pmap-v4.c revision 146647
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 * 3. All advertising materials mentioning features or use of this software
81 *    must display the following acknowledgement:
82 *        This product includes software developed by the NetBSD
83 *        Foundation, Inc. and its contributors.
84 * 4. Neither the name of The NetBSD Foundation nor the names of its
85 *    contributors may be used to endorse or promote products derived
86 *    from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
89 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
90 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
91 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
92 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
93 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
94 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
95 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
96 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
97 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
98 * POSSIBILITY OF SUCH DAMAGE.
99 */
100
101/*-
102 * Copyright (c) 1994-1998 Mark Brinicombe.
103 * Copyright (c) 1994 Brini.
104 * All rights reserved.
105 *
106 * This code is derived from software written for Brini by Mark Brinicombe
107 *
108 * Redistribution and use in source and binary forms, with or without
109 * modification, are permitted provided that the following conditions
110 * are met:
111 * 1. Redistributions of source code must retain the above copyright
112 *    notice, this list of conditions and the following disclaimer.
113 * 2. Redistributions in binary form must reproduce the above copyright
114 *    notice, this list of conditions and the following disclaimer in the
115 *    documentation and/or other materials provided with the distribution.
116 * 3. All advertising materials mentioning features or use of this software
117 *    must display the following acknowledgement:
118 *      This product includes software developed by Mark Brinicombe.
119 * 4. The name of the author may not be used to endorse or promote products
120 *    derived from this software without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
123 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
124 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
125 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
126 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
127 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
128 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
129 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
130 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
131 *
132 * RiscBSD kernel project
133 *
134 * pmap.c
135 *
136 * Machine dependant vm stuff
137 *
138 * Created      : 20/09/94
139 */
140
141/*
142 * Special compilation symbols
143 * PMAP_DEBUG           - Build in pmap_debug_level code
144 */
145/* Include header files */
146
147#include "opt_vm.h"
148
149#include <sys/cdefs.h>
150__FBSDID("$FreeBSD: head/sys/arm/arm/pmap.c 146647 2005-05-26 15:01:13Z cognet $");
151#include <sys/param.h>
152#include <sys/systm.h>
153#include <sys/kernel.h>
154#include <sys/proc.h>
155#include <sys/malloc.h>
156#include <sys/msgbuf.h>
157#include <sys/vmmeter.h>
158#include <sys/mman.h>
159#include <sys/smp.h>
160#include <sys/sx.h>
161#include <sys/sched.h>
162
163#include <vm/vm.h>
164#include <vm/uma.h>
165#include <vm/pmap.h>
166#include <vm/vm_kern.h>
167#include <vm/vm_object.h>
168#include <vm/vm_map.h>
169#include <vm/vm_page.h>
170#include <vm/vm_pageout.h>
171#include <vm/vm_extern.h>
172#include <sys/lock.h>
173#include <sys/mutex.h>
174#include <machine/md_var.h>
175#include <machine/vmparam.h>
176#include <machine/cpu.h>
177#include <machine/cpufunc.h>
178#include <machine/pcb.h>
179
180#ifdef PMAP_DEBUG
181#define PDEBUG(_lev_,_stat_) \
182        if (pmap_debug_level >= (_lev_)) \
183                ((_stat_))
184#define dprintf printf
185
186int pmap_debug_level = 0;
187#define PMAP_INLINE
188#else   /* PMAP_DEBUG */
189#define PDEBUG(_lev_,_stat_) /* Nothing */
190#define dprintf(x, arg...)
191#define PMAP_INLINE __inline
192#endif  /* PMAP_DEBUG */
193
194extern struct pv_addr systempage;
195/*
196 * Internal function prototypes
197 */
198static void pmap_free_pv_entry (pv_entry_t);
199static pv_entry_t pmap_get_pv_entry(void);
200
201static void		pmap_vac_me_harder(struct vm_page *, pmap_t,
202    vm_offset_t);
203static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t,
204    vm_offset_t);
205static void		pmap_vac_me_user(struct vm_page *, pmap_t, vm_offset_t);
206static void		pmap_alloc_l1(pmap_t);
207static void		pmap_free_l1(pmap_t);
208static void		pmap_use_l1(pmap_t);
209
210static int		pmap_clearbit(struct vm_page *, u_int);
211
212static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
213static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
214static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
215static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
216
217static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
218
219vm_offset_t avail_end;		/* PA of last available physical page */
220vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
221vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
222vm_offset_t pmap_curmaxkvaddr;
223
224extern void *end;
225vm_offset_t kernel_vm_end = 0;
226
227struct pmap kernel_pmap_store;
228pmap_t kernel_pmap;
229
230static pt_entry_t *csrc_pte, *cdst_pte;
231static vm_offset_t csrcp, cdstp;
232static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
233/*
234 * These routines are called when the CPU type is identified to set up
235 * the PTE prototypes, cache modes, etc.
236 *
237 * The variables are always here, just in case LKMs need to reference
238 * them (though, they shouldn't).
239 */
240
241pt_entry_t	pte_l1_s_cache_mode;
242pt_entry_t	pte_l1_s_cache_mode_pt;
243pt_entry_t	pte_l1_s_cache_mask;
244
245pt_entry_t	pte_l2_l_cache_mode;
246pt_entry_t	pte_l2_l_cache_mode_pt;
247pt_entry_t	pte_l2_l_cache_mask;
248
249pt_entry_t	pte_l2_s_cache_mode;
250pt_entry_t	pte_l2_s_cache_mode_pt;
251pt_entry_t	pte_l2_s_cache_mask;
252
253pt_entry_t	pte_l2_s_prot_u;
254pt_entry_t	pte_l2_s_prot_w;
255pt_entry_t	pte_l2_s_prot_mask;
256
257pt_entry_t	pte_l1_s_proto;
258pt_entry_t	pte_l1_c_proto;
259pt_entry_t	pte_l2_s_proto;
260
261void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
262void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
263/*
264 * Which pmap is currently 'live' in the cache
265 *
266 * XXXSCW: Fix for SMP ...
267 */
268union pmap_cache_state *pmap_cache_state;
269
270LIST_HEAD(pmaplist, pmap);
271struct pmaplist allpmaps;
272
273static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
274
275/* static pt_entry_t *msgbufmap;*/
276struct msgbuf *msgbufp = 0;
277
278extern void bcopy_page(vm_offset_t, vm_offset_t);
279extern void bzero_page(vm_offset_t);
280
281char *_tmppt;
282
283/*
284 * Metadata for L1 translation tables.
285 */
286struct l1_ttable {
287	/* Entry on the L1 Table list */
288	SLIST_ENTRY(l1_ttable) l1_link;
289
290	/* Entry on the L1 Least Recently Used list */
291	TAILQ_ENTRY(l1_ttable) l1_lru;
292
293	/* Track how many domains are allocated from this L1 */
294	volatile u_int l1_domain_use_count;
295
296	/*
297	 * A free-list of domain numbers for this L1.
298	 * We avoid using ffs() and a bitmap to track domains since ffs()
299	 * is slow on ARM.
300	 */
301	u_int8_t l1_domain_first;
302	u_int8_t l1_domain_free[PMAP_DOMAINS];
303
304	/* Physical address of this L1 page table */
305	vm_paddr_t l1_physaddr;
306
307	/* KVA of this L1 page table */
308	pd_entry_t *l1_kva;
309};
310
311/*
312 * Convert a virtual address into its L1 table index. That is, the
313 * index used to locate the L2 descriptor table pointer in an L1 table.
314 * This is basically used to index l1->l1_kva[].
315 *
316 * Each L2 descriptor table represents 1MB of VA space.
317 */
318#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
319
320/*
321 * L1 Page Tables are tracked using a Least Recently Used list.
322 *  - New L1s are allocated from the HEAD.
323 *  - Freed L1s are added to the TAIl.
324 *  - Recently accessed L1s (where an 'access' is some change to one of
325 *    the userland pmaps which owns this L1) are moved to the TAIL.
326 */
327static TAILQ_HEAD(, l1_ttable) l1_lru_list;
328/*
329 * A list of all L1 tables
330 */
331static SLIST_HEAD(, l1_ttable) l1_list;
332static struct mtx l1_lru_lock;
333
334/*
335 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
336 *
337 * This is normally 16MB worth L2 page descriptors for any given pmap.
338 * Reference counts are maintained for L2 descriptors so they can be
339 * freed when empty.
340 */
341struct l2_dtable {
342	/* The number of L2 page descriptors allocated to this l2_dtable */
343	u_int l2_occupancy;
344
345	/* List of L2 page descriptors */
346	struct l2_bucket {
347		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
348		vm_paddr_t l2b_phys;	/* Physical address of same */
349		u_short l2b_l1idx;	/* This L2 table's L1 index */
350		u_short l2b_occupancy;	/* How many active descriptors */
351	} l2_bucket[L2_BUCKET_SIZE];
352};
353
354/* pmap_kenter_internal flags */
355#define KENTER_CACHE	0x1
356#define KENTER_USER	0x2
357
358/*
359 * Given an L1 table index, calculate the corresponding l2_dtable index
360 * and bucket index within the l2_dtable.
361 */
362#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
363				 (L2_SIZE - 1))
364#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
365
366/*
367 * Given a virtual address, this macro returns the
368 * virtual address required to drop into the next L2 bucket.
369 */
370#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
371
372/*
373 * L2 allocation.
374 */
375#define	pmap_alloc_l2_dtable()		\
376		(void*)uma_zalloc(l2table_zone, M_NOWAIT)
377#define	pmap_free_l2_dtable(l2)		\
378		uma_zfree(l2table_zone, l2)
379
380/*
381 * We try to map the page tables write-through, if possible.  However, not
382 * all CPUs have a write-through cache mode, so on those we have to sync
383 * the cache when we frob page tables.
384 *
385 * We try to evaluate this at compile time, if possible.  However, it's
386 * not always possible to do that, hence this run-time var.
387 */
388int	pmap_needs_pte_sync;
389
390/*
391 * Macro to determine if a mapping might be resident in the
392 * instruction cache and/or TLB
393 */
394#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
395
396/*
397 * Macro to determine if a mapping might be resident in the
398 * data cache and/or TLB
399 */
400#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
401
402/*
403 * Data for the pv entry allocation mechanism
404 */
405#define MINPV	2048
406
407#ifndef PMAP_SHPGPERPROC
408#define PMAP_SHPGPERPROC 200
409#endif
410
411#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
412            curproc->p_vmspace->vm_map.pmap == (pm))
413static uma_zone_t pvzone;
414static uma_zone_t l2zone;
415static uma_zone_t l2table_zone;
416static vm_offset_t pmap_kernel_l2dtable_kva;
417static vm_offset_t pmap_kernel_l2ptp_kva;
418static vm_paddr_t pmap_kernel_l2ptp_phys;
419static struct vm_object pvzone_obj;
420static struct vm_object l2zone_obj;
421static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
422int pmap_pagedaemon_waken = 0;
423
424void pmap_deactivate(struct thread *);
425
426void
427pmap_deactivate(struct thread *td)
428{
429}
430/*
431 * This list exists for the benefit of pmap_map_chunk().  It keeps track
432 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
433 * find them as necessary.
434 *
435 * Note that the data on this list MUST remain valid after initarm() returns,
436 * as pmap_bootstrap() uses it to contruct L2 table metadata.
437 */
438SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
439
440static void
441pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
442{
443	int i;
444
445	l1->l1_kva = l1pt;
446	l1->l1_domain_use_count = 0;
447	l1->l1_domain_first = 0;
448
449	for (i = 0; i < PMAP_DOMAINS; i++)
450		l1->l1_domain_free[i] = i + 1;
451
452	/*
453	 * Copy the kernel's L1 entries to each new L1.
454	 */
455	if (pmap_initialized)
456		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
457
458	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
459		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
460	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
461	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
462}
463
464static vm_offset_t
465kernel_pt_lookup(vm_paddr_t pa)
466{
467	struct pv_addr *pv;
468
469	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
470#ifndef ARM32_NEW_VM_LAYOUT
471		if (pv->pv_pa == (pa & ~PAGE_MASK)) {
472			return (pv->pv_va | (pa & PAGE_MASK));
473			}
474#else
475		if (pv->pv_pa == pa)
476			return (pv->pv_va);
477#endif
478	}
479	return (0);
480}
481
482#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
483void
484pmap_pte_init_generic(void)
485{
486
487	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
488	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
489
490	pte_l2_l_cache_mode = L2_B|L2_C;
491	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
492
493	pte_l2_s_cache_mode = L2_B|L2_C;
494	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
495
496	/*
497	 * If we have a write-through cache, set B and C.  If
498	 * we have a write-back cache, then we assume setting
499	 * only C will make those pages write-through.
500	 */
501	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
502		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
503		pte_l2_l_cache_mode_pt = L2_B|L2_C;
504		pte_l2_s_cache_mode_pt = L2_B|L2_C;
505	} else {
506		pte_l1_s_cache_mode_pt = L1_S_C;
507		pte_l2_l_cache_mode_pt = L2_C;
508		pte_l2_s_cache_mode_pt = L2_C;
509	}
510
511	pte_l2_s_prot_u = L2_S_PROT_U_generic;
512	pte_l2_s_prot_w = L2_S_PROT_W_generic;
513	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
514
515	pte_l1_s_proto = L1_S_PROTO_generic;
516	pte_l1_c_proto = L1_C_PROTO_generic;
517	pte_l2_s_proto = L2_S_PROTO_generic;
518
519	pmap_copy_page_func = pmap_copy_page_generic;
520	pmap_zero_page_func = pmap_zero_page_generic;
521}
522
523#if defined(CPU_ARM8)
524void
525pmap_pte_init_arm8(void)
526{
527
528	/*
529	 * ARM8 is compatible with generic, but we need to use
530	 * the page tables uncached.
531	 */
532	pmap_pte_init_generic();
533
534	pte_l1_s_cache_mode_pt = 0;
535	pte_l2_l_cache_mode_pt = 0;
536	pte_l2_s_cache_mode_pt = 0;
537}
538#endif /* CPU_ARM8 */
539
540#if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
541void
542pmap_pte_init_arm9(void)
543{
544
545	/*
546	 * ARM9 is compatible with generic, but we want to use
547	 * write-through caching for now.
548	 */
549	pmap_pte_init_generic();
550
551	pte_l1_s_cache_mode = L1_S_C;
552	pte_l2_l_cache_mode = L2_C;
553	pte_l2_s_cache_mode = L2_C;
554
555	pte_l1_s_cache_mode_pt = L1_S_C;
556	pte_l2_l_cache_mode_pt = L2_C;
557	pte_l2_s_cache_mode_pt = L2_C;
558}
559#endif /* CPU_ARM9 */
560#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
561
562#if defined(CPU_ARM10)
563void
564pmap_pte_init_arm10(void)
565{
566
567	/*
568	 * ARM10 is compatible with generic, but we want to use
569	 * write-through caching for now.
570	 */
571	pmap_pte_init_generic();
572
573	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
574	pte_l2_l_cache_mode = L2_B | L2_C;
575	pte_l2_s_cache_mode = L2_B | L2_C;
576
577	pte_l1_s_cache_mode_pt = L1_S_C;
578	pte_l2_l_cache_mode_pt = L2_C;
579	pte_l2_s_cache_mode_pt = L2_C;
580
581}
582#endif /* CPU_ARM10 */
583
584#if  ARM_MMU_SA1 == 1
585void
586pmap_pte_init_sa1(void)
587{
588
589	/*
590	 * The StrongARM SA-1 cache does not have a write-through
591	 * mode.  So, do the generic initialization, then reset
592	 * the page table cache mode to B=1,C=1, and note that
593	 * the PTEs need to be sync'd.
594	 */
595	pmap_pte_init_generic();
596
597	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
598	pte_l2_l_cache_mode_pt = L2_B|L2_C;
599	pte_l2_s_cache_mode_pt = L2_B|L2_C;
600
601	pmap_needs_pte_sync = 1;
602}
603#endif /* ARM_MMU_SA1 == 1*/
604
605#if ARM_MMU_XSCALE == 1
606#if (ARM_NMMUS > 1)
607static u_int xscale_use_minidata;
608#endif
609
610void
611pmap_pte_init_xscale(void)
612{
613	uint32_t auxctl;
614	int write_through = 0;
615
616	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
617	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
618
619	pte_l2_l_cache_mode = L2_B|L2_C;
620	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
621
622	pte_l2_s_cache_mode = L2_B|L2_C;
623	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
624
625	pte_l1_s_cache_mode_pt = L1_S_C;
626	pte_l2_l_cache_mode_pt = L2_C;
627	pte_l2_s_cache_mode_pt = L2_C;
628#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
629	/*
630	 * The XScale core has an enhanced mode where writes that
631	 * miss the cache cause a cache line to be allocated.  This
632	 * is significantly faster than the traditional, write-through
633	 * behavior of this case.
634	 */
635	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
636	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
637	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
638#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
639#ifdef XSCALE_CACHE_WRITE_THROUGH
640	/*
641	 * Some versions of the XScale core have various bugs in
642	 * their cache units, the work-around for which is to run
643	 * the cache in write-through mode.  Unfortunately, this
644	 * has a major (negative) impact on performance.  So, we
645	 * go ahead and run fast-and-loose, in the hopes that we
646	 * don't line up the planets in a way that will trip the
647	 * bugs.
