1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
82 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
83 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
84 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
85 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
86 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
87 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
88 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
89 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
90 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
91 * POSSIBILITY OF SUCH DAMAGE.
92 */
93
94/*-
95 * Copyright (c) 1994-1998 Mark Brinicombe.
96 * Copyright (c) 1994 Brini.
97 * All rights reserved.
98 *
99 * This code is derived from software written for Brini by Mark Brinicombe
100 *
101 * Redistribution and use in source and binary forms, with or without
102 * modification, are permitted provided that the following conditions
103 * are met:
104 * 1. Redistributions of source code must retain the above copyright
105 *    notice, this list of conditions and the following disclaimer.
106 * 2. Redistributions in binary form must reproduce the above copyright
107 *    notice, this list of conditions and the following disclaimer in the
108 *    documentation and/or other materials provided with the distribution.
109 * 3. All advertising materials mentioning features or use of this software
110 *    must display the following acknowledgement:
111 *      This product includes software developed by Mark Brinicombe.
112 * 4. The name of the author may not be used to endorse or promote products
113 *    derived from this software without specific prior written permission.
114 *
115 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
116 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
117 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
118 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
119 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
120 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
121 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
122 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
123 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
124 *
125 * RiscBSD kernel project
126 *
127 * pmap.c
128 *
129 * Machine dependent vm stuff
130 *
131 * Created      : 20/09/94
132 */
133
134/*
135 * Special compilation symbols
136 * PMAP_DEBUG           - Build in pmap_debug_level code
137 *
138 * Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
139 */
140/* Include header files */
141
142#include "opt_vm.h"
143
144#include <sys/cdefs.h>
145__FBSDID("$FreeBSD: stable/11/sys/arm/arm/pmap-v4.c 331520 2018-03-25 01:47:57Z ian $");
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/kernel.h>
149#include <sys/ktr.h>
150#include <sys/lock.h>
151#include <sys/proc.h>
152#include <sys/malloc.h>
153#include <sys/msgbuf.h>
154#include <sys/mutex.h>
155#include <sys/vmmeter.h>
156#include <sys/mman.h>
157#include <sys/rwlock.h>
158#include <sys/smp.h>
159#include <sys/sched.h>
160
161#include <vm/vm.h>
162#include <vm/vm_param.h>
163#include <vm/uma.h>
164#include <vm/pmap.h>
165#include <vm/vm_kern.h>
166#include <vm/vm_object.h>
167#include <vm/vm_map.h>
168#include <vm/vm_page.h>
169#include <vm/vm_pageout.h>
170#include <vm/vm_phys.h>
171#include <vm/vm_extern.h>
172
173#include <machine/md_var.h>
174#include <machine/cpu.h>
175#include <machine/cpufunc.h>
176#include <machine/pcb.h>
177
178#ifdef PMAP_DEBUG
179#define PDEBUG(_lev_,_stat_) \
180        if (pmap_debug_level >= (_lev_)) \
181                ((_stat_))
182#define dprintf printf
183
184int pmap_debug_level = 0;
185#define PMAP_INLINE
186#else   /* PMAP_DEBUG */
187#define PDEBUG(_lev_,_stat_) /* Nothing */
188#define dprintf(x, arg...)
189#define PMAP_INLINE __inline
190#endif  /* PMAP_DEBUG */
191
192extern struct pv_addr systempage;
193
194extern int last_fault_code;
195
196/*
197 * Internal function prototypes
198 */
199static void pmap_free_pv_entry (pv_entry_t);
200static pv_entry_t pmap_get_pv_entry(void);
201
202static int		pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
203    vm_prot_t, u_int);
204static vm_paddr_t	pmap_extract_locked(pmap_t pmap, vm_offset_t va);
205static void		pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t);
206static void		pmap_alloc_l1(pmap_t);
207static void		pmap_free_l1(pmap_t);
208
209static int		pmap_clearbit(struct vm_page *, u_int);
210
211static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
212static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
213static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
214static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
215
216static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t pmap_curmaxkvaddr;
221vm_paddr_t kernel_l1pa;
222
223vm_offset_t kernel_vm_end = 0;
224
225vm_offset_t vm_max_kernel_address;
226
227struct pmap kernel_pmap_store;
228
229static pt_entry_t *csrc_pte, *cdst_pte;
230static vm_offset_t csrcp, cdstp, qmap_addr;
231static struct mtx cmtx, qmap_mtx;
232
233static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
234/*
235 * These routines are called when the CPU type is identified to set up
236 * the PTE prototypes, cache modes, etc.
237 *
238 * The variables are always here, just in case LKMs need to reference
239 * them (though, they shouldn't).
240 */
241
242pt_entry_t	pte_l1_s_cache_mode;
243pt_entry_t	pte_l1_s_cache_mode_pt;
244pt_entry_t	pte_l1_s_cache_mask;
245
246pt_entry_t	pte_l2_l_cache_mode;
247pt_entry_t	pte_l2_l_cache_mode_pt;
248pt_entry_t	pte_l2_l_cache_mask;
249
250pt_entry_t	pte_l2_s_cache_mode;
251pt_entry_t	pte_l2_s_cache_mode_pt;
252pt_entry_t	pte_l2_s_cache_mask;
253
254pt_entry_t	pte_l2_s_prot_u;
255pt_entry_t	pte_l2_s_prot_w;
256pt_entry_t	pte_l2_s_prot_mask;
257
258pt_entry_t	pte_l1_s_proto;
259pt_entry_t	pte_l1_c_proto;
260pt_entry_t	pte_l2_s_proto;
261
262void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
263void		(*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
264		    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs,
265		    int cnt);
266void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
267
268struct msgbuf *msgbufp = NULL;
269
270/*
271 * Crashdump maps.
272 */
273static caddr_t crashdumpmap;
274
275extern void bcopy_page(vm_offset_t, vm_offset_t);
276extern void bzero_page(vm_offset_t);
277
278extern vm_offset_t alloc_firstaddr;
279
280char *_tmppt;
281
282/*
283 * Metadata for L1 translation tables.
284 */
285struct l1_ttable {
286	/* Entry on the L1 Table list */
287	SLIST_ENTRY(l1_ttable) l1_link;
288
289	/* Entry on the L1 Least Recently Used list */
290	TAILQ_ENTRY(l1_ttable) l1_lru;
291
292	/* Track how many domains are allocated from this L1 */
293	volatile u_int l1_domain_use_count;
294
295	/*
296	 * A free-list of domain numbers for this L1.
297	 * We avoid using ffs() and a bitmap to track domains since ffs()
298	 * is slow on ARM.
299	 */
300	u_int8_t l1_domain_first;
301	u_int8_t l1_domain_free[PMAP_DOMAINS];
302
303	/* Physical address of this L1 page table */
304	vm_paddr_t l1_physaddr;
305
306	/* KVA of this L1 page table */
307	pd_entry_t *l1_kva;
308};
309
310/*
311 * Convert a virtual address into its L1 table index. That is, the
312 * index used to locate the L2 descriptor table pointer in an L1 table.
313 * This is basically used to index l1->l1_kva[].
314 *
315 * Each L2 descriptor table represents 1MB of VA space.
316 */
317#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
318
319/*
320 * L1 Page Tables are tracked using a Least Recently Used list.
321 *  - New L1s are allocated from the HEAD.
322 *  - Freed L1s are added to the TAIl.
323 *  - Recently accessed L1s (where an 'access' is some change to one of
324 *    the userland pmaps which owns this L1) are moved to the TAIL.
325 */
326static TAILQ_HEAD(, l1_ttable) l1_lru_list;
327/*
328 * A list of all L1 tables
329 */
330static SLIST_HEAD(, l1_ttable) l1_list;
331static struct mtx l1_lru_lock;
332
333/*
334 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
335 *
336 * This is normally 16MB worth L2 page descriptors for any given pmap.
337 * Reference counts are maintained for L2 descriptors so they can be
338 * freed when empty.
339 */
340struct l2_dtable {
341	/* The number of L2 page descriptors allocated to this l2_dtable */
342	u_int l2_occupancy;
343
344	/* List of L2 page descriptors */
345	struct l2_bucket {
346		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
347		vm_paddr_t l2b_phys;	/* Physical address of same */
348		u_short l2b_l1idx;	/* This L2 table's L1 index */
349		u_short l2b_occupancy;	/* How many active descriptors */
350	} l2_bucket[L2_BUCKET_SIZE];
351};
352
353/* pmap_kenter_internal flags */
354#define KENTER_CACHE	0x1
355#define KENTER_USER	0x2
356
357/*
358 * Given an L1 table index, calculate the corresponding l2_dtable index
359 * and bucket index within the l2_dtable.
360 */
361#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
362				 (L2_SIZE - 1))
363#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
364
365/*
366 * Given a virtual address, this macro returns the
367 * virtual address required to drop into the next L2 bucket.
368 */
369#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
370
371/*
372 * We try to map the page tables write-through, if possible.  However, not
373 * all CPUs have a write-through cache mode, so on those we have to sync
374 * the cache when we frob page tables.
375 *
376 * We try to evaluate this at compile time, if possible.  However, it's
377 * not always possible to do that, hence this run-time var.
378 */
379int	pmap_needs_pte_sync;
380
381/*
382 * Macro to determine if a mapping might be resident in the
383 * instruction cache and/or TLB
384 */
385#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
386
387/*
388 * Macro to determine if a mapping might be resident in the
389 * data cache and/or TLB
390 */
391#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
392
393#ifndef PMAP_SHPGPERPROC
394#define PMAP_SHPGPERPROC 200
395#endif
396
397#define pmap_is_current(pm)	((pm) == kernel_pmap || \
398            curproc->p_vmspace->vm_map.pmap == (pm))
399static uma_zone_t pvzone = NULL;
400uma_zone_t l2zone;
401static uma_zone_t l2table_zone;
402static vm_offset_t pmap_kernel_l2dtable_kva;
403static vm_offset_t pmap_kernel_l2ptp_kva;
404static vm_paddr_t pmap_kernel_l2ptp_phys;
405static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
406static struct rwlock pvh_global_lock;
407
408void pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
409    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
410#if ARM_MMU_XSCALE == 1
411void pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
412    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
413#endif
414
415/*
416 * This list exists for the benefit of pmap_map_chunk().  It keeps track
417 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
418 * find them as necessary.
419 *
420 * Note that the data on this list MUST remain valid after initarm() returns,
421 * as pmap_bootstrap() uses it to contruct L2 table metadata.
422 */
423SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
424
425static void
426pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
427{
428	int i;
429
430	l1->l1_kva = l1pt;
431	l1->l1_domain_use_count = 0;
432	l1->l1_domain_first = 0;
433
434	for (i = 0; i < PMAP_DOMAINS; i++)
435		l1->l1_domain_free[i] = i + 1;
436
437	/*
438	 * Copy the kernel's L1 entries to each new L1.
439	 */
440	if (l1pt != kernel_pmap->pm_l1->l1_kva)
441		memcpy(l1pt, kernel_pmap->pm_l1->l1_kva, L1_TABLE_SIZE);
442
443	if ((l1->l1_physaddr = pmap_extract(kernel_pmap, (vm_offset_t)l1pt)) == 0)
444		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
445	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
446	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
447}
448
449static vm_offset_t
450kernel_pt_lookup(vm_paddr_t pa)
451{
452	struct pv_addr *pv;
453
454	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
455		if (pv->pv_pa == pa)
456			return (pv->pv_va);
457	}
458	return (0);
459}
460
461#if ARM_MMU_GENERIC != 0
462void
463pmap_pte_init_generic(void)
464{
465
466	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
467	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
468
469	pte_l2_l_cache_mode = L2_B|L2_C;
470	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
471
472	pte_l2_s_cache_mode = L2_B|L2_C;
473	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
474
475	/*
476	 * If we have a write-through cache, set B and C.  If
477	 * we have a write-back cache, then we assume setting
478	 * only C will make those pages write-through.
479	 */
480	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
481		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
482		pte_l2_l_cache_mode_pt = L2_B|L2_C;
483		pte_l2_s_cache_mode_pt = L2_B|L2_C;
484	} else {
485		pte_l1_s_cache_mode_pt = L1_S_C;
486		pte_l2_l_cache_mode_pt = L2_C;
487		pte_l2_s_cache_mode_pt = L2_C;
488	}
489
490	pte_l2_s_prot_u = L2_S_PROT_U_generic;
491	pte_l2_s_prot_w = L2_S_PROT_W_generic;
492	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
493
494	pte_l1_s_proto = L1_S_PROTO_generic;
495	pte_l1_c_proto = L1_C_PROTO_generic;
496	pte_l2_s_proto = L2_S_PROTO_generic;
497
498	pmap_copy_page_func = pmap_copy_page_generic;
499	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
500	pmap_zero_page_func = pmap_zero_page_generic;
501}
502
503#endif /* ARM_MMU_GENERIC != 0 */
504
505#if ARM_MMU_XSCALE == 1
506#if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
507static u_int xscale_use_minidata;
508#endif
509
510void
511pmap_pte_init_xscale(void)
512{
513	uint32_t auxctl;
514	int write_through = 0;
515
516	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
517	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
518
519	pte_l2_l_cache_mode = L2_B|L2_C;
520	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
521
522	pte_l2_s_cache_mode = L2_B|L2_C;
523	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
524
525	pte_l1_s_cache_mode_pt = L1_S_C;
526	pte_l2_l_cache_mode_pt = L2_C;
527	pte_l2_s_cache_mode_pt = L2_C;
528#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
529	/*
530	 * The XScale core has an enhanced mode where writes that
531	 * miss the cache cause a cache line to be allocated.  This
532	 * is significantly faster than the traditional, write-through
533	 * behavior of this case.
534	 */
535	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
536	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
537	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
538#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
539#ifdef XSCALE_CACHE_WRITE_THROUGH
540	/*
541	 * Some versions of the XScale core have various bugs in
542	 * their cache units, the work-around for which is to run
543	 * the cache in write-through mode.  Unfortunately, this
544	 * has a major (negative) impact on performance.  So, we
545	 * go ahead and run fast-and-loose, in the hopes that we
546	 * don't line up the planets in a way that will trip the
547	 * bugs.
548	 *
549	 * However, we give you the option to be slow-but-correct.
550	 */
551	write_through = 1;
552#elif defined(XSCALE_CACHE_WRITE_BACK)
553	/* force write back cache mode */
554	write_through = 0;
555#elif defined(CPU_XSCALE_PXA2X0)
556	/*
557	 * Intel PXA2[15]0 processors are known to have a bug in
558	 * write-back cache on revision 4 and earlier (stepping
559	 * A[01] and B[012]).  Fixed for C0 and later.
560	 */
561	{
562		uint32_t id, type;
563
564		id = cpu_ident();
565		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
566
567		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
568			if ((id & CPU_ID_REVISION_MASK) < 5) {
569				/* write through for stepping A0-1 and B0-2 */
570				write_through = 1;
571			}
572		}
573	}
574#endif /* XSCALE_CACHE_WRITE_THROUGH */
575
576	if (write_through) {
577		pte_l1_s_cache_mode = L1_S_C;
578		pte_l2_l_cache_mode = L2_C;
579		pte_l2_s_cache_mode = L2_C;
580	}
581
582#if (ARM_NMMUS > 1)
583	xscale_use_minidata = 1;
584#endif
585
586	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
587	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
588	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
589
590	pte_l1_s_proto = L1_S_PROTO_xscale;
591	pte_l1_c_proto = L1_C_PROTO_xscale;
592	pte_l2_s_proto = L2_S_PROTO_xscale;
593
594#ifdef CPU_XSCALE_CORE3
595	pmap_copy_page_func = pmap_copy_page_generic;
596	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
597	pmap_zero_page_func = pmap_zero_page_generic;
598	xscale_use_minidata = 0;
599	/* Make sure it is L2-cachable */
600    	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
601	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
602	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
603	pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
604	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
605	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
606
607#else
608	pmap_copy_page_func = pmap_copy_page_xscale;
609	pmap_copy_page_offs_func = pmap_copy_page_offs_xscale;
610	pmap_zero_page_func = pmap_zero_page_xscale;
611#endif
612
613	/*
614	 * Disable ECC protection of page table access, for now.
615	 */
616	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
617	auxctl &= ~XSCALE_AUXCTL_P;
618	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
619}
620
621/*
622 * xscale_setup_minidata:
623 *
624 *	Set up the mini-data cache clean area.  We require the
625 *	caller to allocate the right amount of physically and
626 *	virtually contiguous space.
627 */
628extern vm_offset_t xscale_minidata_clean_addr;
629extern vm_size_t xscale_minidata_clean_size; /* already initialized */
630void
631xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
632{
633	pd_entry_t *pde = (pd_entry_t *) l1pt;
634	pt_entry_t *pte;
635	vm_size_t size;
636	uint32_t auxctl;
637
638	xscale_minidata_clean_addr = va;
639
640	/* Round it to page size. */
641	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
642
643	for (; size != 0;
644	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
645		pte = (pt_entry_t *) kernel_pt_lookup(
646		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
647		if (pte == NULL)
648			panic("xscale_setup_minidata: can't find L2 table for "
649			    "VA 0x%08x", (u_int32_t) va);
650		pte[l2pte_index(va)] =
651		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
652		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
653	}
654
655	/*
656	 * Configure the mini-data cache for write-back with
657	 * read/write-allocate.
658	 *
659	 * NOTE: In order to reconfigure the mini-data cache, we must
660	 * make sure it contains no valid data!  In order to do that,
661	 * we must issue a global data cache invalidate command!
662	 *
663	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
664	 * THIS IS VERY IMPORTANT!
665	 */
666
667	/* Invalidate data and mini-data. */
668	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
669	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
670	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
671	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
672}
673#endif
674
675/*
676 * Allocate an L1 translation table for the specified pmap.
677 * This is called at pmap creation time.
678 */
679static void
680pmap_alloc_l1(pmap_t pm)
681{
682	struct l1_ttable *l1;
683	u_int8_t domain;
684
685	/*
686	 * Remove the L1 at the head of the LRU list
687	 */
688	mtx_lock(&l1_lru_lock);
689	l1 = TAILQ_FIRST(&l1_lru_list);
690	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
691
692	/*
693	 * Pick the first available domain number, and update
694	 * the link to the next number.
