trap-v4.c revision 257217
1/*	$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $	*/
2
3/*-
4 * Copyright 2004 Olivier Houchard
5 * Copyright 2003 Wasabi Systems, Inc.
6 * All rights reserved.
7 *
8 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *      This product includes software developed for the NetBSD Project by
21 *      Wasabi Systems, Inc.
22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 *    or promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38/*-
39 * Copyright (c) 1994-1997 Mark Brinicombe.
40 * Copyright (c) 1994 Brini.
41 * All rights reserved.
42 *
43 * This code is derived from software written for Brini by Mark Brinicombe
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 *    must display the following acknowledgement:
55 *	This product includes software developed by Brini.
56 * 4. The name of the company nor the name of the author may be used to
57 *    endorse or promote products derived from this software without specific
58 *    prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * RiscBSD kernel project
73 *
74 * fault.c
75 *
76 * Fault handlers
77 *
78 * Created      : 28/11/94
79 */
80
81
82#include "opt_ktrace.h"
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/arm/arm/trap.c 257217 2013-10-27 17:09:23Z ian $");
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/proc.h>
90#include <sys/kernel.h>
91#include <sys/lock.h>
92#include <sys/mutex.h>
93#include <sys/syscall.h>
94#include <sys/sysent.h>
95#include <sys/signalvar.h>
96#include <sys/ktr.h>
97#ifdef KTRACE
98#include <sys/uio.h>
99#include <sys/ktrace.h>
100#endif
101#include <sys/ptrace.h>
102#include <sys/pioctl.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_kern.h>
107#include <vm/vm_map.h>
108#include <vm/vm_extern.h>
109
110#include <machine/cpuconf.h>
111#include <machine/vmparam.h>
112#include <machine/frame.h>
113#include <machine/cpu.h>
114#include <machine/intr.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/swi.h>
118
119#include <security/audit/audit.h>
120
121#ifdef KDB
122#include <sys/kdb.h>
123#endif
124
125
126void swi_handler(struct trapframe *);
127void undefinedinstruction(struct trapframe *);
128
129#include <machine/disassem.h>
130#include <machine/machdep.h>
131
132extern char fusubailout[];
133
134#ifdef DEBUG
135int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
136#endif
137
138#if defined(CPU_ARM7TDMI)
139/* These CPUs may need data/prefetch abort fixups */
140#define	CPU_ABORT_FIXUP_REQUIRED
141#endif
142
143struct ksig {
144	int signb;
145	u_long code;
146};
147struct data_abort {
148	int (*func)(struct trapframe *, u_int, u_int, struct thread *,
149	    struct ksig *);
150	const char *desc;
151};
152
153static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
154    struct ksig *);
155static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
156    struct ksig *);
157static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
158    struct ksig *);
159
160static const struct data_abort data_aborts[] = {
161	{dab_fatal,	"Vector Exception"},
162	{dab_align,	"Alignment Fault 1"},
163	{dab_fatal,	"Terminal Exception"},
164	{dab_align,	"Alignment Fault 3"},
165	{dab_buserr,	"External Linefetch Abort (S)"},
166	{NULL,		"Translation Fault (S)"},
167#if (ARM_MMU_V6 + ARM_MMU_V7) != 0
168	{NULL,		"Translation Flag Fault"},
169#else
170	{dab_buserr,	"External Linefetch Abort (P)"},
171#endif
172	{NULL,		"Translation Fault (P)"},
173	{dab_buserr,	"External Non-Linefetch Abort (S)"},
174	{NULL,		"Domain Fault (S)"},
175	{dab_buserr,	"External Non-Linefetch Abort (P)"},
176	{NULL,		"Domain Fault (P)"},
177	{dab_buserr,	"External Translation Abort (L1)"},
178	{NULL,		"Permission Fault (S)"},
179	{dab_buserr,	"External Translation Abort (L2)"},
180	{NULL,		"Permission Fault (P)"}
181};
182
183/* Determine if a fault came from user mode */
184#define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
