pmap-v4.h revision 171620
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 171620 2007-07-27 14:45:04Z cognet $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#define PTE_NOCACHE	0
59#define PTE_CACHE	1
60#define PTE_PAGETABLE	2
61
62#ifndef LOCORE
63
64#include <sys/queue.h>
65#include <sys/_lock.h>
66#include <sys/_mutex.h>
67
68#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
69#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
70
71#ifdef _KERNEL
72
73#define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
74#define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75
76#endif
77
78#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
79/*
80 * Pmap stuff
81 */
82
83/*
84 * This structure is used to hold a virtual<->physical address
85 * association and is used mostly by bootstrap code
86 */
87struct pv_addr {
88	SLIST_ENTRY(pv_addr) pv_list;
89	vm_offset_t	pv_va;
90	vm_paddr_t	pv_pa;
91};
92
93struct	pv_entry;
94
95struct	md_page {
96	int pvh_attrs;
97	u_int uro_mappings;
98	u_int urw_mappings;
99	union {
100		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
101		u_int i_mappings;
102	} k_u;
103#define	kro_mappings	k_u.s_mappings[0]
104#define	krw_mappings	k_u.s_mappings[1]
105#define	k_mappings	k_u.i_mappings
106	int			pv_list_count;
107	TAILQ_HEAD(,pv_entry)	pv_list;
108};
109
110#define	VM_MDPAGE_INIT(pg)						\
111do {									\
112	TAILQ_INIT(&pg->pv_list);					\
113	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
114	(pg)->mdpage.pvh_attrs = 0;					\
115	(pg)->mdpage.uro_mappings = 0;					\
116	(pg)->mdpage.urw_mappings = 0;					\
117	(pg)->mdpage.k_mappings = 0;					\
118} while (/*CONSTCOND*/0)
119
120struct l1_ttable;
121struct l2_dtable;
122
123
124/*
125 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
126 * A bucket size of 16 provides for 16MB of contiguous virtual address
127 * space per l2_dtable. Most processes will, therefore, require only two or
128 * three of these to map their whole working set.
129 */
130#define	L2_BUCKET_LOG2	4
131#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
132/*
133 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
134 * of l2_dtable structures required to track all possible page descriptors
135 * mappable by an L1 translation table is given by the following constants:
136 */
137#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
138#define	L2_SIZE		(1 << L2_LOG2)
139
140struct	pmap {
141	struct mtx		pm_mtx;
142	u_int8_t		pm_domain;
143	struct l1_ttable	*pm_l1;
144	struct l2_dtable	*pm_l2[L2_SIZE];
145	pd_entry_t		*pm_pdir;	/* KVA of page directory */
146	int			pm_count;	/* reference count */
147	int			pm_active;	/* active on cpus */
148	struct pmap_statistics	pm_stats;	/* pmap statictics */
149	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
150};
151
152typedef struct pmap *pmap_t;
153
154#ifdef _KERNEL
155extern pmap_t	kernel_pmap;
156#define pmap_kernel() kernel_pmap
157
158#define	PMAP_ASSERT_LOCKED(pmap) \
159				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
160#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
161#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
162#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
163				    NULL, MTX_DEF | MTX_DUPOK)
164#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
165#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
166#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
167#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
168#endif
169
170
171/*
172 * For each vm_page_t, there is a list of all currently valid virtual
173 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
174 */
175typedef struct pv_entry {
176	pmap_t          pv_pmap;        /* pmap where mapping lies */
177	vm_offset_t     pv_va;          /* virtual address for mapping */
178	TAILQ_ENTRY(pv_entry)   pv_list;
179	TAILQ_ENTRY(pv_entry)	pv_plist;
180	int		pv_flags;	/* flags (wired, etc...) */
181} *pv_entry_t;
182
183#define PV_ENTRY_NULL   ((pv_entry_t) 0)
184
185#ifdef _KERNEL
186
187boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
188
189/*
190 * virtual address to page table entry and
191 * to physical address. Likewise for alternate address space.
192 * Note: these work recursively, thus vtopte of a pte will give
193 * the corresponding pde that in turn maps it.
194 */
195
196/*
197 * The current top of kernel VM.
198 */
199extern vm_offset_t pmap_curmaxkvaddr;
200
201struct pcb;
202
203void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
204/* Virtual address to page table entry */
205static __inline pt_entry_t *
206vtopte(vm_offset_t va)
207{
208	pd_entry_t *pdep;
209	pt_entry_t *ptep;
210
211	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
212		return (NULL);
213	return (ptep);
214}
215
216extern vm_offset_t phys_avail[];
217extern vm_offset_t virtual_avail;
218extern vm_offset_t virtual_end;
219
220void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
221void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
222void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
223void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
224void	pmap_kremove(vm_offset_t);
225void	*pmap_mapdev(vm_offset_t, vm_size_t);
226void	pmap_unmapdev(vm_offset_t, vm_size_t);
227vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
228void	pmap_debug(int);
229void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
230void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
231vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
232void
233pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
234    int cache);
235int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
236
237/*
238 * Definitions for MMU domains
239 */
240#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
241#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
242
243/*
244 * The new pmap ensures that page-tables are always mapping Write-Thru.
