pmap-v4.c revision 159474
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 * 3. All advertising materials mentioning features or use of this software
81 *    must display the following acknowledgement:
82 *        This product includes software developed by the NetBSD
83 *        Foundation, Inc. and its contributors.
84 * 4. Neither the name of The NetBSD Foundation nor the names of its
85 *    contributors may be used to endorse or promote products derived
86 *    from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
89 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
90 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
91 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
92 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
93 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
94 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
95 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
96 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
97 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
98 * POSSIBILITY OF SUCH DAMAGE.
99 */
100
101/*-
102 * Copyright (c) 1994-1998 Mark Brinicombe.
103 * Copyright (c) 1994 Brini.
104 * All rights reserved.
105 *
106 * This code is derived from software written for Brini by Mark Brinicombe
107 *
108 * Redistribution and use in source and binary forms, with or without
109 * modification, are permitted provided that the following conditions
110 * are met:
111 * 1. Redistributions of source code must retain the above copyright
112 *    notice, this list of conditions and the following disclaimer.
113 * 2. Redistributions in binary form must reproduce the above copyright
114 *    notice, this list of conditions and the following disclaimer in the
115 *    documentation and/or other materials provided with the distribution.
116 * 3. All advertising materials mentioning features or use of this software
117 *    must display the following acknowledgement:
118 *      This product includes software developed by Mark Brinicombe.
119 * 4. The name of the author may not be used to endorse or promote products
120 *    derived from this software without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
123 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
124 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
125 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
126 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
127 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
128 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
129 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
130 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
131 *
132 * RiscBSD kernel project
133 *
134 * pmap.c
135 *
136 * Machine dependant vm stuff
137 *
138 * Created      : 20/09/94
139 */
140
141/*
142 * Special compilation symbols
143 * PMAP_DEBUG           - Build in pmap_debug_level code
144 */
145/* Include header files */
146
147#include "opt_vm.h"
148
149#include <sys/cdefs.h>
150__FBSDID("$FreeBSD: head/sys/arm/arm/pmap.c 159474 2006-06-10 05:20:18Z alc $");
151#include <sys/param.h>
152#include <sys/systm.h>
153#include <sys/kernel.h>
154#include <sys/proc.h>
155#include <sys/malloc.h>
156#include <sys/msgbuf.h>
157#include <sys/vmmeter.h>
158#include <sys/mman.h>
159#include <sys/smp.h>
160#include <sys/sx.h>
161#include <sys/sched.h>
162
163#include <vm/vm.h>
164#include <vm/uma.h>
165#include <vm/pmap.h>
166#include <vm/vm_kern.h>
167#include <vm/vm_object.h>
168#include <vm/vm_map.h>
169#include <vm/vm_page.h>
170#include <vm/vm_pageout.h>
171#include <vm/vm_extern.h>
172#include <sys/lock.h>
173#include <sys/mutex.h>
174#include <machine/md_var.h>
175#include <machine/vmparam.h>
176#include <machine/cpu.h>
177#include <machine/cpufunc.h>
178#include <machine/pcb.h>
179
180#ifdef PMAP_DEBUG
181#define PDEBUG(_lev_,_stat_) \
182        if (pmap_debug_level >= (_lev_)) \
183                ((_stat_))
184#define dprintf printf
185
186int pmap_debug_level = 0;
187#define PMAP_INLINE
188#else   /* PMAP_DEBUG */
189#define PDEBUG(_lev_,_stat_) /* Nothing */
190#define dprintf(x, arg...)
191#define PMAP_INLINE __inline
192#endif  /* PMAP_DEBUG */
193
194extern struct pv_addr systempage;
195/*
196 * Internal function prototypes
197 */
198static void pmap_free_pv_entry (pv_entry_t);
199static pv_entry_t pmap_get_pv_entry(void);
200
201static void		pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
202    vm_prot_t, boolean_t);
203static void		pmap_vac_me_harder(struct vm_page *, pmap_t,
204    vm_offset_t);
205static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t,
206    vm_offset_t);
207static void		pmap_vac_me_user(struct vm_page *, pmap_t, vm_offset_t);
208static void		pmap_alloc_l1(pmap_t);
209static void		pmap_free_l1(pmap_t);
210static void		pmap_use_l1(pmap_t);
211
212static int		pmap_clearbit(struct vm_page *, u_int);
213
214static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
215static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
216static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
217static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
218
219static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
220
221vm_offset_t avail_end;		/* PA of last available physical page */
222vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
223vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
224vm_offset_t pmap_curmaxkvaddr;
225vm_paddr_t kernel_l1pa;
226
227extern void *end;
228vm_offset_t kernel_vm_end = 0;
229
230struct pmap kernel_pmap_store;
231pmap_t kernel_pmap;
232
233static pt_entry_t *csrc_pte, *cdst_pte;
234static vm_offset_t csrcp, cdstp;
235static struct mtx cmtx;
236
237static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
238/*
239 * These routines are called when the CPU type is identified to set up
240 * the PTE prototypes, cache modes, etc.
241 *
242 * The variables are always here, just in case LKMs need to reference
243 * them (though, they shouldn't).
244 */
245
246pt_entry_t	pte_l1_s_cache_mode;
247pt_entry_t	pte_l1_s_cache_mode_pt;
248pt_entry_t	pte_l1_s_cache_mask;
249
250pt_entry_t	pte_l2_l_cache_mode;
251pt_entry_t	pte_l2_l_cache_mode_pt;
252pt_entry_t	pte_l2_l_cache_mask;
253
254pt_entry_t	pte_l2_s_cache_mode;
255pt_entry_t	pte_l2_s_cache_mode_pt;
256pt_entry_t	pte_l2_s_cache_mask;
257
258pt_entry_t	pte_l2_s_prot_u;
259pt_entry_t	pte_l2_s_prot_w;
260pt_entry_t	pte_l2_s_prot_mask;
261
262pt_entry_t	pte_l1_s_proto;
263pt_entry_t	pte_l1_c_proto;
264pt_entry_t	pte_l2_s_proto;
265
266void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
267void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
268/*
269 * Which pmap is currently 'live' in the cache
270 *
271 * XXXSCW: Fix for SMP ...
272 */
273union pmap_cache_state *pmap_cache_state;
274
275/* static pt_entry_t *msgbufmap;*/
276struct msgbuf *msgbufp = 0;
277
278extern void bcopy_page(vm_offset_t, vm_offset_t);
279extern void bzero_page(vm_offset_t);
280
281char *_tmppt;
282
283/*
284 * Metadata for L1 translation tables.
285 */
286struct l1_ttable {
287	/* Entry on the L1 Table list */
288	SLIST_ENTRY(l1_ttable) l1_link;
289
290	/* Entry on the L1 Least Recently Used list */
291	TAILQ_ENTRY(l1_ttable) l1_lru;
292
293	/* Track how many domains are allocated from this L1 */
294	volatile u_int l1_domain_use_count;
295
296	/*
297	 * A free-list of domain numbers for this L1.
298	 * We avoid using ffs() and a bitmap to track domains since ffs()
299	 * is slow on ARM.
300	 */
301	u_int8_t l1_domain_first;
302	u_int8_t l1_domain_free[PMAP_DOMAINS];
303
304	/* Physical address of this L1 page table */
305	vm_paddr_t l1_physaddr;
306
307	/* KVA of this L1 page table */
308	pd_entry_t *l1_kva;
309};
310
311/*
312 * Convert a virtual address into its L1 table index. That is, the
313 * index used to locate the L2 descriptor table pointer in an L1 table.
314 * This is basically used to index l1->l1_kva[].
315 *
316 * Each L2 descriptor table represents 1MB of VA space.
317 */
318#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
319
320/*
321 * L1 Page Tables are tracked using a Least Recently Used list.
322 *  - New L1s are allocated from the HEAD.
323 *  - Freed L1s are added to the TAIl.
324 *  - Recently accessed L1s (where an 'access' is some change to one of
325 *    the userland pmaps which owns this L1) are moved to the TAIL.
326 */
327static TAILQ_HEAD(, l1_ttable) l1_lru_list;
328/*
329 * A list of all L1 tables
330 */
331static SLIST_HEAD(, l1_ttable) l1_list;
332static struct mtx l1_lru_lock;
333
334/*
335 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
336 *
337 * This is normally 16MB worth L2 page descriptors for any given pmap.
338 * Reference counts are maintained for L2 descriptors so they can be
339 * freed when empty.
340 */
341struct l2_dtable {
342	/* The number of L2 page descriptors allocated to this l2_dtable */
343	u_int l2_occupancy;
344
345	/* List of L2 page descriptors */
346	struct l2_bucket {
347		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
348		vm_paddr_t l2b_phys;	/* Physical address of same */
349		u_short l2b_l1idx;	/* This L2 table's L1 index */
350		u_short l2b_occupancy;	/* How many active descriptors */
351	} l2_bucket[L2_BUCKET_SIZE];
352};
353
354/* pmap_kenter_internal flags */
355#define KENTER_CACHE	0x1
356#define KENTER_USER	0x2
357
358/*
359 * Given an L1 table index, calculate the corresponding l2_dtable index
360 * and bucket index within the l2_dtable.
361 */
362#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
363				 (L2_SIZE - 1))
364#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
365
366/*
367 * Given a virtual address, this macro returns the
368 * virtual address required to drop into the next L2 bucket.
369 */
370#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
371
372/*
373 * L2 allocation.
374 */
375#define	pmap_alloc_l2_dtable()		\
376		(void*)uma_zalloc(l2table_zone, M_NOWAIT)
377#define	pmap_free_l2_dtable(l2)		\
378		uma_zfree(l2table_zone, l2)
379
380/*
381 * We try to map the page tables write-through, if possible.  However, not
382 * all CPUs have a write-through cache mode, so on those we have to sync
383 * the cache when we frob page tables.
