1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81#include <sys/cdefs.h>
82__FBSDID("$FreeBSD: stable/11/sys/arm/arm/trap-v4.c 344905 2019-03-08 00:20:37Z jhb $");
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/proc.h>
87#include <sys/lock.h>
88#include <sys/mutex.h>
89#include <sys/signalvar.h>
90#include <sys/vmmeter.h>
91
92#include <vm/vm.h>
93#include <vm/pmap.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_map.h>
96#include <vm/vm_extern.h>
97
98#include <machine/cpu.h>
99#include <machine/frame.h>
100#include <machine/machdep.h>
101#include <machine/pcb.h>
102#include <machine/vmparam.h>
103
104#ifdef KDB
105#include <sys/kdb.h>
106#endif
107
108#ifdef KDTRACE_HOOKS
109#include <sys/dtrace_bsd.h>
110#endif
111
112#define ReadWord(a)	(*((volatile unsigned int *)(a)))
113
114#ifdef DEBUG
115int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
116#endif
117
118struct ksig {
119	int signb;
120	u_long code;
121};
122struct data_abort {
123	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
124	    struct ksig *);
125	const char *desc;
126};
127
128static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
129    struct ksig *);
130static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
131    struct ksig *);
132static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
133    struct ksig *);
134static void prefetch_abort_handler(struct trapframe *);
135
136static const struct data_abort data_aborts[] = {
137	{dab_fatal,	"Vector Exception"},
138	{dab_align,	"Alignment Fault 1"},
139	{dab_fatal,	"Terminal Exception"},
140	{dab_align,	"Alignment Fault 3"},
141	{dab_buserr,	"External Linefetch Abort (S)"},
142	{NULL,		"Translation Fault (S)"},
143	{dab_buserr,	"External Linefetch Abort (P)"},
144	{NULL,		"Translation Fault (P)"},
145	{dab_buserr,	"External Non-Linefetch Abort (S)"},
146	{NULL,		"Domain Fault (S)"},
147	{dab_buserr,	"External Non-Linefetch Abort (P)"},
148	{NULL,		"Domain Fault (P)"},
149	{dab_buserr,	"External Translation Abort (L1)"},
150	{NULL,		"Permission Fault (S)"},
151	{dab_buserr,	"External Translation Abort (L2)"},
152	{NULL,		"Permission Fault (P)"}
153};
154
155/* Determine if a fault came from user mode */
156#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
157
158/* Determine if 'x' is a permission fault */
159#define	IS_PERMISSION_FAULT(x)					\
160	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
161	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162
163static __inline void
164call_trapsignal(struct thread *td, int sig, u_long code)
165{
166	ksiginfo_t ksi;
167
168	ksiginfo_init_trap(&ksi);
169	ksi.ksi_signo = sig;
170	ksi.ksi_code = (int)code;
171	trapsignal(td, &ksi);
172}
173
174void
175abort_handler(struct trapframe *tf, int type)
176{
177	struct vm_map *map;
178	struct pcb *pcb;
179	struct thread *td;
180	u_int user, far, fsr;
181	vm_prot_t ftype;
182	void *onfault;
183	vm_offset_t va;
184	int error = 0;
185	struct ksig ksig;
186	struct proc *p;
187
188	if (type == 1)
189		return (prefetch_abort_handler(tf));
190
191	/* Grab FAR/FSR before enabling interrupts */
192	far = cpu_faultaddress();
193	fsr = cpu_faultstatus();
194#if 0
195	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
196	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
197#endif
198
199	/* Update vmmeter statistics */
200#if 0
201	vmexp.traps++;
202#endif
203
204	td = curthread;
205	p = td->td_proc;
206
207	PCPU_INC(cnt.v_trap);
208	/* Data abort came from user mode? */
209	user = TRAP_USERMODE(tf);
210
211	if (user) {
212		td->td_pticks = 0;
213		td->td_frame = tf;
214		if (td->td_cowgen != td->td_proc->p_cowgen)
215			thread_cow_update(td);
216
217	}
218	/* Grab the current pcb */
219	pcb = td->td_pcb;
220	/* Re-enable interrupts if they were enabled previously */
221	if (td->td_md.md_spinlock_count == 0) {
222		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
223			enable_interrupts(PSR_I);
224		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
225			enable_interrupts(PSR_F);
226	}
227
228
229	/* Invoke the appropriate handler, if necessary */
230	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
231		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
232		    td, &ksig)) {
233			goto do_trapsignal;
234		}
235		goto out;
236	}
237
238	/*
239	 * At this point, we're dealing with one of the following data aborts:
240	 *
241	 *  FAULT_TRANS_S  - Translation -- Section
242	 *  FAULT_TRANS_P  - Translation -- Page
243	 *  FAULT_DOMAIN_S - Domain -- Section
244	 *  FAULT_DOMAIN_P - Domain -- Page
245	 *  FAULT_PERM_S   - Permission -- Section
246	 *  FAULT_PERM_P   - Permission -- Page
247	 *
248	 * These are the main virtual memory-related faults signalled by
249	 * the MMU.
