1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/11/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 361088 2020-05-15 20:03:57Z dim $
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#ifndef illumos
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#ifdef illumos
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#ifdef illumos
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#ifdef illumos
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#ifdef illumos
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#ifdef illumos
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#ifdef illumos
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#ifndef illumos
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/linker.h>
121#include <sys/kdb.h>
122#include <sys/kernel.h>
123#include <sys/malloc.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/ptrace.h>
127#include <sys/random.h>
128#include <sys/rwlock.h>
129#include <sys/sx.h>
130#include <sys/sysctl.h>
131
132#include <sys/dtrace_bsd.h>
133
134#include <netinet/in.h>
135
136#include "dtrace_cddl.h"
137#include "dtrace_debug.c"
138#endif
139
140#include "dtrace_xoroshiro128_plus.h"
141
142/*
143 * DTrace Tunable Variables
144 *
145 * The following variables may be tuned by adding a line to /etc/system that
146 * includes both the name of the DTrace module ("dtrace") and the name of the
147 * variable.  For example:
148 *
149 *   set dtrace:dtrace_destructive_disallow = 1
150 *
151 * In general, the only variables that one should be tuning this way are those
152 * that affect system-wide DTrace behavior, and for which the default behavior
153 * is undesirable.  Most of these variables are tunable on a per-consumer
154 * basis using DTrace options, and need not be tuned on a system-wide basis.
155 * When tuning these variables, avoid pathological values; while some attempt
156 * is made to verify the integrity of these variables, they are not considered
157 * part of the supported interface to DTrace, and they are therefore not
158 * checked comprehensively.  Further, these variables should not be tuned
159 * dynamically via "mdb -kw" or other means; they should only be tuned via
160 * /etc/system.
161 */
162int		dtrace_destructive_disallow = 0;
163#ifndef illumos
164/* Positive logic version of dtrace_destructive_disallow for loader tunable */
165int		dtrace_allow_destructive = 1;
166#endif
167dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
168size_t		dtrace_difo_maxsize = (256 * 1024);
169dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
170size_t		dtrace_statvar_maxsize = (16 * 1024);
171size_t		dtrace_actions_max = (16 * 1024);
172size_t		dtrace_retain_max = 1024;
173dtrace_optval_t	dtrace_helper_actions_max = 128;
174dtrace_optval_t	dtrace_helper_providers_max = 32;
175dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
176size_t		dtrace_strsize_default = 256;
177dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
178dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
179dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
180dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
181dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
182dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
183dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
184dtrace_optval_t	dtrace_nspec_default = 1;
185dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
186dtrace_optval_t dtrace_stackframes_default = 20;
187dtrace_optval_t dtrace_ustackframes_default = 20;
188dtrace_optval_t dtrace_jstackframes_default = 50;
189dtrace_optval_t dtrace_jstackstrsize_default = 512;
190int		dtrace_msgdsize_max = 128;
191hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
192hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
193int		dtrace_devdepth_max = 32;
194int		dtrace_err_verbose;
195hrtime_t	dtrace_deadman_interval = NANOSEC;
196hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
197hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
198hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
199#ifndef illumos
200int		dtrace_memstr_max = 4096;
201#endif
202
203/*
204 * DTrace External Variables
205 *
206 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
207 * available to DTrace consumers via the backtick (`) syntax.  One of these,
208 * dtrace_zero, is made deliberately so:  it is provided as a source of
209 * well-known, zero-filled memory.  While this variable is not documented,
210 * it is used by some translators as an implementation detail.
211 */
212const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
213
214/*
215 * DTrace Internal Variables
216 */
217#ifdef illumos
218static dev_info_t	*dtrace_devi;		/* device info */
219#endif
220#ifdef illumos
221static vmem_t		*dtrace_arena;		/* probe ID arena */
222static vmem_t		*dtrace_minor;		/* minor number arena */
223#else
224static taskq_t		*dtrace_taskq;		/* task queue */
225static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
226#endif
227static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
228static int		dtrace_nprobes;		/* number of probes */
229static dtrace_provider_t *dtrace_provider;	/* provider list */
230static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
231static int		dtrace_opens;		/* number of opens */
232static int		dtrace_helpers;		/* number of helpers */
233static int		dtrace_getf;		/* number of unpriv getf()s */
234#ifdef illumos
235static void		*dtrace_softstate;	/* softstate pointer */
236#endif
237static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
238static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
239static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
240static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
241static int		dtrace_toxranges;	/* number of toxic ranges */
242static int		dtrace_toxranges_max;	/* size of toxic range array */
243static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
244static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
245static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
246static kthread_t	*dtrace_panicked;	/* panicking thread */
247static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
248static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
249static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
250static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
251static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
252static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
253static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
254#ifndef illumos
255static struct mtx	dtrace_unr_mtx;
256MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
257static eventhandler_tag	dtrace_kld_load_tag;
258static eventhandler_tag	dtrace_kld_unload_try_tag;
259#endif
260
261/*
262 * DTrace Locking
263 * DTrace is protected by three (relatively coarse-grained) locks:
264 *
265 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
266 *     including enabling state, probes, ECBs, consumer state, helper state,
267 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
268 *     probe context is lock-free -- synchronization is handled via the
269 *     dtrace_sync() cross call mechanism.
270 *
271 * (2) dtrace_provider_lock is required when manipulating provider state, or
272 *     when provider state must be held constant.
273 *
274 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
275 *     when meta provider state must be held constant.
276 *
277 * The lock ordering between these three locks is dtrace_meta_lock before
278 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
279 * several places where dtrace_provider_lock is held by the framework as it
280 * calls into the providers -- which then call back into the framework,
281 * grabbing dtrace_lock.)
282 *
283 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
284 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
285 * role as a coarse-grained lock; it is acquired before both of these locks.
286 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
287 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
288 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
289 * acquired _between_ dtrace_provider_lock and dtrace_lock.
290 */
291static kmutex_t		dtrace_lock;		/* probe state lock */
292static kmutex_t		dtrace_provider_lock;	/* provider state lock */
293static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
294
295#ifndef illumos
296/* XXX FreeBSD hacks. */
297#define cr_suid		cr_svuid
298#define cr_sgid		cr_svgid
299#define	ipaddr_t	in_addr_t
300#define mod_modname	pathname
301#define vuprintf	vprintf
302#define ttoproc(_a)	((_a)->td_proc)
303#define crgetzoneid(_a)	0
304#define SNOCD		0
305#define CPU_ON_INTR(_a)	0
306
307#define PRIV_EFFECTIVE		(1 << 0)
308#define PRIV_DTRACE_KERNEL	(1 << 1)
309#define PRIV_DTRACE_PROC	(1 << 2)
310#define PRIV_DTRACE_USER	(1 << 3)
311#define PRIV_PROC_OWNER		(1 << 4)
312#define PRIV_PROC_ZONE		(1 << 5)
313#define PRIV_ALL		~0
314
315SYSCTL_DECL(_debug_dtrace);
316SYSCTL_DECL(_kern_dtrace);
317#endif
318
319#ifdef illumos
320#define curcpu	CPU->cpu_id
321#endif
322
323
324/*
325 * DTrace Provider Variables
326 *
327 * These are the variables relating to DTrace as a provider (that is, the
328 * provider of the BEGIN, END, and ERROR probes).
329 */
330static dtrace_pattr_t	dtrace_provider_attr = {
331{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
332{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
333{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
334{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
335{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
336};
337
338static void
339dtrace_nullop(void)
340{}
341
342static dtrace_pops_t dtrace_provider_ops = {
343	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
344	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
345	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
347	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
348	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
349	.dtps_getargdesc =	NULL,
350	.dtps_getargval =	NULL,
351	.dtps_usermode =	NULL,
352	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
353};
354
355static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
356static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
357dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
358
359/*
360 * DTrace Helper Tracing Variables
361 *
362 * These variables should be set dynamically to enable helper tracing.  The
363 * only variables that should be set are dtrace_helptrace_enable (which should
364 * be set to a non-zero value to allocate helper tracing buffers on the next
365 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
366 * non-zero value to deallocate helper tracing buffers on the next close of
367 * /dev/dtrace).  When (and only when) helper tracing is disabled, the
368 * buffer size may also be set via dtrace_helptrace_bufsize.
369 */
370int			dtrace_helptrace_enable = 0;
371int			dtrace_helptrace_disable = 0;
372int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
373uint32_t		dtrace_helptrace_nlocals;
374static dtrace_helptrace_t *dtrace_helptrace_buffer;
375static uint32_t		dtrace_helptrace_next = 0;
376static int		dtrace_helptrace_wrapped = 0;
377
378/*
379 * DTrace Error Hashing
380 *
381 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
382 * table.  This is very useful for checking coverage of tests that are
383 * expected to induce DIF or DOF processing errors, and may be useful for
384 * debugging problems in the DIF code generator or in DOF generation .  The
385 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
386 */
387#ifdef DEBUG
388static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
389static const char *dtrace_errlast;
390static kthread_t *dtrace_errthread;
391static kmutex_t dtrace_errlock;
392#endif
393
394/*
395 * DTrace Macros and Constants
396 *
397 * These are various macros that are useful in various spots in the
398 * implementation, along with a few random constants that have no meaning
399 * outside of the implementation.  There is no real structure to this cpp
400 * mishmash -- but is there ever?
401 */
402#define	DTRACE_HASHSTR(hash, probe)	\
403	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
404
405#define	DTRACE_HASHNEXT(hash, probe)	\
406	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
407
408#define	DTRACE_HASHPREV(hash, probe)	\
409	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
410
411#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
412	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
413	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
414
415#define	DTRACE_AGGHASHSIZE_SLEW		17
416
417#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
418
419/*
420 * The key for a thread-local variable consists of the lower 61 bits of the
421 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
422 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
423 * equal to a variable identifier.  This is necessary (but not sufficient) to
424 * assure that global associative arrays never collide with thread-local
425 * variables.  To guarantee that they cannot collide, we must also define the
426 * order for keying dynamic variables.  That order is:
427 *
428 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
429 *
430 * Because the variable-key and the tls-key are in orthogonal spaces, there is
431 * no way for a global variable key signature to match a thread-local key
432 * signature.
433 */
434#ifdef illumos
435#define	DTRACE_TLS_THRKEY(where) { \
436	uint_t intr = 0; \
437	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
438	for (; actv; actv >>= 1) \
439		intr++; \
440	ASSERT(intr < (1 << 3)); \
441	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
442	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
443}
444#else
445#define	DTRACE_TLS_THRKEY(where) { \
446	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
447	uint_t intr = 0; \
448	uint_t actv = _c->cpu_intr_actv; \
449	for (; actv; actv >>= 1) \
450		intr++; \
451	ASSERT(intr < (1 << 3)); \
452	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
453	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
454}
455#endif
456
457#define	DT_BSWAP_8(x)	((x) & 0xff)
458#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
459#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
460#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
461
462#define	DT_MASK_LO 0x00000000FFFFFFFFULL
463
464#define	DTRACE_STORE(type, tomax, offset, what) \
465	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
466
467#ifndef __x86
468#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
469	if (addr & (size - 1)) {					\
470		*flags |= CPU_DTRACE_BADALIGN;				\
471		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
472		return (0);						\
473	}
474#else
475#define	DTRACE_ALIGNCHECK(addr, size, flags)
476#endif
477
478/*
479 * Test whether a range of memory starting at testaddr of size testsz falls
480 * within the range of memory described by addr, sz.  We take care to avoid
481 * problems with overflow and underflow of the unsigned quantities, and
482 * disallow all negative sizes.  Ranges of size 0 are allowed.
483 */
484#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
485	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
486	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
487	(testaddr) + (testsz) >= (testaddr))
488
489/*
490 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
491 * alloc_sz on the righthand side of the comparison in order to avoid overflow
492 * or underflow in the comparison with it.  This is simpler than the INRANGE
493 * check above, because we know that the dtms_scratch_ptr is valid in the
494 * range.  Allocations of size zero are allowed.
495 */
496#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
497	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
498	(mstate)->dtms_scratch_ptr >= (alloc_sz))
499
500#define	DTRACE_LOADFUNC(bits)						\
501/*CSTYLED*/								\
502uint##bits##_t								\
503dtrace_load##bits(uintptr_t addr)					\
504{									\
505	size_t size = bits / NBBY;					\
506	/*CSTYLED*/							\
507	uint##bits##_t rval;						\
508	int i;								\
509	volatile uint16_t *flags = (volatile uint16_t *)		\
510	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
511									\
512	DTRACE_ALIGNCHECK(addr, size, flags);				\
513									\
514	for (i = 0; i < dtrace_toxranges; i++) {			\
515		if (addr >= dtrace_toxrange[i].dtt_limit)		\
516			continue;					\
517									\
518		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
519			continue;					\
520									\
521		/*							\
522		 * This address falls within a toxic region; return 0.	\
523		 */							\
524		*flags |= CPU_DTRACE_BADADDR;				\
525		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
526		return (0);						\
527	}								\
528									\
529	*flags |= CPU_DTRACE_NOFAULT;					\
530	/*CSTYLED*/							\
531	rval = *((volatile uint##bits##_t *)addr);			\
532	*flags &= ~CPU_DTRACE_NOFAULT;					\
533									\
534	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
535}
536
537#ifdef _LP64
538#define	dtrace_loadptr	dtrace_load64
539#else
540#define	dtrace_loadptr	dtrace_load32
541#endif
542
543#define	DTRACE_DYNHASH_FREE	0
544#define	DTRACE_DYNHASH_SINK	1
545#define	DTRACE_DYNHASH_VALID	2
546
547#define	DTRACE_MATCH_NEXT	0
548#define	DTRACE_MATCH_DONE	1
549#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
550#define	DTRACE_STATE_ALIGN	64
551
552#define	DTRACE_FLAGS2FLT(flags)						\
553	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
554	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
555	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
556	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
557	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
558	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
559	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
560	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
561	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
562	DTRACEFLT_UNKNOWN)
563
564#define	DTRACEACT_ISSTRING(act)						\
565	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
566	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
567
568/* Function prototype definitions: */
569static size_t dtrace_strlen(const char *, size_t);
570static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
571static void dtrace_enabling_provide(dtrace_provider_t *);
572static int dtrace_enabling_match(dtrace_enabling_t *, int *);
573static void dtrace_enabling_matchall(void);
574static void dtrace_enabling_reap(void);
575static dtrace_state_t *dtrace_anon_grab(void);
576static uint64_t dtrace_helper(int, dtrace_mstate_t *,
577    dtrace_state_t *, uint64_t, uint64_t);
578static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
579static void dtrace_buffer_drop(dtrace_buffer_t *);
580static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
581static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
582    dtrace_state_t *, dtrace_mstate_t *);
583static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
584    dtrace_optval_t);
585static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
586static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
587uint16_t dtrace_load16(uintptr_t);
588uint32_t dtrace_load32(uintptr_t);
589uint64_t dtrace_load64(uintptr_t);
590uint8_t dtrace_load8(uintptr_t);
591void dtrace_dynvar_clean(dtrace_dstate_t *);
592dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
593    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
594uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
595static int dtrace_priv_proc(dtrace_state_t *);
596static void dtrace_getf_barrier(void);
597
598/*
599 * DTrace Probe Context Functions
600 *
601 * These functions are called from probe context.  Because probe context is
602 * any context in which C may be called, arbitrarily locks may be held,
603 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
604 * As a result, functions called from probe context may only call other DTrace
605 * support functions -- they may not interact at all with the system at large.
606 * (Note that the ASSERT macro is made probe-context safe by redefining it in
607 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
608 * loads are to be performed from probe context, they _must_ be in terms of
609 * the safe dtrace_load*() variants.
610 *
611 * Some functions in this block are not actually called from probe context;
612 * for these functions, there will be a comment above the function reading
613 * "Note:  not called from probe context."
614 */
615void
616dtrace_panic(const char *format, ...)
617{
618	va_list alist;
619
620	va_start(alist, format);
621#ifdef __FreeBSD__
622	vpanic(format, alist);
623#else
624	dtrace_vpanic(format, alist);
625#endif
626	va_end(alist);
627}
628
629int
630dtrace_assfail(const char *a, const char *f, int l)
631{
632	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
633
634	/*
635	 * We just need something here that even the most clever compiler
636	 * cannot optimize away.
637	 */
638	return (a[(uintptr_t)f]);
639}
640
641/*
642 * Atomically increment a specified error counter from probe context.
643 */
644static void
645dtrace_error(uint32_t *counter)
646{
647	/*
648	 * Most counters stored to in probe context are per-CPU counters.
649	 * However, there are some error conditions that are sufficiently
650	 * arcane that they don't merit per-CPU storage.  If these counters
651	 * are incremented concurrently on different CPUs, scalability will be
652	 * adversely affected -- but we don't expect them to be white-hot in a
653	 * correctly constructed enabling...
654	 */
655	uint32_t oval, nval;
656
657	do {
658		oval = *counter;
659
660		if ((nval = oval + 1) == 0) {
661			/*
662			 * If the counter would wrap, set it to 1 -- assuring
663			 * that the counter is never zero when we have seen
664			 * errors.  (The counter must be 32-bits because we
665			 * aren't guaranteed a 64-bit compare&swap operation.)
666			 * To save this code both the infamy of being fingered
667			 * by a priggish news story and the indignity of being
668			 * the target of a neo-puritan witch trial, we're
669			 * carefully avoiding any colorful description of the
670			 * likelihood of this condition -- but suffice it to
671			 * say that it is only slightly more likely than the
672			 * overflow of predicate cache IDs, as discussed in
673			 * dtrace_predicate_create().
674			 */
675			nval = 1;
676		}
677	} while (dtrace_cas32(counter, oval, nval) != oval);
678}
679
680/*
681 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
682 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
683 */
684/* BEGIN CSTYLED */
685DTRACE_LOADFUNC(8)
686DTRACE_LOADFUNC(16)
687DTRACE_LOADFUNC(32)
688DTRACE_LOADFUNC(64)
689/* END CSTYLED */
690
691static int
692dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
693{
694	if (dest < mstate->dtms_scratch_base)
695		return (0);
696
697	if (dest + size < dest)
698		return (0);
699
700	if (dest + size > mstate->dtms_scratch_ptr)
701		return (0);
702
703	return (1);
704}
705
706static int
707dtrace_canstore_statvar(uint64_t addr, size_t sz,
708    dtrace_statvar_t **svars, int nsvars)
709{
710	int i;
711	size_t maxglobalsize, maxlocalsize;
712
713	if (nsvars == 0)
714		return (0);
715
716	maxglobalsize = dtrace_statvar_maxsize;
717	maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU;
718
719	for (i = 0; i < nsvars; i++) {
720		dtrace_statvar_t *svar = svars[i];
721		uint8_t scope;
722		size_t size;
723
724		if (svar == NULL || (size = svar->dtsv_size) == 0)
725			continue;
726
727		scope = svar->dtsv_var.dtdv_scope;
728
729		/*
730		 * We verify that our size is valid in the spirit of providing
731		 * defense in depth:  we want to prevent attackers from using
732		 * DTrace to escalate an orthogonal kernel heap corruption bug
733		 * into the ability to store to arbitrary locations in memory.
734		 */
735		VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) ||
736		    (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize));
737
738		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
739			return (1);
740	}
741
742	return (0);
743}
744
745/*
746 * Check to see if the address is within a memory region to which a store may
747 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
748 * region.  The caller of dtrace_canstore() is responsible for performing any
749 * alignment checks that are needed before stores are actually executed.
750 */
751static int
752dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
753    dtrace_vstate_t *vstate)
754{
755	/*
756	 * First, check to see if the address is in scratch space...
757	 */
758	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
759	    mstate->dtms_scratch_size))
760		return (1);
761
762	/*
763	 * Now check to see if it's a dynamic variable.  This check will pick
764	 * up both thread-local variables and any global dynamically-allocated
765	 * variables.
766	 */
767	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
768	    vstate->dtvs_dynvars.dtds_size)) {
769		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
770		uintptr_t base = (uintptr_t)dstate->dtds_base +
771		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
772		uintptr_t chunkoffs;
773		dtrace_dynvar_t *dvar;
774
775		/*
776		 * Before we assume that we can store here, we need to make
777		 * sure that it isn't in our metadata -- storing to our
778		 * dynamic variable metadata would corrupt our state.  For
779		 * the range to not include any dynamic variable metadata,
780		 * it must:
781		 *
782		 *	(1) Start above the hash table that is at the base of
783		 *	the dynamic variable space
784		 *
785		 *	(2) Have a starting chunk offset that is beyond the
786		 *	dtrace_dynvar_t that is at the base of every chunk
787		 *
788		 *	(3) Not span a chunk boundary
789		 *
790		 *	(4) Not be in the tuple space of a dynamic variable
791		 *
792		 */
793		if (addr < base)
794			return (0);
795
796		chunkoffs = (addr - base) % dstate->dtds_chunksize;
797
798		if (chunkoffs < sizeof (dtrace_dynvar_t))
799			return (0);
800
801		if (chunkoffs + sz > dstate->dtds_chunksize)
802			return (0);
803
804		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
805
806		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
807			return (0);
808
809		if (chunkoffs < sizeof (dtrace_dynvar_t) +
810		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
811			return (0);
812
813		return (1);
814	}
815
816	/*
817	 * Finally, check the static local and global variables.  These checks
818	 * take the longest, so we perform them last.
819	 */
820	if (dtrace_canstore_statvar(addr, sz,
821	    vstate->dtvs_locals, vstate->dtvs_nlocals))
822		return (1);
823
824	if (dtrace_canstore_statvar(addr, sz,
825	    vstate->dtvs_globals, vstate->dtvs_nglobals))
826		return (1);
827
828	return (0);
829}
830
831
832/*
833 * Convenience routine to check to see if the address is within a memory
834 * region in which a load may be issued given the user's privilege level;
835 * if not, it sets the appropriate error flags and loads 'addr' into the
836 * illegal value slot.
837 *
838 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
839 * appropriate memory access protection.
840 */
841static int
842dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
843    dtrace_vstate_t *vstate)
844{
845	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
846	file_t *fp;
847
848	/*
849	 * If we hold the privilege to read from kernel memory, then
850	 * everything is readable.
851	 */
852	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
853		return (1);
854
855	/*
856	 * You can obviously read that which you can store.
857	 */
858	if (dtrace_canstore(addr, sz, mstate, vstate))
859		return (1);
860
861	/*
862	 * We're allowed to read from our own string table.
863	 */
864	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
865	    mstate->dtms_difo->dtdo_strlen))
866		return (1);
867
868	if (vstate->dtvs_state != NULL &&
869	    dtrace_priv_proc(vstate->dtvs_state)) {
870		proc_t *p;
871
872		/*
873		 * When we have privileges to the current process, there are
874		 * several context-related kernel structures that are safe to
875		 * read, even absent the privilege to read from kernel memory.
876		 * These reads are safe because these structures contain only
877		 * state that (1) we're permitted to read, (2) is harmless or
878		 * (3) contains pointers to additional kernel state that we're
879		 * not permitted to read (and as such, do not present an
880		 * opportunity for privilege escalation).  Finally (and
881		 * critically), because of the nature of their relation with
882		 * the current thread context, the memory associated with these
883		 * structures cannot change over the duration of probe context,
884		 * and it is therefore impossible for this memory to be
885		 * deallocated and reallocated as something else while it's
886		 * being operated upon.
887		 */
888		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
889			return (1);
890
891		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
892		    sz, curthread->t_procp, sizeof (proc_t))) {
893			return (1);
894		}
895
896		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
897		    curthread->t_cred, sizeof (cred_t))) {
898			return (1);
899		}
900
901#ifdef illumos
902		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
903		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
904			return (1);
905		}
906
907		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
908		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
909			return (1);
910		}
911#endif
912	}
913
914	if ((fp = mstate->dtms_getf) != NULL) {
915		uintptr_t psz = sizeof (void *);
916		vnode_t *vp;
917		vnodeops_t *op;
918
919		/*
920		 * When getf() returns a file_t, the enabling is implicitly
921		 * granted the (transient) right to read the returned file_t
922		 * as well as the v_path and v_op->vnop_name of the underlying
923		 * vnode.  These accesses are allowed after a successful
924		 * getf() because the members that they refer to cannot change
925		 * once set -- and the barrier logic in the kernel's closef()
926		 * path assures that the file_t and its referenced vode_t
927		 * cannot themselves be stale (that is, it impossible for
928		 * either dtms_getf itself or its f_vnode member to reference
929		 * freed memory).
930		 */
931		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
932			return (1);
933
934		if ((vp = fp->f_vnode) != NULL) {
935#ifdef illumos
936			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
937				return (1);
938			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
939			    vp->v_path, strlen(vp->v_path) + 1)) {
940				return (1);
941			}
942#endif
943
944			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
945				return (1);
946
947#ifdef illumos
948			if ((op = vp->v_op) != NULL &&
949			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
950				return (1);
951			}
952
953			if (op != NULL && op->vnop_name != NULL &&
954			    DTRACE_INRANGE(addr, sz, op->vnop_name,
955			    strlen(op->vnop_name) + 1)) {
956				return (1);
957			}
958#endif
959		}
960	}
961
962	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
963	*illval = addr;
964	return (0);
965}
966
967/*
968 * Convenience routine to check to see if a given string is within a memory
969 * region in which a load may be issued given the user's privilege level;
970 * this exists so that we don't need to issue unnecessary dtrace_strlen()
971 * calls in the event that the user has all privileges.
972 */
973static int
974dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
975    dtrace_vstate_t *vstate)
976{
977	size_t strsz;
978
979	/*
980	 * If we hold the privilege to read from kernel memory, then
981	 * everything is readable.
982	 */
983	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
984		return (1);
985
986	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
987	if (dtrace_canload(addr, strsz, mstate, vstate))
988		return (1);
989
990	return (0);
991}
992
993/*
994 * Convenience routine to check to see if a given variable is within a memory
995 * region in which a load may be issued given the user's privilege level.
996 */
997static int
998dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
999    dtrace_vstate_t *vstate)
1000{
1001	size_t sz;
1002	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1003
1004	/*
1005	 * If we hold the privilege to read from kernel memory, then
1006	 * everything is readable.
1007	 */
1008	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
1009		return (1);
1010
1011	if (type->dtdt_kind == DIF_TYPE_STRING)
1012		sz = dtrace_strlen(src,
1013		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
1014	else
1015		sz = type->dtdt_size;
1016
1017	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
1018}
1019
1020/*
1021 * Convert a string to a signed integer using safe loads.
1022 *
1023 * NOTE: This function uses various macros from strtolctype.h to manipulate
1024 * digit values, etc -- these have all been checked to ensure they make
1025 * no additional function calls.
1026 */
1027static int64_t
1028dtrace_strtoll(char *input, int base, size_t limit)
1029{
1030	uintptr_t pos = (uintptr_t)input;
1031	int64_t val = 0;
1032	int x;
1033	boolean_t neg = B_FALSE;
1034	char c, cc, ccc;
1035	uintptr_t end = pos + limit;
1036
1037	/*
1038	 * Consume any whitespace preceding digits.
1039	 */
1040	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1041		pos++;
1042
1043	/*
1044	 * Handle an explicit sign if one is present.
1045	 */
1046	if (c == '-' || c == '+') {
1047		if (c == '-')
1048			neg = B_TRUE;
1049		c = dtrace_load8(++pos);
1050	}
1051
1052	/*
1053	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1054	 * if present.
1055	 */
1056	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1057	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1058		pos += 2;
1059		c = ccc;
1060	}
1061
1062	/*
1063	 * Read in contiguous digits until the first non-digit character.
1064	 */
1065	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1066	    c = dtrace_load8(++pos))
1067		val = val * base + x;
1068
1069	return (neg ? -val : val);
1070}
1071
1072/*
1073 * Compare two strings using safe loads.
1074 */
1075static int
1076dtrace_strncmp(char *s1, char *s2, size_t limit)
1077{
1078	uint8_t c1, c2;
1079	volatile uint16_t *flags;
1080
1081	if (s1 == s2 || limit == 0)
1082		return (0);
1083
1084	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1085
1086	do {
1087		if (s1 == NULL) {
1088			c1 = '\0';
1089		} else {
1090			c1 = dtrace_load8((uintptr_t)s1++);
1091		}
1092
1093		if (s2 == NULL) {
1094			c2 = '\0';
1095		} else {
1096			c2 = dtrace_load8((uintptr_t)s2++);
1097		}
1098
1099		if (c1 != c2)
1100			return (c1 - c2);
1101	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1102
1103	return (0);
1104}
1105
1106/*
1107 * Compute strlen(s) for a string using safe memory accesses.  The additional
1108 * len parameter is used to specify a maximum length to ensure completion.
1109 */
1110static size_t
1111dtrace_strlen(const char *s, size_t lim)
1112{
1113	uint_t len;
1114
1115	for (len = 0; len != lim; len++) {
1116		if (dtrace_load8((uintptr_t)s++) == '\0')
1117			break;
1118	}
1119
1120	return (len);
1121}
1122
1123/*
1124 * Check if an address falls within a toxic region.
1125 */
1126static int
1127dtrace_istoxic(uintptr_t kaddr, size_t size)
1128{
1129	uintptr_t taddr, tsize;
1130	int i;
1131
1132	for (i = 0; i < dtrace_toxranges; i++) {
1133		taddr = dtrace_toxrange[i].dtt_base;
1134		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1135
1136		if (kaddr - taddr < tsize) {
1137			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1138			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1139			return (1);
1140		}
1141
1142		if (taddr - kaddr < size) {
1143			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1144			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1145			return (1);
1146		}
1147	}
1148
1149	return (0);
1150}
1151
1152/*
1153 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1154 * memory specified by the DIF program.  The dst is assumed to be safe memory
1155 * that we can store to directly because it is managed by DTrace.  As with
1156 * standard bcopy, overlapping copies are handled properly.
1157 */
1158static void
1159dtrace_bcopy(const void *src, void *dst, size_t len)
1160{
1161	if (len != 0) {
1162		uint8_t *s1 = dst;
1163		const uint8_t *s2 = src;
1164
1165		if (s1 <= s2) {
1166			do {
1167				*s1++ = dtrace_load8((uintptr_t)s2++);
1168			} while (--len != 0);
1169		} else {
1170			s2 += len;
1171			s1 += len;
1172
1173			do {
1174				*--s1 = dtrace_load8((uintptr_t)--s2);
1175			} while (--len != 0);
1176		}
1177	}
1178}
1179
1180/*
1181 * Copy src to dst using safe memory accesses, up to either the specified
1182 * length, or the point that a nul byte is encountered.  The src is assumed to
1183 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1184 * safe memory that we can store to directly because it is managed by DTrace.
1185 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1186 */
1187static void
1188dtrace_strcpy(const void *src, void *dst, size_t len)
1189{
1190	if (len != 0) {
1191		uint8_t *s1 = dst, c;
1192		const uint8_t *s2 = src;
1193
1194		do {
1195			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1196		} while (--len != 0 && c != '\0');
1197	}
1198}
1199
1200/*
1201 * Copy src to dst, deriving the size and type from the specified (BYREF)
1202 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1203 * program.  The dst is assumed to be DTrace variable memory that is of the
1204 * specified type; we assume that we can store to directly.
1205 */
1206static void
1207dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1208{
1209	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1210
1211	if (type->dtdt_kind == DIF_TYPE_STRING) {
1212		dtrace_strcpy(src, dst, type->dtdt_size);
1213	} else {
1214		dtrace_bcopy(src, dst, type->dtdt_size);
1215	}
1216}
1217
1218/*
1219 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1220 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1221 * safe memory that we can access directly because it is managed by DTrace.
1222 */
1223static int
1224dtrace_bcmp(const void *s1, const void *s2, size_t len)
1225{
1226	volatile uint16_t *flags;
1227
1228	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1229
1230	if (s1 == s2)
1231		return (0);
1232
1233	if (s1 == NULL || s2 == NULL)
1234		return (1);
1235
1236	if (s1 != s2 && len != 0) {
1237		const uint8_t *ps1 = s1;
1238		const uint8_t *ps2 = s2;
1239
1240		do {
1241			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1242				return (1);
1243		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1244	}
1245	return (0);
1246}
1247
1248/*
1249 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1250 * is for safe DTrace-managed memory only.
1251 */
1252static void
1253dtrace_bzero(void *dst, size_t len)
1254{
1255	uchar_t *cp;
1256
1257	for (cp = dst; len != 0; len--)
1258		*cp++ = 0;
1259}
1260
1261static void
1262dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1263{
1264	uint64_t result[2];
1265
1266	result[0] = addend1[0] + addend2[0];
1267	result[1] = addend1[1] + addend2[1] +
1268	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1269
1270	sum[0] = result[0];
1271	sum[1] = result[1];
1272}
1273
1274/*
1275 * Shift the 128-bit value in a by b. If b is positive, shift left.
1276 * If b is negative, shift right.
1277 */
1278static void
1279dtrace_shift_128(uint64_t *a, int b)
1280{
1281	uint64_t mask;
1282
1283	if (b == 0)
1284		return;
1285
1286	if (b < 0) {
1287		b = -b;
1288		if (b >= 64) {
1289			a[0] = a[1] >> (b - 64);
1290			a[1] = 0;
1291		} else {
1292			a[0] >>= b;
1293			mask = 1LL << (64 - b);
1294			mask -= 1;
1295			a[0] |= ((a[1] & mask) << (64 - b));
1296			a[1] >>= b;
1297		}
1298	} else {
1299		if (b >= 64) {
1300			a[1] = a[0] << (b - 64);
1301			a[0] = 0;
1302		} else {
1303			a[1] <<= b;
1304			mask = a[0] >> (64 - b);
1305			a[1] |= mask;
1306			a[0] <<= b;
1307		}
1308	}
1309}
1310
1311/*
1312 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1313 * use native multiplication on those, and then re-combine into the
1314 * resulting 128-bit value.
1315 *
1316 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1317 *     hi1 * hi2 << 64 +
1318 *     hi1 * lo2 << 32 +
1319 *     hi2 * lo1 << 32 +
1320 *     lo1 * lo2
1321 */
1322static void
1323dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1324{
1325	uint64_t hi1, hi2, lo1, lo2;
1326	uint64_t tmp[2];
1327
1328	hi1 = factor1 >> 32;
1329	hi2 = factor2 >> 32;
1330
1331	lo1 = factor1 & DT_MASK_LO;
1332	lo2 = factor2 & DT_MASK_LO;
1333
1334	product[0] = lo1 * lo2;
1335	product[1] = hi1 * hi2;
1336
1337	tmp[0] = hi1 * lo2;
1338	tmp[1] = 0;
1339	dtrace_shift_128(tmp, 32);
1340	dtrace_add_128(product, tmp, product);
1341
1342	tmp[0] = hi2 * lo1;
1343	tmp[1] = 0;
1344	dtrace_shift_128(tmp, 32);
1345	dtrace_add_128(product, tmp, product);
1346}
1347
1348/*
1349 * This privilege check should be used by actions and subroutines to
1350 * verify that the user credentials of the process that enabled the
1351 * invoking ECB match the target credentials
1352 */
1353static int
1354dtrace_priv_proc_common_user(dtrace_state_t *state)
1355{
1356	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1357
1358	/*
1359	 * We should always have a non-NULL state cred here, since if cred
1360	 * is null (anonymous tracing), we fast-path bypass this routine.
1361	 */
1362	ASSERT(s_cr != NULL);
1363
1364	if ((cr = CRED()) != NULL &&
1365	    s_cr->cr_uid == cr->cr_uid &&
1366	    s_cr->cr_uid == cr->cr_ruid &&
1367	    s_cr->cr_uid == cr->cr_suid &&
1368	    s_cr->cr_gid == cr->cr_gid &&
1369	    s_cr->cr_gid == cr->cr_rgid &&
1370	    s_cr->cr_gid == cr->cr_sgid)
1371		return (1);
1372
1373	return (0);
1374}
1375
1376/*
1377 * This privilege check should be used by actions and subroutines to
1378 * verify that the zone of the process that enabled the invoking ECB
1379 * matches the target credentials
1380 */
1381static int
1382dtrace_priv_proc_common_zone(dtrace_state_t *state)
1383{
1384#ifdef illumos
1385	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1386
1387	/*
1388	 * We should always have a non-NULL state cred here, since if cred
1389	 * is null (anonymous tracing), we fast-path bypass this routine.
1390	 */
1391	ASSERT(s_cr != NULL);
1392
1393	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1394		return (1);
1395
1396	return (0);
1397#else
1398	return (1);
1399#endif
1400}
1401
1402/*
1403 * This privilege check should be used by actions and subroutines to
1404 * verify that the process has not setuid or changed credentials.
1405 */
1406static int
1407dtrace_priv_proc_common_nocd(void)
1408{
1409	proc_t *proc;
1410
1411	if ((proc = ttoproc(curthread)) != NULL &&
1412	    !(proc->p_flag & SNOCD))
1413		return (1);
1414
1415	return (0);
1416}
1417
1418static int
1419dtrace_priv_proc_destructive(dtrace_state_t *state)
1420{
1421	int action = state->dts_cred.dcr_action;
1422
1423	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1424	    dtrace_priv_proc_common_zone(state) == 0)
1425		goto bad;
1426
1427	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1428	    dtrace_priv_proc_common_user(state) == 0)
1429		goto bad;
1430
1431	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1432	    dtrace_priv_proc_common_nocd() == 0)
1433		goto bad;
1434
1435	return (1);
1436
1437bad:
1438	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1439
1440	return (0);
1441}
1442
1443static int
1444dtrace_priv_proc_control(dtrace_state_t *state)
1445{
1446	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1447		return (1);
1448
1449	if (dtrace_priv_proc_common_zone(state) &&
1450	    dtrace_priv_proc_common_user(state) &&
1451	    dtrace_priv_proc_common_nocd())
1452		return (1);
1453
1454	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1455
1456	return (0);
1457}
1458
1459static int
1460dtrace_priv_proc(dtrace_state_t *state)
1461{
1462	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1463		return (1);
1464
1465	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1466
1467	return (0);
1468}
1469
1470static int
1471dtrace_priv_kernel(dtrace_state_t *state)
1472{
1473	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1474		return (1);
1475
1476	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1477
1478	return (0);
1479}
1480
1481static int
1482dtrace_priv_kernel_destructive(dtrace_state_t *state)
1483{
1484	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1485		return (1);
1486
1487	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1488
1489	return (0);
1490}
1491
1492/*
1493 * Determine if the dte_cond of the specified ECB allows for processing of
1494 * the current probe to continue.  Note that this routine may allow continued
1495 * processing, but with access(es) stripped from the mstate's dtms_access
1496 * field.
1497 */
1498static int
1499dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1500    dtrace_ecb_t *ecb)
1501{
1502	dtrace_probe_t *probe = ecb->dte_probe;
1503	dtrace_provider_t *prov = probe->dtpr_provider;
1504	dtrace_pops_t *pops = &prov->dtpv_pops;
1505	int mode = DTRACE_MODE_NOPRIV_DROP;
1506
1507	ASSERT(ecb->dte_cond);
1508
1509#ifdef illumos
1510	if (pops->dtps_mode != NULL) {
1511		mode = pops->dtps_mode(prov->dtpv_arg,
1512		    probe->dtpr_id, probe->dtpr_arg);
1513
1514		ASSERT((mode & DTRACE_MODE_USER) ||
1515		    (mode & DTRACE_MODE_KERNEL));
1516		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1517		    (mode & DTRACE_MODE_NOPRIV_DROP));
1518	}
1519
1520	/*
1521	 * If the dte_cond bits indicate that this consumer is only allowed to
1522	 * see user-mode firings of this probe, call the provider's dtps_mode()
1523	 * entry point to check that the probe was fired while in a user
1524	 * context.  If that's not the case, use the policy specified by the
1525	 * provider to determine if we drop the probe or merely restrict
1526	 * operation.
1527	 */
1528	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1529		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1530
1531		if (!(mode & DTRACE_MODE_USER)) {
1532			if (mode & DTRACE_MODE_NOPRIV_DROP)
1533				return (0);
1534
1535			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1536		}
1537	}
1538#endif
1539
1540	/*
1541	 * This is more subtle than it looks. We have to be absolutely certain
1542	 * that CRED() isn't going to change out from under us so it's only
1543	 * legit to examine that structure if we're in constrained situations.
1544	 * Currently, the only times we'll this check is if a non-super-user
1545	 * has enabled the profile or syscall providers -- providers that
1546	 * allow visibility of all processes. For the profile case, the check
1547	 * above will ensure that we're examining a user context.
1548	 */
1549	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1550		cred_t *cr;
1551		cred_t *s_cr = state->dts_cred.dcr_cred;
1552		proc_t *proc;
1553
1554		ASSERT(s_cr != NULL);
1555
1556		if ((cr = CRED()) == NULL ||
1557		    s_cr->cr_uid != cr->cr_uid ||
1558		    s_cr->cr_uid != cr->cr_ruid ||
1559		    s_cr->cr_uid != cr->cr_suid ||
1560		    s_cr->cr_gid != cr->cr_gid ||
1561		    s_cr->cr_gid != cr->cr_rgid ||
1562		    s_cr->cr_gid != cr->cr_sgid ||
1563		    (proc = ttoproc(curthread)) == NULL ||
1564		    (proc->p_flag & SNOCD)) {
1565			if (mode & DTRACE_MODE_NOPRIV_DROP)
1566				return (0);
1567
1568#ifdef illumos
1569			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1570#endif
1571		}
1572	}
1573
1574#ifdef illumos
1575	/*
1576	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1577	 * in our zone, check to see if our mode policy is to restrict rather
1578	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1579	 * and DTRACE_ACCESS_ARGS
1580	 */
1581	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1582		cred_t *cr;
1583		cred_t *s_cr = state->dts_cred.dcr_cred;
1584
1585		ASSERT(s_cr != NULL);
1586
1587		if ((cr = CRED()) == NULL ||
1588		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1589			if (mode & DTRACE_MODE_NOPRIV_DROP)
1590				return (0);
1591
1592			mstate->dtms_access &=
1593			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1594		}
1595	}
1596#endif
1597
1598	return (1);
1599}
1600
1601/*
1602 * Note:  not called from probe context.  This function is called
1603 * asynchronously (and at a regular interval) from outside of probe context to
1604 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1605 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1606 */
1607void
1608dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1609{
1610	dtrace_dynvar_t *dirty;
1611	dtrace_dstate_percpu_t *dcpu;
1612	dtrace_dynvar_t **rinsep;
1613	int i, j, work = 0;
1614
1615	for (i = 0; i < NCPU; i++) {
1616		dcpu = &dstate->dtds_percpu[i];
1617		rinsep = &dcpu->dtdsc_rinsing;
1618
1619		/*
1620		 * If the dirty list is NULL, there is no dirty work to do.
1621		 */
1622		if (dcpu->dtdsc_dirty == NULL)
1623			continue;
1624
1625		if (dcpu->dtdsc_rinsing != NULL) {
1626			/*
1627			 * If the rinsing list is non-NULL, then it is because
1628			 * this CPU was selected to accept another CPU's
1629			 * dirty list -- and since that time, dirty buffers
1630			 * have accumulated.  This is a highly unlikely
1631			 * condition, but we choose to ignore the dirty
1632			 * buffers -- they'll be picked up a future cleanse.
1633			 */
1634			continue;
1635		}
1636
1637		if (dcpu->dtdsc_clean != NULL) {
1638			/*
1639			 * If the clean list is non-NULL, then we're in a
1640			 * situation where a CPU has done deallocations (we
1641			 * have a non-NULL dirty list) but no allocations (we
1642			 * also have a non-NULL clean list).  We can't simply
1643			 * move the dirty list into the clean list on this
1644			 * CPU, yet we also don't want to allow this condition
1645			 * to persist, lest a short clean list prevent a
1646			 * massive dirty list from being cleaned (which in
1647			 * turn could lead to otherwise avoidable dynamic
1648			 * drops).  To deal with this, we look for some CPU
1649			 * with a NULL clean list, NULL dirty list, and NULL
1650			 * rinsing list -- and then we borrow this CPU to
1651			 * rinse our dirty list.
1652			 */
1653			for (j = 0; j < NCPU; j++) {
1654				dtrace_dstate_percpu_t *rinser;
1655
1656				rinser = &dstate->dtds_percpu[j];
1657
1658				if (rinser->dtdsc_rinsing != NULL)
1659					continue;
1660
1661				if (rinser->dtdsc_dirty != NULL)
1662					continue;
1663
1664				if (rinser->dtdsc_clean != NULL)
1665					continue;
1666
1667				rinsep = &rinser->dtdsc_rinsing;
1668				break;
1669			}
1670
1671			if (j == NCPU) {
1672				/*
1673				 * We were unable to find another CPU that
1674				 * could accept this dirty list -- we are
1675				 * therefore unable to clean it now.
1676				 */
1677				dtrace_dynvar_failclean++;
1678				continue;
1679			}
1680		}
1681
1682		work = 1;
1683
1684		/*
1685		 * Atomically move the dirty list aside.
1686		 */
1687		do {
1688			dirty = dcpu->dtdsc_dirty;
1689
1690			/*
1691			 * Before we zap the dirty list, set the rinsing list.
1692			 * (This allows for a potential assertion in
1693			 * dtrace_dynvar():  if a free dynamic variable appears
1694			 * on a hash chain, either the dirty list or the
1695			 * rinsing list for some CPU must be non-NULL.)
1696			 */
1697			*rinsep = dirty;
1698			dtrace_membar_producer();
1699		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1700		    dirty, NULL) != dirty);
1701	}
1702
1703	if (!work) {
1704		/*
1705		 * We have no work to do; we can simply return.
1706		 */
1707		return;
1708	}
1709
1710	dtrace_sync();
1711
1712	for (i = 0; i < NCPU; i++) {
1713		dcpu = &dstate->dtds_percpu[i];
1714
1715		if (dcpu->dtdsc_rinsing == NULL)
1716			continue;
1717
1718		/*
1719		 * We are now guaranteed that no hash chain contains a pointer
1720		 * into this dirty list; we can make it clean.
1721		 */
1722		ASSERT(dcpu->dtdsc_clean == NULL);
1723		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1724		dcpu->dtdsc_rinsing = NULL;
1725	}
1726
1727	/*
1728	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1729	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1730	 * This prevents a race whereby a CPU incorrectly decides that
1731	 * the state should be something other than DTRACE_DSTATE_CLEAN
1732	 * after dtrace_dynvar_clean() has completed.
1733	 */
1734	dtrace_sync();
1735
1736	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1737}
1738
1739/*
1740 * Depending on the value of the op parameter, this function looks-up,
1741 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1742 * allocation is requested, this function will return a pointer to a
1743 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1744 * variable can be allocated.  If NULL is returned, the appropriate counter
1745 * will be incremented.
1746 */
1747dtrace_dynvar_t *
1748dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1749    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1750    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1751{
1752	uint64_t hashval = DTRACE_DYNHASH_VALID;
1753	dtrace_dynhash_t *hash = dstate->dtds_hash;
1754	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1755	processorid_t me = curcpu, cpu = me;
1756	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1757	size_t bucket, ksize;
1758	size_t chunksize = dstate->dtds_chunksize;
1759	uintptr_t kdata, lock, nstate;
1760	uint_t i;
1761
1762	ASSERT(nkeys != 0);
1763
1764	/*
1765	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1766	 * algorithm.  For the by-value portions, we perform the algorithm in
1767	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1768	 * bit, and seems to have only a minute effect on distribution.  For
1769	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1770	 * over each referenced byte.  It's painful to do this, but it's much
1771	 * better than pathological hash distribution.  The efficacy of the
1772	 * hashing algorithm (and a comparison with other algorithms) may be
1773	 * found by running the ::dtrace_dynstat MDB dcmd.
1774	 */
1775	for (i = 0; i < nkeys; i++) {
1776		if (key[i].dttk_size == 0) {
1777			uint64_t val = key[i].dttk_value;
1778
1779			hashval += (val >> 48) & 0xffff;
1780			hashval += (hashval << 10);
1781			hashval ^= (hashval >> 6);
1782
1783			hashval += (val >> 32) & 0xffff;
1784			hashval += (hashval << 10);
1785			hashval ^= (hashval >> 6);
1786
1787			hashval += (val >> 16) & 0xffff;
1788			hashval += (hashval << 10);
1789			hashval ^= (hashval >> 6);
1790
1791			hashval += val & 0xffff;
1792			hashval += (hashval << 10);
1793			hashval ^= (hashval >> 6);
1794		} else {
1795			/*
1796			 * This is incredibly painful, but it beats the hell
1797			 * out of the alternative.
1798			 */
1799			uint64_t j, size = key[i].dttk_size;
1800			uintptr_t base = (uintptr_t)key[i].dttk_value;
1801
1802			if (!dtrace_canload(base, size, mstate, vstate))
1803				break;
1804
1805			for (j = 0; j < size; j++) {
1806				hashval += dtrace_load8(base + j);
1807				hashval += (hashval << 10);
1808				hashval ^= (hashval >> 6);
1809			}
1810		}
1811	}
1812
1813	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1814		return (NULL);
1815
1816	hashval += (hashval << 3);
1817	hashval ^= (hashval >> 11);
1818	hashval += (hashval << 15);
1819
1820	/*
1821	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1822	 * comes out to be one of our two sentinel hash values.  If this
1823	 * actually happens, we set the hashval to be a value known to be a
1824	 * non-sentinel value.
1825	 */
1826	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1827		hashval = DTRACE_DYNHASH_VALID;
1828
1829	/*
1830	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1831	 * important here, tricks can be pulled to reduce it.  (However, it's
1832	 * critical that hash collisions be kept to an absolute minimum;
1833	 * they're much more painful than a divide.)  It's better to have a
1834	 * solution that generates few collisions and still keeps things
1835	 * relatively simple.
1836	 */
1837	bucket = hashval % dstate->dtds_hashsize;
1838
1839	if (op == DTRACE_DYNVAR_DEALLOC) {
1840		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1841
1842		for (;;) {
1843			while ((lock = *lockp) & 1)
1844				continue;
1845
1846			if (dtrace_casptr((volatile void *)lockp,
1847			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1848				break;
1849		}
1850
1851		dtrace_membar_producer();
1852	}
1853
1854top:
1855	prev = NULL;
1856	lock = hash[bucket].dtdh_lock;
1857
1858	dtrace_membar_consumer();
1859
1860	start = hash[bucket].dtdh_chain;
1861	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1862	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1863	    op != DTRACE_DYNVAR_DEALLOC));
1864
1865	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1866		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1867		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1868
1869		if (dvar->dtdv_hashval != hashval) {
1870			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1871				/*
1872				 * We've reached the sink, and therefore the
1873				 * end of the hash chain; we can kick out of
1874				 * the loop knowing that we have seen a valid
1875				 * snapshot of state.
1876				 */
1877				ASSERT(dvar->dtdv_next == NULL);
1878				ASSERT(dvar == &dtrace_dynhash_sink);
1879				break;
1880			}
1881
1882			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1883				/*
1884				 * We've gone off the rails:  somewhere along
1885				 * the line, one of the members of this hash
1886				 * chain was deleted.  Note that we could also
1887				 * detect this by simply letting this loop run
1888				 * to completion, as we would eventually hit
1889				 * the end of the dirty list.  However, we
1890				 * want to avoid running the length of the
1891				 * dirty list unnecessarily (it might be quite
1892				 * long), so we catch this as early as
1893				 * possible by detecting the hash marker.  In
1894				 * this case, we simply set dvar to NULL and
1895				 * break; the conditional after the loop will
1896				 * send us back to top.
1897				 */
1898				dvar = NULL;
1899				break;
1900			}
1901
1902			goto next;
1903		}
1904
1905		if (dtuple->dtt_nkeys != nkeys)
1906			goto next;
1907
1908		for (i = 0; i < nkeys; i++, dkey++) {
1909			if (dkey->dttk_size != key[i].dttk_size)
1910				goto next; /* size or type mismatch */
1911
1912			if (dkey->dttk_size != 0) {
1913				if (dtrace_bcmp(
1914				    (void *)(uintptr_t)key[i].dttk_value,
1915				    (void *)(uintptr_t)dkey->dttk_value,
1916				    dkey->dttk_size))
1917					goto next;
1918			} else {
1919				if (dkey->dttk_value != key[i].dttk_value)
1920					goto next;
1921			}
1922		}
1923
1924		if (op != DTRACE_DYNVAR_DEALLOC)
1925			return (dvar);
1926
1927		ASSERT(dvar->dtdv_next == NULL ||
1928		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1929
1930		if (prev != NULL) {
1931			ASSERT(hash[bucket].dtdh_chain != dvar);
1932			ASSERT(start != dvar);
1933			ASSERT(prev->dtdv_next == dvar);
1934			prev->dtdv_next = dvar->dtdv_next;
1935		} else {
1936			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1937			    start, dvar->dtdv_next) != start) {
1938				/*
1939				 * We have failed to atomically swing the
1940				 * hash table head pointer, presumably because
1941				 * of a conflicting allocation on another CPU.
1942				 * We need to reread the hash chain and try
1943				 * again.
1944				 */
1945				goto top;
1946			}
1947		}
1948
1949		dtrace_membar_producer();
1950
1951		/*
1952		 * Now set the hash value to indicate that it's free.
1953		 */
1954		ASSERT(hash[bucket].dtdh_chain != dvar);
1955		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1956
1957		dtrace_membar_producer();
1958
1959		/*
1960		 * Set the next pointer to point at the dirty list, and
1961		 * atomically swing the dirty pointer to the newly freed dvar.
1962		 */
1963		do {
1964			next = dcpu->dtdsc_dirty;
1965			dvar->dtdv_next = next;
1966		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1967
1968		/*
1969		 * Finally, unlock this hash bucket.
1970		 */
1971		ASSERT(hash[bucket].dtdh_lock == lock);
1972		ASSERT(lock & 1);
1973		hash[bucket].dtdh_lock++;
1974
1975		return (NULL);
1976next:
1977		prev = dvar;
1978		continue;
1979	}
1980
1981	if (dvar == NULL) {
1982		/*
1983		 * If dvar is NULL, it is because we went off the rails:
1984		 * one of the elements that we traversed in the hash chain
1985		 * was deleted while we were traversing it.  In this case,
1986		 * we assert that we aren't doing a dealloc (deallocs lock
1987		 * the hash bucket to prevent themselves from racing with
1988		 * one another), and retry the hash chain traversal.
1989		 */
1990		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1991		goto top;
1992	}
1993
1994	if (op != DTRACE_DYNVAR_ALLOC) {
1995		/*
1996		 * If we are not to allocate a new variable, we want to
1997		 * return NULL now.  Before we return, check that the value
1998		 * of the lock word hasn't changed.  If it has, we may have
1999		 * seen an inconsistent snapshot.
2000		 */
2001		if (op == DTRACE_DYNVAR_NOALLOC) {
2002			if (hash[bucket].dtdh_lock != lock)
2003				goto top;
2004		} else {
2005			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2006			ASSERT(hash[bucket].dtdh_lock == lock);
2007			ASSERT(lock & 1);
2008			hash[bucket].dtdh_lock++;
2009		}
2010
2011		return (NULL);
2012	}
2013
2014	/*
2015	 * We need to allocate a new dynamic variable.  The size we need is the
2016	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2017	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2018	 * the size of any referred-to data (dsize).  We then round the final
2019	 * size up to the chunksize for allocation.
2020	 */
2021	for (ksize = 0, i = 0; i < nkeys; i++)
2022		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2023
2024	/*
2025	 * This should be pretty much impossible, but could happen if, say,
2026	 * strange DIF specified the tuple.  Ideally, this should be an
2027	 * assertion and not an error condition -- but that requires that the
2028	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2029	 * bullet-proof.  (That is, it must not be able to be fooled by
2030	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2031	 * solving this would presumably not amount to solving the Halting
2032	 * Problem -- but it still seems awfully hard.
2033	 */
2034	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2035	    ksize + dsize > chunksize) {
2036		dcpu->dtdsc_drops++;
2037		return (NULL);
2038	}
2039
2040	nstate = DTRACE_DSTATE_EMPTY;
2041
2042	do {
2043retry:
2044		free = dcpu->dtdsc_free;
2045
2046		if (free == NULL) {
2047			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2048			void *rval;
2049
2050			if (clean == NULL) {
2051				/*
2052				 * We're out of dynamic variable space on
2053				 * this CPU.  Unless we have tried all CPUs,
2054				 * we'll try to allocate from a different
2055				 * CPU.
2056				 */
2057				switch (dstate->dtds_state) {
2058				case DTRACE_DSTATE_CLEAN: {
2059					void *sp = &dstate->dtds_state;
2060
2061					if (++cpu >= NCPU)
2062						cpu = 0;
2063
2064					if (dcpu->dtdsc_dirty != NULL &&
2065					    nstate == DTRACE_DSTATE_EMPTY)
2066						nstate = DTRACE_DSTATE_DIRTY;
2067
2068					if (dcpu->dtdsc_rinsing != NULL)
2069						nstate = DTRACE_DSTATE_RINSING;
2070
2071					dcpu = &dstate->dtds_percpu[cpu];
2072
2073					if (cpu != me)
2074						goto retry;
2075
2076					(void) dtrace_cas32(sp,
2077					    DTRACE_DSTATE_CLEAN, nstate);
2078
2079					/*
2080					 * To increment the correct bean
2081					 * counter, take another lap.
2082					 */
2083					goto retry;
2084				}
2085
2086				case DTRACE_DSTATE_DIRTY:
2087					dcpu->dtdsc_dirty_drops++;
2088					break;
2089
2090				case DTRACE_DSTATE_RINSING:
2091					dcpu->dtdsc_rinsing_drops++;
2092					break;
2093
2094				case DTRACE_DSTATE_EMPTY:
2095					dcpu->dtdsc_drops++;
2096					break;
2097				}
2098
2099				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2100				return (NULL);
2101			}
2102
2103			/*
2104			 * The clean list appears to be non-empty.  We want to
2105			 * move the clean list to the free list; we start by
2106			 * moving the clean pointer aside.
2107			 */
2108			if (dtrace_casptr(&dcpu->dtdsc_clean,
2109			    clean, NULL) != clean) {
2110				/*
2111				 * We are in one of two situations:
2112				 *
2113				 *  (a)	The clean list was switched to the
2114				 *	free list by another CPU.
2115				 *
2116				 *  (b)	The clean list was added to by the
2117				 *	cleansing cyclic.
2118				 *
2119				 * In either of these situations, we can
2120				 * just reattempt the free list allocation.
2121				 */
2122				goto retry;
2123			}
2124
2125			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2126
2127			/*
2128			 * Now we'll move the clean list to our free list.
2129			 * It's impossible for this to fail:  the only way
2130			 * the free list can be updated is through this
2131			 * code path, and only one CPU can own the clean list.
2132			 * Thus, it would only be possible for this to fail if
2133			 * this code were racing with dtrace_dynvar_clean().
2134			 * (That is, if dtrace_dynvar_clean() updated the clean
2135			 * list, and we ended up racing to update the free
2136			 * list.)  This race is prevented by the dtrace_sync()
2137			 * in dtrace_dynvar_clean() -- which flushes the
2138			 * owners of the clean lists out before resetting
2139			 * the clean lists.
2140			 */
2141			dcpu = &dstate->dtds_percpu[me];
2142			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2143			ASSERT(rval == NULL);
2144			goto retry;
2145		}
2146
2147		dvar = free;
2148		new_free = dvar->dtdv_next;
2149	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2150
2151	/*
2152	 * We have now allocated a new chunk.  We copy the tuple keys into the
2153	 * tuple array and copy any referenced key data into the data space
2154	 * following the tuple array.  As we do this, we relocate dttk_value
2155	 * in the final tuple to point to the key data address in the chunk.
2156	 */
2157	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2158	dvar->dtdv_data = (void *)(kdata + ksize);
2159	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2160
2161	for (i = 0; i < nkeys; i++) {
2162		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2163		size_t kesize = key[i].dttk_size;
2164
2165		if (kesize != 0) {
2166			dtrace_bcopy(
2167			    (const void *)(uintptr_t)key[i].dttk_value,
2168			    (void *)kdata, kesize);
2169			dkey->dttk_value = kdata;
2170			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2171		} else {
2172			dkey->dttk_value = key[i].dttk_value;
2173		}
2174
2175		dkey->dttk_size = kesize;
2176	}
2177
2178	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2179	dvar->dtdv_hashval = hashval;
2180	dvar->dtdv_next = start;
2181
2182	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2183		return (dvar);
2184
2185	/*
2186	 * The cas has failed.  Either another CPU is adding an element to
2187	 * this hash chain, or another CPU is deleting an element from this
2188	 * hash chain.  The simplest way to deal with both of these cases
2189	 * (though not necessarily the most efficient) is to free our
2190	 * allocated block and re-attempt it all.  Note that the free is
2191	 * to the dirty list and _not_ to the free list.  This is to prevent
2192	 * races with allocators, above.
2193	 */
2194	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2195
2196	dtrace_membar_producer();
2197
2198	do {
2199		free = dcpu->dtdsc_dirty;
2200		dvar->dtdv_next = free;
2201	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2202
2203	goto top;
2204}
2205
2206/*ARGSUSED*/
2207static void
2208dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2209{
2210	if ((int64_t)nval < (int64_t)*oval)
2211		*oval = nval;
2212}
2213
2214/*ARGSUSED*/
2215static void
2216dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2217{
2218	if ((int64_t)nval > (int64_t)*oval)
2219		*oval = nval;
2220}
2221
2222static void
2223dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2224{
2225	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2226	int64_t val = (int64_t)nval;
2227
2228	if (val < 0) {
2229		for (i = 0; i < zero; i++) {
2230			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2231				quanta[i] += incr;
2232				return;
2233			}
2234		}
2235	} else {
2236		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2237			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2238				quanta[i - 1] += incr;
2239				return;
2240			}
2241		}
2242
2243		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2244		return;
2245	}
2246
2247	ASSERT(0);
2248}
2249
2250static void
2251dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2252{
2253	uint64_t arg = *lquanta++;
2254	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2255	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2256	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2257	int32_t val = (int32_t)nval, level;
2258
2259	ASSERT(step != 0);
2260	ASSERT(levels != 0);
2261
2262	if (val < base) {
2263		/*
2264		 * This is an underflow.
2265		 */
2266		lquanta[0] += incr;
2267		return;
2268	}
2269
2270	level = (val - base) / step;
2271
2272	if (level < levels) {
2273		lquanta[level + 1] += incr;
2274		return;
2275	}
2276
2277	/*
2278	 * This is an overflow.
2279	 */
2280	lquanta[levels + 1] += incr;
2281}
2282
2283static int
2284dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2285    uint16_t high, uint16_t nsteps, int64_t value)
2286{
2287	int64_t this = 1, last, next;
2288	int base = 1, order;
2289
2290	ASSERT(factor <= nsteps);
2291	ASSERT(nsteps % factor == 0);
2292
2293	for (order = 0; order < low; order++)
2294		this *= factor;
2295
2296	/*
2297	 * If our value is less than our factor taken to the power of the
2298	 * low order of magnitude, it goes into the zeroth bucket.
2299	 */
2300	if (value < (last = this))
2301		return (0);
2302
2303	for (this *= factor; order <= high; order++) {
2304		int nbuckets = this > nsteps ? nsteps : this;
2305
2306		if ((next = this * factor) < this) {
2307			/*
2308			 * We should not generally get log/linear quantizations
2309			 * with a high magnitude that allows 64-bits to
2310			 * overflow, but we nonetheless protect against this
2311			 * by explicitly checking for overflow, and clamping
2312			 * our value accordingly.
2313			 */
2314			value = this - 1;
2315		}
2316
2317		if (value < this) {
2318			/*
2319			 * If our value lies within this order of magnitude,
2320			 * determine its position by taking the offset within
2321			 * the order of magnitude, dividing by the bucket
2322			 * width, and adding to our (accumulated) base.
2323			 */
2324			return (base + (value - last) / (this / nbuckets));
2325		}
2326
2327		base += nbuckets - (nbuckets / factor);
2328		last = this;
2329		this = next;
2330	}
2331
2332	/*
2333	 * Our value is greater than or equal to our factor taken to the
2334	 * power of one plus the high magnitude -- return the top bucket.
2335	 */
2336	return (base);
2337}
2338
2339static void
2340dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2341{
2342	uint64_t arg = *llquanta++;
2343	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2344	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2345	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2346	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2347
2348	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2349	    low, high, nsteps, nval)] += incr;
2350}
2351
2352/*ARGSUSED*/
2353static void
2354dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2355{
2356	data[0]++;
2357	data[1] += nval;
2358}
2359
2360/*ARGSUSED*/
2361static void
2362dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2363{
2364	int64_t snval = (int64_t)nval;
2365	uint64_t tmp[2];
2366
2367	data[0]++;
2368	data[1] += nval;
2369
2370	/*
2371	 * What we want to say here is:
2372	 *
2373	 * data[2] += nval * nval;
2374	 *
2375	 * But given that nval is 64-bit, we could easily overflow, so
2376	 * we do this as 128-bit arithmetic.
2377	 */
2378	if (snval < 0)
2379		snval = -snval;
2380
2381	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2382	dtrace_add_128(data + 2, tmp, data + 2);
2383}
2384
2385/*ARGSUSED*/
2386static void
2387dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2388{
2389	*oval = *oval + 1;
2390}
2391
2392/*ARGSUSED*/
2393static void
2394dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2395{
2396	*oval += nval;
2397}
2398
2399/*
2400 * Aggregate given the tuple in the principal data buffer, and the aggregating
2401 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2402 * buffer is specified as the buf parameter.  This routine does not return
2403 * failure; if there is no space in the aggregation buffer, the data will be
2404 * dropped, and a corresponding counter incremented.
