1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: stable/11/sys/arm/include/pmap-v4.h 314530 2017-03-02 01:18:46Z ian $
48 */
49
50#ifndef _MACHINE_PMAP_V4_H_
51#define _MACHINE_PMAP_V4_H_
52
53#include <machine/pte-v4.h>
54
55/*
56 * Define the MMU types we support based on the cpu types.  While the code has
57 * some theoretical support for multiple MMU types in a single kernel, there are
58 * no actual working configurations that use that feature.
59 */
60#if (defined(CPU_ARM9) || defined(CPU_ARM9E) ||	defined(CPU_FA526))
61#define	ARM_MMU_GENERIC		1
62#else
63#define	ARM_MMU_GENERIC		0
64#endif
65
66#if (defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) ||	\
67     defined(CPU_XSCALE_81342))
68#define	ARM_MMU_XSCALE		1
69#else
70#define	ARM_MMU_XSCALE		0
71#endif
72
73#define	ARM_NMMUS		(ARM_MMU_GENERIC + ARM_MMU_XSCALE)
74#if ARM_NMMUS == 0 && !defined(KLD_MODULE) && defined(_KERNEL)
75#error ARM_NMMUS is 0
76#endif
77
78/*
79 * Pte related macros
80 */
81#define PTE_NOCACHE	1
82#define PTE_CACHE	2
83#define PTE_DEVICE	PTE_NOCACHE
84#define PTE_PAGETABLE	3
85
86enum mem_type {
87	STRONG_ORD = 0,
88	DEVICE_NOSHARE,
89	DEVICE_SHARE,
90	NRML_NOCACHE,
91	NRML_IWT_OWT,
92	NRML_IWB_OWB,
93	NRML_IWBA_OWBA
94};
95
96#ifndef LOCORE
97
98#include <sys/queue.h>
99#include <sys/_cpuset.h>
100#include <sys/_lock.h>
101#include <sys/_mutex.h>
102
103#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
104#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
105
106#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
107#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
108
109/*
110 * Pmap stuff
111 */
112
113/*
114 * This structure is used to hold a virtual<->physical address
115 * association and is used mostly by bootstrap code
116 */
117struct pv_addr {
118	SLIST_ENTRY(pv_addr) pv_list;
119	vm_offset_t	pv_va;
120	vm_paddr_t	pv_pa;
121};
122
123struct	pv_entry;
124struct	pv_chunk;
125
126struct	md_page {
127	int pvh_attrs;
128	vm_memattr_t	 pv_memattr;
129	vm_offset_t pv_kva;		/* first kernel VA mapping */
130	TAILQ_HEAD(,pv_entry)	pv_list;
131};
132
133struct l1_ttable;
134struct l2_dtable;
135
136
137/*
138 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
139 * A bucket size of 16 provides for 16MB of contiguous virtual address
140 * space per l2_dtable. Most processes will, therefore, require only two or
141 * three of these to map their whole working set.
142 */
143#define	L2_BUCKET_LOG2	4
144#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
145/*
146 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
147 * of l2_dtable structures required to track all possible page descriptors
148 * mappable by an L1 translation table is given by the following constants:
149 */
150#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
151#define	L2_SIZE		(1 << L2_LOG2)
152
153struct	pmap {
154	struct mtx		pm_mtx;
155	u_int8_t		pm_domain;
156	struct l1_ttable	*pm_l1;
157	struct l2_dtable	*pm_l2[L2_SIZE];
158	cpuset_t		pm_active;	/* active on cpus */
159	struct pmap_statistics	pm_stats;	/* pmap statictics */
160	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
161};
162
163typedef struct pmap *pmap_t;
164
165#ifdef _KERNEL
166extern struct pmap	kernel_pmap_store;
167#define kernel_pmap	(&kernel_pmap_store)
168
169#define	PMAP_ASSERT_LOCKED(pmap) \
170				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
171#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
172#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
173#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
174				    NULL, MTX_DEF | MTX_DUPOK)
175#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
176#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
177#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
178#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
179#endif
180
181/*
182 * For each vm_page_t, there is a list of all currently valid virtual
183 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
184 */
185typedef struct pv_entry {
186	vm_offset_t     pv_va;          /* virtual address for mapping */
187	TAILQ_ENTRY(pv_entry)   pv_list;
188	int		pv_flags;	/* flags (wired, etc...) */
189	pmap_t          pv_pmap;        /* pmap where mapping lies */
190	TAILQ_ENTRY(pv_entry)	pv_plist;
191} *pv_entry_t;
192
193/*
194 * pv_entries are allocated in chunks per-process.  This avoids the
195 * need to track per-pmap assignments.