384 *
385 * We try to evaluate this at compile time, if possible.  However, it's
386 * not always possible to do that, hence this run-time var.
387 */
388int	pmap_needs_pte_sync;
389
390/*
391 * Macro to determine if a mapping might be resident in the
392 * instruction cache and/or TLB
393 */
394#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
395
396/*
397 * Macro to determine if a mapping might be resident in the
398 * data cache and/or TLB
399 */
400#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
401
402#ifndef PMAP_SHPGPERPROC
403#define PMAP_SHPGPERPROC 200
404#endif
405
406#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
407            curproc->p_vmspace->vm_map.pmap == (pm))
408static uma_zone_t pvzone;
409uma_zone_t l2zone;
410static uma_zone_t l2table_zone;
411static vm_offset_t pmap_kernel_l2dtable_kva;
412static vm_offset_t pmap_kernel_l2ptp_kva;
413static vm_paddr_t pmap_kernel_l2ptp_phys;
414static struct vm_object pvzone_obj;
415static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
416int pmap_pagedaemon_waken = 0;
417
418/*
419 * This list exists for the benefit of pmap_map_chunk().  It keeps track
420 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
421 * find them as necessary.
422 *
423 * Note that the data on this list MUST remain valid after initarm() returns,
424 * as pmap_bootstrap() uses it to contruct L2 table metadata.
425 */
426SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
427
428static void
429pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
430{
431	int i;
432
433	l1->l1_kva = l1pt;
434	l1->l1_domain_use_count = 0;
435	l1->l1_domain_first = 0;
436
437	for (i = 0; i < PMAP_DOMAINS; i++)
438		l1->l1_domain_free[i] = i + 1;
439
440	/*
441	 * Copy the kernel's L1 entries to each new L1.
442	 */
443	if (l1pt != pmap_kernel()->pm_l1->l1_kva)
444		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
445
446	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
447		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
448	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
449	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
450}
451
452static vm_offset_t
453kernel_pt_lookup(vm_paddr_t pa)
454{
455	struct pv_addr *pv;
456
457	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
458		if (pv->pv_pa == pa)
459			return (pv->pv_va);
460	}
461	return (0);
462}
463
464#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
465void
466pmap_pte_init_generic(void)
467{
468
469	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
470	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
471
472	pte_l2_l_cache_mode = L2_B|L2_C;
473	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
474
475	pte_l2_s_cache_mode = L2_B|L2_C;
476	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
477
478	/*
479	 * If we have a write-through cache, set B and C.  If
480	 * we have a write-back cache, then we assume setting
481	 * only C will make those pages write-through.
482	 */
483	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
484		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
485		pte_l2_l_cache_mode_pt = L2_B|L2_C;
486		pte_l2_s_cache_mode_pt = L2_B|L2_C;
487	} else {
488		pte_l1_s_cache_mode_pt = L1_S_C;
489		pte_l2_l_cache_mode_pt = L2_C;
490		pte_l2_s_cache_mode_pt = L2_C;
491	}
492
493	pte_l2_s_prot_u = L2_S_PROT_U_generic;
494	pte_l2_s_prot_w = L2_S_PROT_W_generic;
495	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
496
497	pte_l1_s_proto = L1_S_PROTO_generic;
498	pte_l1_c_proto = L1_C_PROTO_generic;
499	pte_l2_s_proto = L2_S_PROTO_generic;
500
501	pmap_copy_page_func = pmap_copy_page_generic;
502	pmap_zero_page_func = pmap_zero_page_generic;
503}
504
505#if defined(CPU_ARM8)
506void
507pmap_pte_init_arm8(void)
508{
509
510	/*
511	 * ARM8 is compatible with generic, but we need to use
512	 * the page tables uncached.
513	 */
514	pmap_pte_init_generic();
515
516	pte_l1_s_cache_mode_pt = 0;
517	pte_l2_l_cache_mode_pt = 0;
518	pte_l2_s_cache_mode_pt = 0;
519}
520#endif /* CPU_ARM8 */
521
522#if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
523void
524pmap_pte_init_arm9(void)
525{
526
527	/*
528	 * ARM9 is compatible with generic, but we want to use
529	 * write-through caching for now.
530	 */
531	pmap_pte_init_generic();
532
533	pte_l1_s_cache_mode = L1_S_C;
534	pte_l2_l_cache_mode = L2_C;
535	pte_l2_s_cache_mode = L2_C;
536
537	pte_l1_s_cache_mode_pt = L1_S_C;
538	pte_l2_l_cache_mode_pt = L2_C;
539	pte_l2_s_cache_mode_pt = L2_C;
540}
541#endif /* CPU_ARM9 */
542#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
543
544#if defined(CPU_ARM10)
545void
546pmap_pte_init_arm10(void)
547{
548
549	/*
550	 * ARM10 is compatible with generic, but we want to use
551	 * write-through caching for now.
552	 */
553	pmap_pte_init_generic();
554
555	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
556	pte_l2_l_cache_mode = L2_B | L2_C;
557	pte_l2_s_cache_mode = L2_B | L2_C;
558
559	pte_l1_s_cache_mode_pt = L1_S_C;
560	pte_l2_l_cache_mode_pt = L2_C;
561	pte_l2_s_cache_mode_pt = L2_C;
562
563}
564#endif /* CPU_ARM10 */
565
566#if  ARM_MMU_SA1 == 1
567void
568pmap_pte_init_sa1(void)
569{
570
571	/*
572	 * The StrongARM SA-1 cache does not have a write-through
573	 * mode.  So, do the generic initialization, then reset
574	 * the page table cache mode to B=1,C=1, and note that
575	 * the PTEs need to be sync'd.
576	 */
577	pmap_pte_init_generic();
578
579	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
580	pte_l2_l_cache_mode_pt = L2_B|L2_C;
581	pte_l2_s_cache_mode_pt = L2_B|L2_C;
582
583	pmap_needs_pte_sync = 1;
584}
585#endif /* ARM_MMU_SA1 == 1*/
586
587#if ARM_MMU_XSCALE == 1
588#if (ARM_NMMUS > 1)
589static u_int xscale_use_minidata;
590#endif
591
592void
593pmap_pte_init_xscale(void)
594{
595	uint32_t auxctl;
596	int write_through = 0;
597
598	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
599	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
600
601	pte_l2_l_cache_mode = L2_B|L2_C;
602	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
603
604	pte_l2_s_cache_mode = L2_B|L2_C;
605	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
606
607	pte_l1_s_cache_mode_pt = L1_S_C;
608	pte_l2_l_cache_mode_pt = L2_C;
609	pte_l2_s_cache_mode_pt = L2_C;
610#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
611	/*
612	 * The XScale core has an enhanced mode where writes that
613	 * miss the cache cause a cache line to be allocated.  This
614	 * is significantly faster than the traditional, write-through
615	 * behavior of this case.
616	 */
617	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
618	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
619	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
620#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
621#ifdef XSCALE_CACHE_WRITE_THROUGH
622	/*
623	 * Some versions of the XScale core have various bugs in
624	 * their cache units, the work-around for which is to run
625	 * the cache in write-through mode.  Unfortunately, this
626	 * has a major (negative) impact on performance.  So, we
627	 * go ahead and run fast-and-loose, in the hopes that we
628	 * don't line up the planets in a way that will trip the
629	 * bugs.
630	 *
631	 * However, we give you the option to be slow-but-correct.
632	 */
633	write_through = 1;
634#elif defined(XSCALE_CACHE_WRITE_BACK)
635	/* force write back cache mode */
636	write_through = 0;
637#elif defined(CPU_XSCALE_PXA2X0)
638	/*
639	 * Intel PXA2[15]0 processors are known to have a bug in
640	 * write-back cache on revision 4 and earlier (stepping
641	 * A[01] and B[012]).  Fixed for C0 and later.
642	 */
643	{
644		uint32_t id, type;
645
646		id = cpufunc_id();
647		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
648
649		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
650			if ((id & CPU_ID_REVISION_MASK) < 5) {
651				/* write through for stepping A0-1 and B0-2 */
652				write_through = 1;
653			}
654		}
655	}
656#endif /* XSCALE_CACHE_WRITE_THROUGH */
657
658	if (write_through) {
659		pte_l1_s_cache_mode = L1_S_C;
660		pte_l2_l_cache_mode = L2_C;
661		pte_l2_s_cache_mode = L2_C;
662	}
663
664#if (ARM_NMMUS > 1)
665	xscale_use_minidata = 1;
666#endif
667
668	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
669	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
670	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
671
672	pte_l1_s_proto = L1_S_PROTO_xscale;
673	pte_l1_c_proto = L1_C_PROTO_xscale;
674	pte_l2_s_proto = L2_S_PROTO_xscale;
675
676	pmap_copy_page_func = pmap_copy_page_xscale;
677	pmap_zero_page_func = pmap_zero_page_xscale;
678
679	/*
680	 * Disable ECC protection of page table access, for now.
681	 */
682	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
683	auxctl &= ~XSCALE_AUXCTL_P;
684	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
685}
686
687/*
688 * xscale_setup_minidata:
689 *
690 *	Set up the mini-data cache clean area.  We require the
691 *	caller to allocate the right amount of physically and
692 *	virtually contiguous space.