185
186/* Determine if 'x' is a permission fault */
187#define	IS_PERMISSION_FAULT(x)					\
188	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
189	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
190
191static __inline void
192call_trapsignal(struct thread *td, int sig, u_long code)
193{
194	ksiginfo_t ksi;
195
196	ksiginfo_init_trap(&ksi);
197	ksi.ksi_signo = sig;
198	ksi.ksi_code = (int)code;
199	trapsignal(td, &ksi);
200}
201
202static __inline int
203data_abort_fixup(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
204    struct ksig *ksig)
205{
206#ifdef CPU_ABORT_FIXUP_REQUIRED
207	int error;
208
209	/* Call the cpu specific data abort fixup routine */
210	error = cpu_dataabt_fixup(tf);
211	if (__predict_true(error != ABORT_FIXUP_FAILED))
212		return (error);
213
214	/*
215	 * Oops, couldn't fix up the instruction
216	 */
217	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
218	    TRAP_USERMODE(tf) ? "user" : "kernel");
219	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
220	    *((u_int *)tf->tf_pc));
221	disassemble(tf->tf_pc);
222
223	/* Die now if this happened in kernel mode */
224	if (!TRAP_USERMODE(tf))
225		dab_fatal(tf, fsr, far, td, NULL, ksig);
226
227	return (error);
228#else
229	return (ABORT_FIXUP_OK);
230#endif /* CPU_ABORT_FIXUP_REQUIRED */
231}
232
233void
234data_abort_handler(struct trapframe *tf)
235{
236	struct vm_map *map;
237	struct pcb *pcb;
238	struct thread *td;
239	u_int user, far, fsr;
240	vm_prot_t ftype;
241	void *onfault;
242	vm_offset_t va;
243	int error = 0;
244	struct ksig ksig;
245	struct proc *p;
246
247
248	/* Grab FAR/FSR before enabling interrupts */
249	far = cpu_faultaddress();
250	fsr = cpu_faultstatus();
251#if 0
252	printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
253	       (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
254#endif
255
256	/* Update vmmeter statistics */
257#if 0
258	vmexp.traps++;
259#endif
260
261	td = curthread;
262	p = td->td_proc;
263
264	PCPU_INC(cnt.v_trap);
265	/* Data abort came from user mode? */
266	user = TRAP_USERMODE(tf);
267
268	if (user) {
269		td->td_pticks = 0;
270		td->td_frame = tf;
271		if (td->td_ucred != td->td_proc->p_ucred)
272			cred_update_thread(td);
273
274	}
275	/* Grab the current pcb */
276	pcb = td->td_pcb;
277	/* Re-enable interrupts if they were enabled previously */
278	if (td->td_md.md_spinlock_count == 0) {
279		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
280			enable_interrupts(I32_bit);
281		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
282			enable_interrupts(F32_bit);
283	}
284
285
286	/* Invoke the appropriate handler, if necessary */
287	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
288		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
289		    td, &ksig)) {
290			goto do_trapsignal;
291		}
292		goto out;
293	}
294
295	/*
296	 * At this point, we're dealing with one of the following data aborts:
297	 *
298	 *  FAULT_TRANS_S  - Translation -- Section
299	 *  FAULT_TRANS_P  - Translation -- Page
300	 *  FAULT_DOMAIN_S - Domain -- Section
301	 *  FAULT_DOMAIN_P - Domain -- Page
302	 *  FAULT_PERM_S   - Permission -- Section
303	 *  FAULT_PERM_P   - Permission -- Page
304	 *
305	 * These are the main virtual memory-related faults signalled by
306	 * the MMU.
307	 */
308
309	/* fusubailout is used by [fs]uswintr to avoid page faulting */
310	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
311		tf->tf_r0 = EFAULT;
312		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
313		return;
314	}
315
316	/*
317	 * Make sure the Program Counter is sane. We could fall foul of
318	 * someone executing Thumb code, in which case the PC might not
319	 * be word-aligned. This would cause a kernel alignment fault
320	 * further down if we have to decode the current instruction.
321	 * XXX: It would be nice to be able to support Thumb at some point.
