pmap-v4.h revision 254918
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 254918 2013-08-26 17:12:30Z raj $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#if ARM_ARCH_6 || ARM_ARCH_7A
59#ifdef SMP
60#define PTE_NOCACHE	2
61#else
62#define PTE_NOCACHE	1
63#endif
64#define PTE_CACHE	6
65#define PTE_DEVICE	2
66#define PTE_PAGETABLE	4
67#else
68#define PTE_NOCACHE	1
69#define PTE_CACHE	2
70#define PTE_PAGETABLE	3
71#endif
72
73enum mem_type {
74	STRONG_ORD = 0,
75	DEVICE_NOSHARE,
76	DEVICE_SHARE,
77	NRML_NOCACHE,
78	NRML_IWT_OWT,
79	NRML_IWB_OWB,
80	NRML_IWBA_OWBA
81};
82
83#ifndef LOCORE
84
85#include <sys/queue.h>
86#include <sys/_cpuset.h>
87#include <sys/_lock.h>
88#include <sys/_mutex.h>
89
90#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92
93#ifdef _KERNEL
94
95#define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96
97#endif
98
99#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
101#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
102boolean_t pmap_page_is_mapped(vm_page_t);
103#else
104#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
105#endif
106void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
107
108/*
109 * Pmap stuff
110 */
111
112/*
113 * This structure is used to hold a virtual<->physical address
114 * association and is used mostly by bootstrap code
115 */
116struct pv_addr {
117	SLIST_ENTRY(pv_addr) pv_list;
118	vm_offset_t	pv_va;
119	vm_paddr_t	pv_pa;
120};
121
122struct	pv_entry;
123struct	pv_chunk;
124
125struct	md_page {
126	int pvh_attrs;
127	vm_memattr_t	 pv_memattr;
128#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
129	vm_offset_t pv_kva;		/* first kernel VA mapping */
130#endif
131	TAILQ_HEAD(,pv_entry)	pv_list;
132};
133
134struct l1_ttable;
135struct l2_dtable;
136
137
138/*
139 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
140 * A bucket size of 16 provides for 16MB of contiguous virtual address
141 * space per l2_dtable. Most processes will, therefore, require only two or
142 * three of these to map their whole working set.
143 */
144#define	L2_BUCKET_LOG2	4
145#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
146/*
147 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
148 * of l2_dtable structures required to track all possible page descriptors
149 * mappable by an L1 translation table is given by the following constants:
150 */
151#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
152#define	L2_SIZE		(1 << L2_LOG2)
153
154struct	pmap {
155	struct mtx		pm_mtx;
156	u_int8_t		pm_domain;
157	struct l1_ttable	*pm_l1;
158	struct l2_dtable	*pm_l2[L2_SIZE];
159	cpuset_t		pm_active;	/* active on cpus */
160	struct pmap_statistics	pm_stats;	/* pmap statictics */
161#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
162	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
163#else
164	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
165#endif
166};
167
168typedef struct pmap *pmap_t;
169
170#ifdef _KERNEL
171extern struct pmap	kernel_pmap_store;
172#define kernel_pmap	(&kernel_pmap_store)
173#define pmap_kernel() kernel_pmap
174
175#define	PMAP_ASSERT_LOCKED(pmap) \
176				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
177#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
178#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
179#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
180				    NULL, MTX_DEF | MTX_DUPOK)
181#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
182#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
183#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
184#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
185#endif
186
187
188/*
189 * For each vm_page_t, there is a list of all currently valid virtual
190 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
191 */
192typedef struct pv_entry {
193	vm_offset_t     pv_va;          /* virtual address for mapping */
194	TAILQ_ENTRY(pv_entry)   pv_list;
195	int		pv_flags;	/* flags (wired, etc...) */
196#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
197	pmap_t          pv_pmap;        /* pmap where mapping lies */
198	TAILQ_ENTRY(pv_entry)	pv_plist;
199#endif
200} *pv_entry_t;
201
202/*
203 * pv_entries are allocated in chunks per-process.  This avoids the
204 * need to track per-pmap assignments.
205 */
206#define	_NPCM	8
207#define	_NPCPV	252
208
209struct pv_chunk {
210	pmap_t			pc_pmap;
211	TAILQ_ENTRY(pv_chunk)	pc_list;
212	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
213	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
214	TAILQ_ENTRY(pv_chunk)	pc_lru;
215	struct pv_entry		pc_pventry[_NPCPV];
216};
217
218#ifdef _KERNEL
219
220boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
221
222/*
223 * virtual address to page table entry and
224 * to physical address. Likewise for alternate address space.
225 * Note: these work recursively, thus vtopte of a pte will give
226 * the corresponding pde that in turn maps it.
227 */
228
229/*
230 * The current top of kernel VM.