693 */
694extern vm_offset_t xscale_minidata_clean_addr;
695extern vm_size_t xscale_minidata_clean_size; /* already initialized */
696void
697xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
698{
699	pd_entry_t *pde = (pd_entry_t *) l1pt;
700	pt_entry_t *pte;
701	vm_size_t size;
702	uint32_t auxctl;
703
704	xscale_minidata_clean_addr = va;
705
706	/* Round it to page size. */
707	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
708
709	for (; size != 0;
710	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
711		pte = (pt_entry_t *) kernel_pt_lookup(
712		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
713		if (pte == NULL)
714			panic("xscale_setup_minidata: can't find L2 table for "
715			    "VA 0x%08x", (u_int32_t) va);
716		pte[l2pte_index(va)] =
717		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
718		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
719	}
720
721	/*
722	 * Configure the mini-data cache for write-back with
723	 * read/write-allocate.
724	 *
725	 * NOTE: In order to reconfigure the mini-data cache, we must
726	 * make sure it contains no valid data!  In order to do that,
727	 * we must issue a global data cache invalidate command!
728	 *
729	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
730	 * THIS IS VERY IMPORTANT!
731	 */
732
733	/* Invalidate data and mini-data. */
734	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
735	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
736	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
737	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
738}
739#endif
740
741/*
742 * Allocate an L1 translation table for the specified pmap.
743 * This is called at pmap creation time.
744 */
745static void
746pmap_alloc_l1(pmap_t pm)
747{
748	struct l1_ttable *l1;
749	u_int8_t domain;
750
751	/*
752	 * Remove the L1 at the head of the LRU list
753	 */
754	mtx_lock(&l1_lru_lock);
755	l1 = TAILQ_FIRST(&l1_lru_list);
756	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
757
758	/*
759	 * Pick the first available domain number, and update
760	 * the link to the next number.
761	 */
762	domain = l1->l1_domain_first;
763	l1->l1_domain_first = l1->l1_domain_free[domain];
764
765	/*
766	 * If there are still free domain numbers in this L1,
767	 * put it back on the TAIL of the LRU list.
768	 */
769	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
770		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
771
772	mtx_unlock(&l1_lru_lock);
773
774	/*
775	 * Fix up the relevant bits in the pmap structure
776	 */
777	pm->pm_l1 = l1;
778	pm->pm_domain = domain;
779}
780
781/*
782 * Free an L1 translation table.
783 * This is called at pmap destruction time.
784 */
785static void
786pmap_free_l1(pmap_t pm)
787{
788	struct l1_ttable *l1 = pm->pm_l1;
789
790	mtx_lock(&l1_lru_lock);
791
792	/*
793	 * If this L1 is currently on the LRU list, remove it.
794	 */
795	if (l1->l1_domain_use_count < PMAP_DOMAINS)
796		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
797
798	/*
799	 * Free up the domain number which was allocated to the pmap
800	 */
801	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
802	l1->l1_domain_first = pm->pm_domain;
803	l1->l1_domain_use_count--;
804
805	/*
806	 * The L1 now must have at least 1 free domain, so add
807	 * it back to the LRU list. If the use count is zero,
808	 * put it at the head of the list, otherwise it goes
809	 * to the tail.
810	 */
811	if (l1->l1_domain_use_count == 0) {
812		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
813	}	else
814		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
815
816	mtx_unlock(&l1_lru_lock);
817}
818
819static PMAP_INLINE void
820pmap_use_l1(pmap_t pm)
821{
822	struct l1_ttable *l1;
823
824	/*
825	 * Do nothing if we're in interrupt context.
826	 * Access to an L1 by the kernel pmap must not affect
827	 * the LRU list.
828	 */
829	if (pm == pmap_kernel())
830		return;
831
832	l1 = pm->pm_l1;
833
834	/*
835	 * If the L1 is not currently on the LRU list, just return
836	 */
837	if (l1->l1_domain_use_count == PMAP_DOMAINS)
838		return;
839
840	mtx_lock(&l1_lru_lock);
841
842	/*
843	 * Check the use count again, now that we've acquired the lock
844	 */
845	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
846		mtx_unlock(&l1_lru_lock);
847		return;
848	}
849
850	/*
851	 * Move the L1 to the back of the LRU list
852	 */
853	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
854	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
855
856	mtx_unlock(&l1_lru_lock);
857}
858
859
860/*
861 * Returns a pointer to the L2 bucket associated with the specified pmap
862 * and VA, or NULL if no L2 bucket exists for the address.
863 */
864static PMAP_INLINE struct l2_bucket *
865pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
866{
867	struct l2_dtable *l2;
868	struct l2_bucket *l2b;
869	u_short l1idx;
870
871	l1idx = L1_IDX(va);
872
873	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
874	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
875		return (NULL);
876
877	return (l2b);
878}
879
880/*
881 * Returns a pointer to the L2 bucket associated with the specified pmap
882 * and VA.
883 *
884 * If no L2 bucket exists, perform the necessary allocations to put an L2
885 * bucket/page table in place.
886 *
887 * Note that if a new L2 bucket/page was allocated, the caller *must*
888 * increment the bucket occupancy counter appropriately *before*
889 * releasing the pmap's lock to ensure no other thread or cpu deallocates
890 * the bucket/page in the meantime.
891 */
892static struct l2_bucket *
893pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
894{
895	struct l2_dtable *l2;
896	struct l2_bucket *l2b;
897	u_short l1idx;
898
899	l1idx = L1_IDX(va);
900
901	PMAP_ASSERT_LOCKED(pm);
902	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
903	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
904		/*
905		 * No mapping at this address, as there is
906		 * no entry in the L1 table.
907		 * Need to allocate a new l2_dtable.
908		 */
909again_l2table:
910		PMAP_UNLOCK(pm);
911		vm_page_unlock_queues();
912		if ((l2 = pmap_alloc_l2_dtable()) == NULL) {
913			vm_page_lock_queues();
914			PMAP_LOCK(pm);
915			return (NULL);
916		}
917		vm_page_lock_queues();
918		PMAP_LOCK(pm);
919		if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
920			PMAP_UNLOCK(pm);
921			vm_page_unlock_queues();
922			uma_zfree(l2table_zone, l2);
923			vm_page_lock_queues();
924			PMAP_LOCK(pm);
925			l2 = pm->pm_l2[L2_IDX(l1idx)];
926			if (l2 == NULL)
927				goto again_l2table;
928			/*
929			 * Someone already allocated the l2_dtable while
930			 * we were doing the same.
931			 */
932		} else {
933			bzero(l2, sizeof(*l2));
934			/*
935			 * Link it into the parent pmap
936			 */
937			pm->pm_l2[L2_IDX(l1idx)] = l2;
938		}
939	}
940
941	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
942
943	/*
944	 * Fetch pointer to the L2 page table associated with the address.
945	 */
946	if (l2b->l2b_kva == NULL) {
947		pt_entry_t *ptep;
948
949		/*
950		 * No L2 page table has been allocated. Chances are, this
951		 * is because we just allocated the l2_dtable, above.
952		 */
953again_ptep:
954		PMAP_UNLOCK(pm);
955		vm_page_unlock_queues();
956		ptep = (void*)uma_zalloc(l2zone, M_NOWAIT);
957		vm_page_lock_queues();
958		PMAP_LOCK(pm);
959		if (l2b->l2b_kva != 0) {
960			/* We lost the race. */
961			PMAP_UNLOCK(pm);
962			vm_page_unlock_queues();
963			uma_zfree(l2zone, ptep);
964			vm_page_lock_queues();
965			PMAP_LOCK(pm);
966			if (l2b->l2b_kva == 0)
967				goto again_ptep;
968			return (l2b);
969		}
970		l2b->l2b_phys = vtophys(ptep);
971		if (ptep == NULL) {
972			/*
973			 * Oops, no more L2 page tables available at this
974			 * time. We may need to deallocate the l2_dtable
975			 * if we allocated a new one above.
976			 */
977			if (l2->l2_occupancy == 0) {
978				pm->pm_l2[L2_IDX(l1idx)] = NULL;
979				pmap_free_l2_dtable(l2);
980			}
981			return (NULL);
982		}
983
984		l2->l2_occupancy++;
985		l2b->l2b_kva = ptep;
986		l2b->l2b_l1idx = l1idx;
987	}
988
989	return (l2b);
990}
991
992static PMAP_INLINE void
993#ifndef PMAP_INCLUDE_PTE_SYNC
994pmap_free_l2_ptp(pt_entry_t *l2)
995#else
996pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
997#endif
998{
999#ifdef PMAP_INCLUDE_PTE_SYNC
1000	/*
1001	 * Note: With a write-back cache, we may need to sync this
1002	 * L2 table before re-using it.
1003	 * This is because it may have belonged to a non-current
1004	 * pmap, in which case the cache syncs would have been
1005	 * skipped when the pages were being unmapped. If the
1006	 * L2 table were then to be immediately re-allocated to
1007	 * the *current* pmap, it may well contain stale mappings
1008	 * which have not yet been cleared by a cache write-back
1009	 * and so would still be visible to the mmu.
1010	 */
1011	if (need_sync)
1012		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1013#endif
1014	uma_zfree(l2zone, l2);
1015}
1016/*
1017 * One or more mappings in the specified L2 descriptor table have just been
1018 * invalidated.
1019 *
1020 * Garbage collect the metadata and descriptor table itself if necessary.
1021 *
1022 * The pmap lock must be acquired when this is called (not necessary
1023 * for the kernel pmap).
1024 */
1025static void
1026pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1027{
1028	struct l2_dtable *l2;
1029	pd_entry_t *pl1pd, l1pd;
1030	pt_entry_t *ptep;
1031	u_short l1idx;
1032
1033
1034	/*
1035	 * Update the bucket's reference count according to how many
1036	 * PTEs the caller has just invalidated.
