pmap-v4.c revision 283366
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
82 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
83 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
84 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
85 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
86 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
87 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
88 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
89 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
90 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
91 * POSSIBILITY OF SUCH DAMAGE.
92 */
93
94/*-
95 * Copyright (c) 1994-1998 Mark Brinicombe.
96 * Copyright (c) 1994 Brini.
97 * All rights reserved.
98 *
99 * This code is derived from software written for Brini by Mark Brinicombe
100 *
101 * Redistribution and use in source and binary forms, with or without
102 * modification, are permitted provided that the following conditions
103 * are met:
104 * 1. Redistributions of source code must retain the above copyright
105 *    notice, this list of conditions and the following disclaimer.
106 * 2. Redistributions in binary form must reproduce the above copyright
107 *    notice, this list of conditions and the following disclaimer in the
108 *    documentation and/or other materials provided with the distribution.
109 * 3. All advertising materials mentioning features or use of this software
110 *    must display the following acknowledgement:
111 *      This product includes software developed by Mark Brinicombe.
112 * 4. The name of the author may not be used to endorse or promote products
113 *    derived from this software without specific prior written permission.
114 *
115 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
116 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
117 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
118 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
119 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
120 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
121 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
122 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
123 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
124 *
125 * RiscBSD kernel project
126 *
127 * pmap.c
128 *
129 * Machine dependant vm stuff
130 *
131 * Created      : 20/09/94
132 */
133
134/*
135 * Special compilation symbols
136 * PMAP_DEBUG           - Build in pmap_debug_level code
137 *
138 * Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
139 */
140/* Include header files */
141
142#include "opt_vm.h"
143
144#include <sys/cdefs.h>
145__FBSDID("$FreeBSD: head/sys/arm/arm/pmap.c 283366 2015-05-24 12:20:11Z andrew $");
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/kernel.h>
149#include <sys/ktr.h>
150#include <sys/lock.h>
151#include <sys/proc.h>
152#include <sys/malloc.h>
153#include <sys/msgbuf.h>
154#include <sys/mutex.h>
155#include <sys/vmmeter.h>
156#include <sys/mman.h>
157#include <sys/rwlock.h>
158#include <sys/smp.h>
159#include <sys/sched.h>
160
161#include <vm/vm.h>
162#include <vm/vm_param.h>
163#include <vm/uma.h>
164#include <vm/pmap.h>
165#include <vm/vm_kern.h>
166#include <vm/vm_object.h>
167#include <vm/vm_map.h>
168#include <vm/vm_page.h>
169#include <vm/vm_pageout.h>
170#include <vm/vm_phys.h>
171#include <vm/vm_extern.h>
172
173#include <machine/md_var.h>
174#include <machine/cpu.h>
175#include <machine/cpufunc.h>
176#include <machine/pcb.h>
177
178#ifdef PMAP_DEBUG
179#define PDEBUG(_lev_,_stat_) \
180        if (pmap_debug_level >= (_lev_)) \
181                ((_stat_))
182#define dprintf printf
183
184int pmap_debug_level = 0;
185#define PMAP_INLINE
186#else   /* PMAP_DEBUG */
187#define PDEBUG(_lev_,_stat_) /* Nothing */
188#define dprintf(x, arg...)
189#define PMAP_INLINE __inline
190#endif  /* PMAP_DEBUG */
191
192extern struct pv_addr systempage;
193
194extern int last_fault_code;
195
196/*
197 * Internal function prototypes
198 */
199static void pmap_free_pv_entry (pv_entry_t);
200static pv_entry_t pmap_get_pv_entry(void);
201
202static int		pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
203    vm_prot_t, u_int);
204static vm_paddr_t	pmap_extract_locked(pmap_t pmap, vm_offset_t va);
205static void		pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t);
206static void		pmap_alloc_l1(pmap_t);
207static void		pmap_free_l1(pmap_t);
208
209static int		pmap_clearbit(struct vm_page *, u_int);
210
211static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
212static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
213static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
214static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
215
216static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t pmap_curmaxkvaddr;
221vm_paddr_t kernel_l1pa;
222
223vm_offset_t kernel_vm_end = 0;
224
225vm_offset_t vm_max_kernel_address;
226
227struct pmap kernel_pmap_store;
228
229static pt_entry_t *csrc_pte, *cdst_pte;
230static vm_offset_t csrcp, cdstp;
231static struct mtx cmtx;
232
233static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
234/*
235 * These routines are called when the CPU type is identified to set up
236 * the PTE prototypes, cache modes, etc.
237 *
238 * The variables are always here, just in case LKMs need to reference
239 * them (though, they shouldn't).
240 */
241
242pt_entry_t	pte_l1_s_cache_mode;
243pt_entry_t	pte_l1_s_cache_mode_pt;
244pt_entry_t	pte_l1_s_cache_mask;
245
246pt_entry_t	pte_l2_l_cache_mode;
247pt_entry_t	pte_l2_l_cache_mode_pt;
248pt_entry_t	pte_l2_l_cache_mask;
249
250pt_entry_t	pte_l2_s_cache_mode;
251pt_entry_t	pte_l2_s_cache_mode_pt;
252pt_entry_t	pte_l2_s_cache_mask;
253
254pt_entry_t	pte_l2_s_prot_u;
255pt_entry_t	pte_l2_s_prot_w;
256pt_entry_t	pte_l2_s_prot_mask;
257
258pt_entry_t	pte_l1_s_proto;
259pt_entry_t	pte_l1_c_proto;
260pt_entry_t	pte_l2_s_proto;
261
262void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
263void		(*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
264		    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs,
265		    int cnt);
266void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
267
268struct msgbuf *msgbufp = 0;
269
270/*
271 * Crashdump maps.
272 */
273static caddr_t crashdumpmap;
274
275extern void bcopy_page(vm_offset_t, vm_offset_t);
276extern void bzero_page(vm_offset_t);
277
278extern vm_offset_t alloc_firstaddr;
279
280char *_tmppt;
281
282/*
283 * Metadata for L1 translation tables.
284 */
285struct l1_ttable {
286	/* Entry on the L1 Table list */
287	SLIST_ENTRY(l1_ttable) l1_link;
288
289	/* Entry on the L1 Least Recently Used list */
290	TAILQ_ENTRY(l1_ttable) l1_lru;
291
292	/* Track how many domains are allocated from this L1 */
293	volatile u_int l1_domain_use_count;
294
295	/*
296	 * A free-list of domain numbers for this L1.
297	 * We avoid using ffs() and a bitmap to track domains since ffs()
298	 * is slow on ARM.
299	 */
300	u_int8_t l1_domain_first;
301	u_int8_t l1_domain_free[PMAP_DOMAINS];
302
303	/* Physical address of this L1 page table */
304	vm_paddr_t l1_physaddr;
305
306	/* KVA of this L1 page table */
307	pd_entry_t *l1_kva;
308};
309
310/*
311 * Convert a virtual address into its L1 table index. That is, the
312 * index used to locate the L2 descriptor table pointer in an L1 table.
313 * This is basically used to index l1->l1_kva[].
314 *
315 * Each L2 descriptor table represents 1MB of VA space.
316 */
317#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
318
319/*
320 * L1 Page Tables are tracked using a Least Recently Used list.
321 *  - New L1s are allocated from the HEAD.
322 *  - Freed L1s are added to the TAIl.
323 *  - Recently accessed L1s (where an 'access' is some change to one of
324 *    the userland pmaps which owns this L1) are moved to the TAIL.
325 */
326static TAILQ_HEAD(, l1_ttable) l1_lru_list;
327/*
328 * A list of all L1 tables
329 */
330static SLIST_HEAD(, l1_ttable) l1_list;
331static struct mtx l1_lru_lock;
332
333/*
334 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
335 *
336 * This is normally 16MB worth L2 page descriptors for any given pmap.
337 * Reference counts are maintained for L2 descriptors so they can be
338 * freed when empty.
339 */
340struct l2_dtable {
341	/* The number of L2 page descriptors allocated to this l2_dtable */
342	u_int l2_occupancy;
343
344	/* List of L2 page descriptors */
345	struct l2_bucket {
346		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
347		vm_paddr_t l2b_phys;	/* Physical address of same */
348		u_short l2b_l1idx;	/* This L2 table's L1 index */
349		u_short l2b_occupancy;	/* How many active descriptors */
350	} l2_bucket[L2_BUCKET_SIZE];
351};
352
353/* pmap_kenter_internal flags */
354#define KENTER_CACHE	0x1
355#define KENTER_USER	0x2
356
357/*
358 * Given an L1 table index, calculate the corresponding l2_dtable index
359 * and bucket index within the l2_dtable.
360 */
361#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
362				 (L2_SIZE - 1))
363#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
364
365/*
366 * Given a virtual address, this macro returns the
367 * virtual address required to drop into the next L2 bucket.
368 */
369#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
370
371/*
372 * We try to map the page tables write-through, if possible.  However, not
373 * all CPUs have a write-through cache mode, so on those we have to sync
374 * the cache when we frob page tables.
375 *
376 * We try to evaluate this at compile time, if possible.  However, it's
377 * not always possible to do that, hence this run-time var.
378 */
379int	pmap_needs_pte_sync;
380
381/*
382 * Macro to determine if a mapping might be resident in the
383 * instruction cache and/or TLB
384 */
385#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
386
387/*
388 * Macro to determine if a mapping might be resident in the
389 * data cache and/or TLB
390 */
391#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
392
393#ifndef PMAP_SHPGPERPROC
394#define PMAP_SHPGPERPROC 200
395#endif
396
397#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
398            curproc->p_vmspace->vm_map.pmap == (pm))
399static uma_zone_t pvzone = NULL;
400uma_zone_t l2zone;
401static uma_zone_t l2table_zone;
402static vm_offset_t pmap_kernel_l2dtable_kva;
403static vm_offset_t pmap_kernel_l2ptp_kva;
404static vm_paddr_t pmap_kernel_l2ptp_phys;
405static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
406static struct rwlock pvh_global_lock;
407
408void pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
409    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
410#if ARM_MMU_XSCALE == 1
411void pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
412    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
413#endif
414
415/*
416 * This list exists for the benefit of pmap_map_chunk().  It keeps track
417 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
418 * find them as necessary.
419 *
420 * Note that the data on this list MUST remain valid after initarm() returns,
421 * as pmap_bootstrap() uses it to contruct L2 table metadata.
422 */
423SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
424
425static void
426pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
427{
428	int i;
429
430	l1->l1_kva = l1pt;
431	l1->l1_domain_use_count = 0;
432	l1->l1_domain_first = 0;
433
434	for (i = 0; i < PMAP_DOMAINS; i++)
435		l1->l1_domain_free[i] = i + 1;
436
437	/*
438	 * Copy the kernel's L1 entries to each new L1.
439	 */
440	if (l1pt != pmap_kernel()->pm_l1->l1_kva)
441		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
442
443	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
444		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
445	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
446	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
447}
448
449static vm_offset_t
450kernel_pt_lookup(vm_paddr_t pa)
451{
452	struct pv_addr *pv;
453
454	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
455		if (pv->pv_pa == pa)
456			return (pv->pv_va);
457	}
458	return (0);
459}
460
461#if ARM_MMU_GENERIC != 0
462void
463pmap_pte_init_generic(void)
464{
465
466	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
467	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
468
469	pte_l2_l_cache_mode = L2_B|L2_C;
470	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
471
472	pte_l2_s_cache_mode = L2_B|L2_C;
473	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
474
475	/*
476	 * If we have a write-through cache, set B and C.  If
477	 * we have a write-back cache, then we assume setting
478	 * only C will make those pages write-through.
479	 */
480	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
481		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
482		pte_l2_l_cache_mode_pt = L2_B|L2_C;
483		pte_l2_s_cache_mode_pt = L2_B|L2_C;
484	} else {
485		pte_l1_s_cache_mode_pt = L1_S_C;
486		pte_l2_l_cache_mode_pt = L2_C;
487		pte_l2_s_cache_mode_pt = L2_C;
488	}
489
490	pte_l2_s_prot_u = L2_S_PROT_U_generic;
491	pte_l2_s_prot_w = L2_S_PROT_W_generic;
492	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
493
494	pte_l1_s_proto = L1_S_PROTO_generic;
495	pte_l1_c_proto = L1_C_PROTO_generic;
496	pte_l2_s_proto = L2_S_PROTO_generic;
497
498	pmap_copy_page_func = pmap_copy_page_generic;
499	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
500	pmap_zero_page_func = pmap_zero_page_generic;
501}
502
503#endif /* ARM_MMU_GENERIC != 0 */
504
505#if ARM_MMU_XSCALE == 1
506#if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
507static u_int xscale_use_minidata;
508#endif
509
510void
511pmap_pte_init_xscale(void)
512{
513	uint32_t auxctl;
514	int write_through = 0;
515
516	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
517	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
518
519	pte_l2_l_cache_mode = L2_B|L2_C;
520	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
521
522	pte_l2_s_cache_mode = L2_B|L2_C;
523	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
524
525	pte_l1_s_cache_mode_pt = L1_S_C;
526	pte_l2_l_cache_mode_pt = L2_C;
527	pte_l2_s_cache_mode_pt = L2_C;
528#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
529	/*
530	 * The XScale core has an enhanced mode where writes that
531	 * miss the cache cause a cache line to be allocated.  This
532	 * is significantly faster than the traditional, write-through
533	 * behavior of this case.
534	 */
535	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
536	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
537	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
538#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
539#ifdef XSCALE_CACHE_WRITE_THROUGH
540	/*
541	 * Some versions of the XScale core have various bugs in
542	 * their cache units, the work-around for which is to run
543	 * the cache in write-through mode.  Unfortunately, this
544	 * has a major (negative) impact on performance.  So, we
545	 * go ahead and run fast-and-loose, in the hopes that we
546	 * don't line up the planets in a way that will trip the
547	 * bugs.
548	 *
549	 * However, we give you the option to be slow-but-correct.
550	 */
551	write_through = 1;
552#elif defined(XSCALE_CACHE_WRITE_BACK)
553	/* force write back cache mode */
554	write_through = 0;
555#elif defined(CPU_XSCALE_PXA2X0)
556	/*
557	 * Intel PXA2[15]0 processors are known to have a bug in
558	 * write-back cache on revision 4 and earlier (stepping
559	 * A[01] and B[012]).  Fixed for C0 and later.
560	 */
561	{
562		uint32_t id, type;
563
564		id = cpufunc_id();
565		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
566
567		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
568			if ((id & CPU_ID_REVISION_MASK) < 5) {
569				/* write through for stepping A0-1 and B0-2 */
570				write_through = 1;
571			}
572		}
573	}
574#endif /* XSCALE_CACHE_WRITE_THROUGH */
575
576	if (write_through) {
577		pte_l1_s_cache_mode = L1_S_C;
578		pte_l2_l_cache_mode = L2_C;
579		pte_l2_s_cache_mode = L2_C;
580	}
581
582#if (ARM_NMMUS > 1)
583	xscale_use_minidata = 1;
584#endif
585
586	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
587	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
588	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
589
590	pte_l1_s_proto = L1_S_PROTO_xscale;
591	pte_l1_c_proto = L1_C_PROTO_xscale;
592	pte_l2_s_proto = L2_S_PROTO_xscale;
593
594#ifdef CPU_XSCALE_CORE3
595	pmap_copy_page_func = pmap_copy_page_generic;
596	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
597	pmap_zero_page_func = pmap_zero_page_generic;
598	xscale_use_minidata = 0;
599	/* Make sure it is L2-cachable */
600    	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
601	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
602	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
603	pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
604	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
605	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
606
607#else
608	pmap_copy_page_func = pmap_copy_page_xscale;
609	pmap_copy_page_offs_func = pmap_copy_page_offs_xscale;
610	pmap_zero_page_func = pmap_zero_page_xscale;
611#endif
612
613	/*
614	 * Disable ECC protection of page table access, for now.
615	 */
616	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
617	auxctl &= ~XSCALE_AUXCTL_P;
618	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
619}
620
621/*
622 * xscale_setup_minidata:
623 *
624 *	Set up the mini-data cache clean area.  We require the
625 *	caller to allocate the right amount of physically and
626 *	virtually contiguous space.
627 */
628extern vm_offset_t xscale_minidata_clean_addr;
629extern vm_size_t xscale_minidata_clean_size; /* already initialized */
630void
631xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
632{
633	pd_entry_t *pde = (pd_entry_t *) l1pt;
634	pt_entry_t *pte;
635	vm_size_t size;
636	uint32_t auxctl;
637
638	xscale_minidata_clean_addr = va;
639
640	/* Round it to page size. */
641	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
642
643	for (; size != 0;
644	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
645		pte = (pt_entry_t *) kernel_pt_lookup(
646		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
647		if (pte == NULL)
648			panic("xscale_setup_minidata: can't find L2 table for "
649			    "VA 0x%08x", (u_int32_t) va);
650		pte[l2pte_index(va)] =
651		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
652		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
653	}
654
655	/*
656	 * Configure the mini-data cache for write-back with
657	 * read/write-allocate.
658	 *
659	 * NOTE: In order to reconfigure the mini-data cache, we must
660	 * make sure it contains no valid data!  In order to do that,
661	 * we must issue a global data cache invalidate command!
662	 *
663	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
664	 * THIS IS VERY IMPORTANT!
665	 */
666
667	/* Invalidate data and mini-data. */
668	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
669	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
670	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
671	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
672}
673#endif
674
675/*
676 * Allocate an L1 translation table for the specified pmap.
677 * This is called at pmap creation time.
