pmap-v4.h revision 254532
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 254532 2013-08-19 15:12:36Z raj $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#if ARM_ARCH_6 || ARM_ARCH_7A
59#ifdef SMP
60#define PTE_NOCACHE	2
61#else
62#define PTE_NOCACHE	1
63#endif
64#define PTE_CACHE	6
65#define PTE_DEVICE	2
66#define PTE_PAGETABLE	4
67#else
68#define PTE_NOCACHE	1
69#define PTE_CACHE	2
70#define PTE_PAGETABLE	3
71#endif
72
73enum mem_type {
74	STRONG_ORD = 0,
75	DEVICE_NOSHARE,
76	DEVICE_SHARE,
77	NRML_NOCACHE,
78	NRML_IWT_OWT,
79	NRML_IWB_OWB,
80	NRML_IWBA_OWBA
81};
82
83#ifndef LOCORE
84
85#include <sys/queue.h>
86#include <sys/_cpuset.h>
87#include <sys/_lock.h>
88#include <sys/_mutex.h>
89
90#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92
93#ifdef _KERNEL
94
95#define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96
97#endif
98
99#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103
104/*
105 * Pmap stuff
106 */
107
108/*
109 * This structure is used to hold a virtual<->physical address
110 * association and is used mostly by bootstrap code
111 */
112struct pv_addr {
113	SLIST_ENTRY(pv_addr) pv_list;
114	vm_offset_t	pv_va;
115	vm_paddr_t	pv_pa;
116};
117
118struct	pv_entry;
119struct	pv_chunk;
120
121struct	md_page {
122	int pvh_attrs;
123	vm_memattr_t	 pv_memattr;
124	vm_offset_t pv_kva;		/* first kernel VA mapping */
125	TAILQ_HEAD(,pv_entry)	pv_list;
126};
127
128struct l1_ttable;
129struct l2_dtable;
130
131
132/*
133 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
134 * A bucket size of 16 provides for 16MB of contiguous virtual address
135 * space per l2_dtable. Most processes will, therefore, require only two or
136 * three of these to map their whole working set.
137 */
138#define	L2_BUCKET_LOG2	4
139#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
140/*
141 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
142 * of l2_dtable structures required to track all possible page descriptors
143 * mappable by an L1 translation table is given by the following constants:
144 */
145#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
146#define	L2_SIZE		(1 << L2_LOG2)
147
148struct	pmap {
149	struct mtx		pm_mtx;
150	u_int8_t		pm_domain;
151	struct l1_ttable	*pm_l1;
152	struct l2_dtable	*pm_l2[L2_SIZE];
153	cpuset_t		pm_active;	/* active on cpus */
154	struct pmap_statistics	pm_stats;	/* pmap statictics */
155#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
156	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
157#else
158	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
159#endif
160};
161
162typedef struct pmap *pmap_t;
163
164#ifdef _KERNEL
165extern struct pmap	kernel_pmap_store;
166#define kernel_pmap	(&kernel_pmap_store)
167#define pmap_kernel() kernel_pmap
168
169#define	PMAP_ASSERT_LOCKED(pmap) \
170				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
171#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
172#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
173#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
174				    NULL, MTX_DEF | MTX_DUPOK)
175#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
176#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
177#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
178#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
179#endif
180
181
182/*
183 * For each vm_page_t, there is a list of all currently valid virtual
184 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
185 */
186typedef struct pv_entry {
187	vm_offset_t     pv_va;          /* virtual address for mapping */
188	TAILQ_ENTRY(pv_entry)   pv_list;
189	int		pv_flags;	/* flags (wired, etc...) */
190#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
191	pmap_t          pv_pmap;        /* pmap where mapping lies */
192	TAILQ_ENTRY(pv_entry)	pv_plist;
193#endif
194} *pv_entry_t;
195
196/*
197 * pv_entries are allocated in chunks per-process.  This avoids the
198 * need to track per-pmap assignments.
199 */
200#define	_NPCM	8
201#define	_NPCPV	252
202
203struct pv_chunk {
204	pmap_t			pc_pmap;
205	TAILQ_ENTRY(pv_chunk)	pc_list;
206	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
207	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
208	TAILQ_ENTRY(pv_chunk)	pc_lru;
209	struct pv_entry		pc_pventry[_NPCPV];
210};
211
212#ifdef _KERNEL
213
214boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
215
216/*
217 * virtual address to page table entry and
218 * to physical address. Likewise for alternate address space.
219 * Note: these work recursively, thus vtopte of a pte will give
220 * the corresponding pde that in turn maps it.