648	 *
649	 * However, we give you the option to be slow-but-correct.
650	 */
651	write_through = 1;
652#elif defined(XSCALE_CACHE_WRITE_BACK)
653	/* force write back cache mode */
654	write_through = 0;
655#elif defined(CPU_XSCALE_PXA2X0)
656	/*
657	 * Intel PXA2[15]0 processors are known to have a bug in
658	 * write-back cache on revision 4 and earlier (stepping
659	 * A[01] and B[012]).  Fixed for C0 and later.
660	 */
661	{
662		uint32_t id, type;
663
664		id = cpufunc_id();
665		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
666
667		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
668			if ((id & CPU_ID_REVISION_MASK) < 5) {
669				/* write through for stepping A0-1 and B0-2 */
670				write_through = 1;
671			}
672		}
673	}
674#endif /* XSCALE_CACHE_WRITE_THROUGH */
675
676	if (write_through) {
677		pte_l1_s_cache_mode = L1_S_C;
678		pte_l2_l_cache_mode = L2_C;
679		pte_l2_s_cache_mode = L2_C;
680	}
681
682#if (ARM_NMMUS > 1)
683	xscale_use_minidata = 1;
684#endif
685
686	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
687	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
688	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
689
690	pte_l1_s_proto = L1_S_PROTO_xscale;
691	pte_l1_c_proto = L1_C_PROTO_xscale;
692	pte_l2_s_proto = L2_S_PROTO_xscale;
693
694	pmap_copy_page_func = pmap_copy_page_xscale;
695	pmap_zero_page_func = pmap_zero_page_xscale;
696
697	/*
698	 * Disable ECC protection of page table access, for now.
699	 */
700	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
701	auxctl &= ~XSCALE_AUXCTL_P;
702	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
703}
704
705/*
706 * xscale_setup_minidata:
707 *
708 *	Set up the mini-data cache clean area.  We require the
709 *	caller to allocate the right amount of physically and
710 *	virtually contiguous space.
711 */
712extern vm_offset_t xscale_minidata_clean_addr;
713extern vm_size_t xscale_minidata_clean_size; /* already initialized */
714void
715xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
716{
717	pd_entry_t *pde = (pd_entry_t *) l1pt;
718	pt_entry_t *pte;
719	vm_size_t size;
720	uint32_t auxctl;
721
722	xscale_minidata_clean_addr = va;
723
724	/* Round it to page size. */
725	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
726
727	for (; size != 0;
728	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
729#ifndef ARM32_NEW_VM_LAYOUT
730		pte = (pt_entry_t *)
731		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
732#else
733		pte = (pt_entry_t *) kernel_pt_lookup(
734		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
735#endif
736		if (pte == NULL)
737			panic("xscale_setup_minidata: can't find L2 table for "
738			    "VA 0x%08x", (u_int32_t) va);
739#ifndef ARM32_NEW_VM_LAYOUT
740		pte[(va >> PAGE_SHIFT) & 0x3ff] =
741#else
742		pte[l2pte_index(va)] =
743#endif
744		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
745		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
746	}
747
748	/*
749	 * Configure the mini-data cache for write-back with
750	 * read/write-allocate.
751	 *
752	 * NOTE: In order to reconfigure the mini-data cache, we must
753	 * make sure it contains no valid data!  In order to do that,
754	 * we must issue a global data cache invalidate command!
755	 *
756	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
757	 * THIS IS VERY IMPORTANT!
758	 */
759
760	/* Invalidate data and mini-data. */
761	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
762	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
763	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
764	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
765}
766#endif
767
768/*
769 * Allocate an L1 translation table for the specified pmap.
770 * This is called at pmap creation time.
771 */
772static void
773pmap_alloc_l1(pmap_t pm)
774{
775	struct l1_ttable *l1;
776	u_int8_t domain;
777
778	/*
779	 * Remove the L1 at the head of the LRU list
780	 */
781	mtx_lock(&l1_lru_lock);
782	l1 = TAILQ_FIRST(&l1_lru_list);
783	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
784
785	/*
786	 * Pick the first available domain number, and update
787	 * the link to the next number.
788	 */
789	domain = l1->l1_domain_first;
790	l1->l1_domain_first = l1->l1_domain_free[domain];
791
792	/*
793	 * If there are still free domain numbers in this L1,
794	 * put it back on the TAIL of the LRU list.
795	 */
796	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
797		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
798
799	mtx_unlock(&l1_lru_lock);
800
801	/*
802	 * Fix up the relevant bits in the pmap structure
803	 */
804	pm->pm_l1 = l1;
805	pm->pm_domain = domain;
806}
807
808/*
809 * Free an L1 translation table.
810 * This is called at pmap destruction time.
811 */
812static void
813pmap_free_l1(pmap_t pm)
814{
815	struct l1_ttable *l1 = pm->pm_l1;
816
817	mtx_lock(&l1_lru_lock);
818
819	/*
820	 * If this L1 is currently on the LRU list, remove it.
821	 */
822	if (l1->l1_domain_use_count < PMAP_DOMAINS)
823		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
824
825	/*
826	 * Free up the domain number which was allocated to the pmap
827	 */
828	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
829	l1->l1_domain_first = pm->pm_domain;
830	l1->l1_domain_use_count--;
831
832	/*
833	 * The L1 now must have at least 1 free domain, so add
834	 * it back to the LRU list. If the use count is zero,
835	 * put it at the head of the list, otherwise it goes
836	 * to the tail.
837	 */
838	if (l1->l1_domain_use_count == 0) {
839		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
840	}	else
841		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
842
843	mtx_unlock(&l1_lru_lock);
844}
845
846static PMAP_INLINE void
847pmap_use_l1(pmap_t pm)
848{
849	struct l1_ttable *l1;
850
851	/*
852	 * Do nothing if we're in interrupt context.
853	 * Access to an L1 by the kernel pmap must not affect
854	 * the LRU list.
855	 */
856	if (pm == pmap_kernel())
857		return;
858
859	l1 = pm->pm_l1;
860
861	/*
862	 * If the L1 is not currently on the LRU list, just return
863	 */
864	if (l1->l1_domain_use_count == PMAP_DOMAINS)
865		return;
866
867	mtx_lock(&l1_lru_lock);
868
869	/*
870	 * Check the use count again, now that we've acquired the lock
871	 */
872	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
873		mtx_unlock(&l1_lru_lock);
874		return;
875	}
876
877	/*
878	 * Move the L1 to the back of the LRU list
879	 */
880	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
881	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
882
883	mtx_unlock(&l1_lru_lock);
884}
885
886
887/*
888 * Returns a pointer to the L2 bucket associated with the specified pmap
889 * and VA, or NULL if no L2 bucket exists for the address.
890 */
891static PMAP_INLINE struct l2_bucket *
892pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
893{
894	struct l2_dtable *l2;
895	struct l2_bucket *l2b;
896	u_short l1idx;
897
898	l1idx = L1_IDX(va);
899
900	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
901	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
902		return (NULL);
903
904	return (l2b);
905}
906
907/*
908 * Returns a pointer to the L2 bucket associated with the specified pmap
909 * and VA.
910 *
911 * If no L2 bucket exists, perform the necessary allocations to put an L2
912 * bucket/page table in place.
913 *
914 * Note that if a new L2 bucket/page was allocated, the caller *must*
915 * increment the bucket occupancy counter appropriately *before*
916 * releasing the pmap's lock to ensure no other thread or cpu deallocates
917 * the bucket/page in the meantime.
918 */
919static struct l2_bucket *
920pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
921{
922	struct l2_dtable *l2;
923	struct l2_bucket *l2b;
924	u_short l1idx;
925
926	l1idx = L1_IDX(va);
927
928	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
929		/*
930		 * No mapping at this address, as there is
931		 * no entry in the L1 table.
932		 * Need to allocate a new l2_dtable.
933		 */
934		if ((l2 = pmap_alloc_l2_dtable()) == NULL) {
935			return (NULL);
936		}
937		bzero(l2, sizeof(*l2));
938		/*
939		 * Link it into the parent pmap
940		 */
941		pm->pm_l2[L2_IDX(l1idx)] = l2;
942	}
943
944	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
945
946	/*
947	 * Fetch pointer to the L2 page table associated with the address.
948	 */
949	if (l2b->l2b_kva == NULL) {
950		pt_entry_t *ptep;
951
952		/*
953		 * No L2 page table has been allocated. Chances are, this
954		 * is because we just allocated the l2_dtable, above.
955		 */
956		ptep = (void*)uma_zalloc(l2zone, M_NOWAIT);
957		l2b->l2b_phys = vtophys(ptep);
958		if (ptep == NULL) {
959			/*
960			 * Oops, no more L2 page tables available at this
961			 * time. We may need to deallocate the l2_dtable
962			 * if we allocated a new one above.
963			 */
964			if (l2->l2_occupancy == 0) {
965				pm->pm_l2[L2_IDX(l1idx)] = NULL;
966				pmap_free_l2_dtable(l2);
967			}
968			return (NULL);
969		}
970
971		l2->l2_occupancy++;
972		l2b->l2b_kva = ptep;
973		l2b->l2b_l1idx = l1idx;
974	}
975
976	return (l2b);
977}
978
979static PMAP_INLINE void
980#ifndef PMAP_INCLUDE_PTE_SYNC
981pmap_free_l2_ptp(pt_entry_t *l2)
982#else
983pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
984#endif
985{
986#ifdef PMAP_INCLUDE_PTE_SYNC
987	/*
988	 * Note: With a write-back cache, we may need to sync this
989	 * L2 table before re-using it.
990	 * This is because it may have belonged to a non-current
991	 * pmap, in which case the cache syncs would have been
992	 * skipped when the pages were being unmapped. If the
993	 * L2 table were then to be immediately re-allocated to
994	 * the *current* pmap, it may well contain stale mappings
995	 * which have not yet been cleared by a cache write-back
996	 * and so would still be visible to the mmu.
997	 */
998	if (need_sync)
999		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1000#endif
1001	uma_zfree(l2zone, l2);
1002}
1003/*
1004 * One or more mappings in the specified L2 descriptor table have just been
1005 * invalidated.
1006 *
1007 * Garbage collect the metadata and descriptor table itself if necessary.
1008 *
1009 * The pmap lock must be acquired when this is called (not necessary
1010 * for the kernel pmap).
1011 */
1012static void
1013pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1014{
1015	struct l2_dtable *l2;
1016	pd_entry_t *pl1pd, l1pd;
1017	pt_entry_t *ptep;
1018	u_short l1idx;
1019
1020
1021	/*
1022	 * Update the bucket's reference count according to how many
1023	 * PTEs the caller has just invalidated.
1024	 */
1025	l2b->l2b_occupancy -= count;
1026
1027	/*
1028	 * Note:
1029	 *
1030	 * Level 2 page tables allocated to the kernel pmap are never freed
1031	 * as that would require checking all Level 1 page tables and
1032	 * removing any references to the Level 2 page table. See also the
1033	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1034	 *
1035	 * We make do with just invalidating the mapping in the L2 table.
1036	 *
1037	 * This isn't really a big deal in practice and, in fact, leads
1038	 * to a performance win over time as we don't need to continually
1039	 * alloc/free.
1040	 */
1041	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1042		return;
1043
1044	/*
1045	 * There are no more valid mappings in this level 2 page table.
1046	 * Go ahead and NULL-out the pointer in the bucket, then
1047	 * free the page table.
1048	 */
1049	l1idx = l2b->l2b_l1idx;
1050	ptep = l2b->l2b_kva;
1051	l2b->l2b_kva = NULL;
1052
1053	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1054
1055	/*
1056	 * If the L1 slot matches the pmap's domain
1057	 * number, then invalidate it.
1058	 */
1059	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1060	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1061		*pl1pd = 0;
1062		PTE_SYNC(pl1pd);
1063	}
1064
1065	/*
1066	 * Release the L2 descriptor table back to the pool cache.
1067	 */
1068#ifndef PMAP_INCLUDE_PTE_SYNC
1069	pmap_free_l2_ptp(ptep);
1070#else
1071	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
1072#endif
1073
1074	/*
1075	 * Update the reference count in the associated l2_dtable
1076	 */
1077	l2 = pm->pm_l2[L2_IDX(l1idx)];
1078	if (--l2->l2_occupancy > 0)
1079		return;
1080
1081	/*
1082	 * There are no more valid mappings in any of the Level 1
1083	 * slots managed by this l2_dtable. Go ahead and NULL-out
1084	 * the pointer in the parent pmap and free the l2_dtable.
1085	 */
1086	pm->pm_l2[L2_IDX(l1idx)] = NULL;
1087	pmap_free_l2_dtable(l2);
1088}
1089
1090/*
1091 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1092 * structures.
1093 */
1094static int
1095pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
1096{
1097#ifndef PMAP_INCLUDE_PTE_SYNC
1098	struct l2_bucket *l2b;
1099	pt_entry_t *ptep, pte;
1100	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
1101
1102	/*
1103	 * The mappings for these page tables were initially made using
1104	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1105	 * mode will not be right for page table mappings. To avoid
1106	 * polluting the pmap_kenter() code with a special case for
1107	 * page tables, we simply fix up the cache-mode here if it's not
1108	 * correct.
1109	 */
1110	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1111	ptep = &l2b->l2b_kva[l2pte_index(va)];
1112	pte = *ptep;
1113
1114	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1115		/*
1116		 * Page tables must have the cache-mode set to Write-Thru.
1117		 */
1118		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1119		PTE_SYNC(ptep);
1120		cpu_tlb_flushD_SE(va);
1121		cpu_cpwait();
1122	}
1123
1124#endif
1125	memset(mem, 0, L2_TABLE_SIZE_REAL);
1126	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1127	return (0);
1128}
1129
1130/*
1131 * A bunch of routines to conditionally flush the caches/TLB depending
1132 * on whether the specified pmap actually needs to be flushed at any
1133 * given time.
1134 */
1135static PMAP_INLINE void
1136pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1137{
1138
1139	if (pmap_is_current(pm))
1140		cpu_tlb_flushID_SE(va);
1141}
1142
1143static PMAP_INLINE void
1144pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1145{
1146
1147	if (pmap_is_current(pm))
1148		cpu_tlb_flushD_SE(va);
1149}
1150
1151static PMAP_INLINE void
1152pmap_tlb_flushID(pmap_t pm)
1153{
1154
1155	if (pmap_is_current(pm))
1156		cpu_tlb_flushID();
1157}
1158static PMAP_INLINE void
1159pmap_tlb_flushD(pmap_t pm)
1160{
1161
1162	if (pmap_is_current(pm))
1163		cpu_tlb_flushD();
1164}
1165
1166static PMAP_INLINE void
1167pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1168{
1169
1170	if (pmap_is_current(pm))
1171		cpu_idcache_wbinv_range(va, len);
1172}
1173
1174static PMAP_INLINE void
1175pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len,
1176    boolean_t do_inv, boolean_t rd_only)
1177{
1178
1179	if (pmap_is_current(pm)) {
1180		if (do_inv) {
1181			if (rd_only)
1182				cpu_dcache_inv_range(va, len);
1183			else
1184				cpu_dcache_wbinv_range(va, len);
1185		} else
1186		if (!rd_only)
1187			cpu_dcache_wb_range(va, len);
1188	}
1189}
1190
1191static PMAP_INLINE void
1192pmap_idcache_wbinv_all(pmap_t pm)
1193{
1194
1195	if (pmap_is_current(pm))
1196		cpu_idcache_wbinv_all();
1197}
1198
1199static PMAP_INLINE void
1200pmap_dcache_wbinv_all(pmap_t pm)
1201{
1202
1203	if (pmap_is_current(pm))
1204		cpu_dcache_wbinv_all();
1205}
1206
1207/*
1208 * this routine defines the region(s) of memory that should
1209 * not be tested for the modified bit.
1210 */
1211static PMAP_INLINE int
1212pmap_track_modified(vm_offset_t va)
1213{
1214	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
1215		return 1;
1216	else
1217		return 0;
1218}
1219/*
1220 * PTE_SYNC_CURRENT:
1221 *
1222 *     Make sure the pte is written out to RAM.
1223 *     We need to do this for one of two cases:
1224 *       - We're dealing with the kernel pmap
1225 *       - There is no pmap active in the cache/tlb.
1226 *       - The specified pmap is 'active' in the cache/tlb.
1227 */
1228#ifdef PMAP_INCLUDE_PTE_SYNC
1229#define	PTE_SYNC_CURRENT(pm, ptep)	\
1230do {					\
1231	if (PMAP_NEEDS_PTE_SYNC && 	\
1232	    pmap_is_current(pm))	\
1233		PTE_SYNC(ptep);		\
1234} while (/*CONSTCOND*/0)
1235#else
1236#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1237#endif
1238
1239/*
1240 * Since we have a virtually indexed cache, we may need to inhibit caching if
1241 * there is more than one mapping and at least one of them is writable.
1242 * Since we purge the cache on every context switch, we only need to check for
1243 * other mappings within the same pmap, or kernel_pmap.
