1/*-
2 * Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
3 * Copyright (c) 1994-1998 Mark Brinicombe.
4 * Copyright (c) 1994 Brini.
5 * All rights reserved.
6 *
7 * This code is derived from software written for Brini by Mark Brinicombe
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed by Brini.
20 * 4. The name of the company nor the name of the author may be used to
21 *    endorse or promote products derived from this software without specific
22 *    prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include "opt_kstack_pages.h"
42
43#define	_ARM32_BUS_DMA_PRIVATE
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/signalvar.h>
48#include <sys/imgact.h>
49#include <sys/kernel.h>
50#include <sys/ktr.h>
51#include <sys/linker.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/pcpu.h>
56#include <sys/proc.h>
57#include <sys/ptrace.h>
58#include <sys/cons.h>
59#include <sys/bio.h>
60#include <sys/bus.h>
61#include <sys/buf.h>
62#include <sys/exec.h>
63#include <sys/kdb.h>
64#include <sys/msgbuf.h>
65#include <sys/devmap.h>
66#include <machine/physmem.h>
67#include <machine/reg.h>
68#include <machine/cpu.h>
69
70#include <vm/vm.h>
71#include <vm/pmap.h>
72#include <vm/vm_object.h>
73#include <vm/vm_page.h>
74#include <vm/vm_map.h>
75#include <machine/vmparam.h>
76#include <machine/pcb.h>
77#include <machine/undefined.h>
78#include <machine/machdep.h>
79#include <machine/metadata.h>
80#include <machine/armreg.h>
81#include <machine/bus.h>
82#include <sys/reboot.h>
83#include "econa_reg.h"
84
85/* Page table for mapping proc0 zero page */
86#define	KERNEL_PT_SYS		0
87#define	KERNEL_PT_KERN		1
88#define	KERNEL_PT_KERN_NUM	22
89/* L2 table for mapping after kernel */
90#define	KERNEL_PT_AFKERNEL	KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
91#define	KERNEL_PT_AFKERNEL_NUM	5
92
93/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
94#define	NUM_KERNEL_PTS	(KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
95
96struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
97
98/* Physical and virtual addresses for some global pages */
99
100struct pv_addr systempage;
101struct pv_addr msgbufpv;
102struct pv_addr irqstack;
103struct pv_addr undstack;
104struct pv_addr abtstack;
105struct pv_addr kernelstack;
106
107/* Static device mappings. */
108static const struct devmap_entry econa_devmap[] = {
109	{
110		/*
111		 * This maps DDR SDRAM
112		 */
113		ECONA_SDRAM_BASE, /*virtual*/
114		ECONA_SDRAM_BASE, /*physical*/
115		ECONA_SDRAM_SIZE, /*size*/
116	},
117	/*
118	 * Map the on-board devices VA == PA so that we can access them
119	 * with the MMU on or off.
120	 */
121	{
122		/*
123		 * This maps the interrupt controller, the UART
124		 * and the timer.
125		 */
126		ECONA_IO_BASE, /*virtual*/
127		ECONA_IO_BASE, /*physical*/
128		ECONA_IO_SIZE, /*size*/
129	},
130	{
131		/*
132		 * OHCI + EHCI
133		 */
134		ECONA_OHCI_VBASE, /*virtual*/
135		ECONA_OHCI_PBASE, /*physical*/
136		ECONA_USB_SIZE, /*size*/
137	},
138	{
139		/*
140		 * CFI
141		 */
142		ECONA_CFI_VBASE, /*virtual*/
143		ECONA_CFI_PBASE, /*physical*/
144		ECONA_CFI_SIZE,
145	},
146	{
147		0,
148		0,
149		0,
150	}
151};
152
153
154void *
155initarm(struct arm_boot_params *abp)
156{
157	struct pv_addr  kernel_l1pt;
158	volatile uint32_t * ddr = (uint32_t *)0x4000000C;
159	int loop, i;
160	u_int l1pagetable;
161	vm_offset_t afterkern;
162	vm_offset_t freemempos;
163	vm_offset_t lastaddr;
164	uint32_t memsize;
165	int mem_info;
166
167	boothowto = RB_VERBOSE;
168	lastaddr = parse_boot_param(abp);
169	arm_physmem_kernaddr = abp->abp_physaddr;
170	set_cpufuncs();
171	pcpu0_init();
172
173	/* Do basic tuning, hz etc */
174      	init_param1();
175
176
177	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
178	/* Define a macro to simplify memory allocation */
179#define	valloc_pages(var, np)                   \
180	alloc_pages((var).pv_va, (np));         \
181	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
182
183#define	alloc_pages(var, np)			\
184	(var) = freemempos;		\
185	freemempos += (np * PAGE_SIZE);		\
186	memset((char *)(var), 0, ((np) * PAGE_SIZE));
187
188	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
189		freemempos += PAGE_SIZE;
190	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
191	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
192		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
193			valloc_pages(kernel_pt_table[loop],
194			    L2_TABLE_SIZE / PAGE_SIZE);
195		} else {
196			kernel_pt_table[loop].pv_va = freemempos -
197			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
198			    L2_TABLE_SIZE_REAL;
199			kernel_pt_table[loop].pv_pa =
200			    kernel_pt_table[loop].pv_va - KERNVIRTADDR +
201			    abp->abp_physaddr;
202		}
203	}
204	/*
205	 * Allocate a page for the system page mapped to V0x00000000
206	 * This page will just contain the system vectors and can be
207	 * shared by all processes.