1037	 */
1038	l2b->l2b_occupancy -= count;
1039
1040	/*
1041	 * Note:
1042	 *
1043	 * Level 2 page tables allocated to the kernel pmap are never freed
1044	 * as that would require checking all Level 1 page tables and
1045	 * removing any references to the Level 2 page table. See also the
1046	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1047	 *
1048	 * We make do with just invalidating the mapping in the L2 table.
1049	 *
1050	 * This isn't really a big deal in practice and, in fact, leads
1051	 * to a performance win over time as we don't need to continually
1052	 * alloc/free.
1053	 */
1054	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1055		return;
1056
1057	/*
1058	 * There are no more valid mappings in this level 2 page table.
1059	 * Go ahead and NULL-out the pointer in the bucket, then
1060	 * free the page table.
1061	 */
1062	l1idx = l2b->l2b_l1idx;
1063	ptep = l2b->l2b_kva;
1064	l2b->l2b_kva = NULL;
1065
1066	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1067
1068	/*
1069	 * If the L1 slot matches the pmap's domain
1070	 * number, then invalidate it.
1071	 */
1072	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1073	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1074		*pl1pd = 0;
1075		PTE_SYNC(pl1pd);
1076	}
1077
1078	/*
1079	 * Release the L2 descriptor table back to the pool cache.
1080	 */
1081#ifndef PMAP_INCLUDE_PTE_SYNC
1082	pmap_free_l2_ptp(ptep);
1083#else
1084	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
1085#endif
1086
1087	/*
1088	 * Update the reference count in the associated l2_dtable
1089	 */
1090	l2 = pm->pm_l2[L2_IDX(l1idx)];
1091	if (--l2->l2_occupancy > 0)
1092		return;
1093
1094	/*
1095	 * There are no more valid mappings in any of the Level 1
1096	 * slots managed by this l2_dtable. Go ahead and NULL-out
1097	 * the pointer in the parent pmap and free the l2_dtable.
1098	 */
1099	pm->pm_l2[L2_IDX(l1idx)] = NULL;
1100	pmap_free_l2_dtable(l2);
1101}
1102
1103/*
1104 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1105 * structures.
1106 */
1107static int
1108pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
1109{
1110#ifndef PMAP_INCLUDE_PTE_SYNC
1111	struct l2_bucket *l2b;
1112	pt_entry_t *ptep, pte;
1113#ifdef ARM_USE_SMALL_ALLOC
1114	pd_entry_t *pde;
1115#endif
1116	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
1117
1118	/*
1119	 * The mappings for these page tables were initially made using
1120	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1121	 * mode will not be right for page table mappings. To avoid
1122	 * polluting the pmap_kenter() code with a special case for
1123	 * page tables, we simply fix up the cache-mode here if it's not
1124	 * correct.
1125	 */
1126#ifdef ARM_USE_SMALL_ALLOC
1127	pde = &kernel_pmap->pm_l1->l1_kva[L1_IDX(va)];
1128	if (!l1pte_section_p(*pde)) {
1129#endif
1130		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1131		ptep = &l2b->l2b_kva[l2pte_index(va)];
1132		pte = *ptep;
1133
1134		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1135			/*
1136			 * Page tables must have the cache-mode set to
1137			 * Write-Thru.
1138			 */
1139			*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1140			PTE_SYNC(ptep);
1141			cpu_tlb_flushD_SE(va);
1142			cpu_cpwait();
1143		}
1144
1145#ifdef ARM_USE_SMALL_ALLOC
1146	}
1147#endif
1148#endif
1149	memset(mem, 0, L2_TABLE_SIZE_REAL);
1150	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1151	return (0);
1152}
1153
1154/*
1155 * A bunch of routines to conditionally flush the caches/TLB depending
1156 * on whether the specified pmap actually needs to be flushed at any
1157 * given time.
1158 */
1159static PMAP_INLINE void
1160pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1161{
1162
1163	if (pmap_is_current(pm))
1164		cpu_tlb_flushID_SE(va);
1165}
1166
1167static PMAP_INLINE void
1168pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1169{
1170
1171	if (pmap_is_current(pm))
1172		cpu_tlb_flushD_SE(va);
1173}
1174
1175static PMAP_INLINE void
1176pmap_tlb_flushID(pmap_t pm)
1177{
1178
1179	if (pmap_is_current(pm))
1180		cpu_tlb_flushID();
1181}
1182static PMAP_INLINE void
1183pmap_tlb_flushD(pmap_t pm)
1184{
1185
1186	if (pmap_is_current(pm))
1187		cpu_tlb_flushD();
1188}
1189
1190static PMAP_INLINE void
1191pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1192{
1193
1194	if (pmap_is_current(pm))
1195		cpu_idcache_wbinv_range(va, len);
1196}
1197
1198static PMAP_INLINE void
1199pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len,
1200    boolean_t do_inv, boolean_t rd_only)
1201{
1202
1203	if (pmap_is_current(pm)) {
1204		if (do_inv) {
1205			if (rd_only)
1206				cpu_dcache_inv_range(va, len);
1207			else
1208				cpu_dcache_wbinv_range(va, len);
1209		} else
1210		if (!rd_only)
1211			cpu_dcache_wb_range(va, len);
1212	}
1213}
1214
1215static PMAP_INLINE void
1216pmap_idcache_wbinv_all(pmap_t pm)
1217{
1218
1219	if (pmap_is_current(pm))
1220		cpu_idcache_wbinv_all();
1221}
1222
1223static PMAP_INLINE void
1224pmap_dcache_wbinv_all(pmap_t pm)
1225{
1226
1227	if (pmap_is_current(pm))
1228		cpu_dcache_wbinv_all();
1229}
1230
1231/*
1232 * PTE_SYNC_CURRENT:
1233 *
1234 *     Make sure the pte is written out to RAM.
1235 *     We need to do this for one of two cases:
1236 *       - We're dealing with the kernel pmap
1237 *       - There is no pmap active in the cache/tlb.
1238 *       - The specified pmap is 'active' in the cache/tlb.
1239 */
1240#ifdef PMAP_INCLUDE_PTE_SYNC
1241#define	PTE_SYNC_CURRENT(pm, ptep)	\
1242do {					\
1243	if (PMAP_NEEDS_PTE_SYNC && 	\
1244	    pmap_is_current(pm))	\
1245		PTE_SYNC(ptep);		\
1246} while (/*CONSTCOND*/0)
1247#else
1248#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1249#endif
1250
1251/*
1252 * Since we have a virtually indexed cache, we may need to inhibit caching if
1253 * there is more than one mapping and at least one of them is writable.
1254 * Since we purge the cache on every context switch, we only need to check for
1255 * other mappings within the same pmap, or kernel_pmap.
1256 * This function is also called when a page is unmapped, to possibly reenable
1257 * caching on any remaining mappings.
1258 *
1259 * The code implements the following logic, where:
1260 *
1261 * KW = # of kernel read/write pages
1262 * KR = # of kernel read only pages
1263 * UW = # of user read/write pages
1264 * UR = # of user read only pages
1265 *
1266 * KC = kernel mapping is cacheable
1267 * UC = user mapping is cacheable
1268 *
1269 *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1270 *             +---------------------------------------------
1271 * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1272 * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1273 * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1274 * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1275 */
1276
1277static const int pmap_vac_flags[4][4] = {
1278	{-1,		0,		0,		PVF_KNC},
1279	{0,		0,		PVF_NC,		PVF_NC},
1280	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1281	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1282};
1283
1284static PMAP_INLINE int
1285pmap_get_vac_flags(const struct vm_page *pg)
1286{
1287	int kidx, uidx;
1288
1289	kidx = 0;
1290	if (pg->md.kro_mappings || pg->md.krw_mappings > 1)
1291		kidx |= 1;
1292	if (pg->md.krw_mappings)
1293		kidx |= 2;
1294
1295	uidx = 0;
1296	if (pg->md.uro_mappings || pg->md.urw_mappings > 1)
1297		uidx |= 1;
1298	if (pg->md.urw_mappings)
1299		uidx |= 2;
1300
1301	return (pmap_vac_flags[uidx][kidx]);
1302}
1303
1304static __inline void
1305pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1306{
1307	int nattr;
1308
1309	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1310	nattr = pmap_get_vac_flags(pg);
1311
1312	if (nattr < 0) {
1313		pg->md.pvh_attrs &= ~PVF_NC;
1314		return;
1315	}
1316
1317	if (nattr == 0 && (pg->md.pvh_attrs & PVF_NC) == 0) {
1318		return;
1319	}
1320
1321	if (pm == pmap_kernel())
1322		pmap_vac_me_kpmap(pg, pm, va);
1323	else
1324		pmap_vac_me_user(pg, pm, va);
1325
1326	pg->md.pvh_attrs = (pg->md.pvh_attrs & ~PVF_NC) | nattr;
1327}
1328
1329static void
1330pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1331{
1332	u_int u_cacheable, u_entries;
1333	struct pv_entry *pv;
1334	pmap_t last_pmap = pm;
1335
1336	/*
1337	 * Pass one, see if there are both kernel and user pmaps for
1338	 * this page.  Calculate whether there are user-writable or
1339	 * kernel-writable pages.
1340	 */
1341	u_cacheable = 0;
1342	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1343		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1344			u_cacheable++;
1345	}
1346
1347	u_entries = pg->md.urw_mappings + pg->md.uro_mappings;
1348
1349	/*
1350	 * We know we have just been updating a kernel entry, so if
1351	 * all user pages are already cacheable, then there is nothing
1352	 * further to do.
