pmap-v4.h revision 195649
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * the Systems Programming Group of the University of Utah Computer
7 * Science Department and William Jolitz of UUNET Technologies Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by the University of
20 *      California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * Derived from hp300 version by Mike Hibler, this version by William
38 * Jolitz uses a recursive map [a pde points to the page directory] to
39 * map the page tables using the pagetables themselves. This is done to
40 * reduce the impact on kernel virtual memory for lots of sparse address
41 * space, and to reduce the cost of memory to each process.
42 *
43 *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44 *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45 * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46 *
47 * $FreeBSD: head/sys/arm/include/pmap.h 195649 2009-07-12 23:31:20Z alc $
48 */
49
50#ifndef _MACHINE_PMAP_H_
51#define _MACHINE_PMAP_H_
52
53#include <machine/pte.h>
54#include <machine/cpuconf.h>
55/*
56 * Pte related macros
57 */
58#define PTE_NOCACHE	0
59#define PTE_CACHE	1
60#define PTE_PAGETABLE	2
61
62#ifndef LOCORE
63
64#include <sys/queue.h>
65#include <sys/_lock.h>
66#include <sys/_mutex.h>
67
68#define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
69#define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
70
71#ifdef _KERNEL
72
73#define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
74#define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75
76#endif
77
78#define	pmap_page_get_memattr(m)	VM_MEMATTR_DEFAULT
79#define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
80#define	pmap_page_set_memattr(m, ma)	(void)0
81
82/*
83 * Pmap stuff
84 */
85
86/*
87 * This structure is used to hold a virtual<->physical address
88 * association and is used mostly by bootstrap code
89 */
90struct pv_addr {
91	SLIST_ENTRY(pv_addr) pv_list;
92	vm_offset_t	pv_va;
93	vm_paddr_t	pv_pa;
94};
95
96struct	pv_entry;
97
98struct	md_page {
99	int pvh_attrs;
100	vm_offset_t pv_kva;		/* first kernel VA mapping */
101	TAILQ_HEAD(,pv_entry)	pv_list;
102};
103
104#define	VM_MDPAGE_INIT(pg)						\
105do {									\
106	TAILQ_INIT(&pg->pv_list);					\
107	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
108	(pg)->mdpage.pvh_attrs = 0;					\
109} while (/*CONSTCOND*/0)
110
111struct l1_ttable;
112struct l2_dtable;
113
114
115/*
116 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
117 * A bucket size of 16 provides for 16MB of contiguous virtual address
118 * space per l2_dtable. Most processes will, therefore, require only two or
119 * three of these to map their whole working set.
120 */
121#define	L2_BUCKET_LOG2	4
122#define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
123/*
124 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
125 * of l2_dtable structures required to track all possible page descriptors
126 * mappable by an L1 translation table is given by the following constants:
127 */
128#define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
129#define	L2_SIZE		(1 << L2_LOG2)
130
131struct	pmap {
132	struct mtx		pm_mtx;
133	u_int8_t		pm_domain;
134	struct l1_ttable	*pm_l1;
135	struct l2_dtable	*pm_l2[L2_SIZE];
136	pd_entry_t		*pm_pdir;	/* KVA of page directory */
137	int			pm_active;	/* active on cpus */
138	struct pmap_statistics	pm_stats;	/* pmap statictics */
139	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
140};
141
142typedef struct pmap *pmap_t;
143
144#ifdef _KERNEL
145extern struct pmap	kernel_pmap_store;
146#define kernel_pmap	(&kernel_pmap_store)
147#define pmap_kernel() kernel_pmap
148
149#define	PMAP_ASSERT_LOCKED(pmap) \
150				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
151#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
152#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
153#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
154				    NULL, MTX_DEF | MTX_DUPOK)
155#define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
156#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
157#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
158#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
159#endif
160
161
162/*
163 * For each vm_page_t, there is a list of all currently valid virtual
164 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
165 */
166typedef struct pv_entry {
167	pmap_t          pv_pmap;        /* pmap where mapping lies */
168	vm_offset_t     pv_va;          /* virtual address for mapping */
169	TAILQ_ENTRY(pv_entry)   pv_list;
170	TAILQ_ENTRY(pv_entry)	pv_plist;
171	int		pv_flags;	/* flags (wired, etc...) */
172} *pv_entry_t;
173
174#ifdef _KERNEL
175
176boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
177
178/*
179 * virtual address to page table entry and
180 * to physical address. Likewise for alternate address space.