221 */
222
223/*
224 * The current top of kernel VM.
225 */
226extern vm_offset_t pmap_curmaxkvaddr;
227
228struct pcb;
229
230void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
231/* Virtual address to page table entry */
232static __inline pt_entry_t *
233vtopte(vm_offset_t va)
234{
235	pd_entry_t *pdep;
236	pt_entry_t *ptep;
237
238	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
239		return (NULL);
240	return (ptep);
241}
242
243extern vm_paddr_t phys_avail[];
244extern vm_offset_t virtual_avail;
245extern vm_offset_t virtual_end;
246
247void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
248int	pmap_change_attr(vm_offset_t, vm_size_t, int);
249void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
250void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
251void	*pmap_kenter_temp(vm_paddr_t pa, int i);
252void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
253vm_paddr_t pmap_kextract(vm_offset_t va);
254void	pmap_kremove(vm_offset_t);
255void	*pmap_mapdev(vm_offset_t, vm_size_t);
256void	pmap_unmapdev(vm_offset_t, vm_size_t);
257vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
258void	pmap_debug(int);
259void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
260void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
261vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
262void
263pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
264    int cache);
265int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
266int pmap_dmap_iscurrent(pmap_t pmap);
267
268/*
269 * Definitions for MMU domains
270 */
271#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
272#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
273
274/*
275 * The new pmap ensures that page-tables are always mapping Write-Thru.
276 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
277 * on every change.
278 *
279 * Unfortunately, not all CPUs have a write-through cache mode.  So we
280 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
281 * and if there is the chance for PTE syncs to be needed, we define
282 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
283 * the code.
284 */
285extern int pmap_needs_pte_sync;
286
287/*
288 * These macros define the various bit masks in the PTE.
289 *
290 * We use these macros since we use different bits on different processor
291 * models.
292 */
293
294#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
295#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
296    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
297
298#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
299#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
300    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
301
302#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
303#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
304#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
305
306#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
307#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
308#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
309
310#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
311#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
312    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
313
314#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
315#define	L1_S_PROTO_xscale	(L1_TYPE_S)
316
317#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
318#define	L1_C_PROTO_xscale	(L1_TYPE_C)
319
320#define	L2_L_PROTO		(L2_TYPE_L)
321
322#define	L2_S_PROTO_generic	(L2_TYPE_S)
323#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
324
325/*
326 * User-visible names for the ones that vary with MMU class.
327 */
328#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
329#define	L2_AP(x)	(L2_AP0(x))
330#else
331#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
332#endif
333
334#if ARM_NMMUS > 1
335/* More than one MMU class configured; use variables. */
336#define	L2_S_PROT_U		pte_l2_s_prot_u
337#define	L2_S_PROT_W		pte_l2_s_prot_w
338#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
339
340#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
341#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
342#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
343
344#define	L1_S_PROTO		pte_l1_s_proto
345#define	L1_C_PROTO		pte_l1_c_proto
346#define	L2_S_PROTO		pte_l2_s_proto
347
348#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
349#define	L2_S_PROT_U		L2_S_PROT_U_generic
350#define	L2_S_PROT_W		L2_S_PROT_W_generic
351#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
352
353#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
354#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
355#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
356
357#define	L1_S_PROTO		L1_S_PROTO_generic
358#define	L1_C_PROTO		L1_C_PROTO_generic
359#define	L2_S_PROTO		L2_S_PROTO_generic
360
361#elif ARM_MMU_XSCALE == 1
362#define	L2_S_PROT_U		L2_S_PROT_U_xscale
363#define	L2_S_PROT_W		L2_S_PROT_W_xscale
364#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
365
366#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
367#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
368#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
369
370#define	L1_S_PROTO		L1_S_PROTO_xscale
371#define	L1_C_PROTO		L1_C_PROTO_xscale
372#define	L2_S_PROTO		L2_S_PROTO_xscale
373
374#elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
375/*
376 * AP[2:1] access permissions model:
377 *
378 * AP[2](APX)	- Write Disable
379 * AP[1]	- User Enable
380 * AP[0]	- Reference Flag
381 *
382 * AP[2]     AP[1]     Kernel     User
383 *  0          0        R/W        N
384 *  0          1        R/W       R/W
385 *  1          0         R         N
386 *  1          1         R         R
387 *
388 */
389#define	L2_S_PROT_R		(0)		/* kernel read */
390#define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