231 */
232extern vm_offset_t pmap_curmaxkvaddr;
233
234struct pcb;
235
236void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
237/* Virtual address to page table entry */
238static __inline pt_entry_t *
239vtopte(vm_offset_t va)
240{
241	pd_entry_t *pdep;
242	pt_entry_t *ptep;
243
244	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
245		return (NULL);
246	return (ptep);
247}
248
249extern vm_paddr_t phys_avail[];
250extern vm_offset_t virtual_avail;
251extern vm_offset_t virtual_end;
252
253void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
254int	pmap_change_attr(vm_offset_t, vm_size_t, int);
255void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
256void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
257void	*pmap_kenter_temp(vm_paddr_t pa, int i);
258void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
259vm_paddr_t pmap_kextract(vm_offset_t va);
260void	pmap_kremove(vm_offset_t);
261void	*pmap_mapdev(vm_offset_t, vm_size_t);
262void	pmap_unmapdev(vm_offset_t, vm_size_t);
263vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
264void	pmap_debug(int);
265#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
266void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
267#endif
268void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
269vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
270void
271pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
272    int cache);
273int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
274int pmap_dmap_iscurrent(pmap_t pmap);
275
276/*
277 * Definitions for MMU domains
278 */
279#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
280#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
281
282/*
283 * The new pmap ensures that page-tables are always mapping Write-Thru.
284 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
285 * on every change.
286 *
287 * Unfortunately, not all CPUs have a write-through cache mode.  So we
288 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
289 * and if there is the chance for PTE syncs to be needed, we define
290 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
291 * the code.
292 */
293extern int pmap_needs_pte_sync;
294
295/*
296 * These macros define the various bit masks in the PTE.
297 *
298 * We use these macros since we use different bits on different processor
299 * models.
300 */
301
302#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
303#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
304    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
305
306#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
307#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
308    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
309
310#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
311#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
312#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
313
314#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
315#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
316#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
317
318#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
319#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
320    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
321
322#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
323#define	L1_S_PROTO_xscale	(L1_TYPE_S)
324
325#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
326#define	L1_C_PROTO_xscale	(L1_TYPE_C)
327
328#define	L2_L_PROTO		(L2_TYPE_L)
329
330#define	L2_S_PROTO_generic	(L2_TYPE_S)
331#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
332
333/*
334 * User-visible names for the ones that vary with MMU class.
335 */
336#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
337#define	L2_AP(x)	(L2_AP0(x))
338#else
339#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
340#endif
341
342#if ARM_NMMUS > 1
343/* More than one MMU class configured; use variables. */
344#define	L2_S_PROT_U		pte_l2_s_prot_u
345#define	L2_S_PROT_W		pte_l2_s_prot_w
346#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
347
348#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
349#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
350#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
351
352#define	L1_S_PROTO		pte_l1_s_proto
353#define	L1_C_PROTO		pte_l1_c_proto
354#define	L2_S_PROTO		pte_l2_s_proto
355
356#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
357#define	L2_S_PROT_U		L2_S_PROT_U_generic
358#define	L2_S_PROT_W		L2_S_PROT_W_generic
359#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
360
361#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
362#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
363#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
364
365#define	L1_S_PROTO		L1_S_PROTO_generic
366#define	L1_C_PROTO		L1_C_PROTO_generic
367#define	L2_S_PROTO		L2_S_PROTO_generic
368
369#elif ARM_MMU_XSCALE == 1
370#define	L2_S_PROT_U		L2_S_PROT_U_xscale
371#define	L2_S_PROT_W		L2_S_PROT_W_xscale
372#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
373
374#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
375#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
376#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
377
378#define	L1_S_PROTO		L1_S_PROTO_xscale
379#define	L1_C_PROTO		L1_C_PROTO_xscale
380#define	L2_S_PROTO		L2_S_PROTO_xscale
381
382#elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
383/*
384 * AP[2:1] access permissions model:
385 *
386 * AP[2](APX)	- Write Disable
387 * AP[1]	- User Enable
388 * AP[0]	- Reference Flag
389 *
390 * AP[2]     AP[1]     Kernel     User
391 *  0          0        R/W        N
392 *  0          1        R/W       R/W
393 *  1          0         R         N
394 *  1          1         R         R
395 *
396 */
397#define	L2_S_PROT_R		(0)		/* kernel read */
398#define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
399#define L2_S_REF		(L2_AP0(1))	/* reference flag */
400
401#define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
402#define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
403#define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
404#define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
405
406#ifndef SMP
407#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
408#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
409#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
410#else
411#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
412#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
413#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
414#endif  /* SMP */
415
416#define	L1_S_PROTO		(L1_TYPE_S)
417#define	L1_C_PROTO		(L1_TYPE_C)
418#define	L2_S_PROTO		(L2_TYPE_S)
419
420/*
421 * Promotion to a 1MB (SECTION) mapping requires that the corresponding
422 * 4KB (SMALL) page mappings have identical settings for the following fields:
423 */
424#define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
425				 L2_XN | L2_S_PROTO)
426
427/*
428 * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
429 * page mapping it is necessary to read and shift appropriate bits from
430 * L1 entry to positions of the corresponding bits in the L2 entry.
