trap-v4.c revision 295887
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81#include <sys/cdefs.h>
82__FBSDID("$FreeBSD: head/sys/arm/arm/trap-v4.c 295887 2016-02-22 12:57:08Z skra $");
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/proc.h>
87#include <sys/lock.h>
88#include <sys/mutex.h>
89#include <sys/signalvar.h>
90
91#include <vm/vm.h>
92#include <vm/pmap.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_map.h>
95#include <vm/vm_extern.h>
96
97#include <machine/cpu.h>
98#include <machine/frame.h>
99#include <machine/machdep.h>
100#include <machine/pcb.h>
101#include <machine/vmparam.h>
102
103#ifdef KDB
104#include <sys/kdb.h>
105#endif
106
107#ifdef KDTRACE_HOOKS
108#include <sys/dtrace_bsd.h>
109#endif
110
111#define ReadWord(a)	(*((volatile unsigned int *)(a)))
112
113#ifdef DEBUG
114int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
115#endif
116
117struct ksig {
118	int signb;
119	u_long code;
120};
121struct data_abort {
122	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
123	    struct ksig *);
124	const char *desc;
125};
126
127static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
128    struct ksig *);
129static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
130    struct ksig *);
131static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
132    struct ksig *);
133static void prefetch_abort_handler(struct trapframe *);
134
135static const struct data_abort data_aborts[] = {
136	{dab_fatal,	"Vector Exception"},
137	{dab_align,	"Alignment Fault 1"},
138	{dab_fatal,	"Terminal Exception"},
139	{dab_align,	"Alignment Fault 3"},
140	{dab_buserr,	"External Linefetch Abort (S)"},
141	{NULL,		"Translation Fault (S)"},
142#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
143	{NULL,		"Translation Flag Fault"},
144#else
145	{dab_buserr,	"External Linefetch Abort (P)"},
146#endif
147	{NULL,		"Translation Fault (P)"},
148	{dab_buserr,	"External Non-Linefetch Abort (S)"},
149	{NULL,		"Domain Fault (S)"},
150	{dab_buserr,	"External Non-Linefetch Abort (P)"},
151	{NULL,		"Domain Fault (P)"},
152	{dab_buserr,	"External Translation Abort (L1)"},
153	{NULL,		"Permission Fault (S)"},
154	{dab_buserr,	"External Translation Abort (L2)"},
155	{NULL,		"Permission Fault (P)"}
156};
157
158/* Determine if a fault came from user mode */
159#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
160
161/* Determine if 'x' is a permission fault */
162#define	IS_PERMISSION_FAULT(x)					\
163	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
164	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
165
166static __inline void
167call_trapsignal(struct thread *td, int sig, u_long code)
168{
169	ksiginfo_t ksi;
170
171	ksiginfo_init_trap(&ksi);
172	ksi.ksi_signo = sig;
173	ksi.ksi_code = (int)code;
174	trapsignal(td, &ksi);
175}
176
177void
178abort_handler(struct trapframe *tf, int type)
179{
180	struct vm_map *map;
181	struct pcb *pcb;
182	struct thread *td;
183	u_int user, far, fsr;
184	vm_prot_t ftype;
185	void *onfault;
186	vm_offset_t va;
187	int error = 0;
188	struct ksig ksig;
189	struct proc *p;
190
191	if (type == 1)
192		return (prefetch_abort_handler(tf));
193
194	/* Grab FAR/FSR before enabling interrupts */
195	far = cpu_faultaddress();
196	fsr = cpu_faultstatus();
197#if 0
198	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
199	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
200#endif
201
202	/* Update vmmeter statistics */
203#if 0
204	vmexp.traps++;
205#endif
206
207	td = curthread;
208	p = td->td_proc;
209
210	PCPU_INC(cnt.v_trap);
211	/* Data abort came from user mode? */
212	user = TRAP_USERMODE(tf);
213
214	if (user) {
215		td->td_pticks = 0;
216		td->td_frame = tf;
217		if (td->td_cowgen != td->td_proc->p_cowgen)
218			thread_cow_update(td);
219
220	}
221	/* Grab the current pcb */
222	pcb = td->td_pcb;
223	/* Re-enable interrupts if they were enabled previously */
224	if (td->td_md.md_spinlock_count == 0) {
225		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
226			enable_interrupts(PSR_I);
227		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
228			enable_interrupts(PSR_F);
229	}
230
231
232	/* Invoke the appropriate handler, if necessary */
233	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
234		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
235		    td, &ksig)) {
236			goto do_trapsignal;
237		}
238		goto out;
239	}
240
241	/*
242	 * At this point, we're dealing with one of the following data aborts:
243	 *
244	 *  FAULT_TRANS_S  - Translation -- Section
245	 *  FAULT_TRANS_P  - Translation -- Page
246	 *  FAULT_DOMAIN_S - Domain -- Section
247	 *  FAULT_DOMAIN_P - Domain -- Page
248	 *  FAULT_PERM_S   - Permission -- Section
249	 *  FAULT_PERM_P   - Permission -- Page
250	 *
251	 * These are the main virtual memory-related faults signalled by
252	 * the MMU.