196 */
197#define	_NPCM	8
198#define	_NPCPV	252
199
200struct pv_chunk {
201	pmap_t			pc_pmap;
202	TAILQ_ENTRY(pv_chunk)	pc_list;
203	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
204	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
205	TAILQ_ENTRY(pv_chunk)	pc_lru;
206	struct pv_entry		pc_pventry[_NPCPV];
207};
208
209#ifdef _KERNEL
210
211boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
212
213/*
214 * virtual address to page table entry and
215 * to physical address. Likewise for alternate address space.
216 * Note: these work recursively, thus vtopte of a pte will give
217 * the corresponding pde that in turn maps it.
218 */
219
220/*
221 * The current top of kernel VM.
222 */
223extern vm_offset_t pmap_curmaxkvaddr;
224
225/* Virtual address to page table entry */
226static __inline pt_entry_t *
227vtopte(vm_offset_t va)
228{
229	pd_entry_t *pdep;
230	pt_entry_t *ptep;
231
232	if (pmap_get_pde_pte(kernel_pmap, va, &pdep, &ptep) == FALSE)
233		return (NULL);
234	return (ptep);
235}
236
237void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
238int	pmap_change_attr(vm_offset_t, vm_size_t, int);
239void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
240void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
241void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
242vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
243void	pmap_kremove(vm_offset_t);
244vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
245void	pmap_debug(int);
246void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
247void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
248vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
249void
250pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
251    int cache);
252int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
253
254/*
255 * Definitions for MMU domains
256 */
257#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
258#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
259
260/*
261 * The new pmap ensures that page-tables are always mapping Write-Thru.
262 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
263 * on every change.
264 *
265 * Unfortunately, not all CPUs have a write-through cache mode.  So we
266 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
267 * and if there is the chance for PTE syncs to be needed, we define
268 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
269 * the code.
270 */
271extern int pmap_needs_pte_sync;
272
273/*
274 * These macros define the various bit masks in the PTE.
275 *
276 * We use these macros since we use different bits on different processor
277 * models.
278 */
279
280#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
281#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
282    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
283
284#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
285#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
286    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
287
288#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
289#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
290#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
291
292#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
293#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
294#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
295
296#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
297#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
298    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
299
300#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
301#define	L1_S_PROTO_xscale	(L1_TYPE_S)
302
303#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
304#define	L1_C_PROTO_xscale	(L1_TYPE_C)
305
306#define	L2_L_PROTO		(L2_TYPE_L)
307
308#define	L2_S_PROTO_generic	(L2_TYPE_S)
309#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
310
311/*
312 * User-visible names for the ones that vary with MMU class.
313 */
314#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
315
316#if ARM_NMMUS > 1
317/* More than one MMU class configured; use variables. */
318#define	L2_S_PROT_U		pte_l2_s_prot_u
319#define	L2_S_PROT_W		pte_l2_s_prot_w
320#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
321
322#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
323#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
324#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
325
326#define	L1_S_PROTO		pte_l1_s_proto
327#define	L1_C_PROTO		pte_l1_c_proto
328#define	L2_S_PROTO		pte_l2_s_proto
329
330#elif ARM_MMU_GENERIC != 0
331#define	L2_S_PROT_U		L2_S_PROT_U_generic
332#define	L2_S_PROT_W		L2_S_PROT_W_generic
333#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
334
335#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
336#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
337#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
338
339#define	L1_S_PROTO		L1_S_PROTO_generic
340#define	L1_C_PROTO		L1_C_PROTO_generic
341#define	L2_S_PROTO		L2_S_PROTO_generic
342
343#elif ARM_MMU_XSCALE == 1
344#define	L2_S_PROT_U		L2_S_PROT_U_xscale
345#define	L2_S_PROT_W		L2_S_PROT_W_xscale
346#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
347
348#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
349#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
350#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
351
352#define	L1_S_PROTO		L1_S_PROTO_xscale
353#define	L1_C_PROTO		L1_C_PROTO_xscale
354#define	L2_S_PROTO		L2_S_PROTO_xscale
355
356#endif /* ARM_NMMUS > 1 */
357
358#if defined(CPU_XSCALE_81342)
359#define PMAP_NEEDS_PTE_SYNC	1
360#define PMAP_INCLUDE_PTE_SYNC
361#else
362#define	PMAP_NEEDS_PTE_SYNC	0
363#endif
364
365/*
366 * These macros return various bits based on kernel/user and protection.
367 * Note that the compiler will usually fold these at compile time.
368 */
369#define	L1_S_PROT_U		(L1_S_AP(AP_U))
370#define	L1_S_PROT_W		(L1_S_AP(AP_W))
371#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
372#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
373
374#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
375				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
376
377#define	L2_L_PROT_U		(L2_AP(AP_U))
378#define	L2_L_PROT_W		(L2_AP(AP_W))
379#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
380
381#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
382				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
383
384#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
385				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
386
387/*
388 * Macros to test if a mapping is mappable with an L1 Section mapping
389 * or an L2 Large Page mapping.