678 */
679static void
680pmap_alloc_l1(pmap_t pm)
681{
682	struct l1_ttable *l1;
683	u_int8_t domain;
684
685	/*
686	 * Remove the L1 at the head of the LRU list
687	 */
688	mtx_lock(&l1_lru_lock);
689	l1 = TAILQ_FIRST(&l1_lru_list);
690	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
691
692	/*
693	 * Pick the first available domain number, and update
694	 * the link to the next number.
695	 */
696	domain = l1->l1_domain_first;
697	l1->l1_domain_first = l1->l1_domain_free[domain];
698
699	/*
700	 * If there are still free domain numbers in this L1,
701	 * put it back on the TAIL of the LRU list.
702	 */
703	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
704		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
705
706	mtx_unlock(&l1_lru_lock);
707
708	/*
709	 * Fix up the relevant bits in the pmap structure
710	 */
711	pm->pm_l1 = l1;
712	pm->pm_domain = domain + 1;
713}
714
715/*
716 * Free an L1 translation table.
717 * This is called at pmap destruction time.
718 */
719static void
720pmap_free_l1(pmap_t pm)
721{
722	struct l1_ttable *l1 = pm->pm_l1;
723
724	mtx_lock(&l1_lru_lock);
725
726	/*
727	 * If this L1 is currently on the LRU list, remove it.
728	 */
729	if (l1->l1_domain_use_count < PMAP_DOMAINS)
730		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
731
732	/*
733	 * Free up the domain number which was allocated to the pmap
734	 */
735	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
736	l1->l1_domain_first = pm->pm_domain - 1;
737	l1->l1_domain_use_count--;
738
739	/*
740	 * The L1 now must have at least 1 free domain, so add
741	 * it back to the LRU list. If the use count is zero,
742	 * put it at the head of the list, otherwise it goes
743	 * to the tail.
744	 */
745	if (l1->l1_domain_use_count == 0) {
746		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
747	}	else
748		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
749
750	mtx_unlock(&l1_lru_lock);
751}
752
753/*
754 * Returns a pointer to the L2 bucket associated with the specified pmap
755 * and VA, or NULL if no L2 bucket exists for the address.
756 */
757static PMAP_INLINE struct l2_bucket *
758pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
759{
760	struct l2_dtable *l2;
761	struct l2_bucket *l2b;
762	u_short l1idx;
763
764	l1idx = L1_IDX(va);
765
766	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
767	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
768		return (NULL);
769
770	return (l2b);
771}
772
773/*
774 * Returns a pointer to the L2 bucket associated with the specified pmap
775 * and VA.
776 *
777 * If no L2 bucket exists, perform the necessary allocations to put an L2
778 * bucket/page table in place.
779 *
780 * Note that if a new L2 bucket/page was allocated, the caller *must*
781 * increment the bucket occupancy counter appropriately *before*
782 * releasing the pmap's lock to ensure no other thread or cpu deallocates
783 * the bucket/page in the meantime.
784 */
785static struct l2_bucket *
786pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
787{
788	struct l2_dtable *l2;
789	struct l2_bucket *l2b;
790	u_short l1idx;
791
792	l1idx = L1_IDX(va);
793
794	PMAP_ASSERT_LOCKED(pm);
795	rw_assert(&pvh_global_lock, RA_WLOCKED);
796	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
797		/*
798		 * No mapping at this address, as there is
799		 * no entry in the L1 table.
800		 * Need to allocate a new l2_dtable.
801		 */
802		PMAP_UNLOCK(pm);
803		rw_wunlock(&pvh_global_lock);
804		if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
805			rw_wlock(&pvh_global_lock);
806			PMAP_LOCK(pm);
807			return (NULL);
808		}
809		rw_wlock(&pvh_global_lock);
810		PMAP_LOCK(pm);
811		if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
812			/*
813			 * Someone already allocated the l2_dtable while
814			 * we were doing the same.
815			 */
816			uma_zfree(l2table_zone, l2);
817			l2 = pm->pm_l2[L2_IDX(l1idx)];
818		} else {
819			bzero(l2, sizeof(*l2));
820			/*
821			 * Link it into the parent pmap
822			 */
823			pm->pm_l2[L2_IDX(l1idx)] = l2;
824		}
825	}
826
827	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
828
829	/*
830	 * Fetch pointer to the L2 page table associated with the address.
831	 */
832	if (l2b->l2b_kva == NULL) {
833		pt_entry_t *ptep;
834
835		/*
836		 * No L2 page table has been allocated. Chances are, this
837		 * is because we just allocated the l2_dtable, above.
838		 */
839		l2->l2_occupancy++;
840		PMAP_UNLOCK(pm);
841		rw_wunlock(&pvh_global_lock);
842		ptep = uma_zalloc(l2zone, M_NOWAIT);
843		rw_wlock(&pvh_global_lock);
844		PMAP_LOCK(pm);
845		if (l2b->l2b_kva != 0) {
846			/* We lost the race. */
847			l2->l2_occupancy--;
848			uma_zfree(l2zone, ptep);
849			return (l2b);
850		}
851		l2b->l2b_phys = vtophys(ptep);
852		if (ptep == NULL) {
853			/*
854			 * Oops, no more L2 page tables available at this
855			 * time. We may need to deallocate the l2_dtable
856			 * if we allocated a new one above.
857			 */
858			l2->l2_occupancy--;
859			if (l2->l2_occupancy == 0) {
860				pm->pm_l2[L2_IDX(l1idx)] = NULL;
861				uma_zfree(l2table_zone, l2);
862			}
863			return (NULL);
864		}
865
866		l2b->l2b_kva = ptep;
867		l2b->l2b_l1idx = l1idx;
868	}
869
870	return (l2b);
871}
872
873static PMAP_INLINE void
874#ifndef PMAP_INCLUDE_PTE_SYNC
875pmap_free_l2_ptp(pt_entry_t *l2)
876#else
877pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
878#endif
879{
880#ifdef PMAP_INCLUDE_PTE_SYNC
881	/*
882	 * Note: With a write-back cache, we may need to sync this
883	 * L2 table before re-using it.
884	 * This is because it may have belonged to a non-current
885	 * pmap, in which case the cache syncs would have been
886	 * skipped when the pages were being unmapped. If the
887	 * L2 table were then to be immediately re-allocated to
888	 * the *current* pmap, it may well contain stale mappings
889	 * which have not yet been cleared by a cache write-back
890	 * and so would still be visible to the mmu.
891	 */
892	if (need_sync)
893		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
894#endif
895	uma_zfree(l2zone, l2);
896}
897/*
898 * One or more mappings in the specified L2 descriptor table have just been
899 * invalidated.
900 *
901 * Garbage collect the metadata and descriptor table itself if necessary.
902 *
903 * The pmap lock must be acquired when this is called (not necessary
904 * for the kernel pmap).
905 */
906static void
907pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
908{
909	struct l2_dtable *l2;
910	pd_entry_t *pl1pd, l1pd;
911	pt_entry_t *ptep;
912	u_short l1idx;
913
914
915	/*
916	 * Update the bucket's reference count according to how many
917	 * PTEs the caller has just invalidated.
918	 */
919	l2b->l2b_occupancy -= count;
920
921	/*
922	 * Note:
923	 *
924	 * Level 2 page tables allocated to the kernel pmap are never freed
925	 * as that would require checking all Level 1 page tables and
926	 * removing any references to the Level 2 page table. See also the
927	 * comment elsewhere about never freeing bootstrap L2 descriptors.
928	 *
929	 * We make do with just invalidating the mapping in the L2 table.
930	 *
931	 * This isn't really a big deal in practice and, in fact, leads
932	 * to a performance win over time as we don't need to continually
933	 * alloc/free.
934	 */
935	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
936		return;
937
938	/*
939	 * There are no more valid mappings in this level 2 page table.
940	 * Go ahead and NULL-out the pointer in the bucket, then
941	 * free the page table.
942	 */
943	l1idx = l2b->l2b_l1idx;
944	ptep = l2b->l2b_kva;
945	l2b->l2b_kva = NULL;
946
947	pl1pd = &pm->pm_l1->l1_kva[l1idx];
948
949	/*
950	 * If the L1 slot matches the pmap's domain
951	 * number, then invalidate it.
952	 */
953	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
954	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
955		*pl1pd = 0;
956		PTE_SYNC(pl1pd);
957	}
958
959	/*
960	 * Release the L2 descriptor table back to the pool cache.
961	 */
962#ifndef PMAP_INCLUDE_PTE_SYNC
963	pmap_free_l2_ptp(ptep);
964#else
965	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
966#endif
967
968	/*
969	 * Update the reference count in the associated l2_dtable
970	 */
971	l2 = pm->pm_l2[L2_IDX(l1idx)];
972	if (--l2->l2_occupancy > 0)
973		return;
974
975	/*
976	 * There are no more valid mappings in any of the Level 1
977	 * slots managed by this l2_dtable. Go ahead and NULL-out
978	 * the pointer in the parent pmap and free the l2_dtable.
979	 */
980	pm->pm_l2[L2_IDX(l1idx)] = NULL;
981	uma_zfree(l2table_zone, l2);
982}
983
984/*
985 * Pool cache constructors for L2 descriptor tables, metadata and pmap
986 * structures.
987 */
988static int
989pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
990{
991#ifndef PMAP_INCLUDE_PTE_SYNC
992	struct l2_bucket *l2b;
993	pt_entry_t *ptep, pte;
994
995	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
996
997	/*
998	 * The mappings for these page tables were initially made using
999	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1000	 * mode will not be right for page table mappings. To avoid
1001	 * polluting the pmap_kenter() code with a special case for
1002	 * page tables, we simply fix up the cache-mode here if it's not
1003	 * correct.
1004	 */
1005		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1006		ptep = &l2b->l2b_kva[l2pte_index(va)];
1007		pte = *ptep;
1008
1009		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1010			/*
1011			 * Page tables must have the cache-mode set to
1012			 * Write-Thru.
1013			 */
1014			*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1015			PTE_SYNC(ptep);
1016			cpu_tlb_flushD_SE(va);
1017			cpu_cpwait();
1018		}
1019#endif
1020	memset(mem, 0, L2_TABLE_SIZE_REAL);
1021	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1022	return (0);
1023}
1024
1025/*
1026 * A bunch of routines to conditionally flush the caches/TLB depending
1027 * on whether the specified pmap actually needs to be flushed at any
1028 * given time.
1029 */
1030static PMAP_INLINE void
1031pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1032{
1033
1034	if (pmap_is_current(pm))
1035		cpu_tlb_flushID_SE(va);
1036}
1037
1038static PMAP_INLINE void
1039pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1040{
1041
1042	if (pmap_is_current(pm))
1043		cpu_tlb_flushD_SE(va);
1044}
1045
1046static PMAP_INLINE void
1047pmap_tlb_flushID(pmap_t pm)
1048{
1049
1050	if (pmap_is_current(pm))
1051		cpu_tlb_flushID();
1052}
1053static PMAP_INLINE void
1054pmap_tlb_flushD(pmap_t pm)
1055{
1056
1057	if (pmap_is_current(pm))
1058		cpu_tlb_flushD();
1059}
1060
1061static int
1062pmap_has_valid_mapping(pmap_t pm, vm_offset_t va)
1063{
1064	pd_entry_t *pde;
1065	pt_entry_t *ptep;
1066
1067	if (pmap_get_pde_pte(pm, va, &pde, &ptep) &&
1068	    ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV))
1069		return (1);
1070
1071	return (0);
1072}
1073
1074static PMAP_INLINE void
1075pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1076{
1077	vm_size_t rest;
1078
1079	CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x"
1080	    " len 0x%x ", pm, pm == pmap_kernel(), va, len);
1081
1082	if (pmap_is_current(pm) || pm == pmap_kernel()) {
1083		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1084		while (len > 0) {
1085			if (pmap_has_valid_mapping(pm, va)) {
1086				cpu_idcache_wbinv_range(va, rest);
1087				cpu_l2cache_wbinv_range(va, rest);
1088			}
1089			len -= rest;
1090			va += rest;
1091			rest = MIN(PAGE_SIZE, len);
1092		}
1093	}
1094}
1095
1096static PMAP_INLINE void
1097pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv,
1098    boolean_t rd_only)
1099{
1100	vm_size_t rest;
1101
1102	CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x "
1103	    "len 0x%x ", pm, pm == pmap_kernel(), va, len);
1104	CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only);
1105
1106	if (pmap_is_current(pm)) {
1107		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1108		while (len > 0) {
1109			if (pmap_has_valid_mapping(pm, va)) {
1110				if (do_inv && rd_only) {
1111					cpu_dcache_inv_range(va, rest);
1112					cpu_l2cache_inv_range(va, rest);
1113				} else if (do_inv) {
1114					cpu_dcache_wbinv_range(va, rest);
1115					cpu_l2cache_wbinv_range(va, rest);
1116				} else if (!rd_only) {
1117					cpu_dcache_wb_range(va, rest);
1118					cpu_l2cache_wb_range(va, rest);
1119				}
1120			}
1121			len -= rest;
1122			va += rest;
1123
1124			rest = MIN(PAGE_SIZE, len);
1125		}
1126	}
1127}
1128
1129static PMAP_INLINE void
1130pmap_idcache_wbinv_all(pmap_t pm)
1131{
1132
1133	if (pmap_is_current(pm)) {
1134		cpu_idcache_wbinv_all();
1135		cpu_l2cache_wbinv_all();
1136	}
1137}
1138
1139#ifdef notyet
1140static PMAP_INLINE void
1141pmap_dcache_wbinv_all(pmap_t pm)
1142{
1143
1144	if (pmap_is_current(pm)) {
1145		cpu_dcache_wbinv_all();
1146		cpu_l2cache_wbinv_all();
1147	}
1148}
1149#endif
1150
1151/*
1152 * PTE_SYNC_CURRENT:
1153 *
1154 *     Make sure the pte is written out to RAM.
1155 *     We need to do this for one of two cases:
1156 *       - We're dealing with the kernel pmap
1157 *       - There is no pmap active in the cache/tlb.
1158 *       - The specified pmap is 'active' in the cache/tlb.
1159 */
1160#ifdef PMAP_INCLUDE_PTE_SYNC
1161#define	PTE_SYNC_CURRENT(pm, ptep)	\
1162do {					\
1163	if (PMAP_NEEDS_PTE_SYNC && 	\
1164	    pmap_is_current(pm))	\
1165		PTE_SYNC(ptep);		\
1166} while (/*CONSTCOND*/0)
1167#else
1168#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1169#endif
1170
1171/*
1172 * cacheable == -1 means we must make the entry uncacheable, 1 means
1173 * cacheable;
1174 */
1175static __inline void
1176pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable)
1177{
1178	struct l2_bucket *l2b;
1179	pt_entry_t *ptep, pte;
1180
1181	l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1182	ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1183
1184	if (cacheable == 1) {
1185		pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1186		if (l2pte_valid(pte)) {
1187			if (PV_BEEN_EXECD(pv->pv_flags)) {
1188				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1189			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1190				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
1191			}
1192		}
1193	} else {
1194		pte = *ptep &~ L2_S_CACHE_MASK;
1195		if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1196			    l2pte_valid(pte)) {
1197			if (PV_BEEN_EXECD(pv->pv_flags)) {
1198				pmap_idcache_wbinv_range(pv->pv_pmap,
1199					    pv->pv_va, PAGE_SIZE);
1200				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1201			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1202				pmap_dcache_wb_range(pv->pv_pmap,
1203					    pv->pv_va, PAGE_SIZE, TRUE,
1204					    (pv->pv_flags & PVF_WRITE) == 0);
1205				pmap_tlb_flushD_SE(pv->pv_pmap,
1206					    pv->pv_va);
1207			}
1208		}
1209	}
1210	*ptep = pte;
1211	PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1212}
1213
1214static void
1215pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1216{
1217	int pmwc = 0;
1218	int writable = 0, kwritable = 0, uwritable = 0;
1219	int entries = 0, kentries = 0, uentries = 0;
1220	struct pv_entry *pv;
1221
1222	rw_assert(&pvh_global_lock, RA_WLOCKED);
1223
1224	/* the cache gets written back/invalidated on context switch.
1225	 * therefore, if a user page shares an entry in the same page or
1226	 * with the kernel map and at least one is writable, then the
1227	 * cache entry must be set write-through.
1228	 */
1229
1230	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1231			/* generate a count of the pv_entry uses */
1232		if (pv->pv_flags & PVF_WRITE) {
1233			if (pv->pv_pmap == pmap_kernel())
1234				kwritable++;
1235			else if (pv->pv_pmap == pm)
1236				uwritable++;
1237			writable++;
1238		}
1239		if (pv->pv_pmap == pmap_kernel())
1240			kentries++;
1241		else {
1242			if (pv->pv_pmap == pm)
1243				uentries++;
1244			entries++;
1245		}
1246	}
1247		/*
1248		 * check if the user duplicate mapping has
1249		 * been removed.
