pmap-v4.h revision 236992
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 236992 2012-06-13 05:02:51Z imp $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#define PTE_NOCACHE	0
59#define PTE_CACHE	1
60#define PTE_PAGETABLE	2
61
62#ifndef LOCORE
63
64#include <sys/queue.h>
65#include <sys/_cpuset.h>
66#include <sys/_lock.h>
67#include <sys/_mutex.h>
68
69#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
70#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
71
72#ifdef _KERNEL
73
74#define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75#define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
76
77#endif
78
79#define	pmap_page_get_memattr(m)	VM_MEMATTR_DEFAULT
80#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
81#define	pmap_page_set_memattr(m, ma)	(void)0
82
83/*
84 * Pmap stuff
85 */
86
87/*
88 * This structure is used to hold a virtual<->physical address
89 * association and is used mostly by bootstrap code
90 */
91struct pv_addr {
92	SLIST_ENTRY(pv_addr) pv_list;
93	vm_offset_t	pv_va;
94	vm_paddr_t	pv_pa;
95};
96
97struct	pv_entry;
98
99struct	md_page {
100	int pvh_attrs;
101	vm_offset_t pv_kva;		/* first kernel VA mapping */
102	TAILQ_HEAD(,pv_entry)	pv_list;
103};
104
105#define	VM_MDPAGE_INIT(pg)						\
106do {									\
107	TAILQ_INIT(&pg->pv_list);					\
108	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
109	(pg)->mdpage.pvh_attrs = 0;					\
110} while (/*CONSTCOND*/0)
111
112struct l1_ttable;
113struct l2_dtable;
114
115
116/*
117 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
118 * A bucket size of 16 provides for 16MB of contiguous virtual address
119 * space per l2_dtable. Most processes will, therefore, require only two or
120 * three of these to map their whole working set.
121 */
122#define	L2_BUCKET_LOG2	4
123#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
124/*
125 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
126 * of l2_dtable structures required to track all possible page descriptors
127 * mappable by an L1 translation table is given by the following constants:
128 */
129#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
130#define	L2_SIZE		(1 << L2_LOG2)
131
132struct	pmap {
133	struct mtx		pm_mtx;
134	u_int8_t		pm_domain;
135	struct l1_ttable	*pm_l1;
136	struct l2_dtable	*pm_l2[L2_SIZE];
137	pd_entry_t		*pm_pdir;	/* KVA of page directory */
138	cpuset_t		pm_active;	/* active on cpus */
139	struct pmap_statistics	pm_stats;	/* pmap statictics */
140	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
141};
142
143typedef struct pmap *pmap_t;
144
145#ifdef _KERNEL
146extern struct pmap	kernel_pmap_store;
147#define kernel_pmap	(&kernel_pmap_store)
148#define pmap_kernel() kernel_pmap
149
150#define	PMAP_ASSERT_LOCKED(pmap) \
151				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
152#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
153#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
154#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
155				    NULL, MTX_DEF | MTX_DUPOK)
156#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
157#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
158#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
159#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
160#endif
161
162
163/*
164 * For each vm_page_t, there is a list of all currently valid virtual
165 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
166 */
167typedef struct pv_entry {
168	pmap_t          pv_pmap;        /* pmap where mapping lies */
169	vm_offset_t     pv_va;          /* virtual address for mapping */
170	TAILQ_ENTRY(pv_entry)   pv_list;
171	TAILQ_ENTRY(pv_entry)	pv_plist;
172	int		pv_flags;	/* flags (wired, etc...) */
173} *pv_entry_t;
174
175#ifdef _KERNEL
176
177boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
178
179/*
180 * virtual address to page table entry and
181 * to physical address. Likewise for alternate address space.
182 * Note: these work recursively, thus vtopte of a pte will give
183 * the corresponding pde that in turn maps it.
184 */
185
186/*
187 * The current top of kernel VM.
188 */
189extern vm_offset_t pmap_curmaxkvaddr;
190
191struct pcb;
192
193void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
194/* Virtual address to page table entry */
195static __inline pt_entry_t *
196vtopte(vm_offset_t va)
197{
198	pd_entry_t *pdep;
199	pt_entry_t *ptep;
200
201	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
202		return (NULL);
203	return (ptep);
204}
205
206extern vm_paddr_t phys_avail[];
207extern vm_offset_t virtual_avail;
208extern vm_offset_t virtual_end;
209
210void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
211void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
212void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
213void	*pmap_kenter_temp(vm_paddr_t pa, int i);
214void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
215void	pmap_kremove(vm_offset_t);
216void	*pmap_mapdev(vm_offset_t, vm_size_t);
217void	pmap_unmapdev(vm_offset_t, vm_size_t);
218vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
219void	pmap_debug(int);
220void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
221void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
222vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
223void
224pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
225    int cache);
226int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
227
228/*
229 * Definitions for MMU domains
230 */
231#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
232#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
233
234/*
235 * The new pmap ensures that page-tables are always mapping Write-Thru.
