping the order
6412		 * the hash lock and l2ad_mtx are taken).
6413		 */
6414		if (!mutex_tryenter(hash_lock)) {
6415			/*
6416			 * Missed the hash lock.  Retry.
6417			 */
6418			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6419			mutex_exit(&dev->l2ad_mtx);
6420			mutex_enter(hash_lock);
6421			mutex_exit(hash_lock);
6422			goto top;
6423		}
6424
6425		if (HDR_L2_WRITE_HEAD(hdr)) {
6426			/*
6427			 * We hit a write head node.  Leave it for
6428			 * l2arc_write_done().
6429			 */
6430			list_remove(buflist, hdr);
6431			mutex_exit(hash_lock);
6432			continue;
6433		}
6434
6435		if (!all && HDR_HAS_L2HDR(hdr) &&
6436		    (hdr->b_l2hdr.b_daddr > taddr ||
6437		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6438			/*
6439			 * We've evicted to the target address,
6440			 * or the end of the device.
6441			 */
6442			mutex_exit(hash_lock);
6443			break;
6444		}
6445
6446		ASSERT(HDR_HAS_L2HDR(hdr));
6447		if (!HDR_HAS_L1HDR(hdr)) {
6448			ASSERT(!HDR_L2_READING(hdr));
6449			/*
6450			 * This doesn't exist in the ARC.  Destroy.
6451			 * arc_hdr_destroy() will call list_remove()
6452			 * and decrement arcstat_l2_size.
6453			 */
6454			arc_change_state(arc_anon, hdr, hash_lock);
6455			arc_hdr_destroy(hdr);
6456		} else {
6457			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6458			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6459			/*
6460			 * Invalidate issued or about to be issued
6461			 * reads, since we may be about to write
6462			 * over this location.
6463			 */
6464			if (HDR_L2_READING(hdr)) {
6465				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6466				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6467			}
6468
6469			/* Ensure this header has finished being written */
6470			ASSERT(!HDR_L2_WRITING(hdr));
6471			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6472
6473			arc_hdr_l2hdr_destroy(hdr);
6474		}
6475		mutex_exit(hash_lock);
6476	}
6477	mutex_exit(&dev->l2ad_mtx);
6478}
6479
6480/*
6481 * Find and write ARC buffers to the L2ARC device.
6482 *
6483 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6484 * for reading until they have completed writing.
6485 * The headroom_boost is an in-out parameter used to maintain headroom boost
6486 * state between calls to this function.
6487 *
6488 * Returns the number of bytes actually written (which may be smaller than
6489 * the delta by which the device hand has changed due to alignment).
6490 */
6491static uint64_t
6492l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6493    boolean_t *headroom_boost)
6494{
6495	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6496	uint64_t write_asize, write_sz, headroom,
6497	    buf_compress_minsz;
6498	void *buf_data;
6499	boolean_t full;
6500	l2arc_write_callback_t *cb;
6501	zio_t *pio, *wzio;
6502	uint64_t guid = spa_load_guid(spa);
6503	const boolean_t do_headroom_boost = *headroom_boost;
6504	int try;
6505
6506	ASSERT(dev->l2ad_vdev != NULL);
6507
6508	/* Lower the flag now, we might want to raise it again later. */
6509	*headroom_boost = B_FALSE;
6510
6511	pio = NULL;
6512	write_sz = write_asize = 0;
6513	full = B_FALSE;
6514	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6515	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6516	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6517
6518	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6519	/*
6520	 * We will want to try to compress buffers that are at least 2x the
6521	 * device sector size.
6522	 */
6523	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6524
6525	/*
6526	 * Copy buffers for L2ARC writing.
6527	 */
6528	for (try = 0; try <= 3; try++) {
6529		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6530		uint64_t passed_sz = 0;
6531
6532		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6533
6534		/*
6535		 * L2ARC fast warmup.
6536		 *
6537		 * Until the ARC is warm and starts to evict, read from the
6538		 * head of the ARC lists rather than the tail.
