pmap-v4.h revision 295036
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 295036 2016-01-29 10:31:54Z mmel $
48 */
49 #include <machine/acle-compat.h>
50
51#if __ARM_ARCH >= 6
52#include <machine/pmap-v6.h>
53#else /* __ARM_ARCH >= 6 */
54
55#ifndef _MACHINE_PMAP_H_
56#define _MACHINE_PMAP_H_
57
58#include <machine/pte.h>
59#include <machine/cpuconf.h>
60/*
61 * Pte related macros
62 */
63#if ARM_ARCH_6 || ARM_ARCH_7A
64#ifdef SMP
65#define PTE_NOCACHE	2
66#else
67#define PTE_NOCACHE	1
68#endif
69#define PTE_CACHE	6
70#define PTE_DEVICE	2
71#define PTE_PAGETABLE	6
72#else
73#define PTE_NOCACHE	1
74#define PTE_CACHE	2
75#define PTE_DEVICE	PTE_NOCACHE
76#define PTE_PAGETABLE	3
77#endif
78
79enum mem_type {
80	STRONG_ORD = 0,
81	DEVICE_NOSHARE,
82	DEVICE_SHARE,
83	NRML_NOCACHE,
84	NRML_IWT_OWT,
85	NRML_IWB_OWB,
86	NRML_IWBA_OWBA
87};
88
89#ifndef LOCORE
90
91#include <sys/queue.h>
92#include <sys/_cpuset.h>
93#include <sys/_lock.h>
94#include <sys/_mutex.h>
95
96#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
97#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
98
99#ifdef _KERNEL
100
101#define vtophys(va)	pmap_kextract((vm_offset_t)(va))
102
103#endif
104
105#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
106#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
107#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
108boolean_t pmap_page_is_mapped(vm_page_t);
109#else
110#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
111#endif
112void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
113
114/*
115 * Pmap stuff
116 */
117
118/*
119 * This structure is used to hold a virtual<->physical address
120 * association and is used mostly by bootstrap code
121 */
122struct pv_addr {
123	SLIST_ENTRY(pv_addr) pv_list;
124	vm_offset_t	pv_va;
125	vm_paddr_t	pv_pa;
126};
127
128struct	pv_entry;
129struct	pv_chunk;
130
131struct	md_page {
132	int pvh_attrs;
133	vm_memattr_t	 pv_memattr;
134#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
135	vm_offset_t pv_kva;		/* first kernel VA mapping */
136#endif
137	TAILQ_HEAD(,pv_entry)	pv_list;
138};
139
140struct l1_ttable;
141struct l2_dtable;
142
143
144/*
145 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
146 * A bucket size of 16 provides for 16MB of contiguous virtual address
147 * space per l2_dtable. Most processes will, therefore, require only two or
148 * three of these to map their whole working set.
149 */
150#define	L2_BUCKET_LOG2	4
151#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
152/*
153 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
154 * of l2_dtable structures required to track all possible page descriptors
155 * mappable by an L1 translation table is given by the following constants:
156 */
157#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
158#define	L2_SIZE		(1 << L2_LOG2)
159
160struct	pmap {
161	struct mtx		pm_mtx;
162	u_int8_t		pm_domain;
163	struct l1_ttable	*pm_l1;
164	struct l2_dtable	*pm_l2[L2_SIZE];
165	cpuset_t		pm_active;	/* active on cpus */
166	struct pmap_statistics	pm_stats;	/* pmap statictics */
167#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
168	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
169#else
170	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
171#endif
172};
173
174typedef struct pmap *pmap_t;
175
176#ifdef _KERNEL
177extern struct pmap	kernel_pmap_store;
178#define kernel_pmap	(&kernel_pmap_store)
179#define pmap_kernel() kernel_pmap
180
181#define	PMAP_ASSERT_LOCKED(pmap) \
182				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
183#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
184#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
185#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
186				    NULL, MTX_DEF | MTX_DUPOK)
187#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
188#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
189#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
190#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
191#endif
192
193
194/*
195 * For each vm_page_t, there is a list of all currently valid virtual
196 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
197 */
198typedef struct pv_entry {
199	vm_offset_t     pv_va;          /* virtual address for mapping */
200	TAILQ_ENTRY(pv_entry)   pv_list;
201	int		pv_flags;	/* flags (wired, etc...) */
202#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
203	pmap_t          pv_pmap;        /* pmap where mapping lies */
204	TAILQ_ENTRY(pv_entry)	pv_plist;
205#endif
206} *pv_entry_t;
207
208/*
209 * pv_entries are allocated in chunks per-process.  This avoids the
210 * need to track per-pmap assignments.