181 * Note: these work recursively, thus vtopte of a pte will give
182 * the corresponding pde that in turn maps it.
183 */
184
185/*
186 * The current top of kernel VM.
187 */
188extern vm_offset_t pmap_curmaxkvaddr;
189
190struct pcb;
191
192void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
193/* Virtual address to page table entry */
194static __inline pt_entry_t *
195vtopte(vm_offset_t va)
196{
197	pd_entry_t *pdep;
198	pt_entry_t *ptep;
199
200	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
201		return (NULL);
202	return (ptep);
203}
204
205extern vm_offset_t phys_avail[];
206extern vm_offset_t virtual_avail;
207extern vm_offset_t virtual_end;
208
209void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
210void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
211void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
212void	*pmap_kenter_temp(vm_paddr_t pa, int i);
213void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
214void	pmap_kremove(vm_offset_t);
215void	*pmap_mapdev(vm_offset_t, vm_size_t);
216void	pmap_unmapdev(vm_offset_t, vm_size_t);
217vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
218void	pmap_debug(int);
219void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
220void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
221vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
222void
223pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
224    int cache);
225int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
226
227/*
228 * Definitions for MMU domains
229 */
230#define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
231#define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
232
233/*
234 * The new pmap ensures that page-tables are always mapping Write-Thru.
235 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
236 * on every change.
237 *
238 * Unfortunately, not all CPUs have a write-through cache mode.  So we
239 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
240 * and if there is the chance for PTE syncs to be needed, we define
241 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
242 * the code.
243 */
244extern int pmap_needs_pte_sync;
245
246/*
247 * These macros define the various bit masks in the PTE.
248 *
249 * We use these macros since we use different bits on different processor
250 * models.
251 */
252#define	L1_S_PROT_U		(L1_S_AP(AP_U))
253#define	L1_S_PROT_W		(L1_S_AP(AP_W))
254#define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
255
256#define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
257#define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
258    				L1_S_XSCALE_TEX(TEX_XSCALE_T))
259
260#define	L2_L_PROT_U		(L2_AP(AP_U))
261#define	L2_L_PROT_W		(L2_AP(AP_W))
262#define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
263
264#define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
265#define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
266    				L2_XSCALE_L_TEX(TEX_XSCALE_T))
267
268#define	L2_S_PROT_U_generic	(L2_AP(AP_U))
269#define	L2_S_PROT_W_generic	(L2_AP(AP_W))
270#define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
271
272#define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
273#define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
274#define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
275
276#define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
277#define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
278    				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
279
280#define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
281#define	L1_S_PROTO_xscale	(L1_TYPE_S)
282
283#define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
284#define	L1_C_PROTO_xscale	(L1_TYPE_C)
285
286#define	L2_L_PROTO		(L2_TYPE_L)
287
288#define	L2_S_PROTO_generic	(L2_TYPE_S)
289#define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
290
291/*
292 * User-visible names for the ones that vary with MMU class.