6539		 */
6540		if (arc_warm == B_FALSE)
6541			hdr = multilist_sublist_head(mls);
6542		else
6543			hdr = multilist_sublist_tail(mls);
6544		if (hdr == NULL)
6545			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6546
6547		headroom = target_sz * l2arc_headroom;
6548		if (do_headroom_boost)
6549			headroom = (headroom * l2arc_headroom_boost) / 100;
6550
6551		for (; hdr; hdr = hdr_prev) {
6552			kmutex_t *hash_lock;
6553			uint64_t buf_sz;
6554			uint64_t buf_a_sz;
6555			size_t align;
6556
6557			if (arc_warm == B_FALSE)
6558				hdr_prev = multilist_sublist_next(mls, hdr);
6559			else
6560				hdr_prev = multilist_sublist_prev(mls, hdr);
6561			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6562
6563			hash_lock = HDR_LOCK(hdr);
6564			if (!mutex_tryenter(hash_lock)) {
6565				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6566				/*
6567				 * Skip this buffer rather than waiting.
6568				 */
6569				continue;
6570			}
6571
6572			passed_sz += hdr->b_size;
6573			if (passed_sz > headroom) {
6574				/*
6575				 * Searched too far.
6576				 */
6577				mutex_exit(hash_lock);
6578				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6579				break;
6580			}
6581
6582			if (!l2arc_write_eligible(guid, hdr)) {
6583				mutex_exit(hash_lock);
6584				continue;
6585			}
6586
6587			/*
6588			 * Assume that the buffer is not going to be compressed
6589			 * and could take more space on disk because of a larger
6590			 * disk block size.
6591			 */
6592			buf_sz = hdr->b_size;
6593			align = (size_t)1 << dev->l2ad_vdev->vdev_ashift;
6594			buf_a_sz = P2ROUNDUP(buf_sz, align);
6595
6596			if ((write_asize + buf_a_sz) > target_sz) {
6597				full = B_TRUE;
6598				mutex_exit(hash_lock);
6599				ARCSTAT_BUMP(arcstat_l2_write_full);
6600				break;
6601			}
6602
6603			if (pio == NULL) {
6604				/*
6605				 * Insert a dummy header on the buflist so
6606				 * l2arc_write_done() can find where the
6607				 * write buffers begin without searching.
6608				 */
6609				mutex_enter(&dev->l2ad_mtx);
6610				list_insert_head(&dev->l2ad_buflist, head);
6611				mutex_exit(&dev->l2ad_mtx);
6612
6613				cb = kmem_alloc(
6614				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6615				cb->l2wcb_dev = dev;
6616				cb->l2wcb_head = head;
6617				pio = zio_root(spa, l2arc_write_done, cb,
6618				    ZIO_FLAG_CANFAIL);
6619				ARCSTAT_BUMP(arcstat_l2_write_pios);
6620			}
6621
6622			/*
6623			 * Create and add a new L2ARC header.
6624			 */
6625			hdr->b_l2hdr.b_dev = dev;
6626			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6627			/*
6628			 * Temporarily stash the data buffer in b_tmp_cdata.
6629			 * The subsequent write step will pick it up from
6630			 * there. This is because can't access b_l1hdr.b_buf
6631			 * without holding the hash_lock, which we in turn
6632			 * can't access without holding the ARC list locks
6633			 * (which we want to avoid during compression/writing).
6634			 */
6635			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6636			hdr->b_l2hdr.b_asize = hdr->b_size;
6637			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6638
6639			/*
6640			 * Explicitly set the b_daddr field to a known
6641			 * value which means "invalid address". This
6642			 * enables us to differentiate which stage of
6643			 * l2arc_write_buffers() the particular header
6644			 * is in (e.g. this loop, or the one below).
6645			 * ARC_FLAG_L2_WRITING is not enough to make
6646			 * this distinction, and we need to know in
6647			 * order to do proper l2arc vdev accounting in
6648			 * arc_release() and arc_hdr_destroy().