1353	 */
1354	if (pg->md.k_mappings == 0 && u_cacheable == u_entries)
1355		return;
1356
1357	if (u_entries) {
1358		/*
1359		 * Scan over the list again, for each entry, if it
1360		 * might not be set correctly, call pmap_vac_me_user
1361		 * to recalculate the settings.
1362		 */
1363		TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1364			/*
1365			 * We know kernel mappings will get set
1366			 * correctly in other calls.  We also know
1367			 * that if the pmap is the same as last_pmap
1368			 * then we've just handled this entry.
1369			 */
1370			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1371				continue;
1372
1373			/*
1374			 * If there are kernel entries and this page
1375			 * is writable but non-cacheable, then we can
1376			 * skip this entry also.
1377			 */
1378			if (pg->md.k_mappings &&
1379			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1380			    (PVF_NC | PVF_WRITE))
1381				continue;
1382
1383			/*
1384			 * Similarly if there are no kernel-writable
1385			 * entries and the page is already
1386			 * read-only/cacheable.
1387			 */
1388			if (pg->md.krw_mappings == 0 &&
1389			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1390				continue;
1391
1392			/*
1393			 * For some of the remaining cases, we know
1394			 * that we must recalculate, but for others we
1395			 * can't tell if they are correct or not, so
1396			 * we recalculate anyway.
1397			 */
1398			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1399		}
1400
1401		if (pg->md.k_mappings == 0)
1402			return;
1403	}
1404
1405	pmap_vac_me_user(pg, pm, va);
1406}
1407
1408static void
1409pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1410{
1411	pmap_t kpmap = pmap_kernel();
1412	struct pv_entry *pv, *npv;
1413	struct l2_bucket *l2b;
1414	pt_entry_t *ptep, pte;
1415	u_int entries = 0;
1416	u_int writable = 0;
1417	u_int cacheable_entries = 0;
1418	u_int kern_cacheable = 0;
1419	u_int other_writable = 0;
1420
1421	/*
1422	 * Count mappings and writable mappings in this pmap.
1423	 * Include kernel mappings as part of our own.
1424	 * Keep a pointer to the first one.
1425	 */
1426	npv = TAILQ_FIRST(&pg->md.pv_list);
1427	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1428		/* Count mappings in the same pmap */
1429		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1430			if (entries++ == 0)
1431				npv = pv;
1432
1433			/* Cacheable mappings */
1434			if ((pv->pv_flags & PVF_NC) == 0) {
1435				cacheable_entries++;
1436				if (kpmap == pv->pv_pmap)
1437					kern_cacheable++;
1438			}
1439
1440			/* Writable mappings */
1441			if (pv->pv_flags & PVF_WRITE)
1442				++writable;
1443		} else
1444		if (pv->pv_flags & PVF_WRITE)
1445			other_writable = 1;
1446	}
1447
1448	/*
1449	 * Enable or disable caching as necessary.
1450	 * Note: the first entry might be part of the kernel pmap,
1451	 * so we can't assume this is indicative of the state of the
1452	 * other (maybe non-kpmap) entries.
1453	 */
1454	if ((entries > 1 && writable) ||
1455	    (entries > 0 && pm == kpmap && other_writable)) {
1456		if (cacheable_entries == 0)
1457			return;
1458
1459		for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
1460			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1461			    (pv->pv_flags & PVF_NC))
1462				continue;
1463
1464			pv->pv_flags |= PVF_NC;
1465
1466			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1467			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1468			pte = *ptep & ~L2_S_CACHE_MASK;
1469
1470			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1471			    l2pte_valid(pte)) {
1472				if (PV_BEEN_EXECD(pv->pv_flags)) {
1473					pmap_idcache_wbinv_range(pv->pv_pmap,
1474					    pv->pv_va, PAGE_SIZE);
1475					pmap_tlb_flushID_SE(pv->pv_pmap,
1476					    pv->pv_va);
1477				} else
1478				if (PV_BEEN_REFD(pv->pv_flags)) {
1479					pmap_dcache_wb_range(pv->pv_pmap,
1480					    pv->pv_va, PAGE_SIZE, TRUE,
1481					    (pv->pv_flags & PVF_WRITE) == 0);
1482					pmap_tlb_flushD_SE(pv->pv_pmap,
1483					    pv->pv_va);
1484				}
1485			}
1486
1487			*ptep = pte;
1488			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1489		}
1490		cpu_cpwait();
1491	} else
1492	if (entries > cacheable_entries) {
1493		/*
1494		 * Turn cacheing back on for some pages.  If it is a kernel
1495		 * page, only do so if there are no other writable pages.
1496		 */
1497		for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
1498			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1499			    (kpmap != pv->pv_pmap || other_writable)))
1500				continue;
1501
1502			pv->pv_flags &= ~PVF_NC;
1503
1504			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1505			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1506			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1507
1508			if (l2pte_valid(pte)) {
1509				if (PV_BEEN_EXECD(pv->pv_flags)) {
1510					pmap_tlb_flushID_SE(pv->pv_pmap,
1511					    pv->pv_va);
1512				} else
1513				if (PV_BEEN_REFD(pv->pv_flags)) {
1514					pmap_tlb_flushD_SE(pv->pv_pmap,
1515					    pv->pv_va);
1516				}
1517			}
1518
1519			*ptep = pte;
1520			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1521		}
1522	}
1523}
1524
1525/*
1526 * Modify pte bits for all ptes corresponding to the given physical address.
1527 * We use `maskbits' rather than `clearbits' because we're always passing
1528 * constants and the latter would require an extra inversion at run-time.
1529 */
1530static int
1531pmap_clearbit(struct vm_page *pg, u_int maskbits)
1532{
1533	struct l2_bucket *l2b;
1534	struct pv_entry *pv;
1535	pt_entry_t *ptep, npte, opte;
1536	pmap_t pm;
1537	vm_offset_t va;
1538	u_int oflags;
1539	int count = 0;
1540
1541	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1542
1543	/*
1544	 * Clear saved attributes (modify, reference)
1545	 */
1546	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1547
1548	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1549		return (0);
1550	}
1551
1552	/*
1553	 * Loop over all current mappings setting/clearing as appropos
1554	 */
1555	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1556		va = pv->pv_va;
1557		pm = pv->pv_pmap;
1558		oflags = pv->pv_flags;
1559		pv->pv_flags &= ~maskbits;
1560
1561		PMAP_LOCK(pm);
1562
1563		l2b = pmap_get_l2_bucket(pm, va);
1564
1565		ptep = &l2b->l2b_kva[l2pte_index(va)];
1566		npte = opte = *ptep;
1567
1568		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1569			if ((pv->pv_flags & PVF_NC)) {
1570				/*
1571				 * Entry is not cacheable:
1572				 *
1573				 * Don't turn caching on again if this is a
1574				 * modified emulation. This would be
1575				 * inconsitent with the settings created by
1576				 * pmap_vac_me_harder(). Otherwise, it's safe
1577				 * to re-enable cacheing.
1578				 *
1579				 * There's no need to call pmap_vac_me_harder()
1580				 * here: all pages are losing their write
1581				 * permission.
1582				 */
1583				if (maskbits & PVF_WRITE) {
1584					npte |= pte_l2_s_cache_mode;
1585					pv->pv_flags &= ~PVF_NC;
1586				}
1587			} else
1588			if (opte & L2_S_PROT_W) {
1589				vm_page_dirty(pg);
1590				/*
1591				 * Entry is writable/cacheable: check if pmap
1592				 * is current if it is flush it, otherwise it
1593				 * won't be in the cache
1594				 */
1595				if (PV_BEEN_EXECD(oflags))
1596					pmap_idcache_wbinv_range(pm, pv->pv_va,
1597					    PAGE_SIZE);
1598				else
1599				if (PV_BEEN_REFD(oflags))
1600					pmap_dcache_wb_range(pm, pv->pv_va,
1601					    PAGE_SIZE,
1602					    (maskbits & PVF_REF) ? TRUE : FALSE,
1603					    FALSE);
1604			}
1605
1606			/* make the pte read only */
1607			npte &= ~L2_S_PROT_W;
1608
1609			if (maskbits & PVF_WRITE) {
1610				/*
1611				 * Keep alias accounting up to date
1612				 */
1613				if (pv->pv_pmap == pmap_kernel()) {
1614					if (oflags & PVF_WRITE) {
1615						pg->md.krw_mappings--;
1616						pg->md.kro_mappings++;
1617					}
1618				} else
1619				if (oflags & PVF_WRITE) {
1620					pg->md.urw_mappings--;
1621					pg->md.uro_mappings++;
1622				}
1623			}
1624		}
1625
1626		if (maskbits & PVF_REF) {
1627			if ((pv->pv_flags & PVF_NC) == 0 &&
1628			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1629				/*
1630				 * Check npte here; we may have already
1631				 * done the wbinv above, and the validity
1632				 * of the PTE is the same for opte and
1633				 * npte.
1634				 */
1635				if (npte & L2_S_PROT_W) {
1636					if (PV_BEEN_EXECD(oflags))
1637						pmap_idcache_wbinv_range(pm,
1638						    pv->pv_va, PAGE_SIZE);
1639					else
1640					if (PV_BEEN_REFD(oflags))
1641						pmap_dcache_wb_range(pm,
1642						    pv->pv_va, PAGE_SIZE,
1643						    TRUE, FALSE);
1644				} else
1645				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1646					/* XXXJRT need idcache_inv_range */
1647					if (PV_BEEN_EXECD(oflags))
1648						pmap_idcache_wbinv_range(pm,
1649						    pv->pv_va, PAGE_SIZE);
1650					else
1651					if (PV_BEEN_REFD(oflags))
1652						pmap_dcache_wb_range(pm,
1653						    pv->pv_va, PAGE_SIZE,
1654						    TRUE, TRUE);
1655				}
1656			}
1657
1658			/*
1659			 * Make the PTE invalid so that we will take a
1660			 * page fault the next time the mapping is
1661			 * referenced.