695	 */
696	domain = l1->l1_domain_first;
697	l1->l1_domain_first = l1->l1_domain_free[domain];
698
699	/*
700	 * If there are still free domain numbers in this L1,
701	 * put it back on the TAIL of the LRU list.
702	 */
703	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
704		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
705
706	mtx_unlock(&l1_lru_lock);
707
708	/*
709	 * Fix up the relevant bits in the pmap structure
710	 */
711	pm->pm_l1 = l1;
712	pm->pm_domain = domain + 1;
713}
714
715/*
716 * Free an L1 translation table.
717 * This is called at pmap destruction time.
718 */
719static void
720pmap_free_l1(pmap_t pm)
721{
722	struct l1_ttable *l1 = pm->pm_l1;
723
724	mtx_lock(&l1_lru_lock);
725
726	/*
727	 * If this L1 is currently on the LRU list, remove it.
728	 */
729	if (l1->l1_domain_use_count < PMAP_DOMAINS)
730		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
731
732	/*
733	 * Free up the domain number which was allocated to the pmap
734	 */
735	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
736	l1->l1_domain_first = pm->pm_domain - 1;
737	l1->l1_domain_use_count--;
738
739	/*
740	 * The L1 now must have at least 1 free domain, so add
741	 * it back to the LRU list. If the use count is zero,
742	 * put it at the head of the list, otherwise it goes
743	 * to the tail.
744	 */
745	if (l1->l1_domain_use_count == 0) {
746		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
747	}	else
748		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
749
750	mtx_unlock(&l1_lru_lock);
751}
752
753/*
754 * Returns a pointer to the L2 bucket associated with the specified pmap
755 * and VA, or NULL if no L2 bucket exists for the address.
756 */
757static PMAP_INLINE struct l2_bucket *
758pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
759{
760	struct l2_dtable *l2;
761	struct l2_bucket *l2b;
762	u_short l1idx;
763
764	l1idx = L1_IDX(va);
765
766	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
767	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
768		return (NULL);
769
770	return (l2b);
771}
772
773/*
774 * Returns a pointer to the L2 bucket associated with the specified pmap
775 * and VA.
776 *
777 * If no L2 bucket exists, perform the necessary allocations to put an L2
778 * bucket/page table in place.
779 *
780 * Note that if a new L2 bucket/page was allocated, the caller *must*
781 * increment the bucket occupancy counter appropriately *before*
782 * releasing the pmap's lock to ensure no other thread or cpu deallocates
783 * the bucket/page in the meantime.
784 */
785static struct l2_bucket *
786pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
787{
788	struct l2_dtable *l2;
789	struct l2_bucket *l2b;
790	u_short l1idx;
791
792	l1idx = L1_IDX(va);
793
794	PMAP_ASSERT_LOCKED(pm);
795	rw_assert(&pvh_global_lock, RA_WLOCKED);
796	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
797		/*
798		 * No mapping at this address, as there is
799		 * no entry in the L1 table.
800		 * Need to allocate a new l2_dtable.
801		 */
802		PMAP_UNLOCK(pm);
803		rw_wunlock(&pvh_global_lock);
804		if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
805			rw_wlock(&pvh_global_lock);
806			PMAP_LOCK(pm);
807			return (NULL);
808		}
809		rw_wlock(&pvh_global_lock);
810		PMAP_LOCK(pm);
811		if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
812			/*
813			 * Someone already allocated the l2_dtable while
814			 * we were doing the same.
815			 */
816			uma_zfree(l2table_zone, l2);
817			l2 = pm->pm_l2[L2_IDX(l1idx)];
818		} else {
819			bzero(l2, sizeof(*l2));
820			/*
821			 * Link it into the parent pmap
822			 */
823			pm->pm_l2[L2_IDX(l1idx)] = l2;
824		}
825	}
826
827	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
828
829	/*
830	 * Fetch pointer to the L2 page table associated with the address.
831	 */
832	if (l2b->l2b_kva == NULL) {
833		pt_entry_t *ptep;
834
835		/*
836		 * No L2 page table has been allocated. Chances are, this
837		 * is because we just allocated the l2_dtable, above.
838		 */
839		l2->l2_occupancy++;
840		PMAP_UNLOCK(pm);
841		rw_wunlock(&pvh_global_lock);
842		ptep = uma_zalloc(l2zone, M_NOWAIT);
843		rw_wlock(&pvh_global_lock);
844		PMAP_LOCK(pm);
845		if (l2b->l2b_kva != NULL) {
846			/* We lost the race. */
847			l2->l2_occupancy--;
848			uma_zfree(l2zone, ptep);
849			return (l2b);
850		}
851		l2b->l2b_phys = vtophys(ptep);
852		if (ptep == NULL) {
853			/*
854			 * Oops, no more L2 page tables available at this
855			 * time. We may need to deallocate the l2_dtable
856			 * if we allocated a new one above.
857			 */
858			l2->l2_occupancy--;
859			if (l2->l2_occupancy == 0) {
860				pm->pm_l2[L2_IDX(l1idx)] = NULL;
861				uma_zfree(l2table_zone, l2);
862			}
863			return (NULL);
864		}
865
866		l2b->l2b_kva = ptep;
867		l2b->l2b_l1idx = l1idx;
868	}
869
870	return (l2b);
871}
872
873static PMAP_INLINE void
874#ifndef PMAP_INCLUDE_PTE_SYNC
875pmap_free_l2_ptp(pt_entry_t *l2)
876#else
877pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
878#endif
879{
880#ifdef PMAP_INCLUDE_PTE_SYNC
881	/*
882	 * Note: With a write-back cache, we may need to sync this
883	 * L2 table before re-using it.
884	 * This is because it may have belonged to a non-current
885	 * pmap, in which case the cache syncs would have been
886	 * skipped when the pages were being unmapped. If the
887	 * L2 table were then to be immediately re-allocated to
888	 * the *current* pmap, it may well contain stale mappings
889	 * which have not yet been cleared by a cache write-back
890	 * and so would still be visible to the mmu.
891	 */
892	if (need_sync)
893		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
894#endif
895	uma_zfree(l2zone, l2);
896}
897/*
898 * One or more mappings in the specified L2 descriptor table have just been
899 * invalidated.
900 *
901 * Garbage collect the metadata and descriptor table itself if necessary.
902 *
903 * The pmap lock must be acquired when this is called (not necessary
904 * for the kernel pmap).
905 */
906static void
907pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
908{
909	struct l2_dtable *l2;
910	pd_entry_t *pl1pd, l1pd;
911	pt_entry_t *ptep;
912	u_short l1idx;
913
914
915	/*
916	 * Update the bucket's reference count according to how many
917	 * PTEs the caller has just invalidated.
918	 */
919	l2b->l2b_occupancy -= count;
920
921	/*
922	 * Note:
923	 *
924	 * Level 2 page tables allocated to the kernel pmap are never freed
925	 * as that would require checking all Level 1 page tables and
926	 * removing any references to the Level 2 page table. See also the
927	 * comment elsewhere about never freeing bootstrap L2 descriptors.
928	 *
929	 * We make do with just invalidating the mapping in the L2 table.
930	 *
931	 * This isn't really a big deal in practice and, in fact, leads
932	 * to a performance win over time as we don't need to continually
933	 * alloc/free.
934	 */
935	if (l2b->l2b_occupancy > 0 || pm == kernel_pmap)
936		return;
937
938	/*
939	 * There are no more valid mappings in this level 2 page table.
940	 * Go ahead and NULL-out the pointer in the bucket, then
941	 * free the page table.
942	 */
943	l1idx = l2b->l2b_l1idx;
944	ptep = l2b->l2b_kva;
945	l2b->l2b_kva = NULL;
946
947	pl1pd = &pm->pm_l1->l1_kva[l1idx];
948
949	/*
950	 * If the L1 slot matches the pmap's domain
951	 * number, then invalidate it.
952	 */
953	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
954	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
955		*pl1pd = 0;
956		PTE_SYNC(pl1pd);
957	}
958
959	/*
960	 * Release the L2 descriptor table back to the pool cache.
961	 */
962#ifndef PMAP_INCLUDE_PTE_SYNC
963	pmap_free_l2_ptp(ptep);
964#else
965	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
966#endif
967
968	/*
969	 * Update the reference count in the associated l2_dtable
970	 */
971	l2 = pm->pm_l2[L2_IDX(l1idx)];
972	if (--l2->l2_occupancy > 0)
973		return;
974
975	/*
976	 * There are no more valid mappings in any of the Level 1
977	 * slots managed by this l2_dtable. Go ahead and NULL-out
978	 * the pointer in the parent pmap and free the l2_dtable.
979	 */
980	pm->pm_l2[L2_IDX(l1idx)] = NULL;
981	uma_zfree(l2table_zone, l2);
982}
983
984/*
985 * Pool cache constructors for L2 descriptor tables, metadata and pmap
986 * structures.
987 */
988static int
989pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
990{
991#ifndef PMAP_INCLUDE_PTE_SYNC
992	struct l2_bucket *l2b;
993	pt_entry_t *ptep, pte;
994
995	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
996
997	/*
998	 * The mappings for these page tables were initially made using
999	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1000	 * mode will not be right for page table mappings. To avoid
1001	 * polluting the pmap_kenter() code with a special case for
1002	 * page tables, we simply fix up the cache-mode here if it's not
1003	 * correct.
1004	 */
1005		l2b = pmap_get_l2_bucket(kernel_pmap, va);
1006		ptep = &l2b->l2b_kva[l2pte_index(va)];
1007		pte = *ptep;
1008
1009		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1010			/*
1011			 * Page tables must have the cache-mode set to
1012			 * Write-Thru.
1013			 */
1014			*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1015			PTE_SYNC(ptep);
1016			cpu_tlb_flushD_SE(va);
1017			cpu_cpwait();
1018		}
1019#endif
1020	memset(mem, 0, L2_TABLE_SIZE_REAL);
1021	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1022	return (0);
1023}
1024
1025/*
1026 * A bunch of routines to conditionally flush the caches/TLB depending
1027 * on whether the specified pmap actually needs to be flushed at any
1028 * given time.
1029 */
1030static PMAP_INLINE void
1031pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1032{
1033
1034	if (pmap_is_current(pm))
1035		cpu_tlb_flushID_SE(va);
1036}
1037
1038static PMAP_INLINE void
1039pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1040{
1041
1042	if (pmap_is_current(pm))
1043		cpu_tlb_flushD_SE(va);
1044}
1045
1046static PMAP_INLINE void
1047pmap_tlb_flushID(pmap_t pm)
1048{
1049
1050	if (pmap_is_current(pm))
1051		cpu_tlb_flushID();
1052}
1053static PMAP_INLINE void
1054pmap_tlb_flushD(pmap_t pm)
1055{
1056
1057	if (pmap_is_current(pm))
1058		cpu_tlb_flushD();
1059}
1060
1061static int
1062pmap_has_valid_mapping(pmap_t pm, vm_offset_t va)
1063{
1064	pd_entry_t *pde;
1065	pt_entry_t *ptep;
1066
1067	if (pmap_get_pde_pte(pm, va, &pde, &ptep) &&
1068	    ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV))
1069		return (1);
1070
1071	return (0);
1072}
1073
1074static PMAP_INLINE void
1075pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1076{
1077	vm_size_t rest;
1078
1079	CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x"
1080	    " len 0x%x ", pm, pm == kernel_pmap, va, len);
1081
1082	if (pmap_is_current(pm) || pm == kernel_pmap) {
1083		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1084		while (len > 0) {
1085			if (pmap_has_valid_mapping(pm, va)) {
1086				cpu_idcache_wbinv_range(va, rest);
1087				cpu_l2cache_wbinv_range(va, rest);
1088			}
1089			len -= rest;
1090			va += rest;
1091			rest = MIN(PAGE_SIZE, len);
1092		}
1093	}
1094}
1095
1096static PMAP_INLINE void
1097pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv,
1098    boolean_t rd_only)
1099{
1100	vm_size_t rest;
1101
1102	CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x "
1103	    "len 0x%x ", pm, pm == kernel_pmap, va, len);
1104	CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only);
1105
1106	if (pmap_is_current(pm)) {
1107		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1108		while (len > 0) {
1109			if (pmap_has_valid_mapping(pm, va)) {
1110				if (do_inv && rd_only) {
1111					cpu_dcache_inv_range(va, rest);
1112					cpu_l2cache_inv_range(va, rest);
1113				} else if (do_inv) {
1114					cpu_dcache_wbinv_range(va, rest);
1115					cpu_l2cache_wbinv_range(va, rest);
1116				} else if (!rd_only) {
1117					cpu_dcache_wb_range(va, rest);
1118					cpu_l2cache_wb_range(va, rest);
1119				}
1120			}
1121			len -= rest;
1122			va += rest;
1123
1124			rest = MIN(PAGE_SIZE, len);
1125		}
1126	}
1127}
1128
1129static PMAP_INLINE void
1130pmap_idcache_wbinv_all(pmap_t pm)
1131{
1132
1133	if (pmap_is_current(pm)) {
1134		cpu_idcache_wbinv_all();
1135		cpu_l2cache_wbinv_all();
1136	}
1137}
1138
1139#ifdef notyet
1140static PMAP_INLINE void
1141pmap_dcache_wbinv_all(pmap_t pm)
1142{
1143
1144	if (pmap_is_current(pm)) {
1145		cpu_dcache_wbinv_all();
1146		cpu_l2cache_wbinv_all();
1147	}
1148}
1149#endif
1150
1151/*
1152 * PTE_SYNC_CURRENT:
1153 *
1154 *     Make sure the pte is written out to RAM.
1155 *     We need to do this for one of two cases:
1156 *       - We're dealing with the kernel pmap
1157 *       - There is no pmap active in the cache/tlb.
1158 *       - The specified pmap is 'active' in the cache/tlb.
1159 */
1160#ifdef PMAP_INCLUDE_PTE_SYNC
1161#define	PTE_SYNC_CURRENT(pm, ptep)	\
1162do {					\
1163	if (PMAP_NEEDS_PTE_SYNC && 	\
1164	    pmap_is_current(pm))	\
1165		PTE_SYNC(ptep);		\
1166} while (/*CONSTCOND*/0)
1167#else
1168#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1169#endif
1170
1171/*
1172 * cacheable == -1 means we must make the entry uncacheable, 1 means
1173 * cacheable;
1174 */
1175static __inline void
1176pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable)
1177{
1178	struct l2_bucket *l2b;
1179	pt_entry_t *ptep, pte;
1180
1181	l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1182	ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1183
1184	if (cacheable == 1) {
1185		pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1186		if (l2pte_valid(pte)) {
1187			if (PV_BEEN_EXECD(pv->pv_flags)) {
1188				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1189			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1190				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
1191			}
1192		}
1193	} else {
1194		pte = *ptep &~ L2_S_CACHE_MASK;
1195		if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1196			    l2pte_valid(pte)) {
1197			if (PV_BEEN_EXECD(pv->pv_flags)) {
1198				pmap_idcache_wbinv_range(pv->pv_pmap,
1199					    pv->pv_va, PAGE_SIZE);
1200				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1201			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1202				pmap_dcache_wb_range(pv->pv_pmap,
1203					    pv->pv_va, PAGE_SIZE, TRUE,
1204					    (pv->pv_flags & PVF_WRITE) == 0);
1205				pmap_tlb_flushD_SE(pv->pv_pmap,
1206					    pv->pv_va);
1207			}
1208		}
1209	}
1210	*ptep = pte;
1211	PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1212}
1213
1214static void
1215pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1216{
1217	int pmwc = 0;
1218	int writable = 0, kwritable = 0, uwritable = 0;
1219	int entries = 0, kentries = 0, uentries = 0;
1220	struct pv_entry *pv;
1221
1222	rw_assert(&pvh_global_lock, RA_WLOCKED);
1223
1224	/* the cache gets written back/invalidated on context switch.
1225	 * therefore, if a user page shares an entry in the same page or
1226	 * with the kernel map and at least one is writable, then the
1227	 * cache entry must be set write-through.
1228	 */
1229
1230	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1231			/* generate a count of the pv_entry uses */
1232		if (pv->pv_flags & PVF_WRITE) {
1233			if (pv->pv_pmap == kernel_pmap)
1234				kwritable++;
1235			else if (pv->pv_pmap == pm)
1236				uwritable++;
1237			writable++;
1238		}
1239		if (pv->pv_pmap == kernel_pmap)
1240			kentries++;
1241		else {
1242			if (pv->pv_pmap == pm)
1243				uentries++;
1244			entries++;
1245		}
1246	}
1247		/*
1248		 * check if the user duplicate mapping has
1249		 * been removed.
1250		 */
1251	if ((pm != kernel_pmap) && (((uentries > 1) && uwritable) ||
1252	    (uwritable > 1)))
1253			pmwc = 1;
1254
1255	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1256		/* check for user uncachable conditions - order is important */
1257		if (pm != kernel_pmap &&
1258		    (pv->pv_pmap == pm || pv->pv_pmap == kernel_pmap)) {
1259
1260			if ((uentries > 1 && uwritable) || uwritable > 1) {
1261
1262				/* user duplicate mapping */
1263				if (pv->pv_pmap != kernel_pmap)
1264					pv->pv_flags |= PVF_MWC;
1265
1266				if (!(pv->pv_flags & PVF_NC)) {
1267					pv->pv_flags |= PVF_NC;
1268					pmap_set_cache_entry(pv, pm, va, -1);
1269				}
1270				continue;
1271			} else	/* no longer a duplicate user */
1272				pv->pv_flags &= ~PVF_MWC;
1273		}
1274
1275		/*
1276		 * check for kernel uncachable conditions
1277		 * kernel writable or kernel readable with writable user entry
1278		 */
1279		if ((kwritable && (entries || kentries > 1)) ||
1280		    (kwritable > 1) ||
1281		    ((kwritable != writable) && kentries &&
1282		     (pv->pv_pmap == kernel_pmap ||
1283		      (pv->pv_flags & PVF_WRITE) ||
1284		      (pv->pv_flags & PVF_MWC)))) {
1285
1286			if (!(pv->pv_flags & PVF_NC)) {
1287				pv->pv_flags |= PVF_NC;
1288				pmap_set_cache_entry(pv, pm, va, -1);
1289			}
1290			continue;
1291		}
1292
1293			/* kernel and user are cachable */
1294		if ((pm == kernel_pmap) && !(pv->pv_flags & PVF_MWC) &&
1295		    (pv->pv_flags & PVF_NC)) {
1296
1297			pv->pv_flags &= ~PVF_NC;
1298			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1299				pmap_set_cache_entry(pv, pm, va, 1);
1300			continue;
1301		}
1302			/* user is no longer sharable and writable */
1303		if (pm != kernel_pmap &&
1304		    (pv->pv_pmap == pm || pv->pv_pmap == kernel_pmap) &&
1305		    !pmwc && (pv->pv_flags & PVF_NC)) {
1306
1307			pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1308			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1309				pmap_set_cache_entry(pv, pm, va, 1);
1310		}
1311	}
1312
1313	if ((kwritable == 0) && (writable == 0)) {
1314		pg->md.pvh_attrs &= ~PVF_MOD;
1315		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1316		return;
1317	}
1318}
1319
1320/*
1321 * Modify pte bits for all ptes corresponding to the given physical address.