6649			 *
6650			 * Note, we can't use a new flag to distinguish
6651			 * the two stages because we don't hold the
6652			 * header's hash_lock below, in the second stage
6653			 * of this function. Thus, we can't simply
6654			 * change the b_flags field to denote that the
6655			 * IO has been sent. We can change the b_daddr
6656			 * field of the L2 portion, though, since we'll
6657			 * be holding the l2ad_mtx; which is why we're
6658			 * using it to denote the header's state change.
6659			 */
6660			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6661
6662			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6663
6664			mutex_enter(&dev->l2ad_mtx);
6665			list_insert_head(&dev->l2ad_buflist, hdr);
6666			mutex_exit(&dev->l2ad_mtx);
6667
6668			/*
6669			 * Compute and store the buffer cksum before
6670			 * writing.  On debug the cksum is verified first.
6671			 */
6672			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6673			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6674
6675			mutex_exit(hash_lock);
6676
6677			write_sz += buf_sz;
6678			write_asize += buf_a_sz;
6679		}
6680
6681		multilist_sublist_unlock(mls);
6682
6683		if (full == B_TRUE)
6684			break;
6685	}
6686
6687	/* No buffers selected for writing? */
6688	if (pio == NULL) {
6689		ASSERT0(write_sz);
6690		ASSERT(!HDR_HAS_L1HDR(head));
6691		kmem_cache_free(hdr_l2only_cache, head);
6692		return (0);
6693	}
6694
6695	mutex_enter(&dev->l2ad_mtx);
6696
6697	/*
6698	 * Now start writing the buffers. We're starting at the write head
6699	 * and work backwards, retracing the course of the buffer selector
6700	 * loop above.
6701	 */
6702	write_asize = 0;
6703	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6704	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6705		uint64_t buf_sz;
6706		boolean_t compress;
6707
6708		/*
6709		 * We rely on the L1 portion of the header below, so
6710		 * it's invalid for this header to have been evicted out
6711		 * of the ghost cache, prior to being written out. The
6712		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6713		 */
6714		ASSERT(HDR_HAS_L1HDR(hdr));
6715
6716		/*
6717		 * We shouldn't need to lock the buffer here, since we flagged
6718		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6719		 * take care to only access its L2 cache parameters. In
6720		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6721		 * ARC eviction.
6722		 */
6723		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6724
6725		/*
6726		 * Save a pointer to the original buffer data we had previously
6727		 * stashed away.
6728		 */
6729		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6730
6731		compress = HDR_L2COMPRESS(hdr) &&
6732		    hdr->b_l2hdr.b_asize >= buf_compress_minsz;
6733		if (l2arc_transform_buf(hdr, compress)) {
6734			/*
6735			 * If compression succeeded, enable headroom
6736			 * boost on the next scan cycle.
6737			 */
6738			*headroom_boost = B_TRUE;
6739		}
6740
6741		/*
6742		 * Get the new buffer size that accounts for compression
6743		 * and padding.
6744		 */
6745		buf_sz = hdr->b_l2hdr.b_asize;
6746
6747		/*
6748		 * We need to do this regardless if buf_sz is zero or
6749		 * not, otherwise, when this l2hdr is evicted we'll
6750		 * remove a reference that was never added.
6751		 */
6752		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6753
6754		/* Compression may have squashed the buffer to zero length. */
6755		if (buf_sz != 0) {
6756			/*
6757			 * If the data was padded or compressed, then it
6758			 * it is in a new buffer.
6759			 */
6760			if (hdr->b_l1hdr.b_tmp_cdata != NULL)
6761				buf_data = hdr->b_l1hdr.b_tmp_cdata;
6762			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6763			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6764			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6765			    ZIO_FLAG_CANFAIL, B_FALSE);
6766
6767			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6768			    zio_t *, wzio);
6769			(void) zio_nowait(wzio);
6770
6771			write_asize += buf_sz;
6772			dev->l2ad_hand += buf_sz;
6773		}
6774	}
6775
6776	mutex_exit(&dev->l2ad_mtx);
6777
6778	ASSERT3U(write_asize, <=, target_sz);
6779	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6780	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6781	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6782	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6783	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6784
6785	/*
6786	 * Bump device hand to the device start if it is approaching the end.