322	 */
323	if (__predict_false((tf->tf_pc & 3) != 0)) {
324		if (user) {
325			/*
326			 * Give the user an illegal instruction signal.
327			 */
328			/* Deliver a SIGILL to the process */
329			ksig.signb = SIGILL;
330			ksig.code = 0;
331			goto do_trapsignal;
332		}
333
334		/*
335		 * The kernel never executes Thumb code.
336		 */
337		printf("\ndata_abort_fault: Misaligned Kernel-mode "
338		    "Program Counter\n");
339		dab_fatal(tf, fsr, far, td, &ksig);
340	}
341
342	/* See if the cpu state needs to be fixed up */
343	switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
344	case ABORT_FIXUP_RETURN:
345		return;
346	case ABORT_FIXUP_FAILED:
347		/* Deliver a SIGILL to the process */
348		ksig.signb = SIGILL;
349		ksig.code = 0;
350		goto do_trapsignal;
351	default:
352		break;
353	}
354
355	va = trunc_page((vm_offset_t)far);
356
357	/*
358	 * It is only a kernel address space fault iff:
359	 *	1. user == 0  and
360	 *	2. pcb_onfault not set or
361	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
362	 */
363	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
364	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
365	    __predict_true((pcb->pcb_onfault == NULL ||
366	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
367		map = kernel_map;
368
369		/* Was the fault due to the FPE/IPKDB ? */
370		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
371
372			/*
373			 * Force exit via userret()
374			 * This is necessary as the FPE is an extension to
375			 * userland that actually runs in a priveledged mode
376			 * but uses USR mode permissions for its accesses.
377			 */
378			user = 1;
379			ksig.signb = SIGSEGV;
380			ksig.code = 0;
381			goto do_trapsignal;
382		}
383	} else {
384		map = &td->td_proc->p_vmspace->vm_map;
385	}
386
387	/*
388	 * We need to know whether the page should be mapped
389	 * as R or R/W. The MMU does not give us the info as
390	 * to whether the fault was caused by a read or a write.
391	 *
392	 * However, we know that a permission fault can only be
393	 * the result of a write to a read-only location, so
394	 * we can deal with those quickly.
395	 *
396	 * Otherwise we need to disassemble the instruction
397	 * responsible to determine if it was a write.
398	 */
399	if (IS_PERMISSION_FAULT(fsr))
400		ftype = VM_PROT_WRITE;
401	else {
402		u_int insn = ReadWord(tf->tf_pc);
403
404		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
405		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
406		    ((insn & 0x0a100000) == 0x08000000)) {	/* STM/CDT */
407			ftype = VM_PROT_WRITE;
408		} else {
409			if ((insn & 0x0fb00ff0) == 0x01000090)	/* SWP */
410				ftype = VM_PROT_READ | VM_PROT_WRITE;
411			else
412				ftype = VM_PROT_READ;
413		}
414	}
415
416	/*
417	 * See if the fault is as a result of ref/mod emulation,
418	 * or domain mismatch.
419	 */
420#ifdef DEBUG
421	last_fault_code = fsr;
422#endif
423	if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
424	    user)) {
425		goto out;
426	}
427
428	onfault = pcb->pcb_onfault;
429	pcb->pcb_onfault = NULL;
430	if (map != kernel_map) {
431		PROC_LOCK(p);
432		p->p_lock++;
433		PROC_UNLOCK(p);
434	}
435	error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
436	pcb->pcb_onfault = onfault;
437
438	if (map != kernel_map) {
439		PROC_LOCK(p);
440		p->p_lock--;
441		PROC_UNLOCK(p);
442	}
443	if (__predict_true(error == 0))
444		goto out;
445	if (user == 0) {
446		if (pcb->pcb_onfault) {
447			tf->tf_r0 = error;
448			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
449			return;
450		}
451
452		printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
453		    error);
454		dab_fatal(tf, fsr, far, td, &ksig);
455	}
456
457
458	if (error == ENOMEM) {
459		printf("VM: pid %d (%s), uid %d killed: "
460		    "out of swap\n", td->td_proc->p_pid, td->td_name,
461		    (td->td_proc->p_ucred) ?