250	 */
251
252	/*
253	 * Make sure the Program Counter is sane. We could fall foul of
254	 * someone executing Thumb code, in which case the PC might not
255	 * be word-aligned. This would cause a kernel alignment fault
256	 * further down if we have to decode the current instruction.
257	 * XXX: It would be nice to be able to support Thumb at some point.
258	 */
259	if (__predict_false((tf->tf_pc & 3) != 0)) {
260		if (user) {
261			/*
262			 * Give the user an illegal instruction signal.
263			 */
264			/* Deliver a SIGILL to the process */
265			ksig.signb = SIGILL;
266			ksig.code = 0;
267			goto do_trapsignal;
268		}
269
270		/*
271		 * The kernel never executes Thumb code.
272		 */
273		printf("\ndata_abort_fault: Misaligned Kernel-mode "
274		    "Program Counter\n");
275		dab_fatal(tf, fsr, far, td, &ksig);
276	}
277
278	va = trunc_page((vm_offset_t)far);
279
280	/*
281	 * It is only a kernel address space fault iff:
282	 *	1. user == 0  and
283	 *	2. pcb_onfault not set or
284	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
285	 */
286	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
287	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
288	    __predict_true((pcb->pcb_onfault == NULL ||
289	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
290		map = kernel_map;
291
292		/* Was the fault due to the FPE/IPKDB ? */
293		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
294
295			/*
296			 * Force exit via userret()
297			 * This is necessary as the FPE is an extension to
298			 * userland that actually runs in a priveledged mode
299			 * but uses USR mode permissions for its accesses.
300			 */
301			user = 1;
302			ksig.signb = SIGSEGV;
303			ksig.code = 0;
304			goto do_trapsignal;
305		}
306	} else {
307		map = &td->td_proc->p_vmspace->vm_map;
308	}
309
310	/*
311	 * We need to know whether the page should be mapped as R or R/W.
312	 * On armv4, the fault status register does not indicate whether
313	 * the access was a read or write.  We know that a permission fault
314	 * can only be the result of a write to a read-only location, so we
315	 * can deal with those quickly.  Otherwise we need to disassemble
316	 * the faulting instruction to determine if it was a write.
317	 */
318	if (IS_PERMISSION_FAULT(fsr))
319		ftype = VM_PROT_WRITE;
320	else {
321		u_int insn = ReadWord(tf->tf_pc);
322
323		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
324		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
325		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
326			ftype = VM_PROT_WRITE;
327		} else {
328			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
329				ftype = VM_PROT_READ | VM_PROT_WRITE;
330			else
331				ftype = VM_PROT_READ;
332		}
333	}
334
335	/*
336	 * See if the fault is as a result of ref/mod emulation,
337	 * or domain mismatch.