6787	 * l2arc_evict() will already have evicted ahead for this case.
6788	 */
6789	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6790		dev->l2ad_hand = dev->l2ad_start;
6791		dev->l2ad_first = B_FALSE;
6792	}
6793
6794	dev->l2ad_writing = B_TRUE;
6795	(void) zio_wait(pio);
6796	dev->l2ad_writing = B_FALSE;
6797
6798	return (write_asize);
6799}
6800
6801/*
6802 * Transforms, possibly compresses and pads, an L2ARC buffer.
6803 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6804 * size in l2hdr->b_asize. This routine tries to compress the data and
6805 * depending on the compression result there are three possible outcomes:
6806 * *) The buffer was incompressible. The buffer size was already ashift aligned.
6807 *    The original hdr contents were left untouched except for b_tmp_cdata,
6808 *    which is reset to NULL. The caller must keep a pointer to the original
6809 *    data.
6810 * *) The buffer was incompressible. The buffer size was not ashift aligned.
6811 *    b_tmp_cdata was replaced with a temporary data buffer which holds a padded
6812 *    (aligned) copy of the data. Once writing is done, invoke
6813 *    l2arc_release_cdata_buf on this hdr to free the temporary buffer.
6814 * *) The buffer was all-zeros, so there is no need to write it to an L2
6815 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6816 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6817 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6818 *    data buffer which holds the compressed data to be written, and b_asize
6819 *    tells us how much data there is. b_compress is set to the appropriate
6820 *    compression algorithm. Once writing is done, invoke
6821 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6822 *
6823 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6824 * buffer was incompressible).
6825 */
6826static boolean_t
6827l2arc_transform_buf(arc_buf_hdr_t *hdr, boolean_t compress)
6828{
6829	void *cdata;
6830	size_t align, asize, csize, len, rounded;
6831
6832	ASSERT(HDR_HAS_L2HDR(hdr));
6833	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6834
6835	ASSERT(HDR_HAS_L1HDR(hdr));
6836	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6837	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6838
6839	len = l2hdr->b_asize;
6840	align = (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift;
6841	asize = P2ROUNDUP(len, align);
6842	cdata = zio_data_buf_alloc(asize);
6843	ASSERT3P(cdata, !=, NULL);
6844	if (compress)
6845		csize = zio_compress_data(ZIO_COMPRESS_LZ4,
6846		    hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6847	else
6848		csize = len;
6849
6850	if (csize == 0) {
6851		/* zero block, indicate that there's nothing to write */
6852		zio_data_buf_free(cdata, asize);
6853		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6854		l2hdr->b_asize = 0;
6855		hdr->b_l1hdr.b_tmp_cdata = NULL;
6856		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6857		return (B_TRUE);
6858	}
6859
6860	rounded = P2ROUNDUP(csize, align);
6861	ASSERT3U(rounded, <=, asize);
6862	if (rounded < len) {
6863		/*
6864		 * Compression succeeded, we'll keep the cdata around for
6865		 * writing and release it afterwards.
6866		 */
6867		if (rounded > csize) {
6868			bzero((char *)cdata + csize, rounded - csize);
6869			csize = rounded;
6870		}
6871		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6872		l2hdr->b_asize = csize;
6873		hdr->b_l1hdr.b_tmp_cdata = cdata;
6874		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6875		return (B_TRUE);
6876	} else {
6877		/*
6878		 * Compression did not save space.
6879		 */
6880		if (P2PHASE(len, align) != 0) {
6881			/*
6882			 * Use compression buffer for a copy of data padded to
6883			 * the proper size.  Compression algorithm remains set
6884			 * to ZIO_COMPRESS_OFF.