236 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
237 * on every change.
238 *
239 * Unfortunately, not all CPUs have a write-through cache mode.  So we
240 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
241 * and if there is the chance for PTE syncs to be needed, we define
242 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
243 * the code.
244 */
245extern int pmap_needs_pte_sync;
246
247/*
248 * These macros define the various bit masks in the PTE.
249 *
250 * We use these macros since we use different bits on different processor
251 * models.
252 */
253#define	L1_S_PROT_U		(L1_S_AP(AP_U))
254#define	L1_S_PROT_W		(L1_S_AP(AP_W))
255#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
256
257#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
258#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
259    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
260
261#define	L2_L_PROT_U		(L2_AP(AP_U))
262#define	L2_L_PROT_W		(L2_AP(AP_W))
263#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
264
265#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
266#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
267    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
268
269#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
270#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
271#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
272
273#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
274#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
275#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
276
277#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
278#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
279    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
280
281#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
282#define	L1_S_PROTO_xscale	(L1_TYPE_S)
283
284#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
285#define	L1_C_PROTO_xscale	(L1_TYPE_C)
286
287#define	L2_L_PROTO		(L2_TYPE_L)
288
289#define	L2_S_PROTO_generic	(L2_TYPE_S)
290#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
291
292/*
293 * User-visible names for the ones that vary with MMU class.
294 */
295
296#if ARM_NMMUS > 1
297/* More than one MMU class configured; use variables. */
298#define	L2_S_PROT_U		pte_l2_s_prot_u
299#define	L2_S_PROT_W		pte_l2_s_prot_w
300#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
301
302#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
303#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
304#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
305
306#define	L1_S_PROTO		pte_l1_s_proto
307#define	L1_C_PROTO		pte_l1_c_proto
308#define	L2_S_PROTO		pte_l2_s_proto
309
310#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
311#define	L2_S_PROT_U		L2_S_PROT_U_generic
312#define	L2_S_PROT_W		L2_S_PROT_W_generic
313#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
314
315#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
316#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
317#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
318
319#define	L1_S_PROTO		L1_S_PROTO_generic
320#define	L1_C_PROTO		L1_C_PROTO_generic
321#define	L2_S_PROTO		L2_S_PROTO_generic
322
323#elif ARM_MMU_XSCALE == 1
324#define	L2_S_PROT_U		L2_S_PROT_U_xscale
325#define	L2_S_PROT_W		L2_S_PROT_W_xscale
326#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
327
328#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
329#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
330#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
331
332#define	L1_S_PROTO		L1_S_PROTO_xscale
333#define	L1_C_PROTO		L1_C_PROTO_xscale
334#define	L2_S_PROTO		L2_S_PROTO_xscale
335
336#endif /* ARM_NMMUS > 1 */
337
338#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
339#define	PMAP_NEEDS_PTE_SYNC	1
340#define	PMAP_INCLUDE_PTE_SYNC
341#elif defined(CPU_XSCALE_81342)
342#define PMAP_NEEDS_PTE_SYNC	1
343#define PMAP_INCLUDE_PTE_SYNC
344#elif (ARM_MMU_SA1 == 0)
345#define	PMAP_NEEDS_PTE_SYNC	0
346#endif
347
348/*
349 * These macros return various bits based on kernel/user and protection.
350 * Note that the compiler will usually fold these at compile time.
351 */
352#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
353				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
354
355#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
356				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
357
358#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
359				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
360
361/*
362 * Macros to test if a mapping is mappable with an L1 Section mapping
363 * or an L2 Large Page mapping.
364 */
365#define	L1_S_MAPPABLE_P(va, pa, size)					\
366	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
367
368#define	L2_L_MAPPABLE_P(va, pa, size)					\
369	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
370
371/*
372 * Provide a fallback in case we were not able to determine it at
373 * compile-time.