2405 */
2406static void
2407dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2408    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2409{
2410	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2411	uint32_t i, ndx, size, fsize;
2412	uint32_t align = sizeof (uint64_t) - 1;
2413	dtrace_aggbuffer_t *agb;
2414	dtrace_aggkey_t *key;
2415	uint32_t hashval = 0, limit, isstr;
2416	caddr_t tomax, data, kdata;
2417	dtrace_actkind_t action;
2418	dtrace_action_t *act;
2419	uintptr_t offs;
2420
2421	if (buf == NULL)
2422		return;
2423
2424	if (!agg->dtag_hasarg) {
2425		/*
2426		 * Currently, only quantize() and lquantize() take additional
2427		 * arguments, and they have the same semantics:  an increment
2428		 * value that defaults to 1 when not present.  If additional
2429		 * aggregating actions take arguments, the setting of the
2430		 * default argument value will presumably have to become more
2431		 * sophisticated...
2432		 */
2433		arg = 1;
2434	}
2435
2436	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2437	size = rec->dtrd_offset - agg->dtag_base;
2438	fsize = size + rec->dtrd_size;
2439
2440	ASSERT(dbuf->dtb_tomax != NULL);
2441	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2442
2443	if ((tomax = buf->dtb_tomax) == NULL) {
2444		dtrace_buffer_drop(buf);
2445		return;
2446	}
2447
2448	/*
2449	 * The metastructure is always at the bottom of the buffer.
2450	 */
2451	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2452	    sizeof (dtrace_aggbuffer_t));
2453
2454	if (buf->dtb_offset == 0) {
2455		/*
2456		 * We just kludge up approximately 1/8th of the size to be
2457		 * buckets.  If this guess ends up being routinely
2458		 * off-the-mark, we may need to dynamically readjust this
2459		 * based on past performance.
2460		 */
2461		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2462
2463		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2464		    (uintptr_t)tomax || hashsize == 0) {
2465			/*
2466			 * We've been given a ludicrously small buffer;
2467			 * increment our drop count and leave.
2468			 */
2469			dtrace_buffer_drop(buf);
2470			return;
2471		}
2472
2473		/*
2474		 * And now, a pathetic attempt to try to get a an odd (or
2475		 * perchance, a prime) hash size for better hash distribution.
2476		 */
2477		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2478			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2479
2480		agb->dtagb_hashsize = hashsize;
2481		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2482		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2483		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2484
2485		for (i = 0; i < agb->dtagb_hashsize; i++)
2486			agb->dtagb_hash[i] = NULL;
2487	}
2488
2489	ASSERT(agg->dtag_first != NULL);
2490	ASSERT(agg->dtag_first->dta_intuple);
2491
2492	/*
2493	 * Calculate the hash value based on the key.  Note that we _don't_
2494	 * include the aggid in the hashing (but we will store it as part of
2495	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2496	 * algorithm: a simple, quick algorithm that has no known funnels, and
2497	 * gets good distribution in practice.  The efficacy of the hashing
2498	 * algorithm (and a comparison with other algorithms) may be found by
2499	 * running the ::dtrace_aggstat MDB dcmd.
2500	 */
2501	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2502		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2503		limit = i + act->dta_rec.dtrd_size;
2504		ASSERT(limit <= size);
2505		isstr = DTRACEACT_ISSTRING(act);
2506
2507		for (; i < limit; i++) {
2508			hashval += data[i];
2509			hashval += (hashval << 10);
2510			hashval ^= (hashval >> 6);
2511
2512			if (isstr && data[i] == '\0')
2513				break;
2514		}
2515	}
2516
2517	hashval += (hashval << 3);
2518	hashval ^= (hashval >> 11);
2519	hashval += (hashval << 15);
2520
2521	/*
2522	 * Yes, the divide here is expensive -- but it's generally the least
2523	 * of the performance issues given the amount of data that we iterate
2524	 * over to compute hash values, compare data, etc.
2525	 */
2526	ndx = hashval % agb->dtagb_hashsize;
2527
2528	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2529		ASSERT((caddr_t)key >= tomax);
2530		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2531
2532		if (hashval != key->dtak_hashval || key->dtak_size != size)
2533			continue;
2534
2535		kdata = key->dtak_data;
2536		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2537
2538		for (act = agg->dtag_first; act->dta_intuple;
2539		    act = act->dta_next) {
2540			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2541			limit = i + act->dta_rec.dtrd_size;
2542			ASSERT(limit <= size);
2543			isstr = DTRACEACT_ISSTRING(act);
2544
2545			for (; i < limit; i++) {
2546				if (kdata[i] != data[i])
2547					goto next;
2548
2549				if (isstr && data[i] == '\0')
2550					break;
2551			}
2552		}
2553
2554		if (action != key->dtak_action) {
2555			/*
2556			 * We are aggregating on the same value in the same
2557			 * aggregation with two different aggregating actions.
2558			 * (This should have been picked up in the compiler,
2559			 * so we may be dealing with errant or devious DIF.)
2560			 * This is an error condition; we indicate as much,
2561			 * and return.
2562			 */
2563			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2564			return;
2565		}
2566
2567		/*
2568		 * This is a hit:  we need to apply the aggregator to
2569		 * the value at this key.
2570		 */
2571		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2572		return;
2573next:
2574		continue;
2575	}
2576
2577	/*
2578	 * We didn't find it.  We need to allocate some zero-filled space,
2579	 * link it into the hash table appropriately, and apply the aggregator
2580	 * to the (zero-filled) value.
2581	 */
2582	offs = buf->dtb_offset;
2583	while (offs & (align - 1))
2584		offs += sizeof (uint32_t);
2585
2586	/*
2587	 * If we don't have enough room to both allocate a new key _and_
2588	 * its associated data, increment the drop count and return.
2589	 */
2590	if ((uintptr_t)tomax + offs + fsize >
2591	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2592		dtrace_buffer_drop(buf);
2593		return;
2594	}
2595
2596	/*CONSTCOND*/
2597	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2598	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2599	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2600
2601	key->dtak_data = kdata = tomax + offs;
2602	buf->dtb_offset = offs + fsize;
2603
2604	/*
2605	 * Now copy the data across.
2606	 */
2607	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2608
2609	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2610		kdata[i] = data[i];
2611
2612	/*
2613	 * Because strings are not zeroed out by default, we need to iterate
2614	 * looking for actions that store strings, and we need to explicitly
2615	 * pad these strings out with zeroes.
2616	 */
2617	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2618		int nul;
2619
2620		if (!DTRACEACT_ISSTRING(act))
2621			continue;
2622
2623		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2624		limit = i + act->dta_rec.dtrd_size;
2625		ASSERT(limit <= size);
2626
2627		for (nul = 0; i < limit; i++) {
2628			if (nul) {
2629				kdata[i] = '\0';
2630				continue;
2631			}
2632
2633			if (data[i] != '\0')
2634				continue;
2635
2636			nul = 1;
2637		}
2638	}
2639
2640	for (i = size; i < fsize; i++)
2641		kdata[i] = 0;
2642
2643	key->dtak_hashval = hashval;
2644	key->dtak_size = size;
2645	key->dtak_action = action;
2646	key->dtak_next = agb->dtagb_hash[ndx];
2647	agb->dtagb_hash[ndx] = key;
2648
2649	/*
2650	 * Finally, apply the aggregator.
2651	 */
2652	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2653	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2654}
2655
2656/*
2657 * Given consumer state, this routine finds a speculation in the INACTIVE
2658 * state and transitions it into the ACTIVE state.  If there is no speculation
2659 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2660 * incremented -- it is up to the caller to take appropriate action.
2661 */
2662static int
2663dtrace_speculation(dtrace_state_t *state)
2664{
2665	int i = 0;
2666	dtrace_speculation_state_t current;
2667	uint32_t *stat = &state->dts_speculations_unavail, count;
2668
2669	while (i < state->dts_nspeculations) {
2670		dtrace_speculation_t *spec = &state->dts_speculations[i];
2671
2672		current = spec->dtsp_state;
2673
2674		if (current != DTRACESPEC_INACTIVE) {
2675			if (current == DTRACESPEC_COMMITTINGMANY ||
2676			    current == DTRACESPEC_COMMITTING ||
2677			    current == DTRACESPEC_DISCARDING)
2678				stat = &state->dts_speculations_busy;
2679			i++;
2680			continue;
2681		}
2682
2683		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2684		    current, DTRACESPEC_ACTIVE) == current)
2685			return (i + 1);
2686	}
2687
2688	/*
2689	 * We couldn't find a speculation.  If we found as much as a single
2690	 * busy speculation buffer, we'll attribute this failure as "busy"
2691	 * instead of "unavail".
2692	 */
2693	do {
2694		count = *stat;
2695	} while (dtrace_cas32(stat, count, count + 1) != count);
2696
2697	return (0);
2698}
2699
2700/*
2701 * This routine commits an active speculation.  If the specified speculation
2702 * is not in a valid state to perform a commit(), this routine will silently do
2703 * nothing.  The state of the specified speculation is transitioned according
2704 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2705 */
2706static void
2707dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2708    dtrace_specid_t which)
2709{
2710	dtrace_speculation_t *spec;
2711	dtrace_buffer_t *src, *dest;
2712	uintptr_t daddr, saddr, dlimit, slimit;
2713	dtrace_speculation_state_t current, new = 0;
2714	intptr_t offs;
2715	uint64_t timestamp;
2716
2717	if (which == 0)
2718		return;
2719
2720	if (which > state->dts_nspeculations) {
2721		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2722		return;
2723	}
2724
2725	spec = &state->dts_speculations[which - 1];
2726	src = &spec->dtsp_buffer[cpu];
2727	dest = &state->dts_buffer[cpu];
2728
2729	do {
2730		current = spec->dtsp_state;
2731
2732		if (current == DTRACESPEC_COMMITTINGMANY)
2733			break;
2734
2735		switch (current) {
2736		case DTRACESPEC_INACTIVE:
2737		case DTRACESPEC_DISCARDING:
2738			return;
2739
2740		case DTRACESPEC_COMMITTING:
2741			/*
2742			 * This is only possible if we are (a) commit()'ing
2743			 * without having done a prior speculate() on this CPU
2744			 * and (b) racing with another commit() on a different
2745			 * CPU.  There's nothing to do -- we just assert that
2746			 * our offset is 0.
2747			 */
2748			ASSERT(src->dtb_offset == 0);
2749			return;
2750
2751		case DTRACESPEC_ACTIVE:
2752			new = DTRACESPEC_COMMITTING;
2753			break;
2754
2755		case DTRACESPEC_ACTIVEONE:
2756			/*
2757			 * This speculation is active on one CPU.  If our
2758			 * buffer offset is non-zero, we know that the one CPU
2759			 * must be us.  Otherwise, we are committing on a
2760			 * different CPU from the speculate(), and we must
2761			 * rely on being asynchronously cleaned.
2762			 */
2763			if (src->dtb_offset != 0) {
2764				new = DTRACESPEC_COMMITTING;
2765				break;
2766			}
2767			/*FALLTHROUGH*/
2768
2769		case DTRACESPEC_ACTIVEMANY:
2770			new = DTRACESPEC_COMMITTINGMANY;
2771			break;
2772
2773		default:
2774			ASSERT(0);
2775		}
2776	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2777	    current, new) != current);
2778
2779	/*
2780	 * We have set the state to indicate that we are committing this
2781	 * speculation.  Now reserve the necessary space in the destination
2782	 * buffer.
2783	 */
2784	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2785	    sizeof (uint64_t), state, NULL)) < 0) {
2786		dtrace_buffer_drop(dest);
2787		goto out;
2788	}
2789
2790	/*
2791	 * We have sufficient space to copy the speculative buffer into the
2792	 * primary buffer.  First, modify the speculative buffer, filling
2793	 * in the timestamp of all entries with the current time.  The data
2794	 * must have the commit() time rather than the time it was traced,
2795	 * so that all entries in the primary buffer are in timestamp order.
2796	 */
2797	timestamp = dtrace_gethrtime();
2798	saddr = (uintptr_t)src->dtb_tomax;
2799	slimit = saddr + src->dtb_offset;
2800	while (saddr < slimit) {
2801		size_t size;
2802		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2803
2804		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2805			saddr += sizeof (dtrace_epid_t);
2806			continue;
2807		}
2808		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2809		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2810
2811		ASSERT3U(saddr + size, <=, slimit);
2812		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2813		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2814
2815		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2816
2817		saddr += size;
2818	}
2819
2820	/*
2821	 * Copy the buffer across.  (Note that this is a
2822	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2823	 * a serious performance issue, a high-performance DTrace-specific
2824	 * bcopy() should obviously be invented.)
2825	 */
2826	daddr = (uintptr_t)dest->dtb_tomax + offs;
2827	dlimit = daddr + src->dtb_offset;
2828	saddr = (uintptr_t)src->dtb_tomax;
2829
2830	/*
2831	 * First, the aligned portion.
2832	 */
2833	while (dlimit - daddr >= sizeof (uint64_t)) {
2834		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2835
2836		daddr += sizeof (uint64_t);
2837		saddr += sizeof (uint64_t);
2838	}
2839
2840	/*
2841	 * Now any left-over bit...
2842	 */
2843	while (dlimit - daddr)
2844		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2845
2846	/*
2847	 * Finally, commit the reserved space in the destination buffer.
2848	 */
2849	dest->dtb_offset = offs + src->dtb_offset;
2850
2851out:
2852	/*
2853	 * If we're lucky enough to be the only active CPU on this speculation
2854	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2855	 */
2856	if (current == DTRACESPEC_ACTIVE ||
2857	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2858		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2859		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2860
2861		ASSERT(rval == DTRACESPEC_COMMITTING);
2862	}
2863
2864	src->dtb_offset = 0;
2865	src->dtb_xamot_drops += src->dtb_drops;
2866	src->dtb_drops = 0;
2867}
2868
2869/*
2870 * This routine discards an active speculation.  If the specified speculation
2871 * is not in a valid state to perform a discard(), this routine will silently
2872 * do nothing.  The state of the specified speculation is transitioned
2873 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2874 */
2875static void
2876dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2877    dtrace_specid_t which)
2878{
2879	dtrace_speculation_t *spec;
2880	dtrace_speculation_state_t current, new = 0;
2881	dtrace_buffer_t *buf;
2882
2883	if (which == 0)
2884		return;
2885
2886	if (which > state->dts_nspeculations) {
2887		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2888		return;
2889	}
2890
2891	spec = &state->dts_speculations[which - 1];
2892	buf = &spec->dtsp_buffer[cpu];
2893
2894	do {
2895		current = spec->dtsp_state;
2896
2897		switch (current) {
2898		case DTRACESPEC_INACTIVE:
2899		case DTRACESPEC_COMMITTINGMANY:
2900		case DTRACESPEC_COMMITTING:
2901		case DTRACESPEC_DISCARDING:
2902			return;
2903
2904		case DTRACESPEC_ACTIVE:
2905		case DTRACESPEC_ACTIVEMANY:
2906			new = DTRACESPEC_DISCARDING;
2907			break;
2908
2909		case DTRACESPEC_ACTIVEONE:
2910			if (buf->dtb_offset != 0) {
2911				new = DTRACESPEC_INACTIVE;
2912			} else {
2913				new = DTRACESPEC_DISCARDING;
2914			}
2915			break;
2916
2917		default:
2918			ASSERT(0);
2919		}
2920	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2921	    current, new) != current);
2922
2923	buf->dtb_offset = 0;
2924	buf->dtb_drops = 0;
2925}
2926
2927/*
2928 * Note:  not called from probe context.  This function is called
2929 * asynchronously from cross call context to clean any speculations that are
2930 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2931 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2932 * speculation.
2933 */
2934static void
2935dtrace_speculation_clean_here(dtrace_state_t *state)
2936{
2937	dtrace_icookie_t cookie;
2938	processorid_t cpu = curcpu;
2939	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2940	dtrace_specid_t i;
2941
2942	cookie = dtrace_interrupt_disable();
2943
2944	if (dest->dtb_tomax == NULL) {
2945		dtrace_interrupt_enable(cookie);
2946		return;
2947	}
2948
2949	for (i = 0; i < state->dts_nspeculations; i++) {
2950		dtrace_speculation_t *spec = &state->dts_speculations[i];
2951		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2952
2953		if (src->dtb_tomax == NULL)
2954			continue;
2955
2956		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2957			src->dtb_offset = 0;
2958			continue;
2959		}
2960
2961		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2962			continue;
2963
2964		if (src->dtb_offset == 0)
2965			continue;
2966
2967		dtrace_speculation_commit(state, cpu, i + 1);
2968	}
2969
2970	dtrace_interrupt_enable(cookie);
2971}
2972
2973/*
2974 * Note:  not called from probe context.  This function is called
2975 * asynchronously (and at a regular interval) to clean any speculations that
2976 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2977 * is work to be done, it cross calls all CPUs to perform that work;
2978 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2979 * INACTIVE state until they have been cleaned by all CPUs.
2980 */
2981static void
2982dtrace_speculation_clean(dtrace_state_t *state)
2983{
2984	int work = 0, rv;
2985	dtrace_specid_t i;
2986
2987	for (i = 0; i < state->dts_nspeculations; i++) {
2988		dtrace_speculation_t *spec = &state->dts_speculations[i];
2989
2990		ASSERT(!spec->dtsp_cleaning);
2991
2992		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2993		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2994			continue;
2995
2996		work++;
2997		spec->dtsp_cleaning = 1;
2998	}
2999
3000	if (!work)
3001		return;
3002
3003	dtrace_xcall(DTRACE_CPUALL,
3004	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3005
3006	/*
3007	 * We now know that all CPUs have committed or discarded their
3008	 * speculation buffers, as appropriate.  We can now set the state
3009	 * to inactive.
3010	 */
3011	for (i = 0; i < state->dts_nspeculations; i++) {
3012		dtrace_speculation_t *spec = &state->dts_speculations[i];
3013		dtrace_speculation_state_t current, new;
3014
3015		if (!spec->dtsp_cleaning)
3016			continue;
3017
3018		current = spec->dtsp_state;
3019		ASSERT(current == DTRACESPEC_DISCARDING ||
3020		    current == DTRACESPEC_COMMITTINGMANY);
3021
3022		new = DTRACESPEC_INACTIVE;
3023
3024		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3025		ASSERT(rv == current);
3026		spec->dtsp_cleaning = 0;
3027	}
3028}
3029
3030/*
3031 * Called as part of a speculate() to get the speculative buffer associated
3032 * with a given speculation.  Returns NULL if the specified speculation is not
3033 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3034 * the active CPU is not the specified CPU -- the speculation will be
3035 * atomically transitioned into the ACTIVEMANY state.
3036 */
3037static dtrace_buffer_t *
3038dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3039    dtrace_specid_t which)
3040{
3041	dtrace_speculation_t *spec;
3042	dtrace_speculation_state_t current, new = 0;
3043	dtrace_buffer_t *buf;
3044
3045	if (which == 0)
3046		return (NULL);
3047
3048	if (which > state->dts_nspeculations) {
3049		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3050		return (NULL);
3051	}
3052
3053	spec = &state->dts_speculations[which - 1];
3054	buf = &spec->dtsp_buffer[cpuid];
3055
3056	do {
3057		current = spec->dtsp_state;
3058
3059		switch (current) {
3060		case DTRACESPEC_INACTIVE:
3061		case DTRACESPEC_COMMITTINGMANY:
3062		case DTRACESPEC_DISCARDING:
3063			return (NULL);
3064
3065		case DTRACESPEC_COMMITTING:
3066			ASSERT(buf->dtb_offset == 0);
3067			return (NULL);
3068
3069		case DTRACESPEC_ACTIVEONE:
3070			/*
3071			 * This speculation is currently active on one CPU.
3072			 * Check the offset in the buffer; if it's non-zero,
3073			 * that CPU must be us (and we leave the state alone).
3074			 * If it's zero, assume that we're starting on a new
3075			 * CPU -- and change the state to indicate that the
3076			 * speculation is active on more than one CPU.
3077			 */
3078			if (buf->dtb_offset != 0)
3079				return (buf);
3080
3081			new = DTRACESPEC_ACTIVEMANY;
3082			break;
3083
3084		case DTRACESPEC_ACTIVEMANY:
3085			return (buf);
3086
3087		case DTRACESPEC_ACTIVE:
3088			new = DTRACESPEC_ACTIVEONE;
3089			break;
3090
3091		default:
3092			ASSERT(0);
3093		}
3094	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3095	    current, new) != current);
3096
3097	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3098	return (buf);
3099}
3100
3101/*
3102 * Return a string.  In the event that the user lacks the privilege to access
3103 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3104 * don't fail access checking.
3105 *
3106 * dtrace_dif_variable() uses this routine as a helper for various
3107 * builtin values such as 'execname' and 'probefunc.'
3108 */
3109uintptr_t
3110dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3111    dtrace_mstate_t *mstate)
3112{
3113	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3114	uintptr_t ret;
3115	size_t strsz;
3116
3117	/*
3118	 * The easy case: this probe is allowed to read all of memory, so
3119	 * we can just return this as a vanilla pointer.
3120	 */
3121	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3122		return (addr);
3123
3124	/*
3125	 * This is the tougher case: we copy the string in question from
3126	 * kernel memory into scratch memory and return it that way: this
3127	 * ensures that we won't trip up when access checking tests the
3128	 * BYREF return value.
3129	 */
3130	strsz = dtrace_strlen((char *)addr, size) + 1;
3131
3132	if (mstate->dtms_scratch_ptr + strsz >
3133	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3134		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3135		return (0);
3136	}
3137
3138	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3139	    strsz);
3140	ret = mstate->dtms_scratch_ptr;
3141	mstate->dtms_scratch_ptr += strsz;
3142	return (ret);
3143}
3144
3145/*
3146 * Return a string from a memoy address which is known to have one or
3147 * more concatenated, individually zero terminated, sub-strings.
3148 * In the event that the user lacks the privilege to access
3149 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3150 * don't fail access checking.
3151 *
3152 * dtrace_dif_variable() uses this routine as a helper for various
3153 * builtin values such as 'execargs'.
3154 */
3155static uintptr_t
3156dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3157    dtrace_mstate_t *mstate)
3158{
3159	char *p;
3160	size_t i;
3161	uintptr_t ret;
3162
3163	if (mstate->dtms_scratch_ptr + strsz >
3164	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3165		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3166		return (0);
3167	}
3168
3169	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3170	    strsz);
3171
3172	/* Replace sub-string termination characters with a space. */
3173	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3174	    p++, i++)
3175		if (*p == '\0')
3176			*p = ' ';
3177
3178	ret = mstate->dtms_scratch_ptr;
3179	mstate->dtms_scratch_ptr += strsz;
3180	return (ret);
3181}
3182
3183/*
3184 * This function implements the DIF emulator's variable lookups.  The emulator
3185 * passes a reserved variable identifier and optional built-in array index.
3186 */
3187static uint64_t
3188dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3189    uint64_t ndx)
3190{
3191	/*
3192	 * If we're accessing one of the uncached arguments, we'll turn this
3193	 * into a reference in the args array.
3194	 */
3195	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3196		ndx = v - DIF_VAR_ARG0;
3197		v = DIF_VAR_ARGS;
3198	}
3199
3200	switch (v) {
3201	case DIF_VAR_ARGS:
3202		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3203		if (ndx >= sizeof (mstate->dtms_arg) /
3204		    sizeof (mstate->dtms_arg[0])) {
3205			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3206			dtrace_provider_t *pv;
3207			uint64_t val;
3208
3209			pv = mstate->dtms_probe->dtpr_provider;
3210			if (pv->dtpv_pops.dtps_getargval != NULL)
3211				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3212				    mstate->dtms_probe->dtpr_id,
3213				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3214			else
3215				val = dtrace_getarg(ndx, aframes);
3216
3217			/*
3218			 * This is regrettably required to keep the compiler
3219			 * from tail-optimizing the call to dtrace_getarg().
3220			 * The condition always evaluates to true, but the
3221			 * compiler has no way of figuring that out a priori.
3222			 * (None of this would be necessary if the compiler
3223			 * could be relied upon to _always_ tail-optimize
3224			 * the call to dtrace_getarg() -- but it can't.)
3225			 */
3226			if (mstate->dtms_probe != NULL)
3227				return (val);
3228
3229			ASSERT(0);
3230		}
3231
3232		return (mstate->dtms_arg[ndx]);
3233
3234#ifdef illumos
3235	case DIF_VAR_UREGS: {
3236		klwp_t *lwp;
3237
3238		if (!dtrace_priv_proc(state))
3239			return (0);
3240
3241		if ((lwp = curthread->t_lwp) == NULL) {
3242			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3243			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3244			return (0);
3245		}
3246
3247		return (dtrace_getreg(lwp->lwp_regs, ndx));
3248		return (0);
3249	}
3250#else
3251	case DIF_VAR_UREGS: {
3252		struct trapframe *tframe;
3253
3254		if (!dtrace_priv_proc(state))
3255			return (0);
3256
3257		if ((tframe = curthread->td_frame) == NULL) {
3258			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3259			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3260			return (0);
3261		}
3262
3263		return (dtrace_getreg(tframe, ndx));
3264	}
3265#endif
3266
3267	case DIF_VAR_CURTHREAD:
3268		if (!dtrace_priv_proc(state))
3269			return (0);
3270		return ((uint64_t)(uintptr_t)curthread);
3271
3272	case DIF_VAR_TIMESTAMP:
3273		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3274			mstate->dtms_timestamp = dtrace_gethrtime();
3275			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3276		}
3277		return (mstate->dtms_timestamp);
3278
3279	case DIF_VAR_VTIMESTAMP:
3280		ASSERT(dtrace_vtime_references != 0);
3281		return (curthread->t_dtrace_vtime);
3282
3283	case DIF_VAR_WALLTIMESTAMP:
3284		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3285			mstate->dtms_walltimestamp = dtrace_gethrestime();
3286			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3287		}
3288		return (mstate->dtms_walltimestamp);
3289
3290#ifdef illumos
3291	case DIF_VAR_IPL:
3292		if (!dtrace_priv_kernel(state))
3293			return (0);
3294		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3295			mstate->dtms_ipl = dtrace_getipl();
3296			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3297		}
3298		return (mstate->dtms_ipl);
3299#endif
3300
3301	case DIF_VAR_EPID:
3302		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3303		return (mstate->dtms_epid);
3304
3305	case DIF_VAR_ID:
3306		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3307		return (mstate->dtms_probe->dtpr_id);
3308
3309	case DIF_VAR_STACKDEPTH:
3310		if (!dtrace_priv_kernel(state))
3311			return (0);
3312		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3313			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3314
3315			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3316			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3317		}
3318		return (mstate->dtms_stackdepth);
3319
3320	case DIF_VAR_USTACKDEPTH:
3321		if (!dtrace_priv_proc(state))
3322			return (0);
3323		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3324			/*
3325			 * See comment in DIF_VAR_PID.
3326			 */
3327			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3328			    CPU_ON_INTR(CPU)) {
3329				mstate->dtms_ustackdepth = 0;
3330			} else {
3331				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3332				mstate->dtms_ustackdepth =
3333				    dtrace_getustackdepth();
3334				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3335			}
3336			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3337		}
3338		return (mstate->dtms_ustackdepth);
3339
3340	case DIF_VAR_CALLER:
3341		if (!dtrace_priv_kernel(state))
3342			return (0);
3343		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3344			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3345
3346			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3347				/*
3348				 * If this is an unanchored probe, we are
3349				 * required to go through the slow path:
3350				 * dtrace_caller() only guarantees correct
3351				 * results for anchored probes.
3352				 */
3353				pc_t caller[2] = {0, 0};
3354
3355				dtrace_getpcstack(caller, 2, aframes,
3356				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3357				mstate->dtms_caller = caller[1];
3358			} else if ((mstate->dtms_caller =
3359			    dtrace_caller(aframes)) == -1) {
3360				/*
3361				 * We have failed to do this the quick way;
3362				 * we must resort to the slower approach of
3363				 * calling dtrace_getpcstack().
3364				 */
3365				pc_t caller = 0;
3366
3367				dtrace_getpcstack(&caller, 1, aframes, NULL);
3368				mstate->dtms_caller = caller;
3369			}
3370
3371			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3372		}
3373		return (mstate->dtms_caller);
3374
3375	case DIF_VAR_UCALLER:
3376		if (!dtrace_priv_proc(state))
3377			return (0);
3378
3379		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3380			uint64_t ustack[3];
3381
3382			/*
3383			 * dtrace_getupcstack() fills in the first uint64_t
3384			 * with the current PID.  The second uint64_t will
3385			 * be the program counter at user-level.  The third
3386			 * uint64_t will contain the caller, which is what
3387			 * we're after.
3388			 */
3389			ustack[2] = 0;
3390			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3391			dtrace_getupcstack(ustack, 3);
3392			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3393			mstate->dtms_ucaller = ustack[2];
3394			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3395		}
3396
3397		return (mstate->dtms_ucaller);
3398
3399	case DIF_VAR_PROBEPROV:
3400		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3401		return (dtrace_dif_varstr(
3402		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3403		    state, mstate));
3404
3405	case DIF_VAR_PROBEMOD:
3406		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3407		return (dtrace_dif_varstr(
3408		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3409		    state, mstate));
3410
3411	case DIF_VAR_PROBEFUNC:
3412		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3413		return (dtrace_dif_varstr(
3414		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3415		    state, mstate));
3416
3417	case DIF_VAR_PROBENAME:
3418		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3419		return (dtrace_dif_varstr(
3420		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3421		    state, mstate));
3422
3423	case DIF_VAR_PID:
3424		if (!dtrace_priv_proc(state))
3425			return (0);
3426
3427#ifdef illumos
3428		/*
3429		 * Note that we are assuming that an unanchored probe is
3430		 * always due to a high-level interrupt.  (And we're assuming
3431		 * that there is only a single high level interrupt.)
3432		 */
3433		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3434			return (pid0.pid_id);
3435
3436		/*
3437		 * It is always safe to dereference one's own t_procp pointer:
3438		 * it always points to a valid, allocated proc structure.
3439		 * Further, it is always safe to dereference the p_pidp member
3440		 * of one's own proc structure.  (These are truisms becuase
3441		 * threads and processes don't clean up their own state --
3442		 * they leave that task to whomever reaps them.)
3443		 */
3444		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3445#else
3446		return ((uint64_t)curproc->p_pid);
3447#endif
3448
3449	case DIF_VAR_PPID:
3450		if (!dtrace_priv_proc(state))
3451			return (0);
3452
3453#ifdef illumos
3454		/*
3455		 * See comment in DIF_VAR_PID.
3456		 */
3457		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3458			return (pid0.pid_id);
3459
3460		/*
3461		 * It is always safe to dereference one's own t_procp pointer:
3462		 * it always points to a valid, allocated proc structure.
3463		 * (This is true because threads don't clean up their own
3464		 * state -- they leave that task to whomever reaps them.)
3465		 */
3466		return ((uint64_t)curthread->t_procp->p_ppid);
3467#else
3468		if (curproc->p_pid == proc0.p_pid)
3469			return (curproc->p_pid);
3470		else
3471			return (curproc->p_pptr->p_pid);
3472#endif
3473
3474	case DIF_VAR_TID:
3475#ifdef illumos
3476		/*
3477		 * See comment in DIF_VAR_PID.
3478		 */
3479		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3480			return (0);
3481#endif
3482
3483		return ((uint64_t)curthread->t_tid);
3484
3485	case DIF_VAR_EXECARGS: {
3486		struct pargs *p_args = curthread->td_proc->p_args;
3487
3488		if (p_args == NULL)
3489			return(0);
3490
3491		return (dtrace_dif_varstrz(
3492		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3493	}
3494
3495	case DIF_VAR_EXECNAME:
3496#ifdef illumos
3497		if (!dtrace_priv_proc(state))
3498			return (0);
3499
3500		/*
3501		 * See comment in DIF_VAR_PID.
3502		 */
3503		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3504			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3505
3506		/*
3507		 * It is always safe to dereference one's own t_procp pointer:
3508		 * it always points to a valid, allocated proc structure.
3509		 * (This is true because threads don't clean up their own
3510		 * state -- they leave that task to whomever reaps them.)
3511		 */
3512		return (dtrace_dif_varstr(
3513		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3514		    state, mstate));
3515#else
3516		return (dtrace_dif_varstr(
3517		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3518#endif
3519
3520	case DIF_VAR_ZONENAME:
3521#ifdef illumos
3522		if (!dtrace_priv_proc(state))
3523			return (0);
3524
3525		/*
3526		 * See comment in DIF_VAR_PID.
3527		 */
3528		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3529			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3530
3531		/*
3532		 * It is always safe to dereference one's own t_procp pointer:
3533		 * it always points to a valid, allocated proc structure.
3534		 * (This is true because threads don't clean up their own
3535		 * state -- they leave that task to whomever reaps them.)
3536		 */
3537		return (dtrace_dif_varstr(
3538		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3539		    state, mstate));
3540#elif defined(__FreeBSD__)
3541	/*
3542	 * On FreeBSD, we introduce compatibility to zonename by falling through
3543	 * into jailname.
3544	 */
3545	case DIF_VAR_JAILNAME:
3546		if (!dtrace_priv_kernel(state))
3547			return (0);
3548
3549		return (dtrace_dif_varstr(
3550		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3551		    state, mstate));
3552
3553	case DIF_VAR_JID:
3554		if (!dtrace_priv_kernel(state))
3555			return (0);
3556
3557		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3558#else
3559		return (0);
3560#endif
3561
3562	case DIF_VAR_UID:
3563		if (!dtrace_priv_proc(state))
3564			return (0);
3565
3566#ifdef illumos
3567		/*
3568		 * See comment in DIF_VAR_PID.
3569		 */
3570		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3571			return ((uint64_t)p0.p_cred->cr_uid);
3572
3573		/*
3574		 * It is always safe to dereference one's own t_procp pointer:
3575		 * it always points to a valid, allocated proc structure.
3576		 * (This is true because threads don't clean up their own
3577		 * state -- they leave that task to whomever reaps them.)
3578		 *
3579		 * Additionally, it is safe to dereference one's own process
3580		 * credential, since this is never NULL after process birth.
3581		 */
3582		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3583#else
3584		return ((uint64_t)curthread->td_ucred->cr_uid);
3585#endif
3586
3587	case DIF_VAR_GID:
3588		if (!dtrace_priv_proc(state))
3589			return (0);
3590
3591#ifdef illumos
3592		/*
3593		 * See comment in DIF_VAR_PID.
3594		 */
3595		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3596			return ((uint64_t)p0.p_cred->cr_gid);
3597
3598		/*
3599		 * It is always safe to dereference one's own t_procp pointer:
3600		 * it always points to a valid, allocated proc structure.
3601		 * (This is true because threads don't clean up their own
3602		 * state -- they leave that task to whomever reaps them.)
3603		 *
3604		 * Additionally, it is safe to dereference one's own process
3605		 * credential, since this is never NULL after process birth.
3606		 */
3607		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3608#else
3609		return ((uint64_t)curthread->td_ucred->cr_gid);
3610#endif
3611
3612	case DIF_VAR_ERRNO: {
3613#ifdef illumos
3614		klwp_t *lwp;
3615		if (!dtrace_priv_proc(state))
3616			return (0);
3617
3618		/*
3619		 * See comment in DIF_VAR_PID.
3620		 */
3621		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3622			return (0);
3623
3624		/*
3625		 * It is always safe to dereference one's own t_lwp pointer in
3626		 * the event that this pointer is non-NULL.  (This is true
3627		 * because threads and lwps don't clean up their own state --
3628		 * they leave that task to whomever reaps them.)
3629		 */
3630		if ((lwp = curthread->t_lwp) == NULL)
3631			return (0);
3632
3633		return ((uint64_t)lwp->lwp_errno);
3634#else
3635		return (curthread->td_errno);
3636#endif
3637	}
3638#ifndef illumos
3639	case DIF_VAR_CPU: {
3640		return curcpu;
3641	}
3642#endif
3643	default:
3644		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3645		return (0);
3646	}
3647}
3648
3649
3650typedef enum dtrace_json_state {
3651	DTRACE_JSON_REST = 1,
3652	DTRACE_JSON_OBJECT,
3653	DTRACE_JSON_STRING,
3654	DTRACE_JSON_STRING_ESCAPE,
3655	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3656	DTRACE_JSON_COLON,
3657	DTRACE_JSON_COMMA,
3658	DTRACE_JSON_VALUE,
3659	DTRACE_JSON_IDENTIFIER,
3660	DTRACE_JSON_NUMBER,
3661	DTRACE_JSON_NUMBER_FRAC,
3662	DTRACE_JSON_NUMBER_EXP,
3663	DTRACE_JSON_COLLECT_OBJECT
3664} dtrace_json_state_t;
3665
3666/*
3667 * This function possesses just enough knowledge about JSON to extract a single
3668 * value from a JSON string and store it in the scratch buffer.  It is able
3669 * to extract nested object values, and members of arrays by index.
3670 *
3671 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3672 * be looked up as we descend into the object tree.  e.g.
3673 *
3674 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3675 *       with nelems = 5.
3676 *
3677 * The run time of this function must be bounded above by strsize to limit the
3678 * amount of work done in probe context.  As such, it is implemented as a
3679 * simple state machine, reading one character at a time using safe loads
3680 * until we find the requested element, hit a parsing error or run off the
3681 * end of the object or string.
3682 *
3683 * As there is no way for a subroutine to return an error without interrupting
3684 * clause execution, we simply return NULL in the event of a missing key or any
3685 * other error condition.  Each NULL return in this function is commented with
3686 * the error condition it represents -- parsing or otherwise.
3687 *
3688 * The set of states for the state machine closely matches the JSON
3689 * specification (http://json.org/).  Briefly:
3690 *
3691 *   DTRACE_JSON_REST:
3692 *     Skip whitespace until we find either a top-level Object, moving
3693 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3694 *
3695 *   DTRACE_JSON_OBJECT:
3696 *     Locate the next key String in an Object.  Sets a flag to denote
3697 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3698 *
3699 *   DTRACE_JSON_COLON:
3700 *     Skip whitespace until we find the colon that separates key Strings
3701 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3702 *
3703 *   DTRACE_JSON_VALUE:
3704 *     Detects the type of the next value (String, Number, Identifier, Object
3705 *     or Array) and routes to the states that process that type.  Here we also
3706 *     deal with the element selector list if we are requested to traverse down
3707 *     into the object tree.
3708 *
3709 *   DTRACE_JSON_COMMA:
3710 *     Skip whitespace until we find the comma that separates key-value pairs
3711 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3712 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3713 *     states return to this state at the end of their value, unless otherwise
3714 *     noted.
3715 *
3716 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3717 *     Processes a Number literal from the JSON, including any exponent
3718 *     component that may be present.  Numbers are returned as strings, which
3719 *     may be passed to strtoll() if an integer is required.
3720 *
3721 *   DTRACE_JSON_IDENTIFIER:
3722 *     Processes a "true", "false" or "null" literal in the JSON.
3723 *
3724 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3725 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3726 *     Processes a String literal from the JSON, whether the String denotes
3727 *     a key, a value or part of a larger Object.  Handles all escape sequences
3728 *     present in the specification, including four-digit unicode characters,
3729 *     but merely includes the escape sequence without converting it to the
3730 *     actual escaped character.  If the String is flagged as a key, we
3731 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3732 *
3733 *   DTRACE_JSON_COLLECT_OBJECT:
3734 *     This state collects an entire Object (or Array), correctly handling
3735 *     embedded strings.  If the full element selector list matches this nested
3736 *     object, we return the Object in full as a string.  If not, we use this
3737 *     state to skip to the next value at this level and continue processing.
3738 *
3739 * NOTE: This function uses various macros from strtolctype.h to manipulate
3740 * digit values, etc -- these have all been checked to ensure they make
3741 * no additional function calls.
3742 */
3743static char *
3744dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3745    char *dest)
3746{
3747	dtrace_json_state_t state = DTRACE_JSON_REST;
3748	int64_t array_elem = INT64_MIN;
3749	int64_t array_pos = 0;
3750	uint8_t escape_unicount = 0;
3751	boolean_t string_is_key = B_FALSE;
3752	boolean_t collect_object = B_FALSE;
3753	boolean_t found_key = B_FALSE;
3754	boolean_t in_array = B_FALSE;
3755	uint32_t braces = 0, brackets = 0;
3756	char *elem = elemlist;
3757	char *dd = dest;
3758	uintptr_t cur;
3759
3760	for (cur = json; cur < json + size; cur++) {
3761		char cc = dtrace_load8(cur);
3762		if (cc == '\0')
3763			return (NULL);
3764
3765		switch (state) {
3766		case DTRACE_JSON_REST:
3767			if (isspace(cc))
3768				break;
3769
3770			if (cc == '{') {
3771				state = DTRACE_JSON_OBJECT;
3772				break;
3773			}
3774
3775			if (cc == '[') {
3776				in_array = B_TRUE;
3777				array_pos = 0;
3778				array_elem = dtrace_strtoll(elem, 10, size);
3779				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3780				state = DTRACE_JSON_VALUE;
3781				break;
3782			}
3783
3784			/*
3785			 * ERROR: expected to find a top-level object or array.
3786			 */
3787			return (NULL);
3788		case DTRACE_JSON_OBJECT:
3789			if (isspace(cc))
3790				break;
3791
3792			if (cc == '"') {
3793				state = DTRACE_JSON_STRING;
3794				string_is_key = B_TRUE;
3795				break;
3796			}
3797
3798			/*
3799			 * ERROR: either the object did not start with a key
3800			 * string, or we've run off the end of the object
3801			 * without finding the requested key.
3802			 */
3803			return (NULL);
3804		case DTRACE_JSON_STRING:
3805			if (cc == '\\') {
3806				*dd++ = '\\';
3807				state = DTRACE_JSON_STRING_ESCAPE;
3808				break;
3809			}
3810
3811			if (cc == '"') {
3812				if (collect_object) {
3813					/*
3814					 * We don't reset the dest here, as
3815					 * the string is part of a larger
3816					 * object being collected.
3817					 */
3818					*dd++ = cc;
3819					collect_object = B_FALSE;
3820					state = DTRACE_JSON_COLLECT_OBJECT;
3821					break;
3822				}
3823				*dd = '\0';
3824				dd = dest; /* reset string buffer */
3825				if (string_is_key) {
3826					if (dtrace_strncmp(dest, elem,
3827					    size) == 0)
3828						found_key = B_TRUE;
3829				} else if (found_key) {
3830					if (nelems > 1) {
3831						/*
3832						 * We expected an object, not
3833						 * this string.
3834						 */
3835						return (NULL);
3836					}
3837					return (dest);
3838				}
3839				state = string_is_key ? DTRACE_JSON_COLON :
3840				    DTRACE_JSON_COMMA;
3841				string_is_key = B_FALSE;
3842				break;
3843			}
3844
3845			*dd++ = cc;
3846			break;
3847		case DTRACE_JSON_STRING_ESCAPE:
3848			*dd++ = cc;
3849			if (cc == 'u') {
3850				escape_unicount = 0;
3851				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3852			} else {
3853				state = DTRACE_JSON_STRING;
3854			}
3855			break;
3856		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3857			if (!isxdigit(cc)) {
3858				/*
3859				 * ERROR: invalid unicode escape, expected
3860				 * four valid hexidecimal digits.
3861				 */
3862				return (NULL);
3863			}
3864
3865			*dd++ = cc;
3866			if (++escape_unicount == 4)
3867				state = DTRACE_JSON_STRING;
3868			break;
3869		case DTRACE_JSON_COLON:
3870			if (isspace(cc))
3871				break;
3872
3873			if (cc == ':') {
3874				state = DTRACE_JSON_VALUE;
3875				break;
3876			}
3877
3878			/*
3879			 * ERROR: expected a colon.
3880			 */
3881			return (NULL);
3882		case DTRACE_JSON_COMMA:
3883			if (isspace(cc))
3884				break;
3885
3886			if (cc == ',') {
3887				if (in_array) {
3888					state = DTRACE_JSON_VALUE;
3889					if (++array_pos == array_elem)
3890						found_key = B_TRUE;
3891				} else {
3892					state = DTRACE_JSON_OBJECT;
3893				}
3894				break;
3895			}
3896
3897			/*
3898			 * ERROR: either we hit an unexpected character, or
3899			 * we reached the end of the object or array without
3900			 * finding the requested key.
3901			 */
3902			return (NULL);
3903		case DTRACE_JSON_IDENTIFIER:
3904			if (islower(cc)) {
3905				*dd++ = cc;
3906				break;
3907			}
3908
3909			*dd = '\0';
3910			dd = dest; /* reset string buffer */
3911
3912			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3913			    dtrace_strncmp(dest, "false", 6) == 0 ||
3914			    dtrace_strncmp(dest, "null", 5) == 0) {
3915				if (found_key) {
3916					if (nelems > 1) {
3917						/*
3918						 * ERROR: We expected an object,
3919						 * not this identifier.
3920						 */
3921						return (NULL);
3922					}
3923					return (dest);
3924				} else {
3925					cur--;
3926					state = DTRACE_JSON_COMMA;
3927					break;
3928				}
3929			}
3930
3931			/*
3932			 * ERROR: we did not recognise the identifier as one
3933			 * of those in the JSON specification.
3934			 */
3935			return (NULL);
3936		case DTRACE_JSON_NUMBER:
3937			if (cc == '.') {
3938				*dd++ = cc;
3939				state = DTRACE_JSON_NUMBER_FRAC;
3940				break;
3941			}
3942
3943			if (cc == 'x' || cc == 'X') {
3944				/*
3945				 * ERROR: specification explicitly excludes
3946				 * hexidecimal or octal numbers.
3947				 */
3948				return (NULL);
3949			}
3950
3951			/* FALLTHRU */
3952		case DTRACE_JSON_NUMBER_FRAC:
3953			if (cc == 'e' || cc == 'E') {
3954				*dd++ = cc;
3955				state = DTRACE_JSON_NUMBER_EXP;
3956				break;
3957			}
3958
3959			if (cc == '+' || cc == '-') {
3960				/*
3961				 * ERROR: expect sign as part of exponent only.
3962				 */
3963				return (NULL);
3964			}
3965			/* FALLTHRU */
3966		case DTRACE_JSON_NUMBER_EXP:
3967			if (isdigit(cc) || cc == '+' || cc == '-') {
3968				*dd++ = cc;
3969				break;
3970			}
3971
3972			*dd = '\0';
3973			dd = dest; /* reset string buffer */
3974			if (found_key) {
3975				if (nelems > 1) {
3976					/*
3977					 * ERROR: We expected an object, not
3978					 * this number.
3979					 */
3980					return (NULL);
3981				}
3982				return (dest);
3983			}
3984
3985			cur--;
3986			state = DTRACE_JSON_COMMA;
3987			break;
3988		case DTRACE_JSON_VALUE:
3989			if (isspace(cc))
3990				break;
3991
3992			if (cc == '{' || cc == '[') {
3993				if (nelems > 1 && found_key) {
3994					in_array = cc == '[' ? B_TRUE : B_FALSE;
3995					/*
3996					 * If our element selector directs us
3997					 * to descend into this nested object,
3998					 * then move to the next selector
3999					 * element in the list and restart the
4000					 * state machine.
4001					 */
4002					while (*elem != '\0')
4003						elem++;
4004					elem++; /* skip the inter-element NUL */
4005					nelems--;
4006					dd = dest;
4007					if (in_array) {
4008						state = DTRACE_JSON_VALUE;
4009						array_pos = 0;
4010						array_elem = dtrace_strtoll(
4011						    elem, 10, size);
4012						found_key = array_elem == 0 ?
4013						    B_TRUE : B_FALSE;
4014					} else {
4015						found_key = B_FALSE;
4016						state = DTRACE_JSON_OBJECT;
4017					}
4018					break;
4019				}
4020
4021				/*
4022				 * Otherwise, we wish to either skip this
4023				 * nested object or return it in full.
4024				 */
4025				if (cc == '[')
4026					brackets = 1;
4027				else
4028					braces = 1;
4029				*dd++ = cc;
4030				state = DTRACE_JSON_COLLECT_OBJECT;
4031				break;
4032			}
4033
4034			if (cc == '"') {
4035				state = DTRACE_JSON_STRING;
4036				break;
4037			}
4038
4039			if (islower(cc)) {
4040				/*
4041				 * Here we deal with true, false and null.
4042				 */
4043				*dd++ = cc;
4044				state = DTRACE_JSON_IDENTIFIER;
4045				break;
4046			}
4047
4048			if (cc == '-' || isdigit(cc)) {
4049				*dd++ = cc;
4050				state = DTRACE_JSON_NUMBER;
4051				break;
4052			}
4053
4054			/*
4055			 * ERROR: unexpected character at start of value.
4056			 */
4057			return (NULL);
4058		case DTRACE_JSON_COLLECT_OBJECT:
4059			if (cc == '\0')
4060				/*
4061				 * ERROR: unexpected end of input.
4062				 */
4063				return (NULL);
4064
4065			*dd++ = cc;
4066			if (cc == '"') {
4067				collect_object = B_TRUE;
4068				state = DTRACE_JSON_STRING;
4069				break;
4070			}
4071
4072			if (cc == ']') {
4073				if (brackets-- == 0) {
4074					/*
4075					 * ERROR: unbalanced brackets.
4076					 */
4077					return (NULL);
4078				}
4079			} else if (cc == '}') {
4080				if (braces-- == 0) {
4081					/*
4082					 * ERROR: unbalanced braces.
4083					 */
4084					return (NULL);
4085				}
4086			} else if (cc == '{') {
4087				braces++;
4088			} else if (cc == '[') {
4089				brackets++;
4090			}
4091
4092			if (brackets == 0 && braces == 0) {
4093				if (found_key) {
4094					*dd = '\0';
4095					return (dest);
4096				}
4097				dd = dest; /* reset string buffer */
4098				state = DTRACE_JSON_COMMA;
4099			}
4100			break;
4101		}
4102	}
4103	return (NULL);
4104}
4105
4106/*
4107 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4108 * Notice that we don't bother validating the proper number of arguments or
4109 * their types in the tuple stack.  This isn't needed because all argument
4110 * interpretation is safe because of our load safety -- the worst that can
4111 * happen is that a bogus program can obtain bogus results.
4112 */
4113static void
4114dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4115    dtrace_key_t *tupregs, int nargs,
4116    dtrace_mstate_t *mstate, dtrace_state_t *state)
4117{
4118	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4119	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4120	dtrace_vstate_t *vstate = &state->dts_vstate;
4121
4122#ifdef illumos
4123	union {
4124		mutex_impl_t mi;
4125		uint64_t mx;
4126	} m;
4127
4128	union {
4129		krwlock_t ri;
4130		uintptr_t rw;
4131	} r;
4132#else
4133	struct thread *lowner;
4134	union {
4135		struct lock_object *li;
4136		uintptr_t lx;
4137	} l;
4138#endif
4139
4140	switch (subr) {
4141	case DIF_SUBR_RAND:
4142		regs[rd] = dtrace_xoroshiro128_plus_next(
4143		    state->dts_rstate[curcpu]);
4144		break;
4145
4146#ifdef illumos
4147	case DIF_SUBR_MUTEX_OWNED:
4148		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4149		    mstate, vstate)) {
4150			regs[rd] = 0;
4151			break;
4152		}
4153
4154		m.mx = dtrace_load64(tupregs[0].dttk_value);
4155		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4156			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4157		else
4158			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4159		break;
4160
4161	case DIF_SUBR_MUTEX_OWNER:
4162		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4163		    mstate, vstate)) {
4164			regs[rd] = 0;
4165			break;
4166		}
4167
4168		m.mx = dtrace_load64(tupregs[0].dttk_value);
4169		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4170		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4171			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4172		else
4173			regs[rd] = 0;
4174		break;
4175
4176	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4177		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4178		    mstate, vstate)) {
4179			regs[rd] = 0;
4180			break;
4181		}
4182
4183		m.mx = dtrace_load64(tupregs[0].dttk_value);
4184		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4185		break;
4186
4187	case DIF_SUBR_MUTEX_TYPE_SPIN:
4188		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4189		    mstate, vstate)) {
4190			regs[rd] = 0;
4191			break;
4192		}
4193
4194		m.mx = dtrace_load64(tupregs[0].dttk_value);
4195		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4196		break;
4197
4198	case DIF_SUBR_RW_READ_HELD: {
4199		uintptr_t tmp;
4200
4201		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4202		    mstate, vstate)) {
4203			regs[rd] = 0;
4204			break;
4205		}
4206
4207		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4208		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4209		break;
4210	}
4211
4212	case DIF_SUBR_RW_WRITE_HELD:
4213		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4214		    mstate, vstate)) {
4215			regs[rd] = 0;
4216			break;
4217		}
4218
4219		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4220		regs[rd] = _RW_WRITE_HELD(&r.ri);
4221		break;
4222
4223	case DIF_SUBR_RW_ISWRITER:
4224		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4225		    mstate, vstate)) {
4226			regs[rd] = 0;
4227			break;
4228		}
4229
4230		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4231		regs[rd] = _RW_ISWRITER(&r.ri);
4232		break;
4233
4234#else /* !illumos */
4235	case DIF_SUBR_MUTEX_OWNED:
4236		if (!dtrace_canload(tupregs[0].dttk_value,
4237			sizeof (struct lock_object), mstate, vstate)) {
4238			regs[rd] = 0;
4239			break;
4240		}
4241		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4242		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4243		break;
4244
4245	case DIF_SUBR_MUTEX_OWNER:
4246		if (!dtrace_canload(tupregs[0].dttk_value,
4247			sizeof (struct lock_object), mstate, vstate)) {
4248			regs[rd] = 0;
4249			break;
4250		}
4251		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4252		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4253		regs[rd] = (uintptr_t)lowner;
4254		break;
4255
4256	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4257		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4258		    mstate, vstate)) {
4259			regs[rd] = 0;
4260			break;
4261		}
4262		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4263		/* XXX - should be only LC_SLEEPABLE? */
4264		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4265		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4266		break;
4267
4268	case DIF_SUBR_MUTEX_TYPE_SPIN:
4269		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4270		    mstate, vstate)) {
4271			regs[rd] = 0;
4272			break;
4273		}
4274		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4275		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4276		break;
4277
4278	case DIF_SUBR_RW_READ_HELD:
4279	case DIF_SUBR_SX_SHARED_HELD:
4280		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4281		    mstate, vstate)) {
4282			regs[rd] = 0;
4283			break;
4284		}
4285		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4286		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4287		    lowner == NULL;
4288		break;
4289
4290	case DIF_SUBR_RW_WRITE_HELD:
4291	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4292		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4293		    mstate, vstate)) {
4294			regs[rd] = 0;
4295			break;
4296		}
4297		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4298		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4299		    lowner != NULL;
4300		break;
4301
4302	case DIF_SUBR_RW_ISWRITER:
4303	case DIF_SUBR_SX_ISEXCLUSIVE:
4304		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4305		    mstate, vstate)) {
4306			regs[rd] = 0;
4307			break;
4308		}
4309		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4310		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4311		regs[rd] = (lowner == curthread);
4312		break;
4313#endif /* illumos */
4314
4315	case DIF_SUBR_BCOPY: {
4316		/*
4317		 * We need to be sure that the destination is in the scratch
4318		 * region -- no other region is allowed.
4319		 */
4320		uintptr_t src = tupregs[0].dttk_value;
4321		uintptr_t dest = tupregs[1].dttk_value;
4322		size_t size = tupregs[2].dttk_value;
4323
4324		if (!dtrace_inscratch(dest, size, mstate)) {
4325			*flags |= CPU_DTRACE_BADADDR;
4326			*illval = regs[rd];
4327			break;
4328		}
4329
4330		if (!dtrace_canload(src, size, mstate, vstate)) {
4331			regs[rd] = 0;
4332			break;
4333		}
4334
4335		dtrace_bcopy((void *)src, (void *)dest, size);
4336		break;
4337	}
4338
4339	case DIF_SUBR_ALLOCA:
4340	case DIF_SUBR_COPYIN: {
4341		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4342		uint64_t size =
4343		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4344		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4345
4346		/*
4347		 * This action doesn't require any credential checks since
4348		 * probes will not activate in user contexts to which the
4349		 * enabling user does not have permissions.
4350		 */
4351
4352		/*
4353		 * Rounding up the user allocation size could have overflowed
4354		 * a large, bogus allocation (like -1ULL) to 0.
4355		 */
4356		if (scratch_size < size ||
4357		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4358			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4359			regs[rd] = 0;
4360			break;
4361		}
4362
4363		if (subr == DIF_SUBR_COPYIN) {
4364			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4365			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4366			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4367		}
4368
4369		mstate->dtms_scratch_ptr += scratch_size;
4370		regs[rd] = dest;
4371		break;
4372	}
4373
4374	case DIF_SUBR_COPYINTO: {
4375		uint64_t size = tupregs[1].dttk_value;
4376		uintptr_t dest = tupregs[2].dttk_value;
4377
4378		/*
4379		 * This action doesn't require any credential checks since
4380		 * probes will not activate in user contexts to which the
4381		 * enabling user does not have permissions.
4382		 */
4383		if (!dtrace_inscratch(dest, size, mstate)) {
4384			*flags |= CPU_DTRACE_BADADDR;
4385			*illval = regs[rd];
4386			break;
4387		}
4388
4389		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4390		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4391		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4392		break;
4393	}
4394
4395	case DIF_SUBR_COPYINSTR: {
4396		uintptr_t dest = mstate->dtms_scratch_ptr;
4397		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4398
4399		if (nargs > 1 && tupregs[1].dttk_value < size)
4400			size = tupregs[1].dttk_value + 1;
4401
4402		/*
4403		 * This action doesn't require any credential checks since
4404		 * probes will not activate in user contexts to which the
4405		 * enabling user does not have permissions.
4406		 */
4407		if (!DTRACE_INSCRATCH(mstate, size)) {
4408			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4409			regs[rd] = 0;
4410			break;
4411		}
4412
4413		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4414		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4415		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4416
4417		((char *)dest)[size - 1] = '\0';
4418		mstate->dtms_scratch_ptr += size;
4419		regs[rd] = dest;
4420		break;
4421	}
4422
4423#ifdef illumos
4424	case DIF_SUBR_MSGSIZE:
4425	case DIF_SUBR_MSGDSIZE: {
4426		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4427		uintptr_t wptr, rptr;
4428		size_t count = 0;
4429		int cont = 0;
4430
4431		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4432
4433			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4434			    vstate)) {
4435				regs[rd] = 0;
4436				break;
4437			}
4438
4439			wptr = dtrace_loadptr(baddr +
4440			    offsetof(mblk_t, b_wptr));
4441
4442			rptr = dtrace_loadptr(baddr +
4443			    offsetof(mblk_t, b_rptr));
4444
4445			if (wptr < rptr) {
4446				*flags |= CPU_DTRACE_BADADDR;
4447				*illval = tupregs[0].dttk_value;
4448				break;
4449			}
4450
4451			daddr = dtrace_loadptr(baddr +
4452			    offsetof(mblk_t, b_datap));
4453
4454			baddr = dtrace_loadptr(baddr +
4455			    offsetof(mblk_t, b_cont));
4456
4457			/*
4458			 * We want to prevent against denial-of-service here,
4459			 * so we're only going to search the list for
4460			 * dtrace_msgdsize_max mblks.
4461			 */
4462			if (cont++ > dtrace_msgdsize_max) {
4463				*flags |= CPU_DTRACE_ILLOP;
4464				break;
4465			}
4466
4467			if (subr == DIF_SUBR_MSGDSIZE) {
4468				if (dtrace_load8(daddr +
4469				    offsetof(dblk_t, db_type)) != M_DATA)
4470					continue;
4471			}
4472
4473			count += wptr - rptr;
4474		}
4475
4476		if (!(*flags & CPU_DTRACE_FAULT))
4477			regs[rd] = count;
4478
4479		break;
4480	}
4481#endif
4482
4483	case DIF_SUBR_PROGENYOF: {
4484		pid_t pid = tupregs[0].dttk_value;
4485		proc_t *p;
4486		int rval = 0;
4487
4488		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4489
4490		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4491#ifdef illumos
4492			if (p->p_pidp->pid_id == pid) {
4493#else
4494			if (p->p_pid == pid) {
4495#endif
4496				rval = 1;
4497				break;
4498			}
4499		}
4500
4501		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4502
4503		regs[rd] = rval;
4504		break;
4505	}
4506
4507	case DIF_SUBR_SPECULATION:
4508		regs[rd] = dtrace_speculation(state);
4509		break;
4510
4511	case DIF_SUBR_COPYOUT: {
4512		uintptr_t kaddr = tupregs[0].dttk_value;
4513		uintptr_t uaddr = tupregs[1].dttk_value;
4514		uint64_t size = tupregs[2].dttk_value;
4515
4516		if (!dtrace_destructive_disallow &&
4517		    dtrace_priv_proc_control(state) &&
4518		    !dtrace_istoxic(kaddr, size) &&
4519		    dtrace_canload(kaddr, size, mstate, vstate)) {
4520			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4521			dtrace_copyout(kaddr, uaddr, size, flags);
4522			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4523		}
4524		break;
4525	}
4526
4527	case DIF_SUBR_COPYOUTSTR: {
4528		uintptr_t kaddr = tupregs[0].dttk_value;
4529		uintptr_t uaddr = tupregs[1].dttk_value;
4530		uint64_t size = tupregs[2].dttk_value;
4531
4532		if (!dtrace_destructive_disallow &&
4533		    dtrace_priv_proc_control(state) &&
4534		    !dtrace_istoxic(kaddr, size) &&
4535		    dtrace_strcanload(kaddr, size, mstate, vstate)) {
4536			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4537			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4538			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4539		}
4540		break;
4541	}
4542
4543	case DIF_SUBR_STRLEN: {
4544		size_t sz;
4545		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4546		sz = dtrace_strlen((char *)addr,
4547		    state->dts_options[DTRACEOPT_STRSIZE]);
4548
4549		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4550			regs[rd] = 0;
4551			break;
4552		}
4553
4554		regs[rd] = sz;
4555
4556		break;
4557	}
4558
4559	case DIF_SUBR_STRCHR:
4560	case DIF_SUBR_STRRCHR: {
4561		/*
4562		 * We're going to iterate over the string looking for the
4563		 * specified character.  We will iterate until we have reached
4564		 * the string length or we have found the character.  If this
4565		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4566		 * of the specified character instead of the first.
4567		 */
4568		uintptr_t saddr = tupregs[0].dttk_value;
4569		uintptr_t addr = tupregs[0].dttk_value;
4570		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4571		char c, target = (char)tupregs[1].dttk_value;
4572
4573		for (regs[rd] = 0; addr < limit; addr++) {
4574			if ((c = dtrace_load8(addr)) == target) {
4575				regs[rd] = addr;
4576
4577				if (subr == DIF_SUBR_STRCHR)
4578					break;
4579			}
4580
4581			if (c == '\0')
4582				break;
4583		}
4584
4585		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4586			regs[rd] = 0;
4587			break;
4588		}
4589
4590		break;
4591	}
4592
4593	case DIF_SUBR_STRSTR:
4594	case DIF_SUBR_INDEX:
4595	case DIF_SUBR_RINDEX: {
4596		/*
4597		 * We're going to iterate over the string looking for the
4598		 * specified string.  We will iterate until we have reached
4599		 * the string length or we have found the string.  (Yes, this
4600		 * is done in the most naive way possible -- but considering
4601		 * that the string we're searching for is likely to be
4602		 * relatively short, the complexity of Rabin-Karp or similar
4603		 * hardly seems merited.)
4604		 */
4605		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4606		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4607		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4608		size_t len = dtrace_strlen(addr, size);
4609		size_t sublen = dtrace_strlen(substr, size);
4610		char *limit = addr + len, *orig = addr;
4611		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4612		int inc = 1;
4613
4614		regs[rd] = notfound;
4615
4616		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4617			regs[rd] = 0;
4618			break;
4619		}
4620
4621		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4622		    vstate)) {
4623			regs[rd] = 0;
4624			break;
4625		}
4626
4627		/*
4628		 * strstr() and index()/rindex() have similar semantics if
4629		 * both strings are the empty string: strstr() returns a
4630		 * pointer to the (empty) string, and index() and rindex()
4631		 * both return index 0 (regardless of any position argument).
4632		 */
4633		if (sublen == 0 && len == 0) {
4634			if (subr == DIF_SUBR_STRSTR)
4635				regs[rd] = (uintptr_t)addr;
4636			else
4637				regs[rd] = 0;
4638			break;
4639		}
4640
4641		if (subr != DIF_SUBR_STRSTR) {
4642			if (subr == DIF_SUBR_RINDEX) {
4643				limit = orig - 1;
4644				addr += len;
4645				inc = -1;
4646			}
4647
4648			/*
4649			 * Both index() and rindex() take an optional position
4650			 * argument that denotes the starting position.
4651			 */
4652			if (nargs == 3) {
4653				int64_t pos = (int64_t)tupregs[2].dttk_value;
4654
4655				/*
4656				 * If the position argument to index() is
4657				 * negative, Perl implicitly clamps it at
4658				 * zero.  This semantic is a little surprising
4659				 * given the special meaning of negative
4660				 * positions to similar Perl functions like
4661				 * substr(), but it appears to reflect a
4662				 * notion that index() can start from a
4663				 * negative index and increment its way up to
4664				 * the string.  Given this notion, Perl's
4665				 * rindex() is at least self-consistent in
4666				 * that it implicitly clamps positions greater
4667				 * than the string length to be the string
4668				 * length.  Where Perl completely loses
4669				 * coherence, however, is when the specified
4670				 * substring is the empty string ("").  In
4671				 * this case, even if the position is
4672				 * negative, rindex() returns 0 -- and even if
4673				 * the position is greater than the length,
4674				 * index() returns the string length.  These
4675				 * semantics violate the notion that index()
4676				 * should never return a value less than the
4677				 * specified position and that rindex() should
4678				 * never return a value greater than the
4679				 * specified position.  (One assumes that
4680				 * these semantics are artifacts of Perl's
4681				 * implementation and not the results of
4682				 * deliberate design -- it beggars belief that
4683				 * even Larry Wall could desire such oddness.)