1244 * This function is also called when a page is unmapped, to possibly reenable
1245 * caching on any remaining mappings.
1246 *
1247 * The code implements the following logic, where:
1248 *
1249 * KW = # of kernel read/write pages
1250 * KR = # of kernel read only pages
1251 * UW = # of user read/write pages
1252 * UR = # of user read only pages
1253 *
1254 * KC = kernel mapping is cacheable
1255 * UC = user mapping is cacheable
1256 *
1257 *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1258 *             +---------------------------------------------
1259 * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1260 * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1261 * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1262 * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1263 */
1264
1265static const int pmap_vac_flags[4][4] = {
1266	{-1,		0,		0,		PVF_KNC},
1267	{0,		0,		PVF_NC,		PVF_NC},
1268	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1269	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1270};
1271
1272static PMAP_INLINE int
1273pmap_get_vac_flags(const struct vm_page *pg)
1274{
1275	int kidx, uidx;
1276
1277	kidx = 0;
1278	if (pg->md.kro_mappings || pg->md.krw_mappings > 1)
1279		kidx |= 1;
1280	if (pg->md.krw_mappings)
1281		kidx |= 2;
1282
1283	uidx = 0;
1284	if (pg->md.uro_mappings || pg->md.urw_mappings > 1)
1285		uidx |= 1;
1286	if (pg->md.urw_mappings)
1287		uidx |= 2;
1288
1289	return (pmap_vac_flags[uidx][kidx]);
1290}
1291
1292static __inline void
1293pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1294{
1295	int nattr;
1296
1297	nattr = pmap_get_vac_flags(pg);
1298
1299	if (nattr < 0) {
1300		pg->md.pvh_attrs &= ~PVF_NC;
1301		return;
1302	}
1303
1304	if (nattr == 0 && (pg->md.pvh_attrs & PVF_NC) == 0) {
1305		return;
1306	}
1307
1308	if (pm == pmap_kernel())
1309		pmap_vac_me_kpmap(pg, pm, va);
1310	else
1311		pmap_vac_me_user(pg, pm, va);
1312
1313	pg->md.pvh_attrs = (pg->md.pvh_attrs & ~PVF_NC) | nattr;
1314}
1315
1316static void
1317pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1318{
1319	u_int u_cacheable, u_entries;
1320	struct pv_entry *pv;
1321	pmap_t last_pmap = pm;
1322
1323	/*
1324	 * Pass one, see if there are both kernel and user pmaps for
1325	 * this page.  Calculate whether there are user-writable or
1326	 * kernel-writable pages.
1327	 */
1328	u_cacheable = 0;
1329	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1330		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1331			u_cacheable++;
1332	}
1333
1334	u_entries = pg->md.urw_mappings + pg->md.uro_mappings;
1335
1336	/*
1337	 * We know we have just been updating a kernel entry, so if
1338	 * all user pages are already cacheable, then there is nothing
1339	 * further to do.
1340	 */
1341	if (pg->md.k_mappings == 0 && u_cacheable == u_entries)
1342		return;
1343
1344	if (u_entries) {
1345		/*
1346		 * Scan over the list again, for each entry, if it
1347		 * might not be set correctly, call pmap_vac_me_user
1348		 * to recalculate the settings.
1349		 */
1350		TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1351			/*
1352			 * We know kernel mappings will get set
1353			 * correctly in other calls.  We also know
1354			 * that if the pmap is the same as last_pmap
1355			 * then we've just handled this entry.
1356			 */
1357			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1358				continue;
1359
1360			/*
1361			 * If there are kernel entries and this page
1362			 * is writable but non-cacheable, then we can
1363			 * skip this entry also.
1364			 */
1365			if (pg->md.k_mappings &&
1366			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1367			    (PVF_NC | PVF_WRITE))
1368				continue;
1369
1370			/*
1371			 * Similarly if there are no kernel-writable
1372			 * entries and the page is already
1373			 * read-only/cacheable.
1374			 */
1375			if (pg->md.krw_mappings == 0 &&
1376			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1377				continue;
1378
1379			/*
1380			 * For some of the remaining cases, we know
1381			 * that we must recalculate, but for others we
1382			 * can't tell if they are correct or not, so
1383			 * we recalculate anyway.
1384			 */
1385			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1386		}
1387
1388		if (pg->md.k_mappings == 0)
1389			return;
1390	}
1391
1392	pmap_vac_me_user(pg, pm, va);
1393}
1394
1395static void
1396pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1397{
1398	pmap_t kpmap = pmap_kernel();
1399	struct pv_entry *pv, *npv;
1400	struct l2_bucket *l2b;
1401	pt_entry_t *ptep, pte;
1402	u_int entries = 0;
1403	u_int writable = 0;
1404	u_int cacheable_entries = 0;
1405	u_int kern_cacheable = 0;
1406	u_int other_writable = 0;
1407
1408	/*
1409	 * Count mappings and writable mappings in this pmap.
1410	 * Include kernel mappings as part of our own.
1411	 * Keep a pointer to the first one.
1412	 */
1413	npv = TAILQ_FIRST(&pg->md.pv_list);
1414	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1415		/* Count mappings in the same pmap */
1416		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1417			if (entries++ == 0)
1418				npv = pv;
1419
1420			/* Cacheable mappings */
1421			if ((pv->pv_flags & PVF_NC) == 0) {
1422				cacheable_entries++;
1423				if (kpmap == pv->pv_pmap)
1424					kern_cacheable++;
1425			}
1426
1427			/* Writable mappings */
1428			if (pv->pv_flags & PVF_WRITE)
1429				++writable;
1430		} else
1431		if (pv->pv_flags & PVF_WRITE)
1432			other_writable = 1;
1433	}
1434
1435	/*
1436	 * Enable or disable caching as necessary.
1437	 * Note: the first entry might be part of the kernel pmap,
1438	 * so we can't assume this is indicative of the state of the
1439	 * other (maybe non-kpmap) entries.
1440	 */
1441	if ((entries > 1 && writable) ||
1442	    (entries > 0 && pm == kpmap && other_writable)) {
1443		if (cacheable_entries == 0)
1444			return;
1445
1446		for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
1447			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1448			    (pv->pv_flags & PVF_NC))
1449				continue;
1450
1451			pv->pv_flags |= PVF_NC;
1452
1453			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1454			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1455			pte = *ptep & ~L2_S_CACHE_MASK;
1456
1457			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1458			    l2pte_valid(pte)) {
1459				if (PV_BEEN_EXECD(pv->pv_flags)) {
1460					pmap_idcache_wbinv_range(pv->pv_pmap,
1461					    pv->pv_va, PAGE_SIZE);
1462					pmap_tlb_flushID_SE(pv->pv_pmap,
1463					    pv->pv_va);
1464				} else
1465				if (PV_BEEN_REFD(pv->pv_flags)) {
1466					pmap_dcache_wb_range(pv->pv_pmap,
1467					    pv->pv_va, PAGE_SIZE, TRUE,
1468					    (pv->pv_flags & PVF_WRITE) == 0);
1469					pmap_tlb_flushD_SE(pv->pv_pmap,
1470					    pv->pv_va);
1471				}
1472			}
1473
1474			*ptep = pte;
1475			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1476		}
1477		cpu_cpwait();
1478	} else
1479	if (entries > cacheable_entries) {
1480		/*
1481		 * Turn cacheing back on for some pages.  If it is a kernel
1482		 * page, only do so if there are no other writable pages.
1483		 */
1484		for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
1485			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1486			    (kpmap != pv->pv_pmap || other_writable)))
1487				continue;
1488
1489			pv->pv_flags &= ~PVF_NC;
1490
1491			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1492			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1493			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1494
1495			if (l2pte_valid(pte)) {
1496				if (PV_BEEN_EXECD(pv->pv_flags)) {
1497					pmap_tlb_flushID_SE(pv->pv_pmap,
1498					    pv->pv_va);
1499				} else
1500				if (PV_BEEN_REFD(pv->pv_flags)) {
1501					pmap_tlb_flushD_SE(pv->pv_pmap,
1502					    pv->pv_va);
1503				}
1504			}
1505
1506			*ptep = pte;
1507			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1508		}
1509	}
1510}
1511
1512/*
1513 * Modify pte bits for all ptes corresponding to the given physical address.
1514 * We use `maskbits' rather than `clearbits' because we're always passing
1515 * constants and the latter would require an extra inversion at run-time.
1516 */
1517static int
1518pmap_clearbit(struct vm_page *pg, u_int maskbits)
1519{
1520	struct l2_bucket *l2b;
1521	struct pv_entry *pv;
1522	pt_entry_t *ptep, npte, opte;
1523	pmap_t pm;
1524	vm_offset_t va;
1525	u_int oflags;
1526	int count = 0;
1527#if 0
1528	PMAP_HEAD_TO_MAP_LOCK();
1529	simple_lock(&pg->mdpage.pvh_slock);
1530#endif
1531
1532	/*
1533	 * Clear saved attributes (modify, reference)
1534	 */
1535	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1536
1537	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1538#if 0
1539		simple_unlock(&pg->mdpage.pvh_slock);
1540		PMAP_HEAD_TO_MAP_UNLOCK();
1541#endif
1542		return (0);
1543	}
1544
1545	/*
1546	 * Loop over all current mappings setting/clearing as appropos
1547	 */
1548	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1549		va = pv->pv_va;
1550		pm = pv->pv_pmap;
1551		oflags = pv->pv_flags;
1552		pv->pv_flags &= ~maskbits;
1553
1554#if 0
1555		pmap_acquire_pmap_lock(pm);
1556#endif
1557
1558		l2b = pmap_get_l2_bucket(pm, va);
1559
1560		ptep = &l2b->l2b_kva[l2pte_index(va)];
1561		npte = opte = *ptep;
1562
1563		if (maskbits & (PVF_WRITE|PVF_MOD) &&
1564		    !pmap_track_modified(pv->pv_va)) {
1565			if ((pv->pv_flags & PVF_NC)) {
1566				/*
1567				 * Entry is not cacheable:
1568				 *
1569				 * Don't turn caching on again if this is a
1570				 * modified emulation. This would be
1571				 * inconsitent with the settings created by
1572				 * pmap_vac_me_harder(). Otherwise, it's safe
1573				 * to re-enable cacheing.
1574				 *
1575				 * There's no need to call pmap_vac_me_harder()
1576				 * here: all pages are losing their write
1577				 * permission.
1578				 */
1579				if (maskbits & PVF_WRITE) {
1580					npte |= pte_l2_s_cache_mode;
1581					pv->pv_flags &= ~PVF_NC;
1582				}
1583			} else
1584			if (opte & L2_S_PROT_W) {
1585				vm_page_dirty(pg);
1586				/*
1587				 * Entry is writable/cacheable: check if pmap
1588				 * is current if it is flush it, otherwise it
1589				 * won't be in the cache
1590				 */
1591				if (PV_BEEN_EXECD(oflags))
1592					pmap_idcache_wbinv_range(pm, pv->pv_va,
1593					    PAGE_SIZE);
1594				else
1595				if (PV_BEEN_REFD(oflags))
1596					pmap_dcache_wb_range(pm, pv->pv_va,
1597					    PAGE_SIZE,
1598					    (maskbits & PVF_REF) ? TRUE : FALSE,
1599					    FALSE);
1600			}
1601
1602			/* make the pte read only */
1603			npte &= ~L2_S_PROT_W;
1604
1605			if (maskbits & PVF_WRITE) {
1606				/*
1607				 * Keep alias accounting up to date
1608				 */
1609				if (pv->pv_pmap == pmap_kernel()) {
1610					if (oflags & PVF_WRITE) {
1611						pg->md.krw_mappings--;
1612						pg->md.kro_mappings++;
1613					}
1614				} else
1615				if (oflags & PVF_WRITE) {
1616					pg->md.urw_mappings--;
1617					pg->md.uro_mappings++;
1618				}
1619			}
1620		}
1621
1622		if (maskbits & PVF_REF && !pmap_track_modified(pv->pv_va)) {
1623			if ((pv->pv_flags & PVF_NC) == 0 &&
1624			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1625				/*
1626				 * Check npte here; we may have already
1627				 * done the wbinv above, and the validity
1628				 * of the PTE is the same for opte and
1629				 * npte.
1630				 */
1631				if (npte & L2_S_PROT_W) {
1632					if (PV_BEEN_EXECD(oflags))
1633						pmap_idcache_wbinv_range(pm,
1634						    pv->pv_va, PAGE_SIZE);
1635					else
1636					if (PV_BEEN_REFD(oflags))
1637						pmap_dcache_wb_range(pm,
1638						    pv->pv_va, PAGE_SIZE,
1639						    TRUE, FALSE);
1640				} else
1641				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1642					/* XXXJRT need idcache_inv_range */
1643					if (PV_BEEN_EXECD(oflags))
1644						pmap_idcache_wbinv_range(pm,
1645						    pv->pv_va, PAGE_SIZE);
1646					else
1647					if (PV_BEEN_REFD(oflags))
1648						pmap_dcache_wb_range(pm,
1649						    pv->pv_va, PAGE_SIZE,
1650						    TRUE, TRUE);
1651				}
1652			}
1653
1654			/*
1655			 * Make the PTE invalid so that we will take a
1656			 * page fault the next time the mapping is
1657			 * referenced.
1658			 */
1659			npte &= ~L2_TYPE_MASK;
1660			npte |= L2_TYPE_INV;
1661		}
1662
1663		if (npte != opte) {
1664			count++;
1665			*ptep = npte;
1666			PTE_SYNC(ptep);
1667			/* Flush the TLB entry if a current pmap. */
1668			if (PV_BEEN_EXECD(oflags))
1669				pmap_tlb_flushID_SE(pm, pv->pv_va);
1670			else
1671			if (PV_BEEN_REFD(oflags))
1672				pmap_tlb_flushD_SE(pm, pv->pv_va);
1673		}
1674
1675#if 0
1676		pmap_release_pmap_lock(pm);
1677#endif
1678
1679	}
1680
1681#if 0
1682	simple_unlock(&pg->mdpage.pvh_slock);
1683	PMAP_HEAD_TO_MAP_UNLOCK();
1684#endif
1685	if (maskbits & PVF_WRITE)
1686		vm_page_flag_clear(pg, PG_WRITEABLE);
1687	return (count);
1688}
1689
1690/*
1691 * main pv_entry manipulation functions:
1692 *   pmap_enter_pv: enter a mapping onto a vm_page list
1693 *   pmap_remove_pv: remove a mappiing from a vm_page list
1694 *
1695 * NOTE: pmap_enter_pv expects to lock the pvh itself
1696 *       pmap_remove_pv expects te caller to lock the pvh before calling
1697 */
1698
1699/*
1700 * pmap_enter_pv: enter a mapping onto a vm_page lst
1701 *
1702 * => caller should hold the proper lock on pmap_main_lock
1703 * => caller should have pmap locked
1704 * => we will gain the lock on the vm_page and allocate the new pv_entry
1705 * => caller should adjust ptp's wire_count before calling
1706 * => caller should not adjust pmap's wire_count
1707 */
1708static void
1709pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1710    vm_offset_t va, u_int flags)
1711{
1712
1713
1714	pve->pv_pmap = pm;
1715	pve->pv_va = va;
1716	pve->pv_flags = flags;
1717
1718#if 0
1719	mtx_lock(&pg->md.pvh_mtx);
1720#endif
1721	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1722	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1723	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1724	if (pm == pmap_kernel()) {
1725		if (flags & PVF_WRITE)
1726			pg->md.krw_mappings++;
1727		else
1728			pg->md.kro_mappings++;
1729	}
1730	if (flags & PVF_WRITE)
1731		pg->md.urw_mappings++;
1732	else
1733		pg->md.uro_mappings++;
1734	pg->md.pv_list_count++;
1735#if 0
1736	mtx_unlock(&pg->md.pvh_mtx);
1737#endif
1738	if (pve->pv_flags & PVF_WIRED)
1739		++pm->pm_stats.wired_count;
1740	vm_page_flag_set(pg, PG_REFERENCED);
1741}
1742
1743/*
1744 *
1745 * pmap_find_pv: Find a pv entry
1746 *
1747 * => caller should hold lock on vm_page
1748 */
1749static PMAP_INLINE struct pv_entry *
1750pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1751{
1752	struct pv_entry *pv;
1753
1754	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1755	    if (pm == pv->pv_pmap && va == pv->pv_va)
1756		    break;
1757	return (pv);
1758}
1759
1760/*
1761 * vector_page_setprot:
1762 *
1763 *	Manipulate the protection of the vector page.