211 */
212#define	_NPCM	8
213#define	_NPCPV	252
214
215struct pv_chunk {
216	pmap_t			pc_pmap;
217	TAILQ_ENTRY(pv_chunk)	pc_list;
218	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
219	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
220	TAILQ_ENTRY(pv_chunk)	pc_lru;
221	struct pv_entry		pc_pventry[_NPCPV];
222};
223
224#ifdef _KERNEL
225
226boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
227
228/*
229 * virtual address to page table entry and
230 * to physical address. Likewise for alternate address space.
231 * Note: these work recursively, thus vtopte of a pte will give
232 * the corresponding pde that in turn maps it.
233 */
234
235/*
236 * The current top of kernel VM.
237 */
238extern vm_offset_t pmap_curmaxkvaddr;
239
240struct pcb;
241
242void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
243/* Virtual address to page table entry */
244static __inline pt_entry_t *
245vtopte(vm_offset_t va)
246{
247	pd_entry_t *pdep;
248	pt_entry_t *ptep;
249
250	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
251		return (NULL);
252	return (ptep);
253}
254
255extern vm_paddr_t phys_avail[];
256extern vm_offset_t virtual_avail;
257extern vm_offset_t virtual_end;
258
259void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
260int	pmap_change_attr(vm_offset_t, vm_size_t, int);
261void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
262void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
263void	pmap_kenter_device(vm_offset_t, vm_size_t, vm_paddr_t);
264void	pmap_kremove_device(vm_offset_t, vm_size_t);
265void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
266void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
267vm_paddr_t pmap_kextract(vm_offset_t va);
268vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
269void	pmap_kremove(vm_offset_t);
270void	*pmap_mapdev(vm_offset_t, vm_size_t);
271void	pmap_unmapdev(vm_offset_t, vm_size_t);
272vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
273void	pmap_debug(int);
274#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
275void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
276#endif
277void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
278vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
279void
280pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
281    int cache);
282int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
283
284/*
285 * Definitions for MMU domains
286 */
287#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
288#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
289
290/*
291 * The new pmap ensures that page-tables are always mapping Write-Thru.
292 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
293 * on every change.
294 *
295 * Unfortunately, not all CPUs have a write-through cache mode.  So we
296 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
297 * and if there is the chance for PTE syncs to be needed, we define
298 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
299 * the code.
300 */
301extern int pmap_needs_pte_sync;
302
303/*
304 * These macros define the various bit masks in the PTE.
305 *
306 * We use these macros since we use different bits on different processor
307 * models.
308 */
309
310#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
311#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
312    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
313
314#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
315#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
316    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
317
318#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
319#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
320#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
321
322#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
323#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
324#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
325
326#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
327#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
328    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
329
330#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
331#define	L1_S_PROTO_xscale	(L1_TYPE_S)
332
333#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
334#define	L1_C_PROTO_xscale	(L1_TYPE_C)
335
336#define	L2_L_PROTO		(L2_TYPE_L)
337
338#define	L2_S_PROTO_generic	(L2_TYPE_S)
339#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
340
341/*
342 * User-visible names for the ones that vary with MMU class.
343 */
344#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
345#define	L2_AP(x)	(L2_AP0(x))
346#else
347#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
348#endif
349
350#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
351/*
352 * AP[2:1] access permissions model:
353 *
354 * AP[2](APX)	- Write Disable
355 * AP[1]	- User Enable
356 * AP[0]	- Reference Flag
357 *
358 * AP[2]     AP[1]     Kernel     User
359 *  0          0        R/W        N
360 *  0          1        R/W       R/W
361 *  1          0         R         N
362 *  1          1         R         R
363 *
364 */
365#define	L2_S_PROT_R		(0)		/* kernel read */
366#define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
367#define L2_S_REF		(L2_AP0(1))	/* reference flag */
368
369#define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
370#define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
371#define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
372#define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
373
374#ifndef SMP
375#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
376#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
377#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
378#else
379#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
380#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
381#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
382#endif  /* SMP */
383
384#define	L1_S_PROTO		(L1_TYPE_S)
385#define	L1_C_PROTO		(L1_TYPE_C)
386#define	L2_S_PROTO		(L2_TYPE_S)
387
388/*
389 * Promotion to a 1MB (SECTION) mapping requires that the corresponding
390 * 4KB (SMALL) page mappings have identical settings for the following fields:
391 */
392#define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
393				 L2_XN | L2_S_PROTO)
394
395/*
396 * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
397 * page mapping it is necessary to read and shift appropriate bits from
398 * L1 entry to positions of the corresponding bits in the L2 entry.