4684				 * While in the abstract one would wish for
4685				 * consistent position semantics across
4686				 * substr(), index() and rindex() -- or at the
4687				 * very least self-consistent position
4688				 * semantics for index() and rindex() -- we
4689				 * instead opt to keep with the extant Perl
4690				 * semantics, in all their broken glory.  (Do
4691				 * we have more desire to maintain Perl's
4692				 * semantics than Perl does?  Probably.)
4693				 */
4694				if (subr == DIF_SUBR_RINDEX) {
4695					if (pos < 0) {
4696						if (sublen == 0)
4697							regs[rd] = 0;
4698						break;
4699					}
4700
4701					if (pos > len)
4702						pos = len;
4703				} else {
4704					if (pos < 0)
4705						pos = 0;
4706
4707					if (pos >= len) {
4708						if (sublen == 0)
4709							regs[rd] = len;
4710						break;
4711					}
4712				}
4713
4714				addr = orig + pos;
4715			}
4716		}
4717
4718		for (regs[rd] = notfound; addr != limit; addr += inc) {
4719			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4720				if (subr != DIF_SUBR_STRSTR) {
4721					/*
4722					 * As D index() and rindex() are
4723					 * modeled on Perl (and not on awk),
4724					 * we return a zero-based (and not a
4725					 * one-based) index.  (For you Perl
4726					 * weenies: no, we're not going to add
4727					 * $[ -- and shouldn't you be at a con
4728					 * or something?)
4729					 */
4730					regs[rd] = (uintptr_t)(addr - orig);
4731					break;
4732				}
4733
4734				ASSERT(subr == DIF_SUBR_STRSTR);
4735				regs[rd] = (uintptr_t)addr;
4736				break;
4737			}
4738		}
4739
4740		break;
4741	}
4742
4743	case DIF_SUBR_STRTOK: {
4744		uintptr_t addr = tupregs[0].dttk_value;
4745		uintptr_t tokaddr = tupregs[1].dttk_value;
4746		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4747		uintptr_t limit, toklimit = tokaddr + size;
4748		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4749		char *dest = (char *)mstate->dtms_scratch_ptr;
4750		int i;
4751
4752		/*
4753		 * Check both the token buffer and (later) the input buffer,
4754		 * since both could be non-scratch addresses.
4755		 */
4756		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4757			regs[rd] = 0;
4758			break;
4759		}
4760
4761		if (!DTRACE_INSCRATCH(mstate, size)) {
4762			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4763			regs[rd] = 0;
4764			break;
4765		}
4766
4767		if (addr == 0) {
4768			/*
4769			 * If the address specified is NULL, we use our saved
4770			 * strtok pointer from the mstate.  Note that this
4771			 * means that the saved strtok pointer is _only_
4772			 * valid within multiple enablings of the same probe --
4773			 * it behaves like an implicit clause-local variable.
4774			 */
4775			addr = mstate->dtms_strtok;
4776		} else {
4777			/*
4778			 * If the user-specified address is non-NULL we must
4779			 * access check it.  This is the only time we have
4780			 * a chance to do so, since this address may reside
4781			 * in the string table of this clause-- future calls
4782			 * (when we fetch addr from mstate->dtms_strtok)
4783			 * would fail this access check.
4784			 */
4785			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4786				regs[rd] = 0;
4787				break;
4788			}
4789		}
4790
4791		/*
4792		 * First, zero the token map, and then process the token
4793		 * string -- setting a bit in the map for every character
4794		 * found in the token string.
4795		 */
4796		for (i = 0; i < sizeof (tokmap); i++)
4797			tokmap[i] = 0;
4798
4799		for (; tokaddr < toklimit; tokaddr++) {
4800			if ((c = dtrace_load8(tokaddr)) == '\0')
4801				break;
4802
4803			ASSERT((c >> 3) < sizeof (tokmap));
4804			tokmap[c >> 3] |= (1 << (c & 0x7));
4805		}
4806
4807		for (limit = addr + size; addr < limit; addr++) {
4808			/*
4809			 * We're looking for a character that is _not_ contained
4810			 * in the token string.
4811			 */
4812			if ((c = dtrace_load8(addr)) == '\0')
4813				break;
4814
4815			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4816				break;
4817		}
4818
4819		if (c == '\0') {
4820			/*
4821			 * We reached the end of the string without finding
4822			 * any character that was not in the token string.
4823			 * We return NULL in this case, and we set the saved
4824			 * address to NULL as well.
4825			 */
4826			regs[rd] = 0;
4827			mstate->dtms_strtok = 0;
4828			break;
4829		}
4830
4831		/*
4832		 * From here on, we're copying into the destination string.
4833		 */
4834		for (i = 0; addr < limit && i < size - 1; addr++) {
4835			if ((c = dtrace_load8(addr)) == '\0')
4836				break;
4837
4838			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4839				break;
4840
4841			ASSERT(i < size);
4842			dest[i++] = c;
4843		}
4844
4845		ASSERT(i < size);
4846		dest[i] = '\0';
4847		regs[rd] = (uintptr_t)dest;
4848		mstate->dtms_scratch_ptr += size;
4849		mstate->dtms_strtok = addr;
4850		break;
4851	}
4852
4853	case DIF_SUBR_SUBSTR: {
4854		uintptr_t s = tupregs[0].dttk_value;
4855		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4856		char *d = (char *)mstate->dtms_scratch_ptr;
4857		int64_t index = (int64_t)tupregs[1].dttk_value;
4858		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4859		size_t len = dtrace_strlen((char *)s, size);
4860		int64_t i;
4861
4862		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4863			regs[rd] = 0;
4864			break;
4865		}
4866
4867		if (!DTRACE_INSCRATCH(mstate, size)) {
4868			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4869			regs[rd] = 0;
4870			break;
4871		}
4872
4873		if (nargs <= 2)
4874			remaining = (int64_t)size;
4875
4876		if (index < 0) {
4877			index += len;
4878
4879			if (index < 0 && index + remaining > 0) {
4880				remaining += index;
4881				index = 0;
4882			}
4883		}
4884
4885		if (index >= len || index < 0) {
4886			remaining = 0;
4887		} else if (remaining < 0) {
4888			remaining += len - index;
4889		} else if (index + remaining > size) {
4890			remaining = size - index;
4891		}
4892
4893		for (i = 0; i < remaining; i++) {
4894			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4895				break;
4896		}
4897
4898		d[i] = '\0';
4899
4900		mstate->dtms_scratch_ptr += size;
4901		regs[rd] = (uintptr_t)d;
4902		break;
4903	}
4904
4905	case DIF_SUBR_JSON: {
4906		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4907		uintptr_t json = tupregs[0].dttk_value;
4908		size_t jsonlen = dtrace_strlen((char *)json, size);
4909		uintptr_t elem = tupregs[1].dttk_value;
4910		size_t elemlen = dtrace_strlen((char *)elem, size);
4911
4912		char *dest = (char *)mstate->dtms_scratch_ptr;
4913		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4914		char *ee = elemlist;
4915		int nelems = 1;
4916		uintptr_t cur;
4917
4918		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4919		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4920			regs[rd] = 0;
4921			break;
4922		}
4923
4924		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4925			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4926			regs[rd] = 0;
4927			break;
4928		}
4929
4930		/*
4931		 * Read the element selector and split it up into a packed list
4932		 * of strings.
4933		 */
4934		for (cur = elem; cur < elem + elemlen; cur++) {
4935			char cc = dtrace_load8(cur);
4936
4937			if (cur == elem && cc == '[') {
4938				/*
4939				 * If the first element selector key is
4940				 * actually an array index then ignore the
4941				 * bracket.
4942				 */
4943				continue;
4944			}
4945
4946			if (cc == ']')
4947				continue;
4948
4949			if (cc == '.' || cc == '[') {
4950				nelems++;
4951				cc = '\0';
4952			}
4953
4954			*ee++ = cc;
4955		}
4956		*ee++ = '\0';
4957
4958		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4959		    nelems, dest)) != 0)
4960			mstate->dtms_scratch_ptr += jsonlen + 1;
4961		break;
4962	}
4963
4964	case DIF_SUBR_TOUPPER:
4965	case DIF_SUBR_TOLOWER: {
4966		uintptr_t s = tupregs[0].dttk_value;
4967		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4968		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4969		size_t len = dtrace_strlen((char *)s, size);
4970		char lower, upper, convert;
4971		int64_t i;
4972
4973		if (subr == DIF_SUBR_TOUPPER) {
4974			lower = 'a';
4975			upper = 'z';
4976			convert = 'A';
4977		} else {
4978			lower = 'A';
4979			upper = 'Z';
4980			convert = 'a';
4981		}
4982
4983		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4984			regs[rd] = 0;
4985			break;
4986		}
4987
4988		if (!DTRACE_INSCRATCH(mstate, size)) {
4989			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4990			regs[rd] = 0;
4991			break;
4992		}
4993
4994		for (i = 0; i < size - 1; i++) {
4995			if ((c = dtrace_load8(s + i)) == '\0')
4996				break;
4997
4998			if (c >= lower && c <= upper)
4999				c = convert + (c - lower);
5000
5001			dest[i] = c;
5002		}
5003
5004		ASSERT(i < size);
5005		dest[i] = '\0';
5006		regs[rd] = (uintptr_t)dest;
5007		mstate->dtms_scratch_ptr += size;
5008		break;
5009	}
5010
5011#ifdef illumos
5012	case DIF_SUBR_GETMAJOR:
5013#ifdef _LP64
5014		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5015#else
5016		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5017#endif
5018		break;
5019
5020	case DIF_SUBR_GETMINOR:
5021#ifdef _LP64
5022		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5023#else
5024		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5025#endif
5026		break;
5027
5028	case DIF_SUBR_DDI_PATHNAME: {
5029		/*
5030		 * This one is a galactic mess.  We are going to roughly
5031		 * emulate ddi_pathname(), but it's made more complicated
5032		 * by the fact that we (a) want to include the minor name and
5033		 * (b) must proceed iteratively instead of recursively.
5034		 */
5035		uintptr_t dest = mstate->dtms_scratch_ptr;
5036		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5037		char *start = (char *)dest, *end = start + size - 1;
5038		uintptr_t daddr = tupregs[0].dttk_value;
5039		int64_t minor = (int64_t)tupregs[1].dttk_value;
5040		char *s;
5041		int i, len, depth = 0;
5042
5043		/*
5044		 * Due to all the pointer jumping we do and context we must
5045		 * rely upon, we just mandate that the user must have kernel
5046		 * read privileges to use this routine.
5047		 */
5048		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5049			*flags |= CPU_DTRACE_KPRIV;
5050			*illval = daddr;
5051			regs[rd] = 0;
5052		}
5053
5054		if (!DTRACE_INSCRATCH(mstate, size)) {
5055			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5056			regs[rd] = 0;
5057			break;
5058		}
5059
5060		*end = '\0';
5061
5062		/*
5063		 * We want to have a name for the minor.  In order to do this,
5064		 * we need to walk the minor list from the devinfo.  We want
5065		 * to be sure that we don't infinitely walk a circular list,
5066		 * so we check for circularity by sending a scout pointer
5067		 * ahead two elements for every element that we iterate over;
5068		 * if the list is circular, these will ultimately point to the
5069		 * same element.  You may recognize this little trick as the
5070		 * answer to a stupid interview question -- one that always
5071		 * seems to be asked by those who had to have it laboriously
5072		 * explained to them, and who can't even concisely describe
5073		 * the conditions under which one would be forced to resort to
5074		 * this technique.  Needless to say, those conditions are
5075		 * found here -- and probably only here.  Is this the only use
5076		 * of this infamous trick in shipping, production code?  If it
5077		 * isn't, it probably should be...
5078		 */
5079		if (minor != -1) {
5080			uintptr_t maddr = dtrace_loadptr(daddr +
5081			    offsetof(struct dev_info, devi_minor));
5082
5083			uintptr_t next = offsetof(struct ddi_minor_data, next);
5084			uintptr_t name = offsetof(struct ddi_minor_data,
5085			    d_minor) + offsetof(struct ddi_minor, name);
5086			uintptr_t dev = offsetof(struct ddi_minor_data,
5087			    d_minor) + offsetof(struct ddi_minor, dev);
5088			uintptr_t scout;
5089
5090			if (maddr != NULL)
5091				scout = dtrace_loadptr(maddr + next);
5092
5093			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5094				uint64_t m;
5095#ifdef _LP64
5096				m = dtrace_load64(maddr + dev) & MAXMIN64;
5097#else
5098				m = dtrace_load32(maddr + dev) & MAXMIN;
5099#endif
5100				if (m != minor) {
5101					maddr = dtrace_loadptr(maddr + next);
5102
5103					if (scout == NULL)
5104						continue;
5105
5106					scout = dtrace_loadptr(scout + next);
5107
5108					if (scout == NULL)
5109						continue;
5110
5111					scout = dtrace_loadptr(scout + next);
5112
5113					if (scout == NULL)
5114						continue;
5115
5116					if (scout == maddr) {
5117						*flags |= CPU_DTRACE_ILLOP;
5118						break;
5119					}
5120
5121					continue;
5122				}
5123
5124				/*
5125				 * We have the minor data.  Now we need to
5126				 * copy the minor's name into the end of the
5127				 * pathname.
5128				 */
5129				s = (char *)dtrace_loadptr(maddr + name);
5130				len = dtrace_strlen(s, size);
5131
5132				if (*flags & CPU_DTRACE_FAULT)
5133					break;
5134
5135				if (len != 0) {
5136					if ((end -= (len + 1)) < start)
5137						break;
5138
5139					*end = ':';
5140				}
5141
5142				for (i = 1; i <= len; i++)
5143					end[i] = dtrace_load8((uintptr_t)s++);
5144				break;
5145			}
5146		}
5147
5148		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5149			ddi_node_state_t devi_state;
5150
5151			devi_state = dtrace_load32(daddr +
5152			    offsetof(struct dev_info, devi_node_state));
5153
5154			if (*flags & CPU_DTRACE_FAULT)
5155				break;
5156
5157			if (devi_state >= DS_INITIALIZED) {
5158				s = (char *)dtrace_loadptr(daddr +
5159				    offsetof(struct dev_info, devi_addr));
5160				len = dtrace_strlen(s, size);
5161
5162				if (*flags & CPU_DTRACE_FAULT)
5163					break;
5164
5165				if (len != 0) {
5166					if ((end -= (len + 1)) < start)
5167						break;
5168
5169					*end = '@';
5170				}
5171
5172				for (i = 1; i <= len; i++)
5173					end[i] = dtrace_load8((uintptr_t)s++);
5174			}
5175
5176			/*
5177			 * Now for the node name...
5178			 */
5179			s = (char *)dtrace_loadptr(daddr +
5180			    offsetof(struct dev_info, devi_node_name));
5181
5182			daddr = dtrace_loadptr(daddr +
5183			    offsetof(struct dev_info, devi_parent));
5184
5185			/*
5186			 * If our parent is NULL (that is, if we're the root
5187			 * node), we're going to use the special path
5188			 * "devices".
5189			 */
5190			if (daddr == 0)
5191				s = "devices";
5192
5193			len = dtrace_strlen(s, size);
5194			if (*flags & CPU_DTRACE_FAULT)
5195				break;
5196
5197			if ((end -= (len + 1)) < start)
5198				break;
5199
5200			for (i = 1; i <= len; i++)
5201				end[i] = dtrace_load8((uintptr_t)s++);
5202			*end = '/';
5203
5204			if (depth++ > dtrace_devdepth_max) {
5205				*flags |= CPU_DTRACE_ILLOP;
5206				break;
5207			}
5208		}
5209
5210		if (end < start)
5211			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5212
5213		if (daddr == 0) {
5214			regs[rd] = (uintptr_t)end;
5215			mstate->dtms_scratch_ptr += size;
5216		}
5217
5218		break;
5219	}
5220#endif
5221
5222	case DIF_SUBR_STRJOIN: {
5223		char *d = (char *)mstate->dtms_scratch_ptr;
5224		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5225		uintptr_t s1 = tupregs[0].dttk_value;
5226		uintptr_t s2 = tupregs[1].dttk_value;
5227		int i = 0;
5228
5229		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5230		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5231			regs[rd] = 0;
5232			break;
5233		}
5234
5235		if (!DTRACE_INSCRATCH(mstate, size)) {
5236			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5237			regs[rd] = 0;
5238			break;
5239		}
5240
5241		for (;;) {
5242			if (i >= size) {
5243				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5244				regs[rd] = 0;
5245				break;
5246			}
5247
5248			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5249				i--;
5250				break;
5251			}
5252		}
5253
5254		for (;;) {
5255			if (i >= size) {
5256				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5257				regs[rd] = 0;
5258				break;
5259			}
5260
5261			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5262				break;
5263		}
5264
5265		if (i < size) {
5266			mstate->dtms_scratch_ptr += i;
5267			regs[rd] = (uintptr_t)d;
5268		}
5269
5270		break;
5271	}
5272
5273	case DIF_SUBR_STRTOLL: {
5274		uintptr_t s = tupregs[0].dttk_value;
5275		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5276		int base = 10;
5277
5278		if (nargs > 1) {
5279			if ((base = tupregs[1].dttk_value) <= 1 ||
5280			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5281				*flags |= CPU_DTRACE_ILLOP;
5282				break;
5283			}
5284		}
5285
5286		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5287			regs[rd] = INT64_MIN;
5288			break;
5289		}
5290
5291		regs[rd] = dtrace_strtoll((char *)s, base, size);
5292		break;
5293	}
5294
5295	case DIF_SUBR_LLTOSTR: {
5296		int64_t i = (int64_t)tupregs[0].dttk_value;
5297		uint64_t val, digit;
5298		uint64_t size = 65;	/* enough room for 2^64 in binary */
5299		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5300		int base = 10;
5301
5302		if (nargs > 1) {
5303			if ((base = tupregs[1].dttk_value) <= 1 ||
5304			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5305				*flags |= CPU_DTRACE_ILLOP;
5306				break;
5307			}
5308		}
5309
5310		val = (base == 10 && i < 0) ? i * -1 : i;
5311
5312		if (!DTRACE_INSCRATCH(mstate, size)) {
5313			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5314			regs[rd] = 0;
5315			break;
5316		}
5317
5318		for (*end-- = '\0'; val; val /= base) {
5319			if ((digit = val % base) <= '9' - '0') {
5320				*end-- = '0' + digit;
5321			} else {
5322				*end-- = 'a' + (digit - ('9' - '0') - 1);
5323			}
5324		}
5325
5326		if (i == 0 && base == 16)
5327			*end-- = '0';
5328
5329		if (base == 16)
5330			*end-- = 'x';
5331
5332		if (i == 0 || base == 8 || base == 16)
5333			*end-- = '0';
5334
5335		if (i < 0 && base == 10)
5336			*end-- = '-';
5337
5338		regs[rd] = (uintptr_t)end + 1;
5339		mstate->dtms_scratch_ptr += size;
5340		break;
5341	}
5342
5343	case DIF_SUBR_HTONS:
5344	case DIF_SUBR_NTOHS:
5345#if BYTE_ORDER == BIG_ENDIAN
5346		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5347#else
5348		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5349#endif
5350		break;
5351
5352
5353	case DIF_SUBR_HTONL:
5354	case DIF_SUBR_NTOHL:
5355#if BYTE_ORDER == BIG_ENDIAN
5356		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5357#else
5358		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5359#endif
5360		break;
5361
5362
5363	case DIF_SUBR_HTONLL:
5364	case DIF_SUBR_NTOHLL:
5365#if BYTE_ORDER == BIG_ENDIAN
5366		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5367#else
5368		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5369#endif
5370		break;
5371
5372
5373	case DIF_SUBR_DIRNAME:
5374	case DIF_SUBR_BASENAME: {
5375		char *dest = (char *)mstate->dtms_scratch_ptr;
5376		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5377		uintptr_t src = tupregs[0].dttk_value;
5378		int i, j, len = dtrace_strlen((char *)src, size);
5379		int lastbase = -1, firstbase = -1, lastdir = -1;
5380		int start, end;
5381
5382		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5383			regs[rd] = 0;
5384			break;
5385		}
5386
5387		if (!DTRACE_INSCRATCH(mstate, size)) {
5388			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5389			regs[rd] = 0;
5390			break;
5391		}
5392
5393		/*
5394		 * The basename and dirname for a zero-length string is
5395		 * defined to be "."
5396		 */
5397		if (len == 0) {
5398			len = 1;
5399			src = (uintptr_t)".";
5400		}
5401
5402		/*
5403		 * Start from the back of the string, moving back toward the
5404		 * front until we see a character that isn't a slash.  That
5405		 * character is the last character in the basename.
5406		 */
5407		for (i = len - 1; i >= 0; i--) {
5408			if (dtrace_load8(src + i) != '/')
5409				break;
5410		}
5411
5412		if (i >= 0)
5413			lastbase = i;
5414
5415		/*
5416		 * Starting from the last character in the basename, move
5417		 * towards the front until we find a slash.  The character
5418		 * that we processed immediately before that is the first
5419		 * character in the basename.
5420		 */
5421		for (; i >= 0; i--) {
5422			if (dtrace_load8(src + i) == '/')
5423				break;
5424		}
5425
5426		if (i >= 0)
5427			firstbase = i + 1;
5428
5429		/*
5430		 * Now keep going until we find a non-slash character.  That
5431		 * character is the last character in the dirname.
5432		 */
5433		for (; i >= 0; i--) {
5434			if (dtrace_load8(src + i) != '/')
5435				break;
5436		}
5437
5438		if (i >= 0)
5439			lastdir = i;
5440
5441		ASSERT(!(lastbase == -1 && firstbase != -1));
5442		ASSERT(!(firstbase == -1 && lastdir != -1));
5443
5444		if (lastbase == -1) {
5445			/*
5446			 * We didn't find a non-slash character.  We know that
5447			 * the length is non-zero, so the whole string must be
5448			 * slashes.  In either the dirname or the basename
5449			 * case, we return '/'.
5450			 */
5451			ASSERT(firstbase == -1);
5452			firstbase = lastbase = lastdir = 0;
5453		}
5454
5455		if (firstbase == -1) {
5456			/*
5457			 * The entire string consists only of a basename
5458			 * component.  If we're looking for dirname, we need
5459			 * to change our string to be just "."; if we're
5460			 * looking for a basename, we'll just set the first
5461			 * character of the basename to be 0.
5462			 */
5463			if (subr == DIF_SUBR_DIRNAME) {
5464				ASSERT(lastdir == -1);
5465				src = (uintptr_t)".";
5466				lastdir = 0;
5467			} else {
5468				firstbase = 0;
5469			}
5470		}
5471
5472		if (subr == DIF_SUBR_DIRNAME) {
5473			if (lastdir == -1) {
5474				/*
5475				 * We know that we have a slash in the name --
5476				 * or lastdir would be set to 0, above.  And
5477				 * because lastdir is -1, we know that this
5478				 * slash must be the first character.  (That
5479				 * is, the full string must be of the form
5480				 * "/basename".)  In this case, the last
5481				 * character of the directory name is 0.
5482				 */
5483				lastdir = 0;
5484			}
5485
5486			start = 0;
5487			end = lastdir;
5488		} else {
5489			ASSERT(subr == DIF_SUBR_BASENAME);
5490			ASSERT(firstbase != -1 && lastbase != -1);
5491			start = firstbase;
5492			end = lastbase;
5493		}
5494
5495		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5496			dest[j] = dtrace_load8(src + i);
5497
5498		dest[j] = '\0';
5499		regs[rd] = (uintptr_t)dest;
5500		mstate->dtms_scratch_ptr += size;
5501		break;
5502	}
5503
5504	case DIF_SUBR_GETF: {
5505		uintptr_t fd = tupregs[0].dttk_value;
5506		struct filedesc *fdp;
5507		file_t *fp;
5508
5509		if (!dtrace_priv_proc(state)) {
5510			regs[rd] = 0;
5511			break;
5512		}
5513		fdp = curproc->p_fd;
5514		FILEDESC_SLOCK(fdp);
5515		fp = fget_locked(fdp, fd);
5516		mstate->dtms_getf = fp;
5517		regs[rd] = (uintptr_t)fp;
5518		FILEDESC_SUNLOCK(fdp);
5519		break;
5520	}
5521
5522	case DIF_SUBR_CLEANPATH: {
5523		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5524		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5525		uintptr_t src = tupregs[0].dttk_value;
5526		int i = 0, j = 0;
5527#ifdef illumos
5528		zone_t *z;
5529#endif
5530
5531		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5532			regs[rd] = 0;
5533			break;
5534		}
5535
5536		if (!DTRACE_INSCRATCH(mstate, size)) {
5537			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5538			regs[rd] = 0;
5539			break;
5540		}
5541
5542		/*
5543		 * Move forward, loading each character.
5544		 */
5545		do {
5546			c = dtrace_load8(src + i++);
5547next:
5548			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5549				break;
5550
5551			if (c != '/') {
5552				dest[j++] = c;
5553				continue;
5554			}
5555
5556			c = dtrace_load8(src + i++);
5557
5558			if (c == '/') {
5559				/*
5560				 * We have two slashes -- we can just advance
5561				 * to the next character.
5562				 */
5563				goto next;
5564			}
5565
5566			if (c != '.') {
5567				/*
5568				 * This is not "." and it's not ".." -- we can
5569				 * just store the "/" and this character and
5570				 * drive on.
5571				 */
5572				dest[j++] = '/';
5573				dest[j++] = c;
5574				continue;
5575			}
5576
5577			c = dtrace_load8(src + i++);
5578
5579			if (c == '/') {
5580				/*
5581				 * This is a "/./" component.  We're not going
5582				 * to store anything in the destination buffer;
5583				 * we're just going to go to the next component.
5584				 */
5585				goto next;
5586			}
5587
5588			if (c != '.') {
5589				/*
5590				 * This is not ".." -- we can just store the
5591				 * "/." and this character and continue
5592				 * processing.
5593				 */
5594				dest[j++] = '/';
5595				dest[j++] = '.';
5596				dest[j++] = c;
5597				continue;
5598			}
5599
5600			c = dtrace_load8(src + i++);
5601
5602			if (c != '/' && c != '\0') {
5603				/*
5604				 * This is not ".." -- it's "..[mumble]".
5605				 * We'll store the "/.." and this character
5606				 * and continue processing.
5607				 */
5608				dest[j++] = '/';
5609				dest[j++] = '.';
5610				dest[j++] = '.';
5611				dest[j++] = c;
5612				continue;
5613			}
5614
5615			/*
5616			 * This is "/../" or "/..\0".  We need to back up
5617			 * our destination pointer until we find a "/".
5618			 */
5619			i--;
5620			while (j != 0 && dest[--j] != '/')
5621				continue;
5622
5623			if (c == '\0')
5624				dest[++j] = '/';
5625		} while (c != '\0');
5626
5627		dest[j] = '\0';
5628
5629#ifdef illumos
5630		if (mstate->dtms_getf != NULL &&
5631		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5632		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5633			/*
5634			 * If we've done a getf() as a part of this ECB and we
5635			 * don't have kernel access (and we're not in the global
5636			 * zone), check if the path we cleaned up begins with
5637			 * the zone's root path, and trim it off if so.  Note
5638			 * that this is an output cleanliness issue, not a
5639			 * security issue: knowing one's zone root path does
5640			 * not enable privilege escalation.
5641			 */
5642			if (strstr(dest, z->zone_rootpath) == dest)
5643				dest += strlen(z->zone_rootpath) - 1;
5644		}
5645#endif
5646
5647		regs[rd] = (uintptr_t)dest;
5648		mstate->dtms_scratch_ptr += size;
5649		break;
5650	}
5651
5652	case DIF_SUBR_INET_NTOA:
5653	case DIF_SUBR_INET_NTOA6:
5654	case DIF_SUBR_INET_NTOP: {
5655		size_t size;
5656		int af, argi, i;
5657		char *base, *end;
5658
5659		if (subr == DIF_SUBR_INET_NTOP) {
5660			af = (int)tupregs[0].dttk_value;
5661			argi = 1;
5662		} else {
5663			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5664			argi = 0;
5665		}
5666
5667		if (af == AF_INET) {
5668			ipaddr_t ip4;
5669			uint8_t *ptr8, val;
5670
5671			if (!dtrace_canload(tupregs[argi].dttk_value,
5672			    sizeof (ipaddr_t), mstate, vstate)) {
5673				regs[rd] = 0;
5674				break;
5675			}
5676
5677			/*
5678			 * Safely load the IPv4 address.
5679			 */
5680			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5681
5682			/*
5683			 * Check an IPv4 string will fit in scratch.
5684			 */
5685			size = INET_ADDRSTRLEN;
5686			if (!DTRACE_INSCRATCH(mstate, size)) {
5687				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5688				regs[rd] = 0;
5689				break;
5690			}
5691			base = (char *)mstate->dtms_scratch_ptr;
5692			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5693
5694			/*
5695			 * Stringify as a dotted decimal quad.
5696			 */
5697			*end-- = '\0';
5698			ptr8 = (uint8_t *)&ip4;
5699			for (i = 3; i >= 0; i--) {
5700				val = ptr8[i];
5701
5702				if (val == 0) {
5703					*end-- = '0';
5704				} else {
5705					for (; val; val /= 10) {
5706						*end-- = '0' + (val % 10);
5707					}
5708				}
5709
5710				if (i > 0)
5711					*end-- = '.';
5712			}
5713			ASSERT(end + 1 >= base);
5714
5715		} else if (af == AF_INET6) {
5716			struct in6_addr ip6;
5717			int firstzero, tryzero, numzero, v6end;
5718			uint16_t val;
5719			const char digits[] = "0123456789abcdef";
5720
5721			/*
5722			 * Stringify using RFC 1884 convention 2 - 16 bit
5723			 * hexadecimal values with a zero-run compression.
5724			 * Lower case hexadecimal digits are used.
5725			 * 	eg, fe80::214:4fff:fe0b:76c8.
5726			 * The IPv4 embedded form is returned for inet_ntop,
5727			 * just the IPv4 string is returned for inet_ntoa6.
5728			 */
5729
5730			if (!dtrace_canload(tupregs[argi].dttk_value,
5731			    sizeof (struct in6_addr), mstate, vstate)) {
5732				regs[rd] = 0;
5733				break;
5734			}
5735
5736			/*
5737			 * Safely load the IPv6 address.
5738			 */
5739			dtrace_bcopy(
5740			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5741			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5742
5743			/*
5744			 * Check an IPv6 string will fit in scratch.
5745			 */
5746			size = INET6_ADDRSTRLEN;
5747			if (!DTRACE_INSCRATCH(mstate, size)) {
5748				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5749				regs[rd] = 0;
5750				break;
5751			}
5752			base = (char *)mstate->dtms_scratch_ptr;
5753			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5754			*end-- = '\0';
5755
5756			/*
5757			 * Find the longest run of 16 bit zero values
5758			 * for the single allowed zero compression - "::".
5759			 */
5760			firstzero = -1;
5761			tryzero = -1;
5762			numzero = 1;
5763			for (i = 0; i < sizeof (struct in6_addr); i++) {
5764#ifdef illumos
5765				if (ip6._S6_un._S6_u8[i] == 0 &&
5766#else
5767				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5768#endif
5769				    tryzero == -1 && i % 2 == 0) {
5770					tryzero = i;
5771					continue;
5772				}
5773
5774				if (tryzero != -1 &&
5775#ifdef illumos
5776				    (ip6._S6_un._S6_u8[i] != 0 ||
5777#else
5778				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5779#endif
5780				    i == sizeof (struct in6_addr) - 1)) {
5781
5782					if (i - tryzero <= numzero) {
5783						tryzero = -1;
5784						continue;
5785					}
5786
5787					firstzero = tryzero;
5788					numzero = i - i % 2 - tryzero;
5789					tryzero = -1;
5790
5791#ifdef illumos
5792					if (ip6._S6_un._S6_u8[i] == 0 &&
5793#else
5794					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5795#endif
5796					    i == sizeof (struct in6_addr) - 1)
5797						numzero += 2;
5798				}
5799			}
5800			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5801
5802			/*
5803			 * Check for an IPv4 embedded address.
5804			 */
5805			v6end = sizeof (struct in6_addr) - 2;
5806			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5807			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5808				for (i = sizeof (struct in6_addr) - 1;
5809				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5810					ASSERT(end >= base);
5811
5812#ifdef illumos
5813					val = ip6._S6_un._S6_u8[i];
5814#else
5815					val = ip6.__u6_addr.__u6_addr8[i];
5816#endif
5817
5818					if (val == 0) {
5819						*end-- = '0';
5820					} else {
5821						for (; val; val /= 10) {
5822							*end-- = '0' + val % 10;
5823						}
5824					}
5825
5826					if (i > DTRACE_V4MAPPED_OFFSET)
5827						*end-- = '.';
5828				}
5829
5830				if (subr == DIF_SUBR_INET_NTOA6)
5831					goto inetout;
5832
5833				/*
5834				 * Set v6end to skip the IPv4 address that
5835				 * we have already stringified.
5836				 */
5837				v6end = 10;
5838			}
5839
5840			/*
5841			 * Build the IPv6 string by working through the
5842			 * address in reverse.
5843			 */
5844			for (i = v6end; i >= 0; i -= 2) {
5845				ASSERT(end >= base);
5846
5847				if (i == firstzero + numzero - 2) {
5848					*end-- = ':';
5849					*end-- = ':';
5850					i -= numzero - 2;
5851					continue;
5852				}
5853
5854				if (i < 14 && i != firstzero - 2)
5855					*end-- = ':';
5856
5857#ifdef illumos
5858				val = (ip6._S6_un._S6_u8[i] << 8) +
5859				    ip6._S6_un._S6_u8[i + 1];
5860#else
5861				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5862				    ip6.__u6_addr.__u6_addr8[i + 1];
5863#endif
5864
5865				if (val == 0) {
5866					*end-- = '0';
5867				} else {
5868					for (; val; val /= 16) {
5869						*end-- = digits[val % 16];
5870					}
5871				}
5872			}
5873			ASSERT(end + 1 >= base);
5874
5875		} else {
5876			/*
5877			 * The user didn't use AH_INET or AH_INET6.
5878			 */
5879			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5880			regs[rd] = 0;
5881			break;
5882		}
5883
5884inetout:	regs[rd] = (uintptr_t)end + 1;
5885		mstate->dtms_scratch_ptr += size;
5886		break;
5887	}
5888
5889	case DIF_SUBR_MEMREF: {
5890		uintptr_t size = 2 * sizeof(uintptr_t);
5891		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5892		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5893
5894		/* address and length */
5895		memref[0] = tupregs[0].dttk_value;
5896		memref[1] = tupregs[1].dttk_value;
5897
5898		regs[rd] = (uintptr_t) memref;
5899		mstate->dtms_scratch_ptr += scratch_size;
5900		break;
5901	}
5902
5903#ifndef illumos
5904	case DIF_SUBR_MEMSTR: {
5905		char *str = (char *)mstate->dtms_scratch_ptr;
5906		uintptr_t mem = tupregs[0].dttk_value;
5907		char c = tupregs[1].dttk_value;
5908		size_t size = tupregs[2].dttk_value;
5909		uint8_t n;
5910		int i;
5911
5912		regs[rd] = 0;
5913
5914		if (size == 0)
5915			break;
5916
5917		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5918			break;
5919
5920		if (!DTRACE_INSCRATCH(mstate, size)) {
5921			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5922			break;
5923		}
5924
5925		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5926			*flags |= CPU_DTRACE_ILLOP;
5927			break;
5928		}
5929
5930		for (i = 0; i < size - 1; i++) {
5931			n = dtrace_load8(mem++);
5932			str[i] = (n == 0) ? c : n;
5933		}
5934		str[size - 1] = 0;
5935
5936		regs[rd] = (uintptr_t)str;
5937		mstate->dtms_scratch_ptr += size;
5938		break;
5939	}
5940#endif
5941
5942	case DIF_SUBR_TYPEREF: {
5943		uintptr_t size = 4 * sizeof(uintptr_t);
5944		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5945		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5946
5947		/* address, num_elements, type_str, type_len */
5948		typeref[0] = tupregs[0].dttk_value;
5949		typeref[1] = tupregs[1].dttk_value;
5950		typeref[2] = tupregs[2].dttk_value;
5951		typeref[3] = tupregs[3].dttk_value;
5952
5953		regs[rd] = (uintptr_t) typeref;
5954		mstate->dtms_scratch_ptr += scratch_size;
5955		break;
5956	}
5957	}
5958}
5959
5960/*
5961 * Emulate the execution of DTrace IR instructions specified by the given
5962 * DIF object.  This function is deliberately void of assertions as all of
5963 * the necessary checks are handled by a call to dtrace_difo_validate().
5964 */
5965static uint64_t
5966dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5967    dtrace_vstate_t *vstate, dtrace_state_t *state)
5968{
5969	const dif_instr_t *text = difo->dtdo_buf;
5970	const uint_t textlen = difo->dtdo_len;
5971	const char *strtab = difo->dtdo_strtab;
5972	const uint64_t *inttab = difo->dtdo_inttab;
5973
5974	uint64_t rval = 0;
5975	dtrace_statvar_t *svar;
5976	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5977	dtrace_difv_t *v;
5978	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5979	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5980
5981	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5982	uint64_t regs[DIF_DIR_NREGS];
5983	uint64_t *tmp;
5984
5985	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5986	int64_t cc_r;
5987	uint_t pc = 0, id, opc = 0;
5988	uint8_t ttop = 0;
5989	dif_instr_t instr;
5990	uint_t r1, r2, rd;
5991
5992	/*
5993	 * We stash the current DIF object into the machine state: we need it
5994	 * for subsequent access checking.
5995	 */
5996	mstate->dtms_difo = difo;
5997
5998	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5999
6000	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6001		opc = pc;
6002
6003		instr = text[pc++];
6004		r1 = DIF_INSTR_R1(instr);
6005		r2 = DIF_INSTR_R2(instr);
6006		rd = DIF_INSTR_RD(instr);
6007
6008		switch (DIF_INSTR_OP(instr)) {
6009		case DIF_OP_OR:
6010			regs[rd] = regs[r1] | regs[r2];
6011			break;
6012		case DIF_OP_XOR:
6013			regs[rd] = regs[r1] ^ regs[r2];
6014			break;
6015		case DIF_OP_AND:
6016			regs[rd] = regs[r1] & regs[r2];
6017			break;
6018		case DIF_OP_SLL:
6019			regs[rd] = regs[r1] << regs[r2];
6020			break;
6021		case DIF_OP_SRL:
6022			regs[rd] = regs[r1] >> regs[r2];
6023			break;
6024		case DIF_OP_SUB:
6025			regs[rd] = regs[r1] - regs[r2];
6026			break;
6027		case DIF_OP_ADD:
6028			regs[rd] = regs[r1] + regs[r2];
6029			break;
6030		case DIF_OP_MUL:
6031			regs[rd] = regs[r1] * regs[r2];
6032			break;
6033		case DIF_OP_SDIV:
6034			if (regs[r2] == 0) {
6035				regs[rd] = 0;
6036				*flags |= CPU_DTRACE_DIVZERO;
6037			} else {
6038				regs[rd] = (int64_t)regs[r1] /
6039				    (int64_t)regs[r2];
6040			}
6041			break;
6042
6043		case DIF_OP_UDIV:
6044			if (regs[r2] == 0) {
6045				regs[rd] = 0;
6046				*flags |= CPU_DTRACE_DIVZERO;
6047			} else {
6048				regs[rd] = regs[r1] / regs[r2];
6049			}
6050			break;
6051
6052		case DIF_OP_SREM:
6053			if (regs[r2] == 0) {
6054				regs[rd] = 0;
6055				*flags |= CPU_DTRACE_DIVZERO;
6056			} else {
6057				regs[rd] = (int64_t)regs[r1] %
6058				    (int64_t)regs[r2];
6059			}
6060			break;
6061
6062		case DIF_OP_UREM:
6063			if (regs[r2] == 0) {
6064				regs[rd] = 0;
6065				*flags |= CPU_DTRACE_DIVZERO;
6066			} else {
6067				regs[rd] = regs[r1] % regs[r2];
6068			}
6069			break;
6070
6071		case DIF_OP_NOT:
6072			regs[rd] = ~regs[r1];
6073			break;
6074		case DIF_OP_MOV:
6075			regs[rd] = regs[r1];
6076			break;
6077		case DIF_OP_CMP:
6078			cc_r = regs[r1] - regs[r2];
6079			cc_n = cc_r < 0;
6080			cc_z = cc_r == 0;
6081			cc_v = 0;
6082			cc_c = regs[r1] < regs[r2];
6083			break;
6084		case DIF_OP_TST:
6085			cc_n = cc_v = cc_c = 0;
6086			cc_z = regs[r1] == 0;
6087			break;
6088		case DIF_OP_BA:
6089			pc = DIF_INSTR_LABEL(instr);
6090			break;
6091		case DIF_OP_BE:
6092			if (cc_z)
6093				pc = DIF_INSTR_LABEL(instr);
6094			break;
6095		case DIF_OP_BNE:
6096			if (cc_z == 0)
6097				pc = DIF_INSTR_LABEL(instr);
6098			break;
6099		case DIF_OP_BG:
6100			if ((cc_z | (cc_n ^ cc_v)) == 0)
6101				pc = DIF_INSTR_LABEL(instr);
6102			break;
6103		case DIF_OP_BGU:
6104			if ((cc_c | cc_z) == 0)
6105				pc = DIF_INSTR_LABEL(instr);
6106			break;
6107		case DIF_OP_BGE:
6108			if ((cc_n ^ cc_v) == 0)
6109				pc = DIF_INSTR_LABEL(instr);
6110			break;
6111		case DIF_OP_BGEU:
6112			if (cc_c == 0)
6113				pc = DIF_INSTR_LABEL(instr);
6114			break;
6115		case DIF_OP_BL:
6116			if (cc_n ^ cc_v)
6117				pc = DIF_INSTR_LABEL(instr);
6118			break;
6119		case DIF_OP_BLU:
6120			if (cc_c)
6121				pc = DIF_INSTR_LABEL(instr);
6122			break;
6123		case DIF_OP_BLE:
6124			if (cc_z | (cc_n ^ cc_v))
6125				pc = DIF_INSTR_LABEL(instr);
6126			break;
6127		case DIF_OP_BLEU:
6128			if (cc_c | cc_z)
6129				pc = DIF_INSTR_LABEL(instr);
6130			break;
6131		case DIF_OP_RLDSB:
6132			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6133				break;
6134			/*FALLTHROUGH*/
6135		case DIF_OP_LDSB:
6136			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6137			break;
6138		case DIF_OP_RLDSH:
6139			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6140				break;
6141			/*FALLTHROUGH*/
6142		case DIF_OP_LDSH:
6143			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6144			break;
6145		case DIF_OP_RLDSW:
6146			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6147				break;
6148			/*FALLTHROUGH*/
6149		case DIF_OP_LDSW:
6150			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6151			break;
6152		case DIF_OP_RLDUB:
6153			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6154				break;
6155			/*FALLTHROUGH*/
6156		case DIF_OP_LDUB:
6157			regs[rd] = dtrace_load8(regs[r1]);
6158			break;
6159		case DIF_OP_RLDUH:
6160			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6161				break;
6162			/*FALLTHROUGH*/
6163		case DIF_OP_LDUH:
6164			regs[rd] = dtrace_load16(regs[r1]);
6165			break;
6166		case DIF_OP_RLDUW:
6167			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6168				break;
6169			/*FALLTHROUGH*/
6170		case DIF_OP_LDUW:
6171			regs[rd] = dtrace_load32(regs[r1]);
6172			break;
6173		case DIF_OP_RLDX:
6174			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6175				break;
6176			/*FALLTHROUGH*/
6177		case DIF_OP_LDX:
6178			regs[rd] = dtrace_load64(regs[r1]);
6179			break;
6180		case DIF_OP_ULDSB:
6181			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6182			regs[rd] = (int8_t)
6183			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6184			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6185			break;
6186		case DIF_OP_ULDSH:
6187			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6188			regs[rd] = (int16_t)
6189			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6190			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6191			break;
6192		case DIF_OP_ULDSW:
6193			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6194			regs[rd] = (int32_t)
6195			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6196			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6197			break;
6198		case DIF_OP_ULDUB:
6199			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6200			regs[rd] =
6201			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6202			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6203			break;
6204		case DIF_OP_ULDUH:
6205			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6206			regs[rd] =
6207			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6208			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6209			break;
6210		case DIF_OP_ULDUW:
6211			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6212			regs[rd] =
6213			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6214			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6215			break;
6216		case DIF_OP_ULDX:
6217			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6218			regs[rd] =
6219			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6220			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6221			break;
6222		case DIF_OP_RET:
6223			rval = regs[rd];
6224			pc = textlen;
6225			break;
6226		case DIF_OP_NOP:
6227			break;
6228		case DIF_OP_SETX:
6229			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6230			break;
6231		case DIF_OP_SETS:
6232			regs[rd] = (uint64_t)(uintptr_t)
6233			    (strtab + DIF_INSTR_STRING(instr));
6234			break;
6235		case DIF_OP_SCMP: {
6236			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6237			uintptr_t s1 = regs[r1];
6238			uintptr_t s2 = regs[r2];
6239
6240			if (s1 != 0 &&
6241			    !dtrace_strcanload(s1, sz, mstate, vstate))
6242				break;
6243			if (s2 != 0 &&
6244			    !dtrace_strcanload(s2, sz, mstate, vstate))
6245				break;
6246
6247			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6248
6249			cc_n = cc_r < 0;
6250			cc_z = cc_r == 0;
6251			cc_v = cc_c = 0;
6252			break;
6253		}
6254		case DIF_OP_LDGA:
6255			regs[rd] = dtrace_dif_variable(mstate, state,
6256			    r1, regs[r2]);
6257			break;
6258		case DIF_OP_LDGS:
6259			id = DIF_INSTR_VAR(instr);
6260
6261			if (id >= DIF_VAR_OTHER_UBASE) {
6262				uintptr_t a;
6263
6264				id -= DIF_VAR_OTHER_UBASE;
6265				svar = vstate->dtvs_globals[id];
6266				ASSERT(svar != NULL);
6267				v = &svar->dtsv_var;
6268
6269				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6270					regs[rd] = svar->dtsv_data;
6271					break;
6272				}
6273
6274				a = (uintptr_t)svar->dtsv_data;
6275
6276				if (*(uint8_t *)a == UINT8_MAX) {
6277					/*
6278					 * If the 0th byte is set to UINT8_MAX
6279					 * then this is to be treated as a
6280					 * reference to a NULL variable.
6281					 */
6282					regs[rd] = 0;
6283				} else {
6284					regs[rd] = a + sizeof (uint64_t);
6285				}
6286
6287				break;
6288			}
6289
6290			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6291			break;
6292
6293		case DIF_OP_STGS:
6294			id = DIF_INSTR_VAR(instr);
6295
6296			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6297			id -= DIF_VAR_OTHER_UBASE;
6298
6299			VERIFY(id < vstate->dtvs_nglobals);
6300			svar = vstate->dtvs_globals[id];
6301			ASSERT(svar != NULL);
6302			v = &svar->dtsv_var;
6303
6304			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6305				uintptr_t a = (uintptr_t)svar->dtsv_data;
6306
6307				ASSERT(a != 0);
6308				ASSERT(svar->dtsv_size != 0);
6309
6310				if (regs[rd] == 0) {
6311					*(uint8_t *)a = UINT8_MAX;
6312					break;
6313				} else {
6314					*(uint8_t *)a = 0;
6315					a += sizeof (uint64_t);
6316				}
6317				if (!dtrace_vcanload(
6318				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6319				    mstate, vstate))
6320					break;
6321
6322				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6323				    (void *)a, &v->dtdv_type);
6324				break;
6325			}
6326
6327			svar->dtsv_data = regs[rd];
6328			break;
6329
6330		case DIF_OP_LDTA:
6331			/*
6332			 * There are no DTrace built-in thread-local arrays at
6333			 * present.  This opcode is saved for future work.
6334			 */
6335			*flags |= CPU_DTRACE_ILLOP;
6336			regs[rd] = 0;
6337			break;
6338
6339		case DIF_OP_LDLS:
6340			id = DIF_INSTR_VAR(instr);
6341
6342			if (id < DIF_VAR_OTHER_UBASE) {
6343				/*
6344				 * For now, this has no meaning.
6345				 */
6346				regs[rd] = 0;
6347				break;
6348			}
6349
6350			id -= DIF_VAR_OTHER_UBASE;
6351
6352			ASSERT(id < vstate->dtvs_nlocals);
6353			ASSERT(vstate->dtvs_locals != NULL);
6354
6355			svar = vstate->dtvs_locals[id];
6356			ASSERT(svar != NULL);
6357			v = &svar->dtsv_var;
6358
6359			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6360				uintptr_t a = (uintptr_t)svar->dtsv_data;
6361				size_t sz = v->dtdv_type.dtdt_size;
6362
6363				sz += sizeof (uint64_t);
6364				ASSERT(svar->dtsv_size == NCPU * sz);
6365				a += curcpu * sz;
6366
6367				if (*(uint8_t *)a == UINT8_MAX) {
6368					/*
6369					 * If the 0th byte is set to UINT8_MAX
6370					 * then this is to be treated as a
6371					 * reference to a NULL variable.
6372					 */
6373					regs[rd] = 0;
6374				} else {
6375					regs[rd] = a + sizeof (uint64_t);
6376				}
6377
6378				break;
6379			}
6380
6381			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6382			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6383			regs[rd] = tmp[curcpu];
6384			break;
6385
6386		case DIF_OP_STLS:
6387			id = DIF_INSTR_VAR(instr);
6388
6389			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6390			id -= DIF_VAR_OTHER_UBASE;
6391			VERIFY(id < vstate->dtvs_nlocals);
6392
6393			ASSERT(vstate->dtvs_locals != NULL);
6394			svar = vstate->dtvs_locals[id];
6395			ASSERT(svar != NULL);
6396			v = &svar->dtsv_var;
6397
6398			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6399				uintptr_t a = (uintptr_t)svar->dtsv_data;
6400				size_t sz = v->dtdv_type.dtdt_size;
6401
6402				sz += sizeof (uint64_t);
6403				ASSERT(svar->dtsv_size == NCPU * sz);
6404				a += curcpu * sz;
6405
6406				if (regs[rd] == 0) {
6407					*(uint8_t *)a = UINT8_MAX;
6408					break;
6409				} else {
6410					*(uint8_t *)a = 0;
6411					a += sizeof (uint64_t);
6412				}
6413
6414				if (!dtrace_vcanload(
6415				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6416				    mstate, vstate))
6417					break;
6418
6419				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6420				    (void *)a, &v->dtdv_type);
6421				break;
6422			}
6423
6424			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6425			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6426			tmp[curcpu] = regs[rd];
6427			break;
6428
6429		case DIF_OP_LDTS: {
6430			dtrace_dynvar_t *dvar;
6431			dtrace_key_t *key;
6432
6433			id = DIF_INSTR_VAR(instr);
6434			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6435			id -= DIF_VAR_OTHER_UBASE;
6436			v = &vstate->dtvs_tlocals[id];
6437
6438			key = &tupregs[DIF_DTR_NREGS];
6439			key[0].dttk_value = (uint64_t)id;
6440			key[0].dttk_size = 0;
6441			DTRACE_TLS_THRKEY(key[1].dttk_value);
6442			key[1].dttk_size = 0;
6443
6444			dvar = dtrace_dynvar(dstate, 2, key,
6445			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6446			    mstate, vstate);
6447
6448			if (dvar == NULL) {
6449				regs[rd] = 0;
6450				break;
6451			}
6452
6453			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6454				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6455			} else {
6456				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6457			}
6458
6459			break;
6460		}
6461
6462		case DIF_OP_STTS: {
6463			dtrace_dynvar_t *dvar;
6464			dtrace_key_t *key;
6465
6466			id = DIF_INSTR_VAR(instr);
6467			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6468			id -= DIF_VAR_OTHER_UBASE;
6469			VERIFY(id < vstate->dtvs_ntlocals);
6470
6471			key = &tupregs[DIF_DTR_NREGS];
6472			key[0].dttk_value = (uint64_t)id;
6473			key[0].dttk_size = 0;
6474			DTRACE_TLS_THRKEY(key[1].dttk_value);
6475			key[1].dttk_size = 0;
6476			v = &vstate->dtvs_tlocals[id];
6477
6478			dvar = dtrace_dynvar(dstate, 2, key,
6479			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6480			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6481			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6482			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6483
6484			/*
6485			 * Given that we're storing to thread-local data,
6486			 * we need to flush our predicate cache.
6487			 */
6488			curthread->t_predcache = 0;
6489
6490			if (dvar == NULL)
6491				break;
6492
6493			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6494				if (!dtrace_vcanload(
6495				    (void *)(uintptr_t)regs[rd],
6496				    &v->dtdv_type, mstate, vstate))
6497					break;
6498
6499				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6500				    dvar->dtdv_data, &v->dtdv_type);
6501			} else {
6502				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6503			}
6504
6505			break;
6506		}
6507
6508		case DIF_OP_SRA:
6509			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6510			break;
6511
6512		case DIF_OP_CALL:
6513			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6514			    regs, tupregs, ttop, mstate, state);
6515			break;
6516
6517		case DIF_OP_PUSHTR:
6518			if (ttop == DIF_DTR_NREGS) {
6519				*flags |= CPU_DTRACE_TUPOFLOW;
6520				break;
6521			}
6522
6523			if (r1 == DIF_TYPE_STRING) {
6524				/*
6525				 * If this is a string type and the size is 0,
6526				 * we'll use the system-wide default string
6527				 * size.  Note that we are _not_ looking at
6528				 * the value of the DTRACEOPT_STRSIZE option;
6529				 * had this been set, we would expect to have
6530				 * a non-zero size value in the "pushtr".
6531				 */
6532				tupregs[ttop].dttk_size =
6533				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6534				    regs[r2] ? regs[r2] :
6535				    dtrace_strsize_default) + 1;
6536			} else {
6537				if (regs[r2] > LONG_MAX) {
6538					*flags |= CPU_DTRACE_ILLOP;
6539					break;
6540				}
6541
6542				tupregs[ttop].dttk_size = regs[r2];
6543			}
6544
6545			tupregs[ttop++].dttk_value = regs[rd];
6546			break;
6547
6548		case DIF_OP_PUSHTV:
6549			if (ttop == DIF_DTR_NREGS) {
6550				*flags |= CPU_DTRACE_TUPOFLOW;
6551				break;
6552			}
6553
6554			tupregs[ttop].dttk_value = regs[rd];
6555			tupregs[ttop++].dttk_size = 0;
6556			break;
6557
6558		case DIF_OP_POPTS:
6559			if (ttop != 0)
6560				ttop--;
6561			break;
6562
6563		case DIF_OP_FLUSHTS:
6564			ttop = 0;
6565			break;
6566
6567		case DIF_OP_LDGAA:
6568		case DIF_OP_LDTAA: {
6569			dtrace_dynvar_t *dvar;
6570			dtrace_key_t *key = tupregs;
6571			uint_t nkeys = ttop;
6572
6573			id = DIF_INSTR_VAR(instr);
6574			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6575			id -= DIF_VAR_OTHER_UBASE;
6576
6577			key[nkeys].dttk_value = (uint64_t)id;
6578			key[nkeys++].dttk_size = 0;
6579
6580			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6581				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6582				key[nkeys++].dttk_size = 0;
6583				VERIFY(id < vstate->dtvs_ntlocals);
6584				v = &vstate->dtvs_tlocals[id];
6585			} else {
6586				VERIFY(id < vstate->dtvs_nglobals);
6587				v = &vstate->dtvs_globals[id]->dtsv_var;
6588			}
6589
6590			dvar = dtrace_dynvar(dstate, nkeys, key,
6591			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6592			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6593			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6594
6595			if (dvar == NULL) {
6596				regs[rd] = 0;
6597				break;
6598			}
6599
6600			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6601				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6602			} else {
6603				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6604			}
6605
6606			break;
6607		}
6608
6609		case DIF_OP_STGAA:
6610		case DIF_OP_STTAA: {
6611			dtrace_dynvar_t *dvar;
6612			dtrace_key_t *key = tupregs;
6613			uint_t nkeys = ttop;
6614
6615			id = DIF_INSTR_VAR(instr);
6616			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6617			id -= DIF_VAR_OTHER_UBASE;
6618
6619			key[nkeys].dttk_value = (uint64_t)id;
6620			key[nkeys++].dttk_size = 0;
6621
6622			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6623				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6624				key[nkeys++].dttk_size = 0;
6625				VERIFY(id < vstate->dtvs_ntlocals);
6626				v = &vstate->dtvs_tlocals[id];
6627			} else {
6628				VERIFY(id < vstate->dtvs_nglobals);
6629				v = &vstate->dtvs_globals[id]->dtsv_var;
6630			}
6631
6632			dvar = dtrace_dynvar(dstate, nkeys, key,
6633			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6634			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6635			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6636			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6637
6638			if (dvar == NULL)
6639				break;
6640
6641			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6642				if (!dtrace_vcanload(
6643				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6644				    mstate, vstate))
6645					break;
6646
6647				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6648				    dvar->dtdv_data, &v->dtdv_type);
6649			} else {
6650				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6651			}
6652
6653			break;
6654		}
6655
6656		case DIF_OP_ALLOCS: {
6657			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6658			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6659
6660			/*
6661			 * Rounding up the user allocation size could have
6662			 * overflowed large, bogus allocations (like -1ULL) to
6663			 * 0.
6664			 */
6665			if (size < regs[r1] ||
6666			    !DTRACE_INSCRATCH(mstate, size)) {
6667				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6668				regs[rd] = 0;
6669				break;
6670			}
6671
6672			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6673			mstate->dtms_scratch_ptr += size;
6674			regs[rd] = ptr;
6675			break;
6676		}
6677
6678		case DIF_OP_COPYS:
6679			if (!dtrace_canstore(regs[rd], regs[r2],
6680			    mstate, vstate)) {
6681				*flags |= CPU_DTRACE_BADADDR;
6682				*illval = regs[rd];
6683				break;
6684			}
6685
6686			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6687				break;
6688
6689			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6690			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6691			break;
6692
6693		case DIF_OP_STB:
6694			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6695				*flags |= CPU_DTRACE_BADADDR;
6696				*illval = regs[rd];
6697				break;
6698			}
6699			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6700			break;
6701
6702		case DIF_OP_STH:
6703			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6704				*flags |= CPU_DTRACE_BADADDR;
6705				*illval = regs[rd];
6706				break;
6707			}
6708			if (regs[rd] & 1) {
6709				*flags |= CPU_DTRACE_BADALIGN;
6710				*illval = regs[rd];
6711				break;
6712			}
6713			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6714			break;
6715
6716		case DIF_OP_STW:
6717			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6718				*flags |= CPU_DTRACE_BADADDR;
6719				*illval = regs[rd];
6720				break;
6721			}
6722			if (regs[rd] & 3) {
6723				*flags |= CPU_DTRACE_BADALIGN;
6724				*illval = regs[rd];
6725				break;
6726			}
6727			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6728			break;
6729
6730		case DIF_OP_STX:
6731			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6732				*flags |= CPU_DTRACE_BADADDR;
6733				*illval = regs[rd];
6734				break;
6735			}
6736			if (regs[rd] & 7) {
6737				*flags |= CPU_DTRACE_BADALIGN;
6738				*illval = regs[rd];
6739				break;
6740			}
6741			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6742			break;
6743		}
6744	}
6745
6746	if (!(*flags & CPU_DTRACE_FAULT))
6747		return (rval);
6748
6749	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6750	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6751
6752	return (0);
6753}
6754
6755static void
6756dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6757{
6758	dtrace_probe_t *probe = ecb->dte_probe;
6759	dtrace_provider_t *prov = probe->dtpr_provider;
6760	char c[DTRACE_FULLNAMELEN + 80], *str;
6761	char *msg = "dtrace: breakpoint action at probe ";
6762	char *ecbmsg = " (ecb ";
6763	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6764	uintptr_t val = (uintptr_t)ecb;
6765	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6766
6767	if (dtrace_destructive_disallow)
6768		return;
6769
6770	/*
6771	 * It's impossible to be taking action on the NULL probe.
6772	 */
6773	ASSERT(probe != NULL);
6774
6775	/*
6776	 * This is a poor man's (destitute man's?) sprintf():  we want to
6777	 * print the provider name, module name, function name and name of
6778	 * the probe, along with the hex address of the ECB with the breakpoint
6779	 * action -- all of which we must place in the character buffer by
6780	 * hand.
6781	 */
6782	while (*msg != '\0')
6783		c[i++] = *msg++;
6784
6785	for (str = prov->dtpv_name; *str != '\0'; str++)
6786		c[i++] = *str;
6787	c[i++] = ':';
6788
6789	for (str = probe->dtpr_mod; *str != '\0'; str++)
6790		c[i++] = *str;
6791	c[i++] = ':';
6792
6793	for (str = probe->dtpr_func; *str != '\0'; str++)
6794		c[i++] = *str;
6795	c[i++] = ':';
6796
6797	for (str = probe->dtpr_name; *str != '\0'; str++)
6798		c[i++] = *str;
6799
6800	while (*ecbmsg != '\0')
6801		c[i++] = *ecbmsg++;
6802
6803	while (shift >= 0) {
6804		mask = (uintptr_t)0xf << shift;
6805
6806		if (val >= ((uintptr_t)1 << shift))
6807			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6808		shift -= 4;
6809	}
6810
6811	c[i++] = ')';
6812	c[i] = '\0';
6813
6814#ifdef illumos
6815	debug_enter(c);
6816#else
6817	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6818#endif
6819}
6820
6821static void
6822dtrace_action_panic(dtrace_ecb_t *ecb)
6823{
6824	dtrace_probe_t *probe = ecb->dte_probe;
6825
6826	/*
6827	 * It's impossible to be taking action on the NULL probe.
6828	 */
6829	ASSERT(probe != NULL);
6830
6831	if (dtrace_destructive_disallow)
6832		return;
6833
6834	if (dtrace_panicked != NULL)
6835		return;
6836
6837	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6838		return;
6839
6840	/*
6841	 * We won the right to panic.  (We want to be sure that only one
6842	 * thread calls panic() from dtrace_probe(), and that panic() is
6843	 * called exactly once.)
6844	 */
6845	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6846	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6847	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6848}
6849
6850static void
6851dtrace_action_raise(uint64_t sig)
6852{
6853	if (dtrace_destructive_disallow)
6854		return;
6855
6856	if (sig >= NSIG) {
6857		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6858		return;
6859	}
6860
6861#ifdef illumos
6862	/*
6863	 * raise() has a queue depth of 1 -- we ignore all subsequent
6864	 * invocations of the raise() action.
6865	 */
6866	if (curthread->t_dtrace_sig == 0)
6867		curthread->t_dtrace_sig = (uint8_t)sig;
6868
6869	curthread->t_sig_check = 1;
6870	aston(curthread);
6871#else
6872	struct proc *p = curproc;
6873	PROC_LOCK(p);
6874	kern_psignal(p, sig);
6875	PROC_UNLOCK(p);
6876#endif
6877}
6878
6879static void
6880dtrace_action_stop(void)
6881{
6882	if (dtrace_destructive_disallow)
6883		return;
6884
6885#ifdef illumos
6886	if (!curthread->t_dtrace_stop) {
6887		curthread->t_dtrace_stop = 1;
6888		curthread->t_sig_check = 1;
6889		aston(curthread);
6890	}
6891#else
6892	struct proc *p = curproc;
6893	PROC_LOCK(p);
6894	kern_psignal(p, SIGSTOP);
6895	PROC_UNLOCK(p);
6896#endif
6897}
6898
6899static void
6900dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6901{
6902	hrtime_t now;
6903	volatile uint16_t *flags;
6904#ifdef illumos
6905	cpu_t *cpu = CPU;
6906#else
6907	cpu_t *cpu = &solaris_cpu[curcpu];
6908#endif
6909
6910	if (dtrace_destructive_disallow)
6911		return;
6912
6913	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6914
6915	now = dtrace_gethrtime();
6916
6917	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6918		/*
6919		 * We need to advance the mark to the current time.
6920		 */
6921		cpu->cpu_dtrace_chillmark = now;
6922		cpu->cpu_dtrace_chilled = 0;
6923	}
6924
6925	/*
6926	 * Now check to see if the requested chill time would take us over
6927	 * the maximum amount of time allowed in the chill interval.  (Or
6928	 * worse, if the calculation itself induces overflow.)
6929	 */
6930	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6931	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6932		*flags |= CPU_DTRACE_ILLOP;
6933		return;
6934	}
6935
6936	while (dtrace_gethrtime() - now < val)
6937		continue;
6938
6939	/*
6940	 * Normally, we assure that the value of the variable "timestamp" does
6941	 * not change within an ECB.  The presence of chill() represents an
6942	 * exception to this rule, however.
6943	 */
6944	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6945	cpu->cpu_dtrace_chilled += val;
6946}
6947
6948static void
6949dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6950    uint64_t *buf, uint64_t arg)
6951{
6952	int nframes = DTRACE_USTACK_NFRAMES(arg);
6953	int strsize = DTRACE_USTACK_STRSIZE(arg);
6954	uint64_t *pcs = &buf[1], *fps;
6955	char *str = (char *)&pcs[nframes];
6956	int size, offs = 0, i, j;
6957	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6958	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6959	char *sym;
6960
6961	/*
6962	 * Should be taking a faster path if string space has not been
6963	 * allocated.