338	 */
339#ifdef DEBUG
340	last_fault_code = fsr;
341#endif
342	if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK,
343	    NULL, "Kernel page fault") != 0)
344		goto fatal_pagefault;
345
346	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
347	    user)) {
348		goto out;
349	}
350
351	onfault = pcb->pcb_onfault;
352	pcb->pcb_onfault = NULL;
353	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
354	pcb->pcb_onfault = onfault;
355	if (__predict_true(error == 0))
356		goto out;
357fatal_pagefault:
358	if (user == 0) {
359		if (pcb->pcb_onfault) {
360			tf->tf_r0 = error;
361			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
362			return;
363		}
364
365		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
366		    error);
367		dab_fatal(tf, fsr, far, td, &ksig);
368	}
369
370
371	if (error == ENOMEM) {
372		printf("VM: pid %d (%s), uid %d killed: "
373		    "out of swap\n", td->td_proc->p_pid, td->td_name,
374		    (td->td_proc->p_ucred) ?
375		     td->td_proc->p_ucred->cr_uid : -1);
376		ksig.signb = SIGKILL;
377	} else {
378		ksig.signb = SIGSEGV;
379	}
380	ksig.code = 0;
381do_trapsignal:
382	call_trapsignal(td, ksig.signb, ksig.code);
383out:
384	/* If returning to user mode, make sure to invoke userret() */
385	if (user)
386		userret(td, tf);
387}
388
389/*
390 * dab_fatal() handles the following data aborts:
391 *
392 *  FAULT_WRTBUF_0 - Vector Exception
393 *  FAULT_WRTBUF_1 - Terminal Exception
394 *
395 * We should never see these on a properly functioning system.
396 *
397 * This function is also called by the other handlers if they
398 * detect a fatal problem.
399 *
400 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
401 */
402static int
403dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
404    struct ksig *ksig)
405{
406	const char *mode;
407#ifdef KDB
408	bool handled;
409#endif
410
411#ifdef KDB
412	if (kdb_active) {
413		kdb_reenter();
414		return (0);
415	}
416#endif
417#ifdef KDTRACE_HOOKS
418	if (!TRAP_USERMODE(tf))	{
419		if (dtrace_trap_func != NULL && (*dtrace_trap_func)(tf, far & FAULT_TYPE_MASK))
420			return (0);
421	}
422#endif
423
424	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
425
426	disable_interrupts(PSR_I|PSR_F);
427	if (td != NULL) {
428		printf("Fatal %s mode data abort: '%s'\n", mode,
429		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
430		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
431		if ((fsr & FAULT_IMPRECISE) == 0)
432			printf("%08x, ", far);
433		else
434			printf("Invalid,  ");
435		printf("spsr=%08x\n", tf->tf_spsr);
436	} else {
437		printf("Fatal %s mode prefetch abort at 0x%08x\n",
438		    mode, tf->tf_pc);
439		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
440	}
441
442	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
443	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
444	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
445	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
446	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
447	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
448	printf("r12=%08x, ", tf->tf_r12);
449
450	if (TRAP_USERMODE(tf))
451		printf("usp=%08x, ulr=%08x",
452		    tf->tf_usr_sp, tf->tf_usr_lr);
453	else
454		printf("ssp=%08x, slr=%08x",
455		    tf->tf_svc_sp, tf->tf_svc_lr);
456	printf(", pc =%08x\n\n", tf->tf_pc);
457
458#ifdef KDB
459	if (debugger_on_trap) {
460		kdb_why = KDB_WHY_TRAP;
461		handled = kdb_trap(fsr, 0, tf);
462		kdb_why = KDB_WHY_UNSET;
463		if (handled)
464			return (0);
465	}
466#endif
467	panic("Fatal abort");
468	/*NOTREACHED*/
469}
470
471/*
472 * dab_align() handles the following data aborts:
473 *
474 *  FAULT_ALIGN_0 - Alignment fault
475 *  FAULT_ALIGN_1 - Alignment fault
476 *
477 * These faults are fatal if they happen in kernel mode. Otherwise, we
478 * deliver a bus error to the process.