399 */
400#define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
401				(((l1pd) & L1_SHARED) >> 6) | \
402				(((l1pd) & L1_S_REF) >> 6) | \
403				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
404				(((l1pd) & L1_S_XN) >> 4))
405
406#ifndef SMP
407#define ARM_L1S_STRONG_ORD	(0)
408#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
409#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
410#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
411#define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
412#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
413#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
414
415#define ARM_L2L_STRONG_ORD	(0)
416#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
417#define ARM_L2L_DEVICE_SHARE	(L2_B)
418#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
419#define ARM_L2L_NRML_IWT_OWT	(L2_C)
420#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
421#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
422
423#define ARM_L2S_STRONG_ORD	(0)
424#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
425#define ARM_L2S_DEVICE_SHARE	(L2_B)
426#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
427#define ARM_L2S_NRML_IWT_OWT	(L2_C)
428#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
429#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
430#else
431#define ARM_L1S_STRONG_ORD	(0)
432#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
433#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
434#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
435#define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
436#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
437#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
438
439#define ARM_L2L_STRONG_ORD	(0)
440#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
441#define ARM_L2L_DEVICE_SHARE	(L2_B)
442#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
443#define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
444#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
445#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
446
447#define ARM_L2S_STRONG_ORD	(0)
448#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
449#define ARM_L2S_DEVICE_SHARE	(L2_B)
450#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
451#define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
452#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
453#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
454#endif /* SMP */
455
456#elif ARM_NMMUS > 1
457/* More than one MMU class configured; use variables. */
458#define	L2_S_PROT_U		pte_l2_s_prot_u
459#define	L2_S_PROT_W		pte_l2_s_prot_w
460#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
461
462#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
463#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
464#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
465
466#define	L1_S_PROTO		pte_l1_s_proto
467#define	L1_C_PROTO		pte_l1_c_proto
468#define	L2_S_PROTO		pte_l2_s_proto
469
470#elif ARM_MMU_GENERIC != 0
471#define	L2_S_PROT_U		L2_S_PROT_U_generic
472#define	L2_S_PROT_W		L2_S_PROT_W_generic
473#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
474
475#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
476#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
477#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
478
479#define	L1_S_PROTO		L1_S_PROTO_generic
480#define	L1_C_PROTO		L1_C_PROTO_generic
481#define	L2_S_PROTO		L2_S_PROTO_generic
482
483#elif ARM_MMU_XSCALE == 1
484#define	L2_S_PROT_U		L2_S_PROT_U_xscale
485#define	L2_S_PROT_W		L2_S_PROT_W_xscale
486#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
487
488#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
489#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
490#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
491
492#define	L1_S_PROTO		L1_S_PROTO_xscale
493#define	L1_C_PROTO		L1_C_PROTO_xscale
494#define	L2_S_PROTO		L2_S_PROTO_xscale
495
496#endif /* ARM_NMMUS > 1 */
497
498#if defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A
499#define PMAP_NEEDS_PTE_SYNC	1
500#define PMAP_INCLUDE_PTE_SYNC
501#else
502#define	PMAP_NEEDS_PTE_SYNC	0
503#endif
504
505/*
506 * These macros return various bits based on kernel/user and protection.
507 * Note that the compiler will usually fold these at compile time.
508 */
509#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
510
511#define	L1_S_PROT_U		(L1_S_AP(AP_U))
512#define	L1_S_PROT_W		(L1_S_AP(AP_W))
513#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
514#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
515
516#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
517				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
518
519#define	L2_L_PROT_U		(L2_AP(AP_U))
520#define	L2_L_PROT_W		(L2_AP(AP_W))
521#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
522
523#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
524				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
525
526#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
527				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
528#else
529#define	L1_S_PROT_U		(L1_S_AP(AP_U))
530#define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
531#define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
532#define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
533#define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
534#define	L1_S_EXECUTABLE(pd)	(!((pd) & L1_S_XN))
535#define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
536
537#define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
538				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
539				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
540
541#define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
542#define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
543				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
544
545#define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
546				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
547
548#endif
549
550/*
551 * Macros to test if a mapping is mappable with an L1 Section mapping
552 * or an L2 Large Page mapping.
553 */
554#define	L1_S_MAPPABLE_P(va, pa, size)					\
555	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
556
557#define	L2_L_MAPPABLE_P(va, pa, size)					\
558	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
559
560/*
561 * Provide a fallback in case we were not able to determine it at
562 * compile-time.