462		     td->td_proc->p_ucred->cr_uid : -1);
463		ksig.signb = SIGKILL;
464	} else {
465		ksig.signb = SIGSEGV;
466	}
467	ksig.code = 0;
468do_trapsignal:
469	call_trapsignal(td, ksig.signb, ksig.code);
470out:
471	/* If returning to user mode, make sure to invoke userret() */
472	if (user)
473		userret(td, tf);
474}
475
476/*
477 * dab_fatal() handles the following data aborts:
478 *
479 *  FAULT_WRTBUF_0 - Vector Exception
480 *  FAULT_WRTBUF_1 - Terminal Exception
481 *
482 * We should never see these on a properly functioning system.
483 *
484 * This function is also called by the other handlers if they
485 * detect a fatal problem.
486 *
487 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
488 */
489static int
490dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
491    struct ksig *ksig)
492{
493	const char *mode;
494
495	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
496
497	disable_interrupts(I32_bit|F32_bit);
498	if (td != NULL) {
499		printf("Fatal %s mode data abort: '%s'\n", mode,
500		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
501		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
502		if ((fsr & FAULT_IMPRECISE) == 0)
503			printf("%08x, ", far);
504		else
505			printf("Invalid,  ");
506		printf("spsr=%08x\n", tf->tf_spsr);
507	} else {
508		printf("Fatal %s mode prefetch abort at 0x%08x\n",
509		    mode, tf->tf_pc);
510		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
511	}
512
513	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
514	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
515	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
516	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
517	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
518	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
519	printf("r12=%08x, ", tf->tf_r12);
520
521	if (TRAP_USERMODE(tf))
522		printf("usp=%08x, ulr=%08x",
523		    tf->tf_usr_sp, tf->tf_usr_lr);
524	else
525		printf("ssp=%08x, slr=%08x",
526		    tf->tf_svc_sp, tf->tf_svc_lr);
527	printf(", pc =%08x\n\n", tf->tf_pc);
528
529#ifdef KDB
530	if (debugger_on_panic || kdb_active)
531		kdb_trap(fsr, 0, tf);
532#endif
533	panic("Fatal abort");
534	/*NOTREACHED*/
535}
536
537/*
538 * dab_align() handles the following data aborts:
539 *
540 *  FAULT_ALIGN_0 - Alignment fault
541 *  FAULT_ALIGN_1 - Alignment fault
542 *
543 * These faults are fatal if they happen in kernel mode. Otherwise, we
544 * deliver a bus error to the process.
545 */
546static int
547dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
548    struct ksig *ksig)
549{
550
551	/* Alignment faults are always fatal if they occur in kernel mode */
552	if (!TRAP_USERMODE(tf)) {
553		if (!td || !td->td_pcb->pcb_onfault)
554			dab_fatal(tf, fsr, far, td, ksig);
555		tf->tf_r0 = EFAULT;
556		tf->tf_pc = (int)td->td_pcb->pcb_onfault;
557		return (0);
558	}
559
560	/* pcb_onfault *must* be NULL at this point */
561
562	/* See if the cpu state needs to be fixed up */
563	(void) data_abort_fixup(tf, fsr, far, td, ksig);
564
565	/* Deliver a bus error signal to the process */
566	ksig->code = 0;
567	ksig->signb = SIGBUS;
568	td->td_frame = tf;
569
570	return (1);
571}
572
573/*
574 * dab_buserr() handles the following data aborts:
575 *
576 *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
577 *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
578 *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
579 *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
580 *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
581 *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
582 *
583 * If pcb_onfault is set, flag the fault and return to the handler.
584 * If the fault occurred in user mode, give the process a SIGBUS.
585 *
586 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
587 * can be flagged as imprecise in the FSR. This causes a real headache
588 * since some of the machine state is lost. In this case, tf->tf_pc
589 * may not actually point to the offending instruction. In fact, if
590 * we've taken a double abort fault, it generally points somewhere near
591 * the top of "data_abort_entry" in exception.S.