1662			 */
1663			npte &= ~L2_TYPE_MASK;
1664			npte |= L2_TYPE_INV;
1665		}
1666
1667		if (npte != opte) {
1668			count++;
1669			*ptep = npte;
1670			PTE_SYNC(ptep);
1671			/* Flush the TLB entry if a current pmap. */
1672			if (PV_BEEN_EXECD(oflags))
1673				pmap_tlb_flushID_SE(pm, pv->pv_va);
1674			else
1675			if (PV_BEEN_REFD(oflags))
1676				pmap_tlb_flushD_SE(pm, pv->pv_va);
1677		}
1678
1679		PMAP_UNLOCK(pm);
1680
1681	}
1682
1683	if (maskbits & PVF_WRITE)
1684		vm_page_flag_clear(pg, PG_WRITEABLE);
1685	return (count);
1686}
1687
1688/*
1689 * main pv_entry manipulation functions:
1690 *   pmap_enter_pv: enter a mapping onto a vm_page list
1691 *   pmap_remove_pv: remove a mappiing from a vm_page list
1692 *
1693 * NOTE: pmap_enter_pv expects to lock the pvh itself
1694 *       pmap_remove_pv expects te caller to lock the pvh before calling
1695 */
1696
1697/*
1698 * pmap_enter_pv: enter a mapping onto a vm_page lst
1699 *
1700 * => caller should hold the proper lock on pmap_main_lock
1701 * => caller should have pmap locked
1702 * => we will gain the lock on the vm_page and allocate the new pv_entry
1703 * => caller should adjust ptp's wire_count before calling
1704 * => caller should not adjust pmap's wire_count
1705 */
1706static void
1707pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1708    vm_offset_t va, u_int flags)
1709{
1710
1711	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1712	PMAP_ASSERT_LOCKED(pm);
1713	pve->pv_pmap = pm;
1714	pve->pv_va = va;
1715	pve->pv_flags = flags;
1716
1717	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1718	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1719	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1720	if (pm == pmap_kernel()) {
1721		if (flags & PVF_WRITE)
1722			pg->md.krw_mappings++;
1723		else
1724			pg->md.kro_mappings++;
1725	}
1726	if (flags & PVF_WRITE)
1727		pg->md.urw_mappings++;
1728	else
1729		pg->md.uro_mappings++;
1730	pg->md.pv_list_count++;
1731	if (pve->pv_flags & PVF_WIRED)
1732		++pm->pm_stats.wired_count;
1733	vm_page_flag_set(pg, PG_REFERENCED);
1734}
1735
1736/*
1737 *
1738 * pmap_find_pv: Find a pv entry
1739 *
1740 * => caller should hold lock on vm_page
1741 */
1742static PMAP_INLINE struct pv_entry *
1743pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1744{
1745	struct pv_entry *pv;
1746
1747	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1748	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1749	    if (pm == pv->pv_pmap && va == pv->pv_va)
1750		    break;
1751	return (pv);
1752}
1753
1754/*
1755 * vector_page_setprot:
1756 *
1757 *	Manipulate the protection of the vector page.
1758 */
1759void
1760vector_page_setprot(int prot)
1761{
1762	struct l2_bucket *l2b;
1763	pt_entry_t *ptep;
1764
1765	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1766
1767	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1768
1769	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1770	PTE_SYNC(ptep);
1771	cpu_tlb_flushD_SE(vector_page);
1772	cpu_cpwait();
1773}
1774
1775/*
1776 * pmap_remove_pv: try to remove a mapping from a pv_list
1777 *
1778 * => caller should hold proper lock on pmap_main_lock
1779 * => pmap should be locked
1780 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1781 * => caller should adjust ptp's wire_count and free PTP if needed
1782 * => caller should NOT adjust pmap's wire_count
1783 * => we return the removed pve
1784 */
1785
1786static void
1787pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1788{
1789
1790	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1791	PMAP_ASSERT_LOCKED(pm);
1792	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1793	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1794	if (pve->pv_flags & PVF_WIRED)
1795		--pm->pm_stats.wired_count;
1796	pg->md.pv_list_count--;
1797	if (pg->md.pvh_attrs & PVF_MOD)
1798		vm_page_dirty(pg);
1799	if (pm == pmap_kernel()) {
1800		if (pve->pv_flags & PVF_WRITE)
1801			pg->md.krw_mappings--;
1802		else
1803			pg->md.kro_mappings--;
1804	} else
1805		if (pve->pv_flags & PVF_WRITE)
1806			pg->md.urw_mappings--;
1807		else
1808			pg->md.uro_mappings--;
1809	if (TAILQ_FIRST(&pg->md.pv_list) == NULL ||
1810	    (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0)) {
1811		pg->md.pvh_attrs &= ~PVF_MOD;
1812		if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1813			pg->md.pvh_attrs &= ~PVF_REF;
1814		vm_page_flag_clear(pg, PG_WRITEABLE);
1815	}
1816	if (TAILQ_FIRST(&pg->md.pv_list))
1817		vm_page_flag_set(pg, PG_REFERENCED);
1818	if (pve->pv_flags & PVF_WRITE)
1819		pmap_vac_me_harder(pg, pm, 0);
1820}
1821
1822static struct pv_entry *
1823pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1824{
1825	struct pv_entry *pve;
1826
1827	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1828	pve = TAILQ_FIRST(&pg->md.pv_list);
1829
1830	while (pve) {
1831		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1832			pmap_nuke_pv(pg, pm, pve);
1833			break;
1834		}
1835		pve = TAILQ_NEXT(pve, pv_list);
1836	}
1837
1838	return(pve);				/* return removed pve */
1839}
1840/*
1841 *
1842 * pmap_modify_pv: Update pv flags
1843 *
1844 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1845 * => caller should NOT adjust pmap's wire_count
1846 * => caller must call pmap_vac_me_harder() if writable status of a page
1847 *    may have changed.
1848 * => we return the old flags
1849 *
1850 * Modify a physical-virtual mapping in the pv table
1851 */
1852static u_int
1853pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1854    u_int clr_mask, u_int set_mask)
1855{
1856	struct pv_entry *npv;
1857	u_int flags, oflags;
1858
1859	PMAP_ASSERT_LOCKED(pm);
1860	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1861	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1862		return (0);
1863
1864	/*
1865	 * There is at least one VA mapping this page.
1866	 */
1867
1868	if (clr_mask & (PVF_REF | PVF_MOD))
1869		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1870
1871	oflags = npv->pv_flags;
1872	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1873
1874	if ((flags ^ oflags) & PVF_WIRED) {
1875		if (flags & PVF_WIRED)
1876			++pm->pm_stats.wired_count;
1877		else
1878			--pm->pm_stats.wired_count;
1879	}
1880
1881	if ((flags ^ oflags) & PVF_WRITE) {
1882		if (pm == pmap_kernel()) {
1883			if (flags & PVF_WRITE) {
1884				pg->md.krw_mappings++;
1885				pg->md.kro_mappings--;
1886			} else {
1887				pg->md.kro_mappings++;
1888				pg->md.krw_mappings--;
1889			}
1890		} else
1891		if (flags & PVF_WRITE) {
1892			pg->md.urw_mappings++;
1893			pg->md.uro_mappings--;
1894		} else {
1895			pg->md.uro_mappings++;
1896			pg->md.urw_mappings--;
1897		}
1898		if (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0) {
1899			pg->md.pvh_attrs &= ~PVF_MOD;
1900			vm_page_flag_clear(pg, PG_WRITEABLE);
1901		}
1902		pmap_vac_me_harder(pg, pm, 0);
1903	}
1904
1905	return (oflags);
1906}
1907
1908/* Function to set the debug level of the pmap code */
1909#ifdef PMAP_DEBUG
1910void
1911pmap_debug(int level)
1912{
1913	pmap_debug_level = level;
1914	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1915}
1916#endif  /* PMAP_DEBUG */
1917
1918void
1919pmap_pinit0(struct pmap *pmap)
1920{
1921	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1922
1923	dprintf("pmap_pinit0: pmap = %08x, pm_pdir = %08x\n",
1924		(u_int32_t) pmap, (u_int32_t) pmap->pm_pdir);
1925	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1926	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1927	PMAP_LOCK_INIT(pmap);
1928}
1929
1930/*
1931 *	Initialize a vm_page's machine-dependent fields.
1932 */
1933void
1934pmap_page_init(vm_page_t m)
1935{
1936
1937	TAILQ_INIT(&m->md.pv_list);
1938	m->md.pv_list_count = 0;
1939}
1940
1941/*
1942 *      Initialize the pmap module.
1943 *      Called by vm_init, to initialize any structures that the pmap
1944 *      system needs to map virtual memory.
1945 */
1946void
1947pmap_init(void)
1948{
1949	int shpgperproc = PMAP_SHPGPERPROC;
1950
1951	PDEBUG(1, printf("pmap_init: phys_start = %08x\n"));
1952
1953	/*
1954	 * init the pv free list
1955	 */
1956	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1957	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1958	/*
1959	 * Now it is safe to enable pv_table recording.