245 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
246 * on every change.
247 *
248 * Unfortunately, not all CPUs have a write-through cache mode.  So we
249 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
250 * and if there is the chance for PTE syncs to be needed, we define
251 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
252 * the code.
253 */
254extern int pmap_needs_pte_sync;
255
256/*
257 * These macros define the various bit masks in the PTE.
258 *
259 * We use these macros since we use different bits on different processor
260 * models.
261 */
262#define	L1_S_PROT_U		(L1_S_AP(AP_U))
263#define	L1_S_PROT_W		(L1_S_AP(AP_W))
264#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
265
266#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
267#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
268    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
269
270#define	L2_L_PROT_U		(L2_AP(AP_U))
271#define	L2_L_PROT_W		(L2_AP(AP_W))
272#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
273
274#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
275#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
276    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
277
278#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
279#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
280#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
281
282#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
283#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
284#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
285
286#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
287#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
288    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
289
290#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
291#define	L1_S_PROTO_xscale	(L1_TYPE_S)
292
293#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
294#define	L1_C_PROTO_xscale	(L1_TYPE_C)
295
296#define	L2_L_PROTO		(L2_TYPE_L)
297
298#define	L2_S_PROTO_generic	(L2_TYPE_S)
299#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
300
301/*
302 * User-visible names for the ones that vary with MMU class.
303 */
304
305#if ARM_NMMUS > 1
306/* More than one MMU class configured; use variables. */
307#define	L2_S_PROT_U		pte_l2_s_prot_u
308#define	L2_S_PROT_W		pte_l2_s_prot_w
309#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
310
311#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
312#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
313#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
314
315#define	L1_S_PROTO		pte_l1_s_proto
316#define	L1_C_PROTO		pte_l1_c_proto
317#define	L2_S_PROTO		pte_l2_s_proto
318
319#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
320#define	L2_S_PROT_U		L2_S_PROT_U_generic
321#define	L2_S_PROT_W		L2_S_PROT_W_generic
322#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
323
324#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
325#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
326#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
327
328#define	L1_S_PROTO		L1_S_PROTO_generic
329#define	L1_C_PROTO		L1_C_PROTO_generic
330#define	L2_S_PROTO		L2_S_PROTO_generic
331
332#elif ARM_MMU_XSCALE == 1
333#define	L2_S_PROT_U		L2_S_PROT_U_xscale
334#define	L2_S_PROT_W		L2_S_PROT_W_xscale
335#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
336
337#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
338#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
339#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
340
341#define	L1_S_PROTO		L1_S_PROTO_xscale
342#define	L1_C_PROTO		L1_C_PROTO_xscale
343#define	L2_S_PROTO		L2_S_PROTO_xscale
344
345#endif /* ARM_NMMUS > 1 */
346
347#ifdef SKYEYE_WORKAROUNDS
348#define PMAP_NEEDS_PTE_SYNC     1
349#define PMAP_INCLUDE_PTE_SYNC
350#else
351#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
352#define	PMAP_NEEDS_PTE_SYNC	1
353#define	PMAP_INCLUDE_PTE_SYNC
354#elif defined(CPU_XSCALE_81342)
355#define PMAP_NEEDS_PTE_SYNC	1
356#define PMAP_INCLUDE_PTE_SYNC
357#elif (ARM_MMU_SA1 == 0)
358#define	PMAP_NEEDS_PTE_SYNC	0
359#endif
360#endif
361
362/*
363 * These macros return various bits based on kernel/user and protection.
364 * Note that the compiler will usually fold these at compile time.
365 */
366#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
367				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
368
369#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
370				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
371
372#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
373				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
374
375/*
376 * Macros to test if a mapping is mappable with an L1 Section mapping
377 * or an L2 Large Page mapping.
378 */
379#define	L1_S_MAPPABLE_P(va, pa, size)					\
380	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
381
382#define	L2_L_MAPPABLE_P(va, pa, size)					\
383	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
384
385/*
386 * Provide a fallback in case we were not able to determine it at
387 * compile-time.
