pmap-v4.h revision 244414
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 244414 2012-12-19 00:24:31Z cognet $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#if ARM_ARCH_6 || ARM_ARCH_7A
59#ifdef SMP
60#define PTE_NOCACHE	2
61#else
62#define PTE_NOCACHE	1
63#endif
64#define PTE_CACHE	4
65#define PTE_DEVICE	2
66#define PTE_PAGETABLE	4
67#else
68#define PTE_NOCACHE	1
69#define PTE_CACHE	2
70#define PTE_PAGETABLE	3
71#endif
72
73enum mem_type {
74	STRONG_ORD = 0,
75	DEVICE_NOSHARE,
76	DEVICE_SHARE,
77	NRML_NOCACHE,
78	NRML_IWT_OWT,
79	NRML_IWB_OWB,
80	NRML_IWBA_OWBA
81};
82
83#ifndef LOCORE
84
85#include <sys/queue.h>
86#include <sys/_cpuset.h>
87#include <sys/_lock.h>
88#include <sys/_mutex.h>
89
90#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92
93#ifdef _KERNEL
94
95#define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96
97#endif
98
99#define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103
104/*
105 * Pmap stuff
106 */
107
108/*
109 * This structure is used to hold a virtual<->physical address
110 * association and is used mostly by bootstrap code
111 */
112struct pv_addr {
113	SLIST_ENTRY(pv_addr) pv_list;
114	vm_offset_t	pv_va;
115	vm_paddr_t	pv_pa;
116};
117
118struct	pv_entry;
119
120struct	md_page {
121	int pvh_attrs;
122	vm_memattr_t	 pv_memattr;
123	vm_offset_t pv_kva;		/* first kernel VA mapping */
124	TAILQ_HEAD(,pv_entry)	pv_list;
125};
126
127struct l1_ttable;
128struct l2_dtable;
129
130
131/*
132 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
133 * A bucket size of 16 provides for 16MB of contiguous virtual address
134 * space per l2_dtable. Most processes will, therefore, require only two or
135 * three of these to map their whole working set.
136 */
137#define	L2_BUCKET_LOG2	4
138#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
139/*
140 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
141 * of l2_dtable structures required to track all possible page descriptors
142 * mappable by an L1 translation table is given by the following constants:
143 */
144#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
145#define	L2_SIZE		(1 << L2_LOG2)
146
147struct	pmap {
148	struct mtx		pm_mtx;
149	u_int8_t		pm_domain;
150	struct l1_ttable	*pm_l1;
151	struct l2_dtable	*pm_l2[L2_SIZE];
152	pd_entry_t		*pm_pdir;	/* KVA of page directory */
153	cpuset_t		pm_active;	/* active on cpus */
154	struct pmap_statistics	pm_stats;	/* pmap statictics */
155	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
156};
157
158typedef struct pmap *pmap_t;
159
160#ifdef _KERNEL
161extern struct pmap	kernel_pmap_store;
162#define kernel_pmap	(&kernel_pmap_store)
163#define pmap_kernel() kernel_pmap
164
165#define	PMAP_ASSERT_LOCKED(pmap) \
166				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
167#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
168#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
169#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
170				    NULL, MTX_DEF | MTX_DUPOK)
171#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
172#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
173#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
174#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
175#endif
176
177
178/*
179 * For each vm_page_t, there is a list of all currently valid virtual
180 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
181 */
182typedef struct pv_entry {
183	pmap_t          pv_pmap;        /* pmap where mapping lies */
184	vm_offset_t     pv_va;          /* virtual address for mapping */
185	TAILQ_ENTRY(pv_entry)   pv_list;
186	TAILQ_ENTRY(pv_entry)	pv_plist;
187	int		pv_flags;	/* flags (wired, etc...) */
188} *pv_entry_t;
189
190#ifdef _KERNEL
191
192boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
193
194/*
195 * virtual address to page table entry and
196 * to physical address. Likewise for alternate address space.
197 * Note: these work recursively, thus vtopte of a pte will give
198 * the corresponding pde that in turn maps it.
199 */
200
201/*
202 * The current top of kernel VM.