6964	 */
6965	ASSERT(strsize != 0);
6966
6967	/*
6968	 * We will first allocate some temporary space for the frame pointers.
6969	 */
6970	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6971	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6972	    (nframes * sizeof (uint64_t));
6973
6974	if (!DTRACE_INSCRATCH(mstate, size)) {
6975		/*
6976		 * Not enough room for our frame pointers -- need to indicate
6977		 * that we ran out of scratch space.
6978		 */
6979		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6980		return;
6981	}
6982
6983	mstate->dtms_scratch_ptr += size;
6984	saved = mstate->dtms_scratch_ptr;
6985
6986	/*
6987	 * Now get a stack with both program counters and frame pointers.
6988	 */
6989	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6990	dtrace_getufpstack(buf, fps, nframes + 1);
6991	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6992
6993	/*
6994	 * If that faulted, we're cooked.
6995	 */
6996	if (*flags & CPU_DTRACE_FAULT)
6997		goto out;
6998
6999	/*
7000	 * Now we want to walk up the stack, calling the USTACK helper.  For
7001	 * each iteration, we restore the scratch pointer.
7002	 */
7003	for (i = 0; i < nframes; i++) {
7004		mstate->dtms_scratch_ptr = saved;
7005
7006		if (offs >= strsize)
7007			break;
7008
7009		sym = (char *)(uintptr_t)dtrace_helper(
7010		    DTRACE_HELPER_ACTION_USTACK,
7011		    mstate, state, pcs[i], fps[i]);
7012
7013		/*
7014		 * If we faulted while running the helper, we're going to
7015		 * clear the fault and null out the corresponding string.
7016		 */
7017		if (*flags & CPU_DTRACE_FAULT) {
7018			*flags &= ~CPU_DTRACE_FAULT;
7019			str[offs++] = '\0';
7020			continue;
7021		}
7022
7023		if (sym == NULL) {
7024			str[offs++] = '\0';
7025			continue;
7026		}
7027
7028		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7029
7030		/*
7031		 * Now copy in the string that the helper returned to us.
7032		 */
7033		for (j = 0; offs + j < strsize; j++) {
7034			if ((str[offs + j] = sym[j]) == '\0')
7035				break;
7036		}
7037
7038		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7039
7040		offs += j + 1;
7041	}
7042
7043	if (offs >= strsize) {
7044		/*
7045		 * If we didn't have room for all of the strings, we don't
7046		 * abort processing -- this needn't be a fatal error -- but we
7047		 * still want to increment a counter (dts_stkstroverflows) to
7048		 * allow this condition to be warned about.  (If this is from
7049		 * a jstack() action, it is easily tuned via jstackstrsize.)
7050		 */
7051		dtrace_error(&state->dts_stkstroverflows);
7052	}
7053
7054	while (offs < strsize)
7055		str[offs++] = '\0';
7056
7057out:
7058	mstate->dtms_scratch_ptr = old;
7059}
7060
7061static void
7062dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7063    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7064{
7065	volatile uint16_t *flags;
7066	uint64_t val = *valp;
7067	size_t valoffs = *valoffsp;
7068
7069	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7070	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7071
7072	/*
7073	 * If this is a string, we're going to only load until we find the zero
7074	 * byte -- after which we'll store zero bytes.
7075	 */
7076	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7077		char c = '\0' + 1;
7078		size_t s;
7079
7080		for (s = 0; s < size; s++) {
7081			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7082				c = dtrace_load8(val++);
7083			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7084				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7085				c = dtrace_fuword8((void *)(uintptr_t)val++);
7086				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7087				if (*flags & CPU_DTRACE_FAULT)
7088					break;
7089			}
7090
7091			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7092
7093			if (c == '\0' && intuple)
7094				break;
7095		}
7096	} else {
7097		uint8_t c;
7098		while (valoffs < end) {
7099			if (dtkind == DIF_TF_BYREF) {
7100				c = dtrace_load8(val++);
7101			} else if (dtkind == DIF_TF_BYUREF) {
7102				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7103				c = dtrace_fuword8((void *)(uintptr_t)val++);
7104				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7105				if (*flags & CPU_DTRACE_FAULT)
7106					break;
7107			}
7108
7109			DTRACE_STORE(uint8_t, tomax,
7110			    valoffs++, c);
7111		}
7112	}
7113
7114	*valp = val;
7115	*valoffsp = valoffs;
7116}
7117
7118/*
7119 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7120 * defined, we also assert that we are not recursing unless the probe ID is an
7121 * error probe.
7122 */
7123static dtrace_icookie_t
7124dtrace_probe_enter(dtrace_id_t id)
7125{
7126	dtrace_icookie_t cookie;
7127
7128	cookie = dtrace_interrupt_disable();
7129
7130	/*
7131	 * Unless this is an ERROR probe, we are not allowed to recurse in
7132	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7133	 * function is instrumented that should not have been instrumented or
7134	 * that the ordering guarantee of the records will be violated,
7135	 * resulting in unexpected output. If there is an exception to this
7136	 * assertion, a new case should be added.
7137	 */
7138	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7139	    id == dtrace_probeid_error);
7140	curthread->t_dtrace_inprobe = 1;
7141
7142	return (cookie);
7143}
7144
7145/*
7146 * Disables interrupts and clears the per-thread inprobe flag.
7147 */
7148static void
7149dtrace_probe_exit(dtrace_icookie_t cookie)
7150{
7151
7152	curthread->t_dtrace_inprobe = 0;
7153	dtrace_interrupt_enable(cookie);
7154}
7155
7156/*
7157 * If you're looking for the epicenter of DTrace, you just found it.  This
7158 * is the function called by the provider to fire a probe -- from which all
7159 * subsequent probe-context DTrace activity emanates.
7160 */
7161void
7162dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7163    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7164{
7165	processorid_t cpuid;
7166	dtrace_icookie_t cookie;
7167	dtrace_probe_t *probe;
7168	dtrace_mstate_t mstate;
7169	dtrace_ecb_t *ecb;
7170	dtrace_action_t *act;
7171	intptr_t offs;
7172	size_t size;
7173	int vtime, onintr;
7174	volatile uint16_t *flags;
7175	hrtime_t now;
7176
7177	if (panicstr != NULL)
7178		return;
7179
7180#ifdef illumos
7181	/*
7182	 * Kick out immediately if this CPU is still being born (in which case
7183	 * curthread will be set to -1) or the current thread can't allow
7184	 * probes in its current context.
7185	 */
7186	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7187		return;
7188#endif
7189
7190	cookie = dtrace_probe_enter(id);
7191	probe = dtrace_probes[id - 1];
7192	cpuid = curcpu;
7193	onintr = CPU_ON_INTR(CPU);
7194
7195	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7196	    probe->dtpr_predcache == curthread->t_predcache) {
7197		/*
7198		 * We have hit in the predicate cache; we know that
7199		 * this predicate would evaluate to be false.
7200		 */
7201		dtrace_probe_exit(cookie);
7202		return;
7203	}
7204
7205#ifdef illumos
7206	if (panic_quiesce) {
7207#else
7208	if (panicstr != NULL) {
7209#endif
7210		/*
7211		 * We don't trace anything if we're panicking.
7212		 */
7213		dtrace_probe_exit(cookie);
7214		return;
7215	}
7216
7217	now = mstate.dtms_timestamp = dtrace_gethrtime();
7218	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7219	vtime = dtrace_vtime_references != 0;
7220
7221	if (vtime && curthread->t_dtrace_start)
7222		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7223
7224	mstate.dtms_difo = NULL;
7225	mstate.dtms_probe = probe;
7226	mstate.dtms_strtok = 0;
7227	mstate.dtms_arg[0] = arg0;
7228	mstate.dtms_arg[1] = arg1;
7229	mstate.dtms_arg[2] = arg2;
7230	mstate.dtms_arg[3] = arg3;
7231	mstate.dtms_arg[4] = arg4;
7232
7233	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7234
7235	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7236		dtrace_predicate_t *pred = ecb->dte_predicate;
7237		dtrace_state_t *state = ecb->dte_state;
7238		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7239		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7240		dtrace_vstate_t *vstate = &state->dts_vstate;
7241		dtrace_provider_t *prov = probe->dtpr_provider;
7242		uint64_t tracememsize = 0;
7243		int committed = 0;
7244		caddr_t tomax;
7245
7246		/*
7247		 * A little subtlety with the following (seemingly innocuous)
7248		 * declaration of the automatic 'val':  by looking at the
7249		 * code, you might think that it could be declared in the
7250		 * action processing loop, below.  (That is, it's only used in
7251		 * the action processing loop.)  However, it must be declared
7252		 * out of that scope because in the case of DIF expression
7253		 * arguments to aggregating actions, one iteration of the
7254		 * action loop will use the last iteration's value.
7255		 */
7256		uint64_t val = 0;
7257
7258		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7259		mstate.dtms_getf = NULL;
7260
7261		*flags &= ~CPU_DTRACE_ERROR;
7262
7263		if (prov == dtrace_provider) {
7264			/*
7265			 * If dtrace itself is the provider of this probe,
7266			 * we're only going to continue processing the ECB if
7267			 * arg0 (the dtrace_state_t) is equal to the ECB's
7268			 * creating state.  (This prevents disjoint consumers
7269			 * from seeing one another's metaprobes.)
7270			 */
7271			if (arg0 != (uint64_t)(uintptr_t)state)
7272				continue;
7273		}
7274
7275		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7276			/*
7277			 * We're not currently active.  If our provider isn't
7278			 * the dtrace pseudo provider, we're not interested.
7279			 */
7280			if (prov != dtrace_provider)
7281				continue;
7282
7283			/*
7284			 * Now we must further check if we are in the BEGIN
7285			 * probe.  If we are, we will only continue processing
7286			 * if we're still in WARMUP -- if one BEGIN enabling
7287			 * has invoked the exit() action, we don't want to
7288			 * evaluate subsequent BEGIN enablings.
7289			 */
7290			if (probe->dtpr_id == dtrace_probeid_begin &&
7291			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7292				ASSERT(state->dts_activity ==
7293				    DTRACE_ACTIVITY_DRAINING);
7294				continue;
7295			}
7296		}
7297
7298		if (ecb->dte_cond) {
7299			/*
7300			 * If the dte_cond bits indicate that this
7301			 * consumer is only allowed to see user-mode firings
7302			 * of this probe, call the provider's dtps_usermode()
7303			 * entry point to check that the probe was fired
7304			 * while in a user context. Skip this ECB if that's
7305			 * not the case.
7306			 */
7307			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7308			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7309			    probe->dtpr_id, probe->dtpr_arg) == 0)
7310				continue;
7311
7312#ifdef illumos
7313			/*
7314			 * This is more subtle than it looks. We have to be
7315			 * absolutely certain that CRED() isn't going to
7316			 * change out from under us so it's only legit to
7317			 * examine that structure if we're in constrained
7318			 * situations. Currently, the only times we'll this
7319			 * check is if a non-super-user has enabled the
7320			 * profile or syscall providers -- providers that
7321			 * allow visibility of all processes. For the
7322			 * profile case, the check above will ensure that
7323			 * we're examining a user context.
7324			 */
7325			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7326				cred_t *cr;
7327				cred_t *s_cr =
7328				    ecb->dte_state->dts_cred.dcr_cred;
7329				proc_t *proc;
7330
7331				ASSERT(s_cr != NULL);
7332
7333				if ((cr = CRED()) == NULL ||
7334				    s_cr->cr_uid != cr->cr_uid ||
7335				    s_cr->cr_uid != cr->cr_ruid ||
7336				    s_cr->cr_uid != cr->cr_suid ||
7337				    s_cr->cr_gid != cr->cr_gid ||
7338				    s_cr->cr_gid != cr->cr_rgid ||
7339				    s_cr->cr_gid != cr->cr_sgid ||
7340				    (proc = ttoproc(curthread)) == NULL ||
7341				    (proc->p_flag & SNOCD))
7342					continue;
7343			}
7344
7345			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7346				cred_t *cr;
7347				cred_t *s_cr =
7348				    ecb->dte_state->dts_cred.dcr_cred;
7349
7350				ASSERT(s_cr != NULL);
7351
7352				if ((cr = CRED()) == NULL ||
7353				    s_cr->cr_zone->zone_id !=
7354				    cr->cr_zone->zone_id)
7355					continue;
7356			}
7357#endif
7358		}
7359
7360		if (now - state->dts_alive > dtrace_deadman_timeout) {
7361			/*
7362			 * We seem to be dead.  Unless we (a) have kernel
7363			 * destructive permissions (b) have explicitly enabled
7364			 * destructive actions and (c) destructive actions have
7365			 * not been disabled, we're going to transition into
7366			 * the KILLED state, from which no further processing
7367			 * on this state will be performed.
7368			 */
7369			if (!dtrace_priv_kernel_destructive(state) ||
7370			    !state->dts_cred.dcr_destructive ||
7371			    dtrace_destructive_disallow) {
7372				void *activity = &state->dts_activity;
7373				dtrace_activity_t current;
7374
7375				do {
7376					current = state->dts_activity;
7377				} while (dtrace_cas32(activity, current,
7378				    DTRACE_ACTIVITY_KILLED) != current);
7379
7380				continue;
7381			}
7382		}
7383
7384		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7385		    ecb->dte_alignment, state, &mstate)) < 0)
7386			continue;
7387
7388		tomax = buf->dtb_tomax;
7389		ASSERT(tomax != NULL);
7390
7391		if (ecb->dte_size != 0) {
7392			dtrace_rechdr_t dtrh;
7393			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7394				mstate.dtms_timestamp = dtrace_gethrtime();
7395				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7396			}
7397			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7398			dtrh.dtrh_epid = ecb->dte_epid;
7399			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7400			    mstate.dtms_timestamp);
7401			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7402		}
7403
7404		mstate.dtms_epid = ecb->dte_epid;
7405		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7406
7407		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7408			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7409		else
7410			mstate.dtms_access = 0;
7411
7412		if (pred != NULL) {
7413			dtrace_difo_t *dp = pred->dtp_difo;
7414			uint64_t rval;
7415
7416			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7417
7418			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7419				dtrace_cacheid_t cid = probe->dtpr_predcache;
7420
7421				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7422					/*
7423					 * Update the predicate cache...
7424					 */
7425					ASSERT(cid == pred->dtp_cacheid);
7426					curthread->t_predcache = cid;
7427				}
7428
7429				continue;
7430			}
7431		}
7432
7433		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7434		    act != NULL; act = act->dta_next) {
7435			size_t valoffs;
7436			dtrace_difo_t *dp;
7437			dtrace_recdesc_t *rec = &act->dta_rec;
7438
7439			size = rec->dtrd_size;
7440			valoffs = offs + rec->dtrd_offset;
7441
7442			if (DTRACEACT_ISAGG(act->dta_kind)) {
7443				uint64_t v = 0xbad;
7444				dtrace_aggregation_t *agg;
7445
7446				agg = (dtrace_aggregation_t *)act;
7447
7448				if ((dp = act->dta_difo) != NULL)
7449					v = dtrace_dif_emulate(dp,
7450					    &mstate, vstate, state);
7451
7452				if (*flags & CPU_DTRACE_ERROR)
7453					continue;
7454
7455				/*
7456				 * Note that we always pass the expression
7457				 * value from the previous iteration of the
7458				 * action loop.  This value will only be used
7459				 * if there is an expression argument to the
7460				 * aggregating action, denoted by the
7461				 * dtag_hasarg field.
7462				 */
7463				dtrace_aggregate(agg, buf,
7464				    offs, aggbuf, v, val);
7465				continue;
7466			}
7467
7468			switch (act->dta_kind) {
7469			case DTRACEACT_STOP:
7470				if (dtrace_priv_proc_destructive(state))
7471					dtrace_action_stop();
7472				continue;
7473
7474			case DTRACEACT_BREAKPOINT:
7475				if (dtrace_priv_kernel_destructive(state))
7476					dtrace_action_breakpoint(ecb);
7477				continue;
7478
7479			case DTRACEACT_PANIC:
7480				if (dtrace_priv_kernel_destructive(state))
7481					dtrace_action_panic(ecb);
7482				continue;
7483
7484			case DTRACEACT_STACK:
7485				if (!dtrace_priv_kernel(state))
7486					continue;
7487
7488				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7489				    size / sizeof (pc_t), probe->dtpr_aframes,
7490				    DTRACE_ANCHORED(probe) ? NULL :
7491				    (uint32_t *)arg0);
7492				continue;
7493
7494			case DTRACEACT_JSTACK:
7495			case DTRACEACT_USTACK:
7496				if (!dtrace_priv_proc(state))
7497					continue;
7498
7499				/*
7500				 * See comment in DIF_VAR_PID.
7501				 */
7502				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7503				    CPU_ON_INTR(CPU)) {
7504					int depth = DTRACE_USTACK_NFRAMES(
7505					    rec->dtrd_arg) + 1;
7506
7507					dtrace_bzero((void *)(tomax + valoffs),
7508					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7509					    + depth * sizeof (uint64_t));
7510
7511					continue;
7512				}
7513
7514				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7515				    curproc->p_dtrace_helpers != NULL) {
7516					/*
7517					 * This is the slow path -- we have
7518					 * allocated string space, and we're
7519					 * getting the stack of a process that
7520					 * has helpers.  Call into a separate
7521					 * routine to perform this processing.
7522					 */
7523					dtrace_action_ustack(&mstate, state,
7524					    (uint64_t *)(tomax + valoffs),
7525					    rec->dtrd_arg);
7526					continue;
7527				}
7528
7529				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7530				dtrace_getupcstack((uint64_t *)
7531				    (tomax + valoffs),
7532				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7533				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7534				continue;
7535
7536			default:
7537				break;
7538			}
7539
7540			dp = act->dta_difo;
7541			ASSERT(dp != NULL);
7542
7543			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7544
7545			if (*flags & CPU_DTRACE_ERROR)
7546				continue;
7547
7548			switch (act->dta_kind) {
7549			case DTRACEACT_SPECULATE: {
7550				dtrace_rechdr_t *dtrh;
7551
7552				ASSERT(buf == &state->dts_buffer[cpuid]);
7553				buf = dtrace_speculation_buffer(state,
7554				    cpuid, val);
7555
7556				if (buf == NULL) {
7557					*flags |= CPU_DTRACE_DROP;
7558					continue;
7559				}
7560
7561				offs = dtrace_buffer_reserve(buf,
7562				    ecb->dte_needed, ecb->dte_alignment,
7563				    state, NULL);
7564
7565				if (offs < 0) {
7566					*flags |= CPU_DTRACE_DROP;
7567					continue;
7568				}
7569
7570				tomax = buf->dtb_tomax;
7571				ASSERT(tomax != NULL);
7572
7573				if (ecb->dte_size == 0)
7574					continue;
7575
7576				ASSERT3U(ecb->dte_size, >=,
7577				    sizeof (dtrace_rechdr_t));
7578				dtrh = ((void *)(tomax + offs));
7579				dtrh->dtrh_epid = ecb->dte_epid;
7580				/*
7581				 * When the speculation is committed, all of
7582				 * the records in the speculative buffer will
7583				 * have their timestamps set to the commit
7584				 * time.  Until then, it is set to a sentinel
7585				 * value, for debugability.
7586				 */
7587				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7588				continue;
7589			}
7590
7591			case DTRACEACT_PRINTM: {
7592				/* The DIF returns a 'memref'. */
7593				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7594
7595				/* Get the size from the memref. */
7596				size = memref[1];
7597
7598				/*
7599				 * Check if the size exceeds the allocated
7600				 * buffer size.
7601				 */
7602				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7603					/* Flag a drop! */
7604					*flags |= CPU_DTRACE_DROP;
7605					continue;
7606				}
7607
7608				/* Store the size in the buffer first. */
7609				DTRACE_STORE(uintptr_t, tomax,
7610				    valoffs, size);
7611
7612				/*
7613				 * Offset the buffer address to the start
7614				 * of the data.
7615				 */
7616				valoffs += sizeof(uintptr_t);
7617
7618				/*
7619				 * Reset to the memory address rather than
7620				 * the memref array, then let the BYREF
7621				 * code below do the work to store the
7622				 * memory data in the buffer.
7623				 */
7624				val = memref[0];
7625				break;
7626			}
7627
7628			case DTRACEACT_PRINTT: {
7629				/* The DIF returns a 'typeref'. */
7630				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7631				char c = '\0' + 1;
7632				size_t s;
7633
7634				/*
7635				 * Get the type string length and round it
7636				 * up so that the data that follows is
7637				 * aligned for easy access.
7638				 */
7639				size_t typs = strlen((char *) typeref[2]) + 1;
7640				typs = roundup(typs,  sizeof(uintptr_t));
7641
7642				/*
7643				 *Get the size from the typeref using the
7644				 * number of elements and the type size.
7645				 */
7646				size = typeref[1] * typeref[3];
7647
7648				/*
7649				 * Check if the size exceeds the allocated
7650				 * buffer size.
7651				 */
7652				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7653					/* Flag a drop! */
7654					*flags |= CPU_DTRACE_DROP;
7655
7656				}
7657
7658				/* Store the size in the buffer first. */
7659				DTRACE_STORE(uintptr_t, tomax,
7660				    valoffs, size);
7661				valoffs += sizeof(uintptr_t);
7662
7663				/* Store the type size in the buffer. */
7664				DTRACE_STORE(uintptr_t, tomax,
7665				    valoffs, typeref[3]);
7666				valoffs += sizeof(uintptr_t);
7667
7668				val = typeref[2];
7669
7670				for (s = 0; s < typs; s++) {
7671					if (c != '\0')
7672						c = dtrace_load8(val++);
7673
7674					DTRACE_STORE(uint8_t, tomax,
7675					    valoffs++, c);
7676				}
7677
7678				/*
7679				 * Reset to the memory address rather than
7680				 * the typeref array, then let the BYREF
7681				 * code below do the work to store the
7682				 * memory data in the buffer.
7683				 */
7684				val = typeref[0];
7685				break;
7686			}
7687
7688			case DTRACEACT_CHILL:
7689				if (dtrace_priv_kernel_destructive(state))
7690					dtrace_action_chill(&mstate, val);
7691				continue;
7692
7693			case DTRACEACT_RAISE:
7694				if (dtrace_priv_proc_destructive(state))
7695					dtrace_action_raise(val);
7696				continue;
7697
7698			case DTRACEACT_COMMIT:
7699				ASSERT(!committed);
7700
7701				/*
7702				 * We need to commit our buffer state.
7703				 */
7704				if (ecb->dte_size)
7705					buf->dtb_offset = offs + ecb->dte_size;
7706				buf = &state->dts_buffer[cpuid];
7707				dtrace_speculation_commit(state, cpuid, val);
7708				committed = 1;
7709				continue;
7710
7711			case DTRACEACT_DISCARD:
7712				dtrace_speculation_discard(state, cpuid, val);
7713				continue;
7714
7715			case DTRACEACT_DIFEXPR:
7716			case DTRACEACT_LIBACT:
7717			case DTRACEACT_PRINTF:
7718			case DTRACEACT_PRINTA:
7719			case DTRACEACT_SYSTEM:
7720			case DTRACEACT_FREOPEN:
7721			case DTRACEACT_TRACEMEM:
7722				break;
7723
7724			case DTRACEACT_TRACEMEM_DYNSIZE:
7725				tracememsize = val;
7726				break;
7727
7728			case DTRACEACT_SYM:
7729			case DTRACEACT_MOD:
7730				if (!dtrace_priv_kernel(state))
7731					continue;
7732				break;
7733
7734			case DTRACEACT_USYM:
7735			case DTRACEACT_UMOD:
7736			case DTRACEACT_UADDR: {
7737#ifdef illumos
7738				struct pid *pid = curthread->t_procp->p_pidp;
7739#endif
7740
7741				if (!dtrace_priv_proc(state))
7742					continue;
7743
7744				DTRACE_STORE(uint64_t, tomax,
7745#ifdef illumos
7746				    valoffs, (uint64_t)pid->pid_id);
7747#else
7748				    valoffs, (uint64_t) curproc->p_pid);
7749#endif
7750				DTRACE_STORE(uint64_t, tomax,
7751				    valoffs + sizeof (uint64_t), val);
7752
7753				continue;
7754			}
7755
7756			case DTRACEACT_EXIT: {
7757				/*
7758				 * For the exit action, we are going to attempt
7759				 * to atomically set our activity to be
7760				 * draining.  If this fails (either because
7761				 * another CPU has beat us to the exit action,
7762				 * or because our current activity is something
7763				 * other than ACTIVE or WARMUP), we will
7764				 * continue.  This assures that the exit action
7765				 * can be successfully recorded at most once
7766				 * when we're in the ACTIVE state.  If we're
7767				 * encountering the exit() action while in
7768				 * COOLDOWN, however, we want to honor the new
7769				 * status code.  (We know that we're the only
7770				 * thread in COOLDOWN, so there is no race.)
7771				 */
7772				void *activity = &state->dts_activity;
7773				dtrace_activity_t current = state->dts_activity;
7774
7775				if (current == DTRACE_ACTIVITY_COOLDOWN)
7776					break;
7777
7778				if (current != DTRACE_ACTIVITY_WARMUP)
7779					current = DTRACE_ACTIVITY_ACTIVE;
7780
7781				if (dtrace_cas32(activity, current,
7782				    DTRACE_ACTIVITY_DRAINING) != current) {
7783					*flags |= CPU_DTRACE_DROP;
7784					continue;
7785				}
7786
7787				break;
7788			}
7789
7790			default:
7791				ASSERT(0);
7792			}
7793
7794			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7795			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7796				uintptr_t end = valoffs + size;
7797
7798				if (tracememsize != 0 &&
7799				    valoffs + tracememsize < end) {
7800					end = valoffs + tracememsize;
7801					tracememsize = 0;
7802				}
7803
7804				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7805				    !dtrace_vcanload((void *)(uintptr_t)val,
7806				    &dp->dtdo_rtype, &mstate, vstate))
7807					continue;
7808
7809				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7810				    &val, end, act->dta_intuple,
7811				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7812				    DIF_TF_BYREF: DIF_TF_BYUREF);
7813				continue;
7814			}
7815
7816			switch (size) {
7817			case 0:
7818				break;
7819
7820			case sizeof (uint8_t):
7821				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7822				break;
7823			case sizeof (uint16_t):
7824				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7825				break;
7826			case sizeof (uint32_t):
7827				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7828				break;
7829			case sizeof (uint64_t):
7830				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7831				break;
7832			default:
7833				/*
7834				 * Any other size should have been returned by
7835				 * reference, not by value.
7836				 */
7837				ASSERT(0);
7838				break;
7839			}
7840		}
7841
7842		if (*flags & CPU_DTRACE_DROP)
7843			continue;
7844
7845		if (*flags & CPU_DTRACE_FAULT) {
7846			int ndx;
7847			dtrace_action_t *err;
7848
7849			buf->dtb_errors++;
7850
7851			if (probe->dtpr_id == dtrace_probeid_error) {
7852				/*
7853				 * There's nothing we can do -- we had an
7854				 * error on the error probe.  We bump an
7855				 * error counter to at least indicate that
7856				 * this condition happened.
7857				 */
7858				dtrace_error(&state->dts_dblerrors);
7859				continue;
7860			}
7861
7862			if (vtime) {
7863				/*
7864				 * Before recursing on dtrace_probe(), we
7865				 * need to explicitly clear out our start
7866				 * time to prevent it from being accumulated
7867				 * into t_dtrace_vtime.
7868				 */
7869				curthread->t_dtrace_start = 0;
7870			}
7871
7872			/*
7873			 * Iterate over the actions to figure out which action
7874			 * we were processing when we experienced the error.
7875			 * Note that act points _past_ the faulting action; if
7876			 * act is ecb->dte_action, the fault was in the
7877			 * predicate, if it's ecb->dte_action->dta_next it's
7878			 * in action #1, and so on.
7879			 */
7880			for (err = ecb->dte_action, ndx = 0;
7881			    err != act; err = err->dta_next, ndx++)
7882				continue;
7883
7884			dtrace_probe_error(state, ecb->dte_epid, ndx,
7885			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7886			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7887			    cpu_core[cpuid].cpuc_dtrace_illval);
7888
7889			continue;
7890		}
7891
7892		if (!committed)
7893			buf->dtb_offset = offs + ecb->dte_size;
7894	}
7895
7896	if (vtime)
7897		curthread->t_dtrace_start = dtrace_gethrtime();
7898
7899	dtrace_probe_exit(cookie);
7900}
7901
7902/*
7903 * DTrace Probe Hashing Functions
7904 *
7905 * The functions in this section (and indeed, the functions in remaining
7906 * sections) are not _called_ from probe context.  (Any exceptions to this are
7907 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7908 * DTrace framework to look-up probes in, add probes to and remove probes from
7909 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7910 * probe tuple -- allowing for fast lookups, regardless of what was
7911 * specified.)
7912 */
7913static uint_t
7914dtrace_hash_str(const char *p)
7915{
7916	unsigned int g;
7917	uint_t hval = 0;
7918
7919	while (*p) {
7920		hval = (hval << 4) + *p++;
7921		if ((g = (hval & 0xf0000000)) != 0)
7922			hval ^= g >> 24;
7923		hval &= ~g;
7924	}
7925	return (hval);
7926}
7927
7928static dtrace_hash_t *
7929dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7930{
7931	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7932
7933	hash->dth_stroffs = stroffs;
7934	hash->dth_nextoffs = nextoffs;
7935	hash->dth_prevoffs = prevoffs;
7936
7937	hash->dth_size = 1;
7938	hash->dth_mask = hash->dth_size - 1;
7939
7940	hash->dth_tab = kmem_zalloc(hash->dth_size *
7941	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7942
7943	return (hash);
7944}
7945
7946static void
7947dtrace_hash_destroy(dtrace_hash_t *hash)
7948{
7949#ifdef DEBUG
7950	int i;
7951
7952	for (i = 0; i < hash->dth_size; i++)
7953		ASSERT(hash->dth_tab[i] == NULL);
7954#endif
7955
7956	kmem_free(hash->dth_tab,
7957	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7958	kmem_free(hash, sizeof (dtrace_hash_t));
7959}
7960
7961static void
7962dtrace_hash_resize(dtrace_hash_t *hash)
7963{
7964	int size = hash->dth_size, i, ndx;
7965	int new_size = hash->dth_size << 1;
7966	int new_mask = new_size - 1;
7967	dtrace_hashbucket_t **new_tab, *bucket, *next;
7968
7969	ASSERT((new_size & new_mask) == 0);
7970
7971	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7972
7973	for (i = 0; i < size; i++) {
7974		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7975			dtrace_probe_t *probe = bucket->dthb_chain;
7976
7977			ASSERT(probe != NULL);
7978			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7979
7980			next = bucket->dthb_next;
7981			bucket->dthb_next = new_tab[ndx];
7982			new_tab[ndx] = bucket;
7983		}
7984	}
7985
7986	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7987	hash->dth_tab = new_tab;
7988	hash->dth_size = new_size;
7989	hash->dth_mask = new_mask;
7990}
7991
7992static void
7993dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7994{
7995	int hashval = DTRACE_HASHSTR(hash, new);
7996	int ndx = hashval & hash->dth_mask;
7997	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7998	dtrace_probe_t **nextp, **prevp;
7999
8000	for (; bucket != NULL; bucket = bucket->dthb_next) {
8001		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8002			goto add;
8003	}
8004
8005	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8006		dtrace_hash_resize(hash);
8007		dtrace_hash_add(hash, new);
8008		return;
8009	}
8010
8011	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8012	bucket->dthb_next = hash->dth_tab[ndx];
8013	hash->dth_tab[ndx] = bucket;
8014	hash->dth_nbuckets++;
8015
8016add:
8017	nextp = DTRACE_HASHNEXT(hash, new);
8018	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8019	*nextp = bucket->dthb_chain;
8020
8021	if (bucket->dthb_chain != NULL) {
8022		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8023		ASSERT(*prevp == NULL);
8024		*prevp = new;
8025	}
8026
8027	bucket->dthb_chain = new;
8028	bucket->dthb_len++;
8029}
8030
8031static dtrace_probe_t *
8032dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8033{
8034	int hashval = DTRACE_HASHSTR(hash, template);
8035	int ndx = hashval & hash->dth_mask;
8036	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8037
8038	for (; bucket != NULL; bucket = bucket->dthb_next) {
8039		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8040			return (bucket->dthb_chain);
8041	}
8042
8043	return (NULL);
8044}
8045
8046static int
8047dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8048{
8049	int hashval = DTRACE_HASHSTR(hash, template);
8050	int ndx = hashval & hash->dth_mask;
8051	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8052
8053	for (; bucket != NULL; bucket = bucket->dthb_next) {
8054		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8055			return (bucket->dthb_len);
8056	}
8057
8058	return (0);
8059}
8060
8061static void
8062dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8063{
8064	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8065	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8066
8067	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8068	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8069
8070	/*
8071	 * Find the bucket that we're removing this probe from.
8072	 */
8073	for (; bucket != NULL; bucket = bucket->dthb_next) {
8074		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8075			break;
8076	}
8077
8078	ASSERT(bucket != NULL);
8079
8080	if (*prevp == NULL) {
8081		if (*nextp == NULL) {
8082			/*
8083			 * The removed probe was the only probe on this
8084			 * bucket; we need to remove the bucket.
8085			 */
8086			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8087
8088			ASSERT(bucket->dthb_chain == probe);
8089			ASSERT(b != NULL);
8090
8091			if (b == bucket) {
8092				hash->dth_tab[ndx] = bucket->dthb_next;
8093			} else {
8094				while (b->dthb_next != bucket)
8095					b = b->dthb_next;
8096				b->dthb_next = bucket->dthb_next;
8097			}
8098
8099			ASSERT(hash->dth_nbuckets > 0);
8100			hash->dth_nbuckets--;
8101			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8102			return;
8103		}
8104
8105		bucket->dthb_chain = *nextp;
8106	} else {
8107		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8108	}
8109
8110	if (*nextp != NULL)
8111		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8112}
8113
8114/*
8115 * DTrace Utility Functions
8116 *
8117 * These are random utility functions that are _not_ called from probe context.
8118 */
8119static int
8120dtrace_badattr(const dtrace_attribute_t *a)
8121{
8122	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8123	    a->dtat_data > DTRACE_STABILITY_MAX ||
8124	    a->dtat_class > DTRACE_CLASS_MAX);
8125}
8126
8127/*
8128 * Return a duplicate copy of a string.  If the specified string is NULL,
8129 * this function returns a zero-length string.
8130 */
8131static char *
8132dtrace_strdup(const char *str)
8133{
8134	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8135
8136	if (str != NULL)
8137		(void) strcpy(new, str);
8138
8139	return (new);
8140}
8141
8142#define	DTRACE_ISALPHA(c)	\
8143	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8144
8145static int
8146dtrace_badname(const char *s)
8147{
8148	char c;
8149
8150	if (s == NULL || (c = *s++) == '\0')
8151		return (0);
8152
8153	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8154		return (1);
8155
8156	while ((c = *s++) != '\0') {
8157		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8158		    c != '-' && c != '_' && c != '.' && c != '`')
8159			return (1);
8160	}
8161
8162	return (0);
8163}
8164
8165static void
8166dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8167{
8168	uint32_t priv;
8169
8170#ifdef illumos
8171	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8172		/*
8173		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8174		 */
8175		priv = DTRACE_PRIV_ALL;
8176	} else {
8177		*uidp = crgetuid(cr);
8178		*zoneidp = crgetzoneid(cr);
8179
8180		priv = 0;
8181		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8182			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8183		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8184			priv |= DTRACE_PRIV_USER;
8185		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8186			priv |= DTRACE_PRIV_PROC;
8187		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8188			priv |= DTRACE_PRIV_OWNER;
8189		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8190			priv |= DTRACE_PRIV_ZONEOWNER;
8191	}
8192#else
8193	priv = DTRACE_PRIV_ALL;
8194#endif
8195
8196	*privp = priv;
8197}
8198
8199#ifdef DTRACE_ERRDEBUG
8200static void
8201dtrace_errdebug(const char *str)
8202{
8203	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8204	int occupied = 0;
8205
8206	mutex_enter(&dtrace_errlock);
8207	dtrace_errlast = str;
8208	dtrace_errthread = curthread;
8209
8210	while (occupied++ < DTRACE_ERRHASHSZ) {
8211		if (dtrace_errhash[hval].dter_msg == str) {
8212			dtrace_errhash[hval].dter_count++;
8213			goto out;
8214		}
8215
8216		if (dtrace_errhash[hval].dter_msg != NULL) {
8217			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8218			continue;
8219		}
8220
8221		dtrace_errhash[hval].dter_msg = str;
8222		dtrace_errhash[hval].dter_count = 1;
8223		goto out;
8224	}
8225
8226	panic("dtrace: undersized error hash");
8227out:
8228	mutex_exit(&dtrace_errlock);
8229}
8230#endif
8231
8232/*
8233 * DTrace Matching Functions
8234 *
8235 * These functions are used to match groups of probes, given some elements of
8236 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8237 */
8238static int
8239dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8240    zoneid_t zoneid)
8241{
8242	if (priv != DTRACE_PRIV_ALL) {
8243		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8244		uint32_t match = priv & ppriv;
8245
8246		/*
8247		 * No PRIV_DTRACE_* privileges...
8248		 */
8249		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8250		    DTRACE_PRIV_KERNEL)) == 0)
8251			return (0);
8252
8253		/*
8254		 * No matching bits, but there were bits to match...
8255		 */
8256		if (match == 0 && ppriv != 0)
8257			return (0);
8258
8259		/*
8260		 * Need to have permissions to the process, but don't...
8261		 */
8262		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8263		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8264			return (0);
8265		}
8266
8267		/*
8268		 * Need to be in the same zone unless we possess the
8269		 * privilege to examine all zones.
8270		 */
8271		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8272		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8273			return (0);
8274		}
8275	}
8276
8277	return (1);
8278}
8279
8280/*
8281 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8282 * consists of input pattern strings and an ops-vector to evaluate them.
8283 * This function returns >0 for match, 0 for no match, and <0 for error.
8284 */
8285static int
8286dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8287    uint32_t priv, uid_t uid, zoneid_t zoneid)
8288{
8289	dtrace_provider_t *pvp = prp->dtpr_provider;
8290	int rv;
8291
8292	if (pvp->dtpv_defunct)
8293		return (0);
8294
8295	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8296		return (rv);
8297
8298	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8299		return (rv);
8300
8301	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8302		return (rv);
8303
8304	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8305		return (rv);
8306
8307	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8308		return (0);
8309
8310	return (rv);
8311}
8312
8313/*
8314 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8315 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8316 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8317 * In addition, all of the recursion cases except for '*' matching have been
8318 * unwound.  For '*', we still implement recursive evaluation, but a depth
8319 * counter is maintained and matching is aborted if we recurse too deep.
8320 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8321 */
8322static int
8323dtrace_match_glob(const char *s, const char *p, int depth)
8324{
8325	const char *olds;
8326	char s1, c;
8327	int gs;
8328
8329	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8330		return (-1);
8331
8332	if (s == NULL)
8333		s = ""; /* treat NULL as empty string */
8334
8335top:
8336	olds = s;
8337	s1 = *s++;
8338
8339	if (p == NULL)
8340		return (0);
8341
8342	if ((c = *p++) == '\0')
8343		return (s1 == '\0');
8344
8345	switch (c) {
8346	case '[': {
8347		int ok = 0, notflag = 0;
8348		char lc = '\0';
8349
8350		if (s1 == '\0')
8351			return (0);
8352
8353		if (*p == '!') {
8354			notflag = 1;
8355			p++;
8356		}
8357
8358		if ((c = *p++) == '\0')
8359			return (0);
8360
8361		do {
8362			if (c == '-' && lc != '\0' && *p != ']') {
8363				if ((c = *p++) == '\0')
8364					return (0);
8365				if (c == '\\' && (c = *p++) == '\0')
8366					return (0);
8367
8368				if (notflag) {
8369					if (s1 < lc || s1 > c)
8370						ok++;
8371					else
8372						return (0);
8373				} else if (lc <= s1 && s1 <= c)
8374					ok++;
8375
8376			} else if (c == '\\' && (c = *p++) == '\0')
8377				return (0);
8378
8379			lc = c; /* save left-hand 'c' for next iteration */
8380
8381			if (notflag) {
8382				if (s1 != c)
8383					ok++;
8384				else
8385					return (0);
8386			} else if (s1 == c)
8387				ok++;
8388
8389			if ((c = *p++) == '\0')
8390				return (0);
8391
8392		} while (c != ']');
8393
8394		if (ok)
8395			goto top;
8396
8397		return (0);
8398	}
8399
8400	case '\\':
8401		if ((c = *p++) == '\0')
8402			return (0);
8403		/*FALLTHRU*/
8404
8405	default:
8406		if (c != s1)
8407			return (0);
8408		/*FALLTHRU*/
8409
8410	case '?':
8411		if (s1 != '\0')
8412			goto top;
8413		return (0);
8414
8415	case '*':
8416		while (*p == '*')
8417			p++; /* consecutive *'s are identical to a single one */
8418
8419		if (*p == '\0')
8420			return (1);
8421
8422		for (s = olds; *s != '\0'; s++) {
8423			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8424				return (gs);
8425		}
8426
8427		return (0);
8428	}
8429}
8430
8431/*ARGSUSED*/
8432static int
8433dtrace_match_string(const char *s, const char *p, int depth)
8434{
8435	return (s != NULL && strcmp(s, p) == 0);
8436}
8437
8438/*ARGSUSED*/
8439static int
8440dtrace_match_nul(const char *s, const char *p, int depth)
8441{
8442	return (1); /* always match the empty pattern */
8443}
8444
8445/*ARGSUSED*/
8446static int
8447dtrace_match_nonzero(const char *s, const char *p, int depth)
8448{
8449	return (s != NULL && s[0] != '\0');
8450}
8451
8452static int
8453dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8454    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8455{
8456	dtrace_probe_t template, *probe;
8457	dtrace_hash_t *hash = NULL;
8458	int len, best = INT_MAX, nmatched = 0;
8459	dtrace_id_t i;
8460
8461	ASSERT(MUTEX_HELD(&dtrace_lock));
8462
8463	/*
8464	 * If the probe ID is specified in the key, just lookup by ID and
8465	 * invoke the match callback once if a matching probe is found.
8466	 */
8467	if (pkp->dtpk_id != DTRACE_IDNONE) {
8468		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8469		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8470			(void) (*matched)(probe, arg);
8471			nmatched++;
8472		}
8473		return (nmatched);
8474	}
8475
8476	template.dtpr_mod = (char *)pkp->dtpk_mod;
8477	template.dtpr_func = (char *)pkp->dtpk_func;
8478	template.dtpr_name = (char *)pkp->dtpk_name;
8479
8480	/*
8481	 * We want to find the most distinct of the module name, function
8482	 * name, and name.  So for each one that is not a glob pattern or
8483	 * empty string, we perform a lookup in the corresponding hash and
8484	 * use the hash table with the fewest collisions to do our search.
8485	 */
8486	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8487	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8488		best = len;
8489		hash = dtrace_bymod;
8490	}
8491
8492	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8493	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8494		best = len;
8495		hash = dtrace_byfunc;
8496	}
8497
8498	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8499	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8500		best = len;
8501		hash = dtrace_byname;
8502	}
8503
8504	/*
8505	 * If we did not select a hash table, iterate over every probe and
8506	 * invoke our callback for each one that matches our input probe key.
8507	 */
8508	if (hash == NULL) {
8509		for (i = 0; i < dtrace_nprobes; i++) {
8510			if ((probe = dtrace_probes[i]) == NULL ||
8511			    dtrace_match_probe(probe, pkp, priv, uid,
8512			    zoneid) <= 0)
8513				continue;
8514
8515			nmatched++;
8516
8517			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8518				break;
8519		}
8520
8521		return (nmatched);
8522	}
8523
8524	/*
8525	 * If we selected a hash table, iterate over each probe of the same key
8526	 * name and invoke the callback for every probe that matches the other
8527	 * attributes of our input probe key.
8528	 */
8529	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8530	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8531
8532		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8533			continue;
8534
8535		nmatched++;
8536
8537		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8538			break;
8539	}
8540
8541	return (nmatched);
8542}
8543
8544/*
8545 * Return the function pointer dtrace_probecmp() should use to compare the
8546 * specified pattern with a string.  For NULL or empty patterns, we select
8547 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8548 * For non-empty non-glob strings, we use dtrace_match_string().
8549 */
8550static dtrace_probekey_f *
8551dtrace_probekey_func(const char *p)
8552{
8553	char c;
8554
8555	if (p == NULL || *p == '\0')
8556		return (&dtrace_match_nul);
8557
8558	while ((c = *p++) != '\0') {
8559		if (c == '[' || c == '?' || c == '*' || c == '\\')
8560			return (&dtrace_match_glob);
8561	}
8562
8563	return (&dtrace_match_string);
8564}
8565
8566/*
8567 * Build a probe comparison key for use with dtrace_match_probe() from the
8568 * given probe description.  By convention, a null key only matches anchored
8569 * probes: if each field is the empty string, reset dtpk_fmatch to
8570 * dtrace_match_nonzero().
8571 */
8572static void
8573dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8574{
8575	pkp->dtpk_prov = pdp->dtpd_provider;
8576	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8577
8578	pkp->dtpk_mod = pdp->dtpd_mod;
8579	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8580
8581	pkp->dtpk_func = pdp->dtpd_func;
8582	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8583
8584	pkp->dtpk_name = pdp->dtpd_name;
8585	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8586
8587	pkp->dtpk_id = pdp->dtpd_id;
8588
8589	if (pkp->dtpk_id == DTRACE_IDNONE &&
8590	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8591	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8592	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8593	    pkp->dtpk_nmatch == &dtrace_match_nul)
8594		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8595}
8596
8597/*
8598 * DTrace Provider-to-Framework API Functions
8599 *
8600 * These functions implement much of the Provider-to-Framework API, as
8601 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8602 * the functions in the API for probe management (found below), and
8603 * dtrace_probe() itself (found above).
8604 */
8605
8606/*
8607 * Register the calling provider with the DTrace framework.  This should
8608 * generally be called by DTrace providers in their attach(9E) entry point.
8609 */
8610int
8611dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8612    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8613{
8614	dtrace_provider_t *provider;
8615
8616	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8617		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8618		    "arguments", name ? name : "<NULL>");
8619		return (EINVAL);
8620	}
8621
8622	if (name[0] == '\0' || dtrace_badname(name)) {
8623		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8624		    "provider name", name);
8625		return (EINVAL);
8626	}
8627
8628	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8629	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8630	    pops->dtps_destroy == NULL ||
8631	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8632		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8633		    "provider ops", name);
8634		return (EINVAL);
8635	}
8636
8637	if (dtrace_badattr(&pap->dtpa_provider) ||
8638	    dtrace_badattr(&pap->dtpa_mod) ||
8639	    dtrace_badattr(&pap->dtpa_func) ||
8640	    dtrace_badattr(&pap->dtpa_name) ||
8641	    dtrace_badattr(&pap->dtpa_args)) {
8642		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8643		    "provider attributes", name);
8644		return (EINVAL);
8645	}
8646
8647	if (priv & ~DTRACE_PRIV_ALL) {
8648		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8649		    "privilege attributes", name);
8650		return (EINVAL);
8651	}
8652
8653	if ((priv & DTRACE_PRIV_KERNEL) &&
8654	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8655	    pops->dtps_usermode == NULL) {
8656		cmn_err(CE_WARN, "failed to register provider '%s': need "
8657		    "dtps_usermode() op for given privilege attributes", name);
8658		return (EINVAL);
8659	}
8660
8661	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8662	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8663	(void) strcpy(provider->dtpv_name, name);
8664
8665	provider->dtpv_attr = *pap;
8666	provider->dtpv_priv.dtpp_flags = priv;
8667	if (cr != NULL) {
8668		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8669		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8670	}
8671	provider->dtpv_pops = *pops;
8672
8673	if (pops->dtps_provide == NULL) {
8674		ASSERT(pops->dtps_provide_module != NULL);
8675		provider->dtpv_pops.dtps_provide =
8676		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8677	}
8678
8679	if (pops->dtps_provide_module == NULL) {
8680		ASSERT(pops->dtps_provide != NULL);
8681		provider->dtpv_pops.dtps_provide_module =
8682		    (void (*)(void *, modctl_t *))dtrace_nullop;
8683	}
8684
8685	if (pops->dtps_suspend == NULL) {
8686		ASSERT(pops->dtps_resume == NULL);
8687		provider->dtpv_pops.dtps_suspend =
8688		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8689		provider->dtpv_pops.dtps_resume =
8690		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8691	}
8692
8693	provider->dtpv_arg = arg;
8694	*idp = (dtrace_provider_id_t)provider;
8695
8696	if (pops == &dtrace_provider_ops) {
8697		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8698		ASSERT(MUTEX_HELD(&dtrace_lock));
8699		ASSERT(dtrace_anon.dta_enabling == NULL);
8700
8701		/*
8702		 * We make sure that the DTrace provider is at the head of
8703		 * the provider chain.
8704		 */
8705		provider->dtpv_next = dtrace_provider;
8706		dtrace_provider = provider;
8707		return (0);
8708	}
8709
8710	mutex_enter(&dtrace_provider_lock);
8711	mutex_enter(&dtrace_lock);
8712
8713	/*
8714	 * If there is at least one provider registered, we'll add this
8715	 * provider after the first provider.
8716	 */
8717	if (dtrace_provider != NULL) {
8718		provider->dtpv_next = dtrace_provider->dtpv_next;
8719		dtrace_provider->dtpv_next = provider;
8720	} else {
8721		dtrace_provider = provider;
8722	}
8723
8724	if (dtrace_retained != NULL) {
8725		dtrace_enabling_provide(provider);
8726
8727		/*
8728		 * Now we need to call dtrace_enabling_matchall() -- which
8729		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8730		 * to drop all of our locks before calling into it...
8731		 */
8732		mutex_exit(&dtrace_lock);
8733		mutex_exit(&dtrace_provider_lock);
8734		dtrace_enabling_matchall();
8735
8736		return (0);
8737	}
8738
8739	mutex_exit(&dtrace_lock);
8740	mutex_exit(&dtrace_provider_lock);
8741
8742	return (0);
8743}
8744
8745/*
8746 * Unregister the specified provider from the DTrace framework.  This should
8747 * generally be called by DTrace providers in their detach(9E) entry point.
8748 */
8749int
8750dtrace_unregister(dtrace_provider_id_t id)
8751{
8752	dtrace_provider_t *old = (dtrace_provider_t *)id;
8753	dtrace_provider_t *prev = NULL;
8754	int i, self = 0, noreap = 0;
8755	dtrace_probe_t *probe, *first = NULL;
8756
8757	if (old->dtpv_pops.dtps_enable ==
8758	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8759		/*
8760		 * If DTrace itself is the provider, we're called with locks
8761		 * already held.
8762		 */
8763		ASSERT(old == dtrace_provider);
8764#ifdef illumos
8765		ASSERT(dtrace_devi != NULL);
8766#endif
8767		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8768		ASSERT(MUTEX_HELD(&dtrace_lock));
8769		self = 1;
8770
8771		if (dtrace_provider->dtpv_next != NULL) {
8772			/*
8773			 * There's another provider here; return failure.
8774			 */
8775			return (EBUSY);
8776		}
8777	} else {
8778		mutex_enter(&dtrace_provider_lock);
8779#ifdef illumos
8780		mutex_enter(&mod_lock);
8781#endif
8782		mutex_enter(&dtrace_lock);
8783	}
8784
8785	/*
8786	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8787	 * probes, we refuse to let providers slither away, unless this
8788	 * provider has already been explicitly invalidated.
8789	 */
8790	if (!old->dtpv_defunct &&
8791	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8792	    dtrace_anon.dta_state->dts_necbs > 0))) {
8793		if (!self) {
8794			mutex_exit(&dtrace_lock);
8795#ifdef illumos
8796			mutex_exit(&mod_lock);
8797#endif
8798			mutex_exit(&dtrace_provider_lock);
8799		}
8800		return (EBUSY);
8801	}
8802
8803	/*
8804	 * Attempt to destroy the probes associated with this provider.
8805	 */
8806	for (i = 0; i < dtrace_nprobes; i++) {
8807		if ((probe = dtrace_probes[i]) == NULL)
8808			continue;
8809
8810		if (probe->dtpr_provider != old)
8811			continue;
8812
8813		if (probe->dtpr_ecb == NULL)
8814			continue;
8815
8816		/*
8817		 * If we are trying to unregister a defunct provider, and the
8818		 * provider was made defunct within the interval dictated by
8819		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8820		 * attempt to reap our enablings.  To denote that the provider
8821		 * should reattempt to unregister itself at some point in the
8822		 * future, we will return a differentiable error code (EAGAIN
8823		 * instead of EBUSY) in this case.
8824		 */
8825		if (dtrace_gethrtime() - old->dtpv_defunct >
8826		    dtrace_unregister_defunct_reap)
8827			noreap = 1;
8828
8829		if (!self) {
8830			mutex_exit(&dtrace_lock);
8831#ifdef illumos
8832			mutex_exit(&mod_lock);
8833#endif
8834			mutex_exit(&dtrace_provider_lock);
8835		}
8836
8837		if (noreap)
8838			return (EBUSY);
8839
8840		(void) taskq_dispatch(dtrace_taskq,
8841		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8842
8843		return (EAGAIN);
8844	}
8845
8846	/*
8847	 * All of the probes for this provider are disabled; we can safely
8848	 * remove all of them from their hash chains and from the probe array.
8849	 */
8850	for (i = 0; i < dtrace_nprobes; i++) {
8851		if ((probe = dtrace_probes[i]) == NULL)
8852			continue;
8853
8854		if (probe->dtpr_provider != old)
8855			continue;
8856
8857		dtrace_probes[i] = NULL;
8858
8859		dtrace_hash_remove(dtrace_bymod, probe);
8860		dtrace_hash_remove(dtrace_byfunc, probe);
8861		dtrace_hash_remove(dtrace_byname, probe);
8862
8863		if (first == NULL) {
8864			first = probe;
8865			probe->dtpr_nextmod = NULL;
8866		} else {
8867			probe->dtpr_nextmod = first;
8868			first = probe;
8869		}
8870	}
8871
8872	/*
8873	 * The provider's probes have been removed from the hash chains and
8874	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8875	 * everyone has cleared out from any probe array processing.
8876	 */
8877	dtrace_sync();
8878
8879	for (probe = first; probe != NULL; probe = first) {
8880		first = probe->dtpr_nextmod;
8881
8882		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8883		    probe->dtpr_arg);
8884		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8885		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8886		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8887#ifdef illumos
8888		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8889#else
8890		free_unr(dtrace_arena, probe->dtpr_id);
8891#endif
8892		kmem_free(probe, sizeof (dtrace_probe_t));
8893	}
8894
8895	if ((prev = dtrace_provider) == old) {
8896#ifdef illumos
8897		ASSERT(self || dtrace_devi == NULL);
8898		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8899#endif
8900		dtrace_provider = old->dtpv_next;
8901	} else {
8902		while (prev != NULL && prev->dtpv_next != old)
8903			prev = prev->dtpv_next;
8904
8905		if (prev == NULL) {
8906			panic("attempt to unregister non-existent "
8907			    "dtrace provider %p\n", (void *)id);
8908		}
8909
8910		prev->dtpv_next = old->dtpv_next;
8911	}
8912
8913	if (!self) {
8914		mutex_exit(&dtrace_lock);
8915#ifdef illumos
8916		mutex_exit(&mod_lock);
8917#endif
8918		mutex_exit(&dtrace_provider_lock);
8919	}
8920
8921	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8922	kmem_free(old, sizeof (dtrace_provider_t));
8923
8924	return (0);
8925}
8926
8927/*
8928 * Invalidate the specified provider.  All subsequent probe lookups for the
8929 * specified provider will fail, but its probes will not be removed.
8930 */
8931void
8932dtrace_invalidate(dtrace_provider_id_t id)
8933{
8934	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8935
8936	ASSERT(pvp->dtpv_pops.dtps_enable !=
8937	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8938
8939	mutex_enter(&dtrace_provider_lock);
8940	mutex_enter(&dtrace_lock);
8941
8942	pvp->dtpv_defunct = dtrace_gethrtime();
8943
8944	mutex_exit(&dtrace_lock);
8945	mutex_exit(&dtrace_provider_lock);
8946}
8947
8948/*
8949 * Indicate whether or not DTrace has attached.
8950 */
8951int
8952dtrace_attached(void)
8953{
8954	/*
8955	 * dtrace_provider will be non-NULL iff the DTrace driver has
8956	 * attached.  (It's non-NULL because DTrace is always itself a
8957	 * provider.)
8958	 */
8959	return (dtrace_provider != NULL);
8960}
8961
8962/*
8963 * Remove all the unenabled probes for the given provider.  This function is
8964 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8965 * -- just as many of its associated probes as it can.
8966 */
8967int
8968dtrace_condense(dtrace_provider_id_t id)
8969{
8970	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8971	int i;
8972	dtrace_probe_t *probe;
8973
8974	/*
8975	 * Make sure this isn't the dtrace provider itself.
8976	 */
8977	ASSERT(prov->dtpv_pops.dtps_enable !=
8978	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8979
8980	mutex_enter(&dtrace_provider_lock);
8981	mutex_enter(&dtrace_lock);
8982
8983	/*
8984	 * Attempt to destroy the probes associated with this provider.
8985	 */
8986	for (i = 0; i < dtrace_nprobes; i++) {
8987		if ((probe = dtrace_probes[i]) == NULL)
8988			continue;
8989
8990		if (probe->dtpr_provider != prov)
8991			continue;
8992
8993		if (probe->dtpr_ecb != NULL)
8994			continue;
8995
8996		dtrace_probes[i] = NULL;
8997
8998		dtrace_hash_remove(dtrace_bymod, probe);
8999		dtrace_hash_remove(dtrace_byfunc, probe);
9000		dtrace_hash_remove(dtrace_byname, probe);
9001
9002		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9003		    probe->dtpr_arg);
9004		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9005		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9006		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9007		kmem_free(probe, sizeof (dtrace_probe_t));
9008#ifdef illumos
9009		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9010#else
9011		free_unr(dtrace_arena, i + 1);
9012#endif
9013	}
9014
9015	mutex_exit(&dtrace_lock);
9016	mutex_exit(&dtrace_provider_lock);
9017
9018	return (0);
9019}
9020
9021/*
9022 * DTrace Probe Management Functions
9023 *
9024 * The functions in this section perform the DTrace probe management,
9025 * including functions to create probes, look-up probes, and call into the
9026 * providers to request that probes be provided.  Some of these functions are
9027 * in the Provider-to-Framework API; these functions can be identified by the
9028 * fact that they are not declared "static".
9029 */
9030
9031/*
9032 * Create a probe with the specified module name, function name, and name.
9033 */
9034dtrace_id_t
9035dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9036    const char *func, const char *name, int aframes, void *arg)
9037{
9038	dtrace_probe_t *probe, **probes;
9039	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9040	dtrace_id_t id;
9041
9042	if (provider == dtrace_provider) {
9043		ASSERT(MUTEX_HELD(&dtrace_lock));
9044	} else {
9045		mutex_enter(&dtrace_lock);
9046	}
9047
9048#ifdef illumos
9049	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9050	    VM_BESTFIT | VM_SLEEP);
9051#else
9052	id = alloc_unr(dtrace_arena);
9053#endif
9054	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9055
9056	probe->dtpr_id = id;
9057	probe->dtpr_gen = dtrace_probegen++;
9058	probe->dtpr_mod = dtrace_strdup(mod);
9059	probe->dtpr_func = dtrace_strdup(func);
9060	probe->dtpr_name = dtrace_strdup(name);
9061	probe->dtpr_arg = arg;
9062	probe->dtpr_aframes = aframes;
9063	probe->dtpr_provider = provider;
9064
9065	dtrace_hash_add(dtrace_bymod, probe);
9066	dtrace_hash_add(dtrace_byfunc, probe);
9067	dtrace_hash_add(dtrace_byname, probe);
9068
9069	if (id - 1 >= dtrace_nprobes) {
9070		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9071		size_t nsize = osize << 1;
9072
9073		if (nsize == 0) {
9074			ASSERT(osize == 0);
9075			ASSERT(dtrace_probes == NULL);
9076			nsize = sizeof (dtrace_probe_t *);
9077		}
9078
9079		probes = kmem_zalloc(nsize, KM_SLEEP);
9080
9081		if (dtrace_probes == NULL) {
9082			ASSERT(osize == 0);
9083			dtrace_probes = probes;
9084			dtrace_nprobes = 1;
9085		} else {
9086			dtrace_probe_t **oprobes = dtrace_probes;
9087
9088			bcopy(oprobes, probes, osize);
9089			dtrace_membar_producer();
9090			dtrace_probes = probes;
9091
9092			dtrace_sync();
9093
9094			/*
9095			 * All CPUs are now seeing the new probes array; we can
9096			 * safely free the old array.
9097			 */
9098			kmem_free(oprobes, osize);
9099			dtrace_nprobes <<= 1;
9100		}
9101
9102		ASSERT(id - 1 < dtrace_nprobes);
9103	}
9104
9105	ASSERT(dtrace_probes[id - 1] == NULL);
9106	dtrace_probes[id - 1] = probe;
9107
9108	if (provider != dtrace_provider)
9109		mutex_exit(&dtrace_lock);
9110
9111	return (id);
9112}
9113
9114static dtrace_probe_t *
9115dtrace_probe_lookup_id(dtrace_id_t id)
9116{
9117	ASSERT(MUTEX_HELD(&dtrace_lock));
9118
9119	if (id == 0 || id > dtrace_nprobes)
9120		return (NULL);
9121
9122	return (dtrace_probes[id - 1]);
9123}
9124
9125static int
9126dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9127{
9128	*((dtrace_id_t *)arg) = probe->dtpr_id;
9129
9130	return (DTRACE_MATCH_DONE);
9131}
9132
9133/*
9134 * Look up a probe based on provider and one or more of module name, function
9135 * name and probe name.
9136 */
9137dtrace_id_t
9138dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9139    char *func, char *name)
9140{
9141	dtrace_probekey_t pkey;
9142	dtrace_id_t id;
9143	int match;
9144
9145	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9146	pkey.dtpk_pmatch = &dtrace_match_string;
9147	pkey.dtpk_mod = mod;
9148	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9149	pkey.dtpk_func = func;
9150	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9151	pkey.dtpk_name = name;
9152	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9153	pkey.dtpk_id = DTRACE_IDNONE;
9154
9155	mutex_enter(&dtrace_lock);
9156	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9157	    dtrace_probe_lookup_match, &id);
9158	mutex_exit(&dtrace_lock);
9159
9160	ASSERT(match == 1 || match == 0);
9161	return (match ? id : 0);
9162}
9163
9164/*
9165 * Returns the probe argument associated with the specified probe.
9166 */
9167void *
9168dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9169{
9170	dtrace_probe_t *probe;
9171	void *rval = NULL;
9172
9173	mutex_enter(&dtrace_lock);
9174
9175	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9176	    probe->dtpr_provider == (dtrace_provider_t *)id)
9177		rval = probe->dtpr_arg;
9178
9179	mutex_exit(&dtrace_lock);
9180
9181	return (rval);
9182}
9183
9184/*
9185 * Copy a probe into a probe description.
9186 */
9187static void
9188dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9189{
9190	bzero(pdp, sizeof (dtrace_probedesc_t));
9191	pdp->dtpd_id = prp->dtpr_id;
9192
9193	(void) strncpy(pdp->dtpd_provider,
9194	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9195
9196	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9197	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9198	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9199}
9200
9201/*
9202 * Called to indicate that a probe -- or probes -- should be provided by a
9203 * specfied provider.  If the specified description is NULL, the provider will
9204 * be told to provide all of its probes.  (This is done whenever a new
9205 * consumer comes along, or whenever a retained enabling is to be matched.) If
9206 * the specified description is non-NULL, the provider is given the
9207 * opportunity to dynamically provide the specified probe, allowing providers
9208 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9209 * probes.)  If the provider is NULL, the operations will be applied to all
9210 * providers; if the provider is non-NULL the operations will only be applied
9211 * to the specified provider.  The dtrace_provider_lock must be held, and the
9212 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9213 * will need to grab the dtrace_lock when it reenters the framework through
9214 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9215 */
9216static void
9217dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9218{
9219#ifdef illumos
9220	modctl_t *ctl;
9221#endif
9222	int all = 0;
9223
9224	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9225
9226	if (prv == NULL) {
9227		all = 1;
9228		prv = dtrace_provider;
9229	}
9230
9231	do {
9232		/*
9233		 * First, call the blanket provide operation.
9234		 */
9235		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9236
9237#ifdef illumos
9238		/*
9239		 * Now call the per-module provide operation.  We will grab
9240		 * mod_lock to prevent the list from being modified.  Note
9241		 * that this also prevents the mod_busy bits from changing.
9242		 * (mod_busy can only be changed with mod_lock held.)
9243		 */
9244		mutex_enter(&mod_lock);
9245
9246		ctl = &modules;
9247		do {
9248			if (ctl->mod_busy || ctl->mod_mp == NULL)
9249				continue;
9250
9251			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9252
9253		} while ((ctl = ctl->mod_next) != &modules);
9254
9255		mutex_exit(&mod_lock);
9256#endif
9257	} while (all && (prv = prv->dtpv_next) != NULL);
9258}
9259
9260#ifdef illumos
9261/*
9262 * Iterate over each probe, and call the Framework-to-Provider API function
9263 * denoted by offs.