391#define L2_S_REF		(L2_AP0(1))	/* reference flag */
392
393#define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
394#define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
395#define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
396#define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
397
398#ifndef SMP
399#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
400#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
401#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
402#else
403#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
404#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
405#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
406#endif  /* SMP */
407
408#define	L1_S_PROTO		(L1_TYPE_S)
409#define	L1_C_PROTO		(L1_TYPE_C)
410#define	L2_S_PROTO		(L2_TYPE_S)
411
412#ifndef SMP
413#define ARM_L1S_STRONG_ORD	(0)
414#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
415#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
416#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
417#define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
418#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
419#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
420
421#define ARM_L2L_STRONG_ORD	(0)
422#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
423#define ARM_L2L_DEVICE_SHARE	(L2_B)
424#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
425#define ARM_L2L_NRML_IWT_OWT	(L2_C)
426#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
427#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
428
429#define ARM_L2S_STRONG_ORD	(0)
430#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
431#define ARM_L2S_DEVICE_SHARE	(L2_B)
432#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
433#define ARM_L2S_NRML_IWT_OWT	(L2_C)
434#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
435#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
436#else
437#define ARM_L1S_STRONG_ORD	(0)
438#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
439#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
440#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
441#define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
442#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
443#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
444
445#define ARM_L2L_STRONG_ORD	(0)
446#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
447#define ARM_L2L_DEVICE_SHARE	(L2_B)
448#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
449#define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
450#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
451#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
452
453#define ARM_L2S_STRONG_ORD	(0)
454#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
455#define ARM_L2S_DEVICE_SHARE	(L2_B)
456#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
457#define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
458#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
459#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
460#endif /* SMP */
461#endif /* ARM_NMMUS > 1 */
462
463#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
464#define	PMAP_NEEDS_PTE_SYNC	1
465#define	PMAP_INCLUDE_PTE_SYNC
466#elif defined(CPU_XSCALE_81342)
467#define PMAP_NEEDS_PTE_SYNC	1
468#define PMAP_INCLUDE_PTE_SYNC
469#elif (ARM_MMU_SA1 == 0)
470#define	PMAP_NEEDS_PTE_SYNC	0
471#endif
472
473/*
474 * These macros return various bits based on kernel/user and protection.
475 * Note that the compiler will usually fold these at compile time.
476 */
477#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
478
479#define	L1_S_PROT_U		(L1_S_AP(AP_U))
480#define	L1_S_PROT_W		(L1_S_AP(AP_W))
481#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
482#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
483
484#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
485				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
486
487#define	L2_L_PROT_U		(L2_AP(AP_U))
488#define	L2_L_PROT_W		(L2_AP(AP_W))
489#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
490
491#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
492				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
493
494#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
495				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
496#else
497#define	L1_S_PROT_U		(L1_S_AP(AP_U))
498#define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
499#define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
500
501#define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
502				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
503
504#define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
505#define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
506				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
507
508#define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
509				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
510
511#endif
512
513/*
514 * Macros to test if a mapping is mappable with an L1 Section mapping
515 * or an L2 Large Page mapping.
516 */
517#define	L1_S_MAPPABLE_P(va, pa, size)					\
518	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
519
520#define	L2_L_MAPPABLE_P(va, pa, size)					\
521	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
522
523/*
524 * Provide a fallback in case we were not able to determine it at
525 * compile-time.
526 */
527#ifndef PMAP_NEEDS_PTE_SYNC
528#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
529#define	PMAP_INCLUDE_PTE_SYNC
530#endif
531
532#define	PTE_SYNC(pte)							\
533do {									\
534	if (PMAP_NEEDS_PTE_SYNC) {					\
535		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
536		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
537	} else								\
538		cpu_drain_writebuf();					\
539} while (/*CONSTCOND*/0)
540