1322 * We use `maskbits' rather than `clearbits' because we're always passing
1323 * constants and the latter would require an extra inversion at run-time.
1324 */
1325static int
1326pmap_clearbit(struct vm_page *pg, u_int maskbits)
1327{
1328	struct l2_bucket *l2b;
1329	struct pv_entry *pv;
1330	pt_entry_t *ptep, npte, opte;
1331	pmap_t pm;
1332	vm_offset_t va;
1333	u_int oflags;
1334	int count = 0;
1335
1336	rw_wlock(&pvh_global_lock);
1337
1338	if (maskbits & PVF_WRITE)
1339		maskbits |= PVF_MOD;
1340	/*
1341	 * Clear saved attributes (modify, reference)
1342	 */
1343	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1344
1345	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1346		rw_wunlock(&pvh_global_lock);
1347		return (0);
1348	}
1349
1350	/*
1351	 * Loop over all current mappings setting/clearing as appropos
1352	 */
1353	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1354		va = pv->pv_va;
1355		pm = pv->pv_pmap;
1356		oflags = pv->pv_flags;
1357
1358		if (!(oflags & maskbits)) {
1359			if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) {
1360				if (pg->md.pv_memattr !=
1361				    VM_MEMATTR_UNCACHEABLE) {
1362					PMAP_LOCK(pm);
1363					l2b = pmap_get_l2_bucket(pm, va);
1364					ptep = &l2b->l2b_kva[l2pte_index(va)];
1365					*ptep |= pte_l2_s_cache_mode;
1366					PTE_SYNC(ptep);
1367					PMAP_UNLOCK(pm);
1368				}
1369				pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1370			}
1371			continue;
1372		}
1373		pv->pv_flags &= ~maskbits;
1374
1375		PMAP_LOCK(pm);
1376
1377		l2b = pmap_get_l2_bucket(pm, va);
1378
1379		ptep = &l2b->l2b_kva[l2pte_index(va)];
1380		npte = opte = *ptep;
1381
1382		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1383			if ((pv->pv_flags & PVF_NC)) {
1384				/*
1385				 * Entry is not cacheable:
1386				 *
1387				 * Don't turn caching on again if this is a
1388				 * modified emulation. This would be
1389				 * inconsistent with the settings created by
1390				 * pmap_fix_cache(). Otherwise, it's safe
1391				 * to re-enable caching.
1392				 *
1393				 * There's no need to call pmap_fix_cache()
1394				 * here: all pages are losing their write
1395				 * permission.
1396				 */
1397				if (maskbits & PVF_WRITE) {
1398					if (pg->md.pv_memattr !=
1399					    VM_MEMATTR_UNCACHEABLE)
1400						npte |= pte_l2_s_cache_mode;
1401					pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1402				}
1403			} else
1404			if (opte & L2_S_PROT_W) {
1405				vm_page_dirty(pg);
1406				/*
1407				 * Entry is writable/cacheable: check if pmap
1408				 * is current if it is flush it, otherwise it
1409				 * won't be in the cache
1410				 */
1411				if (PV_BEEN_EXECD(oflags))
1412					pmap_idcache_wbinv_range(pm, pv->pv_va,
1413					    PAGE_SIZE);
1414				else
1415				if (PV_BEEN_REFD(oflags))
1416					pmap_dcache_wb_range(pm, pv->pv_va,
1417					    PAGE_SIZE,
1418					    (maskbits & PVF_REF) ? TRUE : FALSE,
1419					    FALSE);
1420			}
1421
1422			/* make the pte read only */
1423			npte &= ~L2_S_PROT_W;
1424		}
1425
1426		if (maskbits & PVF_REF) {
1427			if ((pv->pv_flags & PVF_NC) == 0 &&
1428			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1429				/*
1430				 * Check npte here; we may have already
1431				 * done the wbinv above, and the validity
1432				 * of the PTE is the same for opte and
1433				 * npte.
1434				 */
1435				if (npte & L2_S_PROT_W) {
1436					if (PV_BEEN_EXECD(oflags))
1437						pmap_idcache_wbinv_range(pm,
1438						    pv->pv_va, PAGE_SIZE);
1439					else
1440					if (PV_BEEN_REFD(oflags))
1441						pmap_dcache_wb_range(pm,
1442						    pv->pv_va, PAGE_SIZE,
1443						    TRUE, FALSE);
1444				} else
1445				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1446					/* XXXJRT need idcache_inv_range */
1447					if (PV_BEEN_EXECD(oflags))
1448						pmap_idcache_wbinv_range(pm,
1449						    pv->pv_va, PAGE_SIZE);
1450					else
1451					if (PV_BEEN_REFD(oflags))
1452						pmap_dcache_wb_range(pm,
1453						    pv->pv_va, PAGE_SIZE,
1454						    TRUE, TRUE);
1455				}
1456			}
1457
1458			/*
1459			 * Make the PTE invalid so that we will take a
1460			 * page fault the next time the mapping is
1461			 * referenced.
1462			 */
1463			npte &= ~L2_TYPE_MASK;
1464			npte |= L2_TYPE_INV;
1465		}
1466
1467		if (npte != opte) {
1468			count++;
1469			*ptep = npte;
1470			PTE_SYNC(ptep);
1471			/* Flush the TLB entry if a current pmap. */
1472			if (PV_BEEN_EXECD(oflags))
1473				pmap_tlb_flushID_SE(pm, pv->pv_va);
1474			else
1475			if (PV_BEEN_REFD(oflags))
1476				pmap_tlb_flushD_SE(pm, pv->pv_va);
1477		}
1478
1479		PMAP_UNLOCK(pm);
1480
1481	}
1482
1483	if (maskbits & PVF_WRITE)
1484		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1485	rw_wunlock(&pvh_global_lock);
1486	return (count);
1487}
1488
1489/*
1490 * main pv_entry manipulation functions:
1491 *   pmap_enter_pv: enter a mapping onto a vm_page list
1492 *   pmap_remove_pv: remove a mappiing from a vm_page list
1493 *
1494 * NOTE: pmap_enter_pv expects to lock the pvh itself
1495 *       pmap_remove_pv expects the caller to lock the pvh before calling
1496 */
1497
1498/*
1499 * pmap_enter_pv: enter a mapping onto a vm_page's PV list
1500 *
1501 * => caller should hold the proper lock on pvh_global_lock
1502 * => caller should have pmap locked
1503 * => we will (someday) gain the lock on the vm_page's PV list
1504 * => caller should adjust ptp's wire_count before calling
1505 * => caller should not adjust pmap's wire_count
1506 */
1507static void
1508pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1509    vm_offset_t va, u_int flags)
1510{
1511
1512	rw_assert(&pvh_global_lock, RA_WLOCKED);
1513	PMAP_ASSERT_LOCKED(pm);
1514	if (pg->md.pv_kva != 0) {
1515		pve->pv_pmap = kernel_pmap;
1516		pve->pv_va = pg->md.pv_kva;
1517		pve->pv_flags = PVF_WRITE | PVF_UNMAN;
1518		if (pm != kernel_pmap)
1519			PMAP_LOCK(kernel_pmap);
1520		TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1521		TAILQ_INSERT_HEAD(&kernel_pmap->pm_pvlist, pve, pv_plist);
1522		if (pm != kernel_pmap)
1523			PMAP_UNLOCK(kernel_pmap);
1524		pg->md.pv_kva = 0;
1525		if ((pve = pmap_get_pv_entry()) == NULL)
1526			panic("pmap_kenter_pv: no pv entries");
1527	}
1528	pve->pv_pmap = pm;
1529	pve->pv_va = va;
1530	pve->pv_flags = flags;
1531	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1532	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1533	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1534	if (pve->pv_flags & PVF_WIRED)
1535		++pm->pm_stats.wired_count;
1536	vm_page_aflag_set(pg, PGA_REFERENCED);
1537}
1538
1539/*
1540 *
1541 * pmap_find_pv: Find a pv entry
1542 *
1543 * => caller should hold lock on vm_page
1544 */
1545static PMAP_INLINE struct pv_entry *
1546pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1547{
1548	struct pv_entry *pv;
1549
1550	rw_assert(&pvh_global_lock, RA_WLOCKED);
1551	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1552	    if (pm == pv->pv_pmap && va == pv->pv_va)
1553		    break;
1554	return (pv);
1555}
1556
1557/*
1558 * vector_page_setprot:
1559 *
1560 *	Manipulate the protection of the vector page.
1561 */
1562void
1563vector_page_setprot(int prot)
1564{
1565	struct l2_bucket *l2b;
1566	pt_entry_t *ptep;
1567
1568	l2b = pmap_get_l2_bucket(kernel_pmap, vector_page);
1569
1570	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1571
1572	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1573	PTE_SYNC(ptep);
1574	cpu_tlb_flushD_SE(vector_page);
1575	cpu_cpwait();
1576}
1577
1578/*
1579 * pmap_remove_pv: try to remove a mapping from a pv_list
1580 *
1581 * => caller should hold proper lock on pmap_main_lock
1582 * => pmap should be locked
1583 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1584 * => caller should adjust ptp's wire_count and free PTP if needed
1585 * => caller should NOT adjust pmap's wire_count
1586 * => we return the removed pve
1587 */
1588
1589static void
1590pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1591{
1592
1593	struct pv_entry *pv;
1594	rw_assert(&pvh_global_lock, RA_WLOCKED);
1595	PMAP_ASSERT_LOCKED(pm);
1596	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1597	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1598	if (pve->pv_flags & PVF_WIRED)
1599		--pm->pm_stats.wired_count;
1600	if (pg->md.pvh_attrs & PVF_MOD)
1601		vm_page_dirty(pg);
1602	if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1603		pg->md.pvh_attrs &= ~PVF_REF;
1604       	else
1605		vm_page_aflag_set(pg, PGA_REFERENCED);
1606	if ((pve->pv_flags & PVF_NC) && ((pm == kernel_pmap) ||
1607	     (pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC)))
1608		pmap_fix_cache(pg, pm, 0);
1609	else if (pve->pv_flags & PVF_WRITE) {
1610		TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
1611		    if (pve->pv_flags & PVF_WRITE)
1612			    break;
1613		if (!pve) {
1614			pg->md.pvh_attrs &= ~PVF_MOD;
1615			vm_page_aflag_clear(pg, PGA_WRITEABLE);
1616		}
1617	}
1618	pv = TAILQ_FIRST(&pg->md.pv_list);
1619	if (pv != NULL && (pv->pv_flags & PVF_UNMAN) &&
1620	    TAILQ_NEXT(pv, pv_list) == NULL) {
1621		pm = kernel_pmap;
1622		pg->md.pv_kva = pv->pv_va;
1623			/* a recursive pmap_nuke_pv */
1624		TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list);
1625		TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist);
1626		if (pv->pv_flags & PVF_WIRED)
1627			--pm->pm_stats.wired_count;
1628		pg->md.pvh_attrs &= ~PVF_REF;
1629		pg->md.pvh_attrs &= ~PVF_MOD;
1630		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1631		pmap_free_pv_entry(pv);
1632	}
1633}
1634
1635static struct pv_entry *
1636pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1637{
1638	struct pv_entry *pve;
1639
1640	rw_assert(&pvh_global_lock, RA_WLOCKED);
1641	pve = TAILQ_FIRST(&pg->md.pv_list);
1642
1643	while (pve) {
1644		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1645			pmap_nuke_pv(pg, pm, pve);
1646			break;
1647		}
1648		pve = TAILQ_NEXT(pve, pv_list);
1649	}
1650
1651	if (pve == NULL && pg->md.pv_kva == va)
1652		pg->md.pv_kva = 0;
1653
1654	return(pve);				/* return removed pve */
1655}
1656/*
1657 *
1658 * pmap_modify_pv: Update pv flags
1659 *
1660 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1661 * => caller should NOT adjust pmap's wire_count
1662 * => we return the old flags
1663 *
1664 * Modify a physical-virtual mapping in the pv table
1665 */
1666static u_int
1667pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1668    u_int clr_mask, u_int set_mask)
1669{
1670	struct pv_entry *npv;
1671	u_int flags, oflags;
1672
1673	PMAP_ASSERT_LOCKED(pm);
1674	rw_assert(&pvh_global_lock, RA_WLOCKED);
1675	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1676		return (0);
1677
1678	/*
1679	 * There is at least one VA mapping this page.
1680	 */
1681
1682	if (clr_mask & (PVF_REF | PVF_MOD))
1683		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1684
1685	oflags = npv->pv_flags;
1686	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1687
1688	if ((flags ^ oflags) & PVF_WIRED) {
1689		if (flags & PVF_WIRED)
1690			++pm->pm_stats.wired_count;
1691		else
1692			--pm->pm_stats.wired_count;
1693	}
1694
1695	if ((flags ^ oflags) & PVF_WRITE)
1696		pmap_fix_cache(pg, pm, 0);
1697
1698	return (oflags);
1699}
1700
1701/* Function to set the debug level of the pmap code */
1702#ifdef PMAP_DEBUG
1703void
1704pmap_debug(int level)
1705{
1706	pmap_debug_level = level;
1707	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1708}
1709#endif  /* PMAP_DEBUG */
1710
1711void
1712pmap_pinit0(struct pmap *pmap)
1713{
1714	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1715
1716	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1717	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1718	PMAP_LOCK_INIT(pmap);
1719}
1720
1721/*
1722 *	Initialize a vm_page's machine-dependent fields.
1723 */
1724void
1725pmap_page_init(vm_page_t m)
1726{
1727
1728	TAILQ_INIT(&m->md.pv_list);
1729	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
1730	m->md.pvh_attrs = 0;
1731	m->md.pv_kva = 0;
1732}
1733
1734/*
1735 *      Initialize the pmap module.
1736 *      Called by vm_init, to initialize any structures that the pmap
1737 *      system needs to map virtual memory.
1738 */
1739void
1740pmap_init(void)
1741{
1742	int shpgperproc = PMAP_SHPGPERPROC;
1743
1744	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1745	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1746	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
1747	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1748
1749	/*
1750	 * Initialize the PV entry allocator.
1751	 */
1752	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1753	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1754	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1755	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1756	uma_zone_reserve_kva(pvzone, pv_entry_max);
1757	pv_entry_high_water = 9 * (pv_entry_max / 10);
1758
1759	/*
1760	 * Now it is safe to enable pv_table recording.
1761	 */
1762	PDEBUG(1, printf("pmap_init: done!\n"));
1763}
1764
1765int
1766pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1767{
1768	struct l2_dtable *l2;
1769	struct l2_bucket *l2b;
1770	pd_entry_t *pl1pd, l1pd;
1771	pt_entry_t *ptep, pte;
1772	vm_paddr_t pa;
1773	u_int l1idx;
1774	int rv = 0;
1775
1776	l1idx = L1_IDX(va);
1777	rw_wlock(&pvh_global_lock);
1778	PMAP_LOCK(pm);
1779
1780	/*
1781	 * If there is no l2_dtable for this address, then the process
1782	 * has no business accessing it.
1783	 *
1784	 * Note: This will catch userland processes trying to access
1785	 * kernel addresses.
1786	 */
1787	l2 = pm->pm_l2[L2_IDX(l1idx)];
1788	if (l2 == NULL)
1789		goto out;
1790
1791	/*
1792	 * Likewise if there is no L2 descriptor table
1793	 */
1794	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1795	if (l2b->l2b_kva == NULL)
1796		goto out;
1797
1798	/*
1799	 * Check the PTE itself.
1800	 */
1801	ptep = &l2b->l2b_kva[l2pte_index(va)];
1802	pte = *ptep;
1803	if (pte == 0)
1804		goto out;
1805
1806	/*
1807	 * Catch a userland access to the vector page mapped at 0x0
1808	 */
1809	if (user && (pte & L2_S_PROT_U) == 0)
1810		goto out;
1811	if (va == vector_page)
1812		goto out;
1813
1814	pa = l2pte_pa(pte);
1815
1816	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
1817		/*
1818		 * This looks like a good candidate for "page modified"
1819		 * emulation...
1820		 */
1821		struct pv_entry *pv;
1822		struct vm_page *pg;
1823
1824		/* Extract the physical address of the page */
1825		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
1826			goto out;
1827		}
1828		/* Get the current flags for this page. */
1829
1830		pv = pmap_find_pv(pg, pm, va);
1831		if (pv == NULL) {
1832			goto out;
1833		}
1834
1835		/*
1836		 * Do the flags say this page is writable? If not then it
1837		 * is a genuine write fault. If yes then the write fault is
1838		 * our fault as we did not reflect the write access in the
1839		 * PTE. Now we know a write has occurred we can correct this
1840		 * and also set the modified bit
1841		 */
1842		if ((pv->pv_flags & PVF_WRITE) == 0) {
1843			goto out;
1844		}
1845
1846		pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
1847		vm_page_dirty(pg);
1848		pv->pv_flags |= PVF_REF | PVF_MOD;
1849
1850		/*
1851		 * Re-enable write permissions for the page.  No need to call
1852		 * pmap_fix_cache(), since this is just a
1853		 * modified-emulation fault, and the PVF_WRITE bit isn't
1854		 * changing. We've already set the cacheable bits based on
1855		 * the assumption that we can write to this page.