1250		 */
1251	if ((pm != pmap_kernel()) && (((uentries > 1) && uwritable) ||
1252	    (uwritable > 1)))
1253			pmwc = 1;
1254
1255	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1256		/* check for user uncachable conditions - order is important */
1257		if (pm != pmap_kernel() &&
1258		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel())) {
1259
1260			if ((uentries > 1 && uwritable) || uwritable > 1) {
1261
1262				/* user duplicate mapping */
1263				if (pv->pv_pmap != pmap_kernel())
1264					pv->pv_flags |= PVF_MWC;
1265
1266				if (!(pv->pv_flags & PVF_NC)) {
1267					pv->pv_flags |= PVF_NC;
1268					pmap_set_cache_entry(pv, pm, va, -1);
1269				}
1270				continue;
1271			} else	/* no longer a duplicate user */
1272				pv->pv_flags &= ~PVF_MWC;
1273		}
1274
1275		/*
1276		 * check for kernel uncachable conditions
1277		 * kernel writable or kernel readable with writable user entry
1278		 */
1279		if ((kwritable && (entries || kentries > 1)) ||
1280		    (kwritable > 1) ||
1281		    ((kwritable != writable) && kentries &&
1282		     (pv->pv_pmap == pmap_kernel() ||
1283		      (pv->pv_flags & PVF_WRITE) ||
1284		      (pv->pv_flags & PVF_MWC)))) {
1285
1286			if (!(pv->pv_flags & PVF_NC)) {
1287				pv->pv_flags |= PVF_NC;
1288				pmap_set_cache_entry(pv, pm, va, -1);
1289			}
1290			continue;
1291		}
1292
1293			/* kernel and user are cachable */
1294		if ((pm == pmap_kernel()) && !(pv->pv_flags & PVF_MWC) &&
1295		    (pv->pv_flags & PVF_NC)) {
1296
1297			pv->pv_flags &= ~PVF_NC;
1298			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1299				pmap_set_cache_entry(pv, pm, va, 1);
1300			continue;
1301		}
1302			/* user is no longer sharable and writable */
1303		if (pm != pmap_kernel() &&
1304		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel()) &&
1305		    !pmwc && (pv->pv_flags & PVF_NC)) {
1306
1307			pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1308			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1309				pmap_set_cache_entry(pv, pm, va, 1);
1310		}
1311	}
1312
1313	if ((kwritable == 0) && (writable == 0)) {
1314		pg->md.pvh_attrs &= ~PVF_MOD;
1315		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1316		return;
1317	}
1318}
1319
1320/*
1321 * Modify pte bits for all ptes corresponding to the given physical address.
1322 * We use `maskbits' rather than `clearbits' because we're always passing
1323 * constants and the latter would require an extra inversion at run-time.
1324 */
1325static int
1326pmap_clearbit(struct vm_page *pg, u_int maskbits)
1327{
1328	struct l2_bucket *l2b;
1329	struct pv_entry *pv;
1330	pt_entry_t *ptep, npte, opte;
1331	pmap_t pm;
1332	vm_offset_t va;
1333	u_int oflags;
1334	int count = 0;
1335
1336	rw_wlock(&pvh_global_lock);
1337
1338	if (maskbits & PVF_WRITE)
1339		maskbits |= PVF_MOD;
1340	/*
1341	 * Clear saved attributes (modify, reference)
1342	 */
1343	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1344
1345	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1346		rw_wunlock(&pvh_global_lock);
1347		return (0);
1348	}
1349
1350	/*
1351	 * Loop over all current mappings setting/clearing as appropos
1352	 */
1353	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1354		va = pv->pv_va;
1355		pm = pv->pv_pmap;
1356		oflags = pv->pv_flags;
1357
1358		if (!(oflags & maskbits)) {
1359			if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) {
1360				if (pg->md.pv_memattr !=
1361				    VM_MEMATTR_UNCACHEABLE) {
1362					PMAP_LOCK(pm);
1363					l2b = pmap_get_l2_bucket(pm, va);
1364					ptep = &l2b->l2b_kva[l2pte_index(va)];
1365					*ptep |= pte_l2_s_cache_mode;
1366					PTE_SYNC(ptep);
1367					PMAP_UNLOCK(pm);
1368				}
1369				pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1370			}
1371			continue;
1372		}
1373		pv->pv_flags &= ~maskbits;
1374
1375		PMAP_LOCK(pm);
1376
1377		l2b = pmap_get_l2_bucket(pm, va);
1378
1379		ptep = &l2b->l2b_kva[l2pte_index(va)];
1380		npte = opte = *ptep;
1381
1382		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1383			if ((pv->pv_flags & PVF_NC)) {
1384				/*
1385				 * Entry is not cacheable:
1386				 *
1387				 * Don't turn caching on again if this is a
1388				 * modified emulation. This would be
1389				 * inconsitent with the settings created by
1390				 * pmap_fix_cache(). Otherwise, it's safe
1391				 * to re-enable cacheing.
1392				 *
1393				 * There's no need to call pmap_fix_cache()
1394				 * here: all pages are losing their write
1395				 * permission.
1396				 */
1397				if (maskbits & PVF_WRITE) {
1398					if (pg->md.pv_memattr !=
1399					    VM_MEMATTR_UNCACHEABLE)
1400						npte |= pte_l2_s_cache_mode;
1401					pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1402				}
1403			} else
1404			if (opte & L2_S_PROT_W) {
1405				vm_page_dirty(pg);
1406				/*
1407				 * Entry is writable/cacheable: check if pmap
1408				 * is current if it is flush it, otherwise it
1409				 * won't be in the cache
1410				 */
1411				if (PV_BEEN_EXECD(oflags))
1412					pmap_idcache_wbinv_range(pm, pv->pv_va,
1413					    PAGE_SIZE);
1414				else
1415				if (PV_BEEN_REFD(oflags))
1416					pmap_dcache_wb_range(pm, pv->pv_va,
1417					    PAGE_SIZE,
1418					    (maskbits & PVF_REF) ? TRUE : FALSE,
1419					    FALSE);
1420			}
1421
1422			/* make the pte read only */
1423			npte &= ~L2_S_PROT_W;
1424		}
1425
1426		if (maskbits & PVF_REF) {
1427			if ((pv->pv_flags & PVF_NC) == 0 &&
1428			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1429				/*
1430				 * Check npte here; we may have already
1431				 * done the wbinv above, and the validity
1432				 * of the PTE is the same for opte and
1433				 * npte.
1434				 */
1435				if (npte & L2_S_PROT_W) {
1436					if (PV_BEEN_EXECD(oflags))
1437						pmap_idcache_wbinv_range(pm,
1438						    pv->pv_va, PAGE_SIZE);
1439					else
1440					if (PV_BEEN_REFD(oflags))
1441						pmap_dcache_wb_range(pm,
1442						    pv->pv_va, PAGE_SIZE,
1443						    TRUE, FALSE);
1444				} else
1445				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1446					/* XXXJRT need idcache_inv_range */
1447					if (PV_BEEN_EXECD(oflags))
1448						pmap_idcache_wbinv_range(pm,
1449						    pv->pv_va, PAGE_SIZE);
1450					else
1451					if (PV_BEEN_REFD(oflags))
1452						pmap_dcache_wb_range(pm,
1453						    pv->pv_va, PAGE_SIZE,
1454						    TRUE, TRUE);
1455				}
1456			}
1457
1458			/*
1459			 * Make the PTE invalid so that we will take a
1460			 * page fault the next time the mapping is
1461			 * referenced.
1462			 */
1463			npte &= ~L2_TYPE_MASK;
1464			npte |= L2_TYPE_INV;
1465		}
1466
1467		if (npte != opte) {
1468			count++;
1469			*ptep = npte;
1470			PTE_SYNC(ptep);
1471			/* Flush the TLB entry if a current pmap. */
1472			if (PV_BEEN_EXECD(oflags))
1473				pmap_tlb_flushID_SE(pm, pv->pv_va);
1474			else
1475			if (PV_BEEN_REFD(oflags))
1476				pmap_tlb_flushD_SE(pm, pv->pv_va);
1477		}
1478
1479		PMAP_UNLOCK(pm);
1480
1481	}
1482
1483	if (maskbits & PVF_WRITE)
1484		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1485	rw_wunlock(&pvh_global_lock);
1486	return (count);
1487}
1488
1489/*
1490 * main pv_entry manipulation functions:
1491 *   pmap_enter_pv: enter a mapping onto a vm_page list
1492 *   pmap_remove_pv: remove a mappiing from a vm_page list
1493 *
1494 * NOTE: pmap_enter_pv expects to lock the pvh itself
1495 *       pmap_remove_pv expects the caller to lock the pvh before calling
1496 */
1497
1498/*
1499 * pmap_enter_pv: enter a mapping onto a vm_page's PV list
1500 *
1501 * => caller should hold the proper lock on pvh_global_lock
1502 * => caller should have pmap locked
1503 * => we will (someday) gain the lock on the vm_page's PV list
1504 * => caller should adjust ptp's wire_count before calling
1505 * => caller should not adjust pmap's wire_count
1506 */
1507static void
1508pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1509    vm_offset_t va, u_int flags)
1510{
1511
1512	rw_assert(&pvh_global_lock, RA_WLOCKED);
1513	PMAP_ASSERT_LOCKED(pm);
1514	if (pg->md.pv_kva != 0) {
1515		pve->pv_pmap = kernel_pmap;
1516		pve->pv_va = pg->md.pv_kva;
1517		pve->pv_flags = PVF_WRITE | PVF_UNMAN;
1518		if (pm != kernel_pmap)
1519			PMAP_LOCK(kernel_pmap);
1520		TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1521		TAILQ_INSERT_HEAD(&kernel_pmap->pm_pvlist, pve, pv_plist);
1522		if (pm != kernel_pmap)
1523			PMAP_UNLOCK(kernel_pmap);
1524		pg->md.pv_kva = 0;
1525		if ((pve = pmap_get_pv_entry()) == NULL)
1526			panic("pmap_kenter_pv: no pv entries");
1527	}
1528	pve->pv_pmap = pm;
1529	pve->pv_va = va;
1530	pve->pv_flags = flags;
1531	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1532	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1533	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1534	if (pve->pv_flags & PVF_WIRED)
1535		++pm->pm_stats.wired_count;
1536	vm_page_aflag_set(pg, PGA_REFERENCED);
1537}
1538
1539/*
1540 *
1541 * pmap_find_pv: Find a pv entry
1542 *
1543 * => caller should hold lock on vm_page
1544 */
1545static PMAP_INLINE struct pv_entry *
1546pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1547{
1548	struct pv_entry *pv;
1549
1550	rw_assert(&pvh_global_lock, RA_WLOCKED);
1551	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1552	    if (pm == pv->pv_pmap && va == pv->pv_va)
1553		    break;
1554	return (pv);
1555}
1556
1557/*
1558 * vector_page_setprot:
1559 *
1560 *	Manipulate the protection of the vector page.
1561 */
1562void
1563vector_page_setprot(int prot)
1564{
1565	struct l2_bucket *l2b;
1566	pt_entry_t *ptep;
1567
1568	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1569
1570	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1571
1572	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1573	PTE_SYNC(ptep);
1574	cpu_tlb_flushD_SE(vector_page);
1575	cpu_cpwait();
1576}
1577
1578/*
1579 * pmap_remove_pv: try to remove a mapping from a pv_list
1580 *
1581 * => caller should hold proper lock on pmap_main_lock
1582 * => pmap should be locked
1583 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1584 * => caller should adjust ptp's wire_count and free PTP if needed
1585 * => caller should NOT adjust pmap's wire_count
1586 * => we return the removed pve
1587 */
1588
1589static void
1590pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1591{
1592
1593	struct pv_entry *pv;
1594	rw_assert(&pvh_global_lock, RA_WLOCKED);
1595	PMAP_ASSERT_LOCKED(pm);
1596	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1597	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1598	if (pve->pv_flags & PVF_WIRED)
1599		--pm->pm_stats.wired_count;
1600	if (pg->md.pvh_attrs & PVF_MOD)
1601		vm_page_dirty(pg);
1602	if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1603		pg->md.pvh_attrs &= ~PVF_REF;
1604       	else
1605		vm_page_aflag_set(pg, PGA_REFERENCED);
1606	if ((pve->pv_flags & PVF_NC) && ((pm == pmap_kernel()) ||
1607	     (pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC)))
1608		pmap_fix_cache(pg, pm, 0);
1609	else if (pve->pv_flags & PVF_WRITE) {
1610		TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
1611		    if (pve->pv_flags & PVF_WRITE)
1612			    break;
1613		if (!pve) {
1614			pg->md.pvh_attrs &= ~PVF_MOD;
1615			vm_page_aflag_clear(pg, PGA_WRITEABLE);
1616		}
1617	}
1618	pv = TAILQ_FIRST(&pg->md.pv_list);
1619	if (pv != NULL && (pv->pv_flags & PVF_UNMAN) &&
1620	    TAILQ_NEXT(pv, pv_list) == NULL) {
1621		pm = kernel_pmap;
1622		pg->md.pv_kva = pv->pv_va;
1623			/* a recursive pmap_nuke_pv */
1624		TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list);
1625		TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist);
1626		if (pv->pv_flags & PVF_WIRED)
1627			--pm->pm_stats.wired_count;
1628		pg->md.pvh_attrs &= ~PVF_REF;
1629		pg->md.pvh_attrs &= ~PVF_MOD;
1630		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1631		pmap_free_pv_entry(pv);
1632	}
1633}
1634
1635static struct pv_entry *
1636pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1637{
1638	struct pv_entry *pve;
1639
1640	rw_assert(&pvh_global_lock, RA_WLOCKED);
1641	pve = TAILQ_FIRST(&pg->md.pv_list);
1642
1643	while (pve) {
1644		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1645			pmap_nuke_pv(pg, pm, pve);
1646			break;
1647		}
1648		pve = TAILQ_NEXT(pve, pv_list);
1649	}
1650
1651	if (pve == NULL && pg->md.pv_kva == va)
1652		pg->md.pv_kva = 0;
1653
1654	return(pve);				/* return removed pve */
1655}
1656/*
1657 *
1658 * pmap_modify_pv: Update pv flags
1659 *
1660 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1661 * => caller should NOT adjust pmap's wire_count
1662 * => we return the old flags
1663 *
1664 * Modify a physical-virtual mapping in the pv table
1665 */
1666static u_int
1667pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1668    u_int clr_mask, u_int set_mask)
1669{
1670	struct pv_entry *npv;
1671	u_int flags, oflags;
1672
1673	PMAP_ASSERT_LOCKED(pm);
1674	rw_assert(&pvh_global_lock, RA_WLOCKED);
1675	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1676		return (0);
1677
1678	/*
1679	 * There is at least one VA mapping this page.
1680	 */
1681
1682	if (clr_mask & (PVF_REF | PVF_MOD))
1683		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1684
1685	oflags = npv->pv_flags;
1686	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1687
1688	if ((flags ^ oflags) & PVF_WIRED) {
1689		if (flags & PVF_WIRED)
1690			++pm->pm_stats.wired_count;
1691		else
1692			--pm->pm_stats.wired_count;
1693	}
1694
1695	if ((flags ^ oflags) & PVF_WRITE)
1696		pmap_fix_cache(pg, pm, 0);
1697
1698	return (oflags);
1699}
1700
1701/* Function to set the debug level of the pmap code */
1702#ifdef PMAP_DEBUG
1703void
1704pmap_debug(int level)
1705{
1706	pmap_debug_level = level;
1707	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1708}
1709#endif  /* PMAP_DEBUG */
1710
1711void
1712pmap_pinit0(struct pmap *pmap)
1713{
1714	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1715
1716	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1717	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1718	PMAP_LOCK_INIT(pmap);
1719}
1720
1721/*
1722 *	Initialize a vm_page's machine-dependent fields.
1723 */
1724void
1725pmap_page_init(vm_page_t m)
1726{
1727
1728	TAILQ_INIT(&m->md.pv_list);
1729	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
1730}
1731
1732/*
1733 *      Initialize the pmap module.
1734 *      Called by vm_init, to initialize any structures that the pmap
1735 *      system needs to map virtual memory.
1736 */
1737void
1738pmap_init(void)
1739{
1740	int shpgperproc = PMAP_SHPGPERPROC;
1741
1742	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1743	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1744	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
1745	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1746
1747	/*
1748	 * Initialize the PV entry allocator.
1749	 */
1750	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1751	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1752	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1753	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1754	uma_zone_reserve_kva(pvzone, pv_entry_max);
1755	pv_entry_high_water = 9 * (pv_entry_max / 10);
1756
1757	/*
1758	 * Now it is safe to enable pv_table recording.
1759	 */
1760	PDEBUG(1, printf("pmap_init: done!\n"));
1761}
1762
1763int
1764pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1765{
1766	struct l2_dtable *l2;
1767	struct l2_bucket *l2b;
1768	pd_entry_t *pl1pd, l1pd;
1769	pt_entry_t *ptep, pte;
1770	vm_paddr_t pa;
1771	u_int l1idx;
1772	int rv = 0;
1773
1774	l1idx = L1_IDX(va);
1775	rw_wlock(&pvh_global_lock);
1776	PMAP_LOCK(pm);
1777
1778	/*
1779	 * If there is no l2_dtable for this address, then the process
1780	 * has no business accessing it.
1781	 *
1782	 * Note: This will catch userland processes trying to access
1783	 * kernel addresses.
1784	 */
1785	l2 = pm->pm_l2[L2_IDX(l1idx)];
1786	if (l2 == NULL)
1787		goto out;
1788
1789	/*
1790	 * Likewise if there is no L2 descriptor table
1791	 */
1792	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1793	if (l2b->l2b_kva == NULL)
1794		goto out;
1795
1796	/*
1797	 * Check the PTE itself.
1798	 */
1799	ptep = &l2b->l2b_kva[l2pte_index(va)];
1800	pte = *ptep;
1801	if (pte == 0)
1802		goto out;
1803
1804	/*
1805	 * Catch a userland access to the vector page mapped at 0x0
1806	 */
1807	if (user && (pte & L2_S_PROT_U) == 0)
1808		goto out;
1809	if (va == vector_page)
1810		goto out;
1811
1812	pa = l2pte_pa(pte);
1813
1814	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
1815		/*
1816		 * This looks like a good candidate for "page modified"
1817		 * emulation...