9264 */
9265static void
9266dtrace_probe_foreach(uintptr_t offs)
9267{
9268	dtrace_provider_t *prov;
9269	void (*func)(void *, dtrace_id_t, void *);
9270	dtrace_probe_t *probe;
9271	dtrace_icookie_t cookie;
9272	int i;
9273
9274	/*
9275	 * We disable interrupts to walk through the probe array.  This is
9276	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9277	 * won't see stale data.
9278	 */
9279	cookie = dtrace_interrupt_disable();
9280
9281	for (i = 0; i < dtrace_nprobes; i++) {
9282		if ((probe = dtrace_probes[i]) == NULL)
9283			continue;
9284
9285		if (probe->dtpr_ecb == NULL) {
9286			/*
9287			 * This probe isn't enabled -- don't call the function.
9288			 */
9289			continue;
9290		}
9291
9292		prov = probe->dtpr_provider;
9293		func = *((void(**)(void *, dtrace_id_t, void *))
9294		    ((uintptr_t)&prov->dtpv_pops + offs));
9295
9296		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9297	}
9298
9299	dtrace_interrupt_enable(cookie);
9300}
9301#endif
9302
9303static int
9304dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9305{
9306	dtrace_probekey_t pkey;
9307	uint32_t priv;
9308	uid_t uid;
9309	zoneid_t zoneid;
9310
9311	ASSERT(MUTEX_HELD(&dtrace_lock));
9312	dtrace_ecb_create_cache = NULL;
9313
9314	if (desc == NULL) {
9315		/*
9316		 * If we're passed a NULL description, we're being asked to
9317		 * create an ECB with a NULL probe.
9318		 */
9319		(void) dtrace_ecb_create_enable(NULL, enab);
9320		return (0);
9321	}
9322
9323	dtrace_probekey(desc, &pkey);
9324	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9325	    &priv, &uid, &zoneid);
9326
9327	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9328	    enab));
9329}
9330
9331/*
9332 * DTrace Helper Provider Functions
9333 */
9334static void
9335dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9336{
9337	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9338	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9339	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9340}
9341
9342static void
9343dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9344    const dof_provider_t *dofprov, char *strtab)
9345{
9346	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9347	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9348	    dofprov->dofpv_provattr);
9349	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9350	    dofprov->dofpv_modattr);
9351	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9352	    dofprov->dofpv_funcattr);
9353	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9354	    dofprov->dofpv_nameattr);
9355	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9356	    dofprov->dofpv_argsattr);
9357}
9358
9359static void
9360dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9361{
9362	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9363	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9364	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9365	dof_provider_t *provider;
9366	dof_probe_t *probe;
9367	uint32_t *off, *enoff;
9368	uint8_t *arg;
9369	char *strtab;
9370	uint_t i, nprobes;
9371	dtrace_helper_provdesc_t dhpv;
9372	dtrace_helper_probedesc_t dhpb;
9373	dtrace_meta_t *meta = dtrace_meta_pid;
9374	dtrace_mops_t *mops = &meta->dtm_mops;
9375	void *parg;
9376
9377	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9378	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9379	    provider->dofpv_strtab * dof->dofh_secsize);
9380	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9381	    provider->dofpv_probes * dof->dofh_secsize);
9382	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9383	    provider->dofpv_prargs * dof->dofh_secsize);
9384	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9385	    provider->dofpv_proffs * dof->dofh_secsize);
9386
9387	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9388	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9389	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9390	enoff = NULL;
9391
9392	/*
9393	 * See dtrace_helper_provider_validate().
9394	 */
9395	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9396	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9397		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9398		    provider->dofpv_prenoffs * dof->dofh_secsize);
9399		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9400	}
9401
9402	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9403
9404	/*
9405	 * Create the provider.
9406	 */
9407	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9408
9409	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9410		return;
9411
9412	meta->dtm_count++;
9413
9414	/*
9415	 * Create the probes.
9416	 */
9417	for (i = 0; i < nprobes; i++) {
9418		probe = (dof_probe_t *)(uintptr_t)(daddr +
9419		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9420
9421		/* See the check in dtrace_helper_provider_validate(). */
9422		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9423			continue;
9424
9425		dhpb.dthpb_mod = dhp->dofhp_mod;
9426		dhpb.dthpb_func = strtab + probe->dofpr_func;
9427		dhpb.dthpb_name = strtab + probe->dofpr_name;
9428		dhpb.dthpb_base = probe->dofpr_addr;
9429		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9430		dhpb.dthpb_noffs = probe->dofpr_noffs;
9431		if (enoff != NULL) {
9432			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9433			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9434		} else {
9435			dhpb.dthpb_enoffs = NULL;
9436			dhpb.dthpb_nenoffs = 0;
9437		}
9438		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9439		dhpb.dthpb_nargc = probe->dofpr_nargc;
9440		dhpb.dthpb_xargc = probe->dofpr_xargc;
9441		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9442		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9443
9444		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9445	}
9446}
9447
9448static void
9449dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9450{
9451	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9452	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9453	int i;
9454
9455	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9456
9457	for (i = 0; i < dof->dofh_secnum; i++) {
9458		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9459		    dof->dofh_secoff + i * dof->dofh_secsize);
9460
9461		if (sec->dofs_type != DOF_SECT_PROVIDER)
9462			continue;
9463
9464		dtrace_helper_provide_one(dhp, sec, pid);
9465	}
9466
9467	/*
9468	 * We may have just created probes, so we must now rematch against
9469	 * any retained enablings.  Note that this call will acquire both
9470	 * cpu_lock and dtrace_lock; the fact that we are holding
9471	 * dtrace_meta_lock now is what defines the ordering with respect to
9472	 * these three locks.
9473	 */
9474	dtrace_enabling_matchall();
9475}
9476
9477static void
9478dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9479{
9480	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9481	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9482	dof_sec_t *str_sec;
9483	dof_provider_t *provider;
9484	char *strtab;
9485	dtrace_helper_provdesc_t dhpv;
9486	dtrace_meta_t *meta = dtrace_meta_pid;
9487	dtrace_mops_t *mops = &meta->dtm_mops;
9488
9489	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9490	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9491	    provider->dofpv_strtab * dof->dofh_secsize);
9492
9493	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9494
9495	/*
9496	 * Create the provider.
9497	 */
9498	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9499
9500	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9501
9502	meta->dtm_count--;
9503}
9504
9505static void
9506dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9507{
9508	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9509	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9510	int i;
9511
9512	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9513
9514	for (i = 0; i < dof->dofh_secnum; i++) {
9515		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9516		    dof->dofh_secoff + i * dof->dofh_secsize);
9517
9518		if (sec->dofs_type != DOF_SECT_PROVIDER)
9519			continue;
9520
9521		dtrace_helper_provider_remove_one(dhp, sec, pid);
9522	}
9523}
9524
9525/*
9526 * DTrace Meta Provider-to-Framework API Functions
9527 *
9528 * These functions implement the Meta Provider-to-Framework API, as described
9529 * in <sys/dtrace.h>.
9530 */
9531int
9532dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9533    dtrace_meta_provider_id_t *idp)
9534{
9535	dtrace_meta_t *meta;
9536	dtrace_helpers_t *help, *next;
9537	int i;
9538
9539	*idp = DTRACE_METAPROVNONE;
9540
9541	/*
9542	 * We strictly don't need the name, but we hold onto it for
9543	 * debuggability. All hail error queues!
9544	 */
9545	if (name == NULL) {
9546		cmn_err(CE_WARN, "failed to register meta-provider: "
9547		    "invalid name");
9548		return (EINVAL);
9549	}
9550
9551	if (mops == NULL ||
9552	    mops->dtms_create_probe == NULL ||
9553	    mops->dtms_provide_pid == NULL ||
9554	    mops->dtms_remove_pid == NULL) {
9555		cmn_err(CE_WARN, "failed to register meta-register %s: "
9556		    "invalid ops", name);
9557		return (EINVAL);
9558	}
9559
9560	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9561	meta->dtm_mops = *mops;
9562	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9563	(void) strcpy(meta->dtm_name, name);
9564	meta->dtm_arg = arg;
9565
9566	mutex_enter(&dtrace_meta_lock);
9567	mutex_enter(&dtrace_lock);
9568
9569	if (dtrace_meta_pid != NULL) {
9570		mutex_exit(&dtrace_lock);
9571		mutex_exit(&dtrace_meta_lock);
9572		cmn_err(CE_WARN, "failed to register meta-register %s: "
9573		    "user-land meta-provider exists", name);
9574		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9575		kmem_free(meta, sizeof (dtrace_meta_t));
9576		return (EINVAL);
9577	}
9578
9579	dtrace_meta_pid = meta;
9580	*idp = (dtrace_meta_provider_id_t)meta;
9581
9582	/*
9583	 * If there are providers and probes ready to go, pass them
9584	 * off to the new meta provider now.
9585	 */
9586
9587	help = dtrace_deferred_pid;
9588	dtrace_deferred_pid = NULL;
9589
9590	mutex_exit(&dtrace_lock);
9591
9592	while (help != NULL) {
9593		for (i = 0; i < help->dthps_nprovs; i++) {
9594			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9595			    help->dthps_pid);
9596		}
9597
9598		next = help->dthps_next;
9599		help->dthps_next = NULL;
9600		help->dthps_prev = NULL;
9601		help->dthps_deferred = 0;
9602		help = next;
9603	}
9604
9605	mutex_exit(&dtrace_meta_lock);
9606
9607	return (0);
9608}
9609
9610int
9611dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9612{
9613	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9614
9615	mutex_enter(&dtrace_meta_lock);
9616	mutex_enter(&dtrace_lock);
9617
9618	if (old == dtrace_meta_pid) {
9619		pp = &dtrace_meta_pid;
9620	} else {
9621		panic("attempt to unregister non-existent "
9622		    "dtrace meta-provider %p\n", (void *)old);
9623	}
9624
9625	if (old->dtm_count != 0) {
9626		mutex_exit(&dtrace_lock);
9627		mutex_exit(&dtrace_meta_lock);
9628		return (EBUSY);
9629	}
9630
9631	*pp = NULL;
9632
9633	mutex_exit(&dtrace_lock);
9634	mutex_exit(&dtrace_meta_lock);
9635
9636	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9637	kmem_free(old, sizeof (dtrace_meta_t));
9638
9639	return (0);
9640}
9641
9642
9643/*
9644 * DTrace DIF Object Functions
9645 */
9646static int
9647dtrace_difo_err(uint_t pc, const char *format, ...)
9648{
9649	if (dtrace_err_verbose) {
9650		va_list alist;
9651
9652		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9653		va_start(alist, format);
9654		(void) vuprintf(format, alist);
9655		va_end(alist);
9656	}
9657
9658#ifdef DTRACE_ERRDEBUG
9659	dtrace_errdebug(format);
9660#endif
9661	return (1);
9662}
9663
9664/*
9665 * Validate a DTrace DIF object by checking the IR instructions.  The following
9666 * rules are currently enforced by dtrace_difo_validate():
9667 *
9668 * 1. Each instruction must have a valid opcode
9669 * 2. Each register, string, variable, or subroutine reference must be valid
9670 * 3. No instruction can modify register %r0 (must be zero)
9671 * 4. All instruction reserved bits must be set to zero
9672 * 5. The last instruction must be a "ret" instruction
9673 * 6. All branch targets must reference a valid instruction _after_ the branch
9674 */
9675static int
9676dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9677    cred_t *cr)
9678{
9679	int err = 0, i;
9680	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9681	int kcheckload;
9682	uint_t pc;
9683	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9684
9685	kcheckload = cr == NULL ||
9686	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9687
9688	dp->dtdo_destructive = 0;
9689
9690	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9691		dif_instr_t instr = dp->dtdo_buf[pc];
9692
9693		uint_t r1 = DIF_INSTR_R1(instr);
9694		uint_t r2 = DIF_INSTR_R2(instr);
9695		uint_t rd = DIF_INSTR_RD(instr);
9696		uint_t rs = DIF_INSTR_RS(instr);
9697		uint_t label = DIF_INSTR_LABEL(instr);
9698		uint_t v = DIF_INSTR_VAR(instr);
9699		uint_t subr = DIF_INSTR_SUBR(instr);
9700		uint_t type = DIF_INSTR_TYPE(instr);
9701		uint_t op = DIF_INSTR_OP(instr);
9702
9703		switch (op) {
9704		case DIF_OP_OR:
9705		case DIF_OP_XOR:
9706		case DIF_OP_AND:
9707		case DIF_OP_SLL:
9708		case DIF_OP_SRL:
9709		case DIF_OP_SRA:
9710		case DIF_OP_SUB:
9711		case DIF_OP_ADD:
9712		case DIF_OP_MUL:
9713		case DIF_OP_SDIV:
9714		case DIF_OP_UDIV:
9715		case DIF_OP_SREM:
9716		case DIF_OP_UREM:
9717		case DIF_OP_COPYS:
9718			if (r1 >= nregs)
9719				err += efunc(pc, "invalid register %u\n", r1);
9720			if (r2 >= nregs)
9721				err += efunc(pc, "invalid register %u\n", r2);
9722			if (rd >= nregs)
9723				err += efunc(pc, "invalid register %u\n", rd);
9724			if (rd == 0)
9725				err += efunc(pc, "cannot write to %r0\n");
9726			break;
9727		case DIF_OP_NOT:
9728		case DIF_OP_MOV:
9729		case DIF_OP_ALLOCS:
9730			if (r1 >= nregs)
9731				err += efunc(pc, "invalid register %u\n", r1);
9732			if (r2 != 0)
9733				err += efunc(pc, "non-zero reserved bits\n");
9734			if (rd >= nregs)
9735				err += efunc(pc, "invalid register %u\n", rd);
9736			if (rd == 0)
9737				err += efunc(pc, "cannot write to %r0\n");
9738			break;
9739		case DIF_OP_LDSB:
9740		case DIF_OP_LDSH:
9741		case DIF_OP_LDSW:
9742		case DIF_OP_LDUB:
9743		case DIF_OP_LDUH:
9744		case DIF_OP_LDUW:
9745		case DIF_OP_LDX:
9746			if (r1 >= nregs)
9747				err += efunc(pc, "invalid register %u\n", r1);
9748			if (r2 != 0)
9749				err += efunc(pc, "non-zero reserved bits\n");
9750			if (rd >= nregs)
9751				err += efunc(pc, "invalid register %u\n", rd);
9752			if (rd == 0)
9753				err += efunc(pc, "cannot write to %r0\n");
9754			if (kcheckload)
9755				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9756				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9757			break;
9758		case DIF_OP_RLDSB:
9759		case DIF_OP_RLDSH:
9760		case DIF_OP_RLDSW:
9761		case DIF_OP_RLDUB:
9762		case DIF_OP_RLDUH:
9763		case DIF_OP_RLDUW:
9764		case DIF_OP_RLDX:
9765			if (r1 >= nregs)
9766				err += efunc(pc, "invalid register %u\n", r1);
9767			if (r2 != 0)
9768				err += efunc(pc, "non-zero reserved bits\n");
9769			if (rd >= nregs)
9770				err += efunc(pc, "invalid register %u\n", rd);
9771			if (rd == 0)
9772				err += efunc(pc, "cannot write to %r0\n");
9773			break;
9774		case DIF_OP_ULDSB:
9775		case DIF_OP_ULDSH:
9776		case DIF_OP_ULDSW:
9777		case DIF_OP_ULDUB:
9778		case DIF_OP_ULDUH:
9779		case DIF_OP_ULDUW:
9780		case DIF_OP_ULDX:
9781			if (r1 >= nregs)
9782				err += efunc(pc, "invalid register %u\n", r1);
9783			if (r2 != 0)
9784				err += efunc(pc, "non-zero reserved bits\n");
9785			if (rd >= nregs)
9786				err += efunc(pc, "invalid register %u\n", rd);
9787			if (rd == 0)
9788				err += efunc(pc, "cannot write to %r0\n");
9789			break;
9790		case DIF_OP_STB:
9791		case DIF_OP_STH:
9792		case DIF_OP_STW:
9793		case DIF_OP_STX:
9794			if (r1 >= nregs)
9795				err += efunc(pc, "invalid register %u\n", r1);
9796			if (r2 != 0)
9797				err += efunc(pc, "non-zero reserved bits\n");
9798			if (rd >= nregs)
9799				err += efunc(pc, "invalid register %u\n", rd);
9800			if (rd == 0)
9801				err += efunc(pc, "cannot write to 0 address\n");
9802			break;
9803		case DIF_OP_CMP:
9804		case DIF_OP_SCMP:
9805			if (r1 >= nregs)
9806				err += efunc(pc, "invalid register %u\n", r1);
9807			if (r2 >= nregs)
9808				err += efunc(pc, "invalid register %u\n", r2);
9809			if (rd != 0)
9810				err += efunc(pc, "non-zero reserved bits\n");
9811			break;
9812		case DIF_OP_TST:
9813			if (r1 >= nregs)
9814				err += efunc(pc, "invalid register %u\n", r1);
9815			if (r2 != 0 || rd != 0)
9816				err += efunc(pc, "non-zero reserved bits\n");
9817			break;
9818		case DIF_OP_BA:
9819		case DIF_OP_BE:
9820		case DIF_OP_BNE:
9821		case DIF_OP_BG:
9822		case DIF_OP_BGU:
9823		case DIF_OP_BGE:
9824		case DIF_OP_BGEU:
9825		case DIF_OP_BL:
9826		case DIF_OP_BLU:
9827		case DIF_OP_BLE:
9828		case DIF_OP_BLEU:
9829			if (label >= dp->dtdo_len) {
9830				err += efunc(pc, "invalid branch target %u\n",
9831				    label);
9832			}
9833			if (label <= pc) {
9834				err += efunc(pc, "backward branch to %u\n",
9835				    label);
9836			}
9837			break;
9838		case DIF_OP_RET:
9839			if (r1 != 0 || r2 != 0)
9840				err += efunc(pc, "non-zero reserved bits\n");
9841			if (rd >= nregs)
9842				err += efunc(pc, "invalid register %u\n", rd);
9843			break;
9844		case DIF_OP_NOP:
9845		case DIF_OP_POPTS:
9846		case DIF_OP_FLUSHTS:
9847			if (r1 != 0 || r2 != 0 || rd != 0)
9848				err += efunc(pc, "non-zero reserved bits\n");
9849			break;
9850		case DIF_OP_SETX:
9851			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9852				err += efunc(pc, "invalid integer ref %u\n",
9853				    DIF_INSTR_INTEGER(instr));
9854			}
9855			if (rd >= nregs)
9856				err += efunc(pc, "invalid register %u\n", rd);
9857			if (rd == 0)
9858				err += efunc(pc, "cannot write to %r0\n");
9859			break;
9860		case DIF_OP_SETS:
9861			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9862				err += efunc(pc, "invalid string ref %u\n",
9863				    DIF_INSTR_STRING(instr));
9864			}
9865			if (rd >= nregs)
9866				err += efunc(pc, "invalid register %u\n", rd);
9867			if (rd == 0)
9868				err += efunc(pc, "cannot write to %r0\n");
9869			break;
9870		case DIF_OP_LDGA:
9871		case DIF_OP_LDTA:
9872			if (r1 > DIF_VAR_ARRAY_MAX)
9873				err += efunc(pc, "invalid array %u\n", r1);
9874			if (r2 >= nregs)
9875				err += efunc(pc, "invalid register %u\n", r2);
9876			if (rd >= nregs)
9877				err += efunc(pc, "invalid register %u\n", rd);
9878			if (rd == 0)
9879				err += efunc(pc, "cannot write to %r0\n");
9880			break;
9881		case DIF_OP_LDGS:
9882		case DIF_OP_LDTS:
9883		case DIF_OP_LDLS:
9884		case DIF_OP_LDGAA:
9885		case DIF_OP_LDTAA:
9886			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9887				err += efunc(pc, "invalid variable %u\n", v);
9888			if (rd >= nregs)
9889				err += efunc(pc, "invalid register %u\n", rd);
9890			if (rd == 0)
9891				err += efunc(pc, "cannot write to %r0\n");
9892			break;
9893		case DIF_OP_STGS:
9894		case DIF_OP_STTS:
9895		case DIF_OP_STLS:
9896		case DIF_OP_STGAA:
9897		case DIF_OP_STTAA:
9898			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9899				err += efunc(pc, "invalid variable %u\n", v);
9900			if (rs >= nregs)
9901				err += efunc(pc, "invalid register %u\n", rd);
9902			break;
9903		case DIF_OP_CALL:
9904			if (subr > DIF_SUBR_MAX)
9905				err += efunc(pc, "invalid subr %u\n", subr);
9906			if (rd >= nregs)
9907				err += efunc(pc, "invalid register %u\n", rd);
9908			if (rd == 0)
9909				err += efunc(pc, "cannot write to %r0\n");
9910
9911			if (subr == DIF_SUBR_COPYOUT ||
9912			    subr == DIF_SUBR_COPYOUTSTR) {
9913				dp->dtdo_destructive = 1;
9914			}
9915
9916			if (subr == DIF_SUBR_GETF) {
9917				/*
9918				 * If we have a getf() we need to record that
9919				 * in our state.  Note that our state can be
9920				 * NULL if this is a helper -- but in that
9921				 * case, the call to getf() is itself illegal,
9922				 * and will be caught (slightly later) when
9923				 * the helper is validated.
9924				 */
9925				if (vstate->dtvs_state != NULL)
9926					vstate->dtvs_state->dts_getf++;
9927			}
9928
9929			break;
9930		case DIF_OP_PUSHTR:
9931			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9932				err += efunc(pc, "invalid ref type %u\n", type);
9933			if (r2 >= nregs)
9934				err += efunc(pc, "invalid register %u\n", r2);
9935			if (rs >= nregs)
9936				err += efunc(pc, "invalid register %u\n", rs);
9937			break;
9938		case DIF_OP_PUSHTV:
9939			if (type != DIF_TYPE_CTF)
9940				err += efunc(pc, "invalid val type %u\n", type);
9941			if (r2 >= nregs)
9942				err += efunc(pc, "invalid register %u\n", r2);
9943			if (rs >= nregs)
9944				err += efunc(pc, "invalid register %u\n", rs);
9945			break;
9946		default:
9947			err += efunc(pc, "invalid opcode %u\n",
9948			    DIF_INSTR_OP(instr));
9949		}
9950	}
9951
9952	if (dp->dtdo_len != 0 &&
9953	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9954		err += efunc(dp->dtdo_len - 1,
9955		    "expected 'ret' as last DIF instruction\n");
9956	}
9957
9958	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9959		/*
9960		 * If we're not returning by reference, the size must be either
9961		 * 0 or the size of one of the base types.
9962		 */
9963		switch (dp->dtdo_rtype.dtdt_size) {
9964		case 0:
9965		case sizeof (uint8_t):
9966		case sizeof (uint16_t):
9967		case sizeof (uint32_t):
9968		case sizeof (uint64_t):
9969			break;
9970
9971		default:
9972			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9973		}
9974	}
9975
9976	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9977		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9978		dtrace_diftype_t *vt, *et;
9979		uint_t id, ndx;
9980
9981		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9982		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9983		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9984			err += efunc(i, "unrecognized variable scope %d\n",
9985			    v->dtdv_scope);
9986			break;
9987		}
9988
9989		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9990		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9991			err += efunc(i, "unrecognized variable type %d\n",
9992			    v->dtdv_kind);
9993			break;
9994		}
9995
9996		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9997			err += efunc(i, "%d exceeds variable id limit\n", id);
9998			break;
9999		}
10000
10001		if (id < DIF_VAR_OTHER_UBASE)
10002			continue;
10003
10004		/*
10005		 * For user-defined variables, we need to check that this
10006		 * definition is identical to any previous definition that we
10007		 * encountered.
10008		 */
10009		ndx = id - DIF_VAR_OTHER_UBASE;
10010
10011		switch (v->dtdv_scope) {
10012		case DIFV_SCOPE_GLOBAL:
10013			if (maxglobal == -1 || ndx > maxglobal)
10014				maxglobal = ndx;
10015
10016			if (ndx < vstate->dtvs_nglobals) {
10017				dtrace_statvar_t *svar;
10018
10019				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10020					existing = &svar->dtsv_var;
10021			}
10022
10023			break;
10024
10025		case DIFV_SCOPE_THREAD:
10026			if (maxtlocal == -1 || ndx > maxtlocal)
10027				maxtlocal = ndx;
10028
10029			if (ndx < vstate->dtvs_ntlocals)
10030				existing = &vstate->dtvs_tlocals[ndx];
10031			break;
10032
10033		case DIFV_SCOPE_LOCAL:
10034			if (maxlocal == -1 || ndx > maxlocal)
10035				maxlocal = ndx;
10036
10037			if (ndx < vstate->dtvs_nlocals) {
10038				dtrace_statvar_t *svar;
10039
10040				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10041					existing = &svar->dtsv_var;
10042			}
10043
10044			break;
10045		}
10046
10047		vt = &v->dtdv_type;
10048
10049		if (vt->dtdt_flags & DIF_TF_BYREF) {
10050			if (vt->dtdt_size == 0) {
10051				err += efunc(i, "zero-sized variable\n");
10052				break;
10053			}
10054
10055			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10056			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10057			    vt->dtdt_size > dtrace_statvar_maxsize) {
10058				err += efunc(i, "oversized by-ref static\n");
10059				break;
10060			}
10061		}
10062
10063		if (existing == NULL || existing->dtdv_id == 0)
10064			continue;
10065
10066		ASSERT(existing->dtdv_id == v->dtdv_id);
10067		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10068
10069		if (existing->dtdv_kind != v->dtdv_kind)
10070			err += efunc(i, "%d changed variable kind\n", id);
10071
10072		et = &existing->dtdv_type;
10073
10074		if (vt->dtdt_flags != et->dtdt_flags) {
10075			err += efunc(i, "%d changed variable type flags\n", id);
10076			break;
10077		}
10078
10079		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10080			err += efunc(i, "%d changed variable type size\n", id);
10081			break;
10082		}
10083	}
10084
10085	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10086		dif_instr_t instr = dp->dtdo_buf[pc];
10087
10088		uint_t v = DIF_INSTR_VAR(instr);
10089		uint_t op = DIF_INSTR_OP(instr);
10090
10091		switch (op) {
10092		case DIF_OP_LDGS:
10093		case DIF_OP_LDGAA:
10094		case DIF_OP_STGS:
10095		case DIF_OP_STGAA:
10096			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10097				err += efunc(pc, "invalid variable %u\n", v);
10098			break;
10099		case DIF_OP_LDTS:
10100		case DIF_OP_LDTAA:
10101		case DIF_OP_STTS:
10102		case DIF_OP_STTAA:
10103			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10104				err += efunc(pc, "invalid variable %u\n", v);
10105			break;
10106		case DIF_OP_LDLS:
10107		case DIF_OP_STLS:
10108			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10109				err += efunc(pc, "invalid variable %u\n", v);
10110			break;
10111		default:
10112			break;
10113		}
10114	}
10115
10116	return (err);
10117}
10118
10119/*
10120 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10121 * are much more constrained than normal DIFOs.  Specifically, they may
10122 * not:
10123 *
10124 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10125 *    miscellaneous string routines
10126 * 2. Access DTrace variables other than the args[] array, and the
10127 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10128 * 3. Have thread-local variables.
10129 * 4. Have dynamic variables.
10130 */
10131static int
10132dtrace_difo_validate_helper(dtrace_difo_t *dp)
10133{
10134	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10135	int err = 0;
10136	uint_t pc;
10137
10138	for (pc = 0; pc < dp->dtdo_len; pc++) {
10139		dif_instr_t instr = dp->dtdo_buf[pc];
10140
10141		uint_t v = DIF_INSTR_VAR(instr);
10142		uint_t subr = DIF_INSTR_SUBR(instr);
10143		uint_t op = DIF_INSTR_OP(instr);
10144
10145		switch (op) {
10146		case DIF_OP_OR:
10147		case DIF_OP_XOR:
10148		case DIF_OP_AND:
10149		case DIF_OP_SLL:
10150		case DIF_OP_SRL:
10151		case DIF_OP_SRA:
10152		case DIF_OP_SUB:
10153		case DIF_OP_ADD:
10154		case DIF_OP_MUL:
10155		case DIF_OP_SDIV:
10156		case DIF_OP_UDIV:
10157		case DIF_OP_SREM:
10158		case DIF_OP_UREM:
10159		case DIF_OP_COPYS:
10160		case DIF_OP_NOT:
10161		case DIF_OP_MOV:
10162		case DIF_OP_RLDSB:
10163		case DIF_OP_RLDSH:
10164		case DIF_OP_RLDSW:
10165		case DIF_OP_RLDUB:
10166		case DIF_OP_RLDUH:
10167		case DIF_OP_RLDUW:
10168		case DIF_OP_RLDX:
10169		case DIF_OP_ULDSB:
10170		case DIF_OP_ULDSH:
10171		case DIF_OP_ULDSW:
10172		case DIF_OP_ULDUB:
10173		case DIF_OP_ULDUH:
10174		case DIF_OP_ULDUW:
10175		case DIF_OP_ULDX:
10176		case DIF_OP_STB:
10177		case DIF_OP_STH:
10178		case DIF_OP_STW:
10179		case DIF_OP_STX:
10180		case DIF_OP_ALLOCS:
10181		case DIF_OP_CMP:
10182		case DIF_OP_SCMP:
10183		case DIF_OP_TST:
10184		case DIF_OP_BA:
10185		case DIF_OP_BE:
10186		case DIF_OP_BNE:
10187		case DIF_OP_BG:
10188		case DIF_OP_BGU:
10189		case DIF_OP_BGE:
10190		case DIF_OP_BGEU:
10191		case DIF_OP_BL:
10192		case DIF_OP_BLU:
10193		case DIF_OP_BLE:
10194		case DIF_OP_BLEU:
10195		case DIF_OP_RET:
10196		case DIF_OP_NOP:
10197		case DIF_OP_POPTS:
10198		case DIF_OP_FLUSHTS:
10199		case DIF_OP_SETX:
10200		case DIF_OP_SETS:
10201		case DIF_OP_LDGA:
10202		case DIF_OP_LDLS:
10203		case DIF_OP_STGS:
10204		case DIF_OP_STLS:
10205		case DIF_OP_PUSHTR:
10206		case DIF_OP_PUSHTV:
10207			break;
10208
10209		case DIF_OP_LDGS:
10210			if (v >= DIF_VAR_OTHER_UBASE)
10211				break;
10212
10213			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10214				break;
10215
10216			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10217			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10218			    v == DIF_VAR_EXECARGS ||
10219			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10220			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10221				break;
10222
10223			err += efunc(pc, "illegal variable %u\n", v);
10224			break;
10225
10226		case DIF_OP_LDTA:
10227		case DIF_OP_LDTS:
10228		case DIF_OP_LDGAA:
10229		case DIF_OP_LDTAA:
10230			err += efunc(pc, "illegal dynamic variable load\n");
10231			break;
10232
10233		case DIF_OP_STTS:
10234		case DIF_OP_STGAA:
10235		case DIF_OP_STTAA:
10236			err += efunc(pc, "illegal dynamic variable store\n");
10237			break;
10238
10239		case DIF_OP_CALL:
10240			if (subr == DIF_SUBR_ALLOCA ||
10241			    subr == DIF_SUBR_BCOPY ||
10242			    subr == DIF_SUBR_COPYIN ||
10243			    subr == DIF_SUBR_COPYINTO ||
10244			    subr == DIF_SUBR_COPYINSTR ||
10245			    subr == DIF_SUBR_INDEX ||
10246			    subr == DIF_SUBR_INET_NTOA ||
10247			    subr == DIF_SUBR_INET_NTOA6 ||
10248			    subr == DIF_SUBR_INET_NTOP ||
10249			    subr == DIF_SUBR_JSON ||
10250			    subr == DIF_SUBR_LLTOSTR ||
10251			    subr == DIF_SUBR_STRTOLL ||
10252			    subr == DIF_SUBR_RINDEX ||
10253			    subr == DIF_SUBR_STRCHR ||
10254			    subr == DIF_SUBR_STRJOIN ||
10255			    subr == DIF_SUBR_STRRCHR ||
10256			    subr == DIF_SUBR_STRSTR ||
10257			    subr == DIF_SUBR_HTONS ||
10258			    subr == DIF_SUBR_HTONL ||
10259			    subr == DIF_SUBR_HTONLL ||
10260			    subr == DIF_SUBR_NTOHS ||
10261			    subr == DIF_SUBR_NTOHL ||
10262			    subr == DIF_SUBR_NTOHLL ||
10263			    subr == DIF_SUBR_MEMREF ||
10264#ifndef illumos
10265			    subr == DIF_SUBR_MEMSTR ||
10266#endif
10267			    subr == DIF_SUBR_TYPEREF)
10268				break;
10269
10270			err += efunc(pc, "invalid subr %u\n", subr);
10271			break;
10272
10273		default:
10274			err += efunc(pc, "invalid opcode %u\n",
10275			    DIF_INSTR_OP(instr));
10276		}
10277	}
10278
10279	return (err);
10280}
10281
10282/*
10283 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10284 * basis; 0 if not.
10285 */
10286static int
10287dtrace_difo_cacheable(dtrace_difo_t *dp)
10288{
10289	int i;
10290
10291	if (dp == NULL)
10292		return (0);
10293
10294	for (i = 0; i < dp->dtdo_varlen; i++) {
10295		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10296
10297		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10298			continue;
10299
10300		switch (v->dtdv_id) {
10301		case DIF_VAR_CURTHREAD:
10302		case DIF_VAR_PID:
10303		case DIF_VAR_TID:
10304		case DIF_VAR_EXECARGS:
10305		case DIF_VAR_EXECNAME:
10306		case DIF_VAR_ZONENAME:
10307			break;
10308
10309		default:
10310			return (0);
10311		}
10312	}
10313
10314	/*
10315	 * This DIF object may be cacheable.  Now we need to look for any
10316	 * array loading instructions, any memory loading instructions, or
10317	 * any stores to thread-local variables.
10318	 */
10319	for (i = 0; i < dp->dtdo_len; i++) {
10320		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10321
10322		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10323		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10324		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10325		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10326			return (0);
10327	}
10328
10329	return (1);
10330}
10331
10332static void
10333dtrace_difo_hold(dtrace_difo_t *dp)
10334{
10335	int i;
10336
10337	ASSERT(MUTEX_HELD(&dtrace_lock));
10338
10339	dp->dtdo_refcnt++;
10340	ASSERT(dp->dtdo_refcnt != 0);
10341
10342	/*
10343	 * We need to check this DIF object for references to the variable
10344	 * DIF_VAR_VTIMESTAMP.
10345	 */
10346	for (i = 0; i < dp->dtdo_varlen; i++) {
10347		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10348
10349		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10350			continue;
10351
10352		if (dtrace_vtime_references++ == 0)
10353			dtrace_vtime_enable();
10354	}
10355}
10356
10357/*
10358 * This routine calculates the dynamic variable chunksize for a given DIF
10359 * object.  The calculation is not fool-proof, and can probably be tricked by
10360 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10361 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10362 * if a dynamic variable size exceeds the chunksize.
10363 */
10364static void
10365dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10366{
10367	uint64_t sval = 0;
10368	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10369	const dif_instr_t *text = dp->dtdo_buf;
10370	uint_t pc, srd = 0;
10371	uint_t ttop = 0;
10372	size_t size, ksize;
10373	uint_t id, i;
10374
10375	for (pc = 0; pc < dp->dtdo_len; pc++) {
10376		dif_instr_t instr = text[pc];
10377		uint_t op = DIF_INSTR_OP(instr);
10378		uint_t rd = DIF_INSTR_RD(instr);
10379		uint_t r1 = DIF_INSTR_R1(instr);
10380		uint_t nkeys = 0;
10381		uchar_t scope = 0;
10382
10383		dtrace_key_t *key = tupregs;
10384
10385		switch (op) {
10386		case DIF_OP_SETX:
10387			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10388			srd = rd;
10389			continue;
10390
10391		case DIF_OP_STTS:
10392			key = &tupregs[DIF_DTR_NREGS];
10393			key[0].dttk_size = 0;
10394			key[1].dttk_size = 0;
10395			nkeys = 2;
10396			scope = DIFV_SCOPE_THREAD;
10397			break;
10398
10399		case DIF_OP_STGAA:
10400		case DIF_OP_STTAA:
10401			nkeys = ttop;
10402
10403			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10404				key[nkeys++].dttk_size = 0;
10405
10406			key[nkeys++].dttk_size = 0;
10407
10408			if (op == DIF_OP_STTAA) {
10409				scope = DIFV_SCOPE_THREAD;
10410			} else {
10411				scope = DIFV_SCOPE_GLOBAL;
10412			}
10413
10414			break;
10415
10416		case DIF_OP_PUSHTR:
10417			if (ttop == DIF_DTR_NREGS)
10418				return;
10419
10420			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10421				/*
10422				 * If the register for the size of the "pushtr"
10423				 * is %r0 (or the value is 0) and the type is
10424				 * a string, we'll use the system-wide default
10425				 * string size.
10426				 */
10427				tupregs[ttop++].dttk_size =
10428				    dtrace_strsize_default;
10429			} else {
10430				if (srd == 0)
10431					return;
10432
10433				if (sval > LONG_MAX)
10434					return;
10435
10436				tupregs[ttop++].dttk_size = sval;
10437			}
10438
10439			break;
10440
10441		case DIF_OP_PUSHTV:
10442			if (ttop == DIF_DTR_NREGS)
10443				return;
10444
10445			tupregs[ttop++].dttk_size = 0;
10446			break;
10447
10448		case DIF_OP_FLUSHTS:
10449			ttop = 0;
10450			break;
10451
10452		case DIF_OP_POPTS:
10453			if (ttop != 0)
10454				ttop--;
10455			break;
10456		}
10457
10458		sval = 0;
10459		srd = 0;
10460
10461		if (nkeys == 0)
10462			continue;
10463
10464		/*
10465		 * We have a dynamic variable allocation; calculate its size.
10466		 */
10467		for (ksize = 0, i = 0; i < nkeys; i++)
10468			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10469
10470		size = sizeof (dtrace_dynvar_t);
10471		size += sizeof (dtrace_key_t) * (nkeys - 1);
10472		size += ksize;
10473
10474		/*
10475		 * Now we need to determine the size of the stored data.
10476		 */
10477		id = DIF_INSTR_VAR(instr);
10478
10479		for (i = 0; i < dp->dtdo_varlen; i++) {
10480			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10481
10482			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10483				size += v->dtdv_type.dtdt_size;
10484				break;
10485			}
10486		}
10487
10488		if (i == dp->dtdo_varlen)
10489			return;
10490
10491		/*
10492		 * We have the size.  If this is larger than the chunk size
10493		 * for our dynamic variable state, reset the chunk size.
10494		 */
10495		size = P2ROUNDUP(size, sizeof (uint64_t));
10496
10497		/*
10498		 * Before setting the chunk size, check that we're not going
10499		 * to set it to a negative value...
10500		 */
10501		if (size > LONG_MAX)
10502			return;
10503
10504		/*
10505		 * ...and make certain that we didn't badly overflow.
10506		 */
10507		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10508			return;
10509
10510		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10511			vstate->dtvs_dynvars.dtds_chunksize = size;
10512	}
10513}
10514
10515static void
10516dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10517{
10518	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10519	uint_t id;
10520
10521	ASSERT(MUTEX_HELD(&dtrace_lock));
10522	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10523
10524	for (i = 0; i < dp->dtdo_varlen; i++) {
10525		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10526		dtrace_statvar_t *svar, ***svarp = NULL;
10527		size_t dsize = 0;
10528		uint8_t scope = v->dtdv_scope;
10529		int *np = NULL;
10530
10531		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10532			continue;
10533
10534		id -= DIF_VAR_OTHER_UBASE;
10535
10536		switch (scope) {
10537		case DIFV_SCOPE_THREAD:
10538			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10539				dtrace_difv_t *tlocals;
10540
10541				if ((ntlocals = (otlocals << 1)) == 0)
10542					ntlocals = 1;
10543
10544				osz = otlocals * sizeof (dtrace_difv_t);
10545				nsz = ntlocals * sizeof (dtrace_difv_t);
10546
10547				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10548
10549				if (osz != 0) {
10550					bcopy(vstate->dtvs_tlocals,
10551					    tlocals, osz);
10552					kmem_free(vstate->dtvs_tlocals, osz);
10553				}
10554
10555				vstate->dtvs_tlocals = tlocals;
10556				vstate->dtvs_ntlocals = ntlocals;
10557			}
10558
10559			vstate->dtvs_tlocals[id] = *v;
10560			continue;
10561
10562		case DIFV_SCOPE_LOCAL:
10563			np = &vstate->dtvs_nlocals;
10564			svarp = &vstate->dtvs_locals;
10565
10566			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10567				dsize = NCPU * (v->dtdv_type.dtdt_size +
10568				    sizeof (uint64_t));
10569			else
10570				dsize = NCPU * sizeof (uint64_t);
10571
10572			break;
10573
10574		case DIFV_SCOPE_GLOBAL:
10575			np = &vstate->dtvs_nglobals;
10576			svarp = &vstate->dtvs_globals;
10577
10578			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10579				dsize = v->dtdv_type.dtdt_size +
10580				    sizeof (uint64_t);
10581
10582			break;
10583
10584		default:
10585			ASSERT(0);
10586		}
10587
10588		while (id >= (oldsvars = *np)) {
10589			dtrace_statvar_t **statics;
10590			int newsvars, oldsize, newsize;
10591
10592			if ((newsvars = (oldsvars << 1)) == 0)
10593				newsvars = 1;
10594
10595			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10596			newsize = newsvars * sizeof (dtrace_statvar_t *);
10597
10598			statics = kmem_zalloc(newsize, KM_SLEEP);
10599
10600			if (oldsize != 0) {
10601				bcopy(*svarp, statics, oldsize);
10602				kmem_free(*svarp, oldsize);
10603			}
10604
10605			*svarp = statics;
10606			*np = newsvars;
10607		}
10608
10609		if ((svar = (*svarp)[id]) == NULL) {
10610			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10611			svar->dtsv_var = *v;
10612
10613			if ((svar->dtsv_size = dsize) != 0) {
10614				svar->dtsv_data = (uint64_t)(uintptr_t)
10615				    kmem_zalloc(dsize, KM_SLEEP);
10616			}
10617
10618			(*svarp)[id] = svar;
10619		}
10620
10621		svar->dtsv_refcnt++;
10622	}
10623
10624	dtrace_difo_chunksize(dp, vstate);
10625	dtrace_difo_hold(dp);
10626}
10627
10628static dtrace_difo_t *
10629dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10630{
10631	dtrace_difo_t *new;
10632	size_t sz;
10633
10634	ASSERT(dp->dtdo_buf != NULL);
10635	ASSERT(dp->dtdo_refcnt != 0);
10636
10637	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10638
10639	ASSERT(dp->dtdo_buf != NULL);
10640	sz = dp->dtdo_len * sizeof (dif_instr_t);
10641	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10642	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10643	new->dtdo_len = dp->dtdo_len;
10644
10645	if (dp->dtdo_strtab != NULL) {
10646		ASSERT(dp->dtdo_strlen != 0);
10647		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10648		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10649		new->dtdo_strlen = dp->dtdo_strlen;
10650	}
10651
10652	if (dp->dtdo_inttab != NULL) {
10653		ASSERT(dp->dtdo_intlen != 0);
10654		sz = dp->dtdo_intlen * sizeof (uint64_t);
10655		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10656		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10657		new->dtdo_intlen = dp->dtdo_intlen;
10658	}
10659
10660	if (dp->dtdo_vartab != NULL) {
10661		ASSERT(dp->dtdo_varlen != 0);
10662		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10663		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10664		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10665		new->dtdo_varlen = dp->dtdo_varlen;
10666	}
10667
10668	dtrace_difo_init(new, vstate);
10669	return (new);
10670}
10671
10672static void
10673dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10674{
10675	int i;
10676
10677	ASSERT(dp->dtdo_refcnt == 0);
10678
10679	for (i = 0; i < dp->dtdo_varlen; i++) {
10680		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10681		dtrace_statvar_t *svar, **svarp = NULL;
10682		uint_t id;
10683		uint8_t scope = v->dtdv_scope;
10684		int *np = NULL;
10685
10686		switch (scope) {
10687		case DIFV_SCOPE_THREAD:
10688			continue;
10689
10690		case DIFV_SCOPE_LOCAL:
10691			np = &vstate->dtvs_nlocals;
10692			svarp = vstate->dtvs_locals;
10693			break;
10694
10695		case DIFV_SCOPE_GLOBAL:
10696			np = &vstate->dtvs_nglobals;
10697			svarp = vstate->dtvs_globals;
10698			break;
10699
10700		default:
10701			ASSERT(0);
10702		}
10703
10704		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10705			continue;
10706
10707		id -= DIF_VAR_OTHER_UBASE;
10708		ASSERT(id < *np);
10709
10710		svar = svarp[id];
10711		ASSERT(svar != NULL);
10712		ASSERT(svar->dtsv_refcnt > 0);
10713
10714		if (--svar->dtsv_refcnt > 0)
10715			continue;
10716
10717		if (svar->dtsv_size != 0) {
10718			ASSERT(svar->dtsv_data != 0);
10719			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10720			    svar->dtsv_size);
10721		}
10722
10723		kmem_free(svar, sizeof (dtrace_statvar_t));
10724		svarp[id] = NULL;
10725	}
10726
10727	if (dp->dtdo_buf != NULL)
10728		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10729	if (dp->dtdo_inttab != NULL)
10730		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10731	if (dp->dtdo_strtab != NULL)
10732		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10733	if (dp->dtdo_vartab != NULL)
10734		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10735
10736	kmem_free(dp, sizeof (dtrace_difo_t));
10737}
10738
10739static void
10740dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10741{
10742	int i;
10743
10744	ASSERT(MUTEX_HELD(&dtrace_lock));
10745	ASSERT(dp->dtdo_refcnt != 0);
10746
10747	for (i = 0; i < dp->dtdo_varlen; i++) {
10748		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10749
10750		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10751			continue;
10752
10753		ASSERT(dtrace_vtime_references > 0);
10754		if (--dtrace_vtime_references == 0)
10755			dtrace_vtime_disable();
10756	}
10757
10758	if (--dp->dtdo_refcnt == 0)
10759		dtrace_difo_destroy(dp, vstate);
10760}
10761
10762/*
10763 * DTrace Format Functions
10764 */
10765static uint16_t
10766dtrace_format_add(dtrace_state_t *state, char *str)
10767{
10768	char *fmt, **new;
10769	uint16_t ndx, len = strlen(str) + 1;
10770
10771	fmt = kmem_zalloc(len, KM_SLEEP);
10772	bcopy(str, fmt, len);
10773
10774	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10775		if (state->dts_formats[ndx] == NULL) {
10776			state->dts_formats[ndx] = fmt;
10777			return (ndx + 1);
10778		}
10779	}
10780
10781	if (state->dts_nformats == USHRT_MAX) {
10782		/*
10783		 * This is only likely if a denial-of-service attack is being
10784		 * attempted.  As such, it's okay to fail silently here.
10785		 */
10786		kmem_free(fmt, len);
10787		return (0);
10788	}
10789
10790	/*
10791	 * For simplicity, we always resize the formats array to be exactly the
10792	 * number of formats.
10793	 */
10794	ndx = state->dts_nformats++;
10795	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10796
10797	if (state->dts_formats != NULL) {
10798		ASSERT(ndx != 0);
10799		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10800		kmem_free(state->dts_formats, ndx * sizeof (char *));
10801	}
10802
10803	state->dts_formats = new;
10804	state->dts_formats[ndx] = fmt;
10805
10806	return (ndx + 1);
10807}
10808
10809static void
10810dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10811{
10812	char *fmt;
10813
10814	ASSERT(state->dts_formats != NULL);
10815	ASSERT(format <= state->dts_nformats);
10816	ASSERT(state->dts_formats[format - 1] != NULL);
10817
10818	fmt = state->dts_formats[format - 1];
10819	kmem_free(fmt, strlen(fmt) + 1);
10820	state->dts_formats[format - 1] = NULL;
10821}
10822
10823static void
10824dtrace_format_destroy(dtrace_state_t *state)
10825{
10826	int i;
10827
10828	if (state->dts_nformats == 0) {
10829		ASSERT(state->dts_formats == NULL);
10830		return;
10831	}
10832
10833	ASSERT(state->dts_formats != NULL);
10834
10835	for (i = 0; i < state->dts_nformats; i++) {
10836		char *fmt = state->dts_formats[i];
10837
10838		if (fmt == NULL)
10839			continue;
10840
10841		kmem_free(fmt, strlen(fmt) + 1);
10842	}
10843
10844	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10845	state->dts_nformats = 0;
10846	state->dts_formats = NULL;
10847}
10848
10849/*
10850 * DTrace Predicate Functions
10851 */
10852static dtrace_predicate_t *
10853dtrace_predicate_create(dtrace_difo_t *dp)
10854{
10855	dtrace_predicate_t *pred;
10856
10857	ASSERT(MUTEX_HELD(&dtrace_lock));
10858	ASSERT(dp->dtdo_refcnt != 0);
10859
10860	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10861	pred->dtp_difo = dp;
10862	pred->dtp_refcnt = 1;
10863
10864	if (!dtrace_difo_cacheable(dp))
10865		return (pred);
10866
10867	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10868		/*
10869		 * This is only theoretically possible -- we have had 2^32
10870		 * cacheable predicates on this machine.  We cannot allow any
10871		 * more predicates to become cacheable:  as unlikely as it is,
10872		 * there may be a thread caching a (now stale) predicate cache
10873		 * ID. (N.B.: the temptation is being successfully resisted to
10874		 * have this cmn_err() "Holy shit -- we executed this code!")
10875		 */
10876		return (pred);
10877	}
10878
10879	pred->dtp_cacheid = dtrace_predcache_id++;
10880
10881	return (pred);
10882}
10883
10884static void
10885dtrace_predicate_hold(dtrace_predicate_t *pred)
10886{
10887	ASSERT(MUTEX_HELD(&dtrace_lock));
10888	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10889	ASSERT(pred->dtp_refcnt > 0);
10890
10891	pred->dtp_refcnt++;
10892}
10893
10894static void
10895dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10896{
10897	dtrace_difo_t *dp = pred->dtp_difo;
10898
10899	ASSERT(MUTEX_HELD(&dtrace_lock));
10900	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10901	ASSERT(pred->dtp_refcnt > 0);
10902
10903	if (--pred->dtp_refcnt == 0) {
10904		dtrace_difo_release(pred->dtp_difo, vstate);
10905		kmem_free(pred, sizeof (dtrace_predicate_t));
10906	}
10907}
10908
10909/*
10910 * DTrace Action Description Functions
10911 */
10912static dtrace_actdesc_t *
10913dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10914    uint64_t uarg, uint64_t arg)
10915{
10916	dtrace_actdesc_t *act;
10917
10918#ifdef illumos
10919	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10920	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10921#endif
10922
10923	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10924	act->dtad_kind = kind;
10925	act->dtad_ntuple = ntuple;
10926	act->dtad_uarg = uarg;
10927	act->dtad_arg = arg;
10928	act->dtad_refcnt = 1;
10929
10930	return (act);
10931}
10932
10933static void
10934dtrace_actdesc_hold(dtrace_actdesc_t *act)
10935{
10936	ASSERT(act->dtad_refcnt >= 1);
10937	act->dtad_refcnt++;
10938}
10939
10940static void
10941dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10942{
10943	dtrace_actkind_t kind = act->dtad_kind;
10944	dtrace_difo_t *dp;
10945
10946	ASSERT(act->dtad_refcnt >= 1);
10947
10948	if (--act->dtad_refcnt != 0)
10949		return;
10950
10951	if ((dp = act->dtad_difo) != NULL)
10952		dtrace_difo_release(dp, vstate);
10953
10954	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10955		char *str = (char *)(uintptr_t)act->dtad_arg;
10956
10957#ifdef illumos
10958		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10959		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10960#endif
10961
10962		if (str != NULL)
10963			kmem_free(str, strlen(str) + 1);
10964	}
10965
10966	kmem_free(act, sizeof (dtrace_actdesc_t));
10967}
10968
10969/*
10970 * DTrace ECB Functions
10971 */
10972static dtrace_ecb_t *
10973dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10974{
10975	dtrace_ecb_t *ecb;
10976	dtrace_epid_t epid;
10977
10978	ASSERT(MUTEX_HELD(&dtrace_lock));
10979
10980	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10981	ecb->dte_predicate = NULL;
10982	ecb->dte_probe = probe;
10983
10984	/*
10985	 * The default size is the size of the default action: recording
10986	 * the header.
10987	 */
10988	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10989	ecb->dte_alignment = sizeof (dtrace_epid_t);
10990
10991	epid = state->dts_epid++;
10992
10993	if (epid - 1 >= state->dts_necbs) {
10994		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10995		int necbs = state->dts_necbs << 1;
10996
10997		ASSERT(epid == state->dts_necbs + 1);
10998
10999		if (necbs == 0) {
11000			ASSERT(oecbs == NULL);
11001			necbs = 1;
11002		}
11003
11004		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11005
11006		if (oecbs != NULL)
11007			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11008
11009		dtrace_membar_producer();
11010		state->dts_ecbs = ecbs;
11011
11012		if (oecbs != NULL) {
11013			/*
11014			 * If this state is active, we must dtrace_sync()
11015			 * before we can free the old dts_ecbs array:  we're
11016			 * coming in hot, and there may be active ring
11017			 * buffer processing (which indexes into the dts_ecbs
11018			 * array) on another CPU.
11019			 */
11020			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11021				dtrace_sync();
11022
11023			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11024		}
11025
11026		dtrace_membar_producer();
11027		state->dts_necbs = necbs;
11028	}
11029
11030	ecb->dte_state = state;
11031
11032	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11033	dtrace_membar_producer();
11034	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11035
11036	return (ecb);
11037}
11038
11039static void
11040dtrace_ecb_enable(dtrace_ecb_t *ecb)
11041{
11042	dtrace_probe_t *probe = ecb->dte_probe;
11043
11044	ASSERT(MUTEX_HELD(&cpu_lock));
11045	ASSERT(MUTEX_HELD(&dtrace_lock));
11046	ASSERT(ecb->dte_next == NULL);
11047
11048	if (probe == NULL) {
11049		/*
11050		 * This is the NULL probe -- there's nothing to do.
11051		 */
11052		return;
11053	}
11054
11055	if (probe->dtpr_ecb == NULL) {
11056		dtrace_provider_t *prov = probe->dtpr_provider;
11057
11058		/*
11059		 * We're the first ECB on this probe.
11060		 */
11061		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11062
11063		if (ecb->dte_predicate != NULL)
11064			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11065
11066		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11067		    probe->dtpr_id, probe->dtpr_arg);
11068	} else {
11069		/*
11070		 * This probe is already active.  Swing the last pointer to
11071		 * point to the new ECB, and issue a dtrace_sync() to assure
11072		 * that all CPUs have seen the change.
11073		 */
11074		ASSERT(probe->dtpr_ecb_last != NULL);
11075		probe->dtpr_ecb_last->dte_next = ecb;
11076		probe->dtpr_ecb_last = ecb;
11077		probe->dtpr_predcache = 0;
11078
11079		dtrace_sync();
11080	}
11081}
11082
11083static void
11084dtrace_ecb_resize(dtrace_ecb_t *ecb)
11085{
11086	dtrace_action_t *act;
11087	uint32_t curneeded = UINT32_MAX;
11088	uint32_t aggbase = UINT32_MAX;
11089
11090	/*
11091	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11092	 * we always record it first.)
11093	 */
11094	ecb->dte_size = sizeof (dtrace_rechdr_t);
11095	ecb->dte_alignment = sizeof (dtrace_epid_t);
11096
11097	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11098		dtrace_recdesc_t *rec = &act->dta_rec;
11099		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11100
11101		ecb->dte_alignment = MAX(ecb->dte_alignment,
11102		    rec->dtrd_alignment);
11103
11104		if (DTRACEACT_ISAGG(act->dta_kind)) {
11105			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11106
11107			ASSERT(rec->dtrd_size != 0);
11108			ASSERT(agg->dtag_first != NULL);
11109			ASSERT(act->dta_prev->dta_intuple);
11110			ASSERT(aggbase != UINT32_MAX);
11111			ASSERT(curneeded != UINT32_MAX);
11112
11113			agg->dtag_base = aggbase;
11114
11115			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11116			rec->dtrd_offset = curneeded;
11117			curneeded += rec->dtrd_size;
11118			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11119
11120			aggbase = UINT32_MAX;
11121			curneeded = UINT32_MAX;
11122		} else if (act->dta_intuple) {
11123			if (curneeded == UINT32_MAX) {
11124				/*
11125				 * This is the first record in a tuple.  Align
11126				 * curneeded to be at offset 4 in an 8-byte
11127				 * aligned block.
11128				 */
11129				ASSERT(act->dta_prev == NULL ||
11130				    !act->dta_prev->dta_intuple);
11131				ASSERT3U(aggbase, ==, UINT32_MAX);
11132				curneeded = P2PHASEUP(ecb->dte_size,
11133				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11134
11135				aggbase = curneeded - sizeof (dtrace_aggid_t);
11136				ASSERT(IS_P2ALIGNED(aggbase,
11137				    sizeof (uint64_t)));
11138			}
11139			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11140			rec->dtrd_offset = curneeded;
11141			curneeded += rec->dtrd_size;
11142		} else {
11143			/* tuples must be followed by an aggregation */
11144			ASSERT(act->dta_prev == NULL ||
11145			    !act->dta_prev->dta_intuple);
11146
11147			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11148			    rec->dtrd_alignment);
11149			rec->dtrd_offset = ecb->dte_size;
11150			ecb->dte_size += rec->dtrd_size;
11151			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11152		}
11153	}
11154
11155	if ((act = ecb->dte_action) != NULL &&
11156	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11157	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11158		/*
11159		 * If the size is still sizeof (dtrace_rechdr_t), then all
11160		 * actions store no data; set the size to 0.
11161		 */
11162		ecb->dte_size = 0;
11163	}
11164
11165	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11166	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11167	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11168	    ecb->dte_needed);
11169}
11170
11171static dtrace_action_t *
11172dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11173{
11174	dtrace_aggregation_t *agg;
11175	size_t size = sizeof (uint64_t);
11176	int ntuple = desc->dtad_ntuple;
11177	dtrace_action_t *act;
11178	dtrace_recdesc_t *frec;
11179	dtrace_aggid_t aggid;
11180	dtrace_state_t *state = ecb->dte_state;
11181
11182	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11183	agg->dtag_ecb = ecb;
11184
11185	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11186
11187	switch (desc->dtad_kind) {
11188	case DTRACEAGG_MIN:
11189		agg->dtag_initial = INT64_MAX;
11190		agg->dtag_aggregate = dtrace_aggregate_min;
11191		break;
11192
11193	case DTRACEAGG_MAX:
11194		agg->dtag_initial = INT64_MIN;
11195		agg->dtag_aggregate = dtrace_aggregate_max;
11196		break;
11197
11198	case DTRACEAGG_COUNT:
11199		agg->dtag_aggregate = dtrace_aggregate_count;
11200		break;
11201
11202	case DTRACEAGG_QUANTIZE:
11203		agg->dtag_aggregate = dtrace_aggregate_quantize;
11204		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11205		    sizeof (uint64_t);
11206		break;
11207
11208	case DTRACEAGG_LQUANTIZE: {
11209		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11210		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11211
11212		agg->dtag_initial = desc->dtad_arg;
11213		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11214
11215		if (step == 0 || levels == 0)
11216			goto err;
11217
11218		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11219		break;
11220	}
11221
11222	case DTRACEAGG_LLQUANTIZE: {
11223		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11224		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11225		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11226		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11227		int64_t v;
11228
11229		agg->dtag_initial = desc->dtad_arg;
11230		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11231
11232		if (factor < 2 || low >= high || nsteps < factor)
11233			goto err;
11234
11235		/*
11236		 * Now check that the number of steps evenly divides a power
11237		 * of the factor.  (This assures both integer bucket size and
11238		 * linearity within each magnitude.)
11239		 */
11240		for (v = factor; v < nsteps; v *= factor)
11241			continue;
11242
11243		if ((v % nsteps) || (nsteps % factor))
11244			goto err;
11245
11246		size = (dtrace_aggregate_llquantize_bucket(factor,
11247		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11248		break;
11249	}
11250
11251	case DTRACEAGG_AVG:
11252		agg->dtag_aggregate = dtrace_aggregate_avg;
11253		size = sizeof (uint64_t) * 2;
11254		break;
11255
11256	case DTRACEAGG_STDDEV:
11257		agg->dtag_aggregate = dtrace_aggregate_stddev;
11258		size = sizeof (uint64_t) * 4;
11259		break;
11260
11261	case DTRACEAGG_SUM:
11262		agg->dtag_aggregate = dtrace_aggregate_sum;
11263		break;
11264
11265	default:
11266		goto err;
11267	}
11268
11269	agg->dtag_action.dta_rec.dtrd_size = size;
11270
11271	if (ntuple == 0)
11272		goto err;
11273
11274	/*
11275	 * We must make sure that we have enough actions for the n-tuple.
11276	 */
11277	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11278		if (DTRACEACT_ISAGG(act->dta_kind))
11279			break;
11280
11281		if (--ntuple == 0) {
11282			/*
11283			 * This is the action with which our n-tuple begins.
11284			 */
11285			agg->dtag_first = act;
11286			goto success;
11287		}
11288	}
11289
11290	/*
11291	 * This n-tuple is short by ntuple elements.  Return failure.
11292	 */
11293	ASSERT(ntuple != 0);
11294err:
11295	kmem_free(agg, sizeof (dtrace_aggregation_t));
11296	return (NULL);
11297
11298success:
11299	/*
11300	 * If the last action in the tuple has a size of zero, it's actually
11301	 * an expression argument for the aggregating action.
11302	 */
11303	ASSERT(ecb->dte_action_last != NULL);
11304	act = ecb->dte_action_last;
11305
11306	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11307		ASSERT(act->dta_difo != NULL);
11308
11309		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11310			agg->dtag_hasarg = 1;
11311	}
11312
11313	/*
11314	 * We need to allocate an id for this aggregation.
11315	 */
11316#ifdef illumos
11317	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11318	    VM_BESTFIT | VM_SLEEP);
11319#else
11320	aggid = alloc_unr(state->dts_aggid_arena);
11321#endif
11322
11323	if (aggid - 1 >= state->dts_naggregations) {
11324		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11325		dtrace_aggregation_t **aggs;
11326		int naggs = state->dts_naggregations << 1;
11327		int onaggs = state->dts_naggregations;
11328
11329		ASSERT(aggid == state->dts_naggregations + 1);
11330
11331		if (naggs == 0) {
11332			ASSERT(oaggs == NULL);
11333			naggs = 1;
11334		}
11335
11336		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11337
11338		if (oaggs != NULL) {
11339			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11340			kmem_free(oaggs, onaggs * sizeof (*aggs));
11341		}
11342
11343		state->dts_aggregations = aggs;
11344		state->dts_naggregations = naggs;
11345	}
11346
11347	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11348	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11349
11350	frec = &agg->dtag_first->dta_rec;
11351	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11352		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11353
11354	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11355		ASSERT(!act->dta_intuple);
11356		act->dta_intuple = 1;
11357	}
11358
11359	return (&agg->dtag_action);
11360}
11361
11362static void
11363dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11364{
11365	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11366	dtrace_state_t *state = ecb->dte_state;
11367	dtrace_aggid_t aggid = agg->dtag_id;
11368
11369	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11370#ifdef illumos
11371	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11372#else
11373	free_unr(state->dts_aggid_arena, aggid);
11374#endif
11375
11376	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11377	state->dts_aggregations[aggid - 1] = NULL;
11378
11379	kmem_free(agg, sizeof (dtrace_aggregation_t));
11380}
11381
11382static int
11383dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11384{
11385	dtrace_action_t *action, *last;
11386	dtrace_difo_t *dp = desc->dtad_difo;
11387	uint32_t size = 0, align = sizeof (uint8_t), mask;
11388	uint16_t format = 0;
11389	dtrace_recdesc_t *rec;
11390	dtrace_state_t *state = ecb->dte_state;
11391	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11392	uint64_t arg = desc->dtad_arg;
11393
11394	ASSERT(MUTEX_HELD(&dtrace_lock));
11395	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11396
11397	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11398		/*
11399		 * If this is an aggregating action, there must be neither
11400		 * a speculate nor a commit on the action chain.
11401		 */
11402		dtrace_action_t *act;
11403
11404		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11405			if (act->dta_kind == DTRACEACT_COMMIT)
11406				return (EINVAL);
11407
11408			if (act->dta_kind == DTRACEACT_SPECULATE)
11409				return (EINVAL);
11410		}
11411
11412		action = dtrace_ecb_aggregation_create(ecb, desc);
11413
11414		if (action == NULL)
11415			return (EINVAL);
11416	} else {
11417		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11418		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11419		    dp != NULL && dp->dtdo_destructive)) {
11420			state->dts_destructive = 1;
11421		}
11422
11423		switch (desc->dtad_kind) {
11424		case DTRACEACT_PRINTF:
11425		case DTRACEACT_PRINTA:
11426		case DTRACEACT_SYSTEM:
11427		case DTRACEACT_FREOPEN:
11428		case DTRACEACT_DIFEXPR:
11429			/*
11430			 * We know that our arg is a string -- turn it into a
11431			 * format.