208	 */
209	valloc_pages(systempage, 1);
210
211	/* Allocate stacks for all modes */
212	valloc_pages(irqstack, IRQ_STACK_SIZE);
213	valloc_pages(abtstack, ABT_STACK_SIZE);
214	valloc_pages(undstack, UND_STACK_SIZE);
215	valloc_pages(kernelstack, kstack_pages);
216	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
217
218	/*
219	 * Now we start construction of the L1 page table
220	 * We start by mapping the L2 page tables into the L1.
221	 * This means that we can replace L1 mappings later on if necessary
222	 */
223	l1pagetable = kernel_l1pt.pv_va;
224
225	/* Map the L2 pages tables in the L1 page table */
226	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
227	    &kernel_pt_table[KERNEL_PT_SYS]);
228	for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
229		pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
230		    &kernel_pt_table[KERNEL_PT_KERN + i]);
231	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
232	   rounddown2(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE, PAGE_SIZE),
233	   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
234	afterkern = round_page(rounddown2(lastaddr + L1_S_SIZE, L1_S_SIZE));
235	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
236		pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
237		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
238	}
239
240	/* Map the vector page. */
241	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
242	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
243
244
245	/* Map the stack pages */
246	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
247	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
248	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
249	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
250	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
251	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
252	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
253	    kstack_pages * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
254
255	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
256	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
257	pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
258	    msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
259
260	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
261		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
262		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
263		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
264	}
265
266	devmap_bootstrap(l1pagetable, econa_devmap);
267	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
268	cpu_setttb(kernel_l1pt.pv_pa);
269	cpu_tlb_flushID();
270	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
271	cninit();
272	mem_info = ((*ddr) >> 4) & 0x3;
273	memsize = (8<<mem_info)*1024*1024;
274
275	/* Enable MMU in system control register (SCTLR). */
276	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
277
278	/*
279	 * Pages were allocated during the secondary bootstrap for the
280	 * stacks for different CPU modes.
281	 * We must now set the r13 registers in the different CPU modes to
282	 * point to these stacks.
283	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
284	 * of the stack memory.
285	 */
286	set_stackptrs(0);
287
288	/*
289	 * We must now clean the cache again....
290	 * Cleaning may be done by reading new data to displace any
291	 * dirty data in the cache. This will have happened in cpu_setttb()
292	 * but since we are boot strapping the addresses used for the read
293	 * may have just been remapped and thus the cache could be out
294	 * of sync. A re-clean after the switch will cure this.
295	 * After booting there are no gross relocations of the kernel thus
296	 * this problem will not occur after initarm().
297	 */
298	cpu_idcache_wbinv_all();
299	cpu_setup();
300
301	undefined_init();
302
303	init_proc0(kernelstack.pv_va);
304
305	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
306
307	pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
308	vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
309	pmap_bootstrap(freemempos, &kernel_l1pt);
310
311	msgbufp = (void*)msgbufpv.pv_va;
312	msgbufinit(msgbufp, msgbufsize);
313
314	mutex_init();
315
316	/*
317	 * Add the physical ram we have available.
318	 *
319	 * Exclude the kernel, and all the things we allocated which immediately
320	 * follow the kernel, from the VM allocation pool but not from crash
321	 * dumps.  virtual_avail is a global variable which tracks the kva we've
322	 * "allocated" while setting up pmaps.
323	 *
324	 * Prepare the list of physical memory available to the vm subsystem.
325	 */
326	arm_physmem_hardware_region(PHYSADDR, memsize);
327	arm_physmem_exclude_region(abp->abp_physaddr,
328	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
329	arm_physmem_init_kernel_globals();
330
331	init_param2(physmem);
332	kdb_init();
333
334	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
335	    sizeof(struct pcb)));
336}
337