pmap-v4.h revision 132056
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 132056 2004-07-12 21:22:40Z cognet $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54
55/*
56 * Pte related macros
57 */
58#define PTE_NOCACHE	0
59#define PTE_CACHE	1
60
61#define VADDR(pdi, pti) ((vm_offset_t)(((pdi)<<PDR_SHIFT)+((pti)<<PAGE_SHIFT)))
62#define PTDIPDE(ptd)	((ptd)/1024)
63#define PTDIPTE(ptd)	((ptd)%256)
64
65#ifndef	NKPT
66#define NKPT		120	/* actual number of kernel page tables */
67#endif
68
69#ifndef NKPDE
70#define NKPDE		1019	/* Maximum number of kernel PDE */
71#endif
72
73#define NPDEPTD		16	/* Number of PDE in each PTD */
74
75/*
76 * The *PTDI values control the layout of virtual memory
77 */
78
79#define KPTDI		(NPDEPG-NKPDE)	/* ptd entry for kernel space begin */
80#define PTDPTDI		(KPTDI-1)	/* ptd entry that points to ptd! */
81#define KPTPTDI		(PTDPTDI-1)	/* ptd entry for kernel PTEs */
82#define UPTPTDI		(KPTPTDI-3)	/* ptd entry for uspace PTEs */
83#define UMAXPTDI	(UPTPTDI-1)	/* ptd entry for user space end */
84#define UMAXPTEOFF	(NPTEPG)	/* pte entry for user space end */
85
86#ifndef LOCORE
87
88#include <sys/queue.h>
89
90#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92
93#ifdef _KERNEL
94#define ARM_PTE_TO_PFN(pte)	((pt_entry_t)(pte) >> PAGE_SHIFT)
95#define ARM_PDE_TO_PFN(pde)	((pd_entry_t)(pde) >> 10)
96#define ARM_PHYS_TO_KSPACE(x)	((vm_offset_t) (x) | (UPTPTDI << PDR_SHIFT))
97#define ARM_KSPACE_TO_PHYS(x)	((vm_offset_t) (x) & ~(UPTPTDI << PDR_SHIFT))
98
99extern pt_entry_t PTmap[], APTmap;
100extern pd_entry_t PTD[], APTD, PTDpde, APTDpde;
101
102extern pd_entry_t IdlePTD;	/* physical address of "Idle" state directory */
103
104
105
106#if 0
107static __inline vm_offset_t
108pmap_akextract(vm_offset_t va)
109{
110	vm_offset_t pa;
111	pa = *(vm_offset_t *)avtopte(va);
112	pa = (pa & PG_FRAME) | (va & PAGE_MASK);
113	return pa;
114}
115#endif
116#define vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
117
118#define avtophys(va)	pmap_akextract(((vm_offset_t) (va)))
119
120#endif
121
122/*
123 * Pmap sutff
124 */
125
126/*
127 * This structure is used to hold a virtual<->physical address
128 * association and is used mostly by bootstrap code
129 */
130struct pv_addr {
131	SLIST_ENTRY(pv_addr) pv_list;
132	vm_offset_t	pv_va;
133	vm_paddr_t	pv_pa;
134};
135
136struct	pv_entry;
137
138struct	md_page {
139	int pvh_attrs;
140	u_int uro_mappings;
141	u_int urw_mappings;
142	union {
143		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
144		u_int i_mappings;
145	} k_u;
146#define	kro_mappings	k_u.s_mappings[0]
147#define	krw_mappings	k_u.s_mappings[1]
148#define	k_mappings	k_u.i_mappings
149	int			pv_list_count;
150	TAILQ_HEAD(,pv_entry)	pv_list;
151};
152
153#define	VM_MDPAGE_INIT(pg)						\
154do {									\
155	TAILQ_INIT(&pg->pv_list);					\
156	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
157	(pg)->mdpage.pvh_attrs = 0;					\
158	(pg)->mdpage.uro_mappings = 0;					\
159	(pg)->mdpage.urw_mappings = 0;					\
160	(pg)->mdpage.k_mappings = 0;					\
161} while (/*CONSTCOND*/0)
162
163struct l1_ttable;
164struct l2_dtable;
165
166/*
167 * Track cache/tlb occupancy using the following structure
168 */
169union pmap_cache_state {
170	struct {
171		union {
172			u_int8_t csu_cache_b[2];
173			u_int16_t csu_cache;
174		} cs_cache_u;
175
176		union {
177			u_int8_t csu_tlb_b[2];
178			u_int16_t csu_tlb;
179		} cs_tlb_u;
180	} cs_s;
181	u_int32_t cs_all;
182};
183#define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
184#define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
185#define	cs_cache	cs_s.cs_cache_u.csu_cache
186#define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
187#define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
188#define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
189
190/*
191 * Assigned to cs_all to force cacheops to work for a particular pmap
192 */
193#define	PMAP_CACHE_STATE_ALL	0xffffffffu
194
195/*
196 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
197 * A bucket size of 16 provides for 16MB of contiguous virtual address
198 * space per l2_dtable. Most processes will, therefore, require only two or
199 * three of these to map their whole working set.