253	 */
254
255	/*
256	 * Make sure the Program Counter is sane. We could fall foul of
257	 * someone executing Thumb code, in which case the PC might not
258	 * be word-aligned. This would cause a kernel alignment fault
259	 * further down if we have to decode the current instruction.
260	 * XXX: It would be nice to be able to support Thumb at some point.
261	 */
262	if (__predict_false((tf->tf_pc & 3) != 0)) {
263		if (user) {
264			/*
265			 * Give the user an illegal instruction signal.
266			 */
267			/* Deliver a SIGILL to the process */
268			ksig.signb = SIGILL;
269			ksig.code = 0;
270			goto do_trapsignal;
271		}
272
273		/*
274		 * The kernel never executes Thumb code.
275		 */
276		printf("\ndata_abort_fault: Misaligned Kernel-mode "
277		    "Program Counter\n");
278		dab_fatal(tf, fsr, far, td, &ksig);
279	}
280
281	va = trunc_page((vm_offset_t)far);
282
283	/*
284	 * It is only a kernel address space fault iff:
285	 *	1. user == 0  and
286	 *	2. pcb_onfault not set or
287	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
288	 */
289	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
290	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
291	    __predict_true((pcb->pcb_onfault == NULL ||
292	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
293		map = kernel_map;
294
295		/* Was the fault due to the FPE/IPKDB ? */
296		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
297
298			/*
299			 * Force exit via userret()
300			 * This is necessary as the FPE is an extension to
301			 * userland that actually runs in a priveledged mode
302			 * but uses USR mode permissions for its accesses.
303			 */
304			user = 1;
305			ksig.signb = SIGSEGV;
306			ksig.code = 0;
307			goto do_trapsignal;
308		}
309	} else {
310		map = &td->td_proc->p_vmspace->vm_map;
311	}
312
313	/*
314	 * We need to know whether the page should be mapped as R or R/W.
315	 * On armv4, the fault status register does not indicate whether
316	 * the access was a read or write.  We know that a permission fault
317	 * can only be the result of a write to a read-only location, so we
318	 * can deal with those quickly.  Otherwise we need to disassemble
319	 * the faulting instruction to determine if it was a write.
320	 */
321	if (IS_PERMISSION_FAULT(fsr))
322		ftype = VM_PROT_WRITE;
323	else {
324		u_int insn = ReadWord(tf->tf_pc);
325
326		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
327		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
328		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
329			ftype = VM_PROT_WRITE;
330		} else {
331			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
332				ftype = VM_PROT_READ | VM_PROT_WRITE;
333			else
334				ftype = VM_PROT_READ;
335		}
336	}
337
338	/*
339	 * See if the fault is as a result of ref/mod emulation,
340	 * or domain mismatch.