1764 */
1765void
1766vector_page_setprot(int prot)
1767{
1768	struct l2_bucket *l2b;
1769	pt_entry_t *ptep;
1770
1771	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1772
1773	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1774
1775	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1776	PTE_SYNC(ptep);
1777	cpu_tlb_flushD_SE(vector_page);
1778	cpu_cpwait();
1779}
1780
1781/*
1782 * pmap_remove_pv: try to remove a mapping from a pv_list
1783 *
1784 * => caller should hold proper lock on pmap_main_lock
1785 * => pmap should be locked
1786 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1787 * => caller should adjust ptp's wire_count and free PTP if needed
1788 * => caller should NOT adjust pmap's wire_count
1789 * => we return the removed pve
1790 */
1791
1792static void
1793pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1794{
1795
1796	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1797	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1798	if (pve->pv_flags & PVF_WIRED)
1799		--pm->pm_stats.wired_count;
1800	pg->md.pv_list_count--;
1801	if (pg->md.pvh_attrs & PVF_MOD)
1802		vm_page_dirty(pg);
1803	if (pm == pmap_kernel()) {
1804		if (pve->pv_flags & PVF_WRITE)
1805			pg->md.krw_mappings--;
1806		else
1807			pg->md.kro_mappings--;
1808	} else
1809		if (pve->pv_flags & PVF_WRITE)
1810			pg->md.urw_mappings--;
1811		else
1812			pg->md.uro_mappings--;
1813	if (TAILQ_FIRST(&pg->md.pv_list) == NULL ||
1814	    (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0)) {
1815		pg->md.pvh_attrs &= ~PVF_MOD;
1816		if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1817			pg->md.pvh_attrs &= ~PVF_REF;
1818		vm_page_flag_clear(pg, PG_WRITEABLE);
1819	}
1820	if (TAILQ_FIRST(&pg->md.pv_list))
1821		vm_page_flag_set(pg, PG_REFERENCED);
1822	if (pve->pv_flags & PVF_WRITE)
1823		pmap_vac_me_harder(pg, pm, 0);
1824}
1825
1826static struct pv_entry *
1827pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1828{
1829	struct pv_entry *pve;
1830
1831	pve = TAILQ_FIRST(&pg->md.pv_list);
1832
1833	while (pve) {
1834		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1835			pmap_nuke_pv(pg, pm, pve);
1836			break;
1837		}
1838		pve = TAILQ_NEXT(pve, pv_list);
1839	}
1840
1841	return(pve);				/* return removed pve */
1842}
1843/*
1844 *
1845 * pmap_modify_pv: Update pv flags
1846 *
1847 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1848 * => caller should NOT adjust pmap's wire_count
1849 * => caller must call pmap_vac_me_harder() if writable status of a page
1850 *    may have changed.
1851 * => we return the old flags
1852 *
1853 * Modify a physical-virtual mapping in the pv table
1854 */
1855static u_int
1856pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1857    u_int clr_mask, u_int set_mask)
1858{
1859	struct pv_entry *npv;
1860	u_int flags, oflags;
1861
1862	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1863		return (0);
1864
1865	/*
1866	 * There is at least one VA mapping this page.
1867	 */
1868
1869	if (clr_mask & (PVF_REF | PVF_MOD))
1870		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1871
1872	oflags = npv->pv_flags;
1873	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1874
1875	if ((flags ^ oflags) & PVF_WIRED) {
1876		if (flags & PVF_WIRED)
1877			++pm->pm_stats.wired_count;
1878		else
1879			--pm->pm_stats.wired_count;
1880	}
1881
1882	if ((flags ^ oflags) & PVF_WRITE) {
1883		if (pm == pmap_kernel()) {
1884			if (flags & PVF_WRITE) {
1885				pg->md.krw_mappings++;
1886				pg->md.kro_mappings--;
1887			} else {
1888				pg->md.kro_mappings++;
1889				pg->md.krw_mappings--;
1890			}
1891		} else
1892		if (flags & PVF_WRITE) {
1893			pg->md.urw_mappings++;
1894			pg->md.uro_mappings--;
1895		} else {
1896			pg->md.uro_mappings++;
1897			pg->md.urw_mappings--;
1898		}
1899		if (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0) {
1900			pg->md.pvh_attrs &= ~PVF_MOD;
1901			vm_page_flag_clear(pg, PG_WRITEABLE);
1902		}
1903		pmap_vac_me_harder(pg, pm, 0);
1904	}
1905
1906	return (oflags);
1907}
1908
1909/* Function to set the debug level of the pmap code */
1910#ifdef PMAP_DEBUG
1911void
1912pmap_debug(int level)
1913{
1914	pmap_debug_level = level;
1915	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1916}
1917#endif  /* PMAP_DEBUG */
1918
1919void
1920pmap_pinit0(struct pmap *pmap)
1921{
1922	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1923
1924	dprintf("pmap_pinit0: pmap = %08x, pm_pdir = %08x\n",
1925		(u_int32_t) pmap, (u_int32_t) pmap->pm_pdir);
1926	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1927}
1928
1929
1930/*
1931 *      Initialize the pmap module.
1932 *      Called by vm_init, to initialize any structures that the pmap
1933 *      system needs to map virtual memory.
1934 *      pmap_init has been enhanced to support in a fairly consistant
1935 *      way, discontiguous physical memory.
1936 */
1937void
1938pmap_init(void)
1939{
1940	int i;
1941
1942	PDEBUG(1, printf("pmap_init: phys_start = %08x\n"));
1943	/*
1944	 * Allocate memory for random pmap data structures.  Includes the
1945	 * pv_head_table.
1946	 */
1947	for(i = 0; i < vm_page_array_size; i++) {
1948		vm_page_t m;
1949
1950		m = &vm_page_array[i];
1951		TAILQ_INIT(&m->md.pv_list);
1952		m->md.pv_list_count = 0;
1953	}
1954
1955	/*
1956	 * init the pv free list
1957	 */
1958	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1959	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1960	uma_prealloc(pvzone, MINPV);
1961	/*
1962	 * Now it is safe to enable pv_table recording.
1963	 */
1964	pmap_initialized = TRUE;
1965	PDEBUG(1, printf("pmap_init: done!\n"));
1966}
1967
1968int
1969pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1970{
1971	struct l2_dtable *l2;
1972	struct l2_bucket *l2b;
1973	pd_entry_t *pl1pd, l1pd;
1974	pt_entry_t *ptep, pte;
1975	vm_paddr_t pa;
1976	u_int l1idx;
1977	int rv = 0;
1978
1979#if 0
1980	PMAP_MAP_TO_HEAD_LOCK();
1981	pmap_acquire_pmap_lock(pm);
1982#endif
1983	l1idx = L1_IDX(va);
1984
1985	/*
1986	 * If there is no l2_dtable for this address, then the process
1987	 * has no business accessing it.
1988	 *
1989	 * Note: This will catch userland processes trying to access
1990	 * kernel addresses.
1991	 */
1992	l2 = pm->pm_l2[L2_IDX(l1idx)];
1993	if (l2 == NULL)
1994		goto out;
1995
1996	/*
1997	 * Likewise if there is no L2 descriptor table
1998	 */
1999	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2000	if (l2b->l2b_kva == NULL)
2001		goto out;
2002
2003	/*
2004	 * Check the PTE itself.
2005	 */
2006	ptep = &l2b->l2b_kva[l2pte_index(va)];
2007	pte = *ptep;
2008	if (pte == 0)
2009		goto out;
2010
2011	/*
2012	 * Catch a userland access to the vector page mapped at 0x0
2013	 */
2014	if (user && (pte & L2_S_PROT_U) == 0)
2015		goto out;
2016
2017	pa = l2pte_pa(pte);
2018
2019	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2020		/*
2021		 * This looks like a good candidate for "page modified"
2022		 * emulation...
2023		 */
2024		struct pv_entry *pv;
2025		struct vm_page *pg;
2026
2027		/* Extract the physical address of the page */
2028		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
2029			goto out;
2030		}
2031		/* Get the current flags for this page. */
2032
2033		pv = pmap_find_pv(pg, pm, va);
2034		if (pv == NULL) {
2035			goto out;
2036		}
2037
2038		/*
2039		 * Do the flags say this page is writable? If not then it
2040		 * is a genuine write fault. If yes then the write fault is
2041		 * our fault as we did not reflect the write access in the
2042		 * PTE. Now we know a write has occurred we can correct this
2043		 * and also set the modified bit
2044		 */
2045		if ((pv->pv_flags & PVF_WRITE) == 0) {
2046			goto out;
2047		}
2048
2049		if (pmap_track_modified(pv->pv_va)) {
2050			pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
2051			vm_page_dirty(pg);
2052		}
2053		pv->pv_flags |= PVF_REF | PVF_MOD;
2054
2055		/*
2056		 * Re-enable write permissions for the page.  No need to call
2057		 * pmap_vac_me_harder(), since this is just a
2058		 * modified-emulation fault, and the PVF_WRITE bit isn't
2059		 * changing. We've already set the cacheable bits based on
2060		 * the assumption that we can write to this page.
2061		 */
2062		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W |
2063		    pte_l2_s_cache_mask;
2064		PTE_SYNC(ptep);
2065		rv = 1;
2066	} else
2067	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2068		/*
2069		 * This looks like a good candidate for "page referenced"
2070		 * emulation.
2071		 */
2072		struct pv_entry *pv;
2073		struct vm_page *pg;
2074
2075		/* Extract the physical address of the page */
2076		vm_page_lock_queues();
2077		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
2078			vm_page_unlock_queues();
2079			goto out;
2080		}
2081		/* Get the current flags for this page. */
2082
2083		pv = pmap_find_pv(pg, pm, va);
2084		if (pv == NULL) {
2085			vm_page_unlock_queues();
2086			goto out;
2087		}
2088
2089		pg->md.pvh_attrs |= PVF_REF;
2090		pv->pv_flags |= PVF_REF;
2091
2092
2093		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2094		PTE_SYNC(ptep);
2095		rv = 1;
2096		vm_page_unlock_queues();
2097	}
2098
2099	/*
2100	 * We know there is a valid mapping here, so simply
2101	 * fix up the L1 if necessary.
2102	 */
2103	pl1pd = &pm->pm_l1->l1_kva[l1idx];
2104	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2105	if (*pl1pd != l1pd) {
2106		*pl1pd = l1pd;
2107		PTE_SYNC(pl1pd);
2108		rv = 1;
2109	}
2110
2111#ifdef CPU_SA110
2112	/*
2113	 * There are bugs in the rev K SA110.  This is a check for one
2114	 * of them.
2115	 */
2116	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2117	    curcpu()->ci_arm_cpurev < 3) {
2118		/* Always current pmap */
2119		if (l2pte_valid(pte)) {
2120			extern int kernel_debug;
2121			if (kernel_debug & 1) {
2122				struct proc *p = curlwp->l_proc;
2123				printf("prefetch_abort: page is already "
2124				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
2125				printf("prefetch_abort: pc=%08lx proc=%p "
2126				    "process=%s\n", va, p, p->p_comm);
2127				printf("prefetch_abort: far=%08x fs=%x\n",
2128				    cpu_faultaddress(), cpu_faultstatus());
2129			}
2130#ifdef DDB
2131			if (kernel_debug & 2)
2132				Debugger();
2133#endif
2134			rv = 1;
2135		}
2136	}
2137#endif /* CPU_SA110 */
2138
2139#ifdef DEBUG
2140	/*
2141	 * If 'rv == 0' at this point, it generally indicates that there is a
2142	 * stale TLB entry for the faulting address. This happens when two or
2143	 * more processes are sharing an L1. Since we don't flush the TLB on
2144	 * a context switch between such processes, we can take domain faults
2145	 * for mappings which exist at the same VA in both processes. EVEN IF
2146	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2147	 * example.
2148	 *
2149	 * This is extremely likely to happen if pmap_enter() updated the L1
2150	 * entry for a recently entered mapping. In this case, the TLB is
2151	 * flushed for the new mapping, but there may still be TLB entries for
2152	 * other mappings belonging to other processes in the 1MB range
2153	 * covered by the L1 entry.
2154	 *
2155	 * Since 'rv == 0', we know that the L1 already contains the correct
2156	 * value, so the fault must be due to a stale TLB entry.
2157	 *
2158	 * Since we always need to flush the TLB anyway in the case where we
2159	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2160	 * stale TLB entries dynamically.
2161	 *
2162	 * However, the above condition can ONLY happen if the current L1 is
2163	 * being shared. If it happens when the L1 is unshared, it indicates
2164	 * that other parts of the pmap are not doing their job WRT managing
2165	 * the TLB.
2166	 */
2167	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2168		extern int last_fault_code;
2169		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2170		    pm, va, ftype);
2171		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2172		    l2, l2b, ptep, pl1pd);
2173		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2174		    pte, l1pd, last_fault_code);
2175#ifdef DDB
2176		Debugger();
2177#endif
2178	}
2179#endif
2180
2181	cpu_tlb_flushID_SE(va);
2182	cpu_cpwait();
2183
2184	rv = 1;
2185
2186out:
2187#if 0
2188	pmap_release_pmap_lock(pm);
2189	PMAP_MAP_TO_HEAD_UNLOCK();
2190#endif
2191	return (rv);
2192}
2193
2194/*
2195 * Initialize the address space (zone) for the pv_entries.  Set a
2196 * high water mark so that the system can recover from excessive
2197 * numbers of pv entries.
2198 */
2199void
2200pmap_init2()
2201{
2202	int shpgperproc = PMAP_SHPGPERPROC;
2203	struct l2_bucket *l2b;
2204	struct l1_ttable *l1;
2205	pd_entry_t *pl1pt;
2206	pt_entry_t *ptep, pte;
2207	vm_offset_t va, eva;
2208	u_int loop, needed;
2209
2210	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
2211
2212	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
2213	pv_entry_high_water = 9 * (pv_entry_max / 10);
2214	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
2215	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
2216	uma_prealloc(l2zone, 4096);
2217	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable),
2218	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
2219	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
2220	uma_prealloc(l2table_zone, 1024);
2221
2222	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
2223	uma_zone_set_obj(l2zone, &l2zone_obj, pv_entry_max);
2224
2225	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
2226	needed -= 1;
2227	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
2228
2229	for (loop = 0; loop < needed; loop++, l1++) {
2230		/* Allocate a L1 page table */
2231		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
2232		    0xffffffff, L1_TABLE_SIZE, 0);
2233
2234		if (va == 0)
2235			panic("Cannot allocate L1 KVM");
2236
2237		eva = va + L1_TABLE_SIZE;
2238		pl1pt = (pd_entry_t *)va;
2239
2240		while (va < eva) {
2241				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2242				ptep = &l2b->l2b_kva[l2pte_index(va)];
2243				pte = *ptep;
2244				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
2245				*ptep = pte;
2246				PTE_SYNC(ptep);
2247				cpu_tlb_flushD_SE(va);
2248
2249				va += PAGE_SIZE;
2250		}
2251		pmap_init_l1(l1, pl1pt);
2252	}
2253
2254
2255#ifdef DEBUG
2256	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
2257	    needed);
2258#endif
2259}
2260
2261/*
2262 * This is used to stuff certain critical values into the PCB where they
2263 * can be accessed quickly from cpu_switch() et al.
2264 */
2265void
2266pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2267{
2268	struct l2_bucket *l2b;
2269
2270	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2271	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2272	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2273
2274	if (vector_page < KERNBASE) {
2275		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2276		l2b = pmap_get_l2_bucket(pm, vector_page);
2277		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2278	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2279	} else
2280		pcb->pcb_pl1vec = NULL;
2281}
2282
2283void
2284pmap_activate(struct thread *td)
2285{
2286	pmap_t pm;
2287	struct pcb *pcb;
2288	int s;
2289
2290	pm = vmspace_pmap(td->td_proc->p_vmspace);
2291	pcb = td->td_pcb;
2292
2293	critical_enter();
2294	pmap_set_pcb_pagedir(pm, pcb);
2295
2296	if (td == curthread) {
2297		u_int cur_dacr, cur_ttb;
2298
2299		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2300		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2301
2302		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2303
2304		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2305		    cur_dacr == pcb->pcb_dacr) {
2306			/*
2307			 * No need to switch address spaces.
2308			 */
2309			critical_exit();
2310			return;
2311		}
2312
2313
2314		/*
2315		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2316		 * to 'vector_page' in the incoming L1 table before switching
2317		 * to it otherwise subsequent interrupts/exceptions (including
2318		 * domain faults!) will jump into hyperspace.
2319		 */
2320		if (pcb->pcb_pl1vec) {
2321
2322			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2323			/*
2324			 * Don't need to PTE_SYNC() at this point since
2325			 * cpu_setttb() is about to flush both the cache
2326			 * and the TLB.
2327			 */
2328		}
2329
2330		cpu_domains(pcb->pcb_dacr);
2331		cpu_setttb(pcb->pcb_pagedir);
2332
2333		splx(s);
2334	}
2335	critical_exit();
2336}
2337
2338static int
2339pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2340{
2341	pd_entry_t *pdep, pde;
2342	pt_entry_t *ptep, pte;
2343	vm_offset_t pa;
2344	int rv = 0;
2345
2346	/*
2347	 * Make sure the descriptor itself has the correct cache mode
2348	 */
2349	pdep = &kl1[L1_IDX(va)];
2350	pde = *pdep;
2351
2352	if (l1pte_section_p(pde)) {
2353		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2354			*pdep = (pde & ~L1_S_CACHE_MASK) |
2355			    pte_l1_s_cache_mode_pt;
2356			PTE_SYNC(pdep);
2357			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2358			    sizeof(*pdep));
2359			rv = 1;
2360		}
2361	} else {
2362		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2363		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2364		if (ptep == NULL)
2365			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2366
2367		ptep = &ptep[l2pte_index(va)];
2368		pte = *ptep;
2369		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2370			*ptep = (pte & ~L2_S_CACHE_MASK) |
2371			    pte_l2_s_cache_mode_pt;
2372			PTE_SYNC(ptep);
2373			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2374			    sizeof(*ptep));
2375			rv = 1;
2376		}
2377	}
2378
2379	return (rv);
2380}
2381
2382static void
2383pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2384    pt_entry_t **ptep)
2385{
2386	vm_offset_t va = *availp;
2387	struct l2_bucket *l2b;
2388
2389	if (ptep) {
2390		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2391		if (l2b == NULL)
2392			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2393
2394		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2395	}
2396
2397	*vap = va;
2398	*availp = va + (PAGE_SIZE * pages);
2399}
2400
2401/*
2402 *	Bootstrap the system enough to run with virtual memory.