1960	 */
1961	PDEBUG(1, printf("pmap_init: done!\n"));
1962
1963	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1964
1965	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1966	pv_entry_high_water = 9 * (pv_entry_max / 10);
1967	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1968	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1969	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable),
1970	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1971	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1972
1973	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1974
1975}
1976
1977int
1978pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1979{
1980	struct l2_dtable *l2;
1981	struct l2_bucket *l2b;
1982	pd_entry_t *pl1pd, l1pd;
1983	pt_entry_t *ptep, pte;
1984	vm_paddr_t pa;
1985	u_int l1idx;
1986	int rv = 0;
1987
1988	l1idx = L1_IDX(va);
1989	vm_page_lock_queues();
1990	PMAP_LOCK(pm);
1991
1992	/*
1993	 * If there is no l2_dtable for this address, then the process
1994	 * has no business accessing it.
1995	 *
1996	 * Note: This will catch userland processes trying to access
1997	 * kernel addresses.
1998	 */
1999	l2 = pm->pm_l2[L2_IDX(l1idx)];
2000	if (l2 == NULL)
2001		goto out;
2002
2003	/*
2004	 * Likewise if there is no L2 descriptor table
2005	 */
2006	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2007	if (l2b->l2b_kva == NULL)
2008		goto out;
2009
2010	/*
2011	 * Check the PTE itself.
2012	 */
2013	ptep = &l2b->l2b_kva[l2pte_index(va)];
2014	pte = *ptep;
2015	if (pte == 0)
2016		goto out;
2017
2018	/*
2019	 * Catch a userland access to the vector page mapped at 0x0
2020	 */
2021	if (user && (pte & L2_S_PROT_U) == 0)
2022		goto out;
2023	if (va == vector_page)
2024		goto out;
2025
2026	pa = l2pte_pa(pte);
2027
2028	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2029		/*
2030		 * This looks like a good candidate for "page modified"
2031		 * emulation...
2032		 */
2033		struct pv_entry *pv;
2034		struct vm_page *pg;
2035
2036		/* Extract the physical address of the page */
2037		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
2038			goto out;
2039		}
2040		/* Get the current flags for this page. */
2041
2042		pv = pmap_find_pv(pg, pm, va);
2043		if (pv == NULL) {
2044			goto out;
2045		}
2046
2047		/*
2048		 * Do the flags say this page is writable? If not then it
2049		 * is a genuine write fault. If yes then the write fault is
2050		 * our fault as we did not reflect the write access in the
2051		 * PTE. Now we know a write has occurred we can correct this
2052		 * and also set the modified bit
2053		 */
2054		if ((pv->pv_flags & PVF_WRITE) == 0) {
2055			goto out;
2056		}
2057
2058		pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
2059		vm_page_dirty(pg);
2060		pv->pv_flags |= PVF_REF | PVF_MOD;
2061
2062		/*
2063		 * Re-enable write permissions for the page.  No need to call
2064		 * pmap_vac_me_harder(), since this is just a
2065		 * modified-emulation fault, and the PVF_WRITE bit isn't
2066		 * changing. We've already set the cacheable bits based on
2067		 * the assumption that we can write to this page.
2068		 */
2069		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2070		PTE_SYNC(ptep);
2071		rv = 1;
2072	} else
2073	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2074		/*
2075		 * This looks like a good candidate for "page referenced"
2076		 * emulation.
2077		 */
2078		struct pv_entry *pv;
2079		struct vm_page *pg;
2080
2081		/* Extract the physical address of the page */
2082		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2083			goto out;
2084		/* Get the current flags for this page. */
2085
2086		pv = pmap_find_pv(pg, pm, va);
2087		if (pv == NULL)
2088			goto out;
2089
2090		pg->md.pvh_attrs |= PVF_REF;
2091		pv->pv_flags |= PVF_REF;
2092
2093
2094		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2095		PTE_SYNC(ptep);
2096		rv = 1;
2097	}
2098
2099	/*
2100	 * We know there is a valid mapping here, so simply
2101	 * fix up the L1 if necessary.
2102	 */
2103	pl1pd = &pm->pm_l1->l1_kva[l1idx];
2104	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2105	if (*pl1pd != l1pd) {
2106		*pl1pd = l1pd;
2107		PTE_SYNC(pl1pd);
2108		rv = 1;
2109	}
2110
2111#ifdef CPU_SA110
2112	/*
2113	 * There are bugs in the rev K SA110.  This is a check for one
2114	 * of them.
2115	 */
2116	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2117	    curcpu()->ci_arm_cpurev < 3) {
2118		/* Always current pmap */
2119		if (l2pte_valid(pte)) {
2120			extern int kernel_debug;
2121			if (kernel_debug & 1) {
2122				struct proc *p = curlwp->l_proc;
2123				printf("prefetch_abort: page is already "
2124				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
2125				printf("prefetch_abort: pc=%08lx proc=%p "
2126				    "process=%s\n", va, p, p->p_comm);
2127				printf("prefetch_abort: far=%08x fs=%x\n",
2128				    cpu_faultaddress(), cpu_faultstatus());
2129			}
2130#ifdef DDB
2131			if (kernel_debug & 2)
2132				Debugger();
2133#endif
2134			rv = 1;
2135		}
2136	}
2137#endif /* CPU_SA110 */
2138
2139#ifdef DEBUG
2140	/*
2141	 * If 'rv == 0' at this point, it generally indicates that there is a
2142	 * stale TLB entry for the faulting address. This happens when two or
2143	 * more processes are sharing an L1. Since we don't flush the TLB on
2144	 * a context switch between such processes, we can take domain faults
2145	 * for mappings which exist at the same VA in both processes. EVEN IF
2146	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2147	 * example.
2148	 *
2149	 * This is extremely likely to happen if pmap_enter() updated the L1
2150	 * entry for a recently entered mapping. In this case, the TLB is
2151	 * flushed for the new mapping, but there may still be TLB entries for
2152	 * other mappings belonging to other processes in the 1MB range
2153	 * covered by the L1 entry.
2154	 *
2155	 * Since 'rv == 0', we know that the L1 already contains the correct
2156	 * value, so the fault must be due to a stale TLB entry.
2157	 *
2158	 * Since we always need to flush the TLB anyway in the case where we
2159	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2160	 * stale TLB entries dynamically.
2161	 *
2162	 * However, the above condition can ONLY happen if the current L1 is
2163	 * being shared. If it happens when the L1 is unshared, it indicates
2164	 * that other parts of the pmap are not doing their job WRT managing
2165	 * the TLB.
2166	 */
2167	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2168		extern int last_fault_code;
2169		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2170		    pm, va, ftype);
2171		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2172		    l2, l2b, ptep, pl1pd);
2173		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2174		    pte, l1pd, last_fault_code);
2175#ifdef DDB
2176		Debugger();
2177#endif
2178	}
2179#endif
2180
2181	cpu_tlb_flushID_SE(va);
2182	cpu_cpwait();
2183
2184	rv = 1;
2185
2186out:
2187	vm_page_unlock_queues();
2188	PMAP_UNLOCK(pm);
2189	return (rv);
2190}
2191
2192void
2193pmap_postinit(void)
2194{
2195	struct l2_bucket *l2b;
2196	struct l1_ttable *l1;
2197	pd_entry_t *pl1pt;
2198	pt_entry_t *ptep, pte;
2199	vm_offset_t va, eva;
2200	u_int loop, needed;
2201
2202	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
2203	needed -= 1;
2204	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
2205
2206	for (loop = 0; loop < needed; loop++, l1++) {
2207		/* Allocate a L1 page table */
2208		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
2209		    0xffffffff, L1_TABLE_SIZE, 0);
2210
2211		if (va == 0)
2212			panic("Cannot allocate L1 KVM");
2213
2214		eva = va + L1_TABLE_SIZE;
2215		pl1pt = (pd_entry_t *)va;
2216
2217		while (va < eva) {
2218				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2219				ptep = &l2b->l2b_kva[l2pte_index(va)];
2220				pte = *ptep;
2221				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
2222				*ptep = pte;
2223				PTE_SYNC(ptep);
2224				cpu_tlb_flushD_SE(va);
2225
2226				va += PAGE_SIZE;
2227		}
2228		pmap_init_l1(l1, pl1pt);
2229	}
2230
2231
2232#ifdef DEBUG
2233	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
2234	    needed);
2235#endif
2236}
2237
2238/*
2239 * This is used to stuff certain critical values into the PCB where they
2240 * can be accessed quickly from cpu_switch() et al.
2241 */
2242void
2243pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2244{
2245	struct l2_bucket *l2b;
2246
2247	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2248	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2249	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2250
2251	if (vector_page < KERNBASE) {
2252		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2253		l2b = pmap_get_l2_bucket(pm, vector_page);
2254		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2255	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2256	} else
2257		pcb->pcb_pl1vec = NULL;
2258}
2259
2260void
2261pmap_activate(struct thread *td)
2262{
2263	pmap_t pm;
2264	struct pcb *pcb;
2265	int s;
2266
2267	pm = vmspace_pmap(td->td_proc->p_vmspace);
2268	pcb = td->td_pcb;
2269
2270	critical_enter();
2271	pmap_set_pcb_pagedir(pm, pcb);
2272
2273	if (td == curthread) {
2274		u_int cur_dacr, cur_ttb;
2275
2276		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2277		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2278
2279		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2280
2281		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2282		    cur_dacr == pcb->pcb_dacr) {
2283			/*
2284			 * No need to switch address spaces.
2285			 */
2286			critical_exit();
2287			return;
2288		}
2289
2290
2291		/*
2292		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2293		 * to 'vector_page' in the incoming L1 table before switching
2294		 * to it otherwise subsequent interrupts/exceptions (including
2295		 * domain faults!) will jump into hyperspace.
2296		 */
2297		if (pcb->pcb_pl1vec) {
2298
2299			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2300			/*
2301			 * Don't need to PTE_SYNC() at this point since
2302			 * cpu_setttb() is about to flush both the cache
2303			 * and the TLB.