293 */
294
295#if ARM_NMMUS > 1
296/* More than one MMU class configured; use variables. */
297#define	L2_S_PROT_U		pte_l2_s_prot_u
298#define	L2_S_PROT_W		pte_l2_s_prot_w
299#define	L2_S_PROT_MASK		pte_l2_s_prot_mask
300
301#define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
302#define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
303#define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
304
305#define	L1_S_PROTO		pte_l1_s_proto
306#define	L1_C_PROTO		pte_l1_c_proto
307#define	L2_S_PROTO		pte_l2_s_proto
308
309#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
310#define	L2_S_PROT_U		L2_S_PROT_U_generic
311#define	L2_S_PROT_W		L2_S_PROT_W_generic
312#define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
313
314#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
315#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
316#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
317
318#define	L1_S_PROTO		L1_S_PROTO_generic
319#define	L1_C_PROTO		L1_C_PROTO_generic
320#define	L2_S_PROTO		L2_S_PROTO_generic
321
322#elif ARM_MMU_XSCALE == 1
323#define	L2_S_PROT_U		L2_S_PROT_U_xscale
324#define	L2_S_PROT_W		L2_S_PROT_W_xscale
325#define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
326
327#define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
328#define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
329#define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
330
331#define	L1_S_PROTO		L1_S_PROTO_xscale
332#define	L1_C_PROTO		L1_C_PROTO_xscale
333#define	L2_S_PROTO		L2_S_PROTO_xscale
334
335#endif /* ARM_NMMUS > 1 */
336
337#ifdef SKYEYE_WORKAROUNDS
338#define PMAP_NEEDS_PTE_SYNC     1
339#define PMAP_INCLUDE_PTE_SYNC
340#else
341#if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
342#define	PMAP_NEEDS_PTE_SYNC	1
343#define	PMAP_INCLUDE_PTE_SYNC
344#elif defined(CPU_XSCALE_81342)
345#define PMAP_NEEDS_PTE_SYNC	1
346#define PMAP_INCLUDE_PTE_SYNC
347#elif (ARM_MMU_SA1 == 0)
348#define	PMAP_NEEDS_PTE_SYNC	0
349#endif
350#endif
351
352/*
353 * These macros return various bits based on kernel/user and protection.
354 * Note that the compiler will usually fold these at compile time.
355 */
356#define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
357				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
358
359#define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
360				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
361
362#define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
363				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
364
365/*
366 * Macros to test if a mapping is mappable with an L1 Section mapping
367 * or an L2 Large Page mapping.
368 */
369#define	L1_S_MAPPABLE_P(va, pa, size)					\
370	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
371
372#define	L2_L_MAPPABLE_P(va, pa, size)					\
373	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
374
375/*
376 * Provide a fallback in case we were not able to determine it at
377 * compile-time.
378 */
379#ifndef PMAP_NEEDS_PTE_SYNC
380#define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
381#define	PMAP_INCLUDE_PTE_SYNC
382#endif
383
384#define	PTE_SYNC(pte)							\
385do {									\
386	if (PMAP_NEEDS_PTE_SYNC) {					\
387		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
388		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
389	}\
390} while (/*CONSTCOND*/0)
391
392#define	PTE_SYNC_RANGE(pte, cnt)					\
393do {									\
394	if (PMAP_NEEDS_PTE_SYNC) {					\
395		cpu_dcache_wb_range((vm_offset_t)(pte),			\
396		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
397		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
398		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
399	}								\
400} while (/*CONSTCOND*/0)
401
402extern pt_entry_t		pte_l1_s_cache_mode;
403extern pt_entry_t		pte_l1_s_cache_mask;
404
405extern pt_entry_t		pte_l2_l_cache_mode;
406extern pt_entry_t		pte_l2_l_cache_mask;
407
408extern pt_entry_t		pte_l2_s_cache_mode;
409extern pt_entry_t		pte_l2_s_cache_mask;
410
411extern pt_entry_t		pte_l1_s_cache_mode_pt;
412extern pt_entry_t		pte_l2_l_cache_mode_pt;
413extern pt_entry_t		pte_l2_s_cache_mode_pt;
414
415extern pt_entry_t		pte_l2_s_prot_u;
416extern pt_entry_t		pte_l2_s_prot_w;
417extern pt_entry_t		pte_l2_s_prot_mask;
418
419extern pt_entry_t		pte_l1_s_proto;
420extern pt_entry_t		pte_l1_c_proto;
421extern pt_entry_t		pte_l2_s_proto;
422
423extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
424extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