203 */
204extern vm_offset_t pmap_curmaxkvaddr;
205
206struct pcb;
207
208void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
209/* Virtual address to page table entry */
210static __inline pt_entry_t *
211vtopte(vm_offset_t va)
212{
213	pd_entry_t *pdep;
214	pt_entry_t *ptep;
215
216	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
217		return (NULL);
218	return (ptep);
219}
220
221extern vm_paddr_t phys_avail[];
222extern vm_offset_t virtual_avail;
223extern vm_offset_t virtual_end;
224
225void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
226int	pmap_change_attr(vm_offset_t, vm_size_t, int);
227void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
228void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
229void	*pmap_kenter_temp(vm_paddr_t pa, int i);
230void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
231vm_paddr_t pmap_kextract(vm_offset_t va);
232void	pmap_kremove(vm_offset_t);
233void	*pmap_mapdev(vm_offset_t, vm_size_t);
234void	pmap_unmapdev(vm_offset_t, vm_size_t);
235vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
236void	pmap_debug(int);
237void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
238void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
239vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
240void
241pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
242    int cache);
243int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
244int pmap_dmap_iscurrent(pmap_t pmap);
245
246/*
247 * Definitions for MMU domains
248 */
249#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
250#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
251
252/*
253 * The new pmap ensures that page-tables are always mapping Write-Thru.
254 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
255 * on every change.
256 *
257 * Unfortunately, not all CPUs have a write-through cache mode.  So we
258 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
259 * and if there is the chance for PTE syncs to be needed, we define
260 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
261 * the code.
262 */
263extern int pmap_needs_pte_sync;
264
265/*
266 * These macros define the various bit masks in the PTE.
267 *
268 * We use these macros since we use different bits on different processor
269 * models.
270 */
271
272#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
273#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
274    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
275
276#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
277#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
278    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
279
280#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
281#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
282#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
283
284#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
285#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
286#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
287
288#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
289#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
290    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
291
292#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
293#define	L1_S_PROTO_xscale	(L1_TYPE_S)
294
295#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
296#define	L1_C_PROTO_xscale	(L1_TYPE_C)
297
298#define	L2_L_PROTO		(L2_TYPE_L)
299
300#define	L2_S_PROTO_generic	(L2_TYPE_S)
301#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
302
303/*
304 * User-visible names for the ones that vary with MMU class.
305 */
306#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
307#define	L2_AP(x)	(L2_AP0(x))
308#else
309#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
310#endif
311
312#if ARM_NMMUS > 1
313/* More than one MMU class configured; use variables. */
314#define	L2_S_PROT_U		pte_l2_s_prot_u
315#define	L2_S_PROT_W		pte_l2_s_prot_w
316#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
317
318#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
319#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
320#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
321
322#define	L1_S_PROTO		pte_l1_s_proto
323#define	L1_C_PROTO		pte_l1_c_proto
324#define	L2_S_PROTO		pte_l2_s_proto
325
326#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
327#define	L2_S_PROT_U		L2_S_PROT_U_generic
328#define	L2_S_PROT_W		L2_S_PROT_W_generic
329#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
330
331#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
332#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
333#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
334
335#define	L1_S_PROTO		L1_S_PROTO_generic
336#define	L1_C_PROTO		L1_C_PROTO_generic
337#define	L2_S_PROTO		L2_S_PROTO_generic
338
339#elif ARM_MMU_XSCALE == 1
340#define	L2_S_PROT_U		L2_S_PROT_U_xscale
341#define	L2_S_PROT_W		L2_S_PROT_W_xscale
342#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
343
344#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
345#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
346#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
347
348#define	L1_S_PROTO		L1_S_PROTO_xscale
349#define	L1_C_PROTO		L1_C_PROTO_xscale
350#define	L2_S_PROTO		L2_S_PROTO_xscale
351
352#elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
353
354#define	L2_S_PROT_U		(L2_AP0(2))		/* user access */
355#define	L2_S_PROT_R		(L2_APX|L2_AP0(1))	/* read access */
356
357#define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R)
358#define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
359
360#ifndef SMP