592 *
593 * In all other cases, these data aborts are considered fatal.
594 */
595static int
596dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
597    struct ksig *ksig)
598{
599	struct pcb *pcb = td->td_pcb;
600
601#ifdef __XSCALE__
602	if ((fsr & FAULT_IMPRECISE) != 0 &&
603	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
604		/*
605		 * Oops, an imprecise, double abort fault. We've lost the
606		 * r14_abt/spsr_abt values corresponding to the original
607		 * abort, and the spsr saved in the trapframe indicates
608		 * ABT mode.
609		 */
610		tf->tf_spsr &= ~PSR_MODE;
611
612		/*
613		 * We use a simple heuristic to determine if the double abort
614		 * happened as a result of a kernel or user mode access.
615		 * If the current trapframe is at the top of the kernel stack,
616		 * the fault _must_ have come from user mode.
617		 */
618		if (tf != ((struct trapframe *)pcb->un_32.pcb32_sp) - 1) {
619			/*
620			 * Kernel mode. We're either about to die a
621			 * spectacular death, or pcb_onfault will come
622			 * to our rescue. Either way, the current value
623			 * of tf->tf_pc is irrelevant.
624			 */
625			tf->tf_spsr |= PSR_SVC32_MODE;
626			if (pcb->pcb_onfault == NULL)
627				printf("\nKernel mode double abort!\n");
628		} else {
629			/*
630			 * User mode. We've lost the program counter at the
631			 * time of the fault (not that it was accurate anyway;
632			 * it's not called an imprecise fault for nothing).
633			 * About all we can do is copy r14_usr to tf_pc and
634			 * hope for the best. The process is about to get a
635			 * SIGBUS, so it's probably history anyway.
636			 */
637			tf->tf_spsr |= PSR_USR32_MODE;
638			tf->tf_pc = tf->tf_usr_lr;
639		}
640	}
641
642	/* FAR is invalid for imprecise exceptions */
643	if ((fsr & FAULT_IMPRECISE) != 0)
644		far = 0;
645#endif /* __XSCALE__ */
646
647	if (pcb->pcb_onfault) {
648		tf->tf_r0 = EFAULT;
649		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
650		return (0);
651	}
652
653	/* See if the cpu state needs to be fixed up */
654	(void) data_abort_fixup(tf, fsr, far, td, ksig);
655
656	/*
657	 * At this point, if the fault happened in kernel mode, we're toast
658	 */
659	if (!TRAP_USERMODE(tf))
660		dab_fatal(tf, fsr, far, td, ksig);
661
662	/* Deliver a bus error signal to the process */
663	ksig->signb = SIGBUS;
664	ksig->code = 0;
665	td->td_frame = tf;
666
667	return (1);
668}
669
670static __inline int
671prefetch_abort_fixup(struct trapframe *tf, struct ksig *ksig)
672{
673#ifdef CPU_ABORT_FIXUP_REQUIRED
674	int error;
675
676	/* Call the cpu specific prefetch abort fixup routine */
677	error = cpu_prefetchabt_fixup(tf);
678	if (__predict_true(error != ABORT_FIXUP_FAILED))
679		return (error);
680
681	/*
682	 * Oops, couldn't fix up the instruction
683	 */
684	printf(
685	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
686	    TRAP_USERMODE(tf) ? "user" : "kernel");
687	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
688	    *((u_int *)tf->tf_pc));
689	disassemble(tf->tf_pc);
690
691	/* Die now if this happened in kernel mode */
692	if (!TRAP_USERMODE(tf))
693		dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
694
695	return (error);
696#else
697	return (ABORT_FIXUP_OK);
698#endif /* CPU_ABORT_FIXUP_REQUIRED */
699}
700
701/*
702 * void prefetch_abort_handler(struct trapframe *tf)
703 *
704 * Abort handler called when instruction execution occurs at
705 * a non existent or restricted (access permissions) memory page.
706 * If the address is invalid and we were in SVC mode then panic as
707 * the kernel should never prefetch abort.
708 * If the address is invalid and the page is mapped then the user process
709 * does no have read permission so send it a signal.