2403 *
2404 *	On the arm this is called after mapping has already been enabled
2405 *	and just syncs the pmap module with what has already been done.
2406 *	[We can't call it easily with mapping off since the kernel is not
2407 *	mapped with PA == VA, hence we would have to relocate every address
2408 *	from the linked base (virtual) address "KERNBASE" to the actual
2409 *	(physical) address starting relative to 0]
2410 */
2411#define PMAP_STATIC_L2_SIZE 16
2412void
2413pmap_bootstrap(vm_offset_t firstaddr, vm_offset_t lastaddr, struct pv_addr *l1pt)
2414{
2415	static struct l1_ttable static_l1;
2416	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2417	struct l1_ttable *l1 = &static_l1;
2418	struct l2_dtable *l2;
2419	struct l2_bucket *l2b;
2420	pd_entry_t pde;
2421	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2422	pt_entry_t *ptep;
2423	vm_paddr_t pa;
2424	vm_offset_t va;
2425	vm_size_t size;
2426	int l1idx, l2idx, l2next = 0;
2427
2428	PDEBUG(1, printf("firstaddr = %08x, loadaddr = %08x\n",
2429	    firstaddr, loadaddr));
2430
2431	virtual_avail = firstaddr;
2432	kernel_pmap = &kernel_pmap_store;
2433	kernel_pmap->pm_l1 = l1;
2434
2435	/*
2436	 * Scan the L1 translation table created by initarm() and create
2437	 * the required metadata for all valid mappings found in it.
2438	 */
2439	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2440		pde = kernel_l1pt[l1idx];
2441
2442		/*
2443		 * We're only interested in Coarse mappings.
2444		 * pmap_extract() can deal with section mappings without
2445		 * recourse to checking L2 metadata.
2446		 */
2447		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2448			continue;
2449
2450		/*
2451		 * Lookup the KVA of this L2 descriptor table
2452		 */
2453		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2454		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2455
2456		if (ptep == NULL) {
2457			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2458			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2459		}
2460
2461		/*
2462		 * Fetch the associated L2 metadata structure.
2463		 * Allocate a new one if necessary.
2464		 */
2465		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2466			if (l2next == PMAP_STATIC_L2_SIZE)
2467				panic("pmap_bootstrap: out of static L2s");
2468			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2469			    &static_l2[l2next++];
2470		}
2471
2472		/*
2473		 * One more L1 slot tracked...
2474		 */
2475		l2->l2_occupancy++;
2476
2477		/*
2478		 * Fill in the details of the L2 descriptor in the
2479		 * appropriate bucket.
2480		 */
2481		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2482		l2b->l2b_kva = ptep;
2483		l2b->l2b_phys = pa;
2484		l2b->l2b_l1idx = l1idx;
2485
2486		/*
2487		 * Establish an initial occupancy count for this descriptor
2488		 */
2489		for (l2idx = 0;
2490		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2491		    l2idx++) {
2492			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2493				l2b->l2b_occupancy++;
2494			}
2495		}
2496
2497		/*
2498		 * Make sure the descriptor itself has the correct cache mode.
2499		 * If not, fix it, but whine about the problem. Port-meisters
2500		 * should consider this a clue to fix up their initarm()
2501		 * function. :)
2502		 */
2503		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2504			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2505			    "L2 pte @ %p\n", ptep);
2506		}
2507	}
2508
2509
2510	/*
2511	 * Ensure the primary (kernel) L1 has the correct cache mode for
2512	 * a page table. Bitch if it is not correctly set.
2513	 */
2514	for (va = (vm_offset_t)kernel_l1pt;
2515	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2516		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2517			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2518			    "primary L1 @ 0x%x\n", va);
2519	}
2520
2521	cpu_dcache_wbinv_all();
2522	cpu_tlb_flushID();
2523	cpu_cpwait();
2524
2525	kernel_pmap->pm_active = -1;
2526	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2527	LIST_INIT(&allpmaps);
2528	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2529	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
2530
2531	/*
2532	 * Reserve some special page table entries/VA space for temporary
2533	 * mapping of pages.
2534	 */
2535#define SYSMAP(c, p, v, n)						\
2536    v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2537
2538	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2539	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2540	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2541	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2542	size = ((lastaddr - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
2543	pmap_alloc_specials(&virtual_avail,
2544	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2545	    &pmap_kernel_l2ptp_kva, NULL);
2546
2547	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
2548	pmap_alloc_specials(&virtual_avail,
2549	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2550	    &pmap_kernel_l2dtable_kva, NULL);
2551
2552	pmap_alloc_specials(&virtual_avail,
2553	    1, (vm_offset_t*)&_tmppt, NULL);
2554	SLIST_INIT(&l1_list);
2555	TAILQ_INIT(&l1_lru_list);
2556	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2557	pmap_init_l1(l1, kernel_l1pt);
2558	cpu_dcache_wbinv_all();
2559
2560	virtual_avail = round_page(virtual_avail);
2561	virtual_end = lastaddr;
2562	kernel_vm_end = pmap_curmaxkvaddr;
2563}
2564
2565/***************************************************
2566 * Pmap allocation/deallocation routines.
2567 ***************************************************/
2568
2569/*
2570 * Release any resources held by the given physical map.
2571 * Called when a pmap initialized by pmap_pinit is being released.
2572 * Should only be called if the map contains no valid mappings.
2573 */
2574void
2575pmap_release(pmap_t pmap)
2576{
2577	struct pcb *pcb;
2578
2579	pmap_idcache_wbinv_all(pmap);
2580	pmap_tlb_flushID(pmap);
2581	cpu_cpwait();
2582	LIST_REMOVE(pmap, pm_list);
2583	if (vector_page < KERNBASE) {
2584		struct pcb *curpcb = PCPU_GET(curpcb);
2585		pcb = thread0.td_pcb;
2586		if (pmap_is_current(pmap)) {
2587			/*
2588 			 * Frob the L1 entry corresponding to the vector
2589			 * page so that it contains the kernel pmap's domain
2590			 * number. This will ensure pmap_remove() does not
2591			 * pull the current vector page out from under us.
2592			 */
2593			critical_enter();
2594			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2595			cpu_domains(pcb->pcb_dacr);
2596			cpu_setttb(pcb->pcb_pagedir);
2597			critical_exit();
2598		}
2599		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2600		/*
2601		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2602		 * since this process has no remaining mappings of its own.
2603		 */
2604		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2605		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2606		curpcb->pcb_dacr = pcb->pcb_dacr;
2607		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2608
2609	}
2610	pmap_free_l1(pmap);
2611
2612	dprintf("pmap_release()\n");
2613}
2614
2615
2616
2617/*
2618 * Helper function for pmap_grow_l2_bucket()
2619 */
2620static __inline int
2621pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2622{
2623	struct l2_bucket *l2b;
2624	pt_entry_t *ptep;
2625	vm_paddr_t pa;
2626	struct vm_page *pg;
2627
2628	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO |
2629	    VM_ALLOC_WIRED);
2630	if (pg == NULL)
2631		return (1);
2632	pa = VM_PAGE_TO_PHYS(pg);
2633
2634	if (pap)
2635		*pap = pa;
2636
2637	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2638
2639	ptep = &l2b->l2b_kva[l2pte_index(va)];
2640	*ptep = L2_S_PROTO | pa | cache_mode |
2641	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2642	PTE_SYNC(ptep);
2643	return (0);
2644}
2645
2646/*
2647 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2648 * used by pmap_growkernel().
2649 */
2650static __inline struct l2_bucket *
2651pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2652{
2653	struct l2_dtable *l2;
2654	struct l2_bucket *l2b;
2655	struct l1_ttable *l1;
2656	pd_entry_t *pl1pd;
2657	u_short l1idx;
2658	vm_offset_t nva;
2659
2660	l1idx = L1_IDX(va);
2661
2662	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2663		/*
2664		 * No mapping at this address, as there is
2665		 * no entry in the L1 table.
2666		 * Need to allocate a new l2_dtable.
2667		 */
2668		nva = pmap_kernel_l2dtable_kva;
2669		if ((nva & PAGE_MASK) == 0) {
2670			/*
2671			 * Need to allocate a backing page
2672			 */
2673			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2674				return (NULL);
2675		}
2676
2677		l2 = (struct l2_dtable *)nva;
2678		nva += sizeof(struct l2_dtable);
2679
2680		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2681		    PAGE_MASK)) {
2682			/*
2683			 * The new l2_dtable straddles a page boundary.
2684			 * Map in another page to cover it.
2685			 */
2686			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2687				return (NULL);
2688		}
2689
2690		pmap_kernel_l2dtable_kva = nva;
2691
2692		/*
2693		 * Link it into the parent pmap
2694		 */
2695		pm->pm_l2[L2_IDX(l1idx)] = l2;
2696	}
2697
2698	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2699
2700	/*
2701	 * Fetch pointer to the L2 page table associated with the address.
2702	 */
2703	if (l2b->l2b_kva == NULL) {
2704		pt_entry_t *ptep;
2705
2706		/*
2707		 * No L2 page table has been allocated. Chances are, this
2708		 * is because we just allocated the l2_dtable, above.
2709		 */
2710		nva = pmap_kernel_l2ptp_kva;
2711		ptep = (pt_entry_t *)nva;
2712		if ((nva & PAGE_MASK) == 0) {
2713			/*
2714			 * Need to allocate a backing page
2715			 */
2716			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2717			    &pmap_kernel_l2ptp_phys))
2718				return (NULL);
2719			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2720		}
2721
2722		l2->l2_occupancy++;
2723		l2b->l2b_kva = ptep;
2724		l2b->l2b_l1idx = l1idx;
2725		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2726
2727		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2728		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2729	}
2730
2731	/* Distribute new L1 entry to all other L1s */
2732	SLIST_FOREACH(l1, &l1_list, l1_link) {
2733			pl1pd = &l1->l1_kva[L1_IDX(va)];
2734			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2735			    L1_C_PROTO;
2736			PTE_SYNC(pl1pd);
2737	}
2738
2739	return (l2b);
2740}
2741
2742
2743/*
2744 * grow the number of kernel page table entries, if needed
2745 */
2746void
2747pmap_growkernel(vm_offset_t addr)
2748{
2749	pmap_t kpm = pmap_kernel();
2750	int s;
2751
2752	if (addr <= pmap_curmaxkvaddr)
2753		return;		/* we are OK */
2754
2755	/*
2756	 * whoops!   we need to add kernel PTPs
2757	 */
2758
2759	s = splhigh();	/* to be safe */
2760
2761	/* Map 1MB at a time */
2762	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2763		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2764
2765	/*
2766	 * flush out the cache, expensive but growkernel will happen so
2767	 * rarely
2768	 */
2769	cpu_dcache_wbinv_all();
2770	cpu_tlb_flushD();
2771	cpu_cpwait();
2772	kernel_vm_end = pmap_curmaxkvaddr;
2773
2774}
2775
2776
2777/*
2778 *      pmap_page_protect:
2779 *
2780 *      Lower the permission for all mappings to a given page.
2781 */
2782void
2783pmap_page_protect(vm_page_t m, vm_prot_t prot)
2784{
2785	switch(prot) {
2786	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2787	case VM_PROT_READ|VM_PROT_WRITE:
2788		return;
2789
2790	case VM_PROT_READ:
2791	case VM_PROT_READ|VM_PROT_EXECUTE:
2792		pmap_clearbit(m, PVF_WRITE);
2793		break;
2794
2795	default:
2796		pmap_remove_all(m);
2797		break;
2798	}
2799
2800}
2801
2802
2803/*
2804 * Remove all pages from specified address space
2805 * this aids process exit speeds.  Also, this code
2806 * is special cased for current process only, but
2807 * can have the more generic (and slightly slower)
2808 * mode enabled.  This is much faster than pmap_remove
2809 * in the case of running down an entire address space.
2810 */
2811void
2812pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2813{
2814	struct pv_entry *pv, *npv;
2815	struct l2_bucket *l2b = NULL;
2816	vm_page_t m;
2817	pt_entry_t *pt;
2818
2819	vm_page_lock_queues();
2820	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2821		if (pv->pv_va >= eva || pv->pv_va < sva) {
2822			npv = TAILQ_NEXT(pv, pv_plist);
2823			continue;
2824		}
2825		if (pv->pv_flags & PVF_WIRED) {
2826			/* The page is wired, cannot remove it now. */
2827			npv = TAILQ_NEXT(pv, pv_plist);
2828			continue;
2829		}
2830		pmap->pm_stats.resident_count--;
2831		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2832		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2833		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2834		m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
2835		*pt = 0;
2836		PTE_SYNC(pt);
2837		npv = TAILQ_NEXT(pv, pv_plist);
2838		pmap_nuke_pv(m, pmap, pv);
2839		pmap_free_pv_entry(pv);
2840	}
2841	vm_page_unlock_queues();
2842	cpu_idcache_wbinv_all();
2843	cpu_tlb_flushID();
2844	cpu_cpwait();
2845}
2846
2847
2848/***************************************************
2849 * Low level mapping routines.....
2850 ***************************************************/
2851
2852/*
2853 * add a wired page to the kva
2854 * note that in order for the mapping to take effect -- you
2855 * should do a invltlb after doing the pmap_kenter...
2856 */
2857static PMAP_INLINE void
2858pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2859{
2860	struct l2_bucket *l2b;
2861	pt_entry_t *pte;
2862	pt_entry_t opte;
2863	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2864	    (uint32_t) va, (uint32_t) pa));
2865
2866
2867	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2868	if (l2b == NULL)
2869		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2870	KASSERT(l2b != NULL, ("No L2 Bucket"));
2871	pte = &l2b->l2b_kva[l2pte_index(va)];
2872	opte = *pte;
2873	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2874	    (uint32_t) pte, opte, *pte));
2875	if (l2pte_valid(opte)) {
2876		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2877		cpu_tlb_flushD_SE(va);
2878		cpu_cpwait();
2879	} else {
2880		if (opte == 0)
2881			l2b->l2b_occupancy++;
2882	}
2883	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2884	    VM_PROT_READ | VM_PROT_WRITE);
2885	if (flags & KENTER_CACHE)
2886		*pte |= pte_l2_s_cache_mode;
2887	if (flags & KENTER_USER)
2888		*pte |= L2_S_PROT_U;
2889	PTE_SYNC(pte);
2890}
2891
2892void
2893pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2894{
2895	pmap_kenter_internal(va, pa, KENTER_CACHE);
2896}
2897
2898void
2899pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2900{
2901
2902	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2903	/*
2904	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2905	 * at the first use of the new address, or bad things will happen,
2906	 * as we use one of these addresses in the exception handlers.
2907	 */
2908	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2909}
2910
2911/*
2912 * remove a page rom the kernel pagetables
2913 */
2914PMAP_INLINE void
2915pmap_kremove(vm_offset_t va)
2916{
2917	struct l2_bucket *l2b;
2918	pt_entry_t *pte, opte;
2919
2920	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2921	if (!l2b)
2922		return;
2923	KASSERT(l2b != NULL, ("No L2 Bucket"));
2924	pte = &l2b->l2b_kva[l2pte_index(va)];
2925	opte = *pte;
2926	if (l2pte_valid(opte)) {
2927		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2928		cpu_tlb_flushD_SE(va);
2929		cpu_cpwait();
2930		*pte = 0;
2931	}
2932}
2933
2934
2935/*
2936 *	Used to map a range of physical addresses into kernel
2937 *	virtual address space.
2938 *
2939 *	The value passed in '*virt' is a suggested virtual address for
2940 *	the mapping. Architectures which can support a direct-mapped
2941 *	physical to virtual region can return the appropriate address
2942 *	within that region, leaving '*virt' unchanged. Other
2943 *	architectures should map the pages starting at '*virt' and
2944 *	update '*virt' with the first usable address after the mapped
2945 *	region.
2946 */
2947vm_offset_t
2948pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2949{
2950	vm_offset_t sva = *virt;
2951	vm_offset_t va = sva;
2952
2953	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2954	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2955	    prot));
2956
2957	while (start < end) {
2958		pmap_kenter(va, start);
2959		va += PAGE_SIZE;
2960		start += PAGE_SIZE;
2961	}
2962	*virt = va;
2963	return (sva);
2964}
2965
2966static void
2967pmap_wb_page(vm_page_t m, boolean_t do_inv)
2968{
2969	struct pv_entry *pv;
2970
2971	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2972	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, do_inv,
2973		(pv->pv_flags & PVF_WRITE) == 0);
2974}
2975
2976/*
2977 * Add a list of wired pages to the kva
2978 * this routine is only used for temporary
2979 * kernel mappings that do not need to have
2980 * page modification or references recorded.