541#define	PTE_SYNC_RANGE(pte, cnt)					\
542do {									\
543	if (PMAP_NEEDS_PTE_SYNC) {					\
544		cpu_dcache_wb_range((vm_offset_t)(pte),			\
545		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
546		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
547		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
548	} else								\
549		cpu_drain_writebuf();					\
550} while (/*CONSTCOND*/0)
551
552extern pt_entry_t		pte_l1_s_cache_mode;
553extern pt_entry_t		pte_l1_s_cache_mask;
554
555extern pt_entry_t		pte_l2_l_cache_mode;
556extern pt_entry_t		pte_l2_l_cache_mask;
557
558extern pt_entry_t		pte_l2_s_cache_mode;
559extern pt_entry_t		pte_l2_s_cache_mask;
560
561extern pt_entry_t		pte_l1_s_cache_mode_pt;
562extern pt_entry_t		pte_l2_l_cache_mode_pt;
563extern pt_entry_t		pte_l2_s_cache_mode_pt;
564
565extern pt_entry_t		pte_l2_s_prot_u;
566extern pt_entry_t		pte_l2_s_prot_w;
567extern pt_entry_t		pte_l2_s_prot_mask;
568
569extern pt_entry_t		pte_l1_s_proto;
570extern pt_entry_t		pte_l1_c_proto;
571extern pt_entry_t		pte_l2_s_proto;
572
573extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
574extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
575    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
576extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
577
578#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
579void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
580void	pmap_zero_page_generic(vm_paddr_t, int, int);
581
582void	pmap_pte_init_generic(void);
583#if defined(CPU_ARM8)
584void	pmap_pte_init_arm8(void);
585#endif
586#if defined(CPU_ARM9)
587void	pmap_pte_init_arm9(void);
588#endif /* CPU_ARM9 */
589#if defined(CPU_ARM10)
590void	pmap_pte_init_arm10(void);
591#endif /* CPU_ARM10 */
592#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
593void	pmap_pte_init_mmu_v6(void);
594#endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
595#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
596
597#if /* ARM_MMU_SA1 == */1
598void	pmap_pte_init_sa1(void);
599#endif /* ARM_MMU_SA1 == 1 */
600
601#if ARM_MMU_XSCALE == 1
602void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
603void	pmap_zero_page_xscale(vm_paddr_t, int, int);
604
605void	pmap_pte_init_xscale(void);
606
607void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
608
609void	pmap_use_minicache(vm_offset_t, vm_size_t);
610#endif /* ARM_MMU_XSCALE == 1 */
611#if defined(CPU_XSCALE_81342)
612#define ARM_HAVE_SUPERSECTIONS
613#endif
614
615#define PTE_KERNEL	0
616#define PTE_USER	1
617#define	l1pte_valid(pde)	((pde) != 0)
618#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
619#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
620#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
621
622#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
623#define	l2pte_valid(pte)	((pte) != 0)
624#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
625#define l2pte_minidata(pte)	(((pte) & \
626				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
627				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
628
629/* L1 and L2 page table macros */
630#define pmap_pde_v(pde)		l1pte_valid(*(pde))
631#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
632#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
633#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
634
635#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
636#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
637
638/*
639 * Flags that indicate attributes of pages or mappings of pages.
640 *
641 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
642 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
643 * pv_entry's for each page.  They live in the same "namespace" so
644 * that we can clear multiple attributes at a time.
645 *
646 * Note the "non-cacheable" flag generally means the page has
647 * multiple mappings in a given address space.
648 */
649#define	PVF_MOD		0x01		/* page is modified */
650#define	PVF_REF		0x02		/* page is referenced */
651#define	PVF_WIRED	0x04		/* mapping is wired */
652#define	PVF_WRITE	0x08		/* mapping is writable */
653#define	PVF_EXEC	0x10		/* mapping is executable */
654#define	PVF_NC		0x20		/* mapping is non-cacheable */
655#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
656#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
657
658void vector_page_setprot(int);
659
660/*
661 * This structure is used by machine-dependent code to describe
662 * static mappings of devices, created at bootstrap time.
663 */
664struct pmap_devmap {
665	vm_offset_t	pd_va;		/* virtual address */
666	vm_paddr_t	pd_pa;		/* physical address */
667	vm_size_t	pd_size;	/* size of region */
668	vm_prot_t	pd_prot;	/* protection code */
669	int		pd_cache;	/* cache attributes */
670};
671
672const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
673const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
674
675void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
676void	pmap_devmap_register(const struct pmap_devmap *);
677
678#define SECTION_CACHE	0x1
679#define SECTION_PT	0x2
680void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
681#ifdef ARM_HAVE_SUPERSECTIONS
682void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
683#endif
684
685extern char *_tmppt;
686
687void	pmap_postinit(void);
688
689#ifdef ARM_USE_SMALL_ALLOC
690void	arm_add_smallalloc_pages(void *, void *, int, int);
691vm_offset_t arm_ptovirt(vm_paddr_t);
692void arm_init_smallalloc(void);
693struct arm_small_page {
694	void *addr;
695	TAILQ_ENTRY(arm_small_page) pg_list;
696};
697
698#endif
699
700#define ARM_NOCACHE_KVA_SIZE 0x1000000
701extern vm_offset_t arm_nocache_startaddr;
702void *arm_remap_nocache(void *, vm_size_t);
703void arm_unmap_nocache(void *, vm_size_t);
704
705extern vm_paddr_t dump_avail[];
706#endif	/* _KERNEL */
707
708#endif	/* !LOCORE */
709
710#endif	/* !_MACHINE_PMAP_H_ */
711