710 * Otherwise fault the page in and try again.
711 */
712void
713prefetch_abort_handler(struct trapframe *tf)
714{
715	struct thread *td;
716	struct proc * p;
717	struct vm_map *map;
718	vm_offset_t fault_pc, va;
719	int error = 0;
720	struct ksig ksig;
721
722
723#if 0
724	/* Update vmmeter statistics */
725	uvmexp.traps++;
726#endif
727#if 0
728	printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
729	    (void*)tf->tf_usr_lr);
730#endif
731
732 	td = curthread;
733	p = td->td_proc;
734	PCPU_INC(cnt.v_trap);
735
736	if (TRAP_USERMODE(tf)) {
737		td->td_frame = tf;
738		if (td->td_ucred != td->td_proc->p_ucred)
739			cred_update_thread(td);
740	}
741	fault_pc = tf->tf_pc;
742	if (td->td_md.md_spinlock_count == 0) {
743		if (__predict_true(tf->tf_spsr & I32_bit) == 0)
744			enable_interrupts(I32_bit);
745		if (__predict_true(tf->tf_spsr & F32_bit) == 0)
746			enable_interrupts(F32_bit);
747	}
748
749	/* See if the cpu state needs to be fixed up */
750	switch (prefetch_abort_fixup(tf, &ksig)) {
751	case ABORT_FIXUP_RETURN:
752		return;
753	case ABORT_FIXUP_FAILED:
754		/* Deliver a SIGILL to the process */
755		ksig.signb = SIGILL;
756		ksig.code = 0;
757		td->td_frame = tf;
758		goto do_trapsignal;
759	default:
760		break;
761	}
762
763	/* Prefetch aborts cannot happen in kernel mode */
764	if (__predict_false(!TRAP_USERMODE(tf)))
765		dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
766	td->td_pticks = 0;
767
768
769	/* Ok validate the address, can only execute in USER space */
770	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
771	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
772		ksig.signb = SIGSEGV;
773		ksig.code = 0;
774		goto do_trapsignal;
775	}
776
777	map = &td->td_proc->p_vmspace->vm_map;
778	va = trunc_page(fault_pc);
779
780	/*
781	 * See if the pmap can handle this fault on its own...
782	 */
783#ifdef DEBUG
784	last_fault_code = -1;
785#endif
786	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
787		goto out;
788
789	if (map != kernel_map) {
790		PROC_LOCK(p);
791		p->p_lock++;
792		PROC_UNLOCK(p);
793	}
794
795	error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
796	    VM_FAULT_NORMAL);
797	if (map != kernel_map) {
798		PROC_LOCK(p);
799		p->p_lock--;
800		PROC_UNLOCK(p);
801	}
802
803	if (__predict_true(error == 0))
804		goto out;
805
806	if (error == ENOMEM) {
807		printf("VM: pid %d (%s), uid %d killed: "
808		    "out of swap\n", td->td_proc->p_pid, td->td_name,
809		    (td->td_proc->p_ucred) ?
810		     td->td_proc->p_ucred->cr_uid : -1);
811		ksig.signb = SIGKILL;
812	} else {
813		ksig.signb = SIGSEGV;
814	}
815	ksig.code = 0;
816
817do_trapsignal:
818	call_trapsignal(td, ksig.signb, ksig.code);
819
820out:
821	userret(td, tf);
822
823}
824
825extern int badaddr_read_1(const uint8_t *, uint8_t *);
826extern int badaddr_read_2(const uint16_t *, uint16_t *);
827extern int badaddr_read_4(const uint32_t *, uint32_t *);
828/*
829 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
830 * If the read succeeds, the value is written to 'rptr' and zero is returned.
831 * Else, return EFAULT.