1818		 */
1819		struct pv_entry *pv;
1820		struct vm_page *pg;
1821
1822		/* Extract the physical address of the page */
1823		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
1824			goto out;
1825		}
1826		/* Get the current flags for this page. */
1827
1828		pv = pmap_find_pv(pg, pm, va);
1829		if (pv == NULL) {
1830			goto out;
1831		}
1832
1833		/*
1834		 * Do the flags say this page is writable? If not then it
1835		 * is a genuine write fault. If yes then the write fault is
1836		 * our fault as we did not reflect the write access in the
1837		 * PTE. Now we know a write has occurred we can correct this
1838		 * and also set the modified bit
1839		 */
1840		if ((pv->pv_flags & PVF_WRITE) == 0) {
1841			goto out;
1842		}
1843
1844		pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
1845		vm_page_dirty(pg);
1846		pv->pv_flags |= PVF_REF | PVF_MOD;
1847
1848		/*
1849		 * Re-enable write permissions for the page.  No need to call
1850		 * pmap_fix_cache(), since this is just a
1851		 * modified-emulation fault, and the PVF_WRITE bit isn't
1852		 * changing. We've already set the cacheable bits based on
1853		 * the assumption that we can write to this page.
1854		 */
1855		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
1856		PTE_SYNC(ptep);
1857		rv = 1;
1858	} else
1859	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
1860		/*
1861		 * This looks like a good candidate for "page referenced"
1862		 * emulation.
1863		 */
1864		struct pv_entry *pv;
1865		struct vm_page *pg;
1866
1867		/* Extract the physical address of the page */
1868		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
1869			goto out;
1870		/* Get the current flags for this page. */
1871
1872		pv = pmap_find_pv(pg, pm, va);
1873		if (pv == NULL)
1874			goto out;
1875
1876		pg->md.pvh_attrs |= PVF_REF;
1877		pv->pv_flags |= PVF_REF;
1878
1879
1880		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
1881		PTE_SYNC(ptep);
1882		rv = 1;
1883	}
1884
1885	/*
1886	 * We know there is a valid mapping here, so simply
1887	 * fix up the L1 if necessary.
1888	 */
1889	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1890	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
1891	if (*pl1pd != l1pd) {
1892		*pl1pd = l1pd;
1893		PTE_SYNC(pl1pd);
1894		rv = 1;
1895	}
1896
1897#ifdef DEBUG
1898	/*
1899	 * If 'rv == 0' at this point, it generally indicates that there is a
1900	 * stale TLB entry for the faulting address. This happens when two or
1901	 * more processes are sharing an L1. Since we don't flush the TLB on
1902	 * a context switch between such processes, we can take domain faults
1903	 * for mappings which exist at the same VA in both processes. EVEN IF
1904	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
1905	 * example.
1906	 *
1907	 * This is extremely likely to happen if pmap_enter() updated the L1
1908	 * entry for a recently entered mapping. In this case, the TLB is
1909	 * flushed for the new mapping, but there may still be TLB entries for
1910	 * other mappings belonging to other processes in the 1MB range
1911	 * covered by the L1 entry.
1912	 *
1913	 * Since 'rv == 0', we know that the L1 already contains the correct
1914	 * value, so the fault must be due to a stale TLB entry.
1915	 *
1916	 * Since we always need to flush the TLB anyway in the case where we
1917	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
1918	 * stale TLB entries dynamically.
1919	 *
1920	 * However, the above condition can ONLY happen if the current L1 is
1921	 * being shared. If it happens when the L1 is unshared, it indicates
1922	 * that other parts of the pmap are not doing their job WRT managing
1923	 * the TLB.
1924	 */
1925	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
1926		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
1927		    pm, (u_long)va, ftype);
1928		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
1929		    l2, l2b, ptep, pl1pd);
1930		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
1931		    pte, l1pd, last_fault_code);
1932#ifdef DDB
1933		Debugger();
1934#endif
1935	}
1936#endif
1937
1938	cpu_tlb_flushID_SE(va);
1939	cpu_cpwait();
1940
1941	rv = 1;
1942
1943out:
1944	rw_wunlock(&pvh_global_lock);
1945	PMAP_UNLOCK(pm);
1946	return (rv);
1947}
1948
1949void
1950pmap_postinit(void)
1951{
1952	struct l2_bucket *l2b;
1953	struct l1_ttable *l1;
1954	pd_entry_t *pl1pt;
1955	pt_entry_t *ptep, pte;
1956	vm_offset_t va, eva;
1957	u_int loop, needed;
1958
1959	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
1960	needed -= 1;
1961	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
1962
1963	for (loop = 0; loop < needed; loop++, l1++) {
1964		/* Allocate a L1 page table */
1965		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
1966		    0xffffffff, L1_TABLE_SIZE, 0);
1967
1968		if (va == 0)
1969			panic("Cannot allocate L1 KVM");
1970
1971		eva = va + L1_TABLE_SIZE;
1972		pl1pt = (pd_entry_t *)va;
1973
1974		while (va < eva) {
1975				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1976				ptep = &l2b->l2b_kva[l2pte_index(va)];
1977				pte = *ptep;
1978				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1979				*ptep = pte;
1980				PTE_SYNC(ptep);
1981				cpu_tlb_flushD_SE(va);
1982
1983				va += PAGE_SIZE;
1984		}
1985		pmap_init_l1(l1, pl1pt);
1986	}
1987
1988
1989#ifdef DEBUG
1990	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
1991	    needed);
1992#endif
1993}
1994
1995/*
1996 * This is used to stuff certain critical values into the PCB where they
1997 * can be accessed quickly from cpu_switch() et al.
1998 */
1999void
2000pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2001{
2002	struct l2_bucket *l2b;
2003
2004	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2005	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2006	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2007
2008	if (vector_page < KERNBASE) {
2009		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2010		l2b = pmap_get_l2_bucket(pm, vector_page);
2011		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2012	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2013	} else
2014		pcb->pcb_pl1vec = NULL;
2015}
2016
2017void
2018pmap_activate(struct thread *td)
2019{
2020	pmap_t pm;
2021	struct pcb *pcb;
2022
2023	pm = vmspace_pmap(td->td_proc->p_vmspace);
2024	pcb = td->td_pcb;
2025
2026	critical_enter();
2027	pmap_set_pcb_pagedir(pm, pcb);
2028
2029	if (td == curthread) {
2030		u_int cur_dacr, cur_ttb;
2031
2032		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2033		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2034
2035		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2036
2037		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2038		    cur_dacr == pcb->pcb_dacr) {
2039			/*
2040			 * No need to switch address spaces.
2041			 */
2042			critical_exit();
2043			return;
2044		}
2045
2046
2047		/*
2048		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2049		 * to 'vector_page' in the incoming L1 table before switching
2050		 * to it otherwise subsequent interrupts/exceptions (including
2051		 * domain faults!) will jump into hyperspace.
2052		 */
2053		if (pcb->pcb_pl1vec) {
2054
2055			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2056			/*
2057			 * Don't need to PTE_SYNC() at this point since
2058			 * cpu_setttb() is about to flush both the cache
2059			 * and the TLB.
2060			 */
2061		}
2062
2063		cpu_domains(pcb->pcb_dacr);
2064		cpu_setttb(pcb->pcb_pagedir);
2065	}
2066	critical_exit();
2067}
2068
2069static int
2070pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2071{
2072	pd_entry_t *pdep, pde;
2073	pt_entry_t *ptep, pte;
2074	vm_offset_t pa;
2075	int rv = 0;
2076
2077	/*
2078	 * Make sure the descriptor itself has the correct cache mode
2079	 */
2080	pdep = &kl1[L1_IDX(va)];
2081	pde = *pdep;
2082
2083	if (l1pte_section_p(pde)) {
2084		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2085			*pdep = (pde & ~L1_S_CACHE_MASK) |
2086			    pte_l1_s_cache_mode_pt;
2087			PTE_SYNC(pdep);
2088			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2089			    sizeof(*pdep));
2090			cpu_l2cache_wbinv_range((vm_offset_t)pdep,
2091			    sizeof(*pdep));
2092			rv = 1;
2093		}
2094	} else {
2095		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2096		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2097		if (ptep == NULL)
2098			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2099
2100		ptep = &ptep[l2pte_index(va)];
2101		pte = *ptep;
2102		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2103			*ptep = (pte & ~L2_S_CACHE_MASK) |
2104			    pte_l2_s_cache_mode_pt;
2105			PTE_SYNC(ptep);
2106			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2107			    sizeof(*ptep));
2108			cpu_l2cache_wbinv_range((vm_offset_t)ptep,
2109			    sizeof(*ptep));
2110			rv = 1;
2111		}
2112	}
2113
2114	return (rv);
2115}
2116
2117static void
2118pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2119    pt_entry_t **ptep)
2120{
2121	vm_offset_t va = *availp;
2122	struct l2_bucket *l2b;
2123
2124	if (ptep) {
2125		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2126		if (l2b == NULL)
2127			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2128
2129		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2130	}
2131
2132	*vap = va;
2133	*availp = va + (PAGE_SIZE * pages);
2134}
2135
2136/*
2137 *	Bootstrap the system enough to run with virtual memory.
2138 *
2139 *	On the arm this is called after mapping has already been enabled
2140 *	and just syncs the pmap module with what has already been done.
2141 *	[We can't call it easily with mapping off since the kernel is not
2142 *	mapped with PA == VA, hence we would have to relocate every address
2143 *	from the linked base (virtual) address "KERNBASE" to the actual
2144 *	(physical) address starting relative to 0]
2145 */
2146#define PMAP_STATIC_L2_SIZE 16
2147void
2148pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
2149{
2150	static struct l1_ttable static_l1;
2151	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2152	struct l1_ttable *l1 = &static_l1;
2153	struct l2_dtable *l2;
2154	struct l2_bucket *l2b;
2155	pd_entry_t pde;
2156	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2157	pt_entry_t *ptep;
2158	vm_paddr_t pa;
2159	vm_offset_t va;
2160	vm_size_t size;
2161	int l1idx, l2idx, l2next = 0;
2162
2163	PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
2164	    firstaddr, vm_max_kernel_address));
2165
2166	virtual_avail = firstaddr;
2167	kernel_pmap->pm_l1 = l1;
2168	kernel_l1pa = l1pt->pv_pa;
2169
2170	/*
2171	 * Scan the L1 translation table created by initarm() and create
2172	 * the required metadata for all valid mappings found in it.
2173	 */
2174	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2175		pde = kernel_l1pt[l1idx];
2176
2177		/*
2178		 * We're only interested in Coarse mappings.
2179		 * pmap_extract() can deal with section mappings without
2180		 * recourse to checking L2 metadata.
2181		 */
2182		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2183			continue;
2184
2185		/*
2186		 * Lookup the KVA of this L2 descriptor table
2187		 */
2188		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2189		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2190
2191		if (ptep == NULL) {
2192			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2193			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2194		}
2195
2196		/*
2197		 * Fetch the associated L2 metadata structure.
2198		 * Allocate a new one if necessary.
2199		 */
2200		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2201			if (l2next == PMAP_STATIC_L2_SIZE)
2202				panic("pmap_bootstrap: out of static L2s");
2203			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2204			    &static_l2[l2next++];
2205		}
2206
2207		/*
2208		 * One more L1 slot tracked...
2209		 */
2210		l2->l2_occupancy++;
2211
2212		/*
2213		 * Fill in the details of the L2 descriptor in the
2214		 * appropriate bucket.
2215		 */
2216		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2217		l2b->l2b_kva = ptep;
2218		l2b->l2b_phys = pa;
2219		l2b->l2b_l1idx = l1idx;
2220
2221		/*
2222		 * Establish an initial occupancy count for this descriptor
2223		 */
2224		for (l2idx = 0;
2225		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2226		    l2idx++) {
2227			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2228				l2b->l2b_occupancy++;
2229			}
2230		}
2231
2232		/*
2233		 * Make sure the descriptor itself has the correct cache mode.
2234		 * If not, fix it, but whine about the problem. Port-meisters
2235		 * should consider this a clue to fix up their initarm()
2236		 * function. :)
2237		 */
2238		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2239			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2240			    "L2 pte @ %p\n", ptep);
2241		}
2242	}
2243
2244
2245	/*
2246	 * Ensure the primary (kernel) L1 has the correct cache mode for
2247	 * a page table. Bitch if it is not correctly set.
2248	 */
2249	for (va = (vm_offset_t)kernel_l1pt;
2250	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2251		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2252			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2253			    "primary L1 @ 0x%x\n", va);
2254	}
2255
2256	cpu_dcache_wbinv_all();
2257	cpu_l2cache_wbinv_all();
2258	cpu_tlb_flushID();
2259	cpu_cpwait();
2260
2261	PMAP_LOCK_INIT(kernel_pmap);
2262	CPU_FILL(&kernel_pmap->pm_active);
2263	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2264	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2265
2266 	/*
2267	 * Initialize the global pv list lock.
2268	 */
2269	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
2270
2271	/*
2272	 * Reserve some special page table entries/VA space for temporary
2273	 * mapping of pages.
2274	 */
2275	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2276	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2277	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2278	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2279	size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
2280	    L1_S_SIZE;
2281	pmap_alloc_specials(&virtual_avail,
2282	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2283	    &pmap_kernel_l2ptp_kva, NULL);
2284
2285	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
2286	pmap_alloc_specials(&virtual_avail,
2287	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2288	    &pmap_kernel_l2dtable_kva, NULL);
2289
2290	pmap_alloc_specials(&virtual_avail,
2291	    1, (vm_offset_t*)&_tmppt, NULL);
2292	pmap_alloc_specials(&virtual_avail,
2293	    MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
2294	SLIST_INIT(&l1_list);
2295	TAILQ_INIT(&l1_lru_list);
2296	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2297	pmap_init_l1(l1, kernel_l1pt);
2298	cpu_dcache_wbinv_all();
2299	cpu_l2cache_wbinv_all();
2300
2301	virtual_avail = round_page(virtual_avail);
2302	virtual_end = vm_max_kernel_address;
2303	kernel_vm_end = pmap_curmaxkvaddr;
2304	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
2305
2306	pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
2307}
2308
2309/***************************************************
2310 * Pmap allocation/deallocation routines.
2311 ***************************************************/
2312
2313/*
2314 * Release any resources held by the given physical map.
2315 * Called when a pmap initialized by pmap_pinit is being released.
2316 * Should only be called if the map contains no valid mappings.
2317 */
2318void
2319pmap_release(pmap_t pmap)
2320{
2321	struct pcb *pcb;
2322
2323	pmap_idcache_wbinv_all(pmap);
2324	cpu_l2cache_wbinv_all();
2325	pmap_tlb_flushID(pmap);
2326	cpu_cpwait();
2327	if (vector_page < KERNBASE) {
2328		struct pcb *curpcb = PCPU_GET(curpcb);
2329		pcb = thread0.td_pcb;
2330		if (pmap_is_current(pmap)) {
2331			/*
2332 			 * Frob the L1 entry corresponding to the vector
2333			 * page so that it contains the kernel pmap's domain
2334			 * number. This will ensure pmap_remove() does not
2335			 * pull the current vector page out from under us.
2336			 */
2337			critical_enter();
2338			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2339			cpu_domains(pcb->pcb_dacr);
2340			cpu_setttb(pcb->pcb_pagedir);
2341			critical_exit();
2342		}
2343		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2344		/*
2345		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2346		 * since this process has no remaining mappings of its own.
2347		 */
2348		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2349		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2350		curpcb->pcb_dacr = pcb->pcb_dacr;
2351		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2352
2353	}
2354	pmap_free_l1(pmap);
2355
2356	dprintf("pmap_release()\n");
2357}
2358
2359
2360
2361/*
2362 * Helper function for pmap_grow_l2_bucket()
2363 */
2364static __inline int
2365pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2366{
2367	struct l2_bucket *l2b;
2368	pt_entry_t *ptep;
2369	vm_paddr_t pa;
2370	struct vm_page *pg;
2371
2372	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2373	if (pg == NULL)
2374		return (1);
2375	pa = VM_PAGE_TO_PHYS(pg);
2376
2377	if (pap)
2378		*pap = pa;
2379
2380	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2381
2382	ptep = &l2b->l2b_kva[l2pte_index(va)];
2383	*ptep = L2_S_PROTO | pa | cache_mode |
2384	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2385	PTE_SYNC(ptep);
2386	return (0);
2387}
2388
2389/*
2390 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2391 * used by pmap_growkernel().
2392 */
2393static __inline struct l2_bucket *
2394pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2395{
2396	struct l2_dtable *l2;
2397	struct l2_bucket *l2b;
2398	struct l1_ttable *l1;
2399	pd_entry_t *pl1pd;
2400	u_short l1idx;
2401	vm_offset_t nva;
2402
2403	l1idx = L1_IDX(va);
2404
2405	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2406		/*
2407		 * No mapping at this address, as there is
2408		 * no entry in the L1 table.
2409		 * Need to allocate a new l2_dtable.
2410		 */
2411		nva = pmap_kernel_l2dtable_kva;
2412		if ((nva & PAGE_MASK) == 0) {
2413			/*
2414			 * Need to allocate a backing page
2415			 */
2416			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2417				return (NULL);
2418		}
2419
2420		l2 = (struct l2_dtable *)nva;
2421		nva += sizeof(struct l2_dtable);
2422
2423		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2424		    PAGE_MASK)) {
2425			/*
2426			 * The new l2_dtable straddles a page boundary.
2427			 * Map in another page to cover it.
2428			 */
2429			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2430				return (NULL);
2431		}
2432
2433		pmap_kernel_l2dtable_kva = nva;
2434
2435		/*
2436		 * Link it into the parent pmap
2437		 */
2438		pm->pm_l2[L2_IDX(l1idx)] = l2;
2439		memset(l2, 0, sizeof(*l2));
2440	}
2441
2442	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2443
2444	/*
2445	 * Fetch pointer to the L2 page table associated with the address.