341	 */
342#ifdef DEBUG
343	last_fault_code = fsr;
344#endif
345	if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK,
346	    NULL, "Kernel page fault") != 0)
347		goto fatal_pagefault;
348
349	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
350	    user)) {
351		goto out;
352	}
353
354	onfault = pcb->pcb_onfault;
355	pcb->pcb_onfault = NULL;
356	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
357	pcb->pcb_onfault = onfault;
358	if (__predict_true(error == 0))
359		goto out;
360fatal_pagefault:
361	if (user == 0) {
362		if (pcb->pcb_onfault) {
363			tf->tf_r0 = error;
364			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
365			return;
366		}
367
368		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
369		    error);
370		dab_fatal(tf, fsr, far, td, &ksig);
371	}
372
373
374	if (error == ENOMEM) {
375		printf("VM: pid %d (%s), uid %d killed: "
376		    "out of swap\n", td->td_proc->p_pid, td->td_name,
377		    (td->td_proc->p_ucred) ?
378		     td->td_proc->p_ucred->cr_uid : -1);
379		ksig.signb = SIGKILL;
380	} else {
381		ksig.signb = SIGSEGV;
382	}
383	ksig.code = 0;
384do_trapsignal:
385	call_trapsignal(td, ksig.signb, ksig.code);
386out:
387	/* If returning to user mode, make sure to invoke userret() */
388	if (user)
389		userret(td, tf);
390}
391
392/*
393 * dab_fatal() handles the following data aborts:
394 *
395 *  FAULT_WRTBUF_0 - Vector Exception
396 *  FAULT_WRTBUF_1 - Terminal Exception
397 *
398 * We should never see these on a properly functioning system.
399 *
400 * This function is also called by the other handlers if they
401 * detect a fatal problem.
402 *
403 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
404 */
405static int
406dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
407    struct ksig *ksig)
408{
409	const char *mode;
410
411#ifdef KDTRACE_HOOKS
412	if (!TRAP_USERMODE(tf))	{
413		if (dtrace_trap_func != NULL && (*dtrace_trap_func)(tf, far & FAULT_TYPE_MASK))
414			return (0);
415	}
416#endif
417
418	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
419
420	disable_interrupts(PSR_I|PSR_F);
421	if (td != NULL) {
422		printf("Fatal %s mode data abort: '%s'\n", mode,
423		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
424		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
425		if ((fsr & FAULT_IMPRECISE) == 0)
426			printf("%08x, ", far);
427		else
428			printf("Invalid,  ");
429		printf("spsr=%08x\n", tf->tf_spsr);
430	} else {
431		printf("Fatal %s mode prefetch abort at 0x%08x\n",
432		    mode, tf->tf_pc);
433		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
434	}
435
436	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
437	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
438	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
439	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
440	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
441	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
442	printf("r12=%08x, ", tf->tf_r12);
443
444	if (TRAP_USERMODE(tf))
445		printf("usp=%08x, ulr=%08x",
446		    tf->tf_usr_sp, tf->tf_usr_lr);
447	else
448		printf("ssp=%08x, slr=%08x",
449		    tf->tf_svc_sp, tf->tf_svc_lr);
450	printf(", pc =%08x\n\n", tf->tf_pc);
451
452#ifdef KDB
453	if (debugger_on_panic || kdb_active)
454		if (kdb_trap(fsr, 0, tf))
455			return (0);
456#endif
457	panic("Fatal abort");
458	/*NOTREACHED*/
459}
460
461/*
462 * dab_align() handles the following data aborts:
463 *
464 *  FAULT_ALIGN_0 - Alignment fault
465 *  FAULT_ALIGN_1 - Alignment fault
466 *
467 * These faults are fatal if they happen in kernel mode. Otherwise, we
468 * deliver a bus error to the process.