374 */
375#ifndef PMAP_NEEDS_PTE_SYNC
376#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
377#define	PMAP_INCLUDE_PTE_SYNC
378#endif
379
380#define	PTE_SYNC(pte)							\
381do {									\
382	if (PMAP_NEEDS_PTE_SYNC) {					\
383		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
384		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
385	} else								\
386		cpu_drain_writebuf();					\
387} while (/*CONSTCOND*/0)
388
389#define	PTE_SYNC_RANGE(pte, cnt)					\
390do {									\
391	if (PMAP_NEEDS_PTE_SYNC) {					\
392		cpu_dcache_wb_range((vm_offset_t)(pte),			\
393		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
394		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
395		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
396	} else								\
397		cpu_drain_writebuf();					\
398} while (/*CONSTCOND*/0)
399
400extern pt_entry_t		pte_l1_s_cache_mode;
401extern pt_entry_t		pte_l1_s_cache_mask;
402
403extern pt_entry_t		pte_l2_l_cache_mode;
404extern pt_entry_t		pte_l2_l_cache_mask;
405
406extern pt_entry_t		pte_l2_s_cache_mode;
407extern pt_entry_t		pte_l2_s_cache_mask;
408
409extern pt_entry_t		pte_l1_s_cache_mode_pt;
410extern pt_entry_t		pte_l2_l_cache_mode_pt;
411extern pt_entry_t		pte_l2_s_cache_mode_pt;
412
413extern pt_entry_t		pte_l2_s_prot_u;
414extern pt_entry_t		pte_l2_s_prot_w;
415extern pt_entry_t		pte_l2_s_prot_mask;
416
417extern pt_entry_t		pte_l1_s_proto;
418extern pt_entry_t		pte_l1_c_proto;
419extern pt_entry_t		pte_l2_s_proto;
420
421extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
422extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
423
424#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
425void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
426void	pmap_zero_page_generic(vm_paddr_t, int, int);
427
428void	pmap_pte_init_generic(void);
429#if defined(CPU_ARM8)
430void	pmap_pte_init_arm8(void);
431#endif
432#if defined(CPU_ARM9)
433void	pmap_pte_init_arm9(void);
434#endif /* CPU_ARM9 */
435#if defined(CPU_ARM10)
436void	pmap_pte_init_arm10(void);
437#endif /* CPU_ARM10 */
438#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
439
440#if /* ARM_MMU_SA1 == */1
441void	pmap_pte_init_sa1(void);
442#endif /* ARM_MMU_SA1 == 1 */
443
444#if ARM_MMU_XSCALE == 1
445void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
446void	pmap_zero_page_xscale(vm_paddr_t, int, int);
447
448void	pmap_pte_init_xscale(void);
449
450void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
451
452void	pmap_use_minicache(vm_offset_t, vm_size_t);
453#endif /* ARM_MMU_XSCALE == 1 */
454#if defined(CPU_XSCALE_81342)
455#define ARM_HAVE_SUPERSECTIONS
456#endif
457
458#define PTE_KERNEL	0
459#define PTE_USER	1
460#define	l1pte_valid(pde)	((pde) != 0)
461#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
462#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
463#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
464
465#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
466#define	l2pte_valid(pte)	((pte) != 0)
467#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
468#define l2pte_minidata(pte)	(((pte) & \
469				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
470				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
471
472/* L1 and L2 page table macros */
473#define pmap_pde_v(pde)		l1pte_valid(*(pde))
474#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
475#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
476#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
477
478#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
479#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
480
481/*
482 * Flags that indicate attributes of pages or mappings of pages.
483 *
484 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
485 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
486 * pv_entry's for each page.  They live in the same "namespace" so
487 * that we can clear multiple attributes at a time.
488 *
489 * Note the "non-cacheable" flag generally means the page has
490 * multiple mappings in a given address space.
491 */
492#define	PVF_MOD		0x01		/* page is modified */
493#define	PVF_REF		0x02		/* page is referenced */
494#define	PVF_WIRED	0x04		/* mapping is wired */
495#define	PVF_WRITE	0x08		/* mapping is writable */
496#define	PVF_EXEC	0x10		/* mapping is executable */
497#define	PVF_NC		0x20		/* mapping is non-cacheable */
498#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
499#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
500
501void vector_page_setprot(int);
502
503void pmap_update(pmap_t);
504
505/*
506 * This structure is used by machine-dependent code to describe
507 * static mappings of devices, created at bootstrap time.
508 */
509struct pmap_devmap {
510	vm_offset_t	pd_va;		/* virtual address */
511	vm_paddr_t	pd_pa;		/* physical address */
512	vm_size_t	pd_size;	/* size of region */
513	vm_prot_t	pd_prot;	/* protection code */
514	int		pd_cache;	/* cache attributes */
515};
516
517const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
518const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
519
520void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
521void	pmap_devmap_register(const struct pmap_devmap *);
522
523#define SECTION_CACHE	0x1
524#define SECTION_PT	0x2
525void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
526#ifdef ARM_HAVE_SUPERSECTIONS
527void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
528#endif
529
530extern char *_tmppt;
531
532void	pmap_postinit(void);
533
534#ifdef ARM_USE_SMALL_ALLOC
535void	arm_add_smallalloc_pages(void *, void *, int, int);
536vm_offset_t arm_ptovirt(vm_paddr_t);
537void arm_init_smallalloc(void);
538struct arm_small_page {
539	void *addr;
540	TAILQ_ENTRY(arm_small_page) pg_list;
541};
542
543#endif
544
545#define ARM_NOCACHE_KVA_SIZE 0x1000000
546extern vm_offset_t arm_nocache_startaddr;
547void *arm_remap_nocache(void *, vm_size_t);
548void arm_unmap_nocache(void *, vm_size_t);
549
550extern vm_paddr_t dump_avail[];
551#endif	/* _KERNEL */
552
553#endif	/* !LOCORE */
554
555#endif	/* !_MACHINE_PMAP_H_ */
556