832 */
833int
834badaddr_read(void *addr, size_t size, void *rptr)
835{
836	union {
837		uint8_t v1;
838		uint16_t v2;
839		uint32_t v4;
840	} u;
841	int rv;
842
843	cpu_drain_writebuf();
844
845	/* Read from the test address. */
846	switch (size) {
847	case sizeof(uint8_t):
848		rv = badaddr_read_1(addr, &u.v1);
849		if (rv == 0 && rptr)
850			*(uint8_t *) rptr = u.v1;
851		break;
852
853	case sizeof(uint16_t):
854		rv = badaddr_read_2(addr, &u.v2);
855		if (rv == 0 && rptr)
856			*(uint16_t *) rptr = u.v2;
857		break;
858
859	case sizeof(uint32_t):
860		rv = badaddr_read_4(addr, &u.v4);
861		if (rv == 0 && rptr)
862			*(uint32_t *) rptr = u.v4;
863		break;
864
865	default:
866		panic("badaddr: invalid size (%lu)", (u_long) size);
867	}
868
869	/* Return EFAULT if the address was invalid, else zero */
870	return (rv);
871}
872
873int
874cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
875{
876	struct proc *p;
877	register_t *ap;
878	int error;
879
880#ifdef __ARM_EABI__
881	sa->code = td->td_frame->tf_r7;
882#else
883	sa->code = sa->insn & 0x000fffff;
884#endif
885	ap = &td->td_frame->tf_r0;
886	if (sa->code == SYS_syscall) {
887		sa->code = *ap++;
888		sa->nap--;
889	} else if (sa->code == SYS___syscall) {
890		sa->code = ap[_QUAD_LOWWORD];
891		sa->nap -= 2;
892		ap += 2;
893	}
894	p = td->td_proc;
895	if (p->p_sysent->sv_mask)
896		sa->code &= p->p_sysent->sv_mask;
897	if (sa->code >= p->p_sysent->sv_size)
898		sa->callp = &p->p_sysent->sv_table[0];
899	else
900		sa->callp = &p->p_sysent->sv_table[sa->code];
901	sa->narg = sa->callp->sy_narg;
902	error = 0;
903	memcpy(sa->args, ap, sa->nap * sizeof(register_t));
904	if (sa->narg > sa->nap) {
905		error = copyin((void *)td->td_frame->tf_usr_sp, sa->args +
906		    sa->nap, (sa->narg - sa->nap) * sizeof(register_t));
907	}
908	if (error == 0) {
909		td->td_retval[0] = 0;
910		td->td_retval[1] = 0;
911	}
912	return (error);
913}
914
915#include "../../kern/subr_syscall.c"
916
917static void
918syscall(struct thread *td, struct trapframe *frame)
919{
920	struct syscall_args sa;
921	int error;
922
923#ifndef __ARM_EABI__
924	sa.insn = *(uint32_t *)(frame->tf_pc - INSN_SIZE);
925	switch (sa.insn & SWI_OS_MASK) {
926	case 0: /* XXX: we need our own one. */
927		break;
928	default:
929		call_trapsignal(td, SIGILL, 0);
930		userret(td, frame);
931		return;
932	}
933#endif
934	sa.nap = 4;
935
936	error = syscallenter(td, &sa);
937	KASSERT(error != 0 || td->td_ar == NULL,
938	    ("returning from syscall with td_ar set!"));
939	syscallret(td, error, &sa);
940}
941
942void
943swi_handler(struct trapframe *frame)
944{
945	struct thread *td = curthread;
946
947	td->td_frame = frame;
948
949	td->td_pticks = 0;
950	/*
951      	 * Make sure the program counter is correctly aligned so we
952	 * don't take an alignment fault trying to read the opcode.
953	 */
954	if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
955		call_trapsignal(td, SIGILL, 0);
956		userret(td, frame);
957		return;
958	}
959	/*
960	 * Enable interrupts if they were enabled before the exception.
961	 * Since all syscalls *should* come from user mode it will always
962	 * be safe to enable them, but check anyway.
963	 */
964	if (td->td_md.md_spinlock_count == 0) {
965		if (__predict_true(frame->tf_spsr & I32_bit) == 0)
966			enable_interrupts(I32_bit);
967		if (__predict_true(frame->tf_spsr & F32_bit) == 0)
968			enable_interrupts(F32_bit);
969	}
970
971	syscall(td, frame);
972}
973
974