1856		 */
1857		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
1858		PTE_SYNC(ptep);
1859		rv = 1;
1860	} else
1861	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
1862		/*
1863		 * This looks like a good candidate for "page referenced"
1864		 * emulation.
1865		 */
1866		struct pv_entry *pv;
1867		struct vm_page *pg;
1868
1869		/* Extract the physical address of the page */
1870		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
1871			goto out;
1872		/* Get the current flags for this page. */
1873
1874		pv = pmap_find_pv(pg, pm, va);
1875		if (pv == NULL)
1876			goto out;
1877
1878		pg->md.pvh_attrs |= PVF_REF;
1879		pv->pv_flags |= PVF_REF;
1880
1881
1882		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
1883		PTE_SYNC(ptep);
1884		rv = 1;
1885	}
1886
1887	/*
1888	 * We know there is a valid mapping here, so simply
1889	 * fix up the L1 if necessary.
1890	 */
1891	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1892	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
1893	if (*pl1pd != l1pd) {
1894		*pl1pd = l1pd;
1895		PTE_SYNC(pl1pd);
1896		rv = 1;
1897	}
1898
1899#ifdef DEBUG
1900	/*
1901	 * If 'rv == 0' at this point, it generally indicates that there is a
1902	 * stale TLB entry for the faulting address. This happens when two or
1903	 * more processes are sharing an L1. Since we don't flush the TLB on
1904	 * a context switch between such processes, we can take domain faults
1905	 * for mappings which exist at the same VA in both processes. EVEN IF
1906	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
1907	 * example.
1908	 *
1909	 * This is extremely likely to happen if pmap_enter() updated the L1
1910	 * entry for a recently entered mapping. In this case, the TLB is
1911	 * flushed for the new mapping, but there may still be TLB entries for
1912	 * other mappings belonging to other processes in the 1MB range
1913	 * covered by the L1 entry.
1914	 *
1915	 * Since 'rv == 0', we know that the L1 already contains the correct
1916	 * value, so the fault must be due to a stale TLB entry.
1917	 *
1918	 * Since we always need to flush the TLB anyway in the case where we
1919	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
1920	 * stale TLB entries dynamically.
1921	 *
1922	 * However, the above condition can ONLY happen if the current L1 is
1923	 * being shared. If it happens when the L1 is unshared, it indicates
1924	 * that other parts of the pmap are not doing their job WRT managing
1925	 * the TLB.
1926	 */
1927	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
1928		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
1929		    pm, (u_long)va, ftype);
1930		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
1931		    l2, l2b, ptep, pl1pd);
1932		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
1933		    pte, l1pd, last_fault_code);
1934#ifdef DDB
1935		Debugger();
1936#endif
1937	}
1938#endif
1939
1940	cpu_tlb_flushID_SE(va);
1941	cpu_cpwait();
1942
1943	rv = 1;
1944
1945out:
1946	rw_wunlock(&pvh_global_lock);
1947	PMAP_UNLOCK(pm);
1948	return (rv);
1949}
1950
1951void
1952pmap_postinit(void)
1953{
1954	struct l2_bucket *l2b;
1955	struct l1_ttable *l1;
1956	pd_entry_t *pl1pt;
1957	pt_entry_t *ptep, pte;
1958	vm_offset_t va, eva;
1959	u_int loop, needed;
1960
1961	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
1962	needed -= 1;
1963	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
1964
1965	for (loop = 0; loop < needed; loop++, l1++) {
1966		/* Allocate a L1 page table */
1967		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
1968		    0xffffffff, L1_TABLE_SIZE, 0);
1969
1970		if (va == 0)
1971			panic("Cannot allocate L1 KVM");
1972
1973		eva = va + L1_TABLE_SIZE;
1974		pl1pt = (pd_entry_t *)va;
1975
1976		while (va < eva) {
1977				l2b = pmap_get_l2_bucket(kernel_pmap, va);
1978				ptep = &l2b->l2b_kva[l2pte_index(va)];
1979				pte = *ptep;
1980				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1981				*ptep = pte;
1982				PTE_SYNC(ptep);
1983				cpu_tlb_flushD_SE(va);
1984
1985				va += PAGE_SIZE;
1986		}
1987		pmap_init_l1(l1, pl1pt);
1988	}
1989
1990
1991#ifdef DEBUG
1992	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
1993	    needed);
1994#endif
1995}
1996
1997/*
1998 * This is used to stuff certain critical values into the PCB where they
1999 * can be accessed quickly from cpu_switch() et al.
2000 */
2001void
2002pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2003{
2004	struct l2_bucket *l2b;
2005
2006	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2007	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2008	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2009
2010	if (vector_page < KERNBASE) {
2011		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2012		l2b = pmap_get_l2_bucket(pm, vector_page);
2013		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2014	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2015	} else
2016		pcb->pcb_pl1vec = NULL;
2017}
2018
2019void
2020pmap_activate(struct thread *td)
2021{
2022	pmap_t pm;
2023	struct pcb *pcb;
2024
2025	pm = vmspace_pmap(td->td_proc->p_vmspace);
2026	pcb = td->td_pcb;
2027
2028	critical_enter();
2029	pmap_set_pcb_pagedir(pm, pcb);
2030
2031	if (td == curthread) {
2032		u_int cur_dacr, cur_ttb;
2033
2034		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2035		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2036
2037		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2038
2039		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2040		    cur_dacr == pcb->pcb_dacr) {
2041			/*
2042			 * No need to switch address spaces.
2043			 */
2044			critical_exit();
2045			return;
2046		}
2047
2048
2049		/*
2050		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2051		 * to 'vector_page' in the incoming L1 table before switching
2052		 * to it otherwise subsequent interrupts/exceptions (including
2053		 * domain faults!) will jump into hyperspace.
2054		 */
2055		if (pcb->pcb_pl1vec) {
2056
2057			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2058			/*
2059			 * Don't need to PTE_SYNC() at this point since
2060			 * cpu_setttb() is about to flush both the cache
2061			 * and the TLB.
2062			 */
2063		}
2064
2065		cpu_domains(pcb->pcb_dacr);
2066		cpu_setttb(pcb->pcb_pagedir);
2067	}
2068	critical_exit();
2069}
2070
2071static int
2072pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2073{
2074	pd_entry_t *pdep, pde;
2075	pt_entry_t *ptep, pte;
2076	vm_offset_t pa;
2077	int rv = 0;
2078
2079	/*
2080	 * Make sure the descriptor itself has the correct cache mode
2081	 */
2082	pdep = &kl1[L1_IDX(va)];
2083	pde = *pdep;
2084
2085	if (l1pte_section_p(pde)) {
2086		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2087			*pdep = (pde & ~L1_S_CACHE_MASK) |
2088			    pte_l1_s_cache_mode_pt;
2089			PTE_SYNC(pdep);
2090			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2091			    sizeof(*pdep));
2092			cpu_l2cache_wbinv_range((vm_offset_t)pdep,
2093			    sizeof(*pdep));
2094			rv = 1;
2095		}
2096	} else {
2097		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2098		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2099		if (ptep == NULL)
2100			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2101
2102		ptep = &ptep[l2pte_index(va)];
2103		pte = *ptep;
2104		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2105			*ptep = (pte & ~L2_S_CACHE_MASK) |
2106			    pte_l2_s_cache_mode_pt;
2107			PTE_SYNC(ptep);
2108			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2109			    sizeof(*ptep));
2110			cpu_l2cache_wbinv_range((vm_offset_t)ptep,
2111			    sizeof(*ptep));
2112			rv = 1;
2113		}
2114	}
2115
2116	return (rv);
2117}
2118
2119static void
2120pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2121    pt_entry_t **ptep)
2122{
2123	vm_offset_t va = *availp;
2124	struct l2_bucket *l2b;
2125
2126	if (ptep) {
2127		l2b = pmap_get_l2_bucket(kernel_pmap, va);
2128		if (l2b == NULL)
2129			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2130
2131		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2132	}
2133
2134	*vap = va;
2135	*availp = va + (PAGE_SIZE * pages);
2136}
2137
2138/*
2139 *	Bootstrap the system enough to run with virtual memory.
2140 *
2141 *	On the arm this is called after mapping has already been enabled
2142 *	and just syncs the pmap module with what has already been done.
2143 *	[We can't call it easily with mapping off since the kernel is not
2144 *	mapped with PA == VA, hence we would have to relocate every address
2145 *	from the linked base (virtual) address "KERNBASE" to the actual
2146 *	(physical) address starting relative to 0]
2147 */
2148#define PMAP_STATIC_L2_SIZE 16
2149void
2150pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
2151{
2152	static struct l1_ttable static_l1;
2153	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2154	struct l1_ttable *l1 = &static_l1;
2155	struct l2_dtable *l2;
2156	struct l2_bucket *l2b;
2157	pd_entry_t pde;
2158	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2159	pt_entry_t *ptep;
2160	pt_entry_t *qmap_pte;
2161	vm_paddr_t pa;
2162	vm_offset_t va;
2163	vm_size_t size;
2164	int l1idx, l2idx, l2next = 0;
2165
2166	PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
2167	    firstaddr, vm_max_kernel_address));
2168
2169	virtual_avail = firstaddr;
2170	kernel_pmap->pm_l1 = l1;
2171	kernel_l1pa = l1pt->pv_pa;
2172
2173	/*
2174	 * Scan the L1 translation table created by initarm() and create
2175	 * the required metadata for all valid mappings found in it.
2176	 */
2177	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2178		pde = kernel_l1pt[l1idx];
2179
2180		/*
2181		 * We're only interested in Coarse mappings.
2182		 * pmap_extract() can deal with section mappings without
2183		 * recourse to checking L2 metadata.
2184		 */
2185		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2186			continue;
2187
2188		/*
2189		 * Lookup the KVA of this L2 descriptor table
2190		 */
2191		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2192		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2193
2194		if (ptep == NULL) {
2195			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2196			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2197		}
2198
2199		/*
2200		 * Fetch the associated L2 metadata structure.
2201		 * Allocate a new one if necessary.
2202		 */
2203		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2204			if (l2next == PMAP_STATIC_L2_SIZE)
2205				panic("pmap_bootstrap: out of static L2s");
2206			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2207			    &static_l2[l2next++];
2208		}
2209
2210		/*
2211		 * One more L1 slot tracked...
2212		 */
2213		l2->l2_occupancy++;
2214
2215		/*
2216		 * Fill in the details of the L2 descriptor in the
2217		 * appropriate bucket.
2218		 */
2219		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2220		l2b->l2b_kva = ptep;
2221		l2b->l2b_phys = pa;
2222		l2b->l2b_l1idx = l1idx;
2223
2224		/*
2225		 * Establish an initial occupancy count for this descriptor
2226		 */
2227		for (l2idx = 0;
2228		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2229		    l2idx++) {
2230			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2231				l2b->l2b_occupancy++;
2232			}
2233		}
2234
2235		/*
2236		 * Make sure the descriptor itself has the correct cache mode.
2237		 * If not, fix it, but whine about the problem. Port-meisters
2238		 * should consider this a clue to fix up their initarm()
2239		 * function. :)
2240		 */
2241		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2242			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2243			    "L2 pte @ %p\n", ptep);
2244		}
2245	}
2246
2247
2248	/*
2249	 * Ensure the primary (kernel) L1 has the correct cache mode for
2250	 * a page table. Bitch if it is not correctly set.
2251	 */
2252	for (va = (vm_offset_t)kernel_l1pt;
2253	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2254		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2255			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2256			    "primary L1 @ 0x%x\n", va);
2257	}
2258
2259	cpu_dcache_wbinv_all();
2260	cpu_l2cache_wbinv_all();
2261	cpu_tlb_flushID();
2262	cpu_cpwait();
2263
2264	PMAP_LOCK_INIT(kernel_pmap);
2265	CPU_FILL(&kernel_pmap->pm_active);
2266	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2267	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2268
2269 	/*
2270	 * Initialize the global pv list lock.
2271	 */
2272	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
2273
2274	/*
2275	 * Reserve some special page table entries/VA space for temporary
2276	 * mapping of pages.
2277	 */
2278	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2279	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2280	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2281	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2282	pmap_alloc_specials(&virtual_avail, 1, &qmap_addr, &qmap_pte);
2283	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)qmap_pte);
2284	size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
2285	    L1_S_SIZE;
2286	pmap_alloc_specials(&virtual_avail,
2287	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2288	    &pmap_kernel_l2ptp_kva, NULL);
2289
2290	size = howmany(size, L2_BUCKET_SIZE);
2291	pmap_alloc_specials(&virtual_avail,
2292	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2293	    &pmap_kernel_l2dtable_kva, NULL);
2294
2295	pmap_alloc_specials(&virtual_avail,
2296	    1, (vm_offset_t*)&_tmppt, NULL);
2297	pmap_alloc_specials(&virtual_avail,
2298	    MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
2299	SLIST_INIT(&l1_list);
2300	TAILQ_INIT(&l1_lru_list);
2301	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2302	pmap_init_l1(l1, kernel_l1pt);
2303	cpu_dcache_wbinv_all();
2304	cpu_l2cache_wbinv_all();
2305
2306	virtual_avail = round_page(virtual_avail);
2307	virtual_end = vm_max_kernel_address;
2308	kernel_vm_end = pmap_curmaxkvaddr;
2309	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
2310	mtx_init(&qmap_mtx, "quick mapping mtx", NULL, MTX_DEF);
2311
2312	pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
2313}
2314
2315/***************************************************
2316 * Pmap allocation/deallocation routines.
2317 ***************************************************/
2318
2319/*
2320 * Release any resources held by the given physical map.
2321 * Called when a pmap initialized by pmap_pinit is being released.
2322 * Should only be called if the map contains no valid mappings.
2323 */
2324void
2325pmap_release(pmap_t pmap)
2326{
2327	struct pcb *pcb;
2328
2329	pmap_idcache_wbinv_all(pmap);
2330	cpu_l2cache_wbinv_all();
2331	pmap_tlb_flushID(pmap);
2332	cpu_cpwait();
2333	if (vector_page < KERNBASE) {
2334		struct pcb *curpcb = PCPU_GET(curpcb);
2335		pcb = thread0.td_pcb;
2336		if (pmap_is_current(pmap)) {
2337			/*
2338 			 * Frob the L1 entry corresponding to the vector
2339			 * page so that it contains the kernel pmap's domain
2340			 * number. This will ensure pmap_remove() does not
2341			 * pull the current vector page out from under us.
2342			 */
2343			critical_enter();
2344			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2345			cpu_domains(pcb->pcb_dacr);
2346			cpu_setttb(pcb->pcb_pagedir);
2347			critical_exit();
2348		}
2349		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2350		/*
2351		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2352		 * since this process has no remaining mappings of its own.
2353		 */
2354		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2355		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2356		curpcb->pcb_dacr = pcb->pcb_dacr;
2357		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2358
2359	}
2360	pmap_free_l1(pmap);
2361
2362	dprintf("pmap_release()\n");
2363}
2364
2365
2366
2367/*
2368 * Helper function for pmap_grow_l2_bucket()
2369 */
2370static __inline int
2371pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2372{
2373	struct l2_bucket *l2b;
2374	pt_entry_t *ptep;
2375	vm_paddr_t pa;
2376	struct vm_page *pg;
2377
2378	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2379	if (pg == NULL)
2380		return (1);
2381	pa = VM_PAGE_TO_PHYS(pg);
2382
2383	if (pap)
2384		*pap = pa;
2385
2386	l2b = pmap_get_l2_bucket(kernel_pmap, va);
2387
2388	ptep = &l2b->l2b_kva[l2pte_index(va)];
2389	*ptep = L2_S_PROTO | pa | cache_mode |
2390	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2391	PTE_SYNC(ptep);
2392	return (0);
2393}
2394
2395/*
2396 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2397 * used by pmap_growkernel().
2398 */
2399static __inline struct l2_bucket *
2400pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2401{
2402	struct l2_dtable *l2;
2403	struct l2_bucket *l2b;
2404	struct l1_ttable *l1;
2405	pd_entry_t *pl1pd;
2406	u_short l1idx;
2407	vm_offset_t nva;
2408
2409	l1idx = L1_IDX(va);
2410
2411	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2412		/*
2413		 * No mapping at this address, as there is
2414		 * no entry in the L1 table.
2415		 * Need to allocate a new l2_dtable.
2416		 */
2417		nva = pmap_kernel_l2dtable_kva;
2418		if ((nva & PAGE_MASK) == 0) {
2419			/*
2420			 * Need to allocate a backing page
2421			 */
2422			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2423				return (NULL);
2424		}
2425
2426		l2 = (struct l2_dtable *)nva;
2427		nva += sizeof(struct l2_dtable);
2428
2429		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2430		    PAGE_MASK)) {
2431			/*
2432			 * The new l2_dtable straddles a page boundary.
2433			 * Map in another page to cover it.
2434			 */
2435			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2436				return (NULL);
2437		}
2438
2439		pmap_kernel_l2dtable_kva = nva;
2440
2441		/*
2442		 * Link it into the parent pmap
2443		 */
2444		pm->pm_l2[L2_IDX(l1idx)] = l2;
2445		memset(l2, 0, sizeof(*l2));
2446	}
2447
2448	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2449
2450	/*
2451	 * Fetch pointer to the L2 page table associated with the address.
2452	 */
2453	if (l2b->l2b_kva == NULL) {
2454		pt_entry_t *ptep;
2455
2456		/*
2457		 * No L2 page table has been allocated. Chances are, this
2458		 * is because we just allocated the l2_dtable, above.