469 */
470static int
471dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
472    struct ksig *ksig)
473{
474
475	/* Alignment faults are always fatal if they occur in kernel mode */
476	if (!TRAP_USERMODE(tf)) {
477		if (!td || !td->td_pcb->pcb_onfault)
478			dab_fatal(tf, fsr, far, td, ksig);
479		tf->tf_r0 = EFAULT;
480		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
481		return (0);
482	}
483
484	/* pcb_onfault *must* be NULL at this point */
485
486	/* Deliver a bus error signal to the process */
487	ksig->code = 0;
488	ksig->signb = SIGBUS;
489	td->td_frame = tf;
490
491	return (1);
492}
493
494/*
495 * dab_buserr() handles the following data aborts:
496 *
497 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
498 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
499 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
500 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
501 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
502 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
503 *
504 * If pcb_onfault is set, flag the fault and return to the handler.
505 * If the fault occurred in user mode, give the process a SIGBUS.
506 *
507 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
508 * can be flagged as imprecise in the FSR. This causes a real headache
509 * since some of the machine state is lost. In this case, tf->tf_pc
510 * may not actually point to the offending instruction. In fact, if
511 * we've taken a double abort fault, it generally points somewhere near
512 * the top of "data_abort_entry" in exception.S.
513 *
514 * In all other cases, these data aborts are considered fatal.
515 */
516static int
517dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
518    struct ksig *ksig)
519{
520	struct pcb *pcb = td->td_pcb;
521
522#ifdef __XSCALE__
523	if ((fsr & FAULT_IMPRECISE) != 0 &&
524	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
525		/*
526		 * Oops, an imprecise, double abort fault. We've lost the
527		 * r14_abt/spsr_abt values corresponding to the original
528		 * abort, and the spsr saved in the trapframe indicates
529		 * ABT mode.
530		 */
531		tf->tf_spsr &= ~PSR_MODE;
532
533		/*
534		 * We use a simple heuristic to determine if the double abort
535		 * happened as a result of a kernel or user mode access.
536		 * If the current trapframe is at the top of the kernel stack,
537		 * the fault _must_ have come from user mode.
538		 */
539		if (tf != ((struct trapframe *)pcb->pcb_regs.sf_sp) - 1) {
540			/*
541			 * Kernel mode. We're either about to die a
542			 * spectacular death, or pcb_onfault will come
543			 * to our rescue. Either way, the current value
544			 * of tf->tf_pc is irrelevant.
545			 */
546			tf->tf_spsr |= PSR_SVC32_MODE;
547			if (pcb->pcb_onfault == NULL)
548				printf("\nKernel mode double abort!\n");
549		} else {
550			/*
551			 * User mode. We've lost the program counter at the
552			 * time of the fault (not that it was accurate anyway;
553			 * it's not called an imprecise fault for nothing).
554			 * About all we can do is copy r14_usr to tf_pc and
555			 * hope for the best. The process is about to get a
556			 * SIGBUS, so it's probably history anyway.
557			 */
558			tf->tf_spsr |= PSR_USR32_MODE;
559			tf->tf_pc = tf->tf_usr_lr;
560		}
561	}
562
563	/* FAR is invalid for imprecise exceptions */
564	if ((fsr & FAULT_IMPRECISE) != 0)
565		far = 0;
566#endif /* __XSCALE__ */
567
568	if (pcb->pcb_onfault) {
569		tf->tf_r0 = EFAULT;
570		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
571		return (0);
572	}
573
574	/*
575	 * At this point, if the fault happened in kernel mode, we're toast
576	 */
577	if (!TRAP_USERMODE(tf))
578		dab_fatal(tf, fsr, far, td, ksig);
579
580	/* Deliver a bus error signal to the process */
581	ksig->signb = SIGBUS;
582	ksig->code = 0;
583	td->td_frame = tf;
584
585	return (1);
586}
587
588/*
589 * void prefetch_abort_handler(struct trapframe *tf)
590 *
591 * Abort handler called when instruction execution occurs at
592 * a non existent or restricted (access permissions) memory page.
593 * If the address is invalid and we were in SVC mode then panic as
594 * the kernel should never prefetch abort.
595 * If the address is invalid and the page is mapped then the user process
596 * does no have read permission so send it a signal.