479 */
480static int
481dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
482    struct ksig *ksig)
483{
484
485	/* Alignment faults are always fatal if they occur in kernel mode */
486	if (!TRAP_USERMODE(tf)) {
487		if (!td || !td->td_pcb->pcb_onfault)
488			dab_fatal(tf, fsr, far, td, ksig);
489		tf->tf_r0 = EFAULT;
490		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
491		return (0);
492	}
493
494	/* pcb_onfault *must* be NULL at this point */
495
496	/* Deliver a bus error signal to the process */
497	ksig->code = 0;
498	ksig->signb = SIGBUS;
499	td->td_frame = tf;
500
501	return (1);
502}
503
504/*
505 * dab_buserr() handles the following data aborts:
506 *
507 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
508 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
509 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
510 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
511 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
512 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
513 *
514 * If pcb_onfault is set, flag the fault and return to the handler.
515 * If the fault occurred in user mode, give the process a SIGBUS.
516 *
517 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
518 * can be flagged as imprecise in the FSR. This causes a real headache
519 * since some of the machine state is lost. In this case, tf->tf_pc
520 * may not actually point to the offending instruction. In fact, if
521 * we've taken a double abort fault, it generally points somewhere near
522 * the top of "data_abort_entry" in exception.S.
523 *
524 * In all other cases, these data aborts are considered fatal.
525 */
526static int
527dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
528    struct ksig *ksig)
529{
530	struct pcb *pcb = td->td_pcb;
531
532#ifdef __XSCALE__
533	if ((fsr & FAULT_IMPRECISE) != 0 &&
534	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
535		/*
536		 * Oops, an imprecise, double abort fault. We've lost the
537		 * r14_abt/spsr_abt values corresponding to the original
538		 * abort, and the spsr saved in the trapframe indicates
539		 * ABT mode.
540		 */
541		tf->tf_spsr &= ~PSR_MODE;
542
543		/*
544		 * We use a simple heuristic to determine if the double abort
545		 * happened as a result of a kernel or user mode access.
546		 * If the current trapframe is at the top of the kernel stack,
547		 * the fault _must_ have come from user mode.
548		 */
549		if (tf != ((struct trapframe *)pcb->pcb_regs.sf_sp) - 1) {
550			/*
551			 * Kernel mode. We're either about to die a
552			 * spectacular death, or pcb_onfault will come
553			 * to our rescue. Either way, the current value
554			 * of tf->tf_pc is irrelevant.
555			 */
556			tf->tf_spsr |= PSR_SVC32_MODE;
557			if (pcb->pcb_onfault == NULL)
558				printf("\nKernel mode double abort!\n");
559		} else {
560			/*
561			 * User mode. We've lost the program counter at the
562			 * time of the fault (not that it was accurate anyway;
563			 * it's not called an imprecise fault for nothing).
564			 * About all we can do is copy r14_usr to tf_pc and
565			 * hope for the best. The process is about to get a
566			 * SIGBUS, so it's probably history anyway.
567			 */
568			tf->tf_spsr |= PSR_USR32_MODE;
569			tf->tf_pc = tf->tf_usr_lr;
570		}
571	}
572
573	/* FAR is invalid for imprecise exceptions */
574	if ((fsr & FAULT_IMPRECISE) != 0)
575		far = 0;
576#endif /* __XSCALE__ */
577
578	if (pcb->pcb_onfault) {
579		tf->tf_r0 = EFAULT;
580		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
581		return (0);
582	}
583
584	/*
585	 * At this point, if the fault happened in kernel mode, we're toast
586	 */
587	if (!TRAP_USERMODE(tf))
588		dab_fatal(tf, fsr, far, td, ksig);
589
590	/* Deliver a bus error signal to the process */
591	ksig->signb = SIGBUS;
592	ksig->code = 0;
593	td->td_frame = tf;
594
595	return (1);
596}
597
598/*
599 * void prefetch_abort_handler(struct trapframe *tf)
600 *
601 * Abort handler called when instruction execution occurs at
602 * a non existent or restricted (access permissions) memory page.
603 * If the address is invalid and we were in SVC mode then panic as
604 * the kernel should never prefetch abort.
605 * If the address is invalid and the page is mapped then the user process
606 * does no have read permission so send it a signal.