6885			 */
6886			ASSERT3U(len, <, asize);
6887			bcopy(hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6888			bzero((char *)cdata + len, asize - len);
6889			l2hdr->b_asize = asize;
6890			hdr->b_l1hdr.b_tmp_cdata = cdata;
6891			ARCSTAT_BUMP(arcstat_l2_padding_needed);
6892		} else {
6893			ASSERT3U(len, ==, asize);
6894			/*
6895			 * The original buffer is good as is,
6896			 * release the compressed buffer.
6897			 * l2hdr will be left unmodified except for b_tmp_cdata.
6898			 */
6899			zio_data_buf_free(cdata, asize);
6900			hdr->b_l1hdr.b_tmp_cdata = NULL;
6901		}
6902		if (compress)
6903			ARCSTAT_BUMP(arcstat_l2_compress_failures);
6904		return (B_FALSE);
6905	}
6906}
6907
6908/*
6909 * Decompresses a zio read back from an l2arc device. On success, the
6910 * underlying zio's io_data buffer is overwritten by the uncompressed
6911 * version. On decompression error (corrupt compressed stream), the
6912 * zio->io_error value is set to signal an I/O error.
6913 *
6914 * Please note that the compressed data stream is not checksummed, so
6915 * if the underlying device is experiencing data corruption, we may feed
6916 * corrupt data to the decompressor, so the decompressor needs to be
6917 * able to handle this situation (LZ4 does).
6918 */
6919static void
6920l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6921{
6922	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6923
6924	if (zio->io_error != 0) {
6925		/*
6926		 * An io error has occured, just restore the original io
6927		 * size in preparation for a main pool read.
6928		 */
6929		zio->io_orig_size = zio->io_size = hdr->b_size;
6930		return;
6931	}
6932
6933	if (c == ZIO_COMPRESS_EMPTY) {
6934		/*
6935		 * An empty buffer results in a null zio, which means we
6936		 * need to fill its io_data after we're done restoring the
6937		 * buffer's contents.
6938		 */
6939		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6940		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6941		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6942	} else {
6943		ASSERT(zio->io_data != NULL);
6944		/*
6945		 * We copy the compressed data from the start of the arc buffer
6946		 * (the zio_read will have pulled in only what we need, the
6947		 * rest is garbage which we will overwrite at decompression)
6948		 * and then decompress back to the ARC data buffer. This way we
6949		 * can minimize copying by simply decompressing back over the
6950		 * original compressed data (rather than decompressing to an
6951		 * aux buffer and then copying back the uncompressed buffer,
6952		 * which is likely to be much larger).
6953		 */
6954		uint64_t csize;
6955		void *cdata;
6956
6957		csize = zio->io_size;
6958		cdata = zio_data_buf_alloc(csize);
6959		bcopy(zio->io_data, cdata, csize);
6960		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6961		    hdr->b_size) != 0)
6962			zio->io_error = EIO;
6963		zio_data_buf_free(cdata, csize);
6964	}
6965
6966	/* Restore the expected uncompressed IO size. */
6967	zio->io_orig_size = zio->io_size = hdr->b_size;
6968}
6969
6970/*
6971 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6972 * This buffer serves as a temporary holder of compressed or padded data while
6973 * the buffer entry is being written to an l2arc device. Once that is
6974 * done, we can dispose of it.
6975 */
6976static void
6977l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6978{
6979	size_t align, asize, len;
6980	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6981
6982	ASSERT(HDR_HAS_L2HDR(hdr));
6983	ASSERT(HDR_HAS_L1HDR(hdr));
6984	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6985
6986	if (hdr->b_l1hdr.b_tmp_cdata != NULL) {
6987		ASSERT(comp != ZIO_COMPRESS_EMPTY);
6988		len = hdr->b_size;
6989		align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
6990		asize = P2ROUNDUP(len, align);
6991		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, asize);
6992		hdr->b_l1hdr.b_tmp_cdata = NULL;
6993	} else {
6994		ASSERT(comp == ZIO_COMPRESS_OFF || comp == ZIO_COMPRESS_EMPTY);
6995	}
6996}
6997
6998/*
6999 * This thread feeds the L2ARC at regular intervals.  This is the beating
7000 * heart of the L2ARC.