563 */
564#ifndef PMAP_NEEDS_PTE_SYNC
565#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
566#define	PMAP_INCLUDE_PTE_SYNC
567#endif
568
569#ifdef ARM_L2_PIPT
570#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
571#else
572#define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
573#endif
574
575#define	PTE_SYNC(pte)							\
576do {									\
577	if (PMAP_NEEDS_PTE_SYNC) {					\
578		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
579		cpu_drain_writebuf();					\
580		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
581	} else								\
582		cpu_drain_writebuf();					\
583} while (/*CONSTCOND*/0)
584
585#define	PTE_SYNC_RANGE(pte, cnt)					\
586do {									\
587	if (PMAP_NEEDS_PTE_SYNC) {					\
588		cpu_dcache_wb_range((vm_offset_t)(pte),			\
589		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
590		cpu_drain_writebuf();					\
591		_sync_l2((vm_offset_t)(pte),		 		\
592		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
593	} else								\
594		cpu_drain_writebuf();					\
595} while (/*CONSTCOND*/0)
596
597extern pt_entry_t		pte_l1_s_cache_mode;
598extern pt_entry_t		pte_l1_s_cache_mask;
599
600extern pt_entry_t		pte_l2_l_cache_mode;
601extern pt_entry_t		pte_l2_l_cache_mask;
602
603extern pt_entry_t		pte_l2_s_cache_mode;
604extern pt_entry_t		pte_l2_s_cache_mask;
605
606extern pt_entry_t		pte_l1_s_cache_mode_pt;
607extern pt_entry_t		pte_l2_l_cache_mode_pt;
608extern pt_entry_t		pte_l2_s_cache_mode_pt;
609
610extern pt_entry_t		pte_l2_s_prot_u;
611extern pt_entry_t		pte_l2_s_prot_w;
612extern pt_entry_t		pte_l2_s_prot_mask;
613
614extern pt_entry_t		pte_l1_s_proto;
615extern pt_entry_t		pte_l1_c_proto;
616extern pt_entry_t		pte_l2_s_proto;
617
618extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
619extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
620    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
621extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
622
623#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 || defined(CPU_XSCALE_81342)
624void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
625void	pmap_zero_page_generic(vm_paddr_t, int, int);
626
627void	pmap_pte_init_generic(void);
628#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
629void	pmap_pte_init_mmu_v6(void);
630#endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
631#endif /* (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 */
632
633#if ARM_MMU_XSCALE == 1
634void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
635void	pmap_zero_page_xscale(vm_paddr_t, int, int);
636
637void	pmap_pte_init_xscale(void);
638
639void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
640
641void	pmap_use_minicache(vm_offset_t, vm_size_t);
642#endif /* ARM_MMU_XSCALE == 1 */
643#if defined(CPU_XSCALE_81342)
644#define ARM_HAVE_SUPERSECTIONS
645#endif
646
647#define PTE_KERNEL	0
648#define PTE_USER	1
649#define	l1pte_valid(pde)	((pde) != 0)
650#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
651#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
652#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
653
654#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
655#define	l2pte_valid(pte)	((pte) != 0)
656#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
657#define l2pte_minidata(pte)	(((pte) & \
658				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
659				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
660
661/* L1 and L2 page table macros */
662#define pmap_pde_v(pde)		l1pte_valid(*(pde))
663#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
664#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
665#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
666
667#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
668#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
669
670/*
671 * Flags that indicate attributes of pages or mappings of pages.
672 *
673 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
674 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
675 * pv_entry's for each page.  They live in the same "namespace" so
676 * that we can clear multiple attributes at a time.
677 *
678 * Note the "non-cacheable" flag generally means the page has
679 * multiple mappings in a given address space.
680 */
681#define	PVF_MOD		0x01		/* page is modified */
682#define	PVF_REF		0x02		/* page is referenced */
683#define	PVF_WIRED	0x04		/* mapping is wired */
684#define	PVF_WRITE	0x08		/* mapping is writable */
685#define	PVF_EXEC	0x10		/* mapping is executable */
686#define	PVF_NC		0x20		/* mapping is non-cacheable */
687#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
688#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
689
690void vector_page_setprot(int);
691
692#define SECTION_CACHE	0x1
693#define SECTION_PT	0x2
694void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
695#ifdef ARM_HAVE_SUPERSECTIONS
696void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
697#endif
698
699extern char *_tmppt;
700
701void	pmap_postinit(void);
702
703extern vm_paddr_t dump_avail[];
704#endif	/* _KERNEL */
705
706#endif	/* !LOCORE */
707
708#endif	/* !_MACHINE_PMAP_H_ */
709#endif	/* __ARM_ARCH >= 6 */
710