2446	 */
2447	if (l2b->l2b_kva == NULL) {
2448		pt_entry_t *ptep;
2449
2450		/*
2451		 * No L2 page table has been allocated. Chances are, this
2452		 * is because we just allocated the l2_dtable, above.
2453		 */
2454		nva = pmap_kernel_l2ptp_kva;
2455		ptep = (pt_entry_t *)nva;
2456		if ((nva & PAGE_MASK) == 0) {
2457			/*
2458			 * Need to allocate a backing page
2459			 */
2460			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2461			    &pmap_kernel_l2ptp_phys))
2462				return (NULL);
2463			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2464		}
2465		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2466		l2->l2_occupancy++;
2467		l2b->l2b_kva = ptep;
2468		l2b->l2b_l1idx = l1idx;
2469		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2470
2471		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2472		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2473	}
2474
2475	/* Distribute new L1 entry to all other L1s */
2476	SLIST_FOREACH(l1, &l1_list, l1_link) {
2477			pl1pd = &l1->l1_kva[L1_IDX(va)];
2478			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2479			    L1_C_PROTO;
2480			PTE_SYNC(pl1pd);
2481	}
2482
2483	return (l2b);
2484}
2485
2486
2487/*
2488 * grow the number of kernel page table entries, if needed
2489 */
2490void
2491pmap_growkernel(vm_offset_t addr)
2492{
2493	pmap_t kpm = pmap_kernel();
2494
2495	if (addr <= pmap_curmaxkvaddr)
2496		return;		/* we are OK */
2497
2498	/*
2499	 * whoops!   we need to add kernel PTPs
2500	 */
2501
2502	/* Map 1MB at a time */
2503	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2504		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2505
2506	/*
2507	 * flush out the cache, expensive but growkernel will happen so
2508	 * rarely
2509	 */
2510	cpu_dcache_wbinv_all();
2511	cpu_l2cache_wbinv_all();
2512	cpu_tlb_flushD();
2513	cpu_cpwait();
2514	kernel_vm_end = pmap_curmaxkvaddr;
2515}
2516
2517
2518/*
2519 * Remove all pages from specified address space
2520 * this aids process exit speeds.  Also, this code
2521 * is special cased for current process only, but
2522 * can have the more generic (and slightly slower)
2523 * mode enabled.  This is much faster than pmap_remove
2524 * in the case of running down an entire address space.
2525 */
2526void
2527pmap_remove_pages(pmap_t pmap)
2528{
2529	struct pv_entry *pv, *npv;
2530	struct l2_bucket *l2b = NULL;
2531	vm_page_t m;
2532	pt_entry_t *pt;
2533
2534	rw_wlock(&pvh_global_lock);
2535	PMAP_LOCK(pmap);
2536	cpu_idcache_wbinv_all();
2537	cpu_l2cache_wbinv_all();
2538	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2539		if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) {
2540			/* Cannot remove wired or unmanaged pages now. */
2541			npv = TAILQ_NEXT(pv, pv_plist);
2542			continue;
2543		}
2544		pmap->pm_stats.resident_count--;
2545		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2546		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2547		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2548		m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
2549		KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
2550		*pt = 0;
2551		PTE_SYNC(pt);
2552		npv = TAILQ_NEXT(pv, pv_plist);
2553		pmap_nuke_pv(m, pmap, pv);
2554		if (TAILQ_EMPTY(&m->md.pv_list))
2555			vm_page_aflag_clear(m, PGA_WRITEABLE);
2556		pmap_free_pv_entry(pv);
2557		pmap_free_l2_bucket(pmap, l2b, 1);
2558	}
2559	rw_wunlock(&pvh_global_lock);
2560	cpu_tlb_flushID();
2561	cpu_cpwait();
2562	PMAP_UNLOCK(pmap);
2563}
2564
2565
2566/***************************************************
2567 * Low level mapping routines.....
2568 ***************************************************/
2569
2570#ifdef ARM_HAVE_SUPERSECTIONS
2571/* Map a super section into the KVA. */
2572
2573void
2574pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
2575{
2576	pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
2577	    (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
2578	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2579	struct l1_ttable *l1;
2580	vm_offset_t va0, va_end;
2581
2582	KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
2583	    ("Not a valid super section mapping"));
2584	if (flags & SECTION_CACHE)
2585		pd |= pte_l1_s_cache_mode;
2586	else if (flags & SECTION_PT)
2587		pd |= pte_l1_s_cache_mode_pt;
2588	va0 = va & L1_SUP_FRAME;
2589	va_end = va + L1_SUP_SIZE;
2590	SLIST_FOREACH(l1, &l1_list, l1_link) {
2591		va = va0;
2592		for (; va < va_end; va += L1_S_SIZE) {
2593			l1->l1_kva[L1_IDX(va)] = pd;
2594			PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2595		}
2596	}
2597}
2598#endif
2599
2600/* Map a section into the KVA. */
2601
2602void
2603pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2604{
2605	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2606	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2607	struct l1_ttable *l1;
2608
2609	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2610	    ("Not a valid section mapping"));
2611	if (flags & SECTION_CACHE)
2612		pd |= pte_l1_s_cache_mode;
2613	else if (flags & SECTION_PT)
2614		pd |= pte_l1_s_cache_mode_pt;
2615	SLIST_FOREACH(l1, &l1_list, l1_link) {
2616		l1->l1_kva[L1_IDX(va)] = pd;
2617		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2618	}
2619}
2620
2621/*
2622 * Make a temporary mapping for a physical address.  This is only intended
2623 * to be used for panic dumps.
2624 */
2625void *
2626pmap_kenter_temporary(vm_paddr_t pa, int i)
2627{
2628	vm_offset_t va;
2629
2630	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2631	pmap_kenter(va, pa);
2632	return ((void *)crashdumpmap);
2633}
2634
2635/*
2636 * add a wired page to the kva
2637 * note that in order for the mapping to take effect -- you
2638 * should do a invltlb after doing the pmap_kenter...
2639 */
2640static PMAP_INLINE void
2641pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2642{
2643	struct l2_bucket *l2b;
2644	pt_entry_t *pte;
2645	pt_entry_t opte;
2646	struct pv_entry *pve;
2647	vm_page_t m;
2648
2649	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2650	    (uint32_t) va, (uint32_t) pa));
2651
2652
2653	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2654	if (l2b == NULL)
2655		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2656	KASSERT(l2b != NULL, ("No L2 Bucket"));
2657	pte = &l2b->l2b_kva[l2pte_index(va)];
2658	opte = *pte;
2659	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2660	    (uint32_t) pte, opte, *pte));
2661	if (l2pte_valid(opte)) {
2662		pmap_kremove(va);
2663	} else {
2664		if (opte == 0)
2665			l2b->l2b_occupancy++;
2666	}
2667	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2668	    VM_PROT_READ | VM_PROT_WRITE);
2669	if (flags & KENTER_CACHE)
2670		*pte |= pte_l2_s_cache_mode;
2671	if (flags & KENTER_USER)
2672		*pte |= L2_S_PROT_U;
2673	PTE_SYNC(pte);
2674
2675	/*
2676	 * A kernel mapping may not be the page's only mapping, so create a PV
2677	 * entry to ensure proper caching.
2678 	 *
2679	 * The existence test for the pvzone is used to delay the recording of
2680	 * kernel mappings until the VM system is fully initialized.
2681	 *
2682	 * This expects the physical memory to have a vm_page_array entry.
2683	 */
2684	if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) != NULL) {
2685		rw_wlock(&pvh_global_lock);
2686		if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva != 0) {
2687			if ((pve = pmap_get_pv_entry()) == NULL)
2688				panic("pmap_kenter_internal: no pv entries");
2689			PMAP_LOCK(pmap_kernel());
2690			pmap_enter_pv(m, pve, pmap_kernel(), va,
2691			    PVF_WRITE | PVF_UNMAN);
2692			pmap_fix_cache(m, pmap_kernel(), va);
2693			PMAP_UNLOCK(pmap_kernel());
2694		} else {
2695			m->md.pv_kva = va;
2696		}
2697		rw_wunlock(&pvh_global_lock);
2698	}
2699}
2700
2701void
2702pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2703{
2704	pmap_kenter_internal(va, pa, KENTER_CACHE);
2705}
2706
2707void
2708pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2709{
2710
2711	pmap_kenter_internal(va, pa, 0);
2712}
2713
2714void
2715pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
2716{
2717	vm_offset_t sva;
2718
2719	KASSERT((size & PAGE_MASK) == 0,
2720	    ("%s: device mapping not page-sized", __func__));
2721
2722	sva = va;
2723	while (size != 0) {
2724		pmap_kenter_internal(va, pa, 0);
2725		va += PAGE_SIZE;
2726		pa += PAGE_SIZE;
2727		size -= PAGE_SIZE;
2728	}
2729}
2730
2731void
2732pmap_kremove_device(vm_offset_t va, vm_size_t size)
2733{
2734	vm_offset_t sva;
2735
2736	KASSERT((size & PAGE_MASK) == 0,
2737	    ("%s: device mapping not page-sized", __func__));
2738
2739	sva = va;
2740	while (size != 0) {
2741		pmap_kremove(va);
2742		va += PAGE_SIZE;
2743		size -= PAGE_SIZE;
2744	}
2745}
2746
2747void
2748pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2749{
2750
2751	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2752	/*
2753	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2754	 * at the first use of the new address, or bad things will happen,
2755	 * as we use one of these addresses in the exception handlers.
2756	 */
2757	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2758}
2759
2760vm_paddr_t
2761pmap_kextract(vm_offset_t va)
2762{
2763
2764	return (pmap_extract_locked(kernel_pmap, va));
2765}
2766
2767/*
2768 * remove a page from the kernel pagetables
2769 */
2770void
2771pmap_kremove(vm_offset_t va)
2772{
2773	struct l2_bucket *l2b;
2774	pt_entry_t *pte, opte;
2775	struct pv_entry *pve;
2776	vm_page_t m;
2777	vm_offset_t pa;
2778
2779	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2780	if (!l2b)
2781		return;
2782	KASSERT(l2b != NULL, ("No L2 Bucket"));
2783	pte = &l2b->l2b_kva[l2pte_index(va)];
2784	opte = *pte;
2785	if (l2pte_valid(opte)) {
2786			/* pa = vtophs(va) taken from pmap_extract() */
2787		switch (opte & L2_TYPE_MASK) {
2788		case L2_TYPE_L:
2789			pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET);
2790			break;
2791		default:
2792			pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET);
2793			break;
2794		}
2795			/* note: should never have to remove an allocation
2796			 * before the pvzone is initialized.
2797			 */
2798		rw_wlock(&pvh_global_lock);
2799		PMAP_LOCK(pmap_kernel());
2800		if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) &&
2801		    (pve = pmap_remove_pv(m, pmap_kernel(), va)))
2802			pmap_free_pv_entry(pve);
2803		PMAP_UNLOCK(pmap_kernel());
2804		rw_wunlock(&pvh_global_lock);
2805		va = va & ~PAGE_MASK;
2806		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2807		cpu_l2cache_wbinv_range(va, PAGE_SIZE);
2808		cpu_tlb_flushD_SE(va);
2809		cpu_cpwait();
2810		*pte = 0;
2811	}
2812}
2813
2814
2815/*
2816 *	Used to map a range of physical addresses into kernel
2817 *	virtual address space.
2818 *
2819 *	The value passed in '*virt' is a suggested virtual address for
2820 *	the mapping. Architectures which can support a direct-mapped
2821 *	physical to virtual region can return the appropriate address
2822 *	within that region, leaving '*virt' unchanged. Other
2823 *	architectures should map the pages starting at '*virt' and
2824 *	update '*virt' with the first usable address after the mapped
2825 *	region.
2826 */
2827vm_offset_t
2828pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2829{
2830	vm_offset_t sva = *virt;
2831	vm_offset_t va = sva;
2832
2833	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2834	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2835	    prot));
2836
2837	while (start < end) {
2838		pmap_kenter(va, start);
2839		va += PAGE_SIZE;
2840		start += PAGE_SIZE;
2841	}
2842	*virt = va;
2843	return (sva);
2844}
2845
2846static void
2847pmap_wb_page(vm_page_t m)
2848{
2849	struct pv_entry *pv;
2850
2851	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2852	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
2853		(pv->pv_flags & PVF_WRITE) == 0);
2854}
2855
2856static void
2857pmap_inv_page(vm_page_t m)
2858{
2859	struct pv_entry *pv;
2860
2861	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2862	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
2863}
2864/*
2865 * Add a list of wired pages to the kva
2866 * this routine is only used for temporary
2867 * kernel mappings that do not need to have
2868 * page modification or references recorded.
2869 * Note that old mappings are simply written
2870 * over.  The page *must* be wired.
2871 */
2872void
2873pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2874{
2875	int i;
2876
2877	for (i = 0; i < count; i++) {
2878		pmap_wb_page(m[i]);
2879		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2880		    KENTER_CACHE);
2881		va += PAGE_SIZE;
2882	}
2883}
2884
2885
2886/*
2887 * this routine jerks page mappings from the
2888 * kernel -- it is meant only for temporary mappings.
2889 */
2890void
2891pmap_qremove(vm_offset_t va, int count)
2892{
2893	vm_paddr_t pa;
2894	int i;
2895
2896	for (i = 0; i < count; i++) {
2897		pa = vtophys(va);
2898		if (pa) {
2899			pmap_inv_page(PHYS_TO_VM_PAGE(pa));
2900			pmap_kremove(va);
2901		}
2902		va += PAGE_SIZE;
2903	}
2904}
2905
2906
2907/*
2908 * pmap_object_init_pt preloads the ptes for a given object
2909 * into the specified pmap.  This eliminates the blast of soft
2910 * faults on process startup and immediately after an mmap.
2911 */
2912void
2913pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
2914    vm_pindex_t pindex, vm_size_t size)
2915{
2916
2917	VM_OBJECT_ASSERT_WLOCKED(object);
2918	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2919	    ("pmap_object_init_pt: non-device object"));
2920}
2921
2922
2923/*
2924 *	pmap_is_prefaultable:
2925 *
2926 *	Return whether or not the specified virtual address is elgible
2927 *	for prefault.
2928 */
2929boolean_t
2930pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2931{
2932	pd_entry_t *pde;
2933	pt_entry_t *pte;
2934
2935	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
2936		return (FALSE);
2937	KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
2938	if (*pte == 0)
2939		return (TRUE);
2940	return (FALSE);
2941}
2942
2943/*
2944 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
2945 * Returns TRUE if the mapping exists, else FALSE.
2946 *
2947 * NOTE: This function is only used by a couple of arm-specific modules.
2948 * It is not safe to take any pmap locks here, since we could be right
2949 * in the middle of debugging the pmap anyway...
2950 *
2951 * It is possible for this routine to return FALSE even though a valid
2952 * mapping does exist. This is because we don't lock, so the metadata
2953 * state may be inconsistent.
2954 *
2955 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
2956 * a "section" mapping.
2957 */
2958boolean_t
2959pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
2960{
2961	struct l2_dtable *l2;
2962	pd_entry_t *pl1pd, l1pd;
2963	pt_entry_t *ptep;
2964	u_short l1idx;
2965
2966	if (pm->pm_l1 == NULL)
2967		return (FALSE);
2968
2969	l1idx = L1_IDX(va);
2970	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
2971	l1pd = *pl1pd;
2972
2973	if (l1pte_section_p(l1pd)) {
2974		*ptp = NULL;
2975		return (TRUE);
2976	}
2977
2978	if (pm->pm_l2 == NULL)
2979		return (FALSE);
2980
2981	l2 = pm->pm_l2[L2_IDX(l1idx)];
2982
2983	if (l2 == NULL ||
2984	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2985		return (FALSE);
2986	}
2987
2988	*ptp = &ptep[l2pte_index(va)];
2989	return (TRUE);
2990}
2991
2992/*
2993 *      Routine:        pmap_remove_all
2994 *      Function:
2995 *              Removes this physical page from
2996 *              all physical maps in which it resides.
2997 *              Reflects back modify bits to the pager.
2998 *
2999 *      Notes:
3000 *              Original versions of this routine were very
3001 *              inefficient because they iteratively called
3002 *              pmap_remove (slow...)
3003 */
3004void
3005pmap_remove_all(vm_page_t m)
3006{
3007	pv_entry_t pv;
3008	pt_entry_t *ptep;
3009	struct l2_bucket *l2b;
3010	boolean_t flush = FALSE;
3011	pmap_t curpm;
3012	int flags = 0;
3013
3014	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3015	    ("pmap_remove_all: page %p is not managed", m));
3016	if (TAILQ_EMPTY(&m->md.pv_list))
3017		return;
3018	rw_wlock(&pvh_global_lock);
3019
3020	/*
3021	 * XXX This call shouldn't exist.  Iterating over the PV list twice,
3022	 * once in pmap_clearbit() and again below, is both unnecessary and
3023	 * inefficient.  The below code should itself write back the cache
3024	 * entry before it destroys the mapping.
3025	 */
3026	pmap_clearbit(m, PVF_WRITE);
3027	curpm = vmspace_pmap(curproc->p_vmspace);
3028	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3029		if (flush == FALSE && (pv->pv_pmap == curpm ||
3030		    pv->pv_pmap == pmap_kernel()))
3031			flush = TRUE;
3032
3033		PMAP_LOCK(pv->pv_pmap);
3034		/*
3035		 * Cached contents were written-back in pmap_clearbit(),
3036		 * but we still have to invalidate the cache entry to make
3037		 * sure stale data are not retrieved when another page will be
3038		 * mapped under this virtual address.