361#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
362#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
363#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
364#else
365#define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
366#define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
367#define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
368#endif  /* SMP */
369
370#define	L1_S_PROTO		(L1_TYPE_S)
371#define	L1_C_PROTO		(L1_TYPE_C)
372#define	L2_S_PROTO		(L2_TYPE_S)
373
374#ifndef SMP
375#define ARM_L1S_STRONG_ORD	(0)
376#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
377#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
378#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
379#define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
380#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
381#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
382
383#define ARM_L2L_STRONG_ORD	(0)
384#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
385#define ARM_L2L_DEVICE_SHARE	(L2_B)
386#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
387#define ARM_L2L_NRML_IWT_OWT	(L2_C)
388#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
389#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
390
391#define ARM_L2S_STRONG_ORD	(0)
392#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
393#define ARM_L2S_DEVICE_SHARE	(L2_B)
394#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
395#define ARM_L2S_NRML_IWT_OWT	(L2_C)
396#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
397#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
398#else
399#define ARM_L1S_STRONG_ORD	(0)
400#define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
401#define ARM_L1S_DEVICE_SHARE	(L1_S_B)
402#define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
403#define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
404#define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
405#define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
406
407#define ARM_L2L_STRONG_ORD	(0)
408#define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
409#define ARM_L2L_DEVICE_SHARE	(L2_B)
410#define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
411#define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
412#define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
413#define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
414
415#define ARM_L2S_STRONG_ORD	(0)
416#define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
417#define ARM_L2S_DEVICE_SHARE	(L2_B)
418#define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
419#define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
420#define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
421#define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
422#endif /* SMP */
423#endif /* ARM_NMMUS > 1 */
424
425#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
426#define	PMAP_NEEDS_PTE_SYNC	1
427#define	PMAP_INCLUDE_PTE_SYNC
428#elif defined(CPU_XSCALE_81342)
429#define PMAP_NEEDS_PTE_SYNC	1
430#define PMAP_INCLUDE_PTE_SYNC
431#elif (ARM_MMU_SA1 == 0)
432#define	PMAP_NEEDS_PTE_SYNC	0
433#endif
434
435/*
436 * These macros return various bits based on kernel/user and protection.
437 * Note that the compiler will usually fold these at compile time.
438 */
439#if (ARM_MMU_V6 + ARM_MMU_V7) == 0
440
441#define	L1_S_PROT_U		(L1_S_AP(AP_U))
442#define	L1_S_PROT_W		(L1_S_AP(AP_W))
443#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
444#define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
445
446#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
447				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
448
449#define	L2_L_PROT_U		(L2_AP(AP_U))
450#define	L2_L_PROT_W		(L2_AP(AP_W))
451#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
452
453#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
454				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
455
456#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
457				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
458#else
459#define	L1_S_PROT_U		(L1_S_AP(AP_U))
460#define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
461#define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
462
463#define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
464				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
465
466#define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
467#define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
468				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
469
470#define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
471				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
472
473#endif
474
475/*
476 * Macros to test if a mapping is mappable with an L1 Section mapping
477 * or an L2 Large Page mapping.
478 */
479#define	L1_S_MAPPABLE_P(va, pa, size)					\
480	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
481
482#define	L2_L_MAPPABLE_P(va, pa, size)					\
483	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
484
485/*
486 * Provide a fallback in case we were not able to determine it at
487 * compile-time.
488 */
489#ifndef PMAP_NEEDS_PTE_SYNC
490#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
491#define	PMAP_INCLUDE_PTE_SYNC
492#endif
493
494#define	PTE_SYNC(pte)							\
495do {									\
496	if (PMAP_NEEDS_PTE_SYNC) {					\
497		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
498		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
499	} else								\
500		cpu_drain_writebuf();					\
501} while (/*CONSTCOND*/0)
502
503#define	PTE_SYNC_RANGE(pte, cnt)					\
504do {									\
505	if (PMAP_NEEDS_PTE_SYNC) {					\