2459		 */
2460		nva = pmap_kernel_l2ptp_kva;
2461		ptep = (pt_entry_t *)nva;
2462		if ((nva & PAGE_MASK) == 0) {
2463			/*
2464			 * Need to allocate a backing page
2465			 */
2466			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2467			    &pmap_kernel_l2ptp_phys))
2468				return (NULL);
2469			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2470		}
2471		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2472		l2->l2_occupancy++;
2473		l2b->l2b_kva = ptep;
2474		l2b->l2b_l1idx = l1idx;
2475		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2476
2477		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2478		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2479	}
2480
2481	/* Distribute new L1 entry to all other L1s */
2482	SLIST_FOREACH(l1, &l1_list, l1_link) {
2483			pl1pd = &l1->l1_kva[L1_IDX(va)];
2484			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2485			    L1_C_PROTO;
2486			PTE_SYNC(pl1pd);
2487	}
2488
2489	return (l2b);
2490}
2491
2492
2493/*
2494 * grow the number of kernel page table entries, if needed
2495 */
2496void
2497pmap_growkernel(vm_offset_t addr)
2498{
2499	pmap_t kpm = kernel_pmap;
2500
2501	if (addr <= pmap_curmaxkvaddr)
2502		return;		/* we are OK */
2503
2504	/*
2505	 * whoops!   we need to add kernel PTPs
2506	 */
2507
2508	/* Map 1MB at a time */
2509	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2510		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2511
2512	/*
2513	 * flush out the cache, expensive but growkernel will happen so
2514	 * rarely
2515	 */
2516	cpu_dcache_wbinv_all();
2517	cpu_l2cache_wbinv_all();
2518	cpu_tlb_flushD();
2519	cpu_cpwait();
2520	kernel_vm_end = pmap_curmaxkvaddr;
2521}
2522
2523
2524/*
2525 * Remove all pages from specified address space
2526 * this aids process exit speeds.  Also, this code
2527 * is special cased for current process only, but
2528 * can have the more generic (and slightly slower)
2529 * mode enabled.  This is much faster than pmap_remove
2530 * in the case of running down an entire address space.
2531 */
2532void
2533pmap_remove_pages(pmap_t pmap)
2534{
2535	struct pv_entry *pv, *npv;
2536	struct l2_bucket *l2b = NULL;
2537	vm_page_t m;
2538	pt_entry_t *pt;
2539
2540	rw_wlock(&pvh_global_lock);
2541	PMAP_LOCK(pmap);
2542	cpu_idcache_wbinv_all();
2543	cpu_l2cache_wbinv_all();
2544	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2545		if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) {
2546			/* Cannot remove wired or unmanaged pages now. */
2547			npv = TAILQ_NEXT(pv, pv_plist);
2548			continue;
2549		}
2550		pmap->pm_stats.resident_count--;
2551		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2552		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2553		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2554		m = PHYS_TO_VM_PAGE(*pt & L2_S_FRAME);
2555		KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
2556		*pt = 0;
2557		PTE_SYNC(pt);
2558		npv = TAILQ_NEXT(pv, pv_plist);
2559		pmap_nuke_pv(m, pmap, pv);
2560		if (TAILQ_EMPTY(&m->md.pv_list))
2561			vm_page_aflag_clear(m, PGA_WRITEABLE);
2562		pmap_free_pv_entry(pv);
2563		pmap_free_l2_bucket(pmap, l2b, 1);
2564	}
2565	rw_wunlock(&pvh_global_lock);
2566	cpu_tlb_flushID();
2567	cpu_cpwait();
2568	PMAP_UNLOCK(pmap);
2569}
2570
2571
2572/***************************************************
2573 * Low level mapping routines.....
2574 ***************************************************/
2575
2576#ifdef ARM_HAVE_SUPERSECTIONS
2577/* Map a super section into the KVA. */
2578
2579void
2580pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
2581{
2582	pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
2583	    (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
2584	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2585	struct l1_ttable *l1;
2586	vm_offset_t va0, va_end;
2587
2588	KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
2589	    ("Not a valid super section mapping"));
2590	if (flags & SECTION_CACHE)
2591		pd |= pte_l1_s_cache_mode;
2592	else if (flags & SECTION_PT)
2593		pd |= pte_l1_s_cache_mode_pt;
2594	va0 = va & L1_SUP_FRAME;
2595	va_end = va + L1_SUP_SIZE;
2596	SLIST_FOREACH(l1, &l1_list, l1_link) {
2597		va = va0;
2598		for (; va < va_end; va += L1_S_SIZE) {
2599			l1->l1_kva[L1_IDX(va)] = pd;
2600			PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2601		}
2602	}
2603}
2604#endif
2605
2606/* Map a section into the KVA. */
2607
2608void
2609pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2610{
2611	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2612	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2613	struct l1_ttable *l1;
2614
2615	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2616	    ("Not a valid section mapping"));
2617	if (flags & SECTION_CACHE)
2618		pd |= pte_l1_s_cache_mode;
2619	else if (flags & SECTION_PT)
2620		pd |= pte_l1_s_cache_mode_pt;
2621	SLIST_FOREACH(l1, &l1_list, l1_link) {
2622		l1->l1_kva[L1_IDX(va)] = pd;
2623		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2624	}
2625}
2626
2627/*
2628 * Make a temporary mapping for a physical address.  This is only intended
2629 * to be used for panic dumps.
2630 */
2631void *
2632pmap_kenter_temporary(vm_paddr_t pa, int i)
2633{
2634	vm_offset_t va;
2635
2636	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2637	pmap_kenter(va, pa);
2638	return ((void *)crashdumpmap);
2639}
2640
2641/*
2642 * add a wired page to the kva
2643 * note that in order for the mapping to take effect -- you
2644 * should do a invltlb after doing the pmap_kenter...
2645 */
2646static PMAP_INLINE void
2647pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2648{
2649	struct l2_bucket *l2b;
2650	pt_entry_t *pte;
2651	pt_entry_t opte;
2652	struct pv_entry *pve;
2653	vm_page_t m;
2654
2655	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2656	    (uint32_t) va, (uint32_t) pa));
2657
2658
2659	l2b = pmap_get_l2_bucket(kernel_pmap, va);
2660	if (l2b == NULL)
2661		l2b = pmap_grow_l2_bucket(kernel_pmap, va);
2662	KASSERT(l2b != NULL, ("No L2 Bucket"));
2663	pte = &l2b->l2b_kva[l2pte_index(va)];
2664	opte = *pte;
2665	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2666	    (uint32_t) pte, opte, *pte));
2667	if (l2pte_valid(opte)) {
2668		pmap_kremove(va);
2669	} else {
2670		if (opte == 0)
2671			l2b->l2b_occupancy++;
2672	}
2673	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2674	    VM_PROT_READ | VM_PROT_WRITE);
2675	if (flags & KENTER_CACHE)
2676		*pte |= pte_l2_s_cache_mode;
2677	if (flags & KENTER_USER)
2678		*pte |= L2_S_PROT_U;
2679	PTE_SYNC(pte);
2680
2681	/*
2682	 * A kernel mapping may not be the page's only mapping, so create a PV
2683	 * entry to ensure proper caching.
2684 	 *
2685	 * The existence test for the pvzone is used to delay the recording of
2686	 * kernel mappings until the VM system is fully initialized.
2687	 *
2688	 * This expects the physical memory to have a vm_page_array entry.
2689	 */
2690	if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) != NULL) {
2691		rw_wlock(&pvh_global_lock);
2692		if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva != 0) {
2693			if ((pve = pmap_get_pv_entry()) == NULL)
2694				panic("pmap_kenter_internal: no pv entries");
2695			PMAP_LOCK(kernel_pmap);
2696			pmap_enter_pv(m, pve, kernel_pmap, va,
2697			    PVF_WRITE | PVF_UNMAN);
2698			pmap_fix_cache(m, kernel_pmap, va);
2699			PMAP_UNLOCK(kernel_pmap);
2700		} else {
2701			m->md.pv_kva = va;
2702		}
2703		rw_wunlock(&pvh_global_lock);
2704	}
2705}
2706
2707void
2708pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2709{
2710	pmap_kenter_internal(va, pa, KENTER_CACHE);
2711}
2712
2713void
2714pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2715{
2716
2717	pmap_kenter_internal(va, pa, 0);
2718}
2719
2720void
2721pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
2722{
2723	vm_offset_t sva;
2724
2725	KASSERT((size & PAGE_MASK) == 0,
2726	    ("%s: device mapping not page-sized", __func__));
2727
2728	sva = va;
2729	while (size != 0) {
2730		pmap_kenter_internal(va, pa, 0);
2731		va += PAGE_SIZE;
2732		pa += PAGE_SIZE;
2733		size -= PAGE_SIZE;
2734	}
2735}
2736
2737void
2738pmap_kremove_device(vm_offset_t va, vm_size_t size)
2739{
2740	vm_offset_t sva;
2741
2742	KASSERT((size & PAGE_MASK) == 0,
2743	    ("%s: device mapping not page-sized", __func__));
2744
2745	sva = va;
2746	while (size != 0) {
2747		pmap_kremove(va);
2748		va += PAGE_SIZE;
2749		size -= PAGE_SIZE;
2750	}
2751}
2752
2753void
2754pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2755{
2756
2757	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2758	/*
2759	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2760	 * at the first use of the new address, or bad things will happen,
2761	 * as we use one of these addresses in the exception handlers.
2762	 */
2763	pmap_fault_fixup(kernel_pmap, va, VM_PROT_READ|VM_PROT_WRITE, 1);
2764}
2765
2766vm_paddr_t
2767pmap_kextract(vm_offset_t va)
2768{
2769
2770	return (pmap_extract_locked(kernel_pmap, va));
2771}
2772
2773/*
2774 * remove a page from the kernel pagetables
2775 */
2776void
2777pmap_kremove(vm_offset_t va)
2778{
2779	struct l2_bucket *l2b;
2780	pt_entry_t *pte, opte;
2781	struct pv_entry *pve;
2782	vm_page_t m;
2783	vm_offset_t pa;
2784
2785	l2b = pmap_get_l2_bucket(kernel_pmap, va);
2786	if (!l2b)
2787		return;
2788	KASSERT(l2b != NULL, ("No L2 Bucket"));
2789	pte = &l2b->l2b_kva[l2pte_index(va)];
2790	opte = *pte;
2791	if (l2pte_valid(opte)) {
2792		/* pa = vtophs(va) taken from pmap_extract() */
2793		if ((opte & L2_TYPE_MASK) == L2_TYPE_L)
2794			pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET);
2795		else
2796			pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET);
2797		/* note: should never have to remove an allocation
2798		 * before the pvzone is initialized.
2799		 */
2800		rw_wlock(&pvh_global_lock);
2801		PMAP_LOCK(kernel_pmap);
2802		if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) &&
2803		    (pve = pmap_remove_pv(m, kernel_pmap, va)))
2804			pmap_free_pv_entry(pve);
2805		PMAP_UNLOCK(kernel_pmap);
2806		rw_wunlock(&pvh_global_lock);
2807		va = va & ~PAGE_MASK;
2808		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2809		cpu_l2cache_wbinv_range(va, PAGE_SIZE);
2810		cpu_tlb_flushD_SE(va);
2811		cpu_cpwait();
2812		*pte = 0;
2813	}
2814}
2815
2816
2817/*
2818 *	Used to map a range of physical addresses into kernel
2819 *	virtual address space.
2820 *
2821 *	The value passed in '*virt' is a suggested virtual address for
2822 *	the mapping. Architectures which can support a direct-mapped
2823 *	physical to virtual region can return the appropriate address
2824 *	within that region, leaving '*virt' unchanged. Other
2825 *	architectures should map the pages starting at '*virt' and
2826 *	update '*virt' with the first usable address after the mapped
2827 *	region.
2828 */
2829vm_offset_t
2830pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2831{
2832	vm_offset_t sva = *virt;
2833	vm_offset_t va = sva;
2834
2835	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2836	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2837	    prot));
2838
2839	while (start < end) {
2840		pmap_kenter(va, start);
2841		va += PAGE_SIZE;
2842		start += PAGE_SIZE;
2843	}
2844	*virt = va;
2845	return (sva);
2846}
2847
2848static void
2849pmap_wb_page(vm_page_t m)
2850{
2851	struct pv_entry *pv;
2852
2853	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2854	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
2855		(pv->pv_flags & PVF_WRITE) == 0);
2856}
2857
2858static void
2859pmap_inv_page(vm_page_t m)
2860{
2861	struct pv_entry *pv;
2862
2863	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2864	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
2865}
2866/*
2867 * Add a list of wired pages to the kva
2868 * this routine is only used for temporary
2869 * kernel mappings that do not need to have
2870 * page modification or references recorded.
2871 * Note that old mappings are simply written
2872 * over.  The page *must* be wired.
2873 */
2874void
2875pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2876{
2877	int i;
2878
2879	for (i = 0; i < count; i++) {
2880		pmap_wb_page(m[i]);
2881		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2882		    KENTER_CACHE);
2883		va += PAGE_SIZE;
2884	}
2885}
2886
2887
2888/*
2889 * this routine jerks page mappings from the
2890 * kernel -- it is meant only for temporary mappings.
2891 */
2892void
2893pmap_qremove(vm_offset_t va, int count)
2894{
2895	vm_paddr_t pa;
2896	int i;
2897
2898	for (i = 0; i < count; i++) {
2899		pa = vtophys(va);
2900		if (pa) {
2901			pmap_inv_page(PHYS_TO_VM_PAGE(pa));
2902			pmap_kremove(va);
2903		}
2904		va += PAGE_SIZE;
2905	}
2906}
2907
2908
2909/*
2910 * pmap_object_init_pt preloads the ptes for a given object
2911 * into the specified pmap.  This eliminates the blast of soft
2912 * faults on process startup and immediately after an mmap.
2913 */
2914void
2915pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
2916    vm_pindex_t pindex, vm_size_t size)
2917{
2918
2919	VM_OBJECT_ASSERT_WLOCKED(object);
2920	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2921	    ("pmap_object_init_pt: non-device object"));
2922}
2923
2924
2925/*
2926 *	pmap_is_prefaultable:
2927 *
2928 *	Return whether or not the specified virtual address is elgible
2929 *	for prefault.
2930 */
2931boolean_t
2932pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2933{
2934	pd_entry_t *pde;
2935	pt_entry_t *pte;
2936
2937	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
2938		return (FALSE);
2939	KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
2940	if (*pte == 0)
2941		return (TRUE);
2942	return (FALSE);
2943}
2944
2945/*
2946 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
2947 * Returns TRUE if the mapping exists, else FALSE.
2948 *
2949 * NOTE: This function is only used by a couple of arm-specific modules.
2950 * It is not safe to take any pmap locks here, since we could be right
2951 * in the middle of debugging the pmap anyway...
2952 *
2953 * It is possible for this routine to return FALSE even though a valid
2954 * mapping does exist. This is because we don't lock, so the metadata
2955 * state may be inconsistent.
2956 *
2957 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
2958 * a "section" mapping.
2959 */
2960boolean_t
2961pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
2962{
2963	struct l2_dtable *l2;
2964	pd_entry_t *pl1pd, l1pd;
2965	pt_entry_t *ptep;
2966	u_short l1idx;
2967
2968	if (pm->pm_l1 == NULL)
2969		return (FALSE);
2970
2971	l1idx = L1_IDX(va);
2972	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
2973	l1pd = *pl1pd;
2974
2975	if (l1pte_section_p(l1pd)) {
2976		*ptp = NULL;
2977		return (TRUE);
2978	}
2979
2980	if (pm->pm_l2 == NULL)
2981		return (FALSE);
2982
2983	l2 = pm->pm_l2[L2_IDX(l1idx)];
2984
2985	if (l2 == NULL ||
2986	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2987		return (FALSE);
2988	}
2989
2990	*ptp = &ptep[l2pte_index(va)];
2991	return (TRUE);
2992}
2993
2994/*
2995 *      Routine:        pmap_remove_all
2996 *      Function:
2997 *              Removes this physical page from
2998 *              all physical maps in which it resides.
2999 *              Reflects back modify bits to the pager.
3000 *
3001 *      Notes:
3002 *              Original versions of this routine were very
3003 *              inefficient because they iteratively called
3004 *              pmap_remove (slow...)
3005 */
3006void
3007pmap_remove_all(vm_page_t m)
3008{
3009	pv_entry_t pv;
3010	pt_entry_t *ptep;
3011	struct l2_bucket *l2b;
3012	boolean_t flush = FALSE;
3013	pmap_t curpm;
3014	int flags = 0;
3015
3016	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3017	    ("pmap_remove_all: page %p is not managed", m));
3018	if (TAILQ_EMPTY(&m->md.pv_list))
3019		return;
3020	rw_wlock(&pvh_global_lock);
3021
3022	/*
3023	 * XXX This call shouldn't exist.  Iterating over the PV list twice,
3024	 * once in pmap_clearbit() and again below, is both unnecessary and
3025	 * inefficient.  The below code should itself write back the cache
3026	 * entry before it destroys the mapping.
3027	 */
3028	pmap_clearbit(m, PVF_WRITE);
3029	curpm = vmspace_pmap(curproc->p_vmspace);
3030	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3031		if (flush == FALSE && (pv->pv_pmap == curpm ||
3032		    pv->pv_pmap == kernel_pmap))
3033			flush = TRUE;
3034
3035		PMAP_LOCK(pv->pv_pmap);
3036		/*
3037		 * Cached contents were written-back in pmap_clearbit(),
3038		 * but we still have to invalidate the cache entry to make
3039		 * sure stale data are not retrieved when another page will be
3040		 * mapped under this virtual address.
3041		 */
3042		if (pmap_is_current(pv->pv_pmap)) {
3043			cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE);
3044			if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va))
3045				cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE);
3046		}
3047
3048		if (pv->pv_flags & PVF_UNMAN) {
3049			/* remove the pv entry, but do not remove the mapping
3050			 * and remember this is a kernel mapped page
3051			 */
3052			m->md.pv_kva = pv->pv_va;
3053		} else {
3054			/* remove the mapping and pv entry */
3055			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3056			KASSERT(l2b != NULL, ("No l2 bucket"));
3057			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3058			*ptep = 0;
3059			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3060			pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3061			pv->pv_pmap->pm_stats.resident_count--;
3062			flags |= pv->pv_flags;
3063		}
3064		pmap_nuke_pv(m, pv->pv_pmap, pv);
3065		PMAP_UNLOCK(pv->pv_pmap);
3066		pmap_free_pv_entry(pv);
3067	}
3068
3069	if (flush) {
3070		if (PV_BEEN_EXECD(flags))
3071			pmap_tlb_flushID(curpm);
3072		else
3073			pmap_tlb_flushD(curpm);
3074	}
3075	vm_page_aflag_clear(m, PGA_WRITEABLE);
3076	rw_wunlock(&pvh_global_lock);
3077}
3078
3079
3080/*
3081 *	Set the physical protection on the
3082 *	specified range of this map as requested.