200 */
201#define	L2_BUCKET_LOG2	4
202#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
203/*
204 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
205 * of l2_dtable structures required to track all possible page descriptors
206 * mappable by an L1 translation table is given by the following constants:
207 */
208#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
209#define	L2_SIZE		(1 << L2_LOG2)
210
211struct	pmap {
212	u_int8_t		pm_domain;
213	struct l1_ttable	*pm_l1;
214	struct l2_dtable	*pm_l2[L2_SIZE];
215	pd_entry_t		*pm_pdir;	/* KVA of page directory */
216	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
217	struct pv_addr		pm_ptpt;	/* pagetable of pagetables */
218	int			pm_count;	/* reference count */
219	int			pm_active;	/* active on cpus */
220	struct pmap_statistics	pm_stats;	/* pmap statictics */
221	struct vm_page		*pm_ptphint;	/* pmap ptp hint */
222	union pmap_cache_state	pm_cstate;
223	LIST_ENTRY(pmap)	pm_list;	/* List of all pmaps */
224};
225
226typedef struct pmap *pmap_t;
227
228#ifdef _KERNEL
229extern pmap_t	kernel_pmap;
230#define pmap_kernel() kernel_pmap
231#endif
232
233/*
234 * For each vm_page_t, there is a list of all currently valid virtual
235 * mappings of that page.  An entry is a pv_entry_t, the list is pv_table.
236 */
237typedef struct pv_entry {
238        pmap_t          pv_pmap;        /* pmap where mapping lies */
239        vm_offset_t     pv_va;          /* virtual address for mapping */
240        TAILQ_ENTRY(pv_entry)   pv_list;
241        TAILQ_ENTRY(pv_entry)   pv_plist;
242        vm_page_t       pv_ptem;        /* VM page for pte */
243	int		pv_flags;	/* flags (wired, etc...) */
244} *pv_entry_t;
245
246#define PV_ENTRY_NULL   ((pv_entry_t) 0)
247
248#define PV_CI           0x01    /* all entries must be cache inhibited */
249#define PV_PTPAGE       0x02    /* entry maps a page table page */
250
251/*
252 * Page hooks.
253 * For speed we store the both the virtual address and the page table
254 * entry address for each page hook.
255 */
256typedef struct {
257        vm_offset_t va;
258        pt_entry_t *pte;
259} pagehook_t;
260
261
262#ifdef _KERNEL
263
264boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
265
266/*
267 * virtual address to page table entry and
268 * to physical address. Likewise for alternate address space.
269 * Note: these work recursively, thus vtopte of a pte will give
270 * the corresponding pde that in turn maps it.
271 */
272
273struct pcb;
274
275void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
276/* Virtual address to page table entry */
277static __inline pt_entry_t *
278vtopte(vm_offset_t va)
279{
280	pd_entry_t *pdep;
281	pt_entry_t *ptep;
282
283	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
284		return (NULL);
285	return (ptep);
286}
287
288extern vm_offset_t avail_end;
289extern vm_offset_t clean_eva;
290extern vm_offset_t clean_sva;
291extern vm_offset_t phys_avail[];
292extern vm_offset_t virtual_avail;
293extern vm_offset_t virtual_end;
294
295void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
296void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
297void	pmap_kremove(vm_offset_t);
298void	*pmap_mapdev(vm_offset_t, vm_size_t);
299void	pmap_unmapdev(vm_offset_t, vm_size_t);
300vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
301void	pmap_debug(int);
302void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
303void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
304vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
305void
306pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
307    int cache);
308int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
309
310/*
311 * Definitions for MMU domains
312 */
313#define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
314#define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
315
316/*
317 * The new pmap ensures that page-tables are always mapping Write-Thru.