11432			 */
11433			if (arg == 0) {
11434				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11435				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11436				format = 0;
11437			} else {
11438				ASSERT(arg != 0);
11439#ifdef illumos
11440				ASSERT(arg > KERNELBASE);
11441#endif
11442				format = dtrace_format_add(state,
11443				    (char *)(uintptr_t)arg);
11444			}
11445
11446			/*FALLTHROUGH*/
11447		case DTRACEACT_LIBACT:
11448		case DTRACEACT_TRACEMEM:
11449		case DTRACEACT_TRACEMEM_DYNSIZE:
11450			if (dp == NULL)
11451				return (EINVAL);
11452
11453			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11454				break;
11455
11456			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11457				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11458					return (EINVAL);
11459
11460				size = opt[DTRACEOPT_STRSIZE];
11461			}
11462
11463			break;
11464
11465		case DTRACEACT_STACK:
11466			if ((nframes = arg) == 0) {
11467				nframes = opt[DTRACEOPT_STACKFRAMES];
11468				ASSERT(nframes > 0);
11469				arg = nframes;
11470			}
11471
11472			size = nframes * sizeof (pc_t);
11473			break;
11474
11475		case DTRACEACT_JSTACK:
11476			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11477				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11478
11479			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11480				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11481
11482			arg = DTRACE_USTACK_ARG(nframes, strsize);
11483
11484			/*FALLTHROUGH*/
11485		case DTRACEACT_USTACK:
11486			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11487			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11488				strsize = DTRACE_USTACK_STRSIZE(arg);
11489				nframes = opt[DTRACEOPT_USTACKFRAMES];
11490				ASSERT(nframes > 0);
11491				arg = DTRACE_USTACK_ARG(nframes, strsize);
11492			}
11493
11494			/*
11495			 * Save a slot for the pid.
11496			 */
11497			size = (nframes + 1) * sizeof (uint64_t);
11498			size += DTRACE_USTACK_STRSIZE(arg);
11499			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11500
11501			break;
11502
11503		case DTRACEACT_SYM:
11504		case DTRACEACT_MOD:
11505			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11506			    sizeof (uint64_t)) ||
11507			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11508				return (EINVAL);
11509			break;
11510
11511		case DTRACEACT_USYM:
11512		case DTRACEACT_UMOD:
11513		case DTRACEACT_UADDR:
11514			if (dp == NULL ||
11515			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11516			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11517				return (EINVAL);
11518
11519			/*
11520			 * We have a slot for the pid, plus a slot for the
11521			 * argument.  To keep things simple (aligned with
11522			 * bitness-neutral sizing), we store each as a 64-bit
11523			 * quantity.
11524			 */
11525			size = 2 * sizeof (uint64_t);
11526			break;
11527
11528		case DTRACEACT_STOP:
11529		case DTRACEACT_BREAKPOINT:
11530		case DTRACEACT_PANIC:
11531			break;
11532
11533		case DTRACEACT_CHILL:
11534		case DTRACEACT_DISCARD:
11535		case DTRACEACT_RAISE:
11536			if (dp == NULL)
11537				return (EINVAL);
11538			break;
11539
11540		case DTRACEACT_EXIT:
11541			if (dp == NULL ||
11542			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11543			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11544				return (EINVAL);
11545			break;
11546
11547		case DTRACEACT_SPECULATE:
11548			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11549				return (EINVAL);
11550
11551			if (dp == NULL)
11552				return (EINVAL);
11553
11554			state->dts_speculates = 1;
11555			break;
11556
11557		case DTRACEACT_PRINTM:
11558		    	size = dp->dtdo_rtype.dtdt_size;
11559			break;
11560
11561		case DTRACEACT_PRINTT:
11562		    	size = dp->dtdo_rtype.dtdt_size;
11563			break;
11564
11565		case DTRACEACT_COMMIT: {
11566			dtrace_action_t *act = ecb->dte_action;
11567
11568			for (; act != NULL; act = act->dta_next) {
11569				if (act->dta_kind == DTRACEACT_COMMIT)
11570					return (EINVAL);
11571			}
11572
11573			if (dp == NULL)
11574				return (EINVAL);
11575			break;
11576		}
11577
11578		default:
11579			return (EINVAL);
11580		}
11581
11582		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11583			/*
11584			 * If this is a data-storing action or a speculate,
11585			 * we must be sure that there isn't a commit on the
11586			 * action chain.
11587			 */
11588			dtrace_action_t *act = ecb->dte_action;
11589
11590			for (; act != NULL; act = act->dta_next) {
11591				if (act->dta_kind == DTRACEACT_COMMIT)
11592					return (EINVAL);
11593			}
11594		}
11595
11596		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11597		action->dta_rec.dtrd_size = size;
11598	}
11599
11600	action->dta_refcnt = 1;
11601	rec = &action->dta_rec;
11602	size = rec->dtrd_size;
11603
11604	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11605		if (!(size & mask)) {
11606			align = mask + 1;
11607			break;
11608		}
11609	}
11610
11611	action->dta_kind = desc->dtad_kind;
11612
11613	if ((action->dta_difo = dp) != NULL)
11614		dtrace_difo_hold(dp);
11615
11616	rec->dtrd_action = action->dta_kind;
11617	rec->dtrd_arg = arg;
11618	rec->dtrd_uarg = desc->dtad_uarg;
11619	rec->dtrd_alignment = (uint16_t)align;
11620	rec->dtrd_format = format;
11621
11622	if ((last = ecb->dte_action_last) != NULL) {
11623		ASSERT(ecb->dte_action != NULL);
11624		action->dta_prev = last;
11625		last->dta_next = action;
11626	} else {
11627		ASSERT(ecb->dte_action == NULL);
11628		ecb->dte_action = action;
11629	}
11630
11631	ecb->dte_action_last = action;
11632
11633	return (0);
11634}
11635
11636static void
11637dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11638{
11639	dtrace_action_t *act = ecb->dte_action, *next;
11640	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11641	dtrace_difo_t *dp;
11642	uint16_t format;
11643
11644	if (act != NULL && act->dta_refcnt > 1) {
11645		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11646		act->dta_refcnt--;
11647	} else {
11648		for (; act != NULL; act = next) {
11649			next = act->dta_next;
11650			ASSERT(next != NULL || act == ecb->dte_action_last);
11651			ASSERT(act->dta_refcnt == 1);
11652
11653			if ((format = act->dta_rec.dtrd_format) != 0)
11654				dtrace_format_remove(ecb->dte_state, format);
11655
11656			if ((dp = act->dta_difo) != NULL)
11657				dtrace_difo_release(dp, vstate);
11658
11659			if (DTRACEACT_ISAGG(act->dta_kind)) {
11660				dtrace_ecb_aggregation_destroy(ecb, act);
11661			} else {
11662				kmem_free(act, sizeof (dtrace_action_t));
11663			}
11664		}
11665	}
11666
11667	ecb->dte_action = NULL;
11668	ecb->dte_action_last = NULL;
11669	ecb->dte_size = 0;
11670}
11671
11672static void
11673dtrace_ecb_disable(dtrace_ecb_t *ecb)
11674{
11675	/*
11676	 * We disable the ECB by removing it from its probe.
11677	 */
11678	dtrace_ecb_t *pecb, *prev = NULL;
11679	dtrace_probe_t *probe = ecb->dte_probe;
11680
11681	ASSERT(MUTEX_HELD(&dtrace_lock));
11682
11683	if (probe == NULL) {
11684		/*
11685		 * This is the NULL probe; there is nothing to disable.
11686		 */
11687		return;
11688	}
11689
11690	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11691		if (pecb == ecb)
11692			break;
11693		prev = pecb;
11694	}
11695
11696	ASSERT(pecb != NULL);
11697
11698	if (prev == NULL) {
11699		probe->dtpr_ecb = ecb->dte_next;
11700	} else {
11701		prev->dte_next = ecb->dte_next;
11702	}
11703
11704	if (ecb == probe->dtpr_ecb_last) {
11705		ASSERT(ecb->dte_next == NULL);
11706		probe->dtpr_ecb_last = prev;
11707	}
11708
11709	/*
11710	 * The ECB has been disconnected from the probe; now sync to assure
11711	 * that all CPUs have seen the change before returning.
11712	 */
11713	dtrace_sync();
11714
11715	if (probe->dtpr_ecb == NULL) {
11716		/*
11717		 * That was the last ECB on the probe; clear the predicate
11718		 * cache ID for the probe, disable it and sync one more time
11719		 * to assure that we'll never hit it again.
11720		 */
11721		dtrace_provider_t *prov = probe->dtpr_provider;
11722
11723		ASSERT(ecb->dte_next == NULL);
11724		ASSERT(probe->dtpr_ecb_last == NULL);
11725		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11726		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11727		    probe->dtpr_id, probe->dtpr_arg);
11728		dtrace_sync();
11729	} else {
11730		/*
11731		 * There is at least one ECB remaining on the probe.  If there
11732		 * is _exactly_ one, set the probe's predicate cache ID to be
11733		 * the predicate cache ID of the remaining ECB.
11734		 */
11735		ASSERT(probe->dtpr_ecb_last != NULL);
11736		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11737
11738		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11739			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11740
11741			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11742
11743			if (p != NULL)
11744				probe->dtpr_predcache = p->dtp_cacheid;
11745		}
11746
11747		ecb->dte_next = NULL;
11748	}
11749}
11750
11751static void
11752dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11753{
11754	dtrace_state_t *state = ecb->dte_state;
11755	dtrace_vstate_t *vstate = &state->dts_vstate;
11756	dtrace_predicate_t *pred;
11757	dtrace_epid_t epid = ecb->dte_epid;
11758
11759	ASSERT(MUTEX_HELD(&dtrace_lock));
11760	ASSERT(ecb->dte_next == NULL);
11761	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11762
11763	if ((pred = ecb->dte_predicate) != NULL)
11764		dtrace_predicate_release(pred, vstate);
11765
11766	dtrace_ecb_action_remove(ecb);
11767
11768	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11769	state->dts_ecbs[epid - 1] = NULL;
11770
11771	kmem_free(ecb, sizeof (dtrace_ecb_t));
11772}
11773
11774static dtrace_ecb_t *
11775dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11776    dtrace_enabling_t *enab)
11777{
11778	dtrace_ecb_t *ecb;
11779	dtrace_predicate_t *pred;
11780	dtrace_actdesc_t *act;
11781	dtrace_provider_t *prov;
11782	dtrace_ecbdesc_t *desc = enab->dten_current;
11783
11784	ASSERT(MUTEX_HELD(&dtrace_lock));
11785	ASSERT(state != NULL);
11786
11787	ecb = dtrace_ecb_add(state, probe);
11788	ecb->dte_uarg = desc->dted_uarg;
11789
11790	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11791		dtrace_predicate_hold(pred);
11792		ecb->dte_predicate = pred;
11793	}
11794
11795	if (probe != NULL) {
11796		/*
11797		 * If the provider shows more leg than the consumer is old
11798		 * enough to see, we need to enable the appropriate implicit
11799		 * predicate bits to prevent the ecb from activating at
11800		 * revealing times.
11801		 *
11802		 * Providers specifying DTRACE_PRIV_USER at register time
11803		 * are stating that they need the /proc-style privilege
11804		 * model to be enforced, and this is what DTRACE_COND_OWNER
11805		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11806		 */
11807		prov = probe->dtpr_provider;
11808		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11809		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11810			ecb->dte_cond |= DTRACE_COND_OWNER;
11811
11812		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11813		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11814			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11815
11816		/*
11817		 * If the provider shows us kernel innards and the user
11818		 * is lacking sufficient privilege, enable the
11819		 * DTRACE_COND_USERMODE implicit predicate.
11820		 */
11821		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11822		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11823			ecb->dte_cond |= DTRACE_COND_USERMODE;
11824	}
11825
11826	if (dtrace_ecb_create_cache != NULL) {
11827		/*
11828		 * If we have a cached ecb, we'll use its action list instead
11829		 * of creating our own (saving both time and space).
11830		 */
11831		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11832		dtrace_action_t *act = cached->dte_action;
11833
11834		if (act != NULL) {
11835			ASSERT(act->dta_refcnt > 0);
11836			act->dta_refcnt++;
11837			ecb->dte_action = act;
11838			ecb->dte_action_last = cached->dte_action_last;
11839			ecb->dte_needed = cached->dte_needed;
11840			ecb->dte_size = cached->dte_size;
11841			ecb->dte_alignment = cached->dte_alignment;
11842		}
11843
11844		return (ecb);
11845	}
11846
11847	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11848		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11849			dtrace_ecb_destroy(ecb);
11850			return (NULL);
11851		}
11852	}
11853
11854	dtrace_ecb_resize(ecb);
11855
11856	return (dtrace_ecb_create_cache = ecb);
11857}
11858
11859static int
11860dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11861{
11862	dtrace_ecb_t *ecb;
11863	dtrace_enabling_t *enab = arg;
11864	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11865
11866	ASSERT(state != NULL);
11867
11868	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11869		/*
11870		 * This probe was created in a generation for which this
11871		 * enabling has previously created ECBs; we don't want to
11872		 * enable it again, so just kick out.
11873		 */
11874		return (DTRACE_MATCH_NEXT);
11875	}
11876
11877	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11878		return (DTRACE_MATCH_DONE);
11879
11880	dtrace_ecb_enable(ecb);
11881	return (DTRACE_MATCH_NEXT);
11882}
11883
11884static dtrace_ecb_t *
11885dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11886{
11887	dtrace_ecb_t *ecb;
11888
11889	ASSERT(MUTEX_HELD(&dtrace_lock));
11890
11891	if (id == 0 || id > state->dts_necbs)
11892		return (NULL);
11893
11894	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11895	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11896
11897	return (state->dts_ecbs[id - 1]);
11898}
11899
11900static dtrace_aggregation_t *
11901dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11902{
11903	dtrace_aggregation_t *agg;
11904
11905	ASSERT(MUTEX_HELD(&dtrace_lock));
11906
11907	if (id == 0 || id > state->dts_naggregations)
11908		return (NULL);
11909
11910	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11911	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11912	    agg->dtag_id == id);
11913
11914	return (state->dts_aggregations[id - 1]);
11915}
11916
11917/*
11918 * DTrace Buffer Functions
11919 *
11920 * The following functions manipulate DTrace buffers.  Most of these functions
11921 * are called in the context of establishing or processing consumer state;
11922 * exceptions are explicitly noted.
11923 */
11924
11925/*
11926 * Note:  called from cross call context.  This function switches the two
11927 * buffers on a given CPU.  The atomicity of this operation is assured by
11928 * disabling interrupts while the actual switch takes place; the disabling of
11929 * interrupts serializes the execution with any execution of dtrace_probe() on
11930 * the same CPU.
11931 */
11932static void
11933dtrace_buffer_switch(dtrace_buffer_t *buf)
11934{
11935	caddr_t tomax = buf->dtb_tomax;
11936	caddr_t xamot = buf->dtb_xamot;
11937	dtrace_icookie_t cookie;
11938	hrtime_t now;
11939
11940	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11941	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11942
11943	cookie = dtrace_interrupt_disable();
11944	now = dtrace_gethrtime();
11945	buf->dtb_tomax = xamot;
11946	buf->dtb_xamot = tomax;
11947	buf->dtb_xamot_drops = buf->dtb_drops;
11948	buf->dtb_xamot_offset = buf->dtb_offset;
11949	buf->dtb_xamot_errors = buf->dtb_errors;
11950	buf->dtb_xamot_flags = buf->dtb_flags;
11951	buf->dtb_offset = 0;
11952	buf->dtb_drops = 0;
11953	buf->dtb_errors = 0;
11954	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11955	buf->dtb_interval = now - buf->dtb_switched;
11956	buf->dtb_switched = now;
11957	dtrace_interrupt_enable(cookie);
11958}
11959
11960/*
11961 * Note:  called from cross call context.  This function activates a buffer
11962 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11963 * is guaranteed by the disabling of interrupts.
11964 */
11965static void
11966dtrace_buffer_activate(dtrace_state_t *state)
11967{
11968	dtrace_buffer_t *buf;
11969	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11970
11971	buf = &state->dts_buffer[curcpu];
11972
11973	if (buf->dtb_tomax != NULL) {
11974		/*
11975		 * We might like to assert that the buffer is marked inactive,
11976		 * but this isn't necessarily true:  the buffer for the CPU
11977		 * that processes the BEGIN probe has its buffer activated
11978		 * manually.  In this case, we take the (harmless) action
11979		 * re-clearing the bit INACTIVE bit.
11980		 */
11981		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11982	}
11983
11984	dtrace_interrupt_enable(cookie);
11985}
11986
11987#ifdef __FreeBSD__
11988/*
11989 * Activate the specified per-CPU buffer.  This is used instead of
11990 * dtrace_buffer_activate() when APs have not yet started, i.e. when
11991 * activating anonymous state.
11992 */
11993static void
11994dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
11995{
11996
11997	if (state->dts_buffer[cpu].dtb_tomax != NULL)
11998		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11999}
12000#endif
12001
12002static int
12003dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12004    processorid_t cpu, int *factor)
12005{
12006#ifdef illumos
12007	cpu_t *cp;
12008#endif
12009	dtrace_buffer_t *buf;
12010	int allocated = 0, desired = 0;
12011
12012#ifdef illumos
12013	ASSERT(MUTEX_HELD(&cpu_lock));
12014	ASSERT(MUTEX_HELD(&dtrace_lock));
12015
12016	*factor = 1;
12017
12018	if (size > dtrace_nonroot_maxsize &&
12019	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12020		return (EFBIG);
12021
12022	cp = cpu_list;
12023
12024	do {
12025		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12026			continue;
12027
12028		buf = &bufs[cp->cpu_id];
12029
12030		/*
12031		 * If there is already a buffer allocated for this CPU, it
12032		 * is only possible that this is a DR event.  In this case,
12033		 */
12034		if (buf->dtb_tomax != NULL) {
12035			ASSERT(buf->dtb_size == size);
12036			continue;
12037		}
12038
12039		ASSERT(buf->dtb_xamot == NULL);
12040
12041		if ((buf->dtb_tomax = kmem_zalloc(size,
12042		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12043			goto err;
12044
12045		buf->dtb_size = size;
12046		buf->dtb_flags = flags;
12047		buf->dtb_offset = 0;
12048		buf->dtb_drops = 0;
12049
12050		if (flags & DTRACEBUF_NOSWITCH)
12051			continue;
12052
12053		if ((buf->dtb_xamot = kmem_zalloc(size,
12054		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12055			goto err;
12056	} while ((cp = cp->cpu_next) != cpu_list);
12057
12058	return (0);
12059
12060err:
12061	cp = cpu_list;
12062
12063	do {
12064		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12065			continue;
12066
12067		buf = &bufs[cp->cpu_id];
12068		desired += 2;
12069
12070		if (buf->dtb_xamot != NULL) {
12071			ASSERT(buf->dtb_tomax != NULL);
12072			ASSERT(buf->dtb_size == size);
12073			kmem_free(buf->dtb_xamot, size);
12074			allocated++;
12075		}
12076
12077		if (buf->dtb_tomax != NULL) {
12078			ASSERT(buf->dtb_size == size);
12079			kmem_free(buf->dtb_tomax, size);
12080			allocated++;
12081		}
12082
12083		buf->dtb_tomax = NULL;
12084		buf->dtb_xamot = NULL;
12085		buf->dtb_size = 0;
12086	} while ((cp = cp->cpu_next) != cpu_list);
12087#else
12088	int i;
12089
12090	*factor = 1;
12091#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12092    defined(__mips__) || defined(__powerpc__) || defined(__riscv__)
12093	/*
12094	 * FreeBSD isn't good at limiting the amount of memory we
12095	 * ask to malloc, so let's place a limit here before trying
12096	 * to do something that might well end in tears at bedtime.
12097	 */
12098	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12099		return (ENOMEM);
12100#endif
12101
12102	ASSERT(MUTEX_HELD(&dtrace_lock));
12103	CPU_FOREACH(i) {
12104		if (cpu != DTRACE_CPUALL && cpu != i)
12105			continue;
12106
12107		buf = &bufs[i];
12108
12109		/*
12110		 * If there is already a buffer allocated for this CPU, it
12111		 * is only possible that this is a DR event.  In this case,
12112		 * the buffer size must match our specified size.
12113		 */
12114		if (buf->dtb_tomax != NULL) {
12115			ASSERT(buf->dtb_size == size);
12116			continue;
12117		}
12118
12119		ASSERT(buf->dtb_xamot == NULL);
12120
12121		if ((buf->dtb_tomax = kmem_zalloc(size,
12122		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12123			goto err;
12124
12125		buf->dtb_size = size;
12126		buf->dtb_flags = flags;
12127		buf->dtb_offset = 0;
12128		buf->dtb_drops = 0;
12129
12130		if (flags & DTRACEBUF_NOSWITCH)
12131			continue;
12132
12133		if ((buf->dtb_xamot = kmem_zalloc(size,
12134		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12135			goto err;
12136	}
12137
12138	return (0);
12139
12140err:
12141	/*
12142	 * Error allocating memory, so free the buffers that were
12143	 * allocated before the failed allocation.
12144	 */
12145	CPU_FOREACH(i) {
12146		if (cpu != DTRACE_CPUALL && cpu != i)
12147			continue;
12148
12149		buf = &bufs[i];
12150		desired += 2;
12151
12152		if (buf->dtb_xamot != NULL) {
12153			ASSERT(buf->dtb_tomax != NULL);
12154			ASSERT(buf->dtb_size == size);
12155			kmem_free(buf->dtb_xamot, size);
12156			allocated++;
12157		}
12158
12159		if (buf->dtb_tomax != NULL) {
12160			ASSERT(buf->dtb_size == size);
12161			kmem_free(buf->dtb_tomax, size);
12162			allocated++;
12163		}
12164
12165		buf->dtb_tomax = NULL;
12166		buf->dtb_xamot = NULL;
12167		buf->dtb_size = 0;
12168
12169	}
12170#endif
12171	*factor = desired / (allocated > 0 ? allocated : 1);
12172
12173	return (ENOMEM);
12174}
12175
12176/*
12177 * Note:  called from probe context.  This function just increments the drop
12178 * count on a buffer.  It has been made a function to allow for the
12179 * possibility of understanding the source of mysterious drop counts.  (A
12180 * problem for which one may be particularly disappointed that DTrace cannot
12181 * be used to understand DTrace.)
12182 */
12183static void
12184dtrace_buffer_drop(dtrace_buffer_t *buf)
12185{
12186	buf->dtb_drops++;
12187}
12188
12189/*
12190 * Note:  called from probe context.  This function is called to reserve space
12191 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12192 * mstate.  Returns the new offset in the buffer, or a negative value if an
12193 * error has occurred.
12194 */
12195static intptr_t
12196dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12197    dtrace_state_t *state, dtrace_mstate_t *mstate)
12198{
12199	intptr_t offs = buf->dtb_offset, soffs;
12200	intptr_t woffs;
12201	caddr_t tomax;
12202	size_t total;
12203
12204	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12205		return (-1);
12206
12207	if ((tomax = buf->dtb_tomax) == NULL) {
12208		dtrace_buffer_drop(buf);
12209		return (-1);
12210	}
12211
12212	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12213		while (offs & (align - 1)) {
12214			/*
12215			 * Assert that our alignment is off by a number which
12216			 * is itself sizeof (uint32_t) aligned.
12217			 */
12218			ASSERT(!((align - (offs & (align - 1))) &
12219			    (sizeof (uint32_t) - 1)));
12220			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12221			offs += sizeof (uint32_t);
12222		}
12223
12224		if ((soffs = offs + needed) > buf->dtb_size) {
12225			dtrace_buffer_drop(buf);
12226			return (-1);
12227		}
12228
12229		if (mstate == NULL)
12230			return (offs);
12231
12232		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12233		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12234		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12235
12236		return (offs);
12237	}
12238
12239	if (buf->dtb_flags & DTRACEBUF_FILL) {
12240		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12241		    (buf->dtb_flags & DTRACEBUF_FULL))
12242			return (-1);
12243		goto out;
12244	}
12245
12246	total = needed + (offs & (align - 1));
12247
12248	/*
12249	 * For a ring buffer, life is quite a bit more complicated.  Before
12250	 * we can store any padding, we need to adjust our wrapping offset.
12251	 * (If we've never before wrapped or we're not about to, no adjustment
12252	 * is required.)
12253	 */
12254	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12255	    offs + total > buf->dtb_size) {
12256		woffs = buf->dtb_xamot_offset;
12257
12258		if (offs + total > buf->dtb_size) {
12259			/*
12260			 * We can't fit in the end of the buffer.  First, a
12261			 * sanity check that we can fit in the buffer at all.
12262			 */
12263			if (total > buf->dtb_size) {
12264				dtrace_buffer_drop(buf);
12265				return (-1);
12266			}
12267
12268			/*
12269			 * We're going to be storing at the top of the buffer,
12270			 * so now we need to deal with the wrapped offset.  We
12271			 * only reset our wrapped offset to 0 if it is
12272			 * currently greater than the current offset.  If it
12273			 * is less than the current offset, it is because a
12274			 * previous allocation induced a wrap -- but the
12275			 * allocation didn't subsequently take the space due
12276			 * to an error or false predicate evaluation.  In this
12277			 * case, we'll just leave the wrapped offset alone: if
12278			 * the wrapped offset hasn't been advanced far enough
12279			 * for this allocation, it will be adjusted in the
12280			 * lower loop.
12281			 */
12282			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12283				if (woffs >= offs)
12284					woffs = 0;
12285			} else {
12286				woffs = 0;
12287			}
12288
12289			/*
12290			 * Now we know that we're going to be storing to the
12291			 * top of the buffer and that there is room for us
12292			 * there.  We need to clear the buffer from the current
12293			 * offset to the end (there may be old gunk there).
12294			 */
12295			while (offs < buf->dtb_size)
12296				tomax[offs++] = 0;
12297
12298			/*
12299			 * We need to set our offset to zero.  And because we
12300			 * are wrapping, we need to set the bit indicating as
12301			 * much.  We can also adjust our needed space back
12302			 * down to the space required by the ECB -- we know
12303			 * that the top of the buffer is aligned.
12304			 */
12305			offs = 0;
12306			total = needed;
12307			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12308		} else {
12309			/*
12310			 * There is room for us in the buffer, so we simply
12311			 * need to check the wrapped offset.
12312			 */
12313			if (woffs < offs) {
12314				/*
12315				 * The wrapped offset is less than the offset.
12316				 * This can happen if we allocated buffer space
12317				 * that induced a wrap, but then we didn't
12318				 * subsequently take the space due to an error
12319				 * or false predicate evaluation.  This is
12320				 * okay; we know that _this_ allocation isn't
12321				 * going to induce a wrap.  We still can't
12322				 * reset the wrapped offset to be zero,
12323				 * however: the space may have been trashed in
12324				 * the previous failed probe attempt.  But at
12325				 * least the wrapped offset doesn't need to
12326				 * be adjusted at all...
12327				 */
12328				goto out;
12329			}
12330		}
12331
12332		while (offs + total > woffs) {
12333			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12334			size_t size;
12335
12336			if (epid == DTRACE_EPIDNONE) {
12337				size = sizeof (uint32_t);
12338			} else {
12339				ASSERT3U(epid, <=, state->dts_necbs);
12340				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12341
12342				size = state->dts_ecbs[epid - 1]->dte_size;
12343			}
12344
12345			ASSERT(woffs + size <= buf->dtb_size);
12346			ASSERT(size != 0);
12347
12348			if (woffs + size == buf->dtb_size) {
12349				/*
12350				 * We've reached the end of the buffer; we want
12351				 * to set the wrapped offset to 0 and break
12352				 * out.  However, if the offs is 0, then we're
12353				 * in a strange edge-condition:  the amount of
12354				 * space that we want to reserve plus the size
12355				 * of the record that we're overwriting is
12356				 * greater than the size of the buffer.  This
12357				 * is problematic because if we reserve the
12358				 * space but subsequently don't consume it (due
12359				 * to a failed predicate or error) the wrapped
12360				 * offset will be 0 -- yet the EPID at offset 0
12361				 * will not be committed.  This situation is
12362				 * relatively easy to deal with:  if we're in
12363				 * this case, the buffer is indistinguishable
12364				 * from one that hasn't wrapped; we need only
12365				 * finish the job by clearing the wrapped bit,
12366				 * explicitly setting the offset to be 0, and
12367				 * zero'ing out the old data in the buffer.
12368				 */
12369				if (offs == 0) {
12370					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12371					buf->dtb_offset = 0;
12372					woffs = total;
12373
12374					while (woffs < buf->dtb_size)
12375						tomax[woffs++] = 0;
12376				}
12377
12378				woffs = 0;
12379				break;
12380			}
12381
12382			woffs += size;
12383		}
12384
12385		/*
12386		 * We have a wrapped offset.  It may be that the wrapped offset
12387		 * has become zero -- that's okay.
12388		 */
12389		buf->dtb_xamot_offset = woffs;
12390	}
12391
12392out:
12393	/*
12394	 * Now we can plow the buffer with any necessary padding.
12395	 */
12396	while (offs & (align - 1)) {
12397		/*
12398		 * Assert that our alignment is off by a number which
12399		 * is itself sizeof (uint32_t) aligned.
12400		 */
12401		ASSERT(!((align - (offs & (align - 1))) &
12402		    (sizeof (uint32_t) - 1)));
12403		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12404		offs += sizeof (uint32_t);
12405	}
12406
12407	if (buf->dtb_flags & DTRACEBUF_FILL) {
12408		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12409			buf->dtb_flags |= DTRACEBUF_FULL;
12410			return (-1);
12411		}
12412	}
12413
12414	if (mstate == NULL)
12415		return (offs);
12416
12417	/*
12418	 * For ring buffers and fill buffers, the scratch space is always
12419	 * the inactive buffer.
12420	 */
12421	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12422	mstate->dtms_scratch_size = buf->dtb_size;
12423	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12424
12425	return (offs);
12426}
12427
12428static void
12429dtrace_buffer_polish(dtrace_buffer_t *buf)
12430{
12431	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12432	ASSERT(MUTEX_HELD(&dtrace_lock));
12433
12434	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12435		return;
12436
12437	/*
12438	 * We need to polish the ring buffer.  There are three cases:
12439	 *
12440	 * - The first (and presumably most common) is that there is no gap
12441	 *   between the buffer offset and the wrapped offset.  In this case,
12442	 *   there is nothing in the buffer that isn't valid data; we can
12443	 *   mark the buffer as polished and return.
12444	 *
12445	 * - The second (less common than the first but still more common
12446	 *   than the third) is that there is a gap between the buffer offset
12447	 *   and the wrapped offset, and the wrapped offset is larger than the
12448	 *   buffer offset.  This can happen because of an alignment issue, or
12449	 *   can happen because of a call to dtrace_buffer_reserve() that
12450	 *   didn't subsequently consume the buffer space.  In this case,
12451	 *   we need to zero the data from the buffer offset to the wrapped
12452	 *   offset.
12453	 *
12454	 * - The third (and least common) is that there is a gap between the
12455	 *   buffer offset and the wrapped offset, but the wrapped offset is
12456	 *   _less_ than the buffer offset.  This can only happen because a
12457	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12458	 *   was not subsequently consumed.  In this case, we need to zero the
12459	 *   space from the offset to the end of the buffer _and_ from the
12460	 *   top of the buffer to the wrapped offset.
12461	 */
12462	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12463		bzero(buf->dtb_tomax + buf->dtb_offset,
12464		    buf->dtb_xamot_offset - buf->dtb_offset);
12465	}
12466
12467	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12468		bzero(buf->dtb_tomax + buf->dtb_offset,
12469		    buf->dtb_size - buf->dtb_offset);
12470		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12471	}
12472}
12473
12474/*
12475 * This routine determines if data generated at the specified time has likely
12476 * been entirely consumed at user-level.  This routine is called to determine
12477 * if an ECB on a defunct probe (but for an active enabling) can be safely
12478 * disabled and destroyed.
12479 */
12480static int
12481dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12482{
12483	int i;
12484
12485	for (i = 0; i < NCPU; i++) {
12486		dtrace_buffer_t *buf = &bufs[i];
12487
12488		if (buf->dtb_size == 0)
12489			continue;
12490
12491		if (buf->dtb_flags & DTRACEBUF_RING)
12492			return (0);
12493
12494		if (!buf->dtb_switched && buf->dtb_offset != 0)
12495			return (0);
12496
12497		if (buf->dtb_switched - buf->dtb_interval < when)
12498			return (0);
12499	}
12500
12501	return (1);
12502}
12503
12504static void
12505dtrace_buffer_free(dtrace_buffer_t *bufs)
12506{
12507	int i;
12508
12509	for (i = 0; i < NCPU; i++) {
12510		dtrace_buffer_t *buf = &bufs[i];
12511
12512		if (buf->dtb_tomax == NULL) {
12513			ASSERT(buf->dtb_xamot == NULL);
12514			ASSERT(buf->dtb_size == 0);
12515			continue;
12516		}
12517
12518		if (buf->dtb_xamot != NULL) {
12519			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12520			kmem_free(buf->dtb_xamot, buf->dtb_size);
12521		}
12522
12523		kmem_free(buf->dtb_tomax, buf->dtb_size);
12524		buf->dtb_size = 0;
12525		buf->dtb_tomax = NULL;
12526		buf->dtb_xamot = NULL;
12527	}
12528}
12529
12530/*
12531 * DTrace Enabling Functions
12532 */
12533static dtrace_enabling_t *
12534dtrace_enabling_create(dtrace_vstate_t *vstate)
12535{
12536	dtrace_enabling_t *enab;
12537
12538	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12539	enab->dten_vstate = vstate;
12540
12541	return (enab);
12542}
12543
12544static void
12545dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12546{
12547	dtrace_ecbdesc_t **ndesc;
12548	size_t osize, nsize;
12549
12550	/*
12551	 * We can't add to enablings after we've enabled them, or after we've
12552	 * retained them.
12553	 */
12554	ASSERT(enab->dten_probegen == 0);
12555	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12556
12557	if (enab->dten_ndesc < enab->dten_maxdesc) {
12558		enab->dten_desc[enab->dten_ndesc++] = ecb;
12559		return;
12560	}
12561
12562	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12563
12564	if (enab->dten_maxdesc == 0) {
12565		enab->dten_maxdesc = 1;
12566	} else {
12567		enab->dten_maxdesc <<= 1;
12568	}
12569
12570	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12571
12572	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12573	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12574	bcopy(enab->dten_desc, ndesc, osize);
12575	if (enab->dten_desc != NULL)
12576		kmem_free(enab->dten_desc, osize);
12577
12578	enab->dten_desc = ndesc;
12579	enab->dten_desc[enab->dten_ndesc++] = ecb;
12580}
12581
12582static void
12583dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12584    dtrace_probedesc_t *pd)
12585{
12586	dtrace_ecbdesc_t *new;
12587	dtrace_predicate_t *pred;
12588	dtrace_actdesc_t *act;
12589
12590	/*
12591	 * We're going to create a new ECB description that matches the
12592	 * specified ECB in every way, but has the specified probe description.
12593	 */
12594	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12595
12596	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12597		dtrace_predicate_hold(pred);
12598
12599	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12600		dtrace_actdesc_hold(act);
12601
12602	new->dted_action = ecb->dted_action;
12603	new->dted_pred = ecb->dted_pred;
12604	new->dted_probe = *pd;
12605	new->dted_uarg = ecb->dted_uarg;
12606
12607	dtrace_enabling_add(enab, new);
12608}
12609
12610static void
12611dtrace_enabling_dump(dtrace_enabling_t *enab)
12612{
12613	int i;
12614
12615	for (i = 0; i < enab->dten_ndesc; i++) {
12616		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12617
12618#ifdef __FreeBSD__
12619		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12620		    desc->dtpd_provider, desc->dtpd_mod,
12621		    desc->dtpd_func, desc->dtpd_name);
12622#else
12623		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12624		    desc->dtpd_provider, desc->dtpd_mod,
12625		    desc->dtpd_func, desc->dtpd_name);
12626#endif
12627	}
12628}
12629
12630static void
12631dtrace_enabling_destroy(dtrace_enabling_t *enab)
12632{
12633	int i;
12634	dtrace_ecbdesc_t *ep;
12635	dtrace_vstate_t *vstate = enab->dten_vstate;
12636
12637	ASSERT(MUTEX_HELD(&dtrace_lock));
12638
12639	for (i = 0; i < enab->dten_ndesc; i++) {
12640		dtrace_actdesc_t *act, *next;
12641		dtrace_predicate_t *pred;
12642
12643		ep = enab->dten_desc[i];
12644
12645		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12646			dtrace_predicate_release(pred, vstate);
12647
12648		for (act = ep->dted_action; act != NULL; act = next) {
12649			next = act->dtad_next;
12650			dtrace_actdesc_release(act, vstate);
12651		}
12652
12653		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12654	}
12655
12656	if (enab->dten_desc != NULL)
12657		kmem_free(enab->dten_desc,
12658		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12659
12660	/*
12661	 * If this was a retained enabling, decrement the dts_nretained count
12662	 * and take it off of the dtrace_retained list.
12663	 */
12664	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12665	    dtrace_retained == enab) {
12666		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12667		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12668		enab->dten_vstate->dtvs_state->dts_nretained--;
12669		dtrace_retained_gen++;
12670	}
12671
12672	if (enab->dten_prev == NULL) {
12673		if (dtrace_retained == enab) {
12674			dtrace_retained = enab->dten_next;
12675
12676			if (dtrace_retained != NULL)
12677				dtrace_retained->dten_prev = NULL;
12678		}
12679	} else {
12680		ASSERT(enab != dtrace_retained);
12681		ASSERT(dtrace_retained != NULL);
12682		enab->dten_prev->dten_next = enab->dten_next;
12683	}
12684
12685	if (enab->dten_next != NULL) {
12686		ASSERT(dtrace_retained != NULL);
12687		enab->dten_next->dten_prev = enab->dten_prev;
12688	}
12689
12690	kmem_free(enab, sizeof (dtrace_enabling_t));
12691}
12692
12693static int
12694dtrace_enabling_retain(dtrace_enabling_t *enab)
12695{
12696	dtrace_state_t *state;
12697
12698	ASSERT(MUTEX_HELD(&dtrace_lock));
12699	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12700	ASSERT(enab->dten_vstate != NULL);
12701
12702	state = enab->dten_vstate->dtvs_state;
12703	ASSERT(state != NULL);
12704
12705	/*
12706	 * We only allow each state to retain dtrace_retain_max enablings.
12707	 */
12708	if (state->dts_nretained >= dtrace_retain_max)
12709		return (ENOSPC);
12710
12711	state->dts_nretained++;
12712	dtrace_retained_gen++;
12713
12714	if (dtrace_retained == NULL) {
12715		dtrace_retained = enab;
12716		return (0);
12717	}
12718
12719	enab->dten_next = dtrace_retained;
12720	dtrace_retained->dten_prev = enab;
12721	dtrace_retained = enab;
12722
12723	return (0);
12724}
12725
12726static int
12727dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12728    dtrace_probedesc_t *create)
12729{
12730	dtrace_enabling_t *new, *enab;
12731	int found = 0, err = ENOENT;
12732
12733	ASSERT(MUTEX_HELD(&dtrace_lock));
12734	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12735	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12736	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12737	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12738
12739	new = dtrace_enabling_create(&state->dts_vstate);
12740
12741	/*
12742	 * Iterate over all retained enablings, looking for enablings that
12743	 * match the specified state.
12744	 */
12745	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12746		int i;
12747
12748		/*
12749		 * dtvs_state can only be NULL for helper enablings -- and
12750		 * helper enablings can't be retained.
12751		 */
12752		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12753
12754		if (enab->dten_vstate->dtvs_state != state)
12755			continue;
12756
12757		/*
12758		 * Now iterate over each probe description; we're looking for
12759		 * an exact match to the specified probe description.
12760		 */
12761		for (i = 0; i < enab->dten_ndesc; i++) {
12762			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12763			dtrace_probedesc_t *pd = &ep->dted_probe;
12764
12765			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12766				continue;
12767
12768			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12769				continue;
12770
12771			if (strcmp(pd->dtpd_func, match->dtpd_func))
12772				continue;
12773
12774			if (strcmp(pd->dtpd_name, match->dtpd_name))
12775				continue;
12776
12777			/*
12778			 * We have a winning probe!  Add it to our growing
12779			 * enabling.
12780			 */
12781			found = 1;
12782			dtrace_enabling_addlike(new, ep, create);
12783		}
12784	}
12785
12786	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12787		dtrace_enabling_destroy(new);
12788		return (err);
12789	}
12790
12791	return (0);
12792}
12793
12794static void
12795dtrace_enabling_retract(dtrace_state_t *state)
12796{
12797	dtrace_enabling_t *enab, *next;
12798
12799	ASSERT(MUTEX_HELD(&dtrace_lock));
12800
12801	/*
12802	 * Iterate over all retained enablings, destroy the enablings retained
12803	 * for the specified state.
12804	 */
12805	for (enab = dtrace_retained; enab != NULL; enab = next) {
12806		next = enab->dten_next;
12807
12808		/*
12809		 * dtvs_state can only be NULL for helper enablings -- and
12810		 * helper enablings can't be retained.
12811		 */
12812		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12813
12814		if (enab->dten_vstate->dtvs_state == state) {
12815			ASSERT(state->dts_nretained > 0);
12816			dtrace_enabling_destroy(enab);
12817		}
12818	}
12819
12820	ASSERT(state->dts_nretained == 0);
12821}
12822
12823static int
12824dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12825{
12826	int i = 0;
12827	int matched = 0;
12828
12829	ASSERT(MUTEX_HELD(&cpu_lock));
12830	ASSERT(MUTEX_HELD(&dtrace_lock));
12831
12832	for (i = 0; i < enab->dten_ndesc; i++) {
12833		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12834
12835		enab->dten_current = ep;
12836		enab->dten_error = 0;
12837
12838		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12839
12840		if (enab->dten_error != 0) {
12841			/*
12842			 * If we get an error half-way through enabling the
12843			 * probes, we kick out -- perhaps with some number of
12844			 * them enabled.  Leaving enabled probes enabled may
12845			 * be slightly confusing for user-level, but we expect
12846			 * that no one will attempt to actually drive on in
12847			 * the face of such errors.  If this is an anonymous
12848			 * enabling (indicated with a NULL nmatched pointer),
12849			 * we cmn_err() a message.  We aren't expecting to
12850			 * get such an error -- such as it can exist at all,
12851			 * it would be a result of corrupted DOF in the driver
12852			 * properties.
12853			 */
12854			if (nmatched == NULL) {
12855				cmn_err(CE_WARN, "dtrace_enabling_match() "
12856				    "error on %p: %d", (void *)ep,
12857				    enab->dten_error);
12858			}
12859
12860			return (enab->dten_error);
12861		}
12862	}
12863
12864	enab->dten_probegen = dtrace_probegen;
12865	if (nmatched != NULL)
12866		*nmatched = matched;
12867
12868	return (0);
12869}
12870
12871static void
12872dtrace_enabling_matchall(void)
12873{
12874	dtrace_enabling_t *enab;
12875
12876	mutex_enter(&cpu_lock);
12877	mutex_enter(&dtrace_lock);
12878
12879	/*
12880	 * Iterate over all retained enablings to see if any probes match
12881	 * against them.  We only perform this operation on enablings for which
12882	 * we have sufficient permissions by virtue of being in the global zone
12883	 * or in the same zone as the DTrace client.  Because we can be called
12884	 * after dtrace_detach() has been called, we cannot assert that there
12885	 * are retained enablings.  We can safely load from dtrace_retained,
12886	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12887	 * block pending our completion.
12888	 */
12889	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12890#ifdef illumos
12891		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12892
12893		if (INGLOBALZONE(curproc) ||
12894		    cr != NULL && getzoneid() == crgetzoneid(cr))
12895#endif
12896			(void) dtrace_enabling_match(enab, NULL);
12897	}
12898
12899	mutex_exit(&dtrace_lock);
12900	mutex_exit(&cpu_lock);
12901}
12902
12903/*
12904 * If an enabling is to be enabled without having matched probes (that is, if
12905 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12906 * enabling must be _primed_ by creating an ECB for every ECB description.
12907 * This must be done to assure that we know the number of speculations, the
12908 * number of aggregations, the minimum buffer size needed, etc. before we
12909 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12910 * enabling any probes, we create ECBs for every ECB decription, but with a
12911 * NULL probe -- which is exactly what this function does.
12912 */
12913static void
12914dtrace_enabling_prime(dtrace_state_t *state)
12915{
12916	dtrace_enabling_t *enab;
12917	int i;
12918
12919	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12920		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12921
12922		if (enab->dten_vstate->dtvs_state != state)
12923			continue;
12924
12925		/*
12926		 * We don't want to prime an enabling more than once, lest
12927		 * we allow a malicious user to induce resource exhaustion.
12928		 * (The ECBs that result from priming an enabling aren't
12929		 * leaked -- but they also aren't deallocated until the
12930		 * consumer state is destroyed.)
12931		 */
12932		if (enab->dten_primed)
12933			continue;
12934
12935		for (i = 0; i < enab->dten_ndesc; i++) {
12936			enab->dten_current = enab->dten_desc[i];
12937			(void) dtrace_probe_enable(NULL, enab);
12938		}
12939
12940		enab->dten_primed = 1;
12941	}
12942}
12943
12944/*
12945 * Called to indicate that probes should be provided due to retained
12946 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12947 * must take an initial lap through the enabling calling the dtps_provide()
12948 * entry point explicitly to allow for autocreated probes.
12949 */
12950static void
12951dtrace_enabling_provide(dtrace_provider_t *prv)
12952{
12953	int i, all = 0;
12954	dtrace_probedesc_t desc;
12955	dtrace_genid_t gen;
12956
12957	ASSERT(MUTEX_HELD(&dtrace_lock));
12958	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12959
12960	if (prv == NULL) {
12961		all = 1;
12962		prv = dtrace_provider;
12963	}
12964
12965	do {
12966		dtrace_enabling_t *enab;
12967		void *parg = prv->dtpv_arg;
12968
12969retry:
12970		gen = dtrace_retained_gen;
12971		for (enab = dtrace_retained; enab != NULL;
12972		    enab = enab->dten_next) {
12973			for (i = 0; i < enab->dten_ndesc; i++) {
12974				desc = enab->dten_desc[i]->dted_probe;
12975				mutex_exit(&dtrace_lock);
12976				prv->dtpv_pops.dtps_provide(parg, &desc);
12977				mutex_enter(&dtrace_lock);
12978				/*
12979				 * Process the retained enablings again if
12980				 * they have changed while we weren't holding
12981				 * dtrace_lock.
12982				 */
12983				if (gen != dtrace_retained_gen)
12984					goto retry;
12985			}
12986		}
12987	} while (all && (prv = prv->dtpv_next) != NULL);
12988
12989	mutex_exit(&dtrace_lock);
12990	dtrace_probe_provide(NULL, all ? NULL : prv);
12991	mutex_enter(&dtrace_lock);
12992}
12993
12994/*
12995 * Called to reap ECBs that are attached to probes from defunct providers.
12996 */
12997static void
12998dtrace_enabling_reap(void)
12999{
13000	dtrace_provider_t *prov;
13001	dtrace_probe_t *probe;
13002	dtrace_ecb_t *ecb;
13003	hrtime_t when;
13004	int i;
13005
13006	mutex_enter(&cpu_lock);
13007	mutex_enter(&dtrace_lock);
13008
13009	for (i = 0; i < dtrace_nprobes; i++) {
13010		if ((probe = dtrace_probes[i]) == NULL)
13011			continue;
13012
13013		if (probe->dtpr_ecb == NULL)
13014			continue;
13015
13016		prov = probe->dtpr_provider;
13017
13018		if ((when = prov->dtpv_defunct) == 0)
13019			continue;
13020
13021		/*
13022		 * We have ECBs on a defunct provider:  we want to reap these
13023		 * ECBs to allow the provider to unregister.  The destruction
13024		 * of these ECBs must be done carefully:  if we destroy the ECB
13025		 * and the consumer later wishes to consume an EPID that
13026		 * corresponds to the destroyed ECB (and if the EPID metadata
13027		 * has not been previously consumed), the consumer will abort
13028		 * processing on the unknown EPID.  To reduce (but not, sadly,
13029		 * eliminate) the possibility of this, we will only destroy an
13030		 * ECB for a defunct provider if, for the state that
13031		 * corresponds to the ECB:
13032		 *
13033		 *  (a)	There is no speculative tracing (which can effectively
13034		 *	cache an EPID for an arbitrary amount of time).
13035		 *
13036		 *  (b)	The principal buffers have been switched twice since the
13037		 *	provider became defunct.
13038		 *
13039		 *  (c)	The aggregation buffers are of zero size or have been
13040		 *	switched twice since the provider became defunct.
13041		 *
13042		 * We use dts_speculates to determine (a) and call a function
13043		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13044		 * that as soon as we've been unable to destroy one of the ECBs
13045		 * associated with the probe, we quit trying -- reaping is only
13046		 * fruitful in as much as we can destroy all ECBs associated
13047		 * with the defunct provider's probes.
13048		 */
13049		while ((ecb = probe->dtpr_ecb) != NULL) {
13050			dtrace_state_t *state = ecb->dte_state;
13051			dtrace_buffer_t *buf = state->dts_buffer;
13052			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13053
13054			if (state->dts_speculates)
13055				break;
13056
13057			if (!dtrace_buffer_consumed(buf, when))
13058				break;
13059
13060			if (!dtrace_buffer_consumed(aggbuf, when))
13061				break;
13062
13063			dtrace_ecb_disable(ecb);
13064			ASSERT(probe->dtpr_ecb != ecb);
13065			dtrace_ecb_destroy(ecb);
13066		}
13067	}
13068
13069	mutex_exit(&dtrace_lock);
13070	mutex_exit(&cpu_lock);
13071}
13072
13073/*
13074 * DTrace DOF Functions
13075 */
13076/*ARGSUSED*/
13077static void
13078dtrace_dof_error(dof_hdr_t *dof, const char *str)
13079{
13080	if (dtrace_err_verbose)
13081		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13082
13083#ifdef DTRACE_ERRDEBUG
13084	dtrace_errdebug(str);
13085#endif
13086}
13087
13088/*
13089 * Create DOF out of a currently enabled state.  Right now, we only create
13090 * DOF containing the run-time options -- but this could be expanded to create
13091 * complete DOF representing the enabled state.
13092 */
13093static dof_hdr_t *
13094dtrace_dof_create(dtrace_state_t *state)
13095{
13096	dof_hdr_t *dof;
13097	dof_sec_t *sec;
13098	dof_optdesc_t *opt;
13099	int i, len = sizeof (dof_hdr_t) +
13100	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13101	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13102
13103	ASSERT(MUTEX_HELD(&dtrace_lock));
13104
13105	dof = kmem_zalloc(len, KM_SLEEP);
13106	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13107	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13108	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13109	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13110
13111	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13112	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13113	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13114	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13115	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13116	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13117
13118	dof->dofh_flags = 0;
13119	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13120	dof->dofh_secsize = sizeof (dof_sec_t);
13121	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13122	dof->dofh_secoff = sizeof (dof_hdr_t);
13123	dof->dofh_loadsz = len;
13124	dof->dofh_filesz = len;
13125	dof->dofh_pad = 0;
13126
13127	/*
13128	 * Fill in the option section header...
13129	 */
13130	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13131	sec->dofs_type = DOF_SECT_OPTDESC;
13132	sec->dofs_align = sizeof (uint64_t);
13133	sec->dofs_flags = DOF_SECF_LOAD;
13134	sec->dofs_entsize = sizeof (dof_optdesc_t);
13135
13136	opt = (dof_optdesc_t *)((uintptr_t)sec +
13137	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13138
13139	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13140	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13141
13142	for (i = 0; i < DTRACEOPT_MAX; i++) {
13143		opt[i].dofo_option = i;
13144		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13145		opt[i].dofo_value = state->dts_options[i];
13146	}
13147
13148	return (dof);
13149}
13150
13151static dof_hdr_t *
13152dtrace_dof_copyin(uintptr_t uarg, int *errp)
13153{
13154	dof_hdr_t hdr, *dof;
13155
13156	ASSERT(!MUTEX_HELD(&dtrace_lock));
13157
13158	/*
13159	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13160	 */
13161	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13162		dtrace_dof_error(NULL, "failed to copyin DOF header");
13163		*errp = EFAULT;
13164		return (NULL);
13165	}
13166
13167	/*
13168	 * Now we'll allocate the entire DOF and copy it in -- provided
13169	 * that the length isn't outrageous.
13170	 */
13171	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13172		dtrace_dof_error(&hdr, "load size exceeds maximum");
13173		*errp = E2BIG;
13174		return (NULL);
13175	}
13176
13177	if (hdr.dofh_loadsz < sizeof (hdr)) {
13178		dtrace_dof_error(&hdr, "invalid load size");
13179		*errp = EINVAL;
13180		return (NULL);
13181	}
13182
13183	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13184
13185	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13186	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13187		kmem_free(dof, hdr.dofh_loadsz);
13188		*errp = EFAULT;
13189		return (NULL);
13190	}
13191
13192	return (dof);
13193}
13194
13195#ifdef __FreeBSD__
13196static dof_hdr_t *
13197dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13198{
13199	dof_hdr_t hdr, *dof;
13200	struct thread *td;
13201	size_t loadsz;
13202
13203	ASSERT(!MUTEX_HELD(&dtrace_lock));
13204
13205	td = curthread;
13206
13207	/*
13208	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13209	 */
13210	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13211		dtrace_dof_error(NULL, "failed to copyin DOF header");
13212		*errp = EFAULT;
13213		return (NULL);
13214	}
13215
13216	/*
13217	 * Now we'll allocate the entire DOF and copy it in -- provided
13218	 * that the length isn't outrageous.
13219	 */
13220	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13221		dtrace_dof_error(&hdr, "load size exceeds maximum");
13222		*errp = E2BIG;
13223		return (NULL);
13224	}
13225	loadsz = (size_t)hdr.dofh_loadsz;
13226
13227	if (loadsz < sizeof (hdr)) {
13228		dtrace_dof_error(&hdr, "invalid load size");
13229		*errp = EINVAL;
13230		return (NULL);
13231	}
13232
13233	dof = kmem_alloc(loadsz, KM_SLEEP);
13234
13235	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13236	    dof->dofh_loadsz != loadsz) {
13237		kmem_free(dof, hdr.dofh_loadsz);
13238		*errp = EFAULT;
13239		return (NULL);
13240	}
13241
13242	return (dof);
13243}
13244
13245static __inline uchar_t
13246dtrace_dof_char(char c)
13247{
13248
13249	switch (c) {
13250	case '0':
13251	case '1':
13252	case '2':
13253	case '3':
13254	case '4':
13255	case '5':
13256	case '6':
13257	case '7':
13258	case '8':
13259	case '9':
13260		return (c - '0');
13261	case 'A':
13262	case 'B':
13263	case 'C':
13264	case 'D':
13265	case 'E':
13266	case 'F':
13267		return (c - 'A' + 10);
13268	case 'a':
13269	case 'b':
13270	case 'c':
13271	case 'd':
13272	case 'e':
13273	case 'f':
13274		return (c - 'a' + 10);
13275	}
13276	/* Should not reach here. */
13277	return (UCHAR_MAX);
13278}
13279#endif /* __FreeBSD__ */
13280
13281static dof_hdr_t *
13282dtrace_dof_property(const char *name)
13283{
13284#ifdef __FreeBSD__
13285	uint8_t *dofbuf;
13286	u_char *data, *eol;
13287	caddr_t doffile;
13288	size_t bytes, len, i;
13289	dof_hdr_t *dof;
13290	u_char c1, c2;
13291
13292	dof = NULL;
13293
13294	doffile = preload_search_by_type("dtrace_dof");
13295	if (doffile == NULL)
13296		return (NULL);
13297
13298	data = preload_fetch_addr(doffile);
13299	len = preload_fetch_size(doffile);
13300	for (;;) {
13301		/* Look for the end of the line. All lines end in a newline. */
13302		eol = memchr(data, '\n', len);
13303		if (eol == NULL)
13304			return (NULL);
13305
13306		if (strncmp(name, data, strlen(name)) == 0)
13307			break;
13308
13309		eol++; /* skip past the newline */
13310		len -= eol - data;
13311		data = eol;
13312	}
13313
13314	/* We've found the data corresponding to the specified key. */
13315
13316	data += strlen(name) + 1; /* skip past the '=' */
13317	len = eol - data;
13318	bytes = len / 2;
13319
13320	if (bytes < sizeof(dof_hdr_t)) {
13321		dtrace_dof_error(NULL, "truncated header");
13322		goto doferr;
13323	}
13324
13325	/*
13326	 * Each byte is represented by the two ASCII characters in its hex
13327	 * representation.
13328	 */
13329	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13330	for (i = 0; i < bytes; i++) {
13331		c1 = dtrace_dof_char(data[i * 2]);
13332		c2 = dtrace_dof_char(data[i * 2 + 1]);
13333		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13334			dtrace_dof_error(NULL, "invalid hex char in DOF");
13335			goto doferr;
13336		}
13337		dofbuf[i] = c1 * 16 + c2;
13338	}
13339
13340	dof = (dof_hdr_t *)dofbuf;
13341	if (bytes < dof->dofh_loadsz) {
13342		dtrace_dof_error(NULL, "truncated DOF");
13343		goto doferr;
13344	}
13345
13346	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13347		dtrace_dof_error(NULL, "oversized DOF");
13348		goto doferr;
13349	}
13350
13351	return (dof);
13352
13353doferr:
13354	free(dof, M_SOLARIS);
13355	return (NULL);
13356#else /* __FreeBSD__ */
13357	uchar_t *buf;
13358	uint64_t loadsz;
13359	unsigned int len, i;
13360	dof_hdr_t *dof;
13361
13362	/*
13363	 * Unfortunately, array of values in .conf files are always (and
13364	 * only) interpreted to be integer arrays.  We must read our DOF
13365	 * as an integer array, and then squeeze it into a byte array.
13366	 */
13367	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13368	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13369		return (NULL);
13370
13371	for (i = 0; i < len; i++)
13372		buf[i] = (uchar_t)(((int *)buf)[i]);
13373
13374	if (len < sizeof (dof_hdr_t)) {
13375		ddi_prop_free(buf);
13376		dtrace_dof_error(NULL, "truncated header");
13377		return (NULL);
13378	}
13379
13380	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13381		ddi_prop_free(buf);
13382		dtrace_dof_error(NULL, "truncated DOF");
13383		return (NULL);
13384	}
13385
13386	if (loadsz >= dtrace_dof_maxsize) {
13387		ddi_prop_free(buf);
13388		dtrace_dof_error(NULL, "oversized DOF");
13389		return (NULL);
13390	}
13391
13392	dof = kmem_alloc(loadsz, KM_SLEEP);
13393	bcopy(buf, dof, loadsz);
13394	ddi_prop_free(buf);
13395
13396	return (dof);
13397#endif /* !__FreeBSD__ */
13398}
13399
13400static void
13401dtrace_dof_destroy(dof_hdr_t *dof)
13402{
13403	kmem_free(dof, dof->dofh_loadsz);
13404}
13405
13406/*
13407 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13408 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13409 * a type other than DOF_SECT_NONE is specified, the header is checked against
13410 * this type and NULL is returned if the types do not match.
13411 */
13412static dof_sec_t *
13413dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13414{
13415	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13416	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13417
13418	if (i >= dof->dofh_secnum) {
13419		dtrace_dof_error(dof, "referenced section index is invalid");
13420		return (NULL);
13421	}
13422
13423	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13424		dtrace_dof_error(dof, "referenced section is not loadable");
13425		return (NULL);
13426	}
13427
13428	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13429		dtrace_dof_error(dof, "referenced section is the wrong type");
13430		return (NULL);
13431	}
13432
13433	return (sec);
13434}
13435
13436static dtrace_probedesc_t *
13437dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13438{
13439	dof_probedesc_t *probe;
13440	dof_sec_t *strtab;
13441	uintptr_t daddr = (uintptr_t)dof;
13442	uintptr_t str;
13443	size_t size;
13444
13445	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13446		dtrace_dof_error(dof, "invalid probe section");
13447		return (NULL);
13448	}
13449
13450	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13451		dtrace_dof_error(dof, "bad alignment in probe description");
13452		return (NULL);
13453	}
13454
13455	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13456		dtrace_dof_error(dof, "truncated probe description");
13457		return (NULL);
13458	}
13459
13460	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13461	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13462
13463	if (strtab == NULL)
13464		return (NULL);
13465
13466	str = daddr + strtab->dofs_offset;
13467	size = strtab->dofs_size;
13468
13469	if (probe->dofp_provider >= strtab->dofs_size) {
13470		dtrace_dof_error(dof, "corrupt probe provider");
13471		return (NULL);
13472	}
13473
13474	(void) strncpy(desc->dtpd_provider,
13475	    (char *)(str + probe->dofp_provider),
13476	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13477
13478	if (probe->dofp_mod >= strtab->dofs_size) {
13479		dtrace_dof_error(dof, "corrupt probe module");
13480		return (NULL);
13481	}
13482
13483	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13484	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13485
13486	if (probe->dofp_func >= strtab->dofs_size) {
13487		dtrace_dof_error(dof, "corrupt probe function");
13488		return (NULL);
13489	}
13490
13491	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13492	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13493
13494	if (probe->dofp_name >= strtab->dofs_size) {
13495		dtrace_dof_error(dof, "corrupt probe name");
13496		return (NULL);
13497	}
13498
13499	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13500	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13501
13502	return (desc);
13503}
13504
13505static dtrace_difo_t *
13506dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13507    cred_t *cr)
13508{
13509	dtrace_difo_t *dp;
13510	size_t ttl = 0;
13511	dof_difohdr_t *dofd;
13512	uintptr_t daddr = (uintptr_t)dof;
13513	size_t max = dtrace_difo_maxsize;
13514	int i, l, n;
13515
13516	static const struct {
13517		int section;
13518		int bufoffs;
13519		int lenoffs;
13520		int entsize;
13521		int align;
13522		const char *msg;
13523	} difo[] = {
13524		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13525		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13526		sizeof (dif_instr_t), "multiple DIF sections" },
13527
13528		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13529		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13530		sizeof (uint64_t), "multiple integer tables" },
13531
13532		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13533		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13534		sizeof (char), "multiple string tables" },
13535
13536		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13537		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13538		sizeof (uint_t), "multiple variable tables" },
13539
13540		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13541	};
13542
13543	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13544		dtrace_dof_error(dof, "invalid DIFO header section");
13545		return (NULL);
13546	}
13547
13548	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13549		dtrace_dof_error(dof, "bad alignment in DIFO header");
13550		return (NULL);
13551	}
13552
13553	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13554	    sec->dofs_size % sizeof (dof_secidx_t)) {
13555		dtrace_dof_error(dof, "bad size in DIFO header");
13556		return (NULL);
13557	}
13558
13559	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13560	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13561
13562	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13563	dp->dtdo_rtype = dofd->dofd_rtype;
13564
13565	for (l = 0; l < n; l++) {
13566		dof_sec_t *subsec;
13567		void **bufp;
13568		uint32_t *lenp;
13569
13570		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13571		    dofd->dofd_links[l])) == NULL)
13572			goto err; /* invalid section link */
13573
13574		if (ttl + subsec->dofs_size > max) {
13575			dtrace_dof_error(dof, "exceeds maximum size");
13576			goto err;
13577		}
13578
13579		ttl += subsec->dofs_size;
13580
13581		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13582			if (subsec->dofs_type != difo[i].section)
13583				continue;
13584
13585			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13586				dtrace_dof_error(dof, "section not loaded");
13587				goto err;
13588			}
13589
13590			if (subsec->dofs_align != difo[i].align) {
13591				dtrace_dof_error(dof, "bad alignment");
13592				goto err;
13593			}
13594
13595			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13596			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13597
13598			if (*bufp != NULL) {
13599				dtrace_dof_error(dof, difo[i].msg);
13600				goto err;
13601			}
13602
13603			if (difo[i].entsize != subsec->dofs_entsize) {
13604				dtrace_dof_error(dof, "entry size mismatch");
13605				goto err;
13606			}
13607
13608			if (subsec->dofs_entsize != 0 &&
13609			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13610				dtrace_dof_error(dof, "corrupt entry size");
13611				goto err;
13612			}
13613
13614			*lenp = subsec->dofs_size;
13615			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13616			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13617			    *bufp, subsec->dofs_size);
13618
13619			if (subsec->dofs_entsize != 0)
13620				*lenp /= subsec->dofs_entsize;
13621
13622			break;
13623		}
13624
13625		/*
13626		 * If we encounter a loadable DIFO sub-section that is not
13627		 * known to us, assume this is a broken program and fail.
13628		 */
13629		if (difo[i].section == DOF_SECT_NONE &&
13630		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13631			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13632			goto err;
13633		}
13634	}
13635
13636	if (dp->dtdo_buf == NULL) {
13637		/*
13638		 * We can't have a DIF object without DIF text.
13639		 */
13640		dtrace_dof_error(dof, "missing DIF text");
13641		goto err;
13642	}
13643
13644	/*
13645	 * Before we validate the DIF object, run through the variable table
13646	 * looking for the strings -- if any of their size are under, we'll set
13647	 * their size to be the system-wide default string size.  Note that
13648	 * this should _not_ happen if the "strsize" option has been set --
13649	 * in this case, the compiler should have set the size to reflect the
13650	 * setting of the option.