425
426#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
427void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
428void	pmap_zero_page_generic(vm_paddr_t, int, int);
429
430void	pmap_pte_init_generic(void);
431#if defined(CPU_ARM8)
432void	pmap_pte_init_arm8(void);
433#endif
434#if defined(CPU_ARM9)
435void	pmap_pte_init_arm9(void);
436#endif /* CPU_ARM9 */
437#if defined(CPU_ARM10)
438void	pmap_pte_init_arm10(void);
439#endif /* CPU_ARM10 */
440#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
441
442#if /* ARM_MMU_SA1 == */1
443void	pmap_pte_init_sa1(void);
444#endif /* ARM_MMU_SA1 == 1 */
445
446#if ARM_MMU_XSCALE == 1
447void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
448void	pmap_zero_page_xscale(vm_paddr_t, int, int);
449
450void	pmap_pte_init_xscale(void);
451
452void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
453
454void	pmap_use_minicache(vm_offset_t, vm_size_t);
455#endif /* ARM_MMU_XSCALE == 1 */
456#if defined(CPU_XSCALE_81342)
457#define ARM_HAVE_SUPERSECTIONS
458#endif
459
460#define PTE_KERNEL	0
461#define PTE_USER	1
462#define	l1pte_valid(pde)	((pde) != 0)
463#define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
464#define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
465#define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
466
467#define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
468#define	l2pte_valid(pte)	((pte) != 0)
469#define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
470#define l2pte_minidata(pte)	(((pte) & \
471				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
472				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
473
474/* L1 and L2 page table macros */
475#define pmap_pde_v(pde)		l1pte_valid(*(pde))
476#define pmap_pde_section(pde)	l1pte_section_p(*(pde))
477#define pmap_pde_page(pde)	l1pte_page_p(*(pde))
478#define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
479
480#define	pmap_pte_v(pte)		l2pte_valid(*(pte))
481#define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
482
483/*
484 * Flags that indicate attributes of pages or mappings of pages.
485 *
486 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
487 * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
488 * pv_entry's for each page.  They live in the same "namespace" so
489 * that we can clear multiple attributes at a time.
490 *
491 * Note the "non-cacheable" flag generally means the page has
492 * multiple mappings in a given address space.
493 */
494#define	PVF_MOD		0x01		/* page is modified */
495#define	PVF_REF		0x02		/* page is referenced */
496#define	PVF_WIRED	0x04		/* mapping is wired */
497#define	PVF_WRITE	0x08		/* mapping is writable */
498#define	PVF_EXEC	0x10		/* mapping is executable */
499#define	PVF_NC		0x20		/* mapping is non-cacheable */
500#define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
501#define	PVF_UNMAN	0x80		/* mapping is unmanaged */
502
503void vector_page_setprot(int);
504
505void pmap_update(pmap_t);
506
507/*
508 * This structure is used by machine-dependent code to describe
509 * static mappings of devices, created at bootstrap time.
510 */
511struct pmap_devmap {
512	vm_offset_t	pd_va;		/* virtual address */
513	vm_paddr_t	pd_pa;		/* physical address */
514	vm_size_t	pd_size;	/* size of region */
515	vm_prot_t	pd_prot;	/* protection code */
516	int		pd_cache;	/* cache attributes */
517};
518
519const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
520const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
521
522void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
523void	pmap_devmap_register(const struct pmap_devmap *);
524
525#define SECTION_CACHE	0x1
526#define SECTION_PT	0x2
527void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
528#ifdef ARM_HAVE_SUPERSECTIONS
529void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
530#endif
531
532extern char *_tmppt;
533
534void	pmap_postinit(void);
535
536#ifdef ARM_USE_SMALL_ALLOC
537void	arm_add_smallalloc_pages(void *, void *, int, int);
538vm_offset_t arm_ptovirt(vm_paddr_t);
539void arm_init_smallalloc(void);
540struct arm_small_page {
541	void *addr;
542	TAILQ_ENTRY(arm_small_page) pg_list;
543};
544
545#endif
546
547#define ARM_NOCACHE_KVA_SIZE 0x1000000
548extern vm_offset_t arm_nocache_startaddr;
549void *arm_remap_nocache(void *, vm_size_t);
550void arm_unmap_nocache(void *, vm_size_t);
551
552extern vm_paddr_t dump_avail[];
553#endif	/* _KERNEL */
554
555#endif	/* !LOCORE */
556
557#endif	/* !_MACHINE_PMAP_H_ */
558