2981 * Note that old mappings are simply written
2982 * over.  The page *must* be wired.
2983 */
2984void
2985pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2986{
2987	int i;
2988
2989	for (i = 0; i < count; i++) {
2990		pmap_wb_page(m[i], TRUE);
2991		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2992		    KENTER_CACHE);
2993		va += PAGE_SIZE;
2994	}
2995}
2996
2997
2998/*
2999 * this routine jerks page mappings from the
3000 * kernel -- it is meant only for temporary mappings.
3001 */
3002void
3003pmap_qremove(vm_offset_t va, int count)
3004{
3005	vm_paddr_t pa;
3006	int i;
3007
3008	for (i = 0; i < count; i++) {
3009		pa = vtophys(va);
3010		if (pa) {
3011			pmap_wb_page(PHYS_TO_VM_PAGE(pa), TRUE);
3012			pmap_kremove(va);
3013		}
3014		va += PAGE_SIZE;
3015	}
3016}
3017
3018
3019/*
3020 * pmap_object_init_pt preloads the ptes for a given object
3021 * into the specified pmap.  This eliminates the blast of soft
3022 * faults on process startup and immediately after an mmap.
3023 */
3024void
3025pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3026    vm_pindex_t pindex, vm_size_t size)
3027{
3028	printf("pmap_object_init_pt()\n");
3029}
3030
3031
3032/*
3033 *	pmap_is_prefaultable:
3034 *
3035 *	Return whether or not the specified virtual address is elgible
3036 *	for prefault.
3037 */
3038boolean_t
3039pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3040{
3041	pd_entry_t *pde;
3042	pt_entry_t *pte;
3043
3044	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
3045		return (FALSE);
3046	if (*pte == 0)
3047		return (TRUE);
3048	return (FALSE);
3049}
3050
3051/*
3052 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3053 * Returns TRUE if the mapping exists, else FALSE.
3054 *
3055 * NOTE: This function is only used by a couple of arm-specific modules.
3056 * It is not safe to take any pmap locks here, since we could be right
3057 * in the middle of debugging the pmap anyway...
3058 *
3059 * It is possible for this routine to return FALSE even though a valid
3060 * mapping does exist. This is because we don't lock, so the metadata
3061 * state may be inconsistent.
3062 *
3063 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3064 * a "section" mapping.
3065 */
3066boolean_t
3067pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3068{
3069	struct l2_dtable *l2;
3070	pd_entry_t *pl1pd, l1pd;
3071	pt_entry_t *ptep;
3072	u_short l1idx;
3073
3074	if (pm->pm_l1 == NULL)
3075		return (FALSE);
3076
3077	l1idx = L1_IDX(va);
3078	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3079	l1pd = *pl1pd;
3080
3081	if (l1pte_section_p(l1pd)) {
3082		*ptp = NULL;
3083		return (TRUE);
3084	}
3085
3086	if (pm->pm_l2 == NULL)
3087		return (FALSE);
3088
3089	l2 = pm->pm_l2[L2_IDX(l1idx)];
3090
3091	if (l2 == NULL ||
3092	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3093		return (FALSE);
3094	}
3095
3096	*ptp = &ptep[l2pte_index(va)];
3097	return (TRUE);
3098}
3099
3100/*
3101 *      Routine:        pmap_remove_all
3102 *      Function:
3103 *              Removes this physical page from
3104 *              all physical maps in which it resides.
3105 *              Reflects back modify bits to the pager.
3106 *
3107 *      Notes:
3108 *              Original versions of this routine were very
3109 *              inefficient because they iteratively called
3110 *              pmap_remove (slow...)
3111 */
3112void
3113pmap_remove_all(vm_page_t m)
3114{
3115	pv_entry_t pv;
3116	pt_entry_t *ptep, pte;
3117	struct l2_bucket *l2b;
3118	boolean_t flush = FALSE;
3119	pmap_t curpm;
3120	int flags = 0;
3121
3122#if defined(PMAP_DEBUG)
3123	/*
3124	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
3125	 * pages!
3126	 */
3127	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
3128		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
3129	}
3130#endif
3131
3132	if (TAILQ_EMPTY(&m->md.pv_list))
3133		return;
3134	curpm = vmspace_pmap(curproc->p_vmspace);
3135	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3136		if (flush == FALSE && (pv->pv_pmap == curpm ||
3137		    pv->pv_pmap == pmap_kernel()))
3138			flush = TRUE;
3139		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3140		KASSERT(l2b != NULL, ("No l2 bucket"));
3141		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3142		pte = *ptep;
3143		*ptep = 0;
3144		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3145		pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3146		if (pv->pv_flags & PVF_WIRED)
3147			pv->pv_pmap->pm_stats.wired_count--;
3148		pv->pv_pmap->pm_stats.resident_count--;
3149		flags |= pv->pv_flags;
3150		pmap_nuke_pv(m, pv->pv_pmap, pv);
3151		pmap_free_pv_entry(pv);
3152	}
3153
3154	if (flush) {
3155		if (PV_BEEN_EXECD(flags))
3156			pmap_tlb_flushID(curpm);
3157		else
3158			pmap_tlb_flushD(curpm);
3159	}
3160}
3161
3162
3163/*
3164 *	Set the physical protection on the
3165 *	specified range of this map as requested.
3166 */
3167void
3168pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3169{
3170	struct l2_bucket *l2b;
3171	pt_entry_t *ptep, pte;
3172	vm_offset_t next_bucket;
3173	u_int flags;
3174	int flush;
3175
3176	if ((prot & VM_PROT_READ) == 0) {
3177		mtx_lock(&Giant);
3178		pmap_remove(pm, sva, eva);
3179		mtx_unlock(&Giant);
3180		return;
3181	}
3182
3183	if (prot & VM_PROT_WRITE) {
3184		/*
3185		 * If this is a read->write transition, just ignore it and let
3186		 * vm_fault() take care of it later.
3187		 */
3188		return;
3189	}
3190
3191	mtx_lock(&Giant);
3192
3193	/*
3194	 * OK, at this point, we know we're doing write-protect operation.
3195	 * If the pmap is active, write-back the range.
3196	 */
3197	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3198
3199	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3200	flags = 0;
3201
3202	vm_page_lock_queues();
3203	while (sva < eva) {
3204		next_bucket = L2_NEXT_BUCKET(sva);
3205		if (next_bucket > eva)
3206			next_bucket = eva;
3207
3208		l2b = pmap_get_l2_bucket(pm, sva);
3209		if (l2b == NULL) {
3210			sva = next_bucket;
3211			continue;
3212		}
3213
3214		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3215
3216		while (sva < next_bucket) {
3217			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3218				struct vm_page *pg;
3219				u_int f;
3220
3221				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3222				pte &= ~L2_S_PROT_W;
3223				*ptep = pte;
3224				PTE_SYNC(ptep);
3225
3226				if (pg != NULL) {
3227					f = pmap_modify_pv(pg, pm, sva,
3228					    PVF_WRITE, 0);
3229					pmap_vac_me_harder(pg, pm, sva);
3230					if (pmap_track_modified(sva))
3231						vm_page_dirty(pg);
3232				} else
3233					f = PVF_REF | PVF_EXEC;
3234
3235				if (flush >= 0) {
3236					flush++;
3237					flags |= f;
3238				} else
3239				if (PV_BEEN_EXECD(f))
3240					pmap_tlb_flushID_SE(pm, sva);
3241				else
3242				if (PV_BEEN_REFD(f))
3243					pmap_tlb_flushD_SE(pm, sva);
3244			}
3245
3246			sva += PAGE_SIZE;
3247			ptep++;
3248		}
3249	}
3250
3251
3252	if (flush) {
3253		if (PV_BEEN_EXECD(flags))
3254			pmap_tlb_flushID(pm);
3255		else
3256		if (PV_BEEN_REFD(flags))
3257			pmap_tlb_flushD(pm);
3258	}
3259	vm_page_unlock_queues();
3260
3261	mtx_unlock(&Giant);
3262}
3263
3264
3265/*
3266 *	Insert the given physical page (p) at
3267 *	the specified virtual address (v) in the
3268 *	target physical map with the protection requested.
3269 *
3270 *	If specified, the page will be wired down, meaning
3271 *	that the related pte can not be reclaimed.
3272 *
3273 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3274 *	or lose information.  That is, this routine must actually
3275 *	insert this page into the given map NOW.
3276 */
3277
3278void
3279pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3280    boolean_t wired)
3281{
3282	struct l2_bucket *l2b = NULL;
3283	struct vm_page *opg;
3284	struct pv_entry *pve = NULL;
3285	pt_entry_t *ptep, npte, opte;
3286	u_int nflags;
3287	u_int oflags;
3288	vm_paddr_t pa;
3289
3290	vm_page_lock_queues();
3291	if (va == vector_page) {
3292		pa = systempage.pv_pa;
3293		m = NULL;
3294	} else
3295		pa = VM_PAGE_TO_PHYS(m);
3296	nflags = 0;
3297	if (prot & VM_PROT_WRITE)
3298		nflags |= PVF_WRITE;
3299	if (prot & VM_PROT_EXECUTE)
3300		nflags |= PVF_EXEC;
3301	if (wired)
3302		nflags |= PVF_WIRED;
3303	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3304	    "wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired));
3305
3306	if (pmap == pmap_kernel()) {
3307		l2b = pmap_get_l2_bucket(pmap, va);
3308		if (l2b == NULL)
3309			l2b = pmap_grow_l2_bucket(pmap, va);
3310	} else
3311		l2b = pmap_alloc_l2_bucket(pmap, va);
3312		KASSERT(l2b != NULL,
3313		    ("pmap_enter: failed to allocate l2 bucket"));
3314	ptep = &l2b->l2b_kva[l2pte_index(va)];
3315
3316	opte = *ptep;
3317	npte = pa;
3318	oflags = 0;
3319	if (opte) {
3320		/*
3321		 * There is already a mapping at this address.
3322		 * If the physical address is different, lookup the
3323		 * vm_page.
3324		 */
3325		if (l2pte_pa(opte) != pa)
3326			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3327		else
3328			opg = m;
3329	} else
3330		opg = NULL;
3331
3332	if ((prot & (VM_PROT_ALL)) ||
3333	    (!m || m->md.pvh_attrs & PVF_REF)) {
3334		/*
3335		 * - The access type indicates that we don't need
3336		 *   to do referenced emulation.
3337		 * OR
3338		 * - The physical page has already been referenced
3339		 *   so no need to re-do referenced emulation here.
3340		 */
3341		npte |= L2_S_PROTO;
3342
3343		nflags |= PVF_REF;
3344
3345		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3346		    (m->md.pvh_attrs & PVF_MOD))) {
3347			/*
3348			 * This is a writable mapping, and the
3349			 * page's mod state indicates it has
3350			 * already been modified. Make it
3351			 * writable from the outset.
3352			 */
3353			nflags |= PVF_MOD;
3354			if (!(m->md.pvh_attrs & PVF_MOD) &&
3355			    pmap_track_modified(va))
3356				vm_page_dirty(m);
3357		}
3358		if (m && opte)
3359			vm_page_flag_set(m, PG_REFERENCED);
3360	} else {
3361		/*
3362		 * Need to do page referenced emulation.
3363		 */
3364		npte |= L2_TYPE_INV;
3365	}
3366
3367	if (prot & VM_PROT_WRITE)
3368		npte |= L2_S_PROT_W;
3369	npte |= pte_l2_s_cache_mode;
3370	if (m && m == opg) {
3371		/*
3372		 * We're changing the attrs of an existing mapping.
3373		 */
3374#if 0
3375		simple_lock(&pg->mdpage.pvh_slock);
3376#endif
3377		oflags = pmap_modify_pv(m, pmap, va,
3378		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3379		    PVF_MOD | PVF_REF, nflags);
3380#if 0
3381		simple_unlock(&pg->mdpage.pvh_slock);
3382#endif
3383
3384		/*
3385		 * We may need to flush the cache if we're
3386		 * doing rw-ro...
3387		 */
3388		if (pmap_is_current(pmap) &&
3389		    (oflags & PVF_NC) == 0 &&
3390			    (opte & L2_S_PROT_W) != 0 &&
3391			    (prot & VM_PROT_WRITE) == 0)
3392			cpu_dcache_wb_range(va, PAGE_SIZE);
3393	} else {
3394		/*
3395		 * New mapping, or changing the backing page
3396		 * of an existing mapping.
3397		 */
3398		if (opg) {
3399			/*
3400			 * Replacing an existing mapping with a new one.
3401			 * It is part of our managed memory so we
3402			 * must remove it from the PV list
3403			 */
3404#if 0
3405			simple_lock(&opg->mdpage.pvh_slock);
3406#endif
3407			pve = pmap_remove_pv(opg, pmap, va);
3408			if (m && (m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) && pve)
3409				pmap_free_pv_entry(pve);
3410			else if (!pve)
3411				pve = pmap_get_pv_entry();
3412			KASSERT(pve != NULL, ("No pv"));
3413#if 0
3414			simple_unlock(&opg->mdpage.pvh_slock);
3415#endif
3416			oflags = pve->pv_flags;
3417
3418			/*
3419			 * If the old mapping was valid (ref/mod
3420			 * emulation creates 'invalid' mappings
3421			 * initially) then make sure to frob
3422			 * the cache.
3423			 */
3424			if ((oflags & PVF_NC) == 0 &&
3425			    l2pte_valid(opte)) {
3426				if (PV_BEEN_EXECD(oflags)) {
3427					pmap_idcache_wbinv_range(pmap, va,
3428					    PAGE_SIZE);
3429				} else
3430					if (PV_BEEN_REFD(oflags)) {
3431						pmap_dcache_wb_range(pmap, va,
3432						    PAGE_SIZE, TRUE,
3433						    (oflags & PVF_WRITE) == 0);
3434					}
3435			}
3436		} else if (m)
3437			if ((pve = pmap_get_pv_entry()) == NULL) {
3438				panic("pmap_enter: no pv entries");
3439			}
3440		if (m && !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS)))
3441			pmap_enter_pv(m, pve, pmap, va, nflags);
3442	}
3443	/*
3444	 * Make sure userland mappings get the right permissions
3445	 */
3446	if (pmap != pmap_kernel() && va != vector_page) {
3447		npte |= L2_S_PROT_U;
3448	}
3449
3450	/*
3451	 * Keep the stats up to date
3452	 */
3453	if (opte == 0) {
3454		l2b->l2b_occupancy++;
3455		pmap->pm_stats.resident_count++;
3456	}
3457
3458
3459	/*
3460	 * If this is just a wiring change, the two PTEs will be
3461	 * identical, so there's no need to update the page table.
3462	 */
3463	if (npte != opte) {
3464		boolean_t is_cached = pmap_is_current(pmap);
3465
3466		*ptep = npte;
3467		if (is_cached) {
3468			/*
3469			 * We only need to frob the cache/tlb if this pmap
3470			 * is current
3471			 */
3472			PTE_SYNC(ptep);
3473			if (L1_IDX(va) != L1_IDX(vector_page) &&
3474			    l2pte_valid(npte)) {
3475				/*
3476				 * This mapping is likely to be accessed as
3477				 * soon as we return to userland. Fix up the
3478				 * L1 entry to avoid taking another
3479				 * page/domain fault.
3480				 */
3481				pd_entry_t *pl1pd, l1pd;
3482
3483				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3484				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3485				    L1_C_PROTO;
3486				if (*pl1pd != l1pd) {
3487					*pl1pd = l1pd;
3488					PTE_SYNC(pl1pd);
3489				}
3490			}
3491		}
3492
3493		if (PV_BEEN_EXECD(oflags))
3494			pmap_tlb_flushID_SE(pmap, va);
3495		else if (PV_BEEN_REFD(oflags))
3496			pmap_tlb_flushD_SE(pmap, va);
3497
3498
3499		pmap_vac_me_harder(m, pmap, va);
3500	}
3501	vm_page_unlock_queues();
3502}
3503
3504/*
3505 * this code makes some *MAJOR* assumptions:
3506 * 1. Current pmap & pmap exists.
3507 * 2. Not wired.
3508 * 3. Read access.
3509 * 4. No page table pages.
3510 * 6. Page IS managed.
3511 * but is *MUCH* faster than pmap_enter...
3512 */
3513
3514vm_page_t
3515pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
3516{
3517
3518	vm_page_busy(m);
3519	vm_page_unlock_queues();
3520	VM_OBJECT_UNLOCK(m->object);
3521	mtx_lock(&Giant);
3522	pmap_enter(pmap, va, m, VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
3523	pmap_idcache_wbinv_all(pmap);
3524	mtx_unlock(&Giant);
3525	VM_OBJECT_LOCK(m->object);
3526	vm_page_lock_queues();
3527	vm_page_wakeup(m);
3528	return (NULL);
3529}
3530
3531/*
3532 *	Routine:	pmap_change_wiring
3533 *	Function:	Change the wiring attribute for a map/virtual-address
3534 *			pair.