13651	 */
13652	for (i = 0; i < dp->dtdo_varlen; i++) {
13653		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13654		dtrace_diftype_t *t = &v->dtdv_type;
13655
13656		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13657			continue;
13658
13659		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13660			t->dtdt_size = dtrace_strsize_default;
13661	}
13662
13663	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13664		goto err;
13665
13666	dtrace_difo_init(dp, vstate);
13667	return (dp);
13668
13669err:
13670	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13671	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13672	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13673	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13674
13675	kmem_free(dp, sizeof (dtrace_difo_t));
13676	return (NULL);
13677}
13678
13679static dtrace_predicate_t *
13680dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13681    cred_t *cr)
13682{
13683	dtrace_difo_t *dp;
13684
13685	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13686		return (NULL);
13687
13688	return (dtrace_predicate_create(dp));
13689}
13690
13691static dtrace_actdesc_t *
13692dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13693    cred_t *cr)
13694{
13695	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13696	dof_actdesc_t *desc;
13697	dof_sec_t *difosec;
13698	size_t offs;
13699	uintptr_t daddr = (uintptr_t)dof;
13700	uint64_t arg;
13701	dtrace_actkind_t kind;
13702
13703	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13704		dtrace_dof_error(dof, "invalid action section");
13705		return (NULL);
13706	}
13707
13708	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13709		dtrace_dof_error(dof, "truncated action description");
13710		return (NULL);
13711	}
13712
13713	if (sec->dofs_align != sizeof (uint64_t)) {
13714		dtrace_dof_error(dof, "bad alignment in action description");
13715		return (NULL);
13716	}
13717
13718	if (sec->dofs_size < sec->dofs_entsize) {
13719		dtrace_dof_error(dof, "section entry size exceeds total size");
13720		return (NULL);
13721	}
13722
13723	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13724		dtrace_dof_error(dof, "bad entry size in action description");
13725		return (NULL);
13726	}
13727
13728	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13729		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13730		return (NULL);
13731	}
13732
13733	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13734		desc = (dof_actdesc_t *)(daddr +
13735		    (uintptr_t)sec->dofs_offset + offs);
13736		kind = (dtrace_actkind_t)desc->dofa_kind;
13737
13738		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13739		    (kind != DTRACEACT_PRINTA ||
13740		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13741		    (kind == DTRACEACT_DIFEXPR &&
13742		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13743			dof_sec_t *strtab;
13744			char *str, *fmt;
13745			uint64_t i;
13746
13747			/*
13748			 * The argument to these actions is an index into the
13749			 * DOF string table.  For printf()-like actions, this
13750			 * is the format string.  For print(), this is the
13751			 * CTF type of the expression result.
13752			 */
13753			if ((strtab = dtrace_dof_sect(dof,
13754			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13755				goto err;
13756
13757			str = (char *)((uintptr_t)dof +
13758			    (uintptr_t)strtab->dofs_offset);
13759
13760			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13761				if (str[i] == '\0')
13762					break;
13763			}
13764
13765			if (i >= strtab->dofs_size) {
13766				dtrace_dof_error(dof, "bogus format string");
13767				goto err;
13768			}
13769
13770			if (i == desc->dofa_arg) {
13771				dtrace_dof_error(dof, "empty format string");
13772				goto err;
13773			}
13774
13775			i -= desc->dofa_arg;
13776			fmt = kmem_alloc(i + 1, KM_SLEEP);
13777			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13778			arg = (uint64_t)(uintptr_t)fmt;
13779		} else {
13780			if (kind == DTRACEACT_PRINTA) {
13781				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13782				arg = 0;
13783			} else {
13784				arg = desc->dofa_arg;
13785			}
13786		}
13787
13788		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13789		    desc->dofa_uarg, arg);
13790
13791		if (last != NULL) {
13792			last->dtad_next = act;
13793		} else {
13794			first = act;
13795		}
13796
13797		last = act;
13798
13799		if (desc->dofa_difo == DOF_SECIDX_NONE)
13800			continue;
13801
13802		if ((difosec = dtrace_dof_sect(dof,
13803		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13804			goto err;
13805
13806		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13807
13808		if (act->dtad_difo == NULL)
13809			goto err;
13810	}
13811
13812	ASSERT(first != NULL);
13813	return (first);
13814
13815err:
13816	for (act = first; act != NULL; act = next) {
13817		next = act->dtad_next;
13818		dtrace_actdesc_release(act, vstate);
13819	}
13820
13821	return (NULL);
13822}
13823
13824static dtrace_ecbdesc_t *
13825dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13826    cred_t *cr)
13827{
13828	dtrace_ecbdesc_t *ep;
13829	dof_ecbdesc_t *ecb;
13830	dtrace_probedesc_t *desc;
13831	dtrace_predicate_t *pred = NULL;
13832
13833	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13834		dtrace_dof_error(dof, "truncated ECB description");
13835		return (NULL);
13836	}
13837
13838	if (sec->dofs_align != sizeof (uint64_t)) {
13839		dtrace_dof_error(dof, "bad alignment in ECB description");
13840		return (NULL);
13841	}
13842
13843	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13844	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13845
13846	if (sec == NULL)
13847		return (NULL);
13848
13849	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13850	ep->dted_uarg = ecb->dofe_uarg;
13851	desc = &ep->dted_probe;
13852
13853	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13854		goto err;
13855
13856	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13857		if ((sec = dtrace_dof_sect(dof,
13858		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13859			goto err;
13860
13861		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13862			goto err;
13863
13864		ep->dted_pred.dtpdd_predicate = pred;
13865	}
13866
13867	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13868		if ((sec = dtrace_dof_sect(dof,
13869		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13870			goto err;
13871
13872		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13873
13874		if (ep->dted_action == NULL)
13875			goto err;
13876	}
13877
13878	return (ep);
13879
13880err:
13881	if (pred != NULL)
13882		dtrace_predicate_release(pred, vstate);
13883	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13884	return (NULL);
13885}
13886
13887/*
13888 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13889 * specified DOF.  SETX relocations are computed using 'ubase', the base load
13890 * address of the object containing the DOF, and DOFREL relocations are relative
13891 * to the relocation offset within the DOF.
13892 */
13893static int
13894dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
13895    uint64_t udaddr)
13896{
13897	uintptr_t daddr = (uintptr_t)dof;
13898	uintptr_t ts_end;
13899	dof_relohdr_t *dofr =
13900	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13901	dof_sec_t *ss, *rs, *ts;
13902	dof_relodesc_t *r;
13903	uint_t i, n;
13904
13905	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13906	    sec->dofs_align != sizeof (dof_secidx_t)) {
13907		dtrace_dof_error(dof, "invalid relocation header");
13908		return (-1);
13909	}
13910
13911	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13912	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13913	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13914	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13915
13916	if (ss == NULL || rs == NULL || ts == NULL)
13917		return (-1); /* dtrace_dof_error() has been called already */
13918
13919	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13920	    rs->dofs_align != sizeof (uint64_t)) {
13921		dtrace_dof_error(dof, "invalid relocation section");
13922		return (-1);
13923	}
13924
13925	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13926	n = rs->dofs_size / rs->dofs_entsize;
13927
13928	for (i = 0; i < n; i++) {
13929		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13930
13931		switch (r->dofr_type) {
13932		case DOF_RELO_NONE:
13933			break;
13934		case DOF_RELO_SETX:
13935		case DOF_RELO_DOFREL:
13936			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13937			    sizeof (uint64_t) > ts->dofs_size) {
13938				dtrace_dof_error(dof, "bad relocation offset");
13939				return (-1);
13940			}
13941
13942			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13943				dtrace_dof_error(dof, "bad relocation offset");
13944				return (-1);
13945			}
13946
13947			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13948				dtrace_dof_error(dof, "misaligned setx relo");
13949				return (-1);
13950			}
13951
13952			if (r->dofr_type == DOF_RELO_SETX)
13953				*(uint64_t *)taddr += ubase;
13954			else
13955				*(uint64_t *)taddr +=
13956				    udaddr + ts->dofs_offset + r->dofr_offset;
13957			break;
13958		default:
13959			dtrace_dof_error(dof, "invalid relocation type");
13960			return (-1);
13961		}
13962
13963		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13964	}
13965
13966	return (0);
13967}
13968
13969/*
13970 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13971 * header:  it should be at the front of a memory region that is at least
13972 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13973 * size.  It need not be validated in any other way.
13974 */
13975static int
13976dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13977    dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
13978{
13979	uint64_t len = dof->dofh_loadsz, seclen;
13980	uintptr_t daddr = (uintptr_t)dof;
13981	dtrace_ecbdesc_t *ep;
13982	dtrace_enabling_t *enab;
13983	uint_t i;
13984
13985	ASSERT(MUTEX_HELD(&dtrace_lock));
13986	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13987
13988	/*
13989	 * Check the DOF header identification bytes.  In addition to checking
13990	 * valid settings, we also verify that unused bits/bytes are zeroed so
13991	 * we can use them later without fear of regressing existing binaries.
13992	 */
13993	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13994	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13995		dtrace_dof_error(dof, "DOF magic string mismatch");
13996		return (-1);
13997	}
13998
13999	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14000	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14001		dtrace_dof_error(dof, "DOF has invalid data model");
14002		return (-1);
14003	}
14004
14005	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14006		dtrace_dof_error(dof, "DOF encoding mismatch");
14007		return (-1);
14008	}
14009
14010	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14011	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14012		dtrace_dof_error(dof, "DOF version mismatch");
14013		return (-1);
14014	}
14015
14016	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14017		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14018		return (-1);
14019	}
14020
14021	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14022		dtrace_dof_error(dof, "DOF uses too many integer registers");
14023		return (-1);
14024	}
14025
14026	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14027		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14028		return (-1);
14029	}
14030
14031	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14032		if (dof->dofh_ident[i] != 0) {
14033			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14034			return (-1);
14035		}
14036	}
14037
14038	if (dof->dofh_flags & ~DOF_FL_VALID) {
14039		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14040		return (-1);
14041	}
14042
14043	if (dof->dofh_secsize == 0) {
14044		dtrace_dof_error(dof, "zero section header size");
14045		return (-1);
14046	}
14047
14048	/*
14049	 * Check that the section headers don't exceed the amount of DOF
14050	 * data.  Note that we cast the section size and number of sections
14051	 * to uint64_t's to prevent possible overflow in the multiplication.
14052	 */
14053	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14054
14055	if (dof->dofh_secoff > len || seclen > len ||
14056	    dof->dofh_secoff + seclen > len) {
14057		dtrace_dof_error(dof, "truncated section headers");
14058		return (-1);
14059	}
14060
14061	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14062		dtrace_dof_error(dof, "misaligned section headers");
14063		return (-1);
14064	}
14065
14066	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14067		dtrace_dof_error(dof, "misaligned section size");
14068		return (-1);
14069	}
14070
14071	/*
14072	 * Take an initial pass through the section headers to be sure that
14073	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14074	 * set, do not permit sections relating to providers, probes, or args.
14075	 */
14076	for (i = 0; i < dof->dofh_secnum; i++) {
14077		dof_sec_t *sec = (dof_sec_t *)(daddr +
14078		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14079
14080		if (noprobes) {
14081			switch (sec->dofs_type) {
14082			case DOF_SECT_PROVIDER:
14083			case DOF_SECT_PROBES:
14084			case DOF_SECT_PRARGS:
14085			case DOF_SECT_PROFFS:
14086				dtrace_dof_error(dof, "illegal sections "
14087				    "for enabling");
14088				return (-1);
14089			}
14090		}
14091
14092		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14093		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14094			dtrace_dof_error(dof, "loadable section with load "
14095			    "flag unset");
14096			return (-1);
14097		}
14098
14099		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14100			continue; /* just ignore non-loadable sections */
14101
14102		if (!ISP2(sec->dofs_align)) {
14103			dtrace_dof_error(dof, "bad section alignment");
14104			return (-1);
14105		}
14106
14107		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14108			dtrace_dof_error(dof, "misaligned section");
14109			return (-1);
14110		}
14111
14112		if (sec->dofs_offset > len || sec->dofs_size > len ||
14113		    sec->dofs_offset + sec->dofs_size > len) {
14114			dtrace_dof_error(dof, "corrupt section header");
14115			return (-1);
14116		}
14117
14118		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14119		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14120			dtrace_dof_error(dof, "non-terminating string table");
14121			return (-1);
14122		}
14123	}
14124
14125	/*
14126	 * Take a second pass through the sections and locate and perform any
14127	 * relocations that are present.  We do this after the first pass to
14128	 * be sure that all sections have had their headers validated.
14129	 */
14130	for (i = 0; i < dof->dofh_secnum; i++) {
14131		dof_sec_t *sec = (dof_sec_t *)(daddr +
14132		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14133
14134		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14135			continue; /* skip sections that are not loadable */
14136
14137		switch (sec->dofs_type) {
14138		case DOF_SECT_URELHDR:
14139			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14140				return (-1);
14141			break;
14142		}
14143	}
14144
14145	if ((enab = *enabp) == NULL)
14146		enab = *enabp = dtrace_enabling_create(vstate);
14147
14148	for (i = 0; i < dof->dofh_secnum; i++) {
14149		dof_sec_t *sec = (dof_sec_t *)(daddr +
14150		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14151
14152		if (sec->dofs_type != DOF_SECT_ECBDESC)
14153			continue;
14154
14155		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14156			dtrace_enabling_destroy(enab);
14157			*enabp = NULL;
14158			return (-1);
14159		}
14160
14161		dtrace_enabling_add(enab, ep);
14162	}
14163
14164	return (0);
14165}
14166
14167/*
14168 * Process DOF for any options.  This routine assumes that the DOF has been
14169 * at least processed by dtrace_dof_slurp().
14170 */
14171static int
14172dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14173{
14174	int i, rval;
14175	uint32_t entsize;
14176	size_t offs;
14177	dof_optdesc_t *desc;
14178
14179	for (i = 0; i < dof->dofh_secnum; i++) {
14180		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14181		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14182
14183		if (sec->dofs_type != DOF_SECT_OPTDESC)
14184			continue;
14185
14186		if (sec->dofs_align != sizeof (uint64_t)) {
14187			dtrace_dof_error(dof, "bad alignment in "
14188			    "option description");
14189			return (EINVAL);
14190		}
14191
14192		if ((entsize = sec->dofs_entsize) == 0) {
14193			dtrace_dof_error(dof, "zeroed option entry size");
14194			return (EINVAL);
14195		}
14196
14197		if (entsize < sizeof (dof_optdesc_t)) {
14198			dtrace_dof_error(dof, "bad option entry size");
14199			return (EINVAL);
14200		}
14201
14202		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14203			desc = (dof_optdesc_t *)((uintptr_t)dof +
14204			    (uintptr_t)sec->dofs_offset + offs);
14205
14206			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14207				dtrace_dof_error(dof, "non-zero option string");
14208				return (EINVAL);
14209			}
14210
14211			if (desc->dofo_value == DTRACEOPT_UNSET) {
14212				dtrace_dof_error(dof, "unset option");
14213				return (EINVAL);
14214			}
14215
14216			if ((rval = dtrace_state_option(state,
14217			    desc->dofo_option, desc->dofo_value)) != 0) {
14218				dtrace_dof_error(dof, "rejected option");
14219				return (rval);
14220			}
14221		}
14222	}
14223
14224	return (0);
14225}
14226
14227/*
14228 * DTrace Consumer State Functions
14229 */
14230static int
14231dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14232{
14233	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14234	void *base;
14235	uintptr_t limit;
14236	dtrace_dynvar_t *dvar, *next, *start;
14237	int i;
14238
14239	ASSERT(MUTEX_HELD(&dtrace_lock));
14240	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14241
14242	bzero(dstate, sizeof (dtrace_dstate_t));
14243
14244	if ((dstate->dtds_chunksize = chunksize) == 0)
14245		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14246
14247	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14248
14249	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14250		size = min;
14251
14252	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14253		return (ENOMEM);
14254
14255	dstate->dtds_size = size;
14256	dstate->dtds_base = base;
14257	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14258	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14259
14260	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14261
14262	if (hashsize != 1 && (hashsize & 1))
14263		hashsize--;
14264
14265	dstate->dtds_hashsize = hashsize;
14266	dstate->dtds_hash = dstate->dtds_base;
14267
14268	/*
14269	 * Set all of our hash buckets to point to the single sink, and (if
14270	 * it hasn't already been set), set the sink's hash value to be the
14271	 * sink sentinel value.  The sink is needed for dynamic variable
14272	 * lookups to know that they have iterated over an entire, valid hash
14273	 * chain.
14274	 */
14275	for (i = 0; i < hashsize; i++)
14276		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14277
14278	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14279		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14280
14281	/*
14282	 * Determine number of active CPUs.  Divide free list evenly among
14283	 * active CPUs.
14284	 */
14285	start = (dtrace_dynvar_t *)
14286	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14287	limit = (uintptr_t)base + size;
14288
14289	VERIFY((uintptr_t)start < limit);
14290	VERIFY((uintptr_t)start >= (uintptr_t)base);
14291
14292	maxper = (limit - (uintptr_t)start) / NCPU;
14293	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14294
14295#ifndef illumos
14296	CPU_FOREACH(i) {
14297#else
14298	for (i = 0; i < NCPU; i++) {
14299#endif
14300		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14301
14302		/*
14303		 * If we don't even have enough chunks to make it once through
14304		 * NCPUs, we're just going to allocate everything to the first
14305		 * CPU.  And if we're on the last CPU, we're going to allocate
14306		 * whatever is left over.  In either case, we set the limit to
14307		 * be the limit of the dynamic variable space.
14308		 */
14309		if (maxper == 0 || i == NCPU - 1) {
14310			limit = (uintptr_t)base + size;
14311			start = NULL;
14312		} else {
14313			limit = (uintptr_t)start + maxper;
14314			start = (dtrace_dynvar_t *)limit;
14315		}
14316
14317		VERIFY(limit <= (uintptr_t)base + size);
14318
14319		for (;;) {
14320			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14321			    dstate->dtds_chunksize);
14322
14323			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14324				break;
14325
14326			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14327			    (uintptr_t)dvar <= (uintptr_t)base + size);
14328			dvar->dtdv_next = next;
14329			dvar = next;
14330		}
14331
14332		if (maxper == 0)
14333			break;
14334	}
14335
14336	return (0);
14337}
14338
14339static void
14340dtrace_dstate_fini(dtrace_dstate_t *dstate)
14341{
14342	ASSERT(MUTEX_HELD(&cpu_lock));
14343
14344	if (dstate->dtds_base == NULL)
14345		return;
14346
14347	kmem_free(dstate->dtds_base, dstate->dtds_size);
14348	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14349}
14350
14351static void
14352dtrace_vstate_fini(dtrace_vstate_t *vstate)
14353{
14354	/*
14355	 * Logical XOR, where are you?
14356	 */
14357	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14358
14359	if (vstate->dtvs_nglobals > 0) {
14360		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14361		    sizeof (dtrace_statvar_t *));
14362	}
14363
14364	if (vstate->dtvs_ntlocals > 0) {
14365		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14366		    sizeof (dtrace_difv_t));
14367	}
14368
14369	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14370
14371	if (vstate->dtvs_nlocals > 0) {
14372		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14373		    sizeof (dtrace_statvar_t *));
14374	}
14375}
14376
14377#ifdef illumos
14378static void
14379dtrace_state_clean(dtrace_state_t *state)
14380{
14381	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14382		return;
14383
14384	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14385	dtrace_speculation_clean(state);
14386}
14387
14388static void
14389dtrace_state_deadman(dtrace_state_t *state)
14390{
14391	hrtime_t now;
14392
14393	dtrace_sync();
14394
14395	now = dtrace_gethrtime();
14396
14397	if (state != dtrace_anon.dta_state &&
14398	    now - state->dts_laststatus >= dtrace_deadman_user)
14399		return;
14400
14401	/*
14402	 * We must be sure that dts_alive never appears to be less than the
14403	 * value upon entry to dtrace_state_deadman(), and because we lack a
14404	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14405	 * store INT64_MAX to it, followed by a memory barrier, followed by
14406	 * the new value.  This assures that dts_alive never appears to be
14407	 * less than its true value, regardless of the order in which the
14408	 * stores to the underlying storage are issued.
14409	 */
14410	state->dts_alive = INT64_MAX;
14411	dtrace_membar_producer();
14412	state->dts_alive = now;
14413}
14414#else	/* !illumos */
14415static void
14416dtrace_state_clean(void *arg)
14417{
14418	dtrace_state_t *state = arg;
14419	dtrace_optval_t *opt = state->dts_options;
14420
14421	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14422		return;
14423
14424	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14425	dtrace_speculation_clean(state);
14426
14427	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14428	    dtrace_state_clean, state);
14429}
14430
14431static void
14432dtrace_state_deadman(void *arg)
14433{
14434	dtrace_state_t *state = arg;
14435	hrtime_t now;
14436
14437	dtrace_sync();
14438
14439	dtrace_debug_output();
14440
14441	now = dtrace_gethrtime();
14442
14443	if (state != dtrace_anon.dta_state &&
14444	    now - state->dts_laststatus >= dtrace_deadman_user)
14445		return;
14446
14447	/*
14448	 * We must be sure that dts_alive never appears to be less than the
14449	 * value upon entry to dtrace_state_deadman(), and because we lack a
14450	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14451	 * store INT64_MAX to it, followed by a memory barrier, followed by
14452	 * the new value.  This assures that dts_alive never appears to be
14453	 * less than its true value, regardless of the order in which the
14454	 * stores to the underlying storage are issued.
14455	 */
14456	state->dts_alive = INT64_MAX;
14457	dtrace_membar_producer();
14458	state->dts_alive = now;
14459
14460	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14461	    dtrace_state_deadman, state);
14462}
14463#endif	/* illumos */
14464
14465static dtrace_state_t *
14466#ifdef illumos
14467dtrace_state_create(dev_t *devp, cred_t *cr)
14468#else
14469dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14470#endif
14471{
14472#ifdef illumos
14473	minor_t minor;
14474	major_t major;
14475#else
14476	cred_t *cr = NULL;
14477	int m = 0;
14478#endif
14479	char c[30];
14480	dtrace_state_t *state;
14481	dtrace_optval_t *opt;
14482	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14483	int cpu_it;
14484
14485	ASSERT(MUTEX_HELD(&dtrace_lock));
14486	ASSERT(MUTEX_HELD(&cpu_lock));
14487
14488#ifdef illumos
14489	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14490	    VM_BESTFIT | VM_SLEEP);
14491
14492	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14493		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14494		return (NULL);
14495	}
14496
14497	state = ddi_get_soft_state(dtrace_softstate, minor);
14498#else
14499	if (dev != NULL) {
14500		cr = dev->si_cred;
14501		m = dev2unit(dev);
14502	}
14503
14504	/* Allocate memory for the state. */
14505	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14506#endif
14507
14508	state->dts_epid = DTRACE_EPIDNONE + 1;
14509
14510	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14511#ifdef illumos
14512	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14513	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14514
14515	if (devp != NULL) {
14516		major = getemajor(*devp);
14517	} else {
14518		major = ddi_driver_major(dtrace_devi);
14519	}
14520
14521	state->dts_dev = makedevice(major, minor);
14522
14523	if (devp != NULL)
14524		*devp = state->dts_dev;
14525#else
14526	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14527	state->dts_dev = dev;
14528#endif
14529
14530	/*
14531	 * We allocate NCPU buffers.  On the one hand, this can be quite
14532	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14533	 * other hand, it saves an additional memory reference in the probe
14534	 * path.
14535	 */
14536	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14537	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14538
14539	/*
14540         * Allocate and initialise the per-process per-CPU random state.
14541	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14542         * assumed to be seeded at this point (if from Fortuna seed file).
14543	 */
14544	(void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14545	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14546		/*
14547		 * Each CPU is assigned a 2^64 period, non-overlapping
14548		 * subsequence.
14549		 */
14550		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14551		    state->dts_rstate[cpu_it]);
14552	}
14553
14554#ifdef illumos
14555	state->dts_cleaner = CYCLIC_NONE;
14556	state->dts_deadman = CYCLIC_NONE;
14557#else
14558	callout_init(&state->dts_cleaner, 1);
14559	callout_init(&state->dts_deadman, 1);
14560#endif
14561	state->dts_vstate.dtvs_state = state;
14562
14563	for (i = 0; i < DTRACEOPT_MAX; i++)
14564		state->dts_options[i] = DTRACEOPT_UNSET;
14565
14566	/*
14567	 * Set the default options.
14568	 */
14569	opt = state->dts_options;
14570	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14571	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14572	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14573	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14574	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14575	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14576	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14577	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14578	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14579	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14580	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14581	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14582	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14583	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14584
14585	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14586
14587	/*
14588	 * Depending on the user credentials, we set flag bits which alter probe
14589	 * visibility or the amount of destructiveness allowed.  In the case of
14590	 * actual anonymous tracing, or the possession of all privileges, all of
14591	 * the normal checks are bypassed.
14592	 */
14593	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14594		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14595		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14596	} else {
14597		/*
14598		 * Set up the credentials for this instantiation.  We take a
14599		 * hold on the credential to prevent it from disappearing on
14600		 * us; this in turn prevents the zone_t referenced by this
14601		 * credential from disappearing.  This means that we can
14602		 * examine the credential and the zone from probe context.
14603		 */
14604		crhold(cr);
14605		state->dts_cred.dcr_cred = cr;
14606
14607		/*
14608		 * CRA_PROC means "we have *some* privilege for dtrace" and
14609		 * unlocks the use of variables like pid, zonename, etc.
14610		 */
14611		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14612		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14613			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14614		}
14615
14616		/*
14617		 * dtrace_user allows use of syscall and profile providers.
14618		 * If the user also has proc_owner and/or proc_zone, we
14619		 * extend the scope to include additional visibility and
14620		 * destructive power.
14621		 */
14622		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14623			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14624				state->dts_cred.dcr_visible |=
14625				    DTRACE_CRV_ALLPROC;
14626
14627				state->dts_cred.dcr_action |=
14628				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14629			}
14630
14631			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14632				state->dts_cred.dcr_visible |=
14633				    DTRACE_CRV_ALLZONE;
14634
14635				state->dts_cred.dcr_action |=
14636				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14637			}
14638
14639			/*
14640			 * If we have all privs in whatever zone this is,
14641			 * we can do destructive things to processes which
14642			 * have altered credentials.
14643			 */
14644#ifdef illumos
14645			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14646			    cr->cr_zone->zone_privset)) {
14647				state->dts_cred.dcr_action |=
14648				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14649			}
14650#endif
14651		}
14652
14653		/*
14654		 * Holding the dtrace_kernel privilege also implies that
14655		 * the user has the dtrace_user privilege from a visibility
14656		 * perspective.  But without further privileges, some
14657		 * destructive actions are not available.
14658		 */
14659		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14660			/*
14661			 * Make all probes in all zones visible.  However,
14662			 * this doesn't mean that all actions become available
14663			 * to all zones.
14664			 */
14665			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14666			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14667
14668			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14669			    DTRACE_CRA_PROC;
14670			/*
14671			 * Holding proc_owner means that destructive actions
14672			 * for *this* zone are allowed.
14673			 */
14674			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14675				state->dts_cred.dcr_action |=
14676				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14677
14678			/*
14679			 * Holding proc_zone means that destructive actions
14680			 * for this user/group ID in all zones is allowed.
14681			 */
14682			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14683				state->dts_cred.dcr_action |=
14684				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14685
14686#ifdef illumos
14687			/*
14688			 * If we have all privs in whatever zone this is,
14689			 * we can do destructive things to processes which
14690			 * have altered credentials.
14691			 */
14692			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14693			    cr->cr_zone->zone_privset)) {
14694				state->dts_cred.dcr_action |=
14695				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14696			}
14697#endif
14698		}
14699
14700		/*
14701		 * Holding the dtrace_proc privilege gives control over fasttrap
14702		 * and pid providers.  We need to grant wider destructive
14703		 * privileges in the event that the user has proc_owner and/or
14704		 * proc_zone.
14705		 */
14706		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14707			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14708				state->dts_cred.dcr_action |=
14709				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14710
14711			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14712				state->dts_cred.dcr_action |=
14713				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14714		}
14715	}
14716
14717	return (state);
14718}
14719
14720static int
14721dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14722{
14723	dtrace_optval_t *opt = state->dts_options, size;
14724	processorid_t cpu = 0;;
14725	int flags = 0, rval, factor, divisor = 1;
14726
14727	ASSERT(MUTEX_HELD(&dtrace_lock));
14728	ASSERT(MUTEX_HELD(&cpu_lock));
14729	ASSERT(which < DTRACEOPT_MAX);
14730	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14731	    (state == dtrace_anon.dta_state &&
14732	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14733
14734	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14735		return (0);
14736
14737	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14738		cpu = opt[DTRACEOPT_CPU];
14739
14740	if (which == DTRACEOPT_SPECSIZE)
14741		flags |= DTRACEBUF_NOSWITCH;
14742
14743	if (which == DTRACEOPT_BUFSIZE) {
14744		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14745			flags |= DTRACEBUF_RING;
14746
14747		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14748			flags |= DTRACEBUF_FILL;
14749
14750		if (state != dtrace_anon.dta_state ||
14751		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14752			flags |= DTRACEBUF_INACTIVE;
14753	}
14754
14755	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14756		/*
14757		 * The size must be 8-byte aligned.  If the size is not 8-byte
14758		 * aligned, drop it down by the difference.
14759		 */
14760		if (size & (sizeof (uint64_t) - 1))
14761			size -= size & (sizeof (uint64_t) - 1);
14762
14763		if (size < state->dts_reserve) {
14764			/*
14765			 * Buffers always must be large enough to accommodate
14766			 * their prereserved space.  We return E2BIG instead
14767			 * of ENOMEM in this case to allow for user-level
14768			 * software to differentiate the cases.
14769			 */
14770			return (E2BIG);
14771		}
14772
14773		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14774
14775		if (rval != ENOMEM) {
14776			opt[which] = size;
14777			return (rval);
14778		}
14779
14780		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14781			return (rval);
14782
14783		for (divisor = 2; divisor < factor; divisor <<= 1)
14784			continue;
14785	}
14786
14787	return (ENOMEM);
14788}
14789
14790static int
14791dtrace_state_buffers(dtrace_state_t *state)
14792{
14793	dtrace_speculation_t *spec = state->dts_speculations;
14794	int rval, i;
14795
14796	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14797	    DTRACEOPT_BUFSIZE)) != 0)
14798		return (rval);
14799
14800	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14801	    DTRACEOPT_AGGSIZE)) != 0)
14802		return (rval);
14803
14804	for (i = 0; i < state->dts_nspeculations; i++) {
14805		if ((rval = dtrace_state_buffer(state,
14806		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14807			return (rval);
14808	}
14809
14810	return (0);
14811}
14812
14813static void
14814dtrace_state_prereserve(dtrace_state_t *state)
14815{
14816	dtrace_ecb_t *ecb;
14817	dtrace_probe_t *probe;
14818
14819	state->dts_reserve = 0;
14820
14821	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14822		return;
14823
14824	/*
14825	 * If our buffer policy is a "fill" buffer policy, we need to set the
14826	 * prereserved space to be the space required by the END probes.
14827	 */
14828	probe = dtrace_probes[dtrace_probeid_end - 1];
14829	ASSERT(probe != NULL);
14830
14831	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14832		if (ecb->dte_state != state)
14833			continue;
14834
14835		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14836	}
14837}
14838
14839static int
14840dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14841{
14842	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14843	dtrace_speculation_t *spec;
14844	dtrace_buffer_t *buf;
14845#ifdef illumos
14846	cyc_handler_t hdlr;
14847	cyc_time_t when;
14848#endif
14849	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14850	dtrace_icookie_t cookie;
14851
14852	mutex_enter(&cpu_lock);
14853	mutex_enter(&dtrace_lock);
14854
14855	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14856		rval = EBUSY;
14857		goto out;
14858	}
14859
14860	/*
14861	 * Before we can perform any checks, we must prime all of the
14862	 * retained enablings that correspond to this state.
14863	 */
14864	dtrace_enabling_prime(state);
14865
14866	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14867		rval = EACCES;
14868		goto out;
14869	}
14870
14871	dtrace_state_prereserve(state);
14872
14873	/*
14874	 * Now we want to do is try to allocate our speculations.
14875	 * We do not automatically resize the number of speculations; if
14876	 * this fails, we will fail the operation.
14877	 */
14878	nspec = opt[DTRACEOPT_NSPEC];
14879	ASSERT(nspec != DTRACEOPT_UNSET);
14880
14881	if (nspec > INT_MAX) {
14882		rval = ENOMEM;
14883		goto out;
14884	}
14885
14886	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14887	    KM_NOSLEEP | KM_NORMALPRI);
14888
14889	if (spec == NULL) {
14890		rval = ENOMEM;
14891		goto out;
14892	}
14893
14894	state->dts_speculations = spec;
14895	state->dts_nspeculations = (int)nspec;
14896
14897	for (i = 0; i < nspec; i++) {
14898		if ((buf = kmem_zalloc(bufsize,
14899		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14900			rval = ENOMEM;
14901			goto err;
14902		}
14903
14904		spec[i].dtsp_buffer = buf;
14905	}
14906
14907	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14908		if (dtrace_anon.dta_state == NULL) {
14909			rval = ENOENT;
14910			goto out;
14911		}
14912
14913		if (state->dts_necbs != 0) {
14914			rval = EALREADY;
14915			goto out;
14916		}
14917
14918		state->dts_anon = dtrace_anon_grab();
14919		ASSERT(state->dts_anon != NULL);
14920		state = state->dts_anon;
14921
14922		/*
14923		 * We want "grabanon" to be set in the grabbed state, so we'll
14924		 * copy that option value from the grabbing state into the
14925		 * grabbed state.
14926		 */
14927		state->dts_options[DTRACEOPT_GRABANON] =
14928		    opt[DTRACEOPT_GRABANON];
14929
14930		*cpu = dtrace_anon.dta_beganon;
14931
14932		/*
14933		 * If the anonymous state is active (as it almost certainly
14934		 * is if the anonymous enabling ultimately matched anything),
14935		 * we don't allow any further option processing -- but we
14936		 * don't return failure.
14937		 */
14938		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14939			goto out;
14940	}
14941
14942	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14943	    opt[DTRACEOPT_AGGSIZE] != 0) {
14944		if (state->dts_aggregations == NULL) {
14945			/*
14946			 * We're not going to create an aggregation buffer
14947			 * because we don't have any ECBs that contain
14948			 * aggregations -- set this option to 0.
14949			 */
14950			opt[DTRACEOPT_AGGSIZE] = 0;
14951		} else {
14952			/*
14953			 * If we have an aggregation buffer, we must also have
14954			 * a buffer to use as scratch.
14955			 */
14956			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14957			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14958				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14959			}
14960		}
14961	}
14962
14963	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14964	    opt[DTRACEOPT_SPECSIZE] != 0) {
14965		if (!state->dts_speculates) {
14966			/*
14967			 * We're not going to create speculation buffers
14968			 * because we don't have any ECBs that actually
14969			 * speculate -- set the speculation size to 0.
14970			 */
14971			opt[DTRACEOPT_SPECSIZE] = 0;
14972		}
14973	}
14974
14975	/*
14976	 * The bare minimum size for any buffer that we're actually going to
14977	 * do anything to is sizeof (uint64_t).
14978	 */
14979	sz = sizeof (uint64_t);
14980
14981	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14982	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14983	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14984		/*
14985		 * A buffer size has been explicitly set to 0 (or to a size
14986		 * that will be adjusted to 0) and we need the space -- we
14987		 * need to return failure.  We return ENOSPC to differentiate
14988		 * it from failing to allocate a buffer due to failure to meet
14989		 * the reserve (for which we return E2BIG).
14990		 */
14991		rval = ENOSPC;
14992		goto out;
14993	}
14994
14995	if ((rval = dtrace_state_buffers(state)) != 0)
14996		goto err;
14997
14998	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14999		sz = dtrace_dstate_defsize;
15000
15001	do {
15002		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15003
15004		if (rval == 0)
15005			break;
15006
15007		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15008			goto err;
15009	} while (sz >>= 1);
15010
15011	opt[DTRACEOPT_DYNVARSIZE] = sz;
15012
15013	if (rval != 0)
15014		goto err;
15015
15016	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15017		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15018
15019	if (opt[DTRACEOPT_CLEANRATE] == 0)
15020		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15021
15022	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15023		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15024
15025	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15026		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15027
15028	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15029#ifdef illumos
15030	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15031	hdlr.cyh_arg = state;
15032	hdlr.cyh_level = CY_LOW_LEVEL;
15033
15034	when.cyt_when = 0;
15035	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15036
15037	state->dts_cleaner = cyclic_add(&hdlr, &when);
15038
15039	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15040	hdlr.cyh_arg = state;
15041	hdlr.cyh_level = CY_LOW_LEVEL;
15042
15043	when.cyt_when = 0;
15044	when.cyt_interval = dtrace_deadman_interval;
15045
15046	state->dts_deadman = cyclic_add(&hdlr, &when);
15047#else
15048	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15049	    dtrace_state_clean, state);
15050	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15051	    dtrace_state_deadman, state);
15052#endif
15053
15054	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15055
15056#ifdef illumos
15057	if (state->dts_getf != 0 &&
15058	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15059		/*
15060		 * We don't have kernel privs but we have at least one call
15061		 * to getf(); we need to bump our zone's count, and (if
15062		 * this is the first enabling to have an unprivileged call
15063		 * to getf()) we need to hook into closef().
15064		 */
15065		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15066
15067		if (dtrace_getf++ == 0) {
15068			ASSERT(dtrace_closef == NULL);
15069			dtrace_closef = dtrace_getf_barrier;
15070		}
15071	}
15072#endif
15073
15074	/*
15075	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15076	 * interrupts here both to record the CPU on which we fired the BEGIN
15077	 * probe (the data from this CPU will be processed first at user
15078	 * level) and to manually activate the buffer for this CPU.
15079	 */
15080	cookie = dtrace_interrupt_disable();
15081	*cpu = curcpu;
15082	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15083	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15084
15085	dtrace_probe(dtrace_probeid_begin,
15086	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15087	dtrace_interrupt_enable(cookie);
15088	/*
15089	 * We may have had an exit action from a BEGIN probe; only change our
15090	 * state to ACTIVE if we're still in WARMUP.
15091	 */
15092	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15093	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15094
15095	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15096		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15097
15098#ifdef __FreeBSD__
15099	/*
15100	 * We enable anonymous tracing before APs are started, so we must
15101	 * activate buffers using the current CPU.
15102	 */
15103	if (state == dtrace_anon.dta_state)
15104		for (int i = 0; i < NCPU; i++)
15105			dtrace_buffer_activate_cpu(state, i);
15106	else
15107		dtrace_xcall(DTRACE_CPUALL,
15108		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15109#else
15110	/*
15111	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15112	 * want each CPU to transition its principal buffer out of the
15113	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15114	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15115	 * atomically transition from processing none of a state's ECBs to
15116	 * processing all of them.
15117	 */
15118	dtrace_xcall(DTRACE_CPUALL,
15119	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15120#endif
15121	goto out;
15122
15123err:
15124	dtrace_buffer_free(state->dts_buffer);
15125	dtrace_buffer_free(state->dts_aggbuffer);
15126
15127	if ((nspec = state->dts_nspeculations) == 0) {
15128		ASSERT(state->dts_speculations == NULL);
15129		goto out;
15130	}
15131
15132	spec = state->dts_speculations;
15133	ASSERT(spec != NULL);
15134
15135	for (i = 0; i < state->dts_nspeculations; i++) {
15136		if ((buf = spec[i].dtsp_buffer) == NULL)
15137			break;
15138
15139		dtrace_buffer_free(buf);
15140		kmem_free(buf, bufsize);
15141	}
15142
15143	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15144	state->dts_nspeculations = 0;
15145	state->dts_speculations = NULL;
15146
15147out:
15148	mutex_exit(&dtrace_lock);
15149	mutex_exit(&cpu_lock);
15150
15151	return (rval);
15152}
15153
15154static int
15155dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15156{
15157	dtrace_icookie_t cookie;
15158
15159	ASSERT(MUTEX_HELD(&dtrace_lock));
15160
15161	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15162	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15163		return (EINVAL);
15164
15165	/*
15166	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15167	 * to be sure that every CPU has seen it.  See below for the details
15168	 * on why this is done.
15169	 */
15170	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15171	dtrace_sync();
15172
15173	/*
15174	 * By this point, it is impossible for any CPU to be still processing
15175	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15176	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15177	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15178	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15179	 * iff we're in the END probe.
15180	 */
15181	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15182	dtrace_sync();
15183	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15184
15185	/*
15186	 * Finally, we can release the reserve and call the END probe.  We
15187	 * disable interrupts across calling the END probe to allow us to
15188	 * return the CPU on which we actually called the END probe.  This
15189	 * allows user-land to be sure that this CPU's principal buffer is
15190	 * processed last.
15191	 */
15192	state->dts_reserve = 0;
15193
15194	cookie = dtrace_interrupt_disable();
15195	*cpu = curcpu;
15196	dtrace_probe(dtrace_probeid_end,
15197	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15198	dtrace_interrupt_enable(cookie);
15199
15200	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15201	dtrace_sync();
15202
15203#ifdef illumos
15204	if (state->dts_getf != 0 &&
15205	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15206		/*
15207		 * We don't have kernel privs but we have at least one call
15208		 * to getf(); we need to lower our zone's count, and (if
15209		 * this is the last enabling to have an unprivileged call
15210		 * to getf()) we need to clear the closef() hook.
15211		 */
15212		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15213		ASSERT(dtrace_closef == dtrace_getf_barrier);
15214		ASSERT(dtrace_getf > 0);
15215
15216		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15217
15218		if (--dtrace_getf == 0)
15219			dtrace_closef = NULL;
15220	}
15221#endif
15222
15223	return (0);
15224}
15225
15226static int
15227dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15228    dtrace_optval_t val)
15229{
15230	ASSERT(MUTEX_HELD(&dtrace_lock));
15231
15232	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15233		return (EBUSY);
15234
15235	if (option >= DTRACEOPT_MAX)
15236		return (EINVAL);
15237
15238	if (option != DTRACEOPT_CPU && val < 0)
15239		return (EINVAL);
15240
15241	switch (option) {
15242	case DTRACEOPT_DESTRUCTIVE:
15243		if (dtrace_destructive_disallow)
15244			return (EACCES);
15245
15246		state->dts_cred.dcr_destructive = 1;
15247		break;
15248
15249	case DTRACEOPT_BUFSIZE:
15250	case DTRACEOPT_DYNVARSIZE:
15251	case DTRACEOPT_AGGSIZE:
15252	case DTRACEOPT_SPECSIZE:
15253	case DTRACEOPT_STRSIZE:
15254		if (val < 0)
15255			return (EINVAL);
15256
15257		if (val >= LONG_MAX) {
15258			/*
15259			 * If this is an otherwise negative value, set it to
15260			 * the highest multiple of 128m less than LONG_MAX.
15261			 * Technically, we're adjusting the size without
15262			 * regard to the buffer resizing policy, but in fact,
15263			 * this has no effect -- if we set the buffer size to
15264			 * ~LONG_MAX and the buffer policy is ultimately set to
15265			 * be "manual", the buffer allocation is guaranteed to
15266			 * fail, if only because the allocation requires two
15267			 * buffers.  (We set the the size to the highest
15268			 * multiple of 128m because it ensures that the size
15269			 * will remain a multiple of a megabyte when
15270			 * repeatedly halved -- all the way down to 15m.)
15271			 */
15272			val = LONG_MAX - (1 << 27) + 1;
15273		}
15274	}
15275
15276	state->dts_options[option] = val;
15277
15278	return (0);
15279}
15280
15281static void
15282dtrace_state_destroy(dtrace_state_t *state)
15283{
15284	dtrace_ecb_t *ecb;
15285	dtrace_vstate_t *vstate = &state->dts_vstate;
15286#ifdef illumos
15287	minor_t minor = getminor(state->dts_dev);
15288#endif
15289	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15290	dtrace_speculation_t *spec = state->dts_speculations;
15291	int nspec = state->dts_nspeculations;
15292	uint32_t match;
15293
15294	ASSERT(MUTEX_HELD(&dtrace_lock));
15295	ASSERT(MUTEX_HELD(&cpu_lock));
15296
15297	/*
15298	 * First, retract any retained enablings for this state.
15299	 */
15300	dtrace_enabling_retract(state);
15301	ASSERT(state->dts_nretained == 0);
15302
15303	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15304	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15305		/*
15306		 * We have managed to come into dtrace_state_destroy() on a
15307		 * hot enabling -- almost certainly because of a disorderly
15308		 * shutdown of a consumer.  (That is, a consumer that is
15309		 * exiting without having called dtrace_stop().) In this case,
15310		 * we're going to set our activity to be KILLED, and then
15311		 * issue a sync to be sure that everyone is out of probe
15312		 * context before we start blowing away ECBs.
15313		 */
15314		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15315		dtrace_sync();
15316	}
15317
15318	/*
15319	 * Release the credential hold we took in dtrace_state_create().
15320	 */
15321	if (state->dts_cred.dcr_cred != NULL)
15322		crfree(state->dts_cred.dcr_cred);
15323
15324	/*
15325	 * Now we can safely disable and destroy any enabled probes.  Because
15326	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15327	 * (especially if they're all enabled), we take two passes through the
15328	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15329	 * in the second we disable whatever is left over.
15330	 */
15331	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15332		for (i = 0; i < state->dts_necbs; i++) {
15333			if ((ecb = state->dts_ecbs[i]) == NULL)
15334				continue;
15335
15336			if (match && ecb->dte_probe != NULL) {
15337				dtrace_probe_t *probe = ecb->dte_probe;
15338				dtrace_provider_t *prov = probe->dtpr_provider;
15339
15340				if (!(prov->dtpv_priv.dtpp_flags & match))
15341					continue;
15342			}
15343
15344			dtrace_ecb_disable(ecb);
15345			dtrace_ecb_destroy(ecb);
15346		}
15347
15348		if (!match)
15349			break;
15350	}
15351
15352	/*
15353	 * Before we free the buffers, perform one more sync to assure that
15354	 * every CPU is out of probe context.
15355	 */
15356	dtrace_sync();
15357
15358	dtrace_buffer_free(state->dts_buffer);
15359	dtrace_buffer_free(state->dts_aggbuffer);
15360
15361	for (i = 0; i < nspec; i++)
15362		dtrace_buffer_free(spec[i].dtsp_buffer);
15363
15364#ifdef illumos
15365	if (state->dts_cleaner != CYCLIC_NONE)
15366		cyclic_remove(state->dts_cleaner);
15367
15368	if (state->dts_deadman != CYCLIC_NONE)
15369		cyclic_remove(state->dts_deadman);
15370#else
15371	callout_stop(&state->dts_cleaner);
15372	callout_drain(&state->dts_cleaner);
15373	callout_stop(&state->dts_deadman);
15374	callout_drain(&state->dts_deadman);
15375#endif
15376
15377	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15378	dtrace_vstate_fini(vstate);
15379	if (state->dts_ecbs != NULL)
15380		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15381
15382	if (state->dts_aggregations != NULL) {
15383#ifdef DEBUG
15384		for (i = 0; i < state->dts_naggregations; i++)
15385			ASSERT(state->dts_aggregations[i] == NULL);
15386#endif
15387		ASSERT(state->dts_naggregations > 0);
15388		kmem_free(state->dts_aggregations,
15389		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15390	}
15391
15392	kmem_free(state->dts_buffer, bufsize);
15393	kmem_free(state->dts_aggbuffer, bufsize);
15394
15395	for (i = 0; i < nspec; i++)
15396		kmem_free(spec[i].dtsp_buffer, bufsize);
15397
15398	if (spec != NULL)
15399		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15400
15401	dtrace_format_destroy(state);
15402
15403	if (state->dts_aggid_arena != NULL) {
15404#ifdef illumos
15405		vmem_destroy(state->dts_aggid_arena);
15406#else
15407		delete_unrhdr(state->dts_aggid_arena);
15408#endif
15409		state->dts_aggid_arena = NULL;
15410	}
15411#ifdef illumos
15412	ddi_soft_state_free(dtrace_softstate, minor);
15413	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15414#endif
15415}
15416
15417/*
15418 * DTrace Anonymous Enabling Functions
15419 */
15420static dtrace_state_t *
15421dtrace_anon_grab(void)
15422{
15423	dtrace_state_t *state;
15424
15425	ASSERT(MUTEX_HELD(&dtrace_lock));
15426
15427	if ((state = dtrace_anon.dta_state) == NULL) {
15428		ASSERT(dtrace_anon.dta_enabling == NULL);
15429		return (NULL);
15430	}
15431
15432	ASSERT(dtrace_anon.dta_enabling != NULL);
15433	ASSERT(dtrace_retained != NULL);
15434
15435	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15436	dtrace_anon.dta_enabling = NULL;
15437	dtrace_anon.dta_state = NULL;
15438
15439	return (state);
15440}
15441
15442static void
15443dtrace_anon_property(void)
15444{
15445	int i, rv;
15446	dtrace_state_t *state;
15447	dof_hdr_t *dof;
15448	char c[32];		/* enough for "dof-data-" + digits */
15449
15450	ASSERT(MUTEX_HELD(&dtrace_lock));
15451	ASSERT(MUTEX_HELD(&cpu_lock));
15452
15453	for (i = 0; ; i++) {
15454		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15455
15456		dtrace_err_verbose = 1;
15457
15458		if ((dof = dtrace_dof_property(c)) == NULL) {
15459			dtrace_err_verbose = 0;
15460			break;
15461		}
15462
15463#ifdef illumos
15464		/*
15465		 * We want to create anonymous state, so we need to transition
15466		 * the kernel debugger to indicate that DTrace is active.  If
15467		 * this fails (e.g. because the debugger has modified text in
15468		 * some way), we won't continue with the processing.
15469		 */
15470		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15471			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15472			    "enabling ignored.");
15473			dtrace_dof_destroy(dof);
15474			break;
15475		}
15476#endif
15477
15478		/*
15479		 * If we haven't allocated an anonymous state, we'll do so now.
15480		 */
15481		if ((state = dtrace_anon.dta_state) == NULL) {
15482			state = dtrace_state_create(NULL, NULL);
15483			dtrace_anon.dta_state = state;
15484
15485			if (state == NULL) {
15486				/*
15487				 * This basically shouldn't happen:  the only
15488				 * failure mode from dtrace_state_create() is a
15489				 * failure of ddi_soft_state_zalloc() that
15490				 * itself should never happen.  Still, the
15491				 * interface allows for a failure mode, and
15492				 * we want to fail as gracefully as possible:
15493				 * we'll emit an error message and cease
15494				 * processing anonymous state in this case.
15495				 */
15496				cmn_err(CE_WARN, "failed to create "
15497				    "anonymous state");
15498				dtrace_dof_destroy(dof);
15499				break;
15500			}
15501		}
15502
15503		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15504		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15505
15506		if (rv == 0)
15507			rv = dtrace_dof_options(dof, state);
15508
15509		dtrace_err_verbose = 0;
15510		dtrace_dof_destroy(dof);
15511
15512		if (rv != 0) {
15513			/*
15514			 * This is malformed DOF; chuck any anonymous state
15515			 * that we created.
15516			 */
15517			ASSERT(dtrace_anon.dta_enabling == NULL);
15518			dtrace_state_destroy(state);
15519			dtrace_anon.dta_state = NULL;
15520			break;
15521		}
15522
15523		ASSERT(dtrace_anon.dta_enabling != NULL);
15524	}
15525
15526	if (dtrace_anon.dta_enabling != NULL) {
15527		int rval;
15528
15529		/*
15530		 * dtrace_enabling_retain() can only fail because we are
15531		 * trying to retain more enablings than are allowed -- but
15532		 * we only have one anonymous enabling, and we are guaranteed
15533		 * to be allowed at least one retained enabling; we assert
15534		 * that dtrace_enabling_retain() returns success.
15535		 */
15536		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15537		ASSERT(rval == 0);
15538
15539		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15540	}
15541}
15542
15543/*
15544 * DTrace Helper Functions
15545 */
15546static void
15547dtrace_helper_trace(dtrace_helper_action_t *helper,
15548    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15549{
15550	uint32_t size, next, nnext, i;
15551	dtrace_helptrace_t *ent, *buffer;
15552	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15553
15554	if ((buffer = dtrace_helptrace_buffer) == NULL)
15555		return;
15556
15557	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15558
15559	/*
15560	 * What would a tracing framework be without its own tracing
15561	 * framework?  (Well, a hell of a lot simpler, for starters...)
15562	 */
15563	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15564	    sizeof (uint64_t) - sizeof (uint64_t);
15565
15566	/*
15567	 * Iterate until we can allocate a slot in the trace buffer.
15568	 */
15569	do {
15570		next = dtrace_helptrace_next;
15571
15572		if (next + size < dtrace_helptrace_bufsize) {
15573			nnext = next + size;
15574		} else {
15575			nnext = size;
15576		}
15577	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15578
15579	/*
15580	 * We have our slot; fill it in.
15581	 */
15582	if (nnext == size) {
15583		dtrace_helptrace_wrapped++;
15584		next = 0;
15585	}
15586
15587	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15588	ent->dtht_helper = helper;
15589	ent->dtht_where = where;
15590	ent->dtht_nlocals = vstate->dtvs_nlocals;
15591
15592	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15593	    mstate->dtms_fltoffs : -1;
15594	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15595	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15596
15597	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15598		dtrace_statvar_t *svar;
15599
15600		if ((svar = vstate->dtvs_locals[i]) == NULL)
15601			continue;
15602
15603		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15604		ent->dtht_locals[i] =
15605		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15606	}
15607}
15608
15609static uint64_t
15610dtrace_helper(int which, dtrace_mstate_t *mstate,
15611    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15612{
15613	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15614	uint64_t sarg0 = mstate->dtms_arg[0];
15615	uint64_t sarg1 = mstate->dtms_arg[1];
15616	uint64_t rval = 0;
15617	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15618	dtrace_helper_action_t *helper;
15619	dtrace_vstate_t *vstate;
15620	dtrace_difo_t *pred;
15621	int i, trace = dtrace_helptrace_buffer != NULL;
15622
15623	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15624
15625	if (helpers == NULL)
15626		return (0);
15627
15628	if ((helper = helpers->dthps_actions[which]) == NULL)
15629		return (0);
15630
15631	vstate = &helpers->dthps_vstate;
15632	mstate->dtms_arg[0] = arg0;
15633	mstate->dtms_arg[1] = arg1;
15634
15635	/*
15636	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15637	 * we'll call the corresponding actions.  Note that the below calls
15638	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15639	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15640	 * the stored DIF offset with its own (which is the desired behavior).
15641	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15642	 * from machine state; this is okay, too.
15643	 */
15644	for (; helper != NULL; helper = helper->dtha_next) {
15645		if ((pred = helper->dtha_predicate) != NULL) {
15646			if (trace)
15647				dtrace_helper_trace(helper, mstate, vstate, 0);
15648
15649			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15650				goto next;
15651
15652			if (*flags & CPU_DTRACE_FAULT)
15653				goto err;
15654		}
15655
15656		for (i = 0; i < helper->dtha_nactions; i++) {
15657			if (trace)
15658				dtrace_helper_trace(helper,
15659				    mstate, vstate, i + 1);
15660
15661			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15662			    mstate, vstate, state);
15663
15664			if (*flags & CPU_DTRACE_FAULT)
15665				goto err;
15666		}
15667
15668next:
15669		if (trace)
15670			dtrace_helper_trace(helper, mstate, vstate,
15671			    DTRACE_HELPTRACE_NEXT);
15672	}
15673
15674	if (trace)
15675		dtrace_helper_trace(helper, mstate, vstate,
15676		    DTRACE_HELPTRACE_DONE);
15677
15678	/*
15679	 * Restore the arg0 that we saved upon entry.
15680	 */
15681	mstate->dtms_arg[0] = sarg0;
15682	mstate->dtms_arg[1] = sarg1;
15683
15684	return (rval);
15685
15686err:
15687	if (trace)
15688		dtrace_helper_trace(helper, mstate, vstate,
15689		    DTRACE_HELPTRACE_ERR);
15690
15691	/*
15692	 * Restore the arg0 that we saved upon entry.
15693	 */
15694	mstate->dtms_arg[0] = sarg0;
15695	mstate->dtms_arg[1] = sarg1;
15696
15697	return (0);
15698}
15699
15700static void
15701dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15702    dtrace_vstate_t *vstate)
15703{
15704	int i;
15705
15706	if (helper->dtha_predicate != NULL)
15707		dtrace_difo_release(helper->dtha_predicate, vstate);
15708
15709	for (i = 0; i < helper->dtha_nactions; i++) {
15710		ASSERT(helper->dtha_actions[i] != NULL);
15711		dtrace_difo_release(helper->dtha_actions[i], vstate);
15712	}
15713
15714	kmem_free(helper->dtha_actions,
15715	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15716	kmem_free(helper, sizeof (dtrace_helper_action_t));
15717}
15718
15719static int
15720dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15721{
15722	proc_t *p = curproc;
15723	dtrace_vstate_t *vstate;
15724	int i;
15725
15726	if (help == NULL)
15727		help = p->p_dtrace_helpers;
15728
15729	ASSERT(MUTEX_HELD(&dtrace_lock));
15730
15731	if (help == NULL || gen > help->dthps_generation)
15732		return (EINVAL);
15733
15734	vstate = &help->dthps_vstate;
15735
15736	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15737		dtrace_helper_action_t *last = NULL, *h, *next;
15738
15739		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15740			next = h->dtha_next;
15741
15742			if (h->dtha_generation == gen) {
15743				if (last != NULL) {
15744					last->dtha_next = next;
15745				} else {
15746					help->dthps_actions[i] = next;
15747				}
15748
15749				dtrace_helper_action_destroy(h, vstate);
15750			} else {
15751				last = h;
15752			}
15753		}
15754	}
15755
15756	/*
15757	 * Interate until we've cleared out all helper providers with the
15758	 * given generation number.
15759	 */
15760	for (;;) {
15761		dtrace_helper_provider_t *prov;
15762
15763		/*
15764		 * Look for a helper provider with the right generation. We
15765		 * have to start back at the beginning of the list each time
15766		 * because we drop dtrace_lock. It's unlikely that we'll make
15767		 * more than two passes.
15768		 */
15769		for (i = 0; i < help->dthps_nprovs; i++) {
15770			prov = help->dthps_provs[i];
15771
15772			if (prov->dthp_generation == gen)
15773				break;
15774		}
15775
15776		/*
15777		 * If there were no matches, we're done.
15778		 */
15779		if (i == help->dthps_nprovs)
15780			break;
15781
15782		/*
15783		 * Move the last helper provider into this slot.
15784		 */
15785		help->dthps_nprovs--;
15786		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15787		help->dthps_provs[help->dthps_nprovs] = NULL;
15788
15789		mutex_exit(&dtrace_lock);
15790
15791		/*
15792		 * If we have a meta provider, remove this helper provider.
15793		 */
15794		mutex_enter(&dtrace_meta_lock);
15795		if (dtrace_meta_pid != NULL) {
15796			ASSERT(dtrace_deferred_pid == NULL);
15797			dtrace_helper_provider_remove(&prov->dthp_prov,
15798			    p->p_pid);
15799		}
15800		mutex_exit(&dtrace_meta_lock);
15801
15802		dtrace_helper_provider_destroy(prov);
15803
15804		mutex_enter(&dtrace_lock);
15805	}
15806
15807	return (0);
15808}
15809
15810static int
15811dtrace_helper_validate(dtrace_helper_action_t *helper)
15812{
15813	int err = 0, i;
15814	dtrace_difo_t *dp;
15815
15816	if ((dp = helper->dtha_predicate) != NULL)
15817		err += dtrace_difo_validate_helper(dp);
15818
15819	for (i = 0; i < helper->dtha_nactions; i++)
15820		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15821
15822	return (err == 0);
15823}
15824
15825static int
15826dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15827    dtrace_helpers_t *help)
15828{
15829	dtrace_helper_action_t *helper, *last;
15830	dtrace_actdesc_t *act;
15831	dtrace_vstate_t *vstate;
15832	dtrace_predicate_t *pred;
15833	int count = 0, nactions = 0, i;
15834
15835	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15836		return (EINVAL);
15837
15838	last = help->dthps_actions[which];
15839	vstate = &help->dthps_vstate;
15840
15841	for (count = 0; last != NULL; last = last->dtha_next) {
15842		count++;
15843		if (last->dtha_next == NULL)
15844			break;
15845	}
15846
15847	/*
15848	 * If we already have dtrace_helper_actions_max helper actions for this
15849	 * helper action type, we'll refuse to add a new one.
15850	 */
15851	if (count >= dtrace_helper_actions_max)
15852		return (ENOSPC);
15853
15854	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15855	helper->dtha_generation = help->dthps_generation;
15856
15857	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15858		ASSERT(pred->dtp_difo != NULL);
15859		dtrace_difo_hold(pred->dtp_difo);
15860		helper->dtha_predicate = pred->dtp_difo;
15861	}
15862
15863	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15864		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15865			goto err;
15866
15867		if (act->dtad_difo == NULL)
15868			goto err;
15869
15870		nactions++;
15871	}
15872
15873	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15874	    (helper->dtha_nactions = nactions), KM_SLEEP);
15875
15876	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15877		dtrace_difo_hold(act->dtad_difo);
15878		helper->dtha_actions[i++] = act->dtad_difo;
15879	}
15880
15881	if (!dtrace_helper_validate(helper))
15882		goto err;
15883
15884	if (last == NULL) {
15885		help->dthps_actions[which] = helper;
15886	} else {
15887		last->dtha_next = helper;
15888	}
15889
15890	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15891		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15892		dtrace_helptrace_next = 0;
15893	}
15894
15895	return (0);
15896err:
15897	dtrace_helper_action_destroy(helper, vstate);
15898	return (EINVAL);
15899}
15900
15901static void
15902dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15903    dof_helper_t *dofhp)
15904{
15905	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15906
15907	mutex_enter(&dtrace_meta_lock);
15908	mutex_enter(&dtrace_lock);
15909
15910	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15911		/*
15912		 * If the dtrace module is loaded but not attached, or if
15913		 * there aren't isn't a meta provider registered to deal with
15914		 * these provider descriptions, we need to postpone creating
15915		 * the actual providers until later.
15916		 */
15917
15918		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15919		    dtrace_deferred_pid != help) {
15920			help->dthps_deferred = 1;
15921			help->dthps_pid = p->p_pid;
15922			help->dthps_next = dtrace_deferred_pid;
15923			help->dthps_prev = NULL;
15924			if (dtrace_deferred_pid != NULL)
15925				dtrace_deferred_pid->dthps_prev = help;
15926			dtrace_deferred_pid = help;
15927		}
15928
15929		mutex_exit(&dtrace_lock);
15930
15931	} else if (dofhp != NULL) {
15932		/*
15933		 * If the dtrace module is loaded and we have a particular
15934		 * helper provider description, pass that off to the
15935		 * meta provider.
15936		 */
15937
15938		mutex_exit(&dtrace_lock);
15939
15940		dtrace_helper_provide(dofhp, p->p_pid);
15941
15942	} else {
15943		/*
15944		 * Otherwise, just pass all the helper provider descriptions
15945		 * off to the meta provider.
15946		 */
15947
15948		int i;
15949		mutex_exit(&dtrace_lock);
15950
15951		for (i = 0; i < help->dthps_nprovs; i++) {
15952			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15953			    p->p_pid);
15954		}
15955	}
15956
15957	mutex_exit(&dtrace_meta_lock);
15958}
15959
15960static int
15961dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
15962{
15963	dtrace_helper_provider_t *hprov, **tmp_provs;
15964	uint_t tmp_maxprovs, i;
15965
15966	ASSERT(MUTEX_HELD(&dtrace_lock));
15967	ASSERT(help != NULL);
15968
15969	/*
15970	 * If we already have dtrace_helper_providers_max helper providers,
15971	 * we're refuse to add a new one.
15972	 */
15973	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15974		return (ENOSPC);
15975
15976	/*
15977	 * Check to make sure this isn't a duplicate.
15978	 */
15979	for (i = 0; i < help->dthps_nprovs; i++) {
15980		if (dofhp->dofhp_addr ==
15981		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
15982			return (EALREADY);
15983	}
15984
15985	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15986	hprov->dthp_prov = *dofhp;
15987	hprov->dthp_ref = 1;
15988	hprov->dthp_generation = gen;
15989
15990	/*
15991	 * Allocate a bigger table for helper providers if it's already full.
15992	 */
15993	if (help->dthps_maxprovs == help->dthps_nprovs) {
15994		tmp_maxprovs = help->dthps_maxprovs;
15995		tmp_provs = help->dthps_provs;
15996
15997		if (help->dthps_maxprovs == 0)
15998			help->dthps_maxprovs = 2;
15999		else
16000			help->dthps_maxprovs *= 2;
16001		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16002			help->dthps_maxprovs = dtrace_helper_providers_max;
16003
16004		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16005
16006		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16007		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16008
16009		if (tmp_provs != NULL) {
16010			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16011			    sizeof (dtrace_helper_provider_t *));
16012			kmem_free(tmp_provs, tmp_maxprovs *
16013			    sizeof (dtrace_helper_provider_t *));
16014		}
16015	}
16016
16017	help->dthps_provs[help->dthps_nprovs] = hprov;
16018	help->dthps_nprovs++;
16019
16020	return (0);
16021}
16022
16023static void
16024dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16025{
16026	mutex_enter(&dtrace_lock);
16027
16028	if (--hprov->dthp_ref == 0) {
16029		dof_hdr_t *dof;
16030		mutex_exit(&dtrace_lock);
16031		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16032		dtrace_dof_destroy(dof);
16033		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16034	} else {
16035		mutex_exit(&dtrace_lock);
16036	}
16037}
16038
16039static int
16040dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16041{
16042	uintptr_t daddr = (uintptr_t)dof;
16043	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16044	dof_provider_t *provider;
16045	dof_probe_t *probe;
16046	uint8_t *arg;
16047	char *strtab, *typestr;
16048	dof_stridx_t typeidx;
16049	size_t typesz;
16050	uint_t nprobes, j, k;
16051
16052	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16053
16054	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16055		dtrace_dof_error(dof, "misaligned section offset");
16056		return (-1);
16057	}
16058
16059	/*
16060	 * The section needs to be large enough to contain the DOF provider
16061	 * structure appropriate for the given version.