318 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
319 * on every change.
320 *
321 * Unfortunately, not all CPUs have a write-through cache mode.  So we
322 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
323 * and if there is the chance for PTE syncs to be needed, we define
324 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
325 * the code.
326 */
327extern int pmap_needs_pte_sync;
328
329/*
330 * These macros define the various bit masks in the PTE.
331 *
332 * We use these macros since we use different bits on different processor
333 * models.
334 */
335#define	L1_S_PROT_U		(L1_S_AP(AP_U))
336#define	L1_S_PROT_W		(L1_S_AP(AP_W))
337#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
338
339#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
340#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
341
342#define	L2_L_PROT_U		(L2_AP(AP_U))
343#define	L2_L_PROT_W		(L2_AP(AP_W))
344#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
345
346#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
347#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
348
349#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
350#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
351#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
352
353#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
354#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
355#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
356
357#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
358#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
359
360#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
361#define	L1_S_PROTO_xscale	(L1_TYPE_S)
362
363#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
364#define	L1_C_PROTO_xscale	(L1_TYPE_C)
365
366#define	L2_L_PROTO		(L2_TYPE_L)
367
368#define	L2_S_PROTO_generic	(L2_TYPE_S)
369#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
370
371/*
372 * User-visible names for the ones that vary with MMU class.
373 */
374
375#if ARM_NMMUS > 1
376/* More than one MMU class configured; use variables. */
377#define	L2_S_PROT_U		pte_l2_s_prot_u
378#define	L2_S_PROT_W		pte_l2_s_prot_w
379#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
380
381#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
382#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
383#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
384
385#define	L1_S_PROTO		pte_l1_s_proto
386#define	L1_C_PROTO		pte_l1_c_proto
387#define	L2_S_PROTO		pte_l2_s_proto
388
389#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
390#define	L2_S_PROT_U		L2_S_PROT_U_generic
391#define	L2_S_PROT_W		L2_S_PROT_W_generic
392#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
393
394#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
395#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
396#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
397
398#define	L1_S_PROTO		L1_S_PROTO_generic
399#define	L1_C_PROTO		L1_C_PROTO_generic
400#define	L2_S_PROTO		L2_S_PROTO_generic
401
402#elif ARM_MMU_XSCALE == 1
403#define	L2_S_PROT_U		L2_S_PROT_U_xscale
404#define	L2_S_PROT_W		L2_S_PROT_W_xscale
405#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
406
407#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
408#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
409#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
410
411#define	L1_S_PROTO		L1_S_PROTO_xscale
412#define	L1_C_PROTO		L1_C_PROTO_xscale
413#define	L2_S_PROTO		L2_S_PROTO_xscale
414
415#endif /* ARM_NMMUS > 1 */
416
417#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
418#define	PMAP_NEEDS_PTE_SYNC	1
419#define	PMAP_INCLUDE_PTE_SYNC
420#elif (ARM_MMU_SA1 == 0)
421#define	PMAP_NEEDS_PTE_SYNC	0
422#endif
423
424/*
425 * These macros return various bits based on kernel/user and protection.
426 * Note that the compiler will usually fold these at compile time.
427 */
428#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
429				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
430
431#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
432				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
433
434#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
435				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
436
437/*
438 * Macros to test if a mapping is mappable with an L1 Section mapping
439 * or an L2 Large Page mapping.
440 */
441#define	L1_S_MAPPABLE_P(va, pa, size)					\
442	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
443
444#define	L2_L_MAPPABLE_P(va, pa, size)					\
445	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
446
447/*
448 * Provide a fallback in case we were not able to determine it at
449 * compile-time.