7001 */
7002static void
7003l2arc_feed_thread(void *dummy __unused)
7004{
7005	callb_cpr_t cpr;
7006	l2arc_dev_t *dev;
7007	spa_t *spa;
7008	uint64_t size, wrote;
7009	clock_t begin, next = ddi_get_lbolt();
7010	boolean_t headroom_boost = B_FALSE;
7011
7012	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7013
7014	mutex_enter(&l2arc_feed_thr_lock);
7015
7016	while (l2arc_thread_exit == 0) {
7017		CALLB_CPR_SAFE_BEGIN(&cpr);
7018		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7019		    next - ddi_get_lbolt());
7020		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7021		next = ddi_get_lbolt() + hz;
7022
7023		/*
7024		 * Quick check for L2ARC devices.
7025		 */
7026		mutex_enter(&l2arc_dev_mtx);
7027		if (l2arc_ndev == 0) {
7028			mutex_exit(&l2arc_dev_mtx);
7029			continue;
7030		}
7031		mutex_exit(&l2arc_dev_mtx);
7032		begin = ddi_get_lbolt();
7033
7034		/*
7035		 * This selects the next l2arc device to write to, and in
7036		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7037		 * will return NULL if there are now no l2arc devices or if
7038		 * they are all faulted.
7039		 *
7040		 * If a device is returned, its spa's config lock is also
7041		 * held to prevent device removal.  l2arc_dev_get_next()
7042		 * will grab and release l2arc_dev_mtx.
7043		 */
7044		if ((dev = l2arc_dev_get_next()) == NULL)
7045			continue;
7046
7047		spa = dev->l2ad_spa;
7048		ASSERT(spa != NULL);
7049
7050		/*
7051		 * If the pool is read-only then force the feed thread to
7052		 * sleep a little longer.
7053		 */
7054		if (!spa_writeable(spa)) {
7055			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7056			spa_config_exit(spa, SCL_L2ARC, dev);
7057			continue;
7058		}
7059
7060		/*
7061		 * Avoid contributing to memory pressure.
7062		 */
7063		if (arc_reclaim_needed()) {
7064			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7065			spa_config_exit(spa, SCL_L2ARC, dev);
7066			continue;
7067		}
7068
7069		ARCSTAT_BUMP(arcstat_l2_feeds);
7070
7071		size = l2arc_write_size();
7072
7073		/*
7074		 * Evict L2ARC buffers that will be overwritten.
7075		 */
7076		l2arc_evict(dev, size, B_FALSE);
7077
7078		/*
7079		 * Write ARC buffers.
7080		 */
7081		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
7082
7083		/*
7084		 * Calculate interval between writes.
7085		 */
7086		next = l2arc_write_interval(begin, size, wrote);
7087		spa_config_exit(spa, SCL_L2ARC, dev);
7088	}
7089
7090	l2arc_thread_exit = 0;
7091	cv_broadcast(&l2arc_feed_thr_cv);
7092	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7093	thread_exit();
7094}
7095
7096boolean_t
7097l2arc_vdev_present(vdev_t *vd)
7098{
7099	l2arc_dev_t *dev;
7100
7101	mutex_enter(&l2arc_dev_mtx);
7102	for (dev = list_head(l2arc_dev_list); dev != NULL;
7103	    dev = list_next(l2arc_dev_list, dev)) {
7104		if (dev->l2ad_vdev == vd)
7105			break;
7106	}
7107	mutex_exit(&l2arc_dev_mtx);
7108
7109	return (dev != NULL);
7110}
7111
7112/*
7113 * Add a vdev for use by the L2ARC.  By this point the spa has already
7114 * validated the vdev and opened it.
7115 */
7116void
7117l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7118{
7119	l2arc_dev_t *adddev;
7120
7121	ASSERT(!l2arc_vdev_present(vd));
7122
7123	vdev_ashift_optimize(vd);
7124
7125	/*
7126	 * Create a new l2arc device entry.