16062	 */
16063	if (sec->dofs_size <
16064	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16065	    offsetof(dof_provider_t, dofpv_prenoffs) :
16066	    sizeof (dof_provider_t))) {
16067		dtrace_dof_error(dof, "provider section too small");
16068		return (-1);
16069	}
16070
16071	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16072	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16073	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16074	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16075	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16076
16077	if (str_sec == NULL || prb_sec == NULL ||
16078	    arg_sec == NULL || off_sec == NULL)
16079		return (-1);
16080
16081	enoff_sec = NULL;
16082
16083	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16084	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16085	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16086	    provider->dofpv_prenoffs)) == NULL)
16087		return (-1);
16088
16089	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16090
16091	if (provider->dofpv_name >= str_sec->dofs_size ||
16092	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16093		dtrace_dof_error(dof, "invalid provider name");
16094		return (-1);
16095	}
16096
16097	if (prb_sec->dofs_entsize == 0 ||
16098	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16099		dtrace_dof_error(dof, "invalid entry size");
16100		return (-1);
16101	}
16102
16103	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16104		dtrace_dof_error(dof, "misaligned entry size");
16105		return (-1);
16106	}
16107
16108	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16109		dtrace_dof_error(dof, "invalid entry size");
16110		return (-1);
16111	}
16112
16113	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16114		dtrace_dof_error(dof, "misaligned section offset");
16115		return (-1);
16116	}
16117
16118	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16119		dtrace_dof_error(dof, "invalid entry size");
16120		return (-1);
16121	}
16122
16123	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16124
16125	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16126
16127	/*
16128	 * Take a pass through the probes to check for errors.
16129	 */
16130	for (j = 0; j < nprobes; j++) {
16131		probe = (dof_probe_t *)(uintptr_t)(daddr +
16132		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16133
16134		if (probe->dofpr_func >= str_sec->dofs_size) {
16135			dtrace_dof_error(dof, "invalid function name");
16136			return (-1);
16137		}
16138
16139		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16140			dtrace_dof_error(dof, "function name too long");
16141			/*
16142			 * Keep going if the function name is too long.
16143			 * Unlike provider and probe names, we cannot reasonably
16144			 * impose restrictions on function names, since they're
16145			 * a property of the code being instrumented. We will
16146			 * skip this probe in dtrace_helper_provide_one().
16147			 */
16148		}
16149
16150		if (probe->dofpr_name >= str_sec->dofs_size ||
16151		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16152			dtrace_dof_error(dof, "invalid probe name");
16153			return (-1);
16154		}
16155
16156		/*
16157		 * The offset count must not wrap the index, and the offsets
16158		 * must also not overflow the section's data.
16159		 */
16160		if (probe->dofpr_offidx + probe->dofpr_noffs <
16161		    probe->dofpr_offidx ||
16162		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16163		    off_sec->dofs_entsize > off_sec->dofs_size) {
16164			dtrace_dof_error(dof, "invalid probe offset");
16165			return (-1);
16166		}
16167
16168		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16169			/*
16170			 * If there's no is-enabled offset section, make sure
16171			 * there aren't any is-enabled offsets. Otherwise
16172			 * perform the same checks as for probe offsets
16173			 * (immediately above).
16174			 */
16175			if (enoff_sec == NULL) {
16176				if (probe->dofpr_enoffidx != 0 ||
16177				    probe->dofpr_nenoffs != 0) {
16178					dtrace_dof_error(dof, "is-enabled "
16179					    "offsets with null section");
16180					return (-1);
16181				}
16182			} else if (probe->dofpr_enoffidx +
16183			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16184			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16185			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16186				dtrace_dof_error(dof, "invalid is-enabled "
16187				    "offset");
16188				return (-1);
16189			}
16190
16191			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16192				dtrace_dof_error(dof, "zero probe and "
16193				    "is-enabled offsets");
16194				return (-1);
16195			}
16196		} else if (probe->dofpr_noffs == 0) {
16197			dtrace_dof_error(dof, "zero probe offsets");
16198			return (-1);
16199		}
16200
16201		if (probe->dofpr_argidx + probe->dofpr_xargc <
16202		    probe->dofpr_argidx ||
16203		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16204		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16205			dtrace_dof_error(dof, "invalid args");
16206			return (-1);
16207		}
16208
16209		typeidx = probe->dofpr_nargv;
16210		typestr = strtab + probe->dofpr_nargv;
16211		for (k = 0; k < probe->dofpr_nargc; k++) {
16212			if (typeidx >= str_sec->dofs_size) {
16213				dtrace_dof_error(dof, "bad "
16214				    "native argument type");
16215				return (-1);
16216			}
16217
16218			typesz = strlen(typestr) + 1;
16219			if (typesz > DTRACE_ARGTYPELEN) {
16220				dtrace_dof_error(dof, "native "
16221				    "argument type too long");
16222				return (-1);
16223			}
16224			typeidx += typesz;
16225			typestr += typesz;
16226		}
16227
16228		typeidx = probe->dofpr_xargv;
16229		typestr = strtab + probe->dofpr_xargv;
16230		for (k = 0; k < probe->dofpr_xargc; k++) {
16231			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16232				dtrace_dof_error(dof, "bad "
16233				    "native argument index");
16234				return (-1);
16235			}
16236
16237			if (typeidx >= str_sec->dofs_size) {
16238				dtrace_dof_error(dof, "bad "
16239				    "translated argument type");
16240				return (-1);
16241			}
16242
16243			typesz = strlen(typestr) + 1;
16244			if (typesz > DTRACE_ARGTYPELEN) {
16245				dtrace_dof_error(dof, "translated argument "
16246				    "type too long");
16247				return (-1);
16248			}
16249
16250			typeidx += typesz;
16251			typestr += typesz;
16252		}
16253	}
16254
16255	return (0);
16256}
16257
16258static int
16259dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16260{
16261	dtrace_helpers_t *help;
16262	dtrace_vstate_t *vstate;
16263	dtrace_enabling_t *enab = NULL;
16264	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16265	uintptr_t daddr = (uintptr_t)dof;
16266
16267	ASSERT(MUTEX_HELD(&dtrace_lock));
16268
16269	if ((help = p->p_dtrace_helpers) == NULL)
16270		help = dtrace_helpers_create(p);
16271
16272	vstate = &help->dthps_vstate;
16273
16274	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16275	    dhp->dofhp_dof, B_FALSE)) != 0) {
16276		dtrace_dof_destroy(dof);
16277		return (rv);
16278	}
16279
16280	/*
16281	 * Look for helper providers and validate their descriptions.
16282	 */
16283	for (i = 0; i < dof->dofh_secnum; i++) {
16284		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16285		    dof->dofh_secoff + i * dof->dofh_secsize);
16286
16287		if (sec->dofs_type != DOF_SECT_PROVIDER)
16288			continue;
16289
16290		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16291			dtrace_enabling_destroy(enab);
16292			dtrace_dof_destroy(dof);
16293			return (-1);
16294		}
16295
16296		nprovs++;
16297	}
16298
16299	/*
16300	 * Now we need to walk through the ECB descriptions in the enabling.
16301	 */
16302	for (i = 0; i < enab->dten_ndesc; i++) {
16303		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16304		dtrace_probedesc_t *desc = &ep->dted_probe;
16305
16306		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16307			continue;
16308
16309		if (strcmp(desc->dtpd_mod, "helper") != 0)
16310			continue;
16311
16312		if (strcmp(desc->dtpd_func, "ustack") != 0)
16313			continue;
16314
16315		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16316		    ep, help)) != 0) {
16317			/*
16318			 * Adding this helper action failed -- we are now going
16319			 * to rip out the entire generation and return failure.
16320			 */
16321			(void) dtrace_helper_destroygen(help,
16322			    help->dthps_generation);
16323			dtrace_enabling_destroy(enab);
16324			dtrace_dof_destroy(dof);
16325			return (-1);
16326		}
16327
16328		nhelpers++;
16329	}
16330
16331	if (nhelpers < enab->dten_ndesc)
16332		dtrace_dof_error(dof, "unmatched helpers");
16333
16334	gen = help->dthps_generation++;
16335	dtrace_enabling_destroy(enab);
16336
16337	if (nprovs > 0) {
16338		/*
16339		 * Now that this is in-kernel, we change the sense of the
16340		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16341		 * and dofhp_addr denotes the address at user-level.
16342		 */
16343		dhp->dofhp_addr = dhp->dofhp_dof;
16344		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16345
16346		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16347			mutex_exit(&dtrace_lock);
16348			dtrace_helper_provider_register(p, help, dhp);
16349			mutex_enter(&dtrace_lock);
16350
16351			destroy = 0;
16352		}
16353	}
16354
16355	if (destroy)
16356		dtrace_dof_destroy(dof);
16357
16358	return (gen);
16359}
16360
16361static dtrace_helpers_t *
16362dtrace_helpers_create(proc_t *p)
16363{
16364	dtrace_helpers_t *help;
16365
16366	ASSERT(MUTEX_HELD(&dtrace_lock));
16367	ASSERT(p->p_dtrace_helpers == NULL);
16368
16369	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16370	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16371	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16372
16373	p->p_dtrace_helpers = help;
16374	dtrace_helpers++;
16375
16376	return (help);
16377}
16378
16379#ifdef illumos
16380static
16381#endif
16382void
16383dtrace_helpers_destroy(proc_t *p)
16384{
16385	dtrace_helpers_t *help;
16386	dtrace_vstate_t *vstate;
16387#ifdef illumos
16388	proc_t *p = curproc;
16389#endif
16390	int i;
16391
16392	mutex_enter(&dtrace_lock);
16393
16394	ASSERT(p->p_dtrace_helpers != NULL);
16395	ASSERT(dtrace_helpers > 0);
16396
16397	help = p->p_dtrace_helpers;
16398	vstate = &help->dthps_vstate;
16399
16400	/*
16401	 * We're now going to lose the help from this process.
16402	 */
16403	p->p_dtrace_helpers = NULL;
16404	dtrace_sync();
16405
16406	/*
16407	 * Destory the helper actions.
16408	 */
16409	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16410		dtrace_helper_action_t *h, *next;
16411
16412		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16413			next = h->dtha_next;
16414			dtrace_helper_action_destroy(h, vstate);
16415			h = next;
16416		}
16417	}
16418
16419	mutex_exit(&dtrace_lock);
16420
16421	/*
16422	 * Destroy the helper providers.
16423	 */
16424	if (help->dthps_maxprovs > 0) {
16425		mutex_enter(&dtrace_meta_lock);
16426		if (dtrace_meta_pid != NULL) {
16427			ASSERT(dtrace_deferred_pid == NULL);
16428
16429			for (i = 0; i < help->dthps_nprovs; i++) {
16430				dtrace_helper_provider_remove(
16431				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16432			}
16433		} else {
16434			mutex_enter(&dtrace_lock);
16435			ASSERT(help->dthps_deferred == 0 ||
16436			    help->dthps_next != NULL ||
16437			    help->dthps_prev != NULL ||
16438			    help == dtrace_deferred_pid);
16439
16440			/*
16441			 * Remove the helper from the deferred list.
16442			 */
16443			if (help->dthps_next != NULL)
16444				help->dthps_next->dthps_prev = help->dthps_prev;
16445			if (help->dthps_prev != NULL)
16446				help->dthps_prev->dthps_next = help->dthps_next;
16447			if (dtrace_deferred_pid == help) {
16448				dtrace_deferred_pid = help->dthps_next;
16449				ASSERT(help->dthps_prev == NULL);
16450			}
16451
16452			mutex_exit(&dtrace_lock);
16453		}
16454
16455		mutex_exit(&dtrace_meta_lock);
16456
16457		for (i = 0; i < help->dthps_nprovs; i++) {
16458			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16459		}
16460
16461		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16462		    sizeof (dtrace_helper_provider_t *));
16463	}
16464
16465	mutex_enter(&dtrace_lock);
16466
16467	dtrace_vstate_fini(&help->dthps_vstate);
16468	kmem_free(help->dthps_actions,
16469	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16470	kmem_free(help, sizeof (dtrace_helpers_t));
16471
16472	--dtrace_helpers;
16473	mutex_exit(&dtrace_lock);
16474}
16475
16476#ifdef illumos
16477static
16478#endif
16479void
16480dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16481{
16482	dtrace_helpers_t *help, *newhelp;
16483	dtrace_helper_action_t *helper, *new, *last;
16484	dtrace_difo_t *dp;
16485	dtrace_vstate_t *vstate;
16486	int i, j, sz, hasprovs = 0;
16487
16488	mutex_enter(&dtrace_lock);
16489	ASSERT(from->p_dtrace_helpers != NULL);
16490	ASSERT(dtrace_helpers > 0);
16491
16492	help = from->p_dtrace_helpers;
16493	newhelp = dtrace_helpers_create(to);
16494	ASSERT(to->p_dtrace_helpers != NULL);
16495
16496	newhelp->dthps_generation = help->dthps_generation;
16497	vstate = &newhelp->dthps_vstate;
16498
16499	/*
16500	 * Duplicate the helper actions.
16501	 */
16502	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16503		if ((helper = help->dthps_actions[i]) == NULL)
16504			continue;
16505
16506		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16507			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16508			    KM_SLEEP);
16509			new->dtha_generation = helper->dtha_generation;
16510
16511			if ((dp = helper->dtha_predicate) != NULL) {
16512				dp = dtrace_difo_duplicate(dp, vstate);
16513				new->dtha_predicate = dp;
16514			}
16515
16516			new->dtha_nactions = helper->dtha_nactions;
16517			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16518			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16519
16520			for (j = 0; j < new->dtha_nactions; j++) {
16521				dtrace_difo_t *dp = helper->dtha_actions[j];
16522
16523				ASSERT(dp != NULL);
16524				dp = dtrace_difo_duplicate(dp, vstate);
16525				new->dtha_actions[j] = dp;
16526			}
16527
16528			if (last != NULL) {
16529				last->dtha_next = new;
16530			} else {
16531				newhelp->dthps_actions[i] = new;
16532			}
16533
16534			last = new;
16535		}
16536	}
16537
16538	/*
16539	 * Duplicate the helper providers and register them with the
16540	 * DTrace framework.
16541	 */
16542	if (help->dthps_nprovs > 0) {
16543		newhelp->dthps_nprovs = help->dthps_nprovs;
16544		newhelp->dthps_maxprovs = help->dthps_nprovs;
16545		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16546		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16547		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16548			newhelp->dthps_provs[i] = help->dthps_provs[i];
16549			newhelp->dthps_provs[i]->dthp_ref++;
16550		}
16551
16552		hasprovs = 1;
16553	}
16554
16555	mutex_exit(&dtrace_lock);
16556
16557	if (hasprovs)
16558		dtrace_helper_provider_register(to, newhelp, NULL);
16559}
16560
16561/*
16562 * DTrace Hook Functions
16563 */
16564static void
16565dtrace_module_loaded(modctl_t *ctl)
16566{
16567	dtrace_provider_t *prv;
16568
16569	mutex_enter(&dtrace_provider_lock);
16570#ifdef illumos
16571	mutex_enter(&mod_lock);
16572#endif
16573
16574#ifdef illumos
16575	ASSERT(ctl->mod_busy);
16576#endif
16577
16578	/*
16579	 * We're going to call each providers per-module provide operation
16580	 * specifying only this module.
16581	 */
16582	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16583		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16584
16585#ifdef illumos
16586	mutex_exit(&mod_lock);
16587#endif
16588	mutex_exit(&dtrace_provider_lock);
16589
16590	/*
16591	 * If we have any retained enablings, we need to match against them.
16592	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16593	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16594	 * module.  (In particular, this happens when loading scheduling
16595	 * classes.)  So if we have any retained enablings, we need to dispatch
16596	 * our task queue to do the match for us.
16597	 */
16598	mutex_enter(&dtrace_lock);
16599
16600	if (dtrace_retained == NULL) {
16601		mutex_exit(&dtrace_lock);
16602		return;
16603	}
16604
16605	(void) taskq_dispatch(dtrace_taskq,
16606	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16607
16608	mutex_exit(&dtrace_lock);
16609
16610	/*
16611	 * And now, for a little heuristic sleaze:  in general, we want to
16612	 * match modules as soon as they load.  However, we cannot guarantee
16613	 * this, because it would lead us to the lock ordering violation
16614	 * outlined above.  The common case, of course, is that cpu_lock is
16615	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16616	 * long enough for the task queue to do its work.  If it's not, it's
16617	 * not a serious problem -- it just means that the module that we
16618	 * just loaded may not be immediately instrumentable.
16619	 */
16620	delay(1);
16621}
16622
16623static void
16624#ifdef illumos
16625dtrace_module_unloaded(modctl_t *ctl)
16626#else
16627dtrace_module_unloaded(modctl_t *ctl, int *error)
16628#endif
16629{
16630	dtrace_probe_t template, *probe, *first, *next;
16631	dtrace_provider_t *prov;
16632#ifndef illumos
16633	char modname[DTRACE_MODNAMELEN];
16634	size_t len;
16635#endif
16636
16637#ifdef illumos
16638	template.dtpr_mod = ctl->mod_modname;
16639#else
16640	/* Handle the fact that ctl->filename may end in ".ko". */
16641	strlcpy(modname, ctl->filename, sizeof(modname));
16642	len = strlen(ctl->filename);
16643	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16644		modname[len - 3] = '\0';
16645	template.dtpr_mod = modname;
16646#endif
16647
16648	mutex_enter(&dtrace_provider_lock);
16649#ifdef illumos
16650	mutex_enter(&mod_lock);
16651#endif
16652	mutex_enter(&dtrace_lock);
16653
16654#ifndef illumos
16655	if (ctl->nenabled > 0) {
16656		/* Don't allow unloads if a probe is enabled. */
16657		mutex_exit(&dtrace_provider_lock);
16658		mutex_exit(&dtrace_lock);
16659		*error = -1;
16660		printf(
16661	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16662		return;
16663	}
16664#endif
16665
16666	if (dtrace_bymod == NULL) {
16667		/*
16668		 * The DTrace module is loaded (obviously) but not attached;
16669		 * we don't have any work to do.
16670		 */
16671		mutex_exit(&dtrace_provider_lock);
16672#ifdef illumos
16673		mutex_exit(&mod_lock);
16674#endif
16675		mutex_exit(&dtrace_lock);
16676		return;
16677	}
16678
16679	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16680	    probe != NULL; probe = probe->dtpr_nextmod) {
16681		if (probe->dtpr_ecb != NULL) {
16682			mutex_exit(&dtrace_provider_lock);
16683#ifdef illumos
16684			mutex_exit(&mod_lock);
16685#endif
16686			mutex_exit(&dtrace_lock);
16687
16688			/*
16689			 * This shouldn't _actually_ be possible -- we're
16690			 * unloading a module that has an enabled probe in it.
16691			 * (It's normally up to the provider to make sure that
16692			 * this can't happen.)  However, because dtps_enable()
16693			 * doesn't have a failure mode, there can be an
16694			 * enable/unload race.  Upshot:  we don't want to
16695			 * assert, but we're not going to disable the
16696			 * probe, either.
16697			 */
16698			if (dtrace_err_verbose) {
16699#ifdef illumos
16700				cmn_err(CE_WARN, "unloaded module '%s' had "
16701				    "enabled probes", ctl->mod_modname);
16702#else
16703				cmn_err(CE_WARN, "unloaded module '%s' had "
16704				    "enabled probes", modname);
16705#endif
16706			}
16707
16708			return;
16709		}
16710	}
16711
16712	probe = first;
16713
16714	for (first = NULL; probe != NULL; probe = next) {
16715		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16716
16717		dtrace_probes[probe->dtpr_id - 1] = NULL;
16718
16719		next = probe->dtpr_nextmod;
16720		dtrace_hash_remove(dtrace_bymod, probe);
16721		dtrace_hash_remove(dtrace_byfunc, probe);
16722		dtrace_hash_remove(dtrace_byname, probe);
16723
16724		if (first == NULL) {
16725			first = probe;
16726			probe->dtpr_nextmod = NULL;
16727		} else {
16728			probe->dtpr_nextmod = first;
16729			first = probe;
16730		}
16731	}
16732
16733	/*
16734	 * We've removed all of the module's probes from the hash chains and
16735	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16736	 * everyone has cleared out from any probe array processing.
16737	 */
16738	dtrace_sync();
16739
16740	for (probe = first; probe != NULL; probe = first) {
16741		first = probe->dtpr_nextmod;
16742		prov = probe->dtpr_provider;
16743		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16744		    probe->dtpr_arg);
16745		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16746		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16747		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16748#ifdef illumos
16749		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16750#else
16751		free_unr(dtrace_arena, probe->dtpr_id);
16752#endif
16753		kmem_free(probe, sizeof (dtrace_probe_t));
16754	}
16755
16756	mutex_exit(&dtrace_lock);
16757#ifdef illumos
16758	mutex_exit(&mod_lock);
16759#endif
16760	mutex_exit(&dtrace_provider_lock);
16761}
16762
16763#ifndef illumos
16764static void
16765dtrace_kld_load(void *arg __unused, linker_file_t lf)
16766{
16767
16768	dtrace_module_loaded(lf);
16769}
16770
16771static void
16772dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16773{
16774
16775	if (*error != 0)
16776		/* We already have an error, so don't do anything. */
16777		return;
16778	dtrace_module_unloaded(lf, error);
16779}
16780#endif
16781
16782#ifdef illumos
16783static void
16784dtrace_suspend(void)
16785{
16786	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16787}
16788
16789static void
16790dtrace_resume(void)
16791{
16792	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16793}
16794#endif
16795
16796static int
16797dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16798{
16799	ASSERT(MUTEX_HELD(&cpu_lock));
16800	mutex_enter(&dtrace_lock);
16801
16802	switch (what) {
16803	case CPU_CONFIG: {
16804		dtrace_state_t *state;
16805		dtrace_optval_t *opt, rs, c;
16806
16807		/*
16808		 * For now, we only allocate a new buffer for anonymous state.
16809		 */
16810		if ((state = dtrace_anon.dta_state) == NULL)
16811			break;
16812
16813		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16814			break;
16815
16816		opt = state->dts_options;
16817		c = opt[DTRACEOPT_CPU];
16818
16819		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16820			break;
16821
16822		/*
16823		 * Regardless of what the actual policy is, we're going to
16824		 * temporarily set our resize policy to be manual.  We're
16825		 * also going to temporarily set our CPU option to denote
16826		 * the newly configured CPU.
16827		 */
16828		rs = opt[DTRACEOPT_BUFRESIZE];
16829		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16830		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16831
16832		(void) dtrace_state_buffers(state);
16833
16834		opt[DTRACEOPT_BUFRESIZE] = rs;
16835		opt[DTRACEOPT_CPU] = c;
16836
16837		break;
16838	}
16839
16840	case CPU_UNCONFIG:
16841		/*
16842		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16843		 * buffer will be freed when the consumer exits.)
16844		 */
16845		break;
16846
16847	default:
16848		break;
16849	}
16850
16851	mutex_exit(&dtrace_lock);
16852	return (0);
16853}
16854
16855#ifdef illumos
16856static void
16857dtrace_cpu_setup_initial(processorid_t cpu)
16858{
16859	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16860}
16861#endif
16862
16863static void
16864dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16865{
16866	if (dtrace_toxranges >= dtrace_toxranges_max) {
16867		int osize, nsize;
16868		dtrace_toxrange_t *range;
16869
16870		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16871
16872		if (osize == 0) {
16873			ASSERT(dtrace_toxrange == NULL);
16874			ASSERT(dtrace_toxranges_max == 0);
16875			dtrace_toxranges_max = 1;
16876		} else {
16877			dtrace_toxranges_max <<= 1;
16878		}
16879
16880		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16881		range = kmem_zalloc(nsize, KM_SLEEP);
16882
16883		if (dtrace_toxrange != NULL) {
16884			ASSERT(osize != 0);
16885			bcopy(dtrace_toxrange, range, osize);
16886			kmem_free(dtrace_toxrange, osize);
16887		}
16888
16889		dtrace_toxrange = range;
16890	}
16891
16892	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16893	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16894
16895	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16896	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16897	dtrace_toxranges++;
16898}
16899
16900static void
16901dtrace_getf_barrier()
16902{
16903#ifdef illumos
16904	/*
16905	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16906	 * that contain calls to getf(), this routine will be called on every
16907	 * closef() before either the underlying vnode is released or the
16908	 * file_t itself is freed.  By the time we are here, it is essential
16909	 * that the file_t can no longer be accessed from a call to getf()
16910	 * in probe context -- that assures that a dtrace_sync() can be used
16911	 * to clear out any enablings referring to the old structures.
16912	 */
16913	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16914	    kcred->cr_zone->zone_dtrace_getf != 0)
16915		dtrace_sync();
16916#endif
16917}
16918
16919/*
16920 * DTrace Driver Cookbook Functions
16921 */
16922#ifdef illumos
16923/*ARGSUSED*/
16924static int
16925dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16926{
16927	dtrace_provider_id_t id;
16928	dtrace_state_t *state = NULL;
16929	dtrace_enabling_t *enab;
16930
16931	mutex_enter(&cpu_lock);
16932	mutex_enter(&dtrace_provider_lock);
16933	mutex_enter(&dtrace_lock);
16934
16935	if (ddi_soft_state_init(&dtrace_softstate,
16936	    sizeof (dtrace_state_t), 0) != 0) {
16937		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16938		mutex_exit(&cpu_lock);
16939		mutex_exit(&dtrace_provider_lock);
16940		mutex_exit(&dtrace_lock);
16941		return (DDI_FAILURE);
16942	}
16943
16944	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16945	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16946	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16947	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16948		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16949		ddi_remove_minor_node(devi, NULL);
16950		ddi_soft_state_fini(&dtrace_softstate);
16951		mutex_exit(&cpu_lock);
16952		mutex_exit(&dtrace_provider_lock);
16953		mutex_exit(&dtrace_lock);
16954		return (DDI_FAILURE);
16955	}
16956
16957	ddi_report_dev(devi);
16958	dtrace_devi = devi;
16959
16960	dtrace_modload = dtrace_module_loaded;
16961	dtrace_modunload = dtrace_module_unloaded;
16962	dtrace_cpu_init = dtrace_cpu_setup_initial;
16963	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16964	dtrace_helpers_fork = dtrace_helpers_duplicate;
16965	dtrace_cpustart_init = dtrace_suspend;
16966	dtrace_cpustart_fini = dtrace_resume;
16967	dtrace_debugger_init = dtrace_suspend;
16968	dtrace_debugger_fini = dtrace_resume;
16969
16970	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16971
16972	ASSERT(MUTEX_HELD(&cpu_lock));
16973
16974	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16975	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16976	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16977	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16978	    VM_SLEEP | VMC_IDENTIFIER);
16979	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16980	    1, INT_MAX, 0);
16981
16982	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16983	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16984	    NULL, NULL, NULL, NULL, NULL, 0);
16985
16986	ASSERT(MUTEX_HELD(&cpu_lock));
16987	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16988	    offsetof(dtrace_probe_t, dtpr_nextmod),
16989	    offsetof(dtrace_probe_t, dtpr_prevmod));
16990
16991	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16992	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16993	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16994
16995	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16996	    offsetof(dtrace_probe_t, dtpr_nextname),
16997	    offsetof(dtrace_probe_t, dtpr_prevname));
16998
16999	if (dtrace_retain_max < 1) {
17000		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17001		    "setting to 1", dtrace_retain_max);
17002		dtrace_retain_max = 1;
17003	}
17004
17005	/*
17006	 * Now discover our toxic ranges.
17007	 */
17008	dtrace_toxic_ranges(dtrace_toxrange_add);
17009
17010	/*
17011	 * Before we register ourselves as a provider to our own framework,
17012	 * we would like to assert that dtrace_provider is NULL -- but that's
17013	 * not true if we were loaded as a dependency of a DTrace provider.
17014	 * Once we've registered, we can assert that dtrace_provider is our
17015	 * pseudo provider.
17016	 */
17017	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17018	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17019
17020	ASSERT(dtrace_provider != NULL);
17021	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17022
17023	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17024	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17025	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17026	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17027	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17028	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17029
17030	dtrace_anon_property();
17031	mutex_exit(&cpu_lock);
17032
17033	/*
17034	 * If there are already providers, we must ask them to provide their
17035	 * probes, and then match any anonymous enabling against them.  Note
17036	 * that there should be no other retained enablings at this time:
17037	 * the only retained enablings at this time should be the anonymous
17038	 * enabling.
17039	 */
17040	if (dtrace_anon.dta_enabling != NULL) {
17041		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17042
17043		dtrace_enabling_provide(NULL);
17044		state = dtrace_anon.dta_state;
17045
17046		/*
17047		 * We couldn't hold cpu_lock across the above call to
17048		 * dtrace_enabling_provide(), but we must hold it to actually
17049		 * enable the probes.  We have to drop all of our locks, pick
17050		 * up cpu_lock, and regain our locks before matching the
17051		 * retained anonymous enabling.
17052		 */
17053		mutex_exit(&dtrace_lock);
17054		mutex_exit(&dtrace_provider_lock);
17055
17056		mutex_enter(&cpu_lock);
17057		mutex_enter(&dtrace_provider_lock);
17058		mutex_enter(&dtrace_lock);
17059
17060		if ((enab = dtrace_anon.dta_enabling) != NULL)
17061			(void) dtrace_enabling_match(enab, NULL);
17062
17063		mutex_exit(&cpu_lock);
17064	}
17065
17066	mutex_exit(&dtrace_lock);
17067	mutex_exit(&dtrace_provider_lock);
17068
17069	if (state != NULL) {
17070		/*
17071		 * If we created any anonymous state, set it going now.
17072		 */
17073		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17074	}
17075
17076	return (DDI_SUCCESS);
17077}
17078#endif	/* illumos */
17079
17080#ifndef illumos
17081static void dtrace_dtr(void *);
17082#endif
17083
17084/*ARGSUSED*/
17085static int
17086#ifdef illumos
17087dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17088#else
17089dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17090#endif
17091{
17092	dtrace_state_t *state;
17093	uint32_t priv;
17094	uid_t uid;
17095	zoneid_t zoneid;
17096
17097#ifdef illumos
17098	if (getminor(*devp) == DTRACEMNRN_HELPER)
17099		return (0);
17100
17101	/*
17102	 * If this wasn't an open with the "helper" minor, then it must be
17103	 * the "dtrace" minor.
17104	 */
17105	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17106		return (ENXIO);
17107#else
17108	cred_t *cred_p = NULL;
17109	cred_p = dev->si_cred;
17110
17111	/*
17112	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17113	 * caller lacks sufficient permission to do anything with DTrace.
17114	 */
17115	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17116	if (priv == DTRACE_PRIV_NONE) {
17117#endif
17118
17119		return (EACCES);
17120	}
17121
17122	/*
17123	 * Ask all providers to provide all their probes.
17124	 */
17125	mutex_enter(&dtrace_provider_lock);
17126	dtrace_probe_provide(NULL, NULL);
17127	mutex_exit(&dtrace_provider_lock);
17128
17129	mutex_enter(&cpu_lock);
17130	mutex_enter(&dtrace_lock);
17131	dtrace_opens++;
17132	dtrace_membar_producer();
17133
17134#ifdef illumos
17135	/*
17136	 * If the kernel debugger is active (that is, if the kernel debugger
17137	 * modified text in some way), we won't allow the open.
17138	 */
17139	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17140		dtrace_opens--;
17141		mutex_exit(&cpu_lock);
17142		mutex_exit(&dtrace_lock);
17143		return (EBUSY);
17144	}
17145
17146	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17147		/*
17148		 * If DTrace helper tracing is enabled, we need to allocate the
17149		 * trace buffer and initialize the values.
17150		 */
17151		dtrace_helptrace_buffer =
17152		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17153		dtrace_helptrace_next = 0;
17154		dtrace_helptrace_wrapped = 0;
17155		dtrace_helptrace_enable = 0;
17156	}
17157
17158	state = dtrace_state_create(devp, cred_p);
17159#else
17160	state = dtrace_state_create(dev, NULL);
17161	devfs_set_cdevpriv(state, dtrace_dtr);
17162#endif
17163
17164	mutex_exit(&cpu_lock);
17165
17166	if (state == NULL) {
17167#ifdef illumos
17168		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17169			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17170#else
17171		--dtrace_opens;
17172#endif
17173		mutex_exit(&dtrace_lock);
17174		return (EAGAIN);
17175	}
17176
17177	mutex_exit(&dtrace_lock);
17178
17179	return (0);
17180}
17181
17182/*ARGSUSED*/
17183#ifdef illumos
17184static int
17185dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17186#else
17187static void
17188dtrace_dtr(void *data)
17189#endif
17190{
17191#ifdef illumos
17192	minor_t minor = getminor(dev);
17193	dtrace_state_t *state;
17194#endif
17195	dtrace_helptrace_t *buf = NULL;
17196
17197#ifdef illumos
17198	if (minor == DTRACEMNRN_HELPER)
17199		return (0);
17200
17201	state = ddi_get_soft_state(dtrace_softstate, minor);
17202#else
17203	dtrace_state_t *state = data;
17204#endif
17205
17206	mutex_enter(&cpu_lock);
17207	mutex_enter(&dtrace_lock);
17208
17209#ifdef illumos
17210	if (state->dts_anon)
17211#else
17212	if (state != NULL && state->dts_anon)
17213#endif
17214	{
17215		/*
17216		 * There is anonymous state. Destroy that first.
17217		 */
17218		ASSERT(dtrace_anon.dta_state == NULL);
17219		dtrace_state_destroy(state->dts_anon);
17220	}
17221
17222	if (dtrace_helptrace_disable) {
17223		/*
17224		 * If we have been told to disable helper tracing, set the
17225		 * buffer to NULL before calling into dtrace_state_destroy();
17226		 * we take advantage of its dtrace_sync() to know that no
17227		 * CPU is in probe context with enabled helper tracing
17228		 * after it returns.
17229		 */
17230		buf = dtrace_helptrace_buffer;
17231		dtrace_helptrace_buffer = NULL;
17232	}
17233
17234#ifdef illumos
17235	dtrace_state_destroy(state);
17236#else
17237	if (state != NULL) {
17238		dtrace_state_destroy(state);
17239		kmem_free(state, 0);
17240	}
17241#endif
17242	ASSERT(dtrace_opens > 0);
17243
17244#ifdef illumos
17245	/*
17246	 * Only relinquish control of the kernel debugger interface when there
17247	 * are no consumers and no anonymous enablings.
17248	 */
17249	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17250		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17251#else
17252	--dtrace_opens;
17253#endif
17254
17255	if (buf != NULL) {
17256		kmem_free(buf, dtrace_helptrace_bufsize);
17257		dtrace_helptrace_disable = 0;
17258	}
17259
17260	mutex_exit(&dtrace_lock);
17261	mutex_exit(&cpu_lock);
17262
17263#ifdef illumos
17264	return (0);
17265#endif
17266}
17267
17268#ifdef illumos
17269/*ARGSUSED*/
17270static int
17271dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17272{
17273	int rval;
17274	dof_helper_t help, *dhp = NULL;
17275
17276	switch (cmd) {
17277	case DTRACEHIOC_ADDDOF:
17278		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17279			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17280			return (EFAULT);
17281		}
17282
17283		dhp = &help;
17284		arg = (intptr_t)help.dofhp_dof;
17285		/*FALLTHROUGH*/
17286
17287	case DTRACEHIOC_ADD: {
17288		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17289
17290		if (dof == NULL)
17291			return (rval);
17292
17293		mutex_enter(&dtrace_lock);
17294
17295		/*
17296		 * dtrace_helper_slurp() takes responsibility for the dof --
17297		 * it may free it now or it may save it and free it later.
17298		 */
17299		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17300			*rv = rval;
17301			rval = 0;
17302		} else {
17303			rval = EINVAL;
17304		}
17305
17306		mutex_exit(&dtrace_lock);
17307		return (rval);
17308	}
17309
17310	case DTRACEHIOC_REMOVE: {
17311		mutex_enter(&dtrace_lock);
17312		rval = dtrace_helper_destroygen(NULL, arg);
17313		mutex_exit(&dtrace_lock);
17314
17315		return (rval);
17316	}
17317
17318	default:
17319		break;
17320	}
17321
17322	return (ENOTTY);
17323}
17324
17325/*ARGSUSED*/
17326static int
17327dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17328{
17329	minor_t minor = getminor(dev);
17330	dtrace_state_t *state;
17331	int rval;
17332
17333	if (minor == DTRACEMNRN_HELPER)
17334		return (dtrace_ioctl_helper(cmd, arg, rv));
17335
17336	state = ddi_get_soft_state(dtrace_softstate, minor);
17337
17338	if (state->dts_anon) {
17339		ASSERT(dtrace_anon.dta_state == NULL);
17340		state = state->dts_anon;
17341	}
17342
17343	switch (cmd) {
17344	case DTRACEIOC_PROVIDER: {
17345		dtrace_providerdesc_t pvd;
17346		dtrace_provider_t *pvp;
17347
17348		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17349			return (EFAULT);
17350
17351		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17352		mutex_enter(&dtrace_provider_lock);
17353
17354		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17355			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17356				break;
17357		}
17358
17359		mutex_exit(&dtrace_provider_lock);
17360
17361		if (pvp == NULL)
17362			return (ESRCH);
17363
17364		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17365		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17366
17367		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17368			return (EFAULT);
17369
17370		return (0);
17371	}
17372
17373	case DTRACEIOC_EPROBE: {
17374		dtrace_eprobedesc_t epdesc;
17375		dtrace_ecb_t *ecb;
17376		dtrace_action_t *act;
17377		void *buf;
17378		size_t size;
17379		uintptr_t dest;
17380		int nrecs;
17381
17382		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17383			return (EFAULT);
17384
17385		mutex_enter(&dtrace_lock);
17386
17387		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17388			mutex_exit(&dtrace_lock);
17389			return (EINVAL);
17390		}
17391
17392		if (ecb->dte_probe == NULL) {
17393			mutex_exit(&dtrace_lock);
17394			return (EINVAL);
17395		}
17396
17397		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17398		epdesc.dtepd_uarg = ecb->dte_uarg;
17399		epdesc.dtepd_size = ecb->dte_size;
17400
17401		nrecs = epdesc.dtepd_nrecs;
17402		epdesc.dtepd_nrecs = 0;
17403		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17404			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17405				continue;
17406
17407			epdesc.dtepd_nrecs++;
17408		}
17409
17410		/*
17411		 * Now that we have the size, we need to allocate a temporary
17412		 * buffer in which to store the complete description.  We need
17413		 * the temporary buffer to be able to drop dtrace_lock()
17414		 * across the copyout(), below.
17415		 */
17416		size = sizeof (dtrace_eprobedesc_t) +
17417		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17418
17419		buf = kmem_alloc(size, KM_SLEEP);
17420		dest = (uintptr_t)buf;
17421
17422		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17423		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17424
17425		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17426			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17427				continue;
17428
17429			if (nrecs-- == 0)
17430				break;
17431
17432			bcopy(&act->dta_rec, (void *)dest,
17433			    sizeof (dtrace_recdesc_t));
17434			dest += sizeof (dtrace_recdesc_t);
17435		}
17436
17437		mutex_exit(&dtrace_lock);
17438
17439		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17440			kmem_free(buf, size);
17441			return (EFAULT);
17442		}
17443
17444		kmem_free(buf, size);
17445		return (0);
17446	}
17447
17448	case DTRACEIOC_AGGDESC: {
17449		dtrace_aggdesc_t aggdesc;
17450		dtrace_action_t *act;
17451		dtrace_aggregation_t *agg;
17452		int nrecs;
17453		uint32_t offs;
17454		dtrace_recdesc_t *lrec;
17455		void *buf;
17456		size_t size;
17457		uintptr_t dest;
17458
17459		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17460			return (EFAULT);
17461
17462		mutex_enter(&dtrace_lock);
17463
17464		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17465			mutex_exit(&dtrace_lock);
17466			return (EINVAL);
17467		}
17468
17469		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17470
17471		nrecs = aggdesc.dtagd_nrecs;
17472		aggdesc.dtagd_nrecs = 0;
17473
17474		offs = agg->dtag_base;
17475		lrec = &agg->dtag_action.dta_rec;
17476		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17477
17478		for (act = agg->dtag_first; ; act = act->dta_next) {
17479			ASSERT(act->dta_intuple ||
17480			    DTRACEACT_ISAGG(act->dta_kind));
17481
17482			/*
17483			 * If this action has a record size of zero, it
17484			 * denotes an argument to the aggregating action.
17485			 * Because the presence of this record doesn't (or
17486			 * shouldn't) affect the way the data is interpreted,
17487			 * we don't copy it out to save user-level the
17488			 * confusion of dealing with a zero-length record.
17489			 */
17490			if (act->dta_rec.dtrd_size == 0) {
17491				ASSERT(agg->dtag_hasarg);
17492				continue;
17493			}
17494
17495			aggdesc.dtagd_nrecs++;
17496
17497			if (act == &agg->dtag_action)
17498				break;
17499		}
17500
17501		/*
17502		 * Now that we have the size, we need to allocate a temporary
17503		 * buffer in which to store the complete description.  We need
17504		 * the temporary buffer to be able to drop dtrace_lock()
17505		 * across the copyout(), below.
17506		 */
17507		size = sizeof (dtrace_aggdesc_t) +
17508		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17509
17510		buf = kmem_alloc(size, KM_SLEEP);
17511		dest = (uintptr_t)buf;
17512
17513		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17514		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17515
17516		for (act = agg->dtag_first; ; act = act->dta_next) {
17517			dtrace_recdesc_t rec = act->dta_rec;
17518
17519			/*
17520			 * See the comment in the above loop for why we pass
17521			 * over zero-length records.
17522			 */
17523			if (rec.dtrd_size == 0) {
17524				ASSERT(agg->dtag_hasarg);
17525				continue;
17526			}
17527
17528			if (nrecs-- == 0)
17529				break;
17530
17531			rec.dtrd_offset -= offs;
17532			bcopy(&rec, (void *)dest, sizeof (rec));
17533			dest += sizeof (dtrace_recdesc_t);
17534
17535			if (act == &agg->dtag_action)
17536				break;
17537		}
17538
17539		mutex_exit(&dtrace_lock);
17540
17541		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17542			kmem_free(buf, size);
17543			return (EFAULT);
17544		}
17545
17546		kmem_free(buf, size);
17547		return (0);
17548	}
17549
17550	case DTRACEIOC_ENABLE: {
17551		dof_hdr_t *dof;
17552		dtrace_enabling_t *enab = NULL;
17553		dtrace_vstate_t *vstate;
17554		int err = 0;
17555
17556		*rv = 0;
17557
17558		/*
17559		 * If a NULL argument has been passed, we take this as our
17560		 * cue to reevaluate our enablings.
17561		 */
17562		if (arg == NULL) {
17563			dtrace_enabling_matchall();
17564
17565			return (0);
17566		}
17567
17568		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17569			return (rval);
17570
17571		mutex_enter(&cpu_lock);
17572		mutex_enter(&dtrace_lock);
17573		vstate = &state->dts_vstate;
17574
17575		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17576			mutex_exit(&dtrace_lock);
17577			mutex_exit(&cpu_lock);
17578			dtrace_dof_destroy(dof);
17579			return (EBUSY);
17580		}
17581
17582		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17583			mutex_exit(&dtrace_lock);
17584			mutex_exit(&cpu_lock);
17585			dtrace_dof_destroy(dof);
17586			return (EINVAL);
17587		}
17588
17589		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17590			dtrace_enabling_destroy(enab);
17591			mutex_exit(&dtrace_lock);
17592			mutex_exit(&cpu_lock);
17593			dtrace_dof_destroy(dof);
17594			return (rval);
17595		}
17596
17597		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17598			err = dtrace_enabling_retain(enab);
17599		} else {
17600			dtrace_enabling_destroy(enab);
17601		}
17602
17603		mutex_exit(&cpu_lock);
17604		mutex_exit(&dtrace_lock);
17605		dtrace_dof_destroy(dof);
17606
17607		return (err);
17608	}
17609
17610	case DTRACEIOC_REPLICATE: {
17611		dtrace_repldesc_t desc;
17612		dtrace_probedesc_t *match = &desc.dtrpd_match;
17613		dtrace_probedesc_t *create = &desc.dtrpd_create;
17614		int err;
17615
17616		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17617			return (EFAULT);
17618
17619		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17620		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17621		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17622		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17623
17624		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17625		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17626		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17627		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17628
17629		mutex_enter(&dtrace_lock);
17630		err = dtrace_enabling_replicate(state, match, create);
17631		mutex_exit(&dtrace_lock);
17632
17633		return (err);
17634	}
17635
17636	case DTRACEIOC_PROBEMATCH:
17637	case DTRACEIOC_PROBES: {
17638		dtrace_probe_t *probe = NULL;
17639		dtrace_probedesc_t desc;
17640		dtrace_probekey_t pkey;
17641		dtrace_id_t i;
17642		int m = 0;
17643		uint32_t priv;
17644		uid_t uid;
17645		zoneid_t zoneid;
17646
17647		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17648			return (EFAULT);
17649
17650		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17651		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17652		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17653		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17654
17655		/*
17656		 * Before we attempt to match this probe, we want to give
17657		 * all providers the opportunity to provide it.
17658		 */
17659		if (desc.dtpd_id == DTRACE_IDNONE) {
17660			mutex_enter(&dtrace_provider_lock);
17661			dtrace_probe_provide(&desc, NULL);
17662			mutex_exit(&dtrace_provider_lock);
17663			desc.dtpd_id++;
17664		}
17665
17666		if (cmd == DTRACEIOC_PROBEMATCH)  {
17667			dtrace_probekey(&desc, &pkey);
17668			pkey.dtpk_id = DTRACE_IDNONE;
17669		}
17670
17671		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17672
17673		mutex_enter(&dtrace_lock);
17674
17675		if (cmd == DTRACEIOC_PROBEMATCH) {
17676			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17677				if ((probe = dtrace_probes[i - 1]) != NULL &&
17678				    (m = dtrace_match_probe(probe, &pkey,
17679				    priv, uid, zoneid)) != 0)
17680					break;
17681			}
17682
17683			if (m < 0) {
17684				mutex_exit(&dtrace_lock);
17685				return (EINVAL);
17686			}
17687
17688		} else {
17689			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17690				if ((probe = dtrace_probes[i - 1]) != NULL &&
17691				    dtrace_match_priv(probe, priv, uid, zoneid))
17692					break;
17693			}
17694		}
17695
17696		if (probe == NULL) {
17697			mutex_exit(&dtrace_lock);
17698			return (ESRCH);
17699		}
17700
17701		dtrace_probe_description(probe, &desc);
17702		mutex_exit(&dtrace_lock);
17703
17704		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17705			return (EFAULT);
17706
17707		return (0);
17708	}
17709
17710	case DTRACEIOC_PROBEARG: {
17711		dtrace_argdesc_t desc;
17712		dtrace_probe_t *probe;
17713		dtrace_provider_t *prov;
17714
17715		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17716			return (EFAULT);
17717
17718		if (desc.dtargd_id == DTRACE_IDNONE)
17719			return (EINVAL);
17720
17721		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17722			return (EINVAL);
17723
17724		mutex_enter(&dtrace_provider_lock);
17725		mutex_enter(&mod_lock);
17726		mutex_enter(&dtrace_lock);
17727
17728		if (desc.dtargd_id > dtrace_nprobes) {
17729			mutex_exit(&dtrace_lock);
17730			mutex_exit(&mod_lock);
17731			mutex_exit(&dtrace_provider_lock);
17732			return (EINVAL);
17733		}
17734
17735		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17736			mutex_exit(&dtrace_lock);
17737			mutex_exit(&mod_lock);
17738			mutex_exit(&dtrace_provider_lock);
17739			return (EINVAL);
17740		}
17741
17742		mutex_exit(&dtrace_lock);
17743
17744		prov = probe->dtpr_provider;
17745
17746		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17747			/*
17748			 * There isn't any typed information for this probe.
17749			 * Set the argument number to DTRACE_ARGNONE.
17750			 */
17751			desc.dtargd_ndx = DTRACE_ARGNONE;
17752		} else {
17753			desc.dtargd_native[0] = '\0';
17754			desc.dtargd_xlate[0] = '\0';
17755			desc.dtargd_mapping = desc.dtargd_ndx;
17756
17757			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17758			    probe->dtpr_id, probe->dtpr_arg, &desc);
17759		}
17760
17761		mutex_exit(&mod_lock);
17762		mutex_exit(&dtrace_provider_lock);
17763
17764		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17765			return (EFAULT);
17766
17767		return (0);
17768	}
17769
17770	case DTRACEIOC_GO: {
17771		processorid_t cpuid;
17772		rval = dtrace_state_go(state, &cpuid);
17773
17774		if (rval != 0)
17775			return (rval);
17776
17777		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17778			return (EFAULT);
17779
17780		return (0);
17781	}
17782
17783	case DTRACEIOC_STOP: {
17784		processorid_t cpuid;
17785
17786		mutex_enter(&dtrace_lock);
17787		rval = dtrace_state_stop(state, &cpuid);
17788		mutex_exit(&dtrace_lock);
17789
17790		if (rval != 0)
17791			return (rval);
17792
17793		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17794			return (EFAULT);
17795
17796		return (0);
17797	}
17798
17799	case DTRACEIOC_DOFGET: {
17800		dof_hdr_t hdr, *dof;
17801		uint64_t len;
17802
17803		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17804			return (EFAULT);
17805
17806		mutex_enter(&dtrace_lock);
17807		dof = dtrace_dof_create(state);
17808		mutex_exit(&dtrace_lock);
17809
17810		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17811		rval = copyout(dof, (void *)arg, len);
17812		dtrace_dof_destroy(dof);
17813
17814		return (rval == 0 ? 0 : EFAULT);
17815	}
17816
17817	case DTRACEIOC_AGGSNAP:
17818	case DTRACEIOC_BUFSNAP: {
17819		dtrace_bufdesc_t desc;
17820		caddr_t cached;
17821		dtrace_buffer_t *buf;
17822
17823		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17824			return (EFAULT);
17825
17826		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17827			return (EINVAL);
17828
17829		mutex_enter(&dtrace_lock);
17830
17831		if (cmd == DTRACEIOC_BUFSNAP) {
17832			buf = &state->dts_buffer[desc.dtbd_cpu];
17833		} else {
17834			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17835		}
17836
17837		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17838			size_t sz = buf->dtb_offset;
17839
17840			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17841				mutex_exit(&dtrace_lock);
17842				return (EBUSY);
17843			}
17844
17845			/*
17846			 * If this buffer has already been consumed, we're
17847			 * going to indicate that there's nothing left here
17848			 * to consume.
17849			 */
17850			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17851				mutex_exit(&dtrace_lock);
17852
17853				desc.dtbd_size = 0;
17854				desc.dtbd_drops = 0;
17855				desc.dtbd_errors = 0;
17856				desc.dtbd_oldest = 0;
17857				sz = sizeof (desc);
17858
17859				if (copyout(&desc, (void *)arg, sz) != 0)
17860					return (EFAULT);
17861
17862				return (0);
17863			}
17864
17865			/*
17866			 * If this is a ring buffer that has wrapped, we want
17867			 * to copy the whole thing out.
17868			 */
17869			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17870				dtrace_buffer_polish(buf);
17871				sz = buf->dtb_size;
17872			}
17873
17874			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17875				mutex_exit(&dtrace_lock);
17876				return (EFAULT);
17877			}
17878
17879			desc.dtbd_size = sz;
17880			desc.dtbd_drops = buf->dtb_drops;
17881			desc.dtbd_errors = buf->dtb_errors;
17882			desc.dtbd_oldest = buf->dtb_xamot_offset;
17883			desc.dtbd_timestamp = dtrace_gethrtime();
17884
17885			mutex_exit(&dtrace_lock);
17886
17887			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17888				return (EFAULT);
17889
17890			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17891
17892			return (0);
17893		}
17894
17895		if (buf->dtb_tomax == NULL) {
17896			ASSERT(buf->dtb_xamot == NULL);
17897			mutex_exit(&dtrace_lock);
17898			return (ENOENT);
17899		}
17900
17901		cached = buf->dtb_tomax;
17902		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17903
17904		dtrace_xcall(desc.dtbd_cpu,
17905		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17906
17907		state->dts_errors += buf->dtb_xamot_errors;
17908
17909		/*
17910		 * If the buffers did not actually switch, then the cross call
17911		 * did not take place -- presumably because the given CPU is
17912		 * not in the ready set.  If this is the case, we'll return
17913		 * ENOENT.
17914		 */
17915		if (buf->dtb_tomax == cached) {
17916			ASSERT(buf->dtb_xamot != cached);
17917			mutex_exit(&dtrace_lock);
17918			return (ENOENT);
17919		}
17920
17921		ASSERT(cached == buf->dtb_xamot);
17922
17923		/*
17924		 * We have our snapshot; now copy it out.
17925		 */
17926		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17927		    buf->dtb_xamot_offset) != 0) {
17928			mutex_exit(&dtrace_lock);
17929			return (EFAULT);
17930		}
17931
17932		desc.dtbd_size = buf->dtb_xamot_offset;
17933		desc.dtbd_drops = buf->dtb_xamot_drops;
17934		desc.dtbd_errors = buf->dtb_xamot_errors;
17935		desc.dtbd_oldest = 0;
17936		desc.dtbd_timestamp = buf->dtb_switched;
17937
17938		mutex_exit(&dtrace_lock);
17939
17940		/*
17941		 * Finally, copy out the buffer description.
17942		 */
17943		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17944			return (EFAULT);
17945
17946		return (0);
17947	}
17948
17949	case DTRACEIOC_CONF: {
17950		dtrace_conf_t conf;
17951
17952		bzero(&conf, sizeof (conf));
17953		conf.dtc_difversion = DIF_VERSION;
17954		conf.dtc_difintregs = DIF_DIR_NREGS;
17955		conf.dtc_diftupregs = DIF_DTR_NREGS;
17956		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17957
17958		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17959			return (EFAULT);
17960
17961		return (0);
17962	}
17963
17964	case DTRACEIOC_STATUS: {
17965		dtrace_status_t stat;
17966		dtrace_dstate_t *dstate;
17967		int i, j;
17968		uint64_t nerrs;
17969
17970		/*
17971		 * See the comment in dtrace_state_deadman() for the reason
17972		 * for setting dts_laststatus to INT64_MAX before setting
17973		 * it to the correct value.
17974		 */
17975		state->dts_laststatus = INT64_MAX;
17976		dtrace_membar_producer();
17977		state->dts_laststatus = dtrace_gethrtime();
17978
17979		bzero(&stat, sizeof (stat));
17980
17981		mutex_enter(&dtrace_lock);
17982
17983		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17984			mutex_exit(&dtrace_lock);
17985			return (ENOENT);
17986		}
17987
17988		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17989			stat.dtst_exiting = 1;
17990
17991		nerrs = state->dts_errors;
17992		dstate = &state->dts_vstate.dtvs_dynvars;
17993
17994		for (i = 0; i < NCPU; i++) {
17995			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17996
17997			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17998			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17999			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18000
18001			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18002				stat.dtst_filled++;
18003
18004			nerrs += state->dts_buffer[i].dtb_errors;
18005
18006			for (j = 0; j < state->dts_nspeculations; j++) {
18007				dtrace_speculation_t *spec;
18008				dtrace_buffer_t *buf;
18009
18010				spec = &state->dts_speculations[j];
18011				buf = &spec->dtsp_buffer[i];
18012				stat.dtst_specdrops += buf->dtb_xamot_drops;
18013			}
18014		}
18015
18016		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18017		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18018		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18019		stat.dtst_dblerrors = state->dts_dblerrors;
18020		stat.dtst_killed =
18021		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18022		stat.dtst_errors = nerrs;
18023
18024		mutex_exit(&dtrace_lock);
18025
18026		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18027			return (EFAULT);
18028
18029		return (0);
18030	}
18031
18032	case DTRACEIOC_FORMAT: {
18033		dtrace_fmtdesc_t fmt;
18034		char *str;
18035		int len;
18036
18037		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18038			return (EFAULT);
18039
18040		mutex_enter(&dtrace_lock);
18041
18042		if (fmt.dtfd_format == 0 ||
18043		    fmt.dtfd_format > state->dts_nformats) {
18044			mutex_exit(&dtrace_lock);
18045			return (EINVAL);
18046		}
18047
18048		/*
18049		 * Format strings are allocated contiguously and they are
18050		 * never freed; if a format index is less than the number
18051		 * of formats, we can assert that the format map is non-NULL
18052		 * and that the format for the specified index is non-NULL.
18053		 */
18054		ASSERT(state->dts_formats != NULL);
18055		str = state->dts_formats[fmt.dtfd_format - 1];
18056		ASSERT(str != NULL);
18057
18058		len = strlen(str) + 1;
18059
18060		if (len > fmt.dtfd_length) {
18061			fmt.dtfd_length = len;
18062
18063			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18064				mutex_exit(&dtrace_lock);
18065				return (EINVAL);
18066			}
18067		} else {
18068			if (copyout(str, fmt.dtfd_string, len) != 0) {
18069				mutex_exit(&dtrace_lock);
18070				return (EINVAL);
18071			}
18072		}
18073
18074		mutex_exit(&dtrace_lock);
18075		return (0);
18076	}
18077
18078	default:
18079		break;
18080	}
18081
18082	return (ENOTTY);
18083}
18084
18085/*ARGSUSED*/
18086static int
18087dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18088{
18089	dtrace_state_t *state;
18090
18091	switch (cmd) {
18092	case DDI_DETACH:
18093		break;
18094
18095	case DDI_SUSPEND:
18096		return (DDI_SUCCESS);
18097
18098	default:
18099		return (DDI_FAILURE);
18100	}
18101
18102	mutex_enter(&cpu_lock);
18103	mutex_enter(&dtrace_provider_lock);
18104	mutex_enter(&dtrace_lock);
18105
18106	ASSERT(dtrace_opens == 0);
18107
18108	if (dtrace_helpers > 0) {
18109		mutex_exit(&dtrace_provider_lock);
18110		mutex_exit(&dtrace_lock);
18111		mutex_exit(&cpu_lock);
18112		return (DDI_FAILURE);
18113	}
18114
18115	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18116		mutex_exit(&dtrace_provider_lock);
18117		mutex_exit(&dtrace_lock);
18118		mutex_exit(&cpu_lock);
18119		return (DDI_FAILURE);
18120	}
18121
18122	dtrace_provider = NULL;
18123
18124	if ((state = dtrace_anon_grab()) != NULL) {
18125		/*
18126		 * If there were ECBs on this state, the provider should
18127		 * have not been allowed to detach; assert that there is
18128		 * none.
18129		 */
18130		ASSERT(state->dts_necbs == 0);
18131		dtrace_state_destroy(state);
18132
18133		/*
18134		 * If we're being detached with anonymous state, we need to
18135		 * indicate to the kernel debugger that DTrace is now inactive.
18136		 */
18137		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18138	}
18139
18140	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18141	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18142	dtrace_cpu_init = NULL;
18143	dtrace_helpers_cleanup = NULL;
18144	dtrace_helpers_fork = NULL;
18145	dtrace_cpustart_init = NULL;
18146	dtrace_cpustart_fini = NULL;
18147	dtrace_debugger_init = NULL;
18148	dtrace_debugger_fini = NULL;
18149	dtrace_modload = NULL;
18150	dtrace_modunload = NULL;
18151
18152	ASSERT(dtrace_getf == 0);
18153	ASSERT(dtrace_closef == NULL);
18154
18155	mutex_exit(&cpu_lock);
18156
18157	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18158	dtrace_probes = NULL;
18159	dtrace_nprobes = 0;
18160
18161	dtrace_hash_destroy(dtrace_bymod);
18162	dtrace_hash_destroy(dtrace_byfunc);
18163	dtrace_hash_destroy(dtrace_byname);
18164	dtrace_bymod = NULL;
18165	dtrace_byfunc = NULL;
18166	dtrace_byname = NULL;
18167
18168	kmem_cache_destroy(dtrace_state_cache);
18169	vmem_destroy(dtrace_minor);
18170	vmem_destroy(dtrace_arena);
18171
18172	if (dtrace_toxrange != NULL) {
18173		kmem_free(dtrace_toxrange,
18174		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18175		dtrace_toxrange = NULL;
18176		dtrace_toxranges = 0;
18177		dtrace_toxranges_max = 0;
18178	}
18179
18180	ddi_remove_minor_node(dtrace_devi, NULL);
18181	dtrace_devi = NULL;
18182
18183	ddi_soft_state_fini(&dtrace_softstate);
18184
18185	ASSERT(dtrace_vtime_references == 0);
18186	ASSERT(dtrace_opens == 0);
18187	ASSERT(dtrace_retained == NULL);
18188
18189	mutex_exit(&dtrace_lock);
18190	mutex_exit(&dtrace_provider_lock);
18191
18192	/*
18193	 * We don't destroy the task queue until after we have dropped our
18194	 * locks (taskq_destroy() may block on running tasks).  To prevent
18195	 * attempting to do work after we have effectively detached but before
18196	 * the task queue has been destroyed, all tasks dispatched via the
18197	 * task queue must check that DTrace is still attached before
18198	 * performing any operation.
18199	 */
18200	taskq_destroy(dtrace_taskq);
18201	dtrace_taskq = NULL;
18202
18203	return (DDI_SUCCESS);
18204}
18205#endif
18206
18207#ifdef illumos
18208/*ARGSUSED*/
18209static int
18210dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18211{
18212	int error;
18213
18214	switch (infocmd) {
18215	case DDI_INFO_DEVT2DEVINFO:
18216		*result = (void *)dtrace_devi;
18217		error = DDI_SUCCESS;
18218		break;
18219	case DDI_INFO_DEVT2INSTANCE:
18220		*result = (void *)0;
18221		error = DDI_SUCCESS;
18222		break;
18223	default:
18224		error = DDI_FAILURE;
18225	}
18226	return (error);
18227}
18228#endif
18229
18230#ifdef illumos
18231static struct cb_ops dtrace_cb_ops = {
18232	dtrace_open,		/* open */
18233	dtrace_close,		/* close */
18234	nulldev,		/* strategy */
18235	nulldev,		/* print */
18236	nodev,			/* dump */
18237	nodev,			/* read */
18238	nodev,			/* write */
18239	dtrace_ioctl,		/* ioctl */
18240	nodev,			/* devmap */
18241	nodev,			/* mmap */
18242	nodev,			/* segmap */
18243	nochpoll,		/* poll */
18244	ddi_prop_op,		/* cb_prop_op */
18245	0,			/* streamtab  */
18246	D_NEW | D_MP		/* Driver compatibility flag */
18247};
18248
18249static struct dev_ops dtrace_ops = {
18250	DEVO_REV,		/* devo_rev */
18251	0,			/* refcnt */
18252	dtrace_info,		/* get_dev_info */
18253	nulldev,		/* identify */
18254	nulldev,		/* probe */
18255	dtrace_attach,		/* attach */
18256	dtrace_detach,		/* detach */
18257	nodev,			/* reset */
18258	&dtrace_cb_ops,		/* driver operations */
18259	NULL,			/* bus operations */
18260	nodev			/* dev power */
18261};
18262
18263static struct modldrv modldrv = {
18264	&mod_driverops,		/* module type (this is a pseudo driver) */
18265	"Dynamic Tracing",	/* name of module */
18266	&dtrace_ops,		/* driver ops */
18267};
18268
18269static struct modlinkage modlinkage = {
18270	MODREV_1,
18271	(void *)&modldrv,
18272	NULL
18273};
18274
18275int
18276_init(void)
18277{
18278	return (mod_install(&modlinkage));
18279}
18280
18281int
18282_info(struct modinfo *modinfop)
18283{
18284	return (mod_info(&modlinkage, modinfop));
18285}
18286
18287int
18288_fini(void)
18289{
18290	return (mod_remove(&modlinkage));
18291}
18292#else
18293
18294static d_ioctl_t	dtrace_ioctl;
18295static d_ioctl_t	dtrace_ioctl_helper;
18296static void		dtrace_load(void *);
18297static int		dtrace_unload(void);
18298static struct cdev	*dtrace_dev;
18299static struct cdev	*helper_dev;
18300
18301void dtrace_invop_init(void);
18302void dtrace_invop_uninit(void);
18303
18304static struct cdevsw dtrace_cdevsw = {
18305	.d_version	= D_VERSION,
18306	.d_ioctl	= dtrace_ioctl,
18307	.d_open		= dtrace_open,
18308	.d_name		= "dtrace",
18309};
18310
18311static struct cdevsw helper_cdevsw = {
18312	.d_version	= D_VERSION,
18313	.d_ioctl	= dtrace_ioctl_helper,
18314	.d_name		= "helper",
18315};
18316
18317#include <dtrace_anon.c>
18318#include <dtrace_ioctl.c>
18319#include <dtrace_load.c>
18320#include <dtrace_modevent.c>
18321#include <dtrace_sysctl.c>
18322#include <dtrace_unload.c>
18323#include <dtrace_vtime.c>
18324#include <dtrace_hacks.c>
18325#include <dtrace_isa.c>
18326
18327SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18328SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18329SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18330
18331DEV_MODULE(dtrace, dtrace_modevent, NULL);
18332MODULE_VERSION(dtrace, 1);
18333MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18334#endif
18335