3535 *	In/out conditions:
3536 *			The mapping must already exist in the pmap.
3537 */
3538void
3539pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3540{
3541	struct l2_bucket *l2b;
3542	pt_entry_t *ptep, pte;
3543	vm_page_t pg;
3544
3545	l2b = pmap_get_l2_bucket(pmap, va);
3546	KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
3547	ptep = &l2b->l2b_kva[l2pte_index(va)];
3548	pte = *ptep;
3549	pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3550	if (pg)
3551		pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired);
3552}
3553
3554
3555/*
3556 *	Copy the range specified by src_addr/len
3557 *	from the source map to the range dst_addr/len
3558 *	in the destination map.
3559 *
3560 *	This routine is only advisory and need not do anything.
3561 */
3562void
3563pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3564    vm_size_t len, vm_offset_t src_addr)
3565{
3566}
3567
3568
3569/*
3570 *	Routine:	pmap_extract
3571 *	Function:
3572 *		Extract the physical page address associated
3573 *		with the given map/virtual_address pair.
3574 */
3575vm_paddr_t
3576pmap_extract(pmap_t pm, vm_offset_t va)
3577{
3578	struct l2_dtable *l2;
3579	pd_entry_t *pl1pd, l1pd;
3580	pt_entry_t *ptep, pte;
3581	vm_paddr_t pa;
3582	u_int l1idx;
3583	l1idx = L1_IDX(va);
3584	pl1pd = &pm->pm_l1->l1_kva[l1idx];
3585	l1pd = *pl1pd;
3586
3587	if (l1pte_section_p(l1pd)) {
3588		/*
3589		 * These should only happen for pmap_kernel()
3590		 */
3591		KASSERT(pm == pmap_kernel(), ("huh"));
3592		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3593	} else {
3594		/*
3595		 * Note that we can't rely on the validity of the L1
3596		 * descriptor as an indication that a mapping exists.
3597		 * We have to look it up in the L2 dtable.
3598		 */
3599		l2 = pm->pm_l2[L2_IDX(l1idx)];
3600
3601		if (l2 == NULL ||
3602		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3603			return (0);
3604		}
3605
3606		ptep = &ptep[l2pte_index(va)];
3607		pte = *ptep;
3608
3609		if (pte == 0)
3610			return (0);
3611
3612		switch (pte & L2_TYPE_MASK) {
3613		case L2_TYPE_L:
3614			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3615			break;
3616
3617		default:
3618			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3619			break;
3620		}
3621	}
3622
3623	return (pa);
3624}
3625
3626/*
3627 * Atomically extract and hold the physical page with the given
3628 * pmap and virtual address pair if that mapping permits the given
3629 * protection.
3630 *
3631 */
3632vm_page_t
3633pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3634{
3635	struct l2_dtable *l2;
3636	pd_entry_t *pl1pd, l1pd;
3637	pt_entry_t *ptep, pte;
3638	vm_paddr_t pa;
3639	vm_page_t m = NULL;
3640	u_int l1idx;
3641	l1idx = L1_IDX(va);
3642	pl1pd = &pmap->pm_l1->l1_kva[l1idx];
3643	l1pd = *pl1pd;
3644
3645	vm_page_lock_queues();
3646	if (l1pte_section_p(l1pd)) {
3647		/*
3648		 * These should only happen for pmap_kernel()
3649		 */
3650		KASSERT(pmap == pmap_kernel(), ("huh"));
3651		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3652		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3653			m = PHYS_TO_VM_PAGE(pa);
3654			vm_page_hold(m);
3655		}
3656
3657	} else {
3658		/*
3659		 * Note that we can't rely on the validity of the L1
3660		 * descriptor as an indication that a mapping exists.
3661		 * We have to look it up in the L2 dtable.
3662		 */
3663		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3664
3665		if (l2 == NULL ||
3666		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3667			return (NULL);
3668		}
3669
3670		ptep = &ptep[l2pte_index(va)];
3671		pte = *ptep;
3672
3673		if (pte == 0)
3674			return (NULL);
3675
3676		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3677			switch (pte & L2_TYPE_MASK) {
3678			case L2_TYPE_L:
3679				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3680				break;
3681
3682			default:
3683				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3684				break;
3685			}
3686			m = PHYS_TO_VM_PAGE(pa);
3687			vm_page_hold(m);
3688		}
3689	}
3690
3691	vm_page_unlock_queues();
3692	return (m);
3693}
3694
3695/*
3696 * Initialize a preallocated and zeroed pmap structure,
3697 * such as one in a vmspace structure.
3698 */
3699
3700void
3701pmap_pinit(pmap_t pmap)
3702{
3703	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3704
3705	pmap_alloc_l1(pmap);
3706	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3707
3708	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
3709	pmap->pm_count = 1;
3710	pmap->pm_active = 0;
3711
3712	TAILQ_INIT(&pmap->pm_pvlist);
3713	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3714	pmap->pm_stats.resident_count = 1;
3715	if (vector_page < KERNBASE) {
3716		pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
3717		    VM_PROT_READ, 1);
3718	}
3719}
3720
3721
3722/***************************************************
3723 * page management routines.
3724 ***************************************************/
3725
3726
3727static void
3728pmap_free_pv_entry(pv_entry_t pv)
3729{
3730	pv_entry_count--;
3731	uma_zfree(pvzone, pv);
3732}
3733
3734
3735/*
3736 * get a new pv_entry, allocating a block from the system
3737 * when needed.
3738 * the memory allocation is performed bypassing the malloc code
3739 * because of the possibility of allocations at interrupt time.
3740 */
3741static pv_entry_t
3742pmap_get_pv_entry(void)
3743{
3744	pv_entry_t ret_value;
3745
3746	pv_entry_count++;
3747	if (pv_entry_high_water &&
3748	    (pv_entry_count > pv_entry_high_water) &&
3749	    (pmap_pagedaemon_waken == 0)) {
3750	    	pmap_pagedaemon_waken = 1;
3751	    	wakeup (&vm_pages_needed);
3752	}
3753	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3754	return ret_value;
3755}
3756
3757
3758/*
3759 *	Remove the given range of addresses from the specified map.
3760 *
3761 *	It is assumed that the start and end are properly
3762 *	rounded to the page size.
3763 */
3764#define  PMAP_REMOVE_CLEAN_LIST_SIZE     3
3765void
3766pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3767{
3768	struct l2_bucket *l2b;
3769	vm_offset_t next_bucket;
3770	pt_entry_t *ptep;
3771	u_int cleanlist_idx, total, cnt;
3772	struct {
3773		vm_offset_t va;
3774		pt_entry_t *pte;
3775	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3776	u_int mappings, is_exec, is_refd;
3777	int flushall = 0;
3778
3779
3780	/*
3781	 * we lock in the pmap => pv_head direction
3782	 */
3783#if 0
3784	PMAP_MAP_TO_HEAD_LOCK();
3785	pmap_acquire_pmap_lock(pm);
3786#endif
3787
3788	vm_page_lock_queues();
3789	if (!pmap_is_current(pm)) {
3790		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3791	} else
3792		cleanlist_idx = 0;
3793
3794	total = 0;
3795	while (sva < eva) {
3796		/*
3797		 * Do one L2 bucket's worth at a time.
3798		 */
3799		next_bucket = L2_NEXT_BUCKET(sva);
3800		if (next_bucket > eva)
3801			next_bucket = eva;
3802
3803		l2b = pmap_get_l2_bucket(pm, sva);
3804		if (l2b == NULL) {
3805			sva = next_bucket;
3806			continue;
3807		}
3808
3809		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3810		mappings = 0;
3811
3812		while (sva < next_bucket) {
3813			struct vm_page *pg;
3814			pt_entry_t pte;
3815			vm_paddr_t pa;
3816
3817			pte = *ptep;
3818
3819			if (pte == 0) {
3820				/*
3821				 * Nothing here, move along
3822				 */
3823				sva += PAGE_SIZE;
3824				ptep++;
3825				continue;
3826			}
3827
3828			pm->pm_stats.resident_count--;
3829			pa = l2pte_pa(pte);
3830			is_exec = 0;
3831			is_refd = 1;
3832
3833			/*
3834			 * Update flags. In a number of circumstances,
3835			 * we could cluster a lot of these and do a
3836			 * number of sequential pages in one go.
3837			 */
3838			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3839				struct pv_entry *pve;
3840#if 0
3841				simple_lock(&pg->mdpage.pvh_slock);
3842#endif
3843				pve = pmap_remove_pv(pg, pm, sva);
3844				if (pve) {
3845#if 0
3846				simple_unlock(&pg->mdpage.pvh_slock);
3847#endif
3848						is_exec =
3849						   PV_BEEN_EXECD(pve->pv_flags);
3850						is_refd =
3851						   PV_BEEN_REFD(pve->pv_flags);
3852					pmap_free_pv_entry(pve);
3853				}
3854			}
3855
3856			if (!l2pte_valid(pte)) {
3857				*ptep = 0;
3858				PTE_SYNC_CURRENT(pm, ptep);
3859				sva += PAGE_SIZE;
3860				ptep++;
3861				mappings++;
3862				continue;
3863			}
3864
3865			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3866				/* Add to the clean list. */
3867				cleanlist[cleanlist_idx].pte = ptep;
3868				cleanlist[cleanlist_idx].va =
3869				    sva | (is_exec & 1);
3870				cleanlist_idx++;
3871			} else
3872			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3873				/* Nuke everything if needed. */
3874				pmap_idcache_wbinv_all(pm);
3875				pmap_tlb_flushID(pm);
3876
3877				/*
3878				 * Roll back the previous PTE list,
3879				 * and zero out the current PTE.
3880				 */
3881				for (cnt = 0;
3882				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3883					*cleanlist[cnt].pte = 0;
3884				}
3885				*ptep = 0;
3886				PTE_SYNC(ptep);
3887				cleanlist_idx++;
3888				flushall = 1;
3889			} else {
3890				*ptep = 0;
3891				PTE_SYNC(ptep);
3892					if (is_exec)
3893						pmap_tlb_flushID_SE(pm, sva);
3894					else
3895					if (is_refd)
3896						pmap_tlb_flushD_SE(pm, sva);
3897			}
3898
3899			sva += PAGE_SIZE;
3900			ptep++;
3901			mappings++;
3902		}
3903
3904		/*
3905		 * Deal with any left overs
3906		 */
3907		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3908			total += cleanlist_idx;
3909			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3910				vm_offset_t clva =
3911				    cleanlist[cnt].va & ~1;
3912				if (cleanlist[cnt].va & 1) {
3913					pmap_idcache_wbinv_range(pm,
3914					    clva, PAGE_SIZE);
3915					pmap_tlb_flushID_SE(pm, clva);
3916				} else {
3917					pmap_dcache_wb_range(pm,
3918					    clva, PAGE_SIZE, TRUE,
3919					    FALSE);
3920					pmap_tlb_flushD_SE(pm, clva);
3921				}
3922				*cleanlist[cnt].pte = 0;
3923				PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
3924			}
3925
3926			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3927				cleanlist_idx = 0;
3928			else {
3929				/*
3930				 * We are removing so much entries it's just
3931				 * easier to flush the whole cache.
3932				 */
3933				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3934				pmap_idcache_wbinv_all(pm);
3935				flushall = 1;
3936			}
3937		}
3938
3939		pmap_free_l2_bucket(pm, l2b, mappings);
3940	}
3941
3942	vm_page_unlock_queues();
3943	if (flushall)
3944		cpu_tlb_flushID();
3945#if 0
3946	pmap_release_pmap_lock(pm);
3947	PMAP_MAP_TO_HEAD_UNLOCK();
3948#endif
3949}
3950
3951
3952
3953
3954/*
3955 * pmap_zero_page()
3956 *
3957 * Zero a given physical page by mapping it at a page hook point.
3958 * In doing the zero page op, the page we zero is mapped cachable, as with
3959 * StrongARM accesses to non-cached pages are non-burst making writing
3960 * _any_ bulk data very slow.
3961 */
3962#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3963void
3964pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
3965{
3966#ifdef DEBUG
3967	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3968
3969	if (pg->md.pvh_list != NULL)
3970		panic("pmap_zero_page: page has mappings");
3971#endif
3972
3973
3974	/*
3975	 * Hook in the page, zero it, and purge the cache for that
3976	 * zeroed page. Invalidate the TLB as needed.
3977	 */
3978	*cdst_pte = L2_S_PROTO | phys |
3979	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3980	PTE_SYNC(cdst_pte);
3981	cpu_tlb_flushD_SE(cdstp);
3982	cpu_cpwait();
3983	if (off || size != PAGE_SIZE)
3984		bzero((void *)(cdstp + off), size);
3985	else
3986		bzero_page(cdstp);
3987	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3988}
3989#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3990
3991#if ARM_MMU_XSCALE == 1
3992void
3993pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
3994{
3995	/*
3996	 * Hook in the page, zero it, and purge the cache for that
3997	 * zeroed page. Invalidate the TLB as needed.
3998	 */
3999	*cdst_pte = L2_S_PROTO | phys |
4000	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4001	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4002	PTE_SYNC(cdst_pte);
4003	cpu_tlb_flushD_SE(cdstp);
4004	cpu_cpwait();
4005	if (off || size != PAGE_SIZE)
4006		bzero((void *)(cdstp + off), size);
4007	else
4008		bzero_page(cdstp);
4009	xscale_cache_clean_minidata();
4010}
4011
4012/*
4013 * Change the PTEs for the specified kernel mappings such that they
4014 * will use the mini data cache instead of the main data cache.
4015 */
4016void
4017pmap_use_minicache(vm_offset_t va, vm_size_t size)
4018{
4019	struct l2_bucket *l2b;
4020	pt_entry_t *ptep, *sptep, pte;
4021	vm_offset_t next_bucket, eva;
4022
4023#if (ARM_NMMUS > 1)
4024	if (xscale_use_minidata == 0)
4025		return;
4026#endif
4027
4028	eva = va + size;
4029
4030	while (va < eva) {
4031		next_bucket = L2_NEXT_BUCKET(va);
4032		if (next_bucket > eva)
4033			next_bucket = eva;
4034
4035		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4036
4037		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4038
4039		while (va < next_bucket) {
4040			pte = *ptep;
4041			if (!l2pte_minidata(pte)) {
4042				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4043				cpu_tlb_flushD_SE(va);
4044				*ptep = pte & ~L2_B;
4045			}
4046			ptep++;
4047			va += PAGE_SIZE;
4048		}
4049		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4050	}
4051	cpu_cpwait();
4052}
4053#endif /* ARM_MMU_XSCALE == 1 */
4054
4055/*
4056 *	pmap_zero_page zeros the specified hardware page by mapping
4057 *	the page into KVM and using bzero to clear its contents.
4058 */
4059void
4060pmap_zero_page(vm_page_t m)
4061{
4062	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4063}
4064
4065
4066/*
4067 *	pmap_zero_page_area zeros the specified hardware page by mapping
4068 *	the page into KVM and using bzero to clear its contents.
4069 *
4070 *	off and size may not cover an area beyond a single hardware page.
4071 */
4072void
4073pmap_zero_page_area(vm_page_t m, int off, int size)
4074{
4075
4076	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4077}
4078
4079
4080/*
4081 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4082 *	the page into KVM and using bzero to clear its contents.  This
4083 *	is intended to be called from the vm_pagezero process only and
4084 *	outside of Giant.
4085 */
4086void
4087pmap_zero_page_idle(vm_page_t m)
4088{
4089
4090	pmap_zero_page(m);
4091}
4092
4093/*
4094 * pmap_clean_page()
4095 *
4096 * This is a local function used to work out the best strategy to clean
4097 * a single page referenced by its entry in the PV table. It's used by
4098 * pmap_copy_page, pmap_zero page and maybe some others later on.
4099 *
4100 * Its policy is effectively:
4101 *  o If there are no mappings, we don't bother doing anything with the cache.
4102 *  o If there is one mapping, we clean just that page.
4103 *  o If there are multiple mappings, we clean the entire cache.
4104 *
4105 * So that some functions can be further optimised, it returns 0 if it didn't
4106 * clean the entire cache, or 1 if it did.
4107 *
4108 * XXX One bug in this routine is that if the pv_entry has a single page
4109 * mapped at 0x00000000 a whole cache clean will be performed rather than
4110 * just the 1 page. Since this should not occur in everyday use and if it does
4111 * it will just result in not the most efficient clean for the page.
4112 */
4113static int
4114pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4115{
4116	pmap_t pm, pm_to_clean = NULL;
4117	struct pv_entry *npv;
4118	u_int cache_needs_cleaning = 0;
4119	u_int flags = 0;
4120	vm_offset_t page_to_clean = 0;
4121
4122	if (pv == NULL) {
4123		/* nothing mapped in so nothing to flush */
4124		return (0);
4125	}
4126
4127	/*
4128	 * Since we flush the cache each time we change to a different
4129	 * user vmspace, we only need to flush the page if it is in the
4130	 * current pmap.
4131	 */
4132	if (curthread)
4133		pm = vmspace_pmap(curproc->p_vmspace);
4134	else
4135		pm = pmap_kernel();
4136
4137	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4138		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
4139			flags |= npv->pv_flags;
4140			/*
4141			 * The page is mapped non-cacheable in
4142			 * this map.  No need to flush the cache.