431 */
432#define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
433				(((l1pd) & L1_SHARED) >> 6) | \
434				(((l1pd) & L1_S_REF) >> 6) | \
435				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
436				(((l1pd) & L1_S_XN) >> 4))
437
438#ifndef SMP
439#define ARM_L1S_STRONG_ORD	(0)
440#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
441#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
442#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
443#define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
444#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
445#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
446
447#define ARM_L2L_STRONG_ORD	(0)
448#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
449#define ARM_L2L_DEVICE_SHARE	(L2_B)
450#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
451#define ARM_L2L_NRML_IWT_OWT	(L2_C)
452#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
453#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
454
455#define ARM_L2S_STRONG_ORD	(0)
456#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
457#define ARM_L2S_DEVICE_SHARE	(L2_B)
458#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
459#define ARM_L2S_NRML_IWT_OWT	(L2_C)
460#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
461#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
462#else
463#define ARM_L1S_STRONG_ORD	(0)
464#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
465#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
466#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
467#define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
468#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
469#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
470
471#define ARM_L2L_STRONG_ORD	(0)
472#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
473#define ARM_L2L_DEVICE_SHARE	(L2_B)
474#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
475#define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
476#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
477#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
478
479#define ARM_L2S_STRONG_ORD	(0)
480#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
481#define ARM_L2S_DEVICE_SHARE	(L2_B)
482#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
483#define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
484#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
485#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
486#endif /* SMP */
487#endif /* ARM_NMMUS > 1 */
488
489#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
490#define	PMAP_NEEDS_PTE_SYNC	1
491#define	PMAP_INCLUDE_PTE_SYNC
492#elif defined(CPU_XSCALE_81342)
493#define PMAP_NEEDS_PTE_SYNC	1
494#define PMAP_INCLUDE_PTE_SYNC
495#elif (ARM_MMU_SA1 == 0)
496#define	PMAP_NEEDS_PTE_SYNC	0
497#endif
498
499/*
500 * These macros return various bits based on kernel/user and protection.
501 * Note that the compiler will usually fold these at compile time.
502 */
503#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
504
505#define	L1_S_PROT_U		(L1_S_AP(AP_U))
506#define	L1_S_PROT_W		(L1_S_AP(AP_W))
507#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
508#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
509
510#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
511				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
512
513#define	L2_L_PROT_U		(L2_AP(AP_U))
514#define	L2_L_PROT_W		(L2_AP(AP_W))
515#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
516
517#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
518				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
519
520#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
521				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
522#else
523#define	L1_S_PROT_U		(L1_S_AP(AP_U))
524#define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
525#define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
526#define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
527#define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
528#define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
529
530#define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
531				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
532				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
533
534#define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
535#define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
536				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
537
538#define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
539				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
540
541#endif
542
543/*
544 * Macros to test if a mapping is mappable with an L1 Section mapping
545 * or an L2 Large Page mapping.
546 */
547#define	L1_S_MAPPABLE_P(va, pa, size)					\
548	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
549
550#define	L2_L_MAPPABLE_P(va, pa, size)					\
551	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
552
553/*
554 * Provide a fallback in case we were not able to determine it at
555 * compile-time.