506		cpu_dcache_wb_range((vm_offset_t)(pte),			\
507		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
508		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
509		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
510	} else								\
511		cpu_drain_writebuf();					\
512} while (/*CONSTCOND*/0)
513
514extern pt_entry_t		pte_l1_s_cache_mode;
515extern pt_entry_t		pte_l1_s_cache_mask;
516
517extern pt_entry_t		pte_l2_l_cache_mode;
518extern pt_entry_t		pte_l2_l_cache_mask;
519
520extern pt_entry_t		pte_l2_s_cache_mode;
521extern pt_entry_t		pte_l2_s_cache_mask;
522
523extern pt_entry_t		pte_l1_s_cache_mode_pt;
524extern pt_entry_t		pte_l2_l_cache_mode_pt;
525extern pt_entry_t		pte_l2_s_cache_mode_pt;
526
527extern pt_entry_t		pte_l2_s_prot_u;
528extern pt_entry_t		pte_l2_s_prot_w;
529extern pt_entry_t		pte_l2_s_prot_mask;
530
531extern pt_entry_t		pte_l1_s_proto;
532extern pt_entry_t		pte_l1_c_proto;
533extern pt_entry_t		pte_l2_s_proto;
534
535extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
536extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
537
538#if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
539void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
540void	pmap_zero_page_generic(vm_paddr_t, int, int);
541
542void	pmap_pte_init_generic(void);
543#if defined(CPU_ARM8)
544void	pmap_pte_init_arm8(void);
545#endif
546#if defined(CPU_ARM9)
547void	pmap_pte_init_arm9(void);
548#endif /* CPU_ARM9 */
549#if defined(CPU_ARM10)
550void	pmap_pte_init_arm10(void);
551#endif /* CPU_ARM10 */
552#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
553void	pmap_pte_init_mmu_v6(void);
554#endif /* CPU_ARM11 */
555#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
556
557#if /* ARM_MMU_SA1 == */1
558void	pmap_pte_init_sa1(void);
559#endif /* ARM_MMU_SA1 == 1 */
560
561#if ARM_MMU_XSCALE == 1
562void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
563void	pmap_zero_page_xscale(vm_paddr_t, int, int);
564
565void	pmap_pte_init_xscale(void);
566
567void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
568
569void	pmap_use_minicache(vm_offset_t, vm_size_t);
570#endif /* ARM_MMU_XSCALE == 1 */
571#if defined(CPU_XSCALE_81342)
572#define ARM_HAVE_SUPERSECTIONS
573#endif
574
575#define PTE_KERNEL	0
576#define PTE_USER	1
577#define	l1pte_valid(pde)	((pde) != 0)
578#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
579#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
580#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
581
582#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
583#define	l2pte_valid(pte)	((pte) != 0)
584#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
585#define l2pte_minidata(pte)	(((pte) & \
586				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
587				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
588
589/* L1 and L2 page table macros */
590#define pmap_pde_v(pde)		l1pte_valid(*(pde))
591#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
592#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
593#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
594
595#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
596#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
597
598/*
599 * Flags that indicate attributes of pages or mappings of pages.
600 *
601 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
602 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
603 * pv_entry's for each page.  They live in the same "namespace" so
604 * that we can clear multiple attributes at a time.
605 *
606 * Note the "non-cacheable" flag generally means the page has
607 * multiple mappings in a given address space.
608 */
609#define	PVF_MOD		0x01		/* page is modified */
610#define	PVF_REF		0x02		/* page is referenced */
611#define	PVF_WIRED	0x04		/* mapping is wired */
612#define	PVF_WRITE	0x08		/* mapping is writable */
613#define	PVF_EXEC	0x10		/* mapping is executable */
614#define	PVF_NC		0x20		/* mapping is non-cacheable */
615#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
616#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
617
618void vector_page_setprot(int);
619
620/*
621 * This structure is used by machine-dependent code to describe
622 * static mappings of devices, created at bootstrap time.
623 */
624struct pmap_devmap {
625	vm_offset_t	pd_va;		/* virtual address */
626	vm_paddr_t	pd_pa;		/* physical address */
627	vm_size_t	pd_size;	/* size of region */
628	vm_prot_t	pd_prot;	/* protection code */
629	int		pd_cache;	/* cache attributes */
630};
631
632const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
633const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
634
635void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
636void	pmap_devmap_register(const struct pmap_devmap *);
637
638#define SECTION_CACHE	0x1
639#define SECTION_PT	0x2
640void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
641#ifdef ARM_HAVE_SUPERSECTIONS
642void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
643#endif
644
645extern char *_tmppt;
646
647void	pmap_postinit(void);
648
649#ifdef ARM_USE_SMALL_ALLOC
650void	arm_add_smallalloc_pages(void *, void *, int, int);
651vm_offset_t arm_ptovirt(vm_paddr_t);
652void arm_init_smallalloc(void);
653struct arm_small_page {
654	void *addr;
655	TAILQ_ENTRY(arm_small_page) pg_list;
656};
657
658#endif
659
660#define ARM_NOCACHE_KVA_SIZE 0x1000000
661extern vm_offset_t arm_nocache_startaddr;
662void *arm_remap_nocache(void *, vm_size_t);
663void arm_unmap_nocache(void *, vm_size_t);
664
665extern vm_paddr_t dump_avail[];
666#endif	/* _KERNEL */
667
668#endif	/* !LOCORE */
669
670#endif	/* !_MACHINE_PMAP_H_ */
671