388 */
389#ifndef PMAP_NEEDS_PTE_SYNC
390#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
391#define	PMAP_INCLUDE_PTE_SYNC
392#endif
393
394#define	PTE_SYNC(pte)							\
395do {									\
396	if (PMAP_NEEDS_PTE_SYNC) {					\
397		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
398		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
399	}\
400} while (/*CONSTCOND*/0)
401
402#define	PTE_SYNC_RANGE(pte, cnt)					\
403do {									\
404	if (PMAP_NEEDS_PTE_SYNC) {					\
405		cpu_dcache_wb_range((vm_offset_t)(pte),			\
406		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
407		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
408		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
409	}								\
410} while (/*CONSTCOND*/0)
411
412extern pt_entry_t		pte_l1_s_cache_mode;
413extern pt_entry_t		pte_l1_s_cache_mask;
414
415extern pt_entry_t		pte_l2_l_cache_mode;
416extern pt_entry_t		pte_l2_l_cache_mask;
417
418extern pt_entry_t		pte_l2_s_cache_mode;
419extern pt_entry_t		pte_l2_s_cache_mask;
420
421extern pt_entry_t		pte_l1_s_cache_mode_pt;
422extern pt_entry_t		pte_l2_l_cache_mode_pt;
423extern pt_entry_t		pte_l2_s_cache_mode_pt;
424
425extern pt_entry_t		pte_l2_s_prot_u;
426extern pt_entry_t		pte_l2_s_prot_w;
427extern pt_entry_t		pte_l2_s_prot_mask;
428
429extern pt_entry_t		pte_l1_s_proto;
430extern pt_entry_t		pte_l1_c_proto;
431extern pt_entry_t		pte_l2_s_proto;
432
433extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
434extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
435
436#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
437void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
438void	pmap_zero_page_generic(vm_paddr_t, int, int);
439
440void	pmap_pte_init_generic(void);
441#if defined(CPU_ARM8)
442void	pmap_pte_init_arm8(void);
443#endif
444#if defined(CPU_ARM9)
445void	pmap_pte_init_arm9(void);
446#endif /* CPU_ARM9 */
447#if defined(CPU_ARM10)
448void	pmap_pte_init_arm10(void);
449#endif /* CPU_ARM10 */
450#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
451
452#if /* ARM_MMU_SA1 == */1
453void	pmap_pte_init_sa1(void);
454#endif /* ARM_MMU_SA1 == 1 */
455
456#if ARM_MMU_XSCALE == 1
457void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
458void	pmap_zero_page_xscale(vm_paddr_t, int, int);
459
460void	pmap_pte_init_xscale(void);
461
462void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
463
464void	pmap_use_minicache(vm_offset_t, vm_size_t);
465#endif /* ARM_MMU_XSCALE == 1 */
466#if defined(CPU_XSCALE_81342)
467#define ARM_HAVE_SUPERSECTIONS
468#endif
469
470#define PTE_KERNEL	0
471#define PTE_USER	1
472#define	l1pte_valid(pde)	((pde) != 0)
473#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
474#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
475#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
476
477#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
478#define	l2pte_valid(pte)	((pte) != 0)
479#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
480#define l2pte_minidata(pte)	(((pte) & \
481				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
482				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
483
484/* L1 and L2 page table macros */
485#define pmap_pde_v(pde)		l1pte_valid(*(pde))
486#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
487#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
488#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
489
490#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
491#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
492
493/*
494 * Flags that indicate attributes of pages or mappings of pages.
495 *
496 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
497 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
498 * pv_entry's for each page.  They live in the same "namespace" so
499 * that we can clear multiple attributes at a time.
500 *
501 * Note the "non-cacheable" flag generally means the page has
502 * multiple mappings in a given address space.
503 */
504#define	PVF_MOD		0x01		/* page is modified */
505#define	PVF_REF		0x02		/* page is referenced */
506#define	PVF_WIRED	0x04		/* mapping is wired */
507#define	PVF_WRITE	0x08		/* mapping is writable */
508#define	PVF_EXEC	0x10		/* mapping is executable */
509#define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
510#define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
511#define	PVF_NC		(PVF_UNC|PVF_KNC)
512
513void vector_page_setprot(int);
514
515void pmap_update(pmap_t);
516
517/*
518 * This structure is used by machine-dependent code to describe
519 * static mappings of devices, created at bootstrap time.
520 */
521struct pmap_devmap {
522	vm_offset_t	pd_va;		/* virtual address */
523	vm_paddr_t	pd_pa;		/* physical address */
524	vm_size_t	pd_size;	/* size of region */
525	vm_prot_t	pd_prot;	/* protection code */
526	int		pd_cache;	/* cache attributes */
527};
528
529const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
530const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
531
532void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
533void	pmap_devmap_register(const struct pmap_devmap *);
534
535#define SECTION_CACHE	0x1
536#define SECTION_PT	0x2
537void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
538#ifdef ARM_HAVE_SUPERSECTIONS
539void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
540#endif
541
542extern char *_tmppt;
543
544void	pmap_postinit(void);
545
546#ifdef ARM_USE_SMALL_ALLOC
547void	arm_add_smallalloc_pages(void *, void *, int, int);
548vm_offset_t arm_ptovirt(vm_paddr_t);
549void arm_init_smallalloc(void);
550struct arm_small_page {
551	void *addr;
552	TAILQ_ENTRY(arm_small_page) pg_list;
553};
554
555#endif
556
557#define ARM_NOCACHE_KVA_SIZE 0x1000000
558extern vm_offset_t arm_nocache_startaddr;
559void *arm_remap_nocache(void *, vm_size_t);
560void arm_unmap_nocache(void *, vm_size_t);
561
562extern vm_paddr_t dump_avail[];
563#endif	/* _KERNEL */
564
565#endif	/* !LOCORE */
566
567#endif	/* !_MACHINE_PMAP_H_ */
568