3039		 */
3040		if (pmap_is_current(pv->pv_pmap)) {
3041			cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE);
3042			if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va))
3043				cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE);
3044		}
3045
3046		if (pv->pv_flags & PVF_UNMAN) {
3047			/* remove the pv entry, but do not remove the mapping
3048			 * and remember this is a kernel mapped page
3049			 */
3050			m->md.pv_kva = pv->pv_va;
3051		} else {
3052			/* remove the mapping and pv entry */
3053			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3054			KASSERT(l2b != NULL, ("No l2 bucket"));
3055			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3056			*ptep = 0;
3057			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3058			pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3059			pv->pv_pmap->pm_stats.resident_count--;
3060			flags |= pv->pv_flags;
3061		}
3062		pmap_nuke_pv(m, pv->pv_pmap, pv);
3063		PMAP_UNLOCK(pv->pv_pmap);
3064		pmap_free_pv_entry(pv);
3065	}
3066
3067	if (flush) {
3068		if (PV_BEEN_EXECD(flags))
3069			pmap_tlb_flushID(curpm);
3070		else
3071			pmap_tlb_flushD(curpm);
3072	}
3073	vm_page_aflag_clear(m, PGA_WRITEABLE);
3074	rw_wunlock(&pvh_global_lock);
3075}
3076
3077
3078/*
3079 *	Set the physical protection on the
3080 *	specified range of this map as requested.
3081 */
3082void
3083pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3084{
3085	struct l2_bucket *l2b;
3086	pt_entry_t *ptep, pte;
3087	vm_offset_t next_bucket;
3088	u_int flags;
3089	int flush;
3090
3091	CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x",
3092	    pm, sva, eva, prot);
3093
3094	if ((prot & VM_PROT_READ) == 0) {
3095		pmap_remove(pm, sva, eva);
3096		return;
3097	}
3098
3099	if (prot & VM_PROT_WRITE) {
3100		/*
3101		 * If this is a read->write transition, just ignore it and let
3102		 * vm_fault() take care of it later.
3103		 */
3104		return;
3105	}
3106
3107	rw_wlock(&pvh_global_lock);
3108	PMAP_LOCK(pm);
3109
3110	/*
3111	 * OK, at this point, we know we're doing write-protect operation.
3112	 * If the pmap is active, write-back the range.
3113	 */
3114	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3115
3116	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3117	flags = 0;
3118
3119	while (sva < eva) {
3120		next_bucket = L2_NEXT_BUCKET(sva);
3121		if (next_bucket > eva)
3122			next_bucket = eva;
3123
3124		l2b = pmap_get_l2_bucket(pm, sva);
3125		if (l2b == NULL) {
3126			sva = next_bucket;
3127			continue;
3128		}
3129
3130		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3131
3132		while (sva < next_bucket) {
3133			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3134				struct vm_page *pg;
3135				u_int f;
3136
3137				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3138				pte &= ~L2_S_PROT_W;
3139				*ptep = pte;
3140				PTE_SYNC(ptep);
3141
3142				if (!(pg->oflags & VPO_UNMANAGED)) {
3143					f = pmap_modify_pv(pg, pm, sva,
3144					    PVF_WRITE, 0);
3145					if (f & PVF_WRITE)
3146						vm_page_dirty(pg);
3147				} else
3148					f = 0;
3149
3150				if (flush >= 0) {
3151					flush++;
3152					flags |= f;
3153				} else
3154				if (PV_BEEN_EXECD(f))
3155					pmap_tlb_flushID_SE(pm, sva);
3156				else
3157				if (PV_BEEN_REFD(f))
3158					pmap_tlb_flushD_SE(pm, sva);
3159			}
3160
3161			sva += PAGE_SIZE;
3162			ptep++;
3163		}
3164	}
3165
3166
3167	if (flush) {
3168		if (PV_BEEN_EXECD(flags))
3169			pmap_tlb_flushID(pm);
3170		else
3171		if (PV_BEEN_REFD(flags))
3172			pmap_tlb_flushD(pm);
3173	}
3174	rw_wunlock(&pvh_global_lock);
3175
3176 	PMAP_UNLOCK(pm);
3177}
3178
3179
3180/*
3181 *	Insert the given physical page (p) at
3182 *	the specified virtual address (v) in the
3183 *	target physical map with the protection requested.
3184 *
3185 *	If specified, the page will be wired down, meaning
3186 *	that the related pte can not be reclaimed.
3187 *
3188 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3189 *	or lose information.  That is, this routine must actually
3190 *	insert this page into the given map NOW.
3191 */
3192
3193int
3194pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3195    u_int flags, int8_t psind __unused)
3196{
3197	int rv;
3198
3199	rw_wlock(&pvh_global_lock);
3200	PMAP_LOCK(pmap);
3201	rv = pmap_enter_locked(pmap, va, m, prot, flags);
3202	rw_wunlock(&pvh_global_lock);
3203 	PMAP_UNLOCK(pmap);
3204	return (rv);
3205}
3206
3207/*
3208 *	The pvh global and pmap locks must be held.
3209 */
3210static int
3211pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3212    u_int flags)
3213{
3214	struct l2_bucket *l2b = NULL;
3215	struct vm_page *opg;
3216	struct pv_entry *pve = NULL;
3217	pt_entry_t *ptep, npte, opte;
3218	u_int nflags;
3219	u_int oflags;
3220	vm_paddr_t pa;
3221
3222	PMAP_ASSERT_LOCKED(pmap);
3223	rw_assert(&pvh_global_lock, RA_WLOCKED);
3224	if (va == vector_page) {
3225		pa = systempage.pv_pa;
3226		m = NULL;
3227	} else {
3228		if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3229			VM_OBJECT_ASSERT_LOCKED(m->object);
3230		pa = VM_PAGE_TO_PHYS(m);
3231	}
3232	nflags = 0;
3233	if (prot & VM_PROT_WRITE)
3234		nflags |= PVF_WRITE;
3235	if (prot & VM_PROT_EXECUTE)
3236		nflags |= PVF_EXEC;
3237	if ((flags & PMAP_ENTER_WIRED) != 0)
3238		nflags |= PVF_WIRED;
3239	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3240	    "flags = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, flags));
3241
3242	if (pmap == pmap_kernel()) {
3243		l2b = pmap_get_l2_bucket(pmap, va);
3244		if (l2b == NULL)
3245			l2b = pmap_grow_l2_bucket(pmap, va);
3246	} else {
3247do_l2b_alloc:
3248		l2b = pmap_alloc_l2_bucket(pmap, va);
3249		if (l2b == NULL) {
3250			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
3251				PMAP_UNLOCK(pmap);
3252				rw_wunlock(&pvh_global_lock);
3253				VM_WAIT;
3254				rw_wlock(&pvh_global_lock);
3255				PMAP_LOCK(pmap);
3256				goto do_l2b_alloc;
3257			}
3258			return (KERN_RESOURCE_SHORTAGE);
3259		}
3260	}
3261
3262	ptep = &l2b->l2b_kva[l2pte_index(va)];
3263
3264	opte = *ptep;
3265	npte = pa;
3266	oflags = 0;
3267	if (opte) {
3268		/*
3269		 * There is already a mapping at this address.
3270		 * If the physical address is different, lookup the
3271		 * vm_page.
3272		 */
3273		if (l2pte_pa(opte) != pa)
3274			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3275		else
3276			opg = m;
3277	} else
3278		opg = NULL;
3279
3280	if ((prot & (VM_PROT_ALL)) ||
3281	    (!m || m->md.pvh_attrs & PVF_REF)) {
3282		/*
3283		 * - The access type indicates that we don't need
3284		 *   to do referenced emulation.
3285		 * OR
3286		 * - The physical page has already been referenced
3287		 *   so no need to re-do referenced emulation here.
3288		 */
3289		npte |= L2_S_PROTO;
3290
3291		nflags |= PVF_REF;
3292
3293		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3294		    (m->md.pvh_attrs & PVF_MOD))) {
3295			/*
3296			 * This is a writable mapping, and the
3297			 * page's mod state indicates it has
3298			 * already been modified. Make it
3299			 * writable from the outset.
3300			 */
3301			nflags |= PVF_MOD;
3302			if (!(m->md.pvh_attrs & PVF_MOD))
3303				vm_page_dirty(m);
3304		}
3305		if (m && opte)
3306			vm_page_aflag_set(m, PGA_REFERENCED);
3307	} else {
3308		/*
3309		 * Need to do page referenced emulation.
3310		 */
3311		npte |= L2_TYPE_INV;
3312	}
3313
3314	if (prot & VM_PROT_WRITE) {
3315		npte |= L2_S_PROT_W;
3316		if (m != NULL &&
3317		    (m->oflags & VPO_UNMANAGED) == 0)
3318			vm_page_aflag_set(m, PGA_WRITEABLE);
3319	}
3320	if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3321		npte |= pte_l2_s_cache_mode;
3322	if (m && m == opg) {
3323		/*
3324		 * We're changing the attrs of an existing mapping.
3325		 */
3326		oflags = pmap_modify_pv(m, pmap, va,
3327		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3328		    PVF_MOD | PVF_REF, nflags);
3329
3330		/*
3331		 * We may need to flush the cache if we're
3332		 * doing rw-ro...
3333		 */
3334		if (pmap_is_current(pmap) &&
3335		    (oflags & PVF_NC) == 0 &&
3336		    (opte & L2_S_PROT_W) != 0 &&
3337		    (prot & VM_PROT_WRITE) == 0 &&
3338		    (opte & L2_TYPE_MASK) != L2_TYPE_INV) {
3339			cpu_dcache_wb_range(va, PAGE_SIZE);
3340			cpu_l2cache_wb_range(va, PAGE_SIZE);
3341		}
3342	} else {
3343		/*
3344		 * New mapping, or changing the backing page
3345		 * of an existing mapping.
3346		 */
3347		if (opg) {
3348			/*
3349			 * Replacing an existing mapping with a new one.
3350			 * It is part of our managed memory so we
3351			 * must remove it from the PV list
3352			 */
3353			if ((pve = pmap_remove_pv(opg, pmap, va))) {
3354
3355			/* note for patch: the oflags/invalidation was moved
3356			 * because PG_FICTITIOUS pages could free the pve
3357			 */
3358			    oflags = pve->pv_flags;
3359			/*
3360			 * If the old mapping was valid (ref/mod
3361			 * emulation creates 'invalid' mappings
3362			 * initially) then make sure to frob
3363			 * the cache.
3364			 */
3365			    if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3366				if (PV_BEEN_EXECD(oflags)) {
3367					pmap_idcache_wbinv_range(pmap, va,
3368					    PAGE_SIZE);
3369				} else
3370					if (PV_BEEN_REFD(oflags)) {
3371						pmap_dcache_wb_range(pmap, va,
3372						    PAGE_SIZE, TRUE,
3373						    (oflags & PVF_WRITE) == 0);
3374					}
3375			    }
3376
3377			/* free/allocate a pv_entry for UNMANAGED pages if
3378			 * this physical page is not/is already mapped.
3379			 */
3380
3381			    if (m && (m->oflags & VPO_UNMANAGED) &&
3382				  !m->md.pv_kva &&
3383				 TAILQ_EMPTY(&m->md.pv_list)) {
3384				pmap_free_pv_entry(pve);
3385				pve = NULL;
3386			    }
3387			} else if (m &&
3388				 (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3389				  !TAILQ_EMPTY(&m->md.pv_list)))
3390				pve = pmap_get_pv_entry();
3391		} else if (m &&
3392			   (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3393			   !TAILQ_EMPTY(&m->md.pv_list)))
3394			pve = pmap_get_pv_entry();
3395
3396		if (m) {
3397			if ((m->oflags & VPO_UNMANAGED)) {
3398				if (!TAILQ_EMPTY(&m->md.pv_list) ||
3399				    m->md.pv_kva) {
3400					KASSERT(pve != NULL, ("No pv"));
3401					nflags |= PVF_UNMAN;
3402					pmap_enter_pv(m, pve, pmap, va, nflags);
3403				} else
3404					m->md.pv_kva = va;
3405			} else {
3406				KASSERT(va < kmi.clean_sva ||
3407				    va >= kmi.clean_eva,
3408		("pmap_enter: managed mapping within the clean submap"));
3409 				KASSERT(pve != NULL, ("No pv"));
3410 				pmap_enter_pv(m, pve, pmap, va, nflags);
3411			}
3412		}
3413	}
3414	/*
3415	 * Make sure userland mappings get the right permissions
3416	 */
3417	if (pmap != pmap_kernel() && va != vector_page) {
3418		npte |= L2_S_PROT_U;
3419	}
3420
3421	/*
3422	 * Keep the stats up to date
3423	 */
3424	if (opte == 0) {
3425		l2b->l2b_occupancy++;
3426		pmap->pm_stats.resident_count++;
3427	}
3428
3429	/*
3430	 * If this is just a wiring change, the two PTEs will be
3431	 * identical, so there's no need to update the page table.
3432	 */
3433	if (npte != opte) {
3434		boolean_t is_cached = pmap_is_current(pmap);
3435
3436		*ptep = npte;
3437		if (is_cached) {
3438			/*
3439			 * We only need to frob the cache/tlb if this pmap
3440			 * is current
3441			 */
3442			PTE_SYNC(ptep);
3443			if (L1_IDX(va) != L1_IDX(vector_page) &&
3444			    l2pte_valid(npte)) {
3445				/*
3446				 * This mapping is likely to be accessed as
3447				 * soon as we return to userland. Fix up the
3448				 * L1 entry to avoid taking another
3449				 * page/domain fault.
3450				 */
3451				pd_entry_t *pl1pd, l1pd;
3452
3453				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3454				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3455				    L1_C_PROTO;
3456				if (*pl1pd != l1pd) {
3457					*pl1pd = l1pd;
3458					PTE_SYNC(pl1pd);
3459				}
3460			}
3461		}
3462
3463		if (PV_BEEN_EXECD(oflags))
3464			pmap_tlb_flushID_SE(pmap, va);
3465		else if (PV_BEEN_REFD(oflags))
3466			pmap_tlb_flushD_SE(pmap, va);
3467
3468
3469		if (m)
3470			pmap_fix_cache(m, pmap, va);
3471	}
3472	return (KERN_SUCCESS);
3473}
3474
3475/*
3476 * Maps a sequence of resident pages belonging to the same object.
3477 * The sequence begins with the given page m_start.  This page is
3478 * mapped at the given virtual address start.  Each subsequent page is
3479 * mapped at a virtual address that is offset from start by the same
3480 * amount as the page is offset from m_start within the object.  The
3481 * last page in the sequence is the page with the largest offset from
3482 * m_start that can be mapped at a virtual address less than the given
3483 * virtual address end.  Not every virtual page between start and end
3484 * is mapped; only those for which a resident page exists with the
3485 * corresponding offset from m_start are mapped.
3486 */
3487void
3488pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3489    vm_page_t m_start, vm_prot_t prot)
3490{
3491	vm_page_t m;
3492	vm_pindex_t diff, psize;
3493
3494	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3495
3496	psize = atop(end - start);
3497	m = m_start;
3498	rw_wlock(&pvh_global_lock);
3499	PMAP_LOCK(pmap);
3500	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3501		pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
3502		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP);
3503		m = TAILQ_NEXT(m, listq);
3504	}
3505	rw_wunlock(&pvh_global_lock);
3506 	PMAP_UNLOCK(pmap);
3507}
3508
3509/*
3510 * this code makes some *MAJOR* assumptions:
3511 * 1. Current pmap & pmap exists.
3512 * 2. Not wired.
3513 * 3. Read access.
3514 * 4. No page table pages.
3515 * but is *MUCH* faster than pmap_enter...
3516 */
3517
3518void
3519pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3520{
3521
3522	rw_wlock(&pvh_global_lock);
3523 	PMAP_LOCK(pmap);
3524	pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
3525	    PMAP_ENTER_NOSLEEP);
3526	rw_wunlock(&pvh_global_lock);
3527 	PMAP_UNLOCK(pmap);
3528}
3529
3530/*
3531 *	Clear the wired attribute from the mappings for the specified range of
3532 *	addresses in the given pmap.  Every valid mapping within that range
3533 *	must have the wired attribute set.  In contrast, invalid mappings
3534 *	cannot have the wired attribute set, so they are ignored.
3535 *
3536 *	XXX Wired mappings of unmanaged pages cannot be counted by this pmap
3537 *	implementation.
3538 */
3539void
3540pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3541{
3542	struct l2_bucket *l2b;
3543	pt_entry_t *ptep, pte;
3544	pv_entry_t pv;
3545	vm_offset_t next_bucket;
3546	vm_page_t m;
3547
3548	rw_wlock(&pvh_global_lock);
3549	PMAP_LOCK(pmap);
3550	while (sva < eva) {
3551		next_bucket = L2_NEXT_BUCKET(sva);
3552		if (next_bucket > eva)
3553			next_bucket = eva;
3554		l2b = pmap_get_l2_bucket(pmap, sva);
3555		if (l2b == NULL) {
3556			sva = next_bucket;
3557			continue;
3558		}
3559		for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; sva < next_bucket;
3560		    sva += PAGE_SIZE, ptep++) {
3561			if ((pte = *ptep) == 0 ||
3562			    (m = PHYS_TO_VM_PAGE(l2pte_pa(pte))) == NULL ||
3563			    (m->oflags & VPO_UNMANAGED) != 0)
3564				continue;
3565			pv = pmap_find_pv(m, pmap, sva);
3566			if ((pv->pv_flags & PVF_WIRED) == 0)
3567				panic("pmap_unwire: pv %p isn't wired", pv);
3568			pv->pv_flags &= ~PVF_WIRED;
3569			pmap->pm_stats.wired_count--;
3570		}
3571	}
3572	rw_wunlock(&pvh_global_lock);
3573 	PMAP_UNLOCK(pmap);
3574}
3575
3576
3577/*
3578 *	Copy the range specified by src_addr/len
3579 *	from the source map to the range dst_addr/len
3580 *	in the destination map.