390 */
391#define	L1_S_MAPPABLE_P(va, pa, size)					\
392	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
393
394#define	L2_L_MAPPABLE_P(va, pa, size)					\
395	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
396
397/*
398 * Provide a fallback in case we were not able to determine it at
399 * compile-time.
400 */
401#ifndef PMAP_NEEDS_PTE_SYNC
402#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
403#define	PMAP_INCLUDE_PTE_SYNC
404#endif
405
406#ifdef ARM_L2_PIPT
407#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
408#else
409#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
410#endif
411
412#define	PTE_SYNC(pte)							\
413do {									\
414	if (PMAP_NEEDS_PTE_SYNC) {					\
415		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
416		cpu_drain_writebuf();					\
417		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
418	} else								\
419		cpu_drain_writebuf();					\
420} while (/*CONSTCOND*/0)
421
422#define	PTE_SYNC_RANGE(pte, cnt)					\
423do {									\
424	if (PMAP_NEEDS_PTE_SYNC) {					\
425		cpu_dcache_wb_range((vm_offset_t)(pte),			\
426		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
427		cpu_drain_writebuf();					\
428		_sync_l2((vm_offset_t)(pte),		 		\
429		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
430	} else								\
431		cpu_drain_writebuf();					\
432} while (/*CONSTCOND*/0)
433
434extern pt_entry_t		pte_l1_s_cache_mode;
435extern pt_entry_t		pte_l1_s_cache_mask;
436
437extern pt_entry_t		pte_l2_l_cache_mode;
438extern pt_entry_t		pte_l2_l_cache_mask;
439
440extern pt_entry_t		pte_l2_s_cache_mode;
441extern pt_entry_t		pte_l2_s_cache_mask;
442
443extern pt_entry_t		pte_l1_s_cache_mode_pt;
444extern pt_entry_t		pte_l2_l_cache_mode_pt;
445extern pt_entry_t		pte_l2_s_cache_mode_pt;
446
447extern pt_entry_t		pte_l2_s_prot_u;
448extern pt_entry_t		pte_l2_s_prot_w;
449extern pt_entry_t		pte_l2_s_prot_mask;
450
451extern pt_entry_t		pte_l1_s_proto;
452extern pt_entry_t		pte_l1_c_proto;
453extern pt_entry_t		pte_l2_s_proto;
454
455extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
456extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
457    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
458extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
459
460#if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_81342)
461void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
462void	pmap_zero_page_generic(vm_paddr_t, int, int);
463
464void	pmap_pte_init_generic(void);
465#endif /* ARM_MMU_GENERIC != 0 */
466
467#if ARM_MMU_XSCALE == 1
468void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
469void	pmap_zero_page_xscale(vm_paddr_t, int, int);
470
471void	pmap_pte_init_xscale(void);
472
473void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
474
475void	pmap_use_minicache(vm_offset_t, vm_size_t);
476#endif /* ARM_MMU_XSCALE == 1 */
477#if defined(CPU_XSCALE_81342)
478#define ARM_HAVE_SUPERSECTIONS
479#endif
480
481#define PTE_KERNEL	0
482#define PTE_USER	1
483#define	l1pte_valid(pde)	((pde) != 0)
484#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
485#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
486#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
487
488#define l2pte_index(v)		(((v) & L1_S_OFFSET) >> L2_S_SHIFT)
489#define	l2pte_valid(pte)	((pte) != 0)
490#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
491#define l2pte_minidata(pte)	(((pte) & \
492				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
493				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
494
495/* L1 and L2 page table macros */
496#define pmap_pde_v(pde)		l1pte_valid(*(pde))
497#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
498#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
499#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
500
501#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
502#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
503
504/*
505 * Flags that indicate attributes of pages or mappings of pages.
506 *
507 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
508 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
509 * pv_entry's for each page.  They live in the same "namespace" so
510 * that we can clear multiple attributes at a time.
511 *
512 * Note the "non-cacheable" flag generally means the page has
513 * multiple mappings in a given address space.
514 */
515#define	PVF_MOD		0x01		/* page is modified */
516#define	PVF_REF		0x02		/* page is referenced */
517#define	PVF_WIRED	0x04		/* mapping is wired */
518#define	PVF_WRITE	0x08		/* mapping is writable */
519#define	PVF_EXEC	0x10		/* mapping is executable */
520#define	PVF_NC		0x20		/* mapping is non-cacheable */
521#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
522#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
523
524void vector_page_setprot(int);
525
526#define SECTION_CACHE	0x1
527#define SECTION_PT	0x2
528void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
529#ifdef ARM_HAVE_SUPERSECTIONS
530void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
531#endif
532
533void	pmap_postinit(void);
534
535#endif	/* _KERNEL */
536
537#endif	/* !LOCORE */
538
539#endif	/* !_MACHINE_PMAP_V4_H_ */
540