3083 */
3084void
3085pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3086{
3087	struct l2_bucket *l2b;
3088	pt_entry_t *ptep, pte;
3089	vm_offset_t next_bucket;
3090	u_int flags;
3091	int flush;
3092
3093	CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x",
3094	    pm, sva, eva, prot);
3095
3096	if ((prot & VM_PROT_READ) == 0) {
3097		pmap_remove(pm, sva, eva);
3098		return;
3099	}
3100
3101	if (prot & VM_PROT_WRITE) {
3102		/*
3103		 * If this is a read->write transition, just ignore it and let
3104		 * vm_fault() take care of it later.
3105		 */
3106		return;
3107	}
3108
3109	rw_wlock(&pvh_global_lock);
3110	PMAP_LOCK(pm);
3111
3112	/*
3113	 * OK, at this point, we know we're doing write-protect operation.
3114	 * If the pmap is active, write-back the range.
3115	 */
3116	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3117
3118	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3119	flags = 0;
3120
3121	while (sva < eva) {
3122		next_bucket = L2_NEXT_BUCKET(sva);
3123		if (next_bucket > eva)
3124			next_bucket = eva;
3125
3126		l2b = pmap_get_l2_bucket(pm, sva);
3127		if (l2b == NULL) {
3128			sva = next_bucket;
3129			continue;
3130		}
3131
3132		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3133
3134		while (sva < next_bucket) {
3135			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3136				struct vm_page *pg;
3137				u_int f;
3138
3139				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3140				pte &= ~L2_S_PROT_W;
3141				*ptep = pte;
3142				PTE_SYNC(ptep);
3143
3144				if (!(pg->oflags & VPO_UNMANAGED)) {
3145					f = pmap_modify_pv(pg, pm, sva,
3146					    PVF_WRITE, 0);
3147					if (f & PVF_WRITE)
3148						vm_page_dirty(pg);
3149				} else
3150					f = 0;
3151
3152				if (flush >= 0) {
3153					flush++;
3154					flags |= f;
3155				} else
3156				if (PV_BEEN_EXECD(f))
3157					pmap_tlb_flushID_SE(pm, sva);
3158				else
3159				if (PV_BEEN_REFD(f))
3160					pmap_tlb_flushD_SE(pm, sva);
3161			}
3162
3163			sva += PAGE_SIZE;
3164			ptep++;
3165		}
3166	}
3167
3168
3169	if (flush) {
3170		if (PV_BEEN_EXECD(flags))
3171			pmap_tlb_flushID(pm);
3172		else
3173		if (PV_BEEN_REFD(flags))
3174			pmap_tlb_flushD(pm);
3175	}
3176	rw_wunlock(&pvh_global_lock);
3177
3178 	PMAP_UNLOCK(pm);
3179}
3180
3181
3182/*
3183 *	Insert the given physical page (p) at
3184 *	the specified virtual address (v) in the
3185 *	target physical map with the protection requested.
3186 *
3187 *	If specified, the page will be wired down, meaning
3188 *	that the related pte can not be reclaimed.
3189 *
3190 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3191 *	or lose information.  That is, this routine must actually
3192 *	insert this page into the given map NOW.
3193 */
3194
3195int
3196pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3197    u_int flags, int8_t psind __unused)
3198{
3199	int rv;
3200
3201	rw_wlock(&pvh_global_lock);
3202	PMAP_LOCK(pmap);
3203	rv = pmap_enter_locked(pmap, va, m, prot, flags);
3204	rw_wunlock(&pvh_global_lock);
3205 	PMAP_UNLOCK(pmap);
3206	return (rv);
3207}
3208
3209/*
3210 *	The pvh global and pmap locks must be held.
3211 */
3212static int
3213pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3214    u_int flags)
3215{
3216	struct l2_bucket *l2b = NULL;
3217	struct vm_page *opg;
3218	struct pv_entry *pve = NULL;
3219	pt_entry_t *ptep, npte, opte;
3220	u_int nflags;
3221	u_int oflags;
3222	vm_paddr_t pa;
3223
3224	PMAP_ASSERT_LOCKED(pmap);
3225	rw_assert(&pvh_global_lock, RA_WLOCKED);
3226	if (va == vector_page) {
3227		pa = systempage.pv_pa;
3228		m = NULL;
3229	} else {
3230		if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3231			VM_OBJECT_ASSERT_LOCKED(m->object);
3232		pa = VM_PAGE_TO_PHYS(m);
3233	}
3234	nflags = 0;
3235	if (prot & VM_PROT_WRITE)
3236		nflags |= PVF_WRITE;
3237	if (prot & VM_PROT_EXECUTE)
3238		nflags |= PVF_EXEC;
3239	if ((flags & PMAP_ENTER_WIRED) != 0)
3240		nflags |= PVF_WIRED;
3241	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3242	    "flags = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, flags));
3243
3244	if (pmap == kernel_pmap) {
3245		l2b = pmap_get_l2_bucket(pmap, va);
3246		if (l2b == NULL)
3247			l2b = pmap_grow_l2_bucket(pmap, va);
3248	} else {
3249do_l2b_alloc:
3250		l2b = pmap_alloc_l2_bucket(pmap, va);
3251		if (l2b == NULL) {
3252			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
3253				PMAP_UNLOCK(pmap);
3254				rw_wunlock(&pvh_global_lock);
3255				VM_WAIT;
3256				rw_wlock(&pvh_global_lock);
3257				PMAP_LOCK(pmap);
3258				goto do_l2b_alloc;
3259			}
3260			return (KERN_RESOURCE_SHORTAGE);
3261		}
3262	}
3263
3264	ptep = &l2b->l2b_kva[l2pte_index(va)];
3265
3266	opte = *ptep;
3267	npte = pa;
3268	oflags = 0;
3269	if (opte) {
3270		/*
3271		 * There is already a mapping at this address.
3272		 * If the physical address is different, lookup the
3273		 * vm_page.
3274		 */
3275		if (l2pte_pa(opte) != pa)
3276			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3277		else
3278			opg = m;
3279	} else
3280		opg = NULL;
3281
3282	if ((prot & (VM_PROT_ALL)) ||
3283	    (!m || m->md.pvh_attrs & PVF_REF)) {
3284		/*
3285		 * - The access type indicates that we don't need
3286		 *   to do referenced emulation.
3287		 * OR
3288		 * - The physical page has already been referenced
3289		 *   so no need to re-do referenced emulation here.
3290		 */
3291		npte |= L2_S_PROTO;
3292
3293		nflags |= PVF_REF;
3294
3295		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3296		    (m->md.pvh_attrs & PVF_MOD))) {
3297			/*
3298			 * This is a writable mapping, and the
3299			 * page's mod state indicates it has
3300			 * already been modified. Make it
3301			 * writable from the outset.
3302			 */
3303			nflags |= PVF_MOD;
3304			if (!(m->md.pvh_attrs & PVF_MOD))
3305				vm_page_dirty(m);
3306		}
3307		if (m && opte)
3308			vm_page_aflag_set(m, PGA_REFERENCED);
3309	} else {
3310		/*
3311		 * Need to do page referenced emulation.
3312		 */
3313		npte |= L2_TYPE_INV;
3314	}
3315
3316	if (prot & VM_PROT_WRITE) {
3317		npte |= L2_S_PROT_W;
3318		if (m != NULL &&
3319		    (m->oflags & VPO_UNMANAGED) == 0)
3320			vm_page_aflag_set(m, PGA_WRITEABLE);
3321	}
3322	if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3323		npte |= pte_l2_s_cache_mode;
3324	if (m && m == opg) {
3325		/*
3326		 * We're changing the attrs of an existing mapping.
3327		 */
3328		oflags = pmap_modify_pv(m, pmap, va,
3329		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3330		    PVF_MOD | PVF_REF, nflags);
3331
3332		/*
3333		 * We may need to flush the cache if we're
3334		 * doing rw-ro...
3335		 */
3336		if (pmap_is_current(pmap) &&
3337		    (oflags & PVF_NC) == 0 &&
3338		    (opte & L2_S_PROT_W) != 0 &&
3339		    (prot & VM_PROT_WRITE) == 0 &&
3340		    (opte & L2_TYPE_MASK) != L2_TYPE_INV) {
3341			cpu_dcache_wb_range(va, PAGE_SIZE);
3342			cpu_l2cache_wb_range(va, PAGE_SIZE);
3343		}
3344	} else {
3345		/*
3346		 * New mapping, or changing the backing page
3347		 * of an existing mapping.
3348		 */
3349		if (opg) {
3350			/*
3351			 * Replacing an existing mapping with a new one.
3352			 * It is part of our managed memory so we
3353			 * must remove it from the PV list
3354			 */
3355			if ((pve = pmap_remove_pv(opg, pmap, va))) {
3356
3357			/* note for patch: the oflags/invalidation was moved
3358			 * because PG_FICTITIOUS pages could free the pve
3359			 */
3360			    oflags = pve->pv_flags;
3361			/*
3362			 * If the old mapping was valid (ref/mod
3363			 * emulation creates 'invalid' mappings
3364			 * initially) then make sure to frob
3365			 * the cache.
3366			 */
3367			    if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3368				if (PV_BEEN_EXECD(oflags)) {
3369					pmap_idcache_wbinv_range(pmap, va,
3370					    PAGE_SIZE);
3371				} else
3372					if (PV_BEEN_REFD(oflags)) {
3373						pmap_dcache_wb_range(pmap, va,
3374						    PAGE_SIZE, TRUE,
3375						    (oflags & PVF_WRITE) == 0);
3376					}
3377			    }
3378
3379			/* free/allocate a pv_entry for UNMANAGED pages if
3380			 * this physical page is not/is already mapped.
3381			 */
3382
3383			    if (m && (m->oflags & VPO_UNMANAGED) &&
3384				  !m->md.pv_kva &&
3385				 TAILQ_EMPTY(&m->md.pv_list)) {
3386				pmap_free_pv_entry(pve);
3387				pve = NULL;
3388			    }
3389			} else if (m &&
3390				 (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3391				  !TAILQ_EMPTY(&m->md.pv_list)))
3392				pve = pmap_get_pv_entry();
3393		} else if (m &&
3394			   (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3395			   !TAILQ_EMPTY(&m->md.pv_list)))
3396			pve = pmap_get_pv_entry();
3397
3398		if (m) {
3399			if ((m->oflags & VPO_UNMANAGED)) {
3400				if (!TAILQ_EMPTY(&m->md.pv_list) ||
3401				    m->md.pv_kva) {
3402					KASSERT(pve != NULL, ("No pv"));
3403					nflags |= PVF_UNMAN;
3404					pmap_enter_pv(m, pve, pmap, va, nflags);
3405				} else
3406					m->md.pv_kva = va;
3407			} else {
3408				KASSERT(va < kmi.clean_sva ||
3409				    va >= kmi.clean_eva,
3410		("pmap_enter: managed mapping within the clean submap"));
3411 				KASSERT(pve != NULL, ("No pv"));
3412 				pmap_enter_pv(m, pve, pmap, va, nflags);
3413			}
3414		}
3415	}
3416	/*
3417	 * Make sure userland mappings get the right permissions
3418	 */
3419	if (pmap != kernel_pmap && va != vector_page) {
3420		npte |= L2_S_PROT_U;
3421	}
3422
3423	/*
3424	 * Keep the stats up to date
3425	 */
3426	if (opte == 0) {
3427		l2b->l2b_occupancy++;
3428		pmap->pm_stats.resident_count++;
3429	}
3430
3431	/*
3432	 * If this is just a wiring change, the two PTEs will be
3433	 * identical, so there's no need to update the page table.
3434	 */
3435	if (npte != opte) {
3436		boolean_t is_cached = pmap_is_current(pmap);
3437
3438		*ptep = npte;
3439		if (is_cached) {
3440			/*
3441			 * We only need to frob the cache/tlb if this pmap
3442			 * is current
3443			 */
3444			PTE_SYNC(ptep);
3445			if (L1_IDX(va) != L1_IDX(vector_page) &&
3446			    l2pte_valid(npte)) {
3447				/*
3448				 * This mapping is likely to be accessed as
3449				 * soon as we return to userland. Fix up the
3450				 * L1 entry to avoid taking another
3451				 * page/domain fault.
3452				 */
3453				pd_entry_t *pl1pd, l1pd;
3454
3455				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3456				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3457				    L1_C_PROTO;
3458				if (*pl1pd != l1pd) {
3459					*pl1pd = l1pd;
3460					PTE_SYNC(pl1pd);
3461				}
3462			}
3463		}
3464
3465		if (PV_BEEN_EXECD(oflags))
3466			pmap_tlb_flushID_SE(pmap, va);
3467		else if (PV_BEEN_REFD(oflags))
3468			pmap_tlb_flushD_SE(pmap, va);
3469
3470
3471		if (m)
3472			pmap_fix_cache(m, pmap, va);
3473	}
3474	return (KERN_SUCCESS);
3475}
3476
3477/*
3478 * Maps a sequence of resident pages belonging to the same object.
3479 * The sequence begins with the given page m_start.  This page is
3480 * mapped at the given virtual address start.  Each subsequent page is
3481 * mapped at a virtual address that is offset from start by the same
3482 * amount as the page is offset from m_start within the object.  The
3483 * last page in the sequence is the page with the largest offset from
3484 * m_start that can be mapped at a virtual address less than the given
3485 * virtual address end.  Not every virtual page between start and end
3486 * is mapped; only those for which a resident page exists with the
3487 * corresponding offset from m_start are mapped.
3488 */
3489void
3490pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3491    vm_page_t m_start, vm_prot_t prot)
3492{
3493	vm_page_t m;
3494	vm_pindex_t diff, psize;
3495
3496	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3497
3498	psize = atop(end - start);
3499	m = m_start;
3500	rw_wlock(&pvh_global_lock);
3501	PMAP_LOCK(pmap);
3502	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3503		pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
3504		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP);
3505		m = TAILQ_NEXT(m, listq);
3506	}
3507	rw_wunlock(&pvh_global_lock);
3508 	PMAP_UNLOCK(pmap);
3509}
3510
3511/*
3512 * this code makes some *MAJOR* assumptions:
3513 * 1. Current pmap & pmap exists.
3514 * 2. Not wired.
3515 * 3. Read access.
3516 * 4. No page table pages.
3517 * but is *MUCH* faster than pmap_enter...
3518 */
3519
3520void
3521pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3522{
3523
3524	rw_wlock(&pvh_global_lock);
3525 	PMAP_LOCK(pmap);
3526	pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
3527	    PMAP_ENTER_NOSLEEP);
3528	rw_wunlock(&pvh_global_lock);
3529 	PMAP_UNLOCK(pmap);
3530}
3531
3532/*
3533 *	Clear the wired attribute from the mappings for the specified range of
3534 *	addresses in the given pmap.  Every valid mapping within that range
3535 *	must have the wired attribute set.  In contrast, invalid mappings
3536 *	cannot have the wired attribute set, so they are ignored.
3537 *
3538 *	XXX Wired mappings of unmanaged pages cannot be counted by this pmap
3539 *	implementation.
3540 */
3541void
3542pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3543{
3544	struct l2_bucket *l2b;
3545	pt_entry_t *ptep, pte;
3546	pv_entry_t pv;
3547	vm_offset_t next_bucket;
3548	vm_page_t m;
3549
3550	rw_wlock(&pvh_global_lock);
3551	PMAP_LOCK(pmap);
3552	while (sva < eva) {
3553		next_bucket = L2_NEXT_BUCKET(sva);
3554		if (next_bucket > eva)
3555			next_bucket = eva;
3556		l2b = pmap_get_l2_bucket(pmap, sva);
3557		if (l2b == NULL) {
3558			sva = next_bucket;
3559			continue;
3560		}
3561		for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; sva < next_bucket;
3562		    sva += PAGE_SIZE, ptep++) {
3563			if ((pte = *ptep) == 0 ||
3564			    (m = PHYS_TO_VM_PAGE(l2pte_pa(pte))) == NULL ||
3565			    (m->oflags & VPO_UNMANAGED) != 0)
3566				continue;
3567			pv = pmap_find_pv(m, pmap, sva);
3568			if ((pv->pv_flags & PVF_WIRED) == 0)
3569				panic("pmap_unwire: pv %p isn't wired", pv);
3570			pv->pv_flags &= ~PVF_WIRED;
3571			pmap->pm_stats.wired_count--;
3572		}
3573	}
3574	rw_wunlock(&pvh_global_lock);
3575 	PMAP_UNLOCK(pmap);
3576}
3577
3578
3579/*
3580 *	Copy the range specified by src_addr/len
3581 *	from the source map to the range dst_addr/len
3582 *	in the destination map.
3583 *
3584 *	This routine is only advisory and need not do anything.
3585 */
3586void
3587pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3588    vm_size_t len, vm_offset_t src_addr)
3589{
3590}
3591
3592
3593/*
3594 *	Routine:	pmap_extract
3595 *	Function:
3596 *		Extract the physical page address associated
3597 *		with the given map/virtual_address pair.
3598 */
3599vm_paddr_t
3600pmap_extract(pmap_t pmap, vm_offset_t va)
3601{
3602	vm_paddr_t pa;
3603
3604	PMAP_LOCK(pmap);
3605	pa = pmap_extract_locked(pmap, va);
3606	PMAP_UNLOCK(pmap);
3607	return (pa);
3608}
3609
3610static vm_paddr_t
3611pmap_extract_locked(pmap_t pmap, vm_offset_t va)
3612{
3613	struct l2_dtable *l2;
3614	pd_entry_t l1pd;
3615	pt_entry_t *ptep, pte;
3616	vm_paddr_t pa;
3617	u_int l1idx;
3618
3619	if (pmap != kernel_pmap)
3620		PMAP_ASSERT_LOCKED(pmap);
3621	l1idx = L1_IDX(va);
3622	l1pd = pmap->pm_l1->l1_kva[l1idx];
3623	if (l1pte_section_p(l1pd)) {
3624		/*
3625		 * These should only happen for the kernel pmap.