3581 *
3582 *	This routine is only advisory and need not do anything.
3583 */
3584void
3585pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3586    vm_size_t len, vm_offset_t src_addr)
3587{
3588}
3589
3590
3591/*
3592 *	Routine:	pmap_extract
3593 *	Function:
3594 *		Extract the physical page address associated
3595 *		with the given map/virtual_address pair.
3596 */
3597vm_paddr_t
3598pmap_extract(pmap_t pmap, vm_offset_t va)
3599{
3600	vm_paddr_t pa;
3601
3602	PMAP_LOCK(pmap);
3603	pa = pmap_extract_locked(pmap, va);
3604	PMAP_UNLOCK(pmap);
3605	return (pa);
3606}
3607
3608static vm_paddr_t
3609pmap_extract_locked(pmap_t pmap, vm_offset_t va)
3610{
3611	struct l2_dtable *l2;
3612	pd_entry_t l1pd;
3613	pt_entry_t *ptep, pte;
3614	vm_paddr_t pa;
3615	u_int l1idx;
3616
3617	if (pmap != kernel_pmap)
3618		PMAP_ASSERT_LOCKED(pmap);
3619	l1idx = L1_IDX(va);
3620	l1pd = pmap->pm_l1->l1_kva[l1idx];
3621	if (l1pte_section_p(l1pd)) {
3622		/*
3623		 * These should only happen for the kernel pmap.
3624		 */
3625		KASSERT(pmap == kernel_pmap, ("unexpected section"));
3626		/* XXX: what to do about the bits > 32 ? */
3627		if (l1pd & L1_S_SUPERSEC)
3628			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3629		else
3630			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3631	} else {
3632		/*
3633		 * Note that we can't rely on the validity of the L1
3634		 * descriptor as an indication that a mapping exists.
3635		 * We have to look it up in the L2 dtable.
3636		 */
3637		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3638		if (l2 == NULL ||
3639		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
3640			return (0);
3641		pte = ptep[l2pte_index(va)];
3642		if (pte == 0)
3643			return (0);
3644		switch (pte & L2_TYPE_MASK) {
3645		case L2_TYPE_L:
3646			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3647			break;
3648		default:
3649			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3650			break;
3651		}
3652	}
3653	return (pa);
3654}
3655
3656/*
3657 * Atomically extract and hold the physical page with the given
3658 * pmap and virtual address pair if that mapping permits the given
3659 * protection.
3660 *
3661 */
3662vm_page_t
3663pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3664{
3665	struct l2_dtable *l2;
3666	pd_entry_t l1pd;
3667	pt_entry_t *ptep, pte;
3668	vm_paddr_t pa, paddr;
3669	vm_page_t m = NULL;
3670	u_int l1idx;
3671	l1idx = L1_IDX(va);
3672	paddr = 0;
3673
3674 	PMAP_LOCK(pmap);
3675retry:
3676	l1pd = pmap->pm_l1->l1_kva[l1idx];
3677	if (l1pte_section_p(l1pd)) {
3678		/*
3679		 * These should only happen for pmap_kernel()
3680		 */
3681		KASSERT(pmap == pmap_kernel(), ("huh"));
3682		/* XXX: what to do about the bits > 32 ? */
3683		if (l1pd & L1_S_SUPERSEC)
3684			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3685		else
3686			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3687		if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3688			goto retry;
3689		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3690			m = PHYS_TO_VM_PAGE(pa);
3691			vm_page_hold(m);
3692		}
3693
3694	} else {
3695		/*
3696		 * Note that we can't rely on the validity of the L1
3697		 * descriptor as an indication that a mapping exists.
3698		 * We have to look it up in the L2 dtable.
3699		 */
3700		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3701
3702		if (l2 == NULL ||
3703		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3704		 	PMAP_UNLOCK(pmap);
3705			return (NULL);
3706		}
3707
3708		ptep = &ptep[l2pte_index(va)];
3709		pte = *ptep;
3710
3711		if (pte == 0) {
3712		 	PMAP_UNLOCK(pmap);
3713			return (NULL);
3714		}
3715		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3716			switch (pte & L2_TYPE_MASK) {
3717			case L2_TYPE_L:
3718				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3719				break;
3720
3721			default:
3722				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3723				break;
3724			}
3725			if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3726				goto retry;
3727			m = PHYS_TO_VM_PAGE(pa);
3728			vm_page_hold(m);
3729		}
3730	}
3731
3732 	PMAP_UNLOCK(pmap);
3733	PA_UNLOCK_COND(paddr);
3734	return (m);
3735}
3736
3737/*
3738 * Initialize a preallocated and zeroed pmap structure,
3739 * such as one in a vmspace structure.
3740 */
3741
3742int
3743pmap_pinit(pmap_t pmap)
3744{
3745	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3746
3747	pmap_alloc_l1(pmap);
3748	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3749
3750	CPU_ZERO(&pmap->pm_active);
3751
3752	TAILQ_INIT(&pmap->pm_pvlist);
3753	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3754	pmap->pm_stats.resident_count = 1;
3755	if (vector_page < KERNBASE) {
3756		pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
3757		    VM_PROT_READ, PMAP_ENTER_WIRED | VM_PROT_READ, 0);
3758	}
3759	return (1);
3760}
3761
3762
3763/***************************************************
3764 * page management routines.
3765 ***************************************************/
3766
3767
3768static void
3769pmap_free_pv_entry(pv_entry_t pv)
3770{
3771	pv_entry_count--;
3772	uma_zfree(pvzone, pv);
3773}
3774
3775
3776/*
3777 * get a new pv_entry, allocating a block from the system
3778 * when needed.
3779 * the memory allocation is performed bypassing the malloc code
3780 * because of the possibility of allocations at interrupt time.
3781 */
3782static pv_entry_t
3783pmap_get_pv_entry(void)
3784{
3785	pv_entry_t ret_value;
3786
3787	pv_entry_count++;
3788	if (pv_entry_count > pv_entry_high_water)
3789		pagedaemon_wakeup();
3790	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3791	return ret_value;
3792}
3793
3794/*
3795 *	Remove the given range of addresses from the specified map.
3796 *
3797 *	It is assumed that the start and end are properly
3798 *	rounded to the page size.
3799 */
3800#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3801void
3802pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3803{
3804	struct l2_bucket *l2b;
3805	vm_offset_t next_bucket;
3806	pt_entry_t *ptep;
3807	u_int total;
3808	u_int mappings, is_exec, is_refd;
3809	int flushall = 0;
3810
3811
3812	/*
3813	 * we lock in the pmap => pv_head direction
3814	 */
3815
3816	rw_wlock(&pvh_global_lock);
3817	PMAP_LOCK(pm);
3818	total = 0;
3819	while (sva < eva) {
3820		/*
3821		 * Do one L2 bucket's worth at a time.
3822		 */
3823		next_bucket = L2_NEXT_BUCKET(sva);
3824		if (next_bucket > eva)
3825			next_bucket = eva;
3826
3827		l2b = pmap_get_l2_bucket(pm, sva);
3828		if (l2b == NULL) {
3829			sva = next_bucket;
3830			continue;
3831		}
3832
3833		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3834		mappings = 0;
3835
3836		while (sva < next_bucket) {
3837			struct vm_page *pg;
3838			pt_entry_t pte;
3839			vm_paddr_t pa;
3840
3841			pte = *ptep;
3842
3843			if (pte == 0) {
3844				/*
3845				 * Nothing here, move along
3846				 */
3847				sva += PAGE_SIZE;
3848				ptep++;
3849				continue;
3850			}
3851
3852			pm->pm_stats.resident_count--;
3853			pa = l2pte_pa(pte);
3854			is_exec = 0;
3855			is_refd = 1;
3856
3857			/*
3858			 * Update flags. In a number of circumstances,
3859			 * we could cluster a lot of these and do a
3860			 * number of sequential pages in one go.
3861			 */
3862			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3863				struct pv_entry *pve;
3864
3865				pve = pmap_remove_pv(pg, pm, sva);
3866				if (pve) {
3867					is_exec = PV_BEEN_EXECD(pve->pv_flags);
3868					is_refd = PV_BEEN_REFD(pve->pv_flags);
3869					pmap_free_pv_entry(pve);
3870				}
3871			}
3872
3873			if (l2pte_valid(pte) && pmap_is_current(pm)) {
3874				if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3875					total++;
3876			   		if (is_exec) {
3877        					cpu_idcache_wbinv_range(sva,
3878						    PAGE_SIZE);
3879						cpu_l2cache_wbinv_range(sva,
3880						    PAGE_SIZE);
3881						cpu_tlb_flushID_SE(sva);
3882			   		} else if (is_refd) {
3883						cpu_dcache_wbinv_range(sva,
3884						    PAGE_SIZE);
3885						cpu_l2cache_wbinv_range(sva,
3886						    PAGE_SIZE);
3887						cpu_tlb_flushD_SE(sva);
3888					}
3889				} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3890					/* flushall will also only get set for
3891					 * for a current pmap
3892					 */
3893					cpu_idcache_wbinv_all();
3894					cpu_l2cache_wbinv_all();
3895					flushall = 1;
3896					total++;
3897				}
3898			}
3899			*ptep = 0;
3900			PTE_SYNC(ptep);
3901
3902			sva += PAGE_SIZE;
3903			ptep++;
3904			mappings++;
3905		}
3906
3907		pmap_free_l2_bucket(pm, l2b, mappings);
3908	}
3909
3910	rw_wunlock(&pvh_global_lock);
3911	if (flushall)
3912		cpu_tlb_flushID();
3913 	PMAP_UNLOCK(pm);
3914}
3915
3916/*
3917 * pmap_zero_page()
3918 *
3919 * Zero a given physical page by mapping it at a page hook point.
3920 * In doing the zero page op, the page we zero is mapped cachable, as with
3921 * StrongARM accesses to non-cached pages are non-burst making writing
3922 * _any_ bulk data very slow.
3923 */
3924#if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_CORE3)
3925void
3926pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
3927{
3928
3929	if (_arm_bzero && size >= _min_bzero_size &&
3930	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3931		return;
3932
3933	mtx_lock(&cmtx);
3934	/*
3935	 * Hook in the page, zero it, invalidate the TLB as needed.
3936	 *
3937	 * Note the temporary zero-page mapping must be a non-cached page in
3938	 * order to work without corruption when write-allocate is enabled.
3939	 */
3940	*cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
3941	PTE_SYNC(cdst_pte);
3942	cpu_tlb_flushD_SE(cdstp);
3943	cpu_cpwait();
3944	if (off || size != PAGE_SIZE)
3945		bzero((void *)(cdstp + off), size);
3946	else
3947		bzero_page(cdstp);
3948
3949	mtx_unlock(&cmtx);
3950}
3951#endif /* ARM_MMU_GENERIC != 0 */
3952
3953#if ARM_MMU_XSCALE == 1
3954void
3955pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
3956{
3957
3958	if (_arm_bzero && size >= _min_bzero_size &&
3959	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3960		return;
3961
3962	mtx_lock(&cmtx);
3963	/*
3964	 * Hook in the page, zero it, and purge the cache for that
3965	 * zeroed page. Invalidate the TLB as needed.
3966	 */
3967	*cdst_pte = L2_S_PROTO | phys |
3968	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3969	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
3970	PTE_SYNC(cdst_pte);
3971	cpu_tlb_flushD_SE(cdstp);
3972	cpu_cpwait();
3973	if (off || size != PAGE_SIZE)
3974		bzero((void *)(cdstp + off), size);
3975	else
3976		bzero_page(cdstp);
3977	mtx_unlock(&cmtx);
3978	xscale_cache_clean_minidata();
3979}
3980
3981/*
3982 * Change the PTEs for the specified kernel mappings such that they
3983 * will use the mini data cache instead of the main data cache.
3984 */
3985void
3986pmap_use_minicache(vm_offset_t va, vm_size_t size)
3987{
3988	struct l2_bucket *l2b;
3989	pt_entry_t *ptep, *sptep, pte;
3990	vm_offset_t next_bucket, eva;
3991
3992#if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
3993	if (xscale_use_minidata == 0)
3994		return;
3995#endif
3996
3997	eva = va + size;
3998
3999	while (va < eva) {
4000		next_bucket = L2_NEXT_BUCKET(va);
4001		if (next_bucket > eva)
4002			next_bucket = eva;
4003
4004		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4005
4006		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4007
4008		while (va < next_bucket) {
4009			pte = *ptep;
4010			if (!l2pte_minidata(pte)) {
4011				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4012				cpu_tlb_flushD_SE(va);
4013				*ptep = pte & ~L2_B;
4014			}
4015			ptep++;
4016			va += PAGE_SIZE;
4017		}
4018		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4019	}
4020	cpu_cpwait();
4021}
4022#endif /* ARM_MMU_XSCALE == 1 */
4023
4024/*
4025 *	pmap_zero_page zeros the specified hardware page by mapping
4026 *	the page into KVM and using bzero to clear its contents.
4027 */
4028void
4029pmap_zero_page(vm_page_t m)
4030{
4031	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4032}
4033
4034
4035/*
4036 *	pmap_zero_page_area zeros the specified hardware page by mapping
4037 *	the page into KVM and using bzero to clear its contents.
4038 *
4039 *	off and size may not cover an area beyond a single hardware page.
4040 */
4041void
4042pmap_zero_page_area(vm_page_t m, int off, int size)
4043{
4044
4045	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4046}
4047
4048
4049/*
4050 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4051 *	the page into KVM and using bzero to clear its contents.  This
4052 *	is intended to be called from the vm_pagezero process only and
4053 *	outside of Giant.
4054 */
4055void
4056pmap_zero_page_idle(vm_page_t m)
4057{
4058
4059	pmap_zero_page(m);
4060}
4061
4062#if 0
4063/*
4064 * pmap_clean_page()
4065 *
4066 * This is a local function used to work out the best strategy to clean
4067 * a single page referenced by its entry in the PV table. It should be used by
4068 * pmap_copy_page, pmap_zero page and maybe some others later on.
4069 *
4070 * Its policy is effectively:
4071 *  o If there are no mappings, we don't bother doing anything with the cache.
4072 *  o If there is one mapping, we clean just that page.
4073 *  o If there are multiple mappings, we clean the entire cache.
4074 *
4075 * So that some functions can be further optimised, it returns 0 if it didn't
4076 * clean the entire cache, or 1 if it did.
4077 *
4078 * XXX One bug in this routine is that if the pv_entry has a single page
4079 * mapped at 0x00000000 a whole cache clean will be performed rather than
4080 * just the 1 page. Since this should not occur in everyday use and if it does
4081 * it will just result in not the most efficient clean for the page.
4082 *
4083 * We don't yet use this function but may want to.
4084 */
4085static int
4086pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4087{
4088	pmap_t pm, pm_to_clean = NULL;
4089	struct pv_entry *npv;
4090	u_int cache_needs_cleaning = 0;
4091	u_int flags = 0;
4092	vm_offset_t page_to_clean = 0;
4093
4094	if (pv == NULL) {
4095		/* nothing mapped in so nothing to flush */
4096		return (0);
4097	}
4098
4099	/*
4100	 * Since we flush the cache each time we change to a different
4101	 * user vmspace, we only need to flush the page if it is in the
4102	 * current pmap.
4103	 */
4104	if (curthread)
4105		pm = vmspace_pmap(curproc->p_vmspace);
4106	else
4107		pm = pmap_kernel();
4108
4109	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4110		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
4111			flags |= npv->pv_flags;
4112			/*
4113			 * The page is mapped non-cacheable in
4114			 * this map.  No need to flush the cache.
4115			 */
4116			if (npv->pv_flags & PVF_NC) {
4117#ifdef DIAGNOSTIC
4118				if (cache_needs_cleaning)
4119					panic("pmap_clean_page: "
4120					    "cache inconsistency");
4121#endif
4122				break;
4123			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4124				continue;
4125			if (cache_needs_cleaning) {
4126				page_to_clean = 0;
4127				break;
4128			} else {
4129				page_to_clean = npv->pv_va;
4130				pm_to_clean = npv->pv_pmap;
4131			}
4132			cache_needs_cleaning = 1;
4133		}
4134	}
4135	if (page_to_clean) {
4136		if (PV_BEEN_EXECD(flags))
4137			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4138			    PAGE_SIZE);
4139		else
4140			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4141			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4142	} else if (cache_needs_cleaning) {
4143		if (PV_BEEN_EXECD(flags))
4144			pmap_idcache_wbinv_all(pm);
4145		else
4146			pmap_dcache_wbinv_all(pm);
4147		return (1);
4148	}
4149	return (0);
4150}
4151#endif
4152
4153/*
4154 *	pmap_copy_page copies the specified (machine independent)
4155 *	page by mapping the page into virtual memory and using
4156 *	bcopy to copy the page, one machine dependent page at a
4157 *	time.
4158 */
4159
4160/*
4161 * pmap_copy_page()
4162 *
4163 * Copy one physical page into another, by mapping the pages into
4164 * hook points. The same comment regarding cachability as in
4165 * pmap_zero_page also applies here.
4166 */
4167#if ARM_MMU_GENERIC != 0 || defined (CPU_XSCALE_CORE3)
4168void
4169pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4170{
4171#if 0
4172	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4173#endif
4174
4175	/*
4176	 * Clean the source page.  Hold the source page's lock for
4177	 * the duration of the copy so that no other mappings can
4178	 * be created while we have a potentially aliased mapping.
4179	 */
4180#if 0
4181	/*
4182	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4183	 * pmap_copy_page().
4184	 */
4185	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4186#endif
4187	/*
4188	 * Map the pages into the page hook points, copy them, and purge
4189	 * the cache for the appropriate page. Invalidate the TLB
4190	 * as required.