4143			 */
4144			if (npv->pv_flags & PVF_NC) {
4145#ifdef DIAGNOSTIC
4146				if (cache_needs_cleaning)
4147					panic("pmap_clean_page: "
4148					    "cache inconsistency");
4149#endif
4150				break;
4151			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4152				continue;
4153			if (cache_needs_cleaning) {
4154				page_to_clean = 0;
4155				break;
4156			} else {
4157				page_to_clean = npv->pv_va;
4158				pm_to_clean = npv->pv_pmap;
4159			}
4160			cache_needs_cleaning = 1;
4161		}
4162	}
4163	if (page_to_clean) {
4164		if (PV_BEEN_EXECD(flags))
4165			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4166			    PAGE_SIZE);
4167		else
4168			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4169			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4170	} else if (cache_needs_cleaning) {
4171		if (PV_BEEN_EXECD(flags))
4172			pmap_idcache_wbinv_all(pm);
4173		else
4174			pmap_dcache_wbinv_all(pm);
4175		return (1);
4176	}
4177	return (0);
4178}
4179
4180/*
4181 *	pmap_copy_page copies the specified (machine independent)
4182 *	page by mapping the page into virtual memory and using
4183 *	bcopy to copy the page, one machine dependent page at a
4184 *	time.
4185 */
4186
4187/*
4188 * pmap_copy_page()
4189 *
4190 * Copy one physical page into another, by mapping the pages into
4191 * hook points. The same comment regarding cachability as in
4192 * pmap_zero_page also applies here.
4193 */
4194#if  (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4195void
4196pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4197{
4198	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4199#ifdef DEBUG
4200	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4201
4202	if (dst_pg->md.pvh_list != NULL)
4203		panic("pmap_copy_page: dst page has mappings");
4204#endif
4205
4206
4207	/*
4208	 * Clean the source page.  Hold the source page's lock for
4209	 * the duration of the copy so that no other mappings can
4210	 * be created while we have a potentially aliased mapping.
4211	 */
4212#if 0
4213	mtx_lock(&src_pg->md.pvh_mtx);
4214#endif
4215	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4216
4217	/*
4218	 * Map the pages into the page hook points, copy them, and purge
4219	 * the cache for the appropriate page. Invalidate the TLB
4220	 * as required.
4221	 */
4222	*csrc_pte = L2_S_PROTO | src |
4223	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4224	PTE_SYNC(csrc_pte);
4225	*cdst_pte = L2_S_PROTO | dst |
4226	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4227	PTE_SYNC(cdst_pte);
4228	cpu_tlb_flushD_SE(csrcp);
4229	cpu_tlb_flushD_SE(cdstp);
4230	cpu_cpwait();
4231	bcopy_page(csrcp, cdstp);
4232	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4233#if 0
4234	mtx_lock(&src_pg->md.pvh_mtx);
4235#endif
4236	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4237}
4238#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4239
4240#if ARM_MMU_XSCALE == 1
4241void
4242pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4243{
4244	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4245#ifdef DEBUG
4246	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4247
4248	if (dst_pg->md.pvh_list != NULL)
4249		panic("pmap_copy_page: dst page has mappings");
4250#endif
4251
4252
4253	/*
4254	 * Clean the source page.  Hold the source page's lock for
4255	 * the duration of the copy so that no other mappings can
4256	 * be created while we have a potentially aliased mapping.
4257	 */
4258	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4259
4260	/*
4261	 * Map the pages into the page hook points, copy them, and purge
4262	 * the cache for the appropriate page. Invalidate the TLB
4263	 * as required.
4264	 */
4265	*csrc_pte = L2_S_PROTO | src |
4266	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4267	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4268	PTE_SYNC(csrc_pte);
4269	*cdst_pte = L2_S_PROTO | dst |
4270	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4271	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4272	PTE_SYNC(cdst_pte);
4273	cpu_tlb_flushD_SE(csrcp);
4274	cpu_tlb_flushD_SE(cdstp);
4275	cpu_cpwait();
4276	bcopy_page(csrcp, cdstp);
4277	xscale_cache_clean_minidata();
4278}
4279#endif /* ARM_MMU_XSCALE == 1 */
4280
4281void
4282pmap_copy_page(vm_page_t src, vm_page_t dst)
4283{
4284	cpu_dcache_wbinv_all();
4285	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4286}
4287
4288
4289
4290
4291/*
4292 * this routine returns true if a physical page resides
4293 * in the given pmap.
4294 */
4295boolean_t
4296pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4297{
4298	pv_entry_t pv;
4299	int loops = 0;
4300	int s;
4301
4302	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4303		return (FALSE);
4304
4305	s = splvm();
4306
4307	/*
4308	 * Not found, check current mappings returning immediately
4309	 */
4310	for (pv = TAILQ_FIRST(&m->md.pv_list);
4311	    pv;
4312	    pv = TAILQ_NEXT(pv, pv_list)) {
4313	    	if (pv->pv_pmap == pmap) {
4314	    		splx(s);
4315	    		return (TRUE);
4316	    	}
4317		loops++;
4318		if (loops >= 16)
4319			break;
4320	}
4321	splx(s);
4322	return (FALSE);
4323}
4324
4325
4326/*
4327 *	pmap_ts_referenced:
4328 *
4329 *	Return the count of reference bits for a page, clearing all of them.
4330 */
4331int
4332pmap_ts_referenced(vm_page_t m)
4333{
4334	return (pmap_clearbit(m, PVF_REF));
4335}
4336
4337
4338boolean_t
4339pmap_is_modified(vm_page_t m)
4340{
4341
4342	if (m->md.pvh_attrs & PVF_MOD)
4343		return (TRUE);
4344
4345	return(FALSE);
4346}
4347
4348
4349/*
4350 *	Clear the modify bits on the specified physical page.
4351 */
4352void
4353pmap_clear_modify(vm_page_t m)
4354{
4355
4356	if (m->md.pvh_attrs & PVF_MOD)
4357		pmap_clearbit(m, PVF_MOD);
4358}
4359
4360
4361/*
4362 *	pmap_clear_reference:
4363 *
4364 *	Clear the reference bit on the specified physical page.
4365 */
4366void
4367pmap_clear_reference(vm_page_t m)
4368{
4369
4370	if (m->md.pvh_attrs & PVF_REF)
4371		pmap_clearbit(m, PVF_REF);
4372}
4373
4374
4375/*
4376 * perform the pmap work for mincore
4377 */
4378int
4379pmap_mincore(pmap_t pmap, vm_offset_t addr)
4380{
4381	printf("pmap_mincore()\n");
4382
4383	return (0);
4384}
4385
4386
4387vm_offset_t
4388pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4389{
4390
4391	return(addr);
4392}
4393
4394
4395/*
4396 * Map a set of physical memory pages into the kernel virtual
4397 * address space. Return a pointer to where it is mapped. This
4398 * routine is intended to be used for mapping device memory,
4399 * NOT real memory.
4400 */
4401void *
4402pmap_mapdev(vm_offset_t pa, vm_size_t size)
4403{
4404	vm_offset_t va, tmpva, offset;
4405
4406	offset = pa & PAGE_MASK;
4407	size = roundup(size, PAGE_SIZE);
4408
4409	GIANT_REQUIRED;
4410
4411	va = kmem_alloc_nofault(kernel_map, size);
4412	if (!va)
4413		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4414	for (tmpva = va; size > 0;) {
4415		pmap_kenter_internal(tmpva, pa, 0);
4416		size -= PAGE_SIZE;
4417		tmpva += PAGE_SIZE;
4418		pa += PAGE_SIZE;
4419	}
4420
4421	return ((void *)(va));
4422}
4423
4424#define BOOTSTRAP_DEBUG
4425
4426/*
4427 * pmap_map_section:
4428 *
4429 *	Create a single section mapping.
4430 */
4431void
4432pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4433    int prot, int cache)
4434{
4435	pd_entry_t *pde = (pd_entry_t *) l1pt;
4436	pd_entry_t fl;
4437
4438	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4439
4440	switch (cache) {
4441	case PTE_NOCACHE:
4442	default:
4443		fl = 0;
4444		break;
4445
4446	case PTE_CACHE:
4447		fl = pte_l1_s_cache_mode;
4448		break;
4449
4450	case PTE_PAGETABLE:
4451		fl = pte_l1_s_cache_mode_pt;
4452		break;
4453	}
4454
4455	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4456	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4457	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4458
4459}
4460
4461/*
4462 * pmap_link_l2pt:
4463 *
4464 *	Link the L2 page table specified by "pa" into the L1
4465 *	page table at the slot for "va".
4466 */
4467void
4468pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4469{
4470	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4471	u_int slot = va >> L1_S_SHIFT;
4472
4473#ifndef ARM32_NEW_VM_LAYOUT
4474	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0, ("blah"));
4475	KASSERT((l2pv->pv_pa & PAGE_MASK) == 0, ("ouin"));
4476#endif
4477
4478	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4479
4480	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4481#ifdef ARM32_NEW_VM_LAYOUT
4482	PTE_SYNC(&pde[slot]);
4483#else
4484	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4485	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4486	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4487	PTE_SYNC_RANGE(&pde[slot + 0], 4);
4488#endif
4489
4490	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4491
4492
4493}
4494
4495/*
4496 * pmap_map_entry
4497 *
4498 * 	Create a single page mapping.
4499 */
4500void
4501pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4502    int cache)
4503{
4504	pd_entry_t *pde = (pd_entry_t *) l1pt;
4505	pt_entry_t fl;
4506	pt_entry_t *pte;
4507
4508	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4509
4510	switch (cache) {
4511	case PTE_NOCACHE:
4512	default:
4513		fl = 0;
4514		break;
4515
4516	case PTE_CACHE:
4517		fl = pte_l2_s_cache_mode;
4518		break;
4519
4520	case PTE_PAGETABLE:
4521		fl = pte_l2_s_cache_mode_pt;
4522		break;
4523	}
4524
4525	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4526		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4527
4528#ifndef ARM32_NEW_VM_LAYOUT
4529	pte = (pt_entry_t *)
4530	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4531#else
4532	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4533#endif
4534
4535	if (pte == NULL)
4536		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4537
4538#ifndef ARM32_NEW_VM_LAYOUT
4539	pte[(va >> PAGE_SHIFT) & 0x3ff] =
4540	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4541	PTE_SYNC(&pte[(va >> PAGE_SHIFT) & 0x3ff]);
4542#else
4543	pte[l2pte_index(va)] =
4544	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4545	PTE_SYNC(&pte[l2pte_index(va)]);
4546#endif
4547}
4548
4549/*
4550 * pmap_map_chunk:
4551 *
4552 *	Map a chunk of memory using the most efficient mappings
4553 *	possible (section. large page, small page) into the
4554 *	provided L1 and L2 tables at the specified virtual address.
4555 */
4556vm_size_t
4557pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4558    vm_size_t size, int prot, int cache)
4559{
4560	pd_entry_t *pde = (pd_entry_t *) l1pt;
4561	pt_entry_t *pte, f1, f2s, f2l;
4562	vm_size_t resid;
4563	int i;
4564
4565	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4566
4567	if (l1pt == 0)
4568		panic("pmap_map_chunk: no L1 table provided");
4569
4570#ifdef VERBOSE_INIT_ARM
4571	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4572	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4573#endif
4574
4575	switch (cache) {
4576	case PTE_NOCACHE:
4577	default:
4578		f1 = 0;
4579		f2l = 0;
4580		f2s = 0;
4581		break;
4582
4583	case PTE_CACHE:
4584		f1 = pte_l1_s_cache_mode;
4585		f2l = pte_l2_l_cache_mode;
4586		f2s = pte_l2_s_cache_mode;
4587		break;
4588
4589	case PTE_PAGETABLE:
4590		f1 = pte_l1_s_cache_mode_pt;
4591		f2l = pte_l2_l_cache_mode_pt;
4592		f2s = pte_l2_s_cache_mode_pt;
4593		break;
4594	}
4595
4596	size = resid;
4597
4598	while (resid > 0) {
4599		/* See if we can use a section mapping. */
4600		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4601#ifdef VERBOSE_INIT_ARM
4602			printf("S");
4603#endif
4604			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4605			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4606			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4607			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4608			va += L1_S_SIZE;
4609			pa += L1_S_SIZE;
4610			resid -= L1_S_SIZE;
4611			continue;
4612		}
4613
4614		/*
4615		 * Ok, we're going to use an L2 table.  Make sure
4616		 * one is actually in the corresponding L1 slot
4617		 * for the current VA.
4618		 */
4619		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4620			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4621
4622#ifndef ARM32_NEW_VM_LAYOUT
4623		pte = (pt_entry_t *)
4624		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4625#else
4626		pte = (pt_entry_t *) kernel_pt_lookup(
4627		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4628#endif
4629		if (pte == NULL)
4630			panic("pmap_map_chunk: can't find L2 table for VA"
4631			    "0x%08x", va);
4632		/* See if we can use a L2 large page mapping. */
4633		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4634#ifdef VERBOSE_INIT_ARM
4635			printf("L");
4636#endif
4637			for (i = 0; i < 16; i++) {
4638#ifndef ARM32_NEW_VM_LAYOUT
4639				pte[((va >> PAGE_SHIFT) & 0x3f0) + i] =
4640				    L2_L_PROTO | pa |
4641				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4642				PTE_SYNC(&pte[((va >> PAGE_SHIFT) & 0x3f0) + i]);
4643#else
4644				pte[l2pte_index(va) + i] =
4645				    L2_L_PROTO | pa |
4646				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4647				PTE_SYNC(&pte[l2pte_index(va) + i]);
4648#endif
4649			}
4650			va += L2_L_SIZE;
4651			pa += L2_L_SIZE;
4652			resid -= L2_L_SIZE;
4653			continue;
4654		}
4655
4656		/* Use a small page mapping. */
4657#ifdef VERBOSE_INIT_ARM
4658		printf("P");
4659#endif
4660#ifndef ARM32_NEW_VM_LAYOUT
4661		pte[(va >> PAGE_SHIFT) & 0x3ff] =
4662		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4663		PTE_SYNC(&pte[(va >> PAGE_SHIFT) & 0x3ff]);
4664#else
4665		pte[l2pte_index(va)] =
4666		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4667		PTE_SYNC(&pte[l2pte_index(va)]);
4668#endif
4669		va += PAGE_SIZE;
4670		pa += PAGE_SIZE;
4671		resid -= PAGE_SIZE;
4672	}
4673#ifdef VERBOSE_INIT_ARM
4674	printf("\n");
4675#endif
4676	return (size);
4677
4678}
4679
4680/********************** Static device map routines ***************************/
4681
4682static const struct pmap_devmap *pmap_devmap_table;
4683
4684/*
4685 * Register the devmap table.  This is provided in case early console
4686 * initialization needs to register mappings created by bootstrap code
4687 * before pmap_devmap_bootstrap() is called.
4688 */
4689void
4690pmap_devmap_register(const struct pmap_devmap *table)
4691{
4692
4693	pmap_devmap_table = table;
4694}
4695
4696/*
4697 * Map all of the static regions in the devmap table, and remember
4698 * the devmap table so other parts of the kernel can look up entries
4699 * later.
4700 */
4701void
4702pmap_devmap_bootstrap(vm_offset_t l1pt, const struct pmap_devmap *table)
4703{
4704	int i;
4705
4706	pmap_devmap_table = table;
4707
4708	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4709#ifdef VERBOSE_INIT_ARM
4710		printf("devmap: %08lx -> %08lx @ %08lx\n",
4711		    pmap_devmap_table[i].pd_pa,
4712		    pmap_devmap_table[i].pd_pa +
4713			pmap_devmap_table[i].pd_size - 1,
4714		    pmap_devmap_table[i].pd_va);
4715#endif
4716		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4717		    pmap_devmap_table[i].pd_pa,
4718		    pmap_devmap_table[i].pd_size,
4719		    pmap_devmap_table[i].pd_prot,
4720		    pmap_devmap_table[i].pd_cache);
4721	}
4722}
4723
4724const struct pmap_devmap *
4725pmap_devmap_find_pa(vm_paddr_t pa, vm_size_t size)
4726{
4727	int i;
4728
4729	if (pmap_devmap_table == NULL)
4730		return (NULL);
4731
4732	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4733		if (pa >= pmap_devmap_table[i].pd_pa &&
4734		    pa + size <= pmap_devmap_table[i].pd_pa +
4735				 pmap_devmap_table[i].pd_size)
4736			return (&pmap_devmap_table[i]);
4737	}
4738
4739	return (NULL);
4740}
4741
4742const struct pmap_devmap *
4743pmap_devmap_find_va(vm_offset_t va, vm_size_t size)
4744{
4745	int i;
4746
4747	if (pmap_devmap_table == NULL)
4748		return (NULL);
4749
4750	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4751		if (va >= pmap_devmap_table[i].pd_va &&
4752		    va + size <= pmap_devmap_table[i].pd_va +
4753				 pmap_devmap_table[i].pd_size)
4754			return (&pmap_devmap_table[i]);
4755	}
4756
4757	return (NULL);
4758}
4759
4760