3626		 */
3627		KASSERT(pmap == kernel_pmap, ("unexpected section"));
3628		/* XXX: what to do about the bits > 32 ? */
3629		if (l1pd & L1_S_SUPERSEC)
3630			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3631		else
3632			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3633	} else {
3634		/*
3635		 * Note that we can't rely on the validity of the L1
3636		 * descriptor as an indication that a mapping exists.
3637		 * We have to look it up in the L2 dtable.
3638		 */
3639		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3640		if (l2 == NULL ||
3641		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
3642			return (0);
3643		pte = ptep[l2pte_index(va)];
3644		if (pte == 0)
3645			return (0);
3646		if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
3647			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3648		else
3649			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3650	}
3651	return (pa);
3652}
3653
3654/*
3655 * Atomically extract and hold the physical page with the given
3656 * pmap and virtual address pair if that mapping permits the given
3657 * protection.
3658 *
3659 */
3660vm_page_t
3661pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3662{
3663	struct l2_dtable *l2;
3664	pd_entry_t l1pd;
3665	pt_entry_t *ptep, pte;
3666	vm_paddr_t pa, paddr;
3667	vm_page_t m = NULL;
3668	u_int l1idx;
3669	l1idx = L1_IDX(va);
3670	paddr = 0;
3671
3672 	PMAP_LOCK(pmap);
3673retry:
3674	l1pd = pmap->pm_l1->l1_kva[l1idx];
3675	if (l1pte_section_p(l1pd)) {
3676		/*
3677		 * These should only happen for kernel_pmap
3678		 */
3679		KASSERT(pmap == kernel_pmap, ("huh"));
3680		/* XXX: what to do about the bits > 32 ? */
3681		if (l1pd & L1_S_SUPERSEC)
3682			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3683		else
3684			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3685		if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3686			goto retry;
3687		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3688			m = PHYS_TO_VM_PAGE(pa);
3689			vm_page_hold(m);
3690		}
3691
3692	} else {
3693		/*
3694		 * Note that we can't rely on the validity of the L1
3695		 * descriptor as an indication that a mapping exists.
3696		 * We have to look it up in the L2 dtable.
3697		 */
3698		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3699
3700		if (l2 == NULL ||
3701		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3702		 	PMAP_UNLOCK(pmap);
3703			return (NULL);
3704		}
3705
3706		ptep = &ptep[l2pte_index(va)];
3707		pte = *ptep;
3708
3709		if (pte == 0) {
3710		 	PMAP_UNLOCK(pmap);
3711			return (NULL);
3712		}
3713		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3714			if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
3715				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3716			else
3717				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3718			if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3719				goto retry;
3720			m = PHYS_TO_VM_PAGE(pa);
3721			vm_page_hold(m);
3722		}
3723	}
3724
3725 	PMAP_UNLOCK(pmap);
3726	PA_UNLOCK_COND(paddr);
3727	return (m);
3728}
3729
3730vm_paddr_t
3731pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
3732{
3733	struct l2_dtable *l2;
3734	pd_entry_t l1pd;
3735	pt_entry_t *ptep, pte;
3736	vm_paddr_t pa;
3737	u_int l1idx;
3738
3739	l1idx = L1_IDX(va);
3740	l1pd = kernel_pmap->pm_l1->l1_kva[l1idx];
3741	if (l1pte_section_p(l1pd)) {
3742		if (l1pd & L1_S_SUPERSEC)
3743			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3744		else
3745			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3746		pte = L2_S_PROTO | pa |
3747		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3748	} else {
3749		l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)];
3750		if (l2 == NULL ||
3751		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3752			pte = 0;
3753			pa = 0;
3754			goto out;
3755		}
3756		pte = ptep[l2pte_index(va)];
3757		if (pte == 0) {
3758			pa = 0;
3759			goto out;
3760		}
3761		if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
3762			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3763		else
3764			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3765	}
3766out:
3767	if (pte2p != NULL)
3768		*pte2p = pte;
3769	return (pa);
3770}
3771
3772/*
3773 * Initialize a preallocated and zeroed pmap structure,
3774 * such as one in a vmspace structure.
3775 */
3776
3777int
3778pmap_pinit(pmap_t pmap)
3779{
3780	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3781
3782	pmap_alloc_l1(pmap);
3783	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3784
3785	CPU_ZERO(&pmap->pm_active);
3786
3787	TAILQ_INIT(&pmap->pm_pvlist);
3788	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3789	pmap->pm_stats.resident_count = 1;
3790	if (vector_page < KERNBASE) {
3791		pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
3792		    VM_PROT_READ, PMAP_ENTER_WIRED | VM_PROT_READ, 0);
3793	}
3794	return (1);
3795}
3796
3797
3798/***************************************************
3799 * page management routines.
3800 ***************************************************/
3801
3802
3803static void
3804pmap_free_pv_entry(pv_entry_t pv)
3805{
3806	pv_entry_count--;
3807	uma_zfree(pvzone, pv);
3808}
3809
3810
3811/*
3812 * get a new pv_entry, allocating a block from the system
3813 * when needed.
3814 * the memory allocation is performed bypassing the malloc code
3815 * because of the possibility of allocations at interrupt time.
3816 */
3817static pv_entry_t
3818pmap_get_pv_entry(void)
3819{
3820	pv_entry_t ret_value;
3821
3822	pv_entry_count++;
3823	if (pv_entry_count > pv_entry_high_water)
3824		pagedaemon_wakeup();
3825	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3826	return ret_value;
3827}
3828
3829/*
3830 *	Remove the given range of addresses from the specified map.
3831 *
3832 *	It is assumed that the start and end are properly
3833 *	rounded to the page size.
3834 */
3835#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3836void
3837pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3838{
3839	struct l2_bucket *l2b;
3840	vm_offset_t next_bucket;
3841	pt_entry_t *ptep;
3842	u_int total;
3843	u_int mappings, is_exec, is_refd;
3844	int flushall = 0;
3845
3846
3847	/*
3848	 * we lock in the pmap => pv_head direction
3849	 */
3850
3851	rw_wlock(&pvh_global_lock);
3852	PMAP_LOCK(pm);
3853	total = 0;
3854	while (sva < eva) {
3855		/*
3856		 * Do one L2 bucket's worth at a time.
3857		 */
3858		next_bucket = L2_NEXT_BUCKET(sva);
3859		if (next_bucket > eva)
3860			next_bucket = eva;
3861
3862		l2b = pmap_get_l2_bucket(pm, sva);
3863		if (l2b == NULL) {
3864			sva = next_bucket;
3865			continue;
3866		}
3867
3868		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3869		mappings = 0;
3870
3871		while (sva < next_bucket) {
3872			struct vm_page *pg;
3873			pt_entry_t pte;
3874			vm_paddr_t pa;
3875
3876			pte = *ptep;
3877
3878			if (pte == 0) {
3879				/*
3880				 * Nothing here, move along
3881				 */
3882				sva += PAGE_SIZE;
3883				ptep++;
3884				continue;
3885			}
3886
3887			pm->pm_stats.resident_count--;
3888			pa = l2pte_pa(pte);
3889			is_exec = 0;
3890			is_refd = 1;
3891
3892			/*
3893			 * Update flags. In a number of circumstances,
3894			 * we could cluster a lot of these and do a
3895			 * number of sequential pages in one go.
3896			 */
3897			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3898				struct pv_entry *pve;
3899
3900				pve = pmap_remove_pv(pg, pm, sva);
3901				if (pve) {
3902					is_exec = PV_BEEN_EXECD(pve->pv_flags);
3903					is_refd = PV_BEEN_REFD(pve->pv_flags);
3904					pmap_free_pv_entry(pve);
3905				}
3906			}
3907
3908			if (l2pte_valid(pte) && pmap_is_current(pm)) {
3909				if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3910					total++;
3911			   		if (is_exec) {
3912        					cpu_idcache_wbinv_range(sva,
3913						    PAGE_SIZE);
3914						cpu_l2cache_wbinv_range(sva,
3915						    PAGE_SIZE);
3916						cpu_tlb_flushID_SE(sva);
3917			   		} else if (is_refd) {
3918						cpu_dcache_wbinv_range(sva,
3919						    PAGE_SIZE);
3920						cpu_l2cache_wbinv_range(sva,
3921						    PAGE_SIZE);
3922						cpu_tlb_flushD_SE(sva);
3923					}
3924				} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3925					/* flushall will also only get set for
3926					 * for a current pmap
3927					 */
3928					cpu_idcache_wbinv_all();
3929					cpu_l2cache_wbinv_all();
3930					flushall = 1;
3931					total++;
3932				}
3933			}
3934			*ptep = 0;
3935			PTE_SYNC(ptep);
3936
3937			sva += PAGE_SIZE;
3938			ptep++;
3939			mappings++;
3940		}
3941
3942		pmap_free_l2_bucket(pm, l2b, mappings);
3943	}
3944
3945	rw_wunlock(&pvh_global_lock);
3946	if (flushall)
3947		cpu_tlb_flushID();
3948 	PMAP_UNLOCK(pm);
3949}
3950
3951/*
3952 * pmap_zero_page()
3953 *
3954 * Zero a given physical page by mapping it at a page hook point.
3955 * In doing the zero page op, the page we zero is mapped cachable, as with
3956 * StrongARM accesses to non-cached pages are non-burst making writing
3957 * _any_ bulk data very slow.
3958 */
3959#if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_CORE3)
3960void
3961pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
3962{
3963
3964	if (_arm_bzero && size >= _min_bzero_size &&
3965	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3966		return;
3967
3968	mtx_lock(&cmtx);
3969	/*
3970	 * Hook in the page, zero it, invalidate the TLB as needed.
3971	 *
3972	 * Note the temporary zero-page mapping must be a non-cached page in
3973	 * order to work without corruption when write-allocate is enabled.
3974	 */
3975	*cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
3976	PTE_SYNC(cdst_pte);
3977	cpu_tlb_flushD_SE(cdstp);
3978	cpu_cpwait();
3979	if (off || size != PAGE_SIZE)
3980		bzero((void *)(cdstp + off), size);
3981	else
3982		bzero_page(cdstp);
3983
3984	mtx_unlock(&cmtx);
3985}
3986#endif /* ARM_MMU_GENERIC != 0 */
3987
3988#if ARM_MMU_XSCALE == 1
3989void
3990pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
3991{
3992
3993	if (_arm_bzero && size >= _min_bzero_size &&
3994	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3995		return;
3996
3997	mtx_lock(&cmtx);
3998	/*
3999	 * Hook in the page, zero it, and purge the cache for that
4000	 * zeroed page. Invalidate the TLB as needed.
4001	 */
4002	*cdst_pte = L2_S_PROTO | phys |
4003	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4004	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4005	PTE_SYNC(cdst_pte);
4006	cpu_tlb_flushD_SE(cdstp);
4007	cpu_cpwait();
4008	if (off || size != PAGE_SIZE)
4009		bzero((void *)(cdstp + off), size);
4010	else
4011		bzero_page(cdstp);
4012	mtx_unlock(&cmtx);
4013	xscale_cache_clean_minidata();
4014}
4015
4016/*
4017 * Change the PTEs for the specified kernel mappings such that they
4018 * will use the mini data cache instead of the main data cache.
4019 */
4020void
4021pmap_use_minicache(vm_offset_t va, vm_size_t size)
4022{
4023	struct l2_bucket *l2b;
4024	pt_entry_t *ptep, *sptep, pte;
4025	vm_offset_t next_bucket, eva;
4026
4027#if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
4028	if (xscale_use_minidata == 0)
4029		return;
4030#endif
4031
4032	eva = va + size;
4033
4034	while (va < eva) {
4035		next_bucket = L2_NEXT_BUCKET(va);
4036		if (next_bucket > eva)
4037			next_bucket = eva;
4038
4039		l2b = pmap_get_l2_bucket(kernel_pmap, va);
4040
4041		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4042
4043		while (va < next_bucket) {
4044			pte = *ptep;
4045			if (!l2pte_minidata(pte)) {
4046				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4047				cpu_tlb_flushD_SE(va);
4048				*ptep = pte & ~L2_B;
4049			}
4050			ptep++;
4051			va += PAGE_SIZE;
4052		}
4053		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4054	}
4055	cpu_cpwait();
4056}
4057#endif /* ARM_MMU_XSCALE == 1 */
4058
4059/*
4060 *	pmap_zero_page zeros the specified hardware page by mapping
4061 *	the page into KVM and using bzero to clear its contents.
4062 */
4063void
4064pmap_zero_page(vm_page_t m)
4065{
4066	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4067}
4068
4069
4070/*
4071 *	pmap_zero_page_area zeros the specified hardware page by mapping
4072 *	the page into KVM and using bzero to clear its contents.
4073 *
4074 *	off and size may not cover an area beyond a single hardware page.
4075 */
4076void
4077pmap_zero_page_area(vm_page_t m, int off, int size)
4078{
4079
4080	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4081}
4082
4083
4084/*
4085 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4086 *	the page into KVM and using bzero to clear its contents.  This
4087 *	is intended to be called from the vm_pagezero process only and
4088 *	outside of Giant.
4089 */
4090void
4091pmap_zero_page_idle(vm_page_t m)
4092{
4093
4094	pmap_zero_page(m);
4095}
4096
4097#if 0
4098/*
4099 * pmap_clean_page()
4100 *
4101 * This is a local function used to work out the best strategy to clean
4102 * a single page referenced by its entry in the PV table. It should be used by
4103 * pmap_copy_page, pmap_zero page and maybe some others later on.
4104 *
4105 * Its policy is effectively:
4106 *  o If there are no mappings, we don't bother doing anything with the cache.
4107 *  o If there is one mapping, we clean just that page.
4108 *  o If there are multiple mappings, we clean the entire cache.
4109 *
4110 * So that some functions can be further optimised, it returns 0 if it didn't
4111 * clean the entire cache, or 1 if it did.
4112 *
4113 * XXX One bug in this routine is that if the pv_entry has a single page
4114 * mapped at 0x00000000 a whole cache clean will be performed rather than
4115 * just the 1 page. Since this should not occur in everyday use and if it does
4116 * it will just result in not the most efficient clean for the page.
4117 *
4118 * We don't yet use this function but may want to.
4119 */
4120static int
4121pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4122{
4123	pmap_t pm, pm_to_clean = NULL;
4124	struct pv_entry *npv;
4125	u_int cache_needs_cleaning = 0;
4126	u_int flags = 0;
4127	vm_offset_t page_to_clean = 0;
4128
4129	if (pv == NULL) {
4130		/* nothing mapped in so nothing to flush */
4131		return (0);
4132	}
4133
4134	/*
4135	 * Since we flush the cache each time we change to a different
4136	 * user vmspace, we only need to flush the page if it is in the
4137	 * current pmap.
4138	 */
4139	if (curthread)
4140		pm = vmspace_pmap(curproc->p_vmspace);
4141	else
4142		pm = kernel_pmap;
4143
4144	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4145		if (npv->pv_pmap == kernel_pmap || npv->pv_pmap == pm) {
4146			flags |= npv->pv_flags;
4147			/*
4148			 * The page is mapped non-cacheable in
4149			 * this map.  No need to flush the cache.
4150			 */
4151			if (npv->pv_flags & PVF_NC) {
4152#ifdef DIAGNOSTIC
4153				if (cache_needs_cleaning)
4154					panic("pmap_clean_page: "
4155					    "cache inconsistency");
4156#endif
4157				break;
4158			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4159				continue;
4160			if (cache_needs_cleaning) {
4161				page_to_clean = 0;
4162				break;
4163			} else {
4164				page_to_clean = npv->pv_va;
4165				pm_to_clean = npv->pv_pmap;
4166			}
4167			cache_needs_cleaning = 1;
4168		}
4169	}
4170	if (page_to_clean) {
4171		if (PV_BEEN_EXECD(flags))
4172			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4173			    PAGE_SIZE);
4174		else
4175			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4176			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4177	} else if (cache_needs_cleaning) {
4178		if (PV_BEEN_EXECD(flags))
4179			pmap_idcache_wbinv_all(pm);
4180		else
4181			pmap_dcache_wbinv_all(pm);
4182		return (1);
4183	}
4184	return (0);
4185}
4186#endif
4187
4188/*
4189 *	pmap_copy_page copies the specified (machine independent)
4190 *	page by mapping the page into virtual memory and using
4191 *	bcopy to copy the page, one machine dependent page at a
4192 *	time.
4193 */
4194
4195/*
4196 * pmap_copy_page()
4197 *
4198 * Copy one physical page into another, by mapping the pages into
4199 * hook points. The same comment regarding cachability as in
4200 * pmap_zero_page also applies here.
4201 */
4202#if ARM_MMU_GENERIC != 0 || defined (CPU_XSCALE_CORE3)
4203void
4204pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4205{
4206#if 0
4207	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4208#endif
4209
4210	/*
4211	 * Clean the source page.  Hold the source page's lock for
4212	 * the duration of the copy so that no other mappings can
4213	 * be created while we have a potentially aliased mapping.
4214	 */
4215#if 0
4216	/*
4217	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4218	 * pmap_copy_page().
4219	 */
4220	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4221#endif
4222	/*
4223	 * Map the pages into the page hook points, copy them, and purge
4224	 * the cache for the appropriate page. Invalidate the TLB
4225	 * as required.