556 */
557#ifndef PMAP_NEEDS_PTE_SYNC
558#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
559#define	PMAP_INCLUDE_PTE_SYNC
560#endif
561
562#define	PTE_SYNC(pte)							\
563do {									\
564	if (PMAP_NEEDS_PTE_SYNC) {					\
565		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
566		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
567	} else								\
568		cpu_drain_writebuf();					\
569} while (/*CONSTCOND*/0)
570
571#define	PTE_SYNC_RANGE(pte, cnt)					\
572do {									\
573	if (PMAP_NEEDS_PTE_SYNC) {					\
574		cpu_dcache_wb_range((vm_offset_t)(pte),			\
575		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
576		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
577		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
578	} else								\
579		cpu_drain_writebuf();					\
580} while (/*CONSTCOND*/0)
581
582extern pt_entry_t		pte_l1_s_cache_mode;
583extern pt_entry_t		pte_l1_s_cache_mask;
584
585extern pt_entry_t		pte_l2_l_cache_mode;
586extern pt_entry_t		pte_l2_l_cache_mask;
587
588extern pt_entry_t		pte_l2_s_cache_mode;
589extern pt_entry_t		pte_l2_s_cache_mask;
590
591extern pt_entry_t		pte_l1_s_cache_mode_pt;
592extern pt_entry_t		pte_l2_l_cache_mode_pt;
593extern pt_entry_t		pte_l2_s_cache_mode_pt;
594
595extern pt_entry_t		pte_l2_s_prot_u;
596extern pt_entry_t		pte_l2_s_prot_w;
597extern pt_entry_t		pte_l2_s_prot_mask;
598
599extern pt_entry_t		pte_l1_s_proto;
600extern pt_entry_t		pte_l1_c_proto;
601extern pt_entry_t		pte_l2_s_proto;
602
603extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
604extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
605    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
606extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
607
608#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
609void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
610void	pmap_zero_page_generic(vm_paddr_t, int, int);
611
612void	pmap_pte_init_generic(void);
613#if defined(CPU_ARM8)
614void	pmap_pte_init_arm8(void);
615#endif
616#if defined(CPU_ARM9)
617void	pmap_pte_init_arm9(void);
618#endif /* CPU_ARM9 */
619#if defined(CPU_ARM10)
620void	pmap_pte_init_arm10(void);
621#endif /* CPU_ARM10 */
622#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
623void	pmap_pte_init_mmu_v6(void);
624#endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
625#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
626
627#if /* ARM_MMU_SA1 == */1
628void	pmap_pte_init_sa1(void);
629#endif /* ARM_MMU_SA1 == 1 */
630
631#if ARM_MMU_XSCALE == 1
632void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
633void	pmap_zero_page_xscale(vm_paddr_t, int, int);
634
635void	pmap_pte_init_xscale(void);
636
637void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
638
639void	pmap_use_minicache(vm_offset_t, vm_size_t);
640#endif /* ARM_MMU_XSCALE == 1 */
641#if defined(CPU_XSCALE_81342)
642#define ARM_HAVE_SUPERSECTIONS
643#endif
644
645#define PTE_KERNEL	0
646#define PTE_USER	1
647#define	l1pte_valid(pde)	((pde) != 0)
648#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
649#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
650#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
651
652#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
653#define	l2pte_valid(pte)	((pte) != 0)
654#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
655#define l2pte_minidata(pte)	(((pte) & \
656				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
657				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
658
659/* L1 and L2 page table macros */
660#define pmap_pde_v(pde)		l1pte_valid(*(pde))
661#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
662#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
663#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
664
665#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
666#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
667
668/*
669 * Flags that indicate attributes of pages or mappings of pages.
670 *
671 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
672 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
673 * pv_entry's for each page.  They live in the same "namespace" so
674 * that we can clear multiple attributes at a time.
675 *
676 * Note the "non-cacheable" flag generally means the page has
677 * multiple mappings in a given address space.
678 */
679#define	PVF_MOD		0x01		/* page is modified */
680#define	PVF_REF		0x02		/* page is referenced */
681#define	PVF_WIRED	0x04		/* mapping is wired */
682#define	PVF_WRITE	0x08		/* mapping is writable */
683#define	PVF_EXEC	0x10		/* mapping is executable */
684#define	PVF_NC		0x20		/* mapping is non-cacheable */
685#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
686#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
687
688void vector_page_setprot(int);
689
690/*
691 * This structure is used by machine-dependent code to describe
692 * static mappings of devices, created at bootstrap time.
693 */
694struct pmap_devmap {
695	vm_offset_t	pd_va;		/* virtual address */
696	vm_paddr_t	pd_pa;		/* physical address */
697	vm_size_t	pd_size;	/* size of region */
698	vm_prot_t	pd_prot;	/* protection code */
699	int		pd_cache;	/* cache attributes */
700};
701
702const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
703const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
704
705void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
706void	pmap_devmap_register(const struct pmap_devmap *);
707
708#define SECTION_CACHE	0x1
709#define SECTION_PT	0x2
710void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
711#ifdef ARM_HAVE_SUPERSECTIONS
712void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
713#endif
714
715extern char *_tmppt;
716
717void	pmap_postinit(void);
718
719#ifdef ARM_USE_SMALL_ALLOC
720void	arm_add_smallalloc_pages(void *, void *, int, int);
721vm_offset_t arm_ptovirt(vm_paddr_t);
722void arm_init_smallalloc(void);
723struct arm_small_page {
724	void *addr;
725	TAILQ_ENTRY(arm_small_page) pg_list;
726};
727
728#endif
729
730#define ARM_NOCACHE_KVA_SIZE 0x1000000
731extern vm_offset_t arm_nocache_startaddr;
732void *arm_remap_nocache(void *, vm_size_t);
733void arm_unmap_nocache(void *, vm_size_t);
734
735extern vm_paddr_t dump_avail[];
736#endif	/* _KERNEL */
737
738#endif	/* !LOCORE */
739
740#endif	/* !_MACHINE_PMAP_H_ */
741