607 * Otherwise fault the page in and try again.
608 */
609static void
610prefetch_abort_handler(struct trapframe *tf)
611{
612	struct thread *td;
613	struct proc * p;
614	struct vm_map *map;
615	vm_offset_t fault_pc, va;
616	int error = 0;
617	struct ksig ksig;
618
619
620#if 0
621	/* Update vmmeter statistics */
622	uvmexp.traps++;
623#endif
624#if 0
625	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
626	    (void*)tf->tf_usr_lr);
627#endif
628
629 	td = curthread;
630	p = td->td_proc;
631	PCPU_INC(cnt.v_trap);
632
633	if (TRAP_USERMODE(tf)) {
634		td->td_frame = tf;
635		if (td->td_cowgen != td->td_proc->p_cowgen)
636			thread_cow_update(td);
637	}
638	fault_pc = tf->tf_pc;
639	if (td->td_md.md_spinlock_count == 0) {
640		if (__predict_true(tf->tf_spsr & PSR_I) == 0)
641			enable_interrupts(PSR_I);
642		if (__predict_true(tf->tf_spsr & PSR_F) == 0)
643			enable_interrupts(PSR_F);
644	}
645
646	/* Prefetch aborts cannot happen in kernel mode */
647	if (__predict_false(!TRAP_USERMODE(tf)))
648		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
649	td->td_pticks = 0;
650
651
652	/* Ok validate the address, can only execute in USER space */
653	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
654	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
655		ksig.signb = SIGSEGV;
656		ksig.code = 0;
657		goto do_trapsignal;
658	}
659
660	map = &td->td_proc->p_vmspace->vm_map;
661	va = trunc_page(fault_pc);
662
663	/*
664	 * See if the pmap can handle this fault on its own...
665	 */
666#ifdef DEBUG
667	last_fault_code = -1;
668#endif
669	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
670		goto out;
671
672	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
673	    VM_FAULT_NORMAL);
674	if (__predict_true(error == 0))
675		goto out;
676
677	if (error == ENOMEM) {
678		printf("VM: pid %d (%s), uid %d killed: "
679		    "out of swap\n", td->td_proc->p_pid, td->td_name,
680		    (td->td_proc->p_ucred) ?
681		     td->td_proc->p_ucred->cr_uid : -1);
682		ksig.signb = SIGKILL;
683	} else {
684		ksig.signb = SIGSEGV;
685	}
686	ksig.code = 0;
687
688do_trapsignal:
689	call_trapsignal(td, ksig.signb, ksig.code);
690
691out:
692	userret(td, tf);
693
694}
695
696extern int badaddr_read_1(const uint8_t *, uint8_t *);
697extern int badaddr_read_2(const uint16_t *, uint16_t *);
698extern int badaddr_read_4(const uint32_t *, uint32_t *);
699/*
700 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
701 * If the read succeeds, the value is written to 'rptr' and zero is returned.
702 * Else, return EFAULT.
703 */
704int
705badaddr_read(void *addr, size_t size, void *rptr)
706{
707	union {
708		uint8_t v1;
709		uint16_t v2;
710		uint32_t v4;
711	} u;
712	int rv;
713
714	cpu_drain_writebuf();
715
716	/* Read from the test address. */
717	switch (size) {
718	case sizeof(uint8_t):
719		rv = badaddr_read_1(addr, &u.v1);
720		if (rv == 0 && rptr)
721			*(uint8_t *) rptr = u.v1;
722		break;
723
724	case sizeof(uint16_t):
725		rv = badaddr_read_2(addr, &u.v2);
726		if (rv == 0 && rptr)
727			*(uint16_t *) rptr = u.v2;
728		break;
729
730	case sizeof(uint32_t):
731		rv = badaddr_read_4(addr, &u.v4);
732		if (rv == 0 && rptr)
733			*(uint32_t *) rptr = u.v4;
734		break;
735
736	default:
737		panic("badaddr: invalid size (%lu)", (u_long) size);
738	}
739
740	/* Return EFAULT if the address was invalid, else zero */
741	return (rv);
742}
743