4226	 */
4227	mtx_lock(&cmtx);
4228	*csrc_pte = L2_S_PROTO | src |
4229	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4230	PTE_SYNC(csrc_pte);
4231	*cdst_pte = L2_S_PROTO | dst |
4232	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4233	PTE_SYNC(cdst_pte);
4234	cpu_tlb_flushD_SE(csrcp);
4235	cpu_tlb_flushD_SE(cdstp);
4236	cpu_cpwait();
4237	bcopy_page(csrcp, cdstp);
4238	mtx_unlock(&cmtx);
4239	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4240	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4241	cpu_l2cache_inv_range(csrcp, PAGE_SIZE);
4242	cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE);
4243}
4244
4245void
4246pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
4247    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4248{
4249
4250	mtx_lock(&cmtx);
4251	*csrc_pte = L2_S_PROTO | a_phys |
4252	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4253	PTE_SYNC(csrc_pte);
4254	*cdst_pte = L2_S_PROTO | b_phys |
4255	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4256	PTE_SYNC(cdst_pte);
4257	cpu_tlb_flushD_SE(csrcp);
4258	cpu_tlb_flushD_SE(cdstp);
4259	cpu_cpwait();
4260	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4261	mtx_unlock(&cmtx);
4262	cpu_dcache_inv_range(csrcp + a_offs, cnt);
4263	cpu_dcache_wbinv_range(cdstp + b_offs, cnt);
4264	cpu_l2cache_inv_range(csrcp + a_offs, cnt);
4265	cpu_l2cache_wbinv_range(cdstp + b_offs, cnt);
4266}
4267#endif /* ARM_MMU_GENERIC != 0 */
4268
4269#if ARM_MMU_XSCALE == 1
4270void
4271pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4272{
4273#if 0
4274	/* XXX: Only needed for pmap_clean_page(), which is commented out. */
4275	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4276#endif
4277
4278	/*
4279	 * Clean the source page.  Hold the source page's lock for
4280	 * the duration of the copy so that no other mappings can
4281	 * be created while we have a potentially aliased mapping.
4282	 */
4283#if 0
4284	/*
4285	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4286	 * pmap_copy_page().
4287	 */
4288	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4289#endif
4290	/*
4291	 * Map the pages into the page hook points, copy them, and purge
4292	 * the cache for the appropriate page. Invalidate the TLB
4293	 * as required.
4294	 */
4295	mtx_lock(&cmtx);
4296	*csrc_pte = L2_S_PROTO | src |
4297	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4298	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4299	PTE_SYNC(csrc_pte);
4300	*cdst_pte = L2_S_PROTO | dst |
4301	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4302	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4303	PTE_SYNC(cdst_pte);
4304	cpu_tlb_flushD_SE(csrcp);
4305	cpu_tlb_flushD_SE(cdstp);
4306	cpu_cpwait();
4307	bcopy_page(csrcp, cdstp);
4308	mtx_unlock(&cmtx);
4309	xscale_cache_clean_minidata();
4310}
4311
4312void
4313pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
4314    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4315{
4316
4317	mtx_lock(&cmtx);
4318	*csrc_pte = L2_S_PROTO | a_phys |
4319	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4320	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4321	PTE_SYNC(csrc_pte);
4322	*cdst_pte = L2_S_PROTO | b_phys |
4323	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4324	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4325	PTE_SYNC(cdst_pte);
4326	cpu_tlb_flushD_SE(csrcp);
4327	cpu_tlb_flushD_SE(cdstp);
4328	cpu_cpwait();
4329	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4330	mtx_unlock(&cmtx);
4331	xscale_cache_clean_minidata();
4332}
4333#endif /* ARM_MMU_XSCALE == 1 */
4334
4335void
4336pmap_copy_page(vm_page_t src, vm_page_t dst)
4337{
4338
4339	cpu_dcache_wbinv_all();
4340	cpu_l2cache_wbinv_all();
4341	if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
4342	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4343	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4344		return;
4345	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4346}
4347
4348/*
4349 * We have code to do unmapped I/O. However, it isn't quite right and
4350 * causes un-page-aligned I/O to devices to fail (most notably newfs
4351 * or fsck). We give up a little performance to not allow unmapped I/O
4352 * to gain stability.
4353 */
4354int unmapped_buf_allowed = 0;
4355
4356void
4357pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4358    vm_offset_t b_offset, int xfersize)
4359{
4360	vm_page_t a_pg, b_pg;
4361	vm_offset_t a_pg_offset, b_pg_offset;
4362	int cnt;
4363
4364	cpu_dcache_wbinv_all();
4365	cpu_l2cache_wbinv_all();
4366	while (xfersize > 0) {
4367		a_pg = ma[a_offset >> PAGE_SHIFT];
4368		a_pg_offset = a_offset & PAGE_MASK;
4369		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4370		b_pg = mb[b_offset >> PAGE_SHIFT];
4371		b_pg_offset = b_offset & PAGE_MASK;
4372		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4373		pmap_copy_page_offs_func(VM_PAGE_TO_PHYS(a_pg), a_pg_offset,
4374		    VM_PAGE_TO_PHYS(b_pg), b_pg_offset, cnt);
4375		xfersize -= cnt;
4376		a_offset += cnt;
4377		b_offset += cnt;
4378	}
4379}
4380
4381vm_offset_t
4382pmap_quick_enter_page(vm_page_t m)
4383{
4384	/*
4385	 * Don't bother with a PCPU pageframe, since we don't support
4386	 * SMP for anything pre-armv7.  Use pmap_kenter() to ensure
4387	 * caching is handled correctly for multiple mappings of the
4388	 * same physical page.
4389	 */
4390
4391	mtx_assert(&qmap_mtx, MA_NOTOWNED);
4392	mtx_lock(&qmap_mtx);
4393
4394	pmap_kenter(qmap_addr, VM_PAGE_TO_PHYS(m));
4395
4396	return (qmap_addr);
4397}
4398
4399void
4400pmap_quick_remove_page(vm_offset_t addr)
4401{
4402	KASSERT(addr == qmap_addr,
4403	    ("pmap_quick_remove_page: invalid address"));
4404	mtx_assert(&qmap_mtx, MA_OWNED);
4405	pmap_kremove(addr);
4406	mtx_unlock(&qmap_mtx);
4407}
4408
4409/*
4410 * this routine returns true if a physical page resides
4411 * in the given pmap.
4412 */
4413boolean_t
4414pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4415{
4416	pv_entry_t pv;
4417	int loops = 0;
4418	boolean_t rv;
4419
4420	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4421	    ("pmap_page_exists_quick: page %p is not managed", m));
4422	rv = FALSE;
4423	rw_wlock(&pvh_global_lock);
4424	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4425	    	if (pv->pv_pmap == pmap) {
4426			rv = TRUE;
4427			break;
4428	    	}
4429		loops++;
4430		if (loops >= 16)
4431			break;
4432	}
4433	rw_wunlock(&pvh_global_lock);
4434	return (rv);
4435}
4436
4437/*
4438 *	pmap_page_wired_mappings:
4439 *
4440 *	Return the number of managed mappings to the given physical page
4441 *	that are wired.
4442 */
4443int
4444pmap_page_wired_mappings(vm_page_t m)
4445{
4446	pv_entry_t pv;
4447	int count;
4448
4449	count = 0;
4450	if ((m->oflags & VPO_UNMANAGED) != 0)
4451		return (count);
4452	rw_wlock(&pvh_global_lock);
4453	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
4454		if ((pv->pv_flags & PVF_WIRED) != 0)
4455			count++;
4456	rw_wunlock(&pvh_global_lock);
4457	return (count);
4458}
4459
4460/*
4461 *	This function is advisory.
4462 */
4463void
4464pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4465{
4466}
4467
4468/*
4469 *	pmap_ts_referenced:
4470 *
4471 *	Return the count of reference bits for a page, clearing all of them.
4472 */
4473int
4474pmap_ts_referenced(vm_page_t m)
4475{
4476
4477	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4478	    ("pmap_ts_referenced: page %p is not managed", m));
4479	return (pmap_clearbit(m, PVF_REF));
4480}
4481
4482
4483boolean_t
4484pmap_is_modified(vm_page_t m)
4485{
4486
4487	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4488	    ("pmap_is_modified: page %p is not managed", m));
4489	if (m->md.pvh_attrs & PVF_MOD)
4490		return (TRUE);
4491
4492	return(FALSE);
4493}
4494
4495
4496/*
4497 *	Clear the modify bits on the specified physical page.
4498 */
4499void
4500pmap_clear_modify(vm_page_t m)
4501{
4502
4503	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4504	    ("pmap_clear_modify: page %p is not managed", m));
4505	VM_OBJECT_ASSERT_WLOCKED(m->object);
4506	KASSERT(!vm_page_xbusied(m),
4507	    ("pmap_clear_modify: page %p is exclusive busied", m));
4508
4509	/*
4510	 * If the page is not PGA_WRITEABLE, then no mappings can be modified.
4511	 * If the object containing the page is locked and the page is not
4512	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4513	 */
4514	if ((m->aflags & PGA_WRITEABLE) == 0)
4515		return;
4516	if (m->md.pvh_attrs & PVF_MOD)
4517		pmap_clearbit(m, PVF_MOD);
4518}
4519
4520
4521/*
4522 *	pmap_is_referenced:
4523 *
4524 *	Return whether or not the specified physical page was referenced
4525 *	in any physical maps.
4526 */
4527boolean_t
4528pmap_is_referenced(vm_page_t m)
4529{
4530
4531	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4532	    ("pmap_is_referenced: page %p is not managed", m));
4533	return ((m->md.pvh_attrs & PVF_REF) != 0);
4534}
4535
4536
4537/*
4538 * Clear the write and modified bits in each of the given page's mappings.
4539 */
4540void
4541pmap_remove_write(vm_page_t m)
4542{
4543
4544	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4545	    ("pmap_remove_write: page %p is not managed", m));
4546
4547	/*
4548	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4549	 * set by another thread while the object is locked.  Thus,
4550	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4551	 */
4552	VM_OBJECT_ASSERT_WLOCKED(m->object);
4553	if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
4554		pmap_clearbit(m, PVF_WRITE);
4555}
4556
4557
4558/*
4559 * perform the pmap work for mincore
4560 */
4561int
4562pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4563{
4564	struct l2_bucket *l2b;
4565	pt_entry_t *ptep, pte;
4566	vm_paddr_t pa;
4567	vm_page_t m;
4568	int val;
4569	boolean_t managed;
4570
4571	PMAP_LOCK(pmap);
4572retry:
4573	l2b = pmap_get_l2_bucket(pmap, addr);
4574        if (l2b == NULL) {
4575                val = 0;
4576                goto out;
4577        }
4578	ptep = &l2b->l2b_kva[l2pte_index(addr)];
4579	pte = *ptep;
4580	if (!l2pte_valid(pte)) {
4581		val = 0;
4582		goto out;
4583	}
4584	val = MINCORE_INCORE;
4585	if (pte & L2_S_PROT_W)
4586		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4587        managed = false;
4588	pa = l2pte_pa(pte);
4589        m = PHYS_TO_VM_PAGE(pa);
4590        if (m != NULL && !(m->oflags & VPO_UNMANAGED))
4591                managed = true;
4592	if (managed) {
4593		/*
4594		 * The ARM pmap tries to maintain a per-mapping
4595		 * reference bit.  The trouble is that it's kept in
4596		 * the PV entry, not the PTE, so it's costly to access
4597		 * here.  You would need to acquire the pvh global
4598		 * lock, call pmap_find_pv(), and introduce a custom
4599		 * version of vm_page_pa_tryrelock() that releases and
4600		 * reacquires the pvh global lock.  In the end, I
4601		 * doubt it's worthwhile.  This may falsely report
4602		 * the given address as referenced.
4603		 */
4604		if ((m->md.pvh_attrs & PVF_REF) != 0)
4605			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4606	}
4607	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4608	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4609		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4610		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4611			goto retry;
4612	} else
4613out:
4614		PA_UNLOCK_COND(*locked_pa);
4615	PMAP_UNLOCK(pmap);
4616	return (val);
4617}
4618
4619
4620void
4621pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4622{
4623}
4624
4625
4626/*
4627 *	Increase the starting virtual address of the given mapping if a
4628 *	different alignment might result in more superpage mappings.
4629 */
4630void
4631pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4632    vm_offset_t *addr, vm_size_t size)
4633{
4634}
4635
4636#define BOOTSTRAP_DEBUG
4637
4638/*
4639 * pmap_map_section:
4640 *
4641 *	Create a single section mapping.
4642 */
4643void
4644pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4645    int prot, int cache)
4646{
4647	pd_entry_t *pde = (pd_entry_t *) l1pt;
4648	pd_entry_t fl;
4649
4650	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4651
4652	switch (cache) {
4653	case PTE_NOCACHE:
4654	default:
4655		fl = 0;
4656		break;
4657
4658	case PTE_CACHE:
4659		fl = pte_l1_s_cache_mode;
4660		break;
4661
4662	case PTE_PAGETABLE:
4663		fl = pte_l1_s_cache_mode_pt;
4664		break;
4665	}
4666
4667	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4668	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4669	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4670
4671}
4672
4673/*
4674 * pmap_link_l2pt:
4675 *
4676 *	Link the L2 page table specified by l2pv.pv_pa into the L1
4677 *	page table at the slot for "va".
4678 */
4679void
4680pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4681{
4682	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4683	u_int slot = va >> L1_S_SHIFT;
4684
4685	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4686
4687#ifdef VERBOSE_INIT_ARM
4688	printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
4689#endif
4690
4691	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4692
4693	PTE_SYNC(&pde[slot]);
4694
4695	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4696
4697
4698}
4699
4700/*
4701 * pmap_map_entry
4702 *
4703 * 	Create a single page mapping.
4704 */
4705void
4706pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4707    int cache)
4708{
4709	pd_entry_t *pde = (pd_entry_t *) l1pt;
4710	pt_entry_t fl;
4711	pt_entry_t *pte;
4712
4713	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4714
4715	switch (cache) {
4716	case PTE_NOCACHE:
4717	default:
4718		fl = 0;
4719		break;
4720
4721	case PTE_CACHE:
4722		fl = pte_l2_s_cache_mode;
4723		break;
4724
4725	case PTE_PAGETABLE:
4726		fl = pte_l2_s_cache_mode_pt;
4727		break;
4728	}
4729
4730	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4731		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4732
4733	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4734
4735	if (pte == NULL)
4736		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4737
4738	pte[l2pte_index(va)] =
4739	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4740	PTE_SYNC(&pte[l2pte_index(va)]);
4741}
4742
4743/*
4744 * pmap_map_chunk:
4745 *
4746 *	Map a chunk of memory using the most efficient mappings
4747 *	possible (section. large page, small page) into the
4748 *	provided L1 and L2 tables at the specified virtual address.
4749 */
4750vm_size_t
4751pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4752    vm_size_t size, int prot, int cache)
4753{
4754	pd_entry_t *pde = (pd_entry_t *) l1pt;
4755	pt_entry_t *pte, f1, f2s, f2l;
4756	vm_size_t resid;
4757	int i;
4758
4759	resid = roundup2(size, PAGE_SIZE);
4760
4761	if (l1pt == 0)
4762		panic("pmap_map_chunk: no L1 table provided");
4763
4764#ifdef VERBOSE_INIT_ARM
4765	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
4766	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4767#endif
4768
4769	switch (cache) {
4770	case PTE_NOCACHE:
4771	default:
4772		f1 = 0;
4773		f2l = 0;
4774		f2s = 0;
4775		break;
4776
4777	case PTE_CACHE:
4778		f1 = pte_l1_s_cache_mode;
4779		f2l = pte_l2_l_cache_mode;
4780		f2s = pte_l2_s_cache_mode;
4781		break;
4782
4783	case PTE_PAGETABLE:
4784		f1 = pte_l1_s_cache_mode_pt;
4785		f2l = pte_l2_l_cache_mode_pt;
4786		f2s = pte_l2_s_cache_mode_pt;
4787		break;
4788	}
4789
4790	size = resid;
4791
4792	while (resid > 0) {
4793		/* See if we can use a section mapping. */
4794		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4795#ifdef VERBOSE_INIT_ARM
4796			printf("S");
4797#endif
4798			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4799			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4800			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4801			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4802			va += L1_S_SIZE;
4803			pa += L1_S_SIZE;
4804			resid -= L1_S_SIZE;
4805			continue;
4806		}
4807
4808		/*
4809		 * Ok, we're going to use an L2 table.  Make sure
4810		 * one is actually in the corresponding L1 slot
4811		 * for the current VA.
4812		 */
4813		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4814			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4815
4816		pte = (pt_entry_t *) kernel_pt_lookup(
4817		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4818		if (pte == NULL)
4819			panic("pmap_map_chunk: can't find L2 table for VA"
4820			    "0x%08x", va);
4821		/* See if we can use a L2 large page mapping. */
4822		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4823#ifdef VERBOSE_INIT_ARM
4824			printf("L");
4825#endif
4826			for (i = 0; i < 16; i++) {
4827				pte[l2pte_index(va) + i] =
4828				    L2_L_PROTO | pa |
4829				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4830				PTE_SYNC(&pte[l2pte_index(va) + i]);
4831			}
4832			va += L2_L_SIZE;
4833			pa += L2_L_SIZE;
4834			resid -= L2_L_SIZE;
4835			continue;
4836		}
4837
4838		/* Use a small page mapping. */
4839#ifdef VERBOSE_INIT_ARM
4840		printf("P");
4841#endif
4842		pte[l2pte_index(va)] =
4843		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4844		PTE_SYNC(&pte[l2pte_index(va)]);
4845		va += PAGE_SIZE;
4846		pa += PAGE_SIZE;
4847		resid -= PAGE_SIZE;
4848	}
4849#ifdef VERBOSE_INIT_ARM
4850	printf("\n");
4851#endif
4852	return (size);
4853
4854}
4855
4856void
4857pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4858{
4859	/*
4860	 * Remember the memattr in a field that gets used to set the appropriate
4861	 * bits in the PTEs as mappings are established.
4862	 */
4863	m->md.pv_memattr = ma;
4864
4865	/*
4866	 * It appears that this function can only be called before any mappings
4867	 * for the page are established on ARM.  If this ever changes, this code
4868	 * will need to walk the pv_list and make each of the existing mappings
4869	 * uncacheable, being careful to sync caches and PTEs (and maybe
4870	 * invalidate TLB?) for any current mapping it modifies.
4871	 */
4872	if (m->md.pv_kva != 0 || TAILQ_FIRST(&m->md.pv_list) != NULL)
4873		panic("Can't change memattr on page with existing mappings");
4874}
4875
4876
4877