450 */
451#ifndef PMAP_NEEDS_PTE_SYNC
452#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
453#define	PMAP_INCLUDE_PTE_SYNC
454#endif
455
456#define	PTE_SYNC(pte)							\
457do {									\
458	if (PMAP_NEEDS_PTE_SYNC)					\
459		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
460} while (/*CONSTCOND*/0)
461
462#define	PTE_SYNC_RANGE(pte, cnt)					\
463do {									\
464	if (PMAP_NEEDS_PTE_SYNC) {					\
465		cpu_dcache_wb_range((vm_offset_t)(pte),			\
466		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
467	}								\
468} while (/*CONSTCOND*/0)
469
470extern pt_entry_t		pte_l1_s_cache_mode;
471extern pt_entry_t		pte_l1_s_cache_mask;
472
473extern pt_entry_t		pte_l2_l_cache_mode;
474extern pt_entry_t		pte_l2_l_cache_mask;
475
476extern pt_entry_t		pte_l2_s_cache_mode;
477extern pt_entry_t		pte_l2_s_cache_mask;
478
479extern pt_entry_t		pte_l1_s_cache_mode_pt;
480extern pt_entry_t		pte_l2_l_cache_mode_pt;
481extern pt_entry_t		pte_l2_s_cache_mode_pt;
482
483extern pt_entry_t		pte_l2_s_prot_u;
484extern pt_entry_t		pte_l2_s_prot_w;
485extern pt_entry_t		pte_l2_s_prot_mask;
486
487extern pt_entry_t		pte_l1_s_proto;
488extern pt_entry_t		pte_l1_c_proto;
489extern pt_entry_t		pte_l2_s_proto;
490
491extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
492extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
493
494#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
495void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
496void	pmap_zero_page_generic(vm_paddr_t, int, int);
497
498void	pmap_pte_init_generic(void);
499#if defined(CPU_ARM8)
500void	pmap_pte_init_arm8(void);
501#endif
502#if defined(CPU_ARM9)
503void	pmap_pte_init_arm9(void);
504#endif /* CPU_ARM9 */
505#if defined(CPU_ARM10)
506void	pmap_pte_init_arm10(void);
507#endif /* CPU_ARM10 */
508#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
509
510#if /* ARM_MMU_SA1 == */1
511void	pmap_pte_init_sa1(void);
512#endif /* ARM_MMU_SA1 == 1 */
513
514#if ARM_MMU_XSCALE == 1
515void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
516void	pmap_zero_page_xscale(vm_paddr_t, int, int);
517
518void	pmap_pte_init_xscale(void);
519
520void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
521
522#define	PMAP_UAREA(va)		pmap_uarea(va)
523void	pmap_uarea(vm_offset_t);
524#endif /* ARM_MMU_XSCALE == 1 */
525#define PTE_KERNEL	0
526#define PTE_USER	1
527#define	l1pte_valid(pde)	((pde) != 0)
528#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
529#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
530#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
531
532#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
533#define	l2pte_valid(pte)	((pte) != 0)
534#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
535#define l2pte_minidata(pte)	(((pte) & \
536				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
537				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
538
539/* L1 and L2 page table macros */
540#define pmap_pde_v(pde)		l1pte_valid(*(pde))
541#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
542#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
543#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
544
545#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
546#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
547
548/* Size of the kernel part of the L1 page table */
549#define KERNEL_PD_SIZE	\
550	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
551#define PTE_PAGETABLE	2
552
553/*
554 * Flags that indicate attributes of pages or mappings of pages.
555 *
556 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
557 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
558 * pv_entry's for each page.  They live in the same "namespace" so
559 * that we can clear multiple attributes at a time.
560 *
561 * Note the "non-cacheable" flag generally means the page has
562 * multiple mappings in a given address space.
563 */
564#define	PVF_MOD		0x01		/* page is modified */
565#define	PVF_REF		0x02		/* page is referenced */
566#define	PVF_WIRED	0x04		/* mapping is wired */
567#define	PVF_WRITE	0x08		/* mapping is writable */
568#define	PVF_EXEC	0x10		/* mapping is executable */
569#define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
570#define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
571#define	PVF_NC		(PVF_UNC|PVF_KNC)
572
573void vector_page_setprot(int);
574/*
575 *      Routine:        pmap_kextract
576 *      Function:
577 *              Extract the physical page address associated
578 *              kernel virtual address.
579 */
580
581vm_paddr_t pmap_kextract(vm_offset_t);
582
583void pmap_update(pmap_t);
584#endif	/* _KERNEL */
585
586#endif	/* !LOCORE */
587
588#endif	/* !_MACHINE_PMAP_H_ */
589