7127	 */
7128	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7129	adddev->l2ad_spa = spa;
7130	adddev->l2ad_vdev = vd;
7131	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7132	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7133	adddev->l2ad_hand = adddev->l2ad_start;
7134	adddev->l2ad_first = B_TRUE;
7135	adddev->l2ad_writing = B_FALSE;
7136
7137	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7138	/*
7139	 * This is a list of all ARC buffers that are still valid on the
7140	 * device.
7141	 */
7142	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7143	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7144
7145	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7146	refcount_create(&adddev->l2ad_alloc);
7147
7148	/*
7149	 * Add device to global list
7150	 */
7151	mutex_enter(&l2arc_dev_mtx);
7152	list_insert_head(l2arc_dev_list, adddev);
7153	atomic_inc_64(&l2arc_ndev);
7154	mutex_exit(&l2arc_dev_mtx);
7155}
7156
7157/*
7158 * Remove a vdev from the L2ARC.
7159 */
7160void
7161l2arc_remove_vdev(vdev_t *vd)
7162{
7163	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7164
7165	/*
7166	 * Find the device by vdev
7167	 */
7168	mutex_enter(&l2arc_dev_mtx);
7169	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7170		nextdev = list_next(l2arc_dev_list, dev);
7171		if (vd == dev->l2ad_vdev) {
7172			remdev = dev;
7173			break;
7174		}
7175	}
7176	ASSERT(remdev != NULL);
7177
7178	/*
7179	 * Remove device from global list
7180	 */
7181	list_remove(l2arc_dev_list, remdev);
7182	l2arc_dev_last = NULL;		/* may have been invalidated */
7183	atomic_dec_64(&l2arc_ndev);
7184	mutex_exit(&l2arc_dev_mtx);
7185
7186	/*
7187	 * Clear all buflists and ARC references.  L2ARC device flush.
7188	 */
7189	l2arc_evict(remdev, 0, B_TRUE);
7190	list_destroy(&remdev->l2ad_buflist);
7191	mutex_destroy(&remdev->l2ad_mtx);
7192	refcount_destroy(&remdev->l2ad_alloc);
7193	kmem_free(remdev, sizeof (l2arc_dev_t));
7194}
7195
7196void
7197l2arc_init(void)
7198{
7199	l2arc_thread_exit = 0;
7200	l2arc_ndev = 0;
7201	l2arc_writes_sent = 0;
7202	l2arc_writes_done = 0;
7203
7204	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7205	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7206	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7207	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7208
7209	l2arc_dev_list = &L2ARC_dev_list;
7210	l2arc_free_on_write = &L2ARC_free_on_write;
7211	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7212	    offsetof(l2arc_dev_t, l2ad_node));
7213	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7214	    offsetof(l2arc_data_free_t, l2df_list_node));
7215}
7216
7217void
7218l2arc_fini(void)
7219{
7220	/*
7221	 * This is called from dmu_fini(), which is called from spa_fini();
7222	 * Because of this, we can assume that all l2arc devices have
7223	 * already been removed when the pools themselves were removed.
7224	 */
7225
7226	l2arc_do_free_on_write();
7227
7228	mutex_destroy(&l2arc_feed_thr_lock);
7229	cv_destroy(&l2arc_feed_thr_cv);
7230	mutex_destroy(&l2arc_dev_mtx);
7231	mutex_destroy(&l2arc_free_on_write_mtx);
7232
7233	list_destroy(l2arc_dev_list);
7234	list_destroy(l2arc_free_on_write);
7235}
7236
7237void
7238l2arc_start(void)
7239{
7240	if (!(spa_mode_global & FWRITE))
7241		return;
7242
7243	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7244	    TS_RUN, minclsyspri);
7245}
7246
7247void
7248l2arc_stop(void)
7249{
7250	if (!(spa_mode_global & FWRITE))
7251		return;
7252
7253	mutex_enter(&l2arc_feed_thr_lock);
7254	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7255	l2arc_thread_exit = 1;
7256	while (l2arc_thread_exit != 0)
7257		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7258	mutex_exit(&l2arc_feed_thr_lock);
7259}
7260