4191	 */
4192	mtx_lock(&cmtx);
4193	*csrc_pte = L2_S_PROTO | src |
4194	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4195	PTE_SYNC(csrc_pte);
4196	*cdst_pte = L2_S_PROTO | dst |
4197	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4198	PTE_SYNC(cdst_pte);
4199	cpu_tlb_flushD_SE(csrcp);
4200	cpu_tlb_flushD_SE(cdstp);
4201	cpu_cpwait();
4202	bcopy_page(csrcp, cdstp);
4203	mtx_unlock(&cmtx);
4204	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4205	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4206	cpu_l2cache_inv_range(csrcp, PAGE_SIZE);
4207	cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE);
4208}
4209
4210void
4211pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
4212    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4213{
4214
4215	mtx_lock(&cmtx);
4216	*csrc_pte = L2_S_PROTO | a_phys |
4217	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4218	PTE_SYNC(csrc_pte);
4219	*cdst_pte = L2_S_PROTO | b_phys |
4220	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4221	PTE_SYNC(cdst_pte);
4222	cpu_tlb_flushD_SE(csrcp);
4223	cpu_tlb_flushD_SE(cdstp);
4224	cpu_cpwait();
4225	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4226	mtx_unlock(&cmtx);
4227	cpu_dcache_inv_range(csrcp + a_offs, cnt);
4228	cpu_dcache_wbinv_range(cdstp + b_offs, cnt);
4229	cpu_l2cache_inv_range(csrcp + a_offs, cnt);
4230	cpu_l2cache_wbinv_range(cdstp + b_offs, cnt);
4231}
4232#endif /* ARM_MMU_GENERIC != 0 */
4233
4234#if ARM_MMU_XSCALE == 1
4235void
4236pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4237{
4238#if 0
4239	/* XXX: Only needed for pmap_clean_page(), which is commented out. */
4240	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4241#endif
4242
4243	/*
4244	 * Clean the source page.  Hold the source page's lock for
4245	 * the duration of the copy so that no other mappings can
4246	 * be created while we have a potentially aliased mapping.
4247	 */
4248#if 0
4249	/*
4250	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4251	 * pmap_copy_page().
4252	 */
4253	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4254#endif
4255	/*
4256	 * Map the pages into the page hook points, copy them, and purge
4257	 * the cache for the appropriate page. Invalidate the TLB
4258	 * as required.
4259	 */
4260	mtx_lock(&cmtx);
4261	*csrc_pte = L2_S_PROTO | src |
4262	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4263	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4264	PTE_SYNC(csrc_pte);
4265	*cdst_pte = L2_S_PROTO | dst |
4266	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4267	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4268	PTE_SYNC(cdst_pte);
4269	cpu_tlb_flushD_SE(csrcp);
4270	cpu_tlb_flushD_SE(cdstp);
4271	cpu_cpwait();
4272	bcopy_page(csrcp, cdstp);
4273	mtx_unlock(&cmtx);
4274	xscale_cache_clean_minidata();
4275}
4276
4277void
4278pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
4279    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4280{
4281
4282	mtx_lock(&cmtx);
4283	*csrc_pte = L2_S_PROTO | a_phys |
4284	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4285	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4286	PTE_SYNC(csrc_pte);
4287	*cdst_pte = L2_S_PROTO | b_phys |
4288	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4289	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4290	PTE_SYNC(cdst_pte);
4291	cpu_tlb_flushD_SE(csrcp);
4292	cpu_tlb_flushD_SE(cdstp);
4293	cpu_cpwait();
4294	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4295	mtx_unlock(&cmtx);
4296	xscale_cache_clean_minidata();
4297}
4298#endif /* ARM_MMU_XSCALE == 1 */
4299
4300void
4301pmap_copy_page(vm_page_t src, vm_page_t dst)
4302{
4303
4304	cpu_dcache_wbinv_all();
4305	cpu_l2cache_wbinv_all();
4306	if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
4307	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4308	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4309		return;
4310	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4311}
4312
4313/*
4314 * We have code to do unmapped I/O. However, it isn't quite right and
4315 * causes un-page-aligned I/O to devices to fail (most notably newfs
4316 * or fsck). We give up a little performance to not allow unmapped I/O
4317 * to gain stability.
4318 */
4319int unmapped_buf_allowed = 0;
4320
4321void
4322pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4323    vm_offset_t b_offset, int xfersize)
4324{
4325	vm_page_t a_pg, b_pg;
4326	vm_offset_t a_pg_offset, b_pg_offset;
4327	int cnt;
4328
4329	cpu_dcache_wbinv_all();
4330	cpu_l2cache_wbinv_all();
4331	while (xfersize > 0) {
4332		a_pg = ma[a_offset >> PAGE_SHIFT];
4333		a_pg_offset = a_offset & PAGE_MASK;
4334		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4335		b_pg = mb[b_offset >> PAGE_SHIFT];
4336		b_pg_offset = b_offset & PAGE_MASK;
4337		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4338		pmap_copy_page_offs_func(VM_PAGE_TO_PHYS(a_pg), a_pg_offset,
4339		    VM_PAGE_TO_PHYS(b_pg), b_pg_offset, cnt);
4340		xfersize -= cnt;
4341		a_offset += cnt;
4342		b_offset += cnt;
4343	}
4344}
4345
4346/*
4347 * this routine returns true if a physical page resides
4348 * in the given pmap.
4349 */
4350boolean_t
4351pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4352{
4353	pv_entry_t pv;
4354	int loops = 0;
4355	boolean_t rv;
4356
4357	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4358	    ("pmap_page_exists_quick: page %p is not managed", m));
4359	rv = FALSE;
4360	rw_wlock(&pvh_global_lock);
4361	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4362	    	if (pv->pv_pmap == pmap) {
4363			rv = TRUE;
4364			break;
4365	    	}
4366		loops++;
4367		if (loops >= 16)
4368			break;
4369	}
4370	rw_wunlock(&pvh_global_lock);
4371	return (rv);
4372}
4373
4374/*
4375 *	pmap_page_wired_mappings:
4376 *
4377 *	Return the number of managed mappings to the given physical page
4378 *	that are wired.
4379 */
4380int
4381pmap_page_wired_mappings(vm_page_t m)
4382{
4383	pv_entry_t pv;
4384	int count;
4385
4386	count = 0;
4387	if ((m->oflags & VPO_UNMANAGED) != 0)
4388		return (count);
4389	rw_wlock(&pvh_global_lock);
4390	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
4391		if ((pv->pv_flags & PVF_WIRED) != 0)
4392			count++;
4393	rw_wunlock(&pvh_global_lock);
4394	return (count);
4395}
4396
4397/*
4398 *	This function is advisory.
4399 */
4400void
4401pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4402{
4403}
4404
4405/*
4406 *	pmap_ts_referenced:
4407 *
4408 *	Return the count of reference bits for a page, clearing all of them.
4409 */
4410int
4411pmap_ts_referenced(vm_page_t m)
4412{
4413
4414	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4415	    ("pmap_ts_referenced: page %p is not managed", m));
4416	return (pmap_clearbit(m, PVF_REF));
4417}
4418
4419
4420boolean_t
4421pmap_is_modified(vm_page_t m)
4422{
4423
4424	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4425	    ("pmap_is_modified: page %p is not managed", m));
4426	if (m->md.pvh_attrs & PVF_MOD)
4427		return (TRUE);
4428
4429	return(FALSE);
4430}
4431
4432
4433/*
4434 *	Clear the modify bits on the specified physical page.
4435 */
4436void
4437pmap_clear_modify(vm_page_t m)
4438{
4439
4440	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4441	    ("pmap_clear_modify: page %p is not managed", m));
4442	VM_OBJECT_ASSERT_WLOCKED(m->object);
4443	KASSERT(!vm_page_xbusied(m),
4444	    ("pmap_clear_modify: page %p is exclusive busied", m));
4445
4446	/*
4447	 * If the page is not PGA_WRITEABLE, then no mappings can be modified.
4448	 * If the object containing the page is locked and the page is not
4449	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4450	 */
4451	if ((m->aflags & PGA_WRITEABLE) == 0)
4452		return;
4453	if (m->md.pvh_attrs & PVF_MOD)
4454		pmap_clearbit(m, PVF_MOD);
4455}
4456
4457
4458/*
4459 *	pmap_is_referenced:
4460 *
4461 *	Return whether or not the specified physical page was referenced
4462 *	in any physical maps.
4463 */
4464boolean_t
4465pmap_is_referenced(vm_page_t m)
4466{
4467
4468	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4469	    ("pmap_is_referenced: page %p is not managed", m));
4470	return ((m->md.pvh_attrs & PVF_REF) != 0);
4471}
4472
4473
4474/*
4475 * Clear the write and modified bits in each of the given page's mappings.
4476 */
4477void
4478pmap_remove_write(vm_page_t m)
4479{
4480
4481	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4482	    ("pmap_remove_write: page %p is not managed", m));
4483
4484	/*
4485	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4486	 * set by another thread while the object is locked.  Thus,
4487	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4488	 */
4489	VM_OBJECT_ASSERT_WLOCKED(m->object);
4490	if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
4491		pmap_clearbit(m, PVF_WRITE);
4492}
4493
4494
4495/*
4496 * perform the pmap work for mincore
4497 */
4498int
4499pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4500{
4501	struct l2_bucket *l2b;
4502	pt_entry_t *ptep, pte;
4503	vm_paddr_t pa;
4504	vm_page_t m;
4505	int val;
4506	boolean_t managed;
4507
4508	PMAP_LOCK(pmap);
4509retry:
4510	l2b = pmap_get_l2_bucket(pmap, addr);
4511        if (l2b == NULL) {
4512                val = 0;
4513                goto out;
4514        }
4515	ptep = &l2b->l2b_kva[l2pte_index(addr)];
4516	pte = *ptep;
4517	if (!l2pte_valid(pte)) {
4518		val = 0;
4519		goto out;
4520	}
4521	val = MINCORE_INCORE;
4522	if (pte & L2_S_PROT_W)
4523		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4524        managed = false;
4525	pa = l2pte_pa(pte);
4526        m = PHYS_TO_VM_PAGE(pa);
4527        if (m != NULL && !(m->oflags & VPO_UNMANAGED))
4528                managed = true;
4529	if (managed) {
4530		/*
4531		 * The ARM pmap tries to maintain a per-mapping
4532		 * reference bit.  The trouble is that it's kept in
4533		 * the PV entry, not the PTE, so it's costly to access
4534		 * here.  You would need to acquire the pvh global
4535		 * lock, call pmap_find_pv(), and introduce a custom
4536		 * version of vm_page_pa_tryrelock() that releases and
4537		 * reacquires the pvh global lock.  In the end, I
4538		 * doubt it's worthwhile.  This may falsely report
4539		 * the given address as referenced.
4540		 */
4541		if ((m->md.pvh_attrs & PVF_REF) != 0)
4542			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4543	}
4544	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4545	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4546		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4547		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4548			goto retry;
4549	} else
4550out:
4551		PA_UNLOCK_COND(*locked_pa);
4552	PMAP_UNLOCK(pmap);
4553	return (val);
4554}
4555
4556
4557void
4558pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4559{
4560}
4561
4562
4563/*
4564 *	Increase the starting virtual address of the given mapping if a
4565 *	different alignment might result in more superpage mappings.
4566 */
4567void
4568pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4569    vm_offset_t *addr, vm_size_t size)
4570{
4571}
4572
4573#define BOOTSTRAP_DEBUG
4574
4575/*
4576 * pmap_map_section:
4577 *
4578 *	Create a single section mapping.
4579 */
4580void
4581pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4582    int prot, int cache)
4583{
4584	pd_entry_t *pde = (pd_entry_t *) l1pt;
4585	pd_entry_t fl;
4586
4587	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4588
4589	switch (cache) {
4590	case PTE_NOCACHE:
4591	default:
4592		fl = 0;
4593		break;
4594
4595	case PTE_CACHE:
4596		fl = pte_l1_s_cache_mode;
4597		break;
4598
4599	case PTE_PAGETABLE:
4600		fl = pte_l1_s_cache_mode_pt;
4601		break;
4602	}
4603
4604	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4605	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4606	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4607
4608}
4609
4610/*
4611 * pmap_link_l2pt:
4612 *
4613 *	Link the L2 page table specified by l2pv.pv_pa into the L1
4614 *	page table at the slot for "va".
4615 */
4616void
4617pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4618{
4619	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4620	u_int slot = va >> L1_S_SHIFT;
4621
4622	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4623
4624#ifdef VERBOSE_INIT_ARM
4625	printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
4626#endif
4627
4628	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4629
4630	PTE_SYNC(&pde[slot]);
4631
4632	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4633
4634
4635}
4636
4637/*
4638 * pmap_map_entry
4639 *
4640 * 	Create a single page mapping.
4641 */
4642void
4643pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4644    int cache)
4645{
4646	pd_entry_t *pde = (pd_entry_t *) l1pt;
4647	pt_entry_t fl;
4648	pt_entry_t *pte;
4649
4650	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4651
4652	switch (cache) {
4653	case PTE_NOCACHE:
4654	default:
4655		fl = 0;
4656		break;
4657
4658	case PTE_CACHE:
4659		fl = pte_l2_s_cache_mode;
4660		break;
4661
4662	case PTE_PAGETABLE:
4663		fl = pte_l2_s_cache_mode_pt;
4664		break;
4665	}
4666
4667	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4668		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4669
4670	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4671
4672	if (pte == NULL)
4673		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4674
4675	pte[l2pte_index(va)] =
4676	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4677	PTE_SYNC(&pte[l2pte_index(va)]);
4678}
4679
4680/*
4681 * pmap_map_chunk:
4682 *
4683 *	Map a chunk of memory using the most efficient mappings
4684 *	possible (section. large page, small page) into the
4685 *	provided L1 and L2 tables at the specified virtual address.
4686 */
4687vm_size_t
4688pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4689    vm_size_t size, int prot, int cache)
4690{
4691	pd_entry_t *pde = (pd_entry_t *) l1pt;
4692	pt_entry_t *pte, f1, f2s, f2l;
4693	vm_size_t resid;
4694	int i;
4695
4696	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4697
4698	if (l1pt == 0)
4699		panic("pmap_map_chunk: no L1 table provided");
4700
4701#ifdef VERBOSE_INIT_ARM
4702	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
4703	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4704#endif
4705
4706	switch (cache) {
4707	case PTE_NOCACHE:
4708	default:
4709		f1 = 0;
4710		f2l = 0;
4711		f2s = 0;
4712		break;
4713
4714	case PTE_CACHE:
4715		f1 = pte_l1_s_cache_mode;
4716		f2l = pte_l2_l_cache_mode;
4717		f2s = pte_l2_s_cache_mode;
4718		break;
4719
4720	case PTE_PAGETABLE:
4721		f1 = pte_l1_s_cache_mode_pt;
4722		f2l = pte_l2_l_cache_mode_pt;
4723		f2s = pte_l2_s_cache_mode_pt;
4724		break;
4725	}
4726
4727	size = resid;
4728
4729	while (resid > 0) {
4730		/* See if we can use a section mapping. */
4731		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4732#ifdef VERBOSE_INIT_ARM
4733			printf("S");
4734#endif
4735			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4736			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4737			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4738			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4739			va += L1_S_SIZE;
4740			pa += L1_S_SIZE;
4741			resid -= L1_S_SIZE;
4742			continue;
4743		}
4744
4745		/*
4746		 * Ok, we're going to use an L2 table.  Make sure
4747		 * one is actually in the corresponding L1 slot
4748		 * for the current VA.
4749		 */
4750		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4751			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4752
4753		pte = (pt_entry_t *) kernel_pt_lookup(
4754		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4755		if (pte == NULL)
4756			panic("pmap_map_chunk: can't find L2 table for VA"
4757			    "0x%08x", va);
4758		/* See if we can use a L2 large page mapping. */
4759		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4760#ifdef VERBOSE_INIT_ARM
4761			printf("L");
4762#endif
4763			for (i = 0; i < 16; i++) {
4764				pte[l2pte_index(va) + i] =
4765				    L2_L_PROTO | pa |
4766				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4767				PTE_SYNC(&pte[l2pte_index(va) + i]);
4768			}
4769			va += L2_L_SIZE;
4770			pa += L2_L_SIZE;
4771			resid -= L2_L_SIZE;
4772			continue;
4773		}
4774
4775		/* Use a small page mapping. */
4776#ifdef VERBOSE_INIT_ARM
4777		printf("P");
4778#endif
4779		pte[l2pte_index(va)] =
4780		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4781		PTE_SYNC(&pte[l2pte_index(va)]);
4782		va += PAGE_SIZE;
4783		pa += PAGE_SIZE;
4784		resid -= PAGE_SIZE;
4785	}
4786#ifdef VERBOSE_INIT_ARM
4787	printf("\n");
4788#endif
4789	return (size);
4790
4791}
4792
4793void
4794pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4795{
4796	/*
4797	 * Remember the memattr in a field that gets used to set the appropriate
4798	 * bits in the PTEs as mappings are established.
4799	 */
4800	m->md.pv_memattr = ma;
4801
4802	/*
4803	 * It appears that this function can only be called before any mappings
4804	 * for the page are established on ARM.  If this ever changes, this code
4805	 * will need to walk the pv_list and make each of the existing mappings
4806	 * uncacheable, being careful to sync caches and PTEs (and maybe
4807	 * invalidate TLB?) for any current mapping it modifies.
4808	 */
4809	if (m->md.pv_kva != 0 || TAILQ_FIRST(&m->md.pv_list) != NULL)
4810		panic("Can't change memattr on page with existing mappings");
4811}
4812
4813
4814