597 * Otherwise fault the page in and try again.
598 */
599static void
600prefetch_abort_handler(struct trapframe *tf)
601{
602	struct thread *td;
603	struct proc * p;
604	struct vm_map *map;
605	vm_offset_t fault_pc, va;
606	int error = 0;
607	struct ksig ksig;
608
609
610#if 0
611	/* Update vmmeter statistics */
612	uvmexp.traps++;
613#endif
614#if 0
615	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
616	    (void*)tf->tf_usr_lr);
617#endif
618
619 	td = curthread;
620	p = td->td_proc;
621	PCPU_INC(cnt.v_trap);
622
623	if (TRAP_USERMODE(tf)) {
624		td->td_frame = tf;
625		if (td->td_cowgen != td->td_proc->p_cowgen)
626			thread_cow_update(td);
627	}
628	fault_pc = tf->tf_pc;
629	if (td->td_md.md_spinlock_count == 0) {
630		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
631			enable_interrupts(PSR_I);
632		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
633			enable_interrupts(PSR_F);
634	}
635
636	/* Prefetch aborts cannot happen in kernel mode */
637	if (__predict_false(!TRAP_USERMODE(tf)))
638		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
639	td->td_pticks = 0;
640
641
642	/* Ok validate the address, can only execute in USER space */
643	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
644	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
645		ksig.signb = SIGSEGV;
646		ksig.code = 0;
647		goto do_trapsignal;
648	}
649
650	map = &td->td_proc->p_vmspace->vm_map;
651	va = trunc_page(fault_pc);
652
653	/*
654	 * See if the pmap can handle this fault on its own...
655	 */
656#ifdef DEBUG
657	last_fault_code = -1;
658#endif
659	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
660		goto out;
661
662	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
663	    VM_FAULT_NORMAL);
664	if (__predict_true(error == 0))
665		goto out;
666
667	if (error == ENOMEM) {
668		printf("VM: pid %d (%s), uid %d killed: "
669		    "out of swap\n", td->td_proc->p_pid, td->td_name,
670		    (td->td_proc->p_ucred) ?
671		     td->td_proc->p_ucred->cr_uid : -1);
672		ksig.signb = SIGKILL;
673	} else {
674		ksig.signb = SIGSEGV;
675	}
676	ksig.code = 0;
677
678do_trapsignal:
679	call_trapsignal(td, ksig.signb, ksig.code);
680
681out:
682	userret(td, tf);
683
684}
685
686extern int badaddr_read_1(const uint8_t *, uint8_t *);
687extern int badaddr_read_2(const uint16_t *, uint16_t *);
688extern int badaddr_read_4(const uint32_t *, uint32_t *);
689/*
690 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
691 * If the read succeeds, the value is written to 'rptr' and zero is returned.
692 * Else, return EFAULT.
693 */
694int
695badaddr_read(void *addr, size_t size, void *rptr)
696{
697	union {
698		uint8_t v1;
699		uint16_t v2;
700		uint32_t v4;
701	} u;
702	int rv;
703
704	cpu_drain_writebuf();
705
706	/* Read from the test address. */
707	switch (size) {
708	case sizeof(uint8_t):
709		rv = badaddr_read_1(addr, &u.v1);
710		if (rv == 0 && rptr)
711			*(uint8_t *) rptr = u.v1;
712		break;
713
714	case sizeof(uint16_t):
715		rv = badaddr_read_2(addr, &u.v2);
716		if (rv == 0 && rptr)
717			*(uint16_t *) rptr = u.v2;
718		break;
719
720	case sizeof(uint32_t):
721		rv = badaddr_read_4(addr, &u.v4);
722		if (rv == 0 && rptr)
723			*(uint32_t *) rptr = u.v4;
724		break;
725
726	default:
727		panic("badaddr: invalid size (%lu)", (u_long) size);
728	}
729
730	/* Return EFAULT if the address was invalid, else zero */
731	return (rv);
732}
733