2304			 */
2305		}
2306
2307		cpu_domains(pcb->pcb_dacr);
2308		cpu_setttb(pcb->pcb_pagedir);
2309
2310		splx(s);
2311	}
2312	critical_exit();
2313}
2314
2315static int
2316pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2317{
2318	pd_entry_t *pdep, pde;
2319	pt_entry_t *ptep, pte;
2320	vm_offset_t pa;
2321	int rv = 0;
2322
2323	/*
2324	 * Make sure the descriptor itself has the correct cache mode
2325	 */
2326	pdep = &kl1[L1_IDX(va)];
2327	pde = *pdep;
2328
2329	if (l1pte_section_p(pde)) {
2330		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2331			*pdep = (pde & ~L1_S_CACHE_MASK) |
2332			    pte_l1_s_cache_mode_pt;
2333			PTE_SYNC(pdep);
2334			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2335			    sizeof(*pdep));
2336			rv = 1;
2337		}
2338	} else {
2339		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2340		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2341		if (ptep == NULL)
2342			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2343
2344		ptep = &ptep[l2pte_index(va)];
2345		pte = *ptep;
2346		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2347			*ptep = (pte & ~L2_S_CACHE_MASK) |
2348			    pte_l2_s_cache_mode_pt;
2349			PTE_SYNC(ptep);
2350			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2351			    sizeof(*ptep));
2352			rv = 1;
2353		}
2354	}
2355
2356	return (rv);
2357}
2358
2359static void
2360pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2361    pt_entry_t **ptep)
2362{
2363	vm_offset_t va = *availp;
2364	struct l2_bucket *l2b;
2365
2366	if (ptep) {
2367		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2368		if (l2b == NULL)
2369			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2370
2371		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2372	}
2373
2374	*vap = va;
2375	*availp = va + (PAGE_SIZE * pages);
2376}
2377
2378/*
2379 *	Bootstrap the system enough to run with virtual memory.
2380 *
2381 *	On the arm this is called after mapping has already been enabled
2382 *	and just syncs the pmap module with what has already been done.
2383 *	[We can't call it easily with mapping off since the kernel is not
2384 *	mapped with PA == VA, hence we would have to relocate every address
2385 *	from the linked base (virtual) address "KERNBASE" to the actual
2386 *	(physical) address starting relative to 0]
2387 */
2388#define PMAP_STATIC_L2_SIZE 16
2389#ifdef ARM_USE_SMALL_ALLOC
2390extern struct mtx smallalloc_mtx;
2391extern vm_offset_t alloc_curaddr;
2392extern vm_offset_t alloc_firstaddr;
2393#endif
2394
2395void
2396pmap_bootstrap(vm_offset_t firstaddr, vm_offset_t lastaddr, struct pv_addr *l1pt)
2397{
2398	static struct l1_ttable static_l1;
2399	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2400	struct l1_ttable *l1 = &static_l1;
2401	struct l2_dtable *l2;
2402	struct l2_bucket *l2b;
2403	pd_entry_t pde;
2404	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2405	pt_entry_t *ptep;
2406	vm_paddr_t pa;
2407	vm_offset_t va;
2408	vm_size_t size;
2409	int l1idx, l2idx, l2next = 0;
2410
2411	PDEBUG(1, printf("firstaddr = %08x, loadaddr = %08x\n",
2412	    firstaddr, loadaddr));
2413
2414	virtual_avail = firstaddr;
2415	kernel_pmap = &kernel_pmap_store;
2416	kernel_pmap->pm_l1 = l1;
2417	kernel_l1pa = l1pt->pv_pa;
2418
2419	/*
2420	 * Scan the L1 translation table created by initarm() and create
2421	 * the required metadata for all valid mappings found in it.
2422	 */
2423	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2424		pde = kernel_l1pt[l1idx];
2425
2426		/*
2427		 * We're only interested in Coarse mappings.
2428		 * pmap_extract() can deal with section mappings without
2429		 * recourse to checking L2 metadata.
2430		 */
2431		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2432			continue;
2433
2434		/*
2435		 * Lookup the KVA of this L2 descriptor table
2436		 */
2437		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2438		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2439
2440		if (ptep == NULL) {
2441			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2442			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2443		}
2444
2445		/*
2446		 * Fetch the associated L2 metadata structure.
2447		 * Allocate a new one if necessary.
2448		 */
2449		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2450			if (l2next == PMAP_STATIC_L2_SIZE)
2451				panic("pmap_bootstrap: out of static L2s");
2452			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2453			    &static_l2[l2next++];
2454		}
2455
2456		/*
2457		 * One more L1 slot tracked...
2458		 */
2459		l2->l2_occupancy++;
2460
2461		/*
2462		 * Fill in the details of the L2 descriptor in the
2463		 * appropriate bucket.
2464		 */
2465		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2466		l2b->l2b_kva = ptep;
2467		l2b->l2b_phys = pa;
2468		l2b->l2b_l1idx = l1idx;
2469
2470		/*
2471		 * Establish an initial occupancy count for this descriptor
2472		 */
2473		for (l2idx = 0;
2474		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2475		    l2idx++) {
2476			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2477				l2b->l2b_occupancy++;
2478			}
2479		}
2480
2481		/*
2482		 * Make sure the descriptor itself has the correct cache mode.
2483		 * If not, fix it, but whine about the problem. Port-meisters
2484		 * should consider this a clue to fix up their initarm()
2485		 * function. :)
2486		 */
2487		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2488			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2489			    "L2 pte @ %p\n", ptep);
2490		}
2491	}
2492
2493
2494	/*
2495	 * Ensure the primary (kernel) L1 has the correct cache mode for
2496	 * a page table. Bitch if it is not correctly set.
2497	 */
2498	for (va = (vm_offset_t)kernel_l1pt;
2499	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2500		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2501			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2502			    "primary L1 @ 0x%x\n", va);
2503	}
2504
2505	cpu_dcache_wbinv_all();
2506	cpu_tlb_flushID();
2507	cpu_cpwait();
2508
2509	PMAP_LOCK_INIT(kernel_pmap);
2510	kernel_pmap->pm_active = -1;
2511	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2512	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2513
2514	/*
2515	 * Reserve some special page table entries/VA space for temporary
2516	 * mapping of pages.
2517	 */
2518#define SYSMAP(c, p, v, n)						\
2519    v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2520
2521	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2522	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2523	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2524	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2525	size = ((lastaddr - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
2526	pmap_alloc_specials(&virtual_avail,
2527	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2528	    &pmap_kernel_l2ptp_kva, NULL);
2529
2530	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
2531	pmap_alloc_specials(&virtual_avail,
2532	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2533	    &pmap_kernel_l2dtable_kva, NULL);
2534
2535	pmap_alloc_specials(&virtual_avail,
2536	    1, (vm_offset_t*)&_tmppt, NULL);
2537	SLIST_INIT(&l1_list);
2538	TAILQ_INIT(&l1_lru_list);
2539	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2540	pmap_init_l1(l1, kernel_l1pt);
2541	cpu_dcache_wbinv_all();
2542
2543	virtual_avail = round_page(virtual_avail);
2544	virtual_end = lastaddr;
2545	kernel_vm_end = pmap_curmaxkvaddr;
2546	arm_nocache_startaddr = lastaddr;
2547	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
2548
2549#ifdef ARM_USE_SMALL_ALLOC
2550	mtx_init(&smallalloc_mtx, "Small alloc page list", NULL, MTX_DEF);
2551	alloc_firstaddr = alloc_curaddr = arm_nocache_startaddr +
2552	    ARM_NOCACHE_KVA_SIZE;
2553#endif
2554}
2555
2556/***************************************************
2557 * Pmap allocation/deallocation routines.
2558 ***************************************************/
2559
2560/*
2561 * Release any resources held by the given physical map.
2562 * Called when a pmap initialized by pmap_pinit is being released.
2563 * Should only be called if the map contains no valid mappings.
2564 */
2565void
2566pmap_release(pmap_t pmap)
2567{
2568	struct pcb *pcb;
2569
2570	pmap_idcache_wbinv_all(pmap);
2571	pmap_tlb_flushID(pmap);
2572	cpu_cpwait();
2573	if (vector_page < KERNBASE) {
2574		struct pcb *curpcb = PCPU_GET(curpcb);
2575		pcb = thread0.td_pcb;
2576		if (pmap_is_current(pmap)) {
2577			/*
2578 			 * Frob the L1 entry corresponding to the vector
2579			 * page so that it contains the kernel pmap's domain
2580			 * number. This will ensure pmap_remove() does not
2581			 * pull the current vector page out from under us.
2582			 */
2583			critical_enter();
2584			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2585			cpu_domains(pcb->pcb_dacr);
2586			cpu_setttb(pcb->pcb_pagedir);
2587			critical_exit();
2588		}
2589		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2590		/*
2591		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2592		 * since this process has no remaining mappings of its own.
2593		 */
2594		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2595		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2596		curpcb->pcb_dacr = pcb->pcb_dacr;
2597		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2598
2599	}
2600	pmap_free_l1(pmap);
2601	PMAP_LOCK_DESTROY(pmap);
2602
2603	dprintf("pmap_release()\n");
2604}
2605
2606
2607
2608/*
2609 * Helper function for pmap_grow_l2_bucket()
2610 */
2611static __inline int
2612pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2613{
2614	struct l2_bucket *l2b;
2615	pt_entry_t *ptep;
2616	vm_paddr_t pa;
2617	struct vm_page *pg;
2618
2619	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2620	if (pg == NULL)
2621		return (1);
2622	pa = VM_PAGE_TO_PHYS(pg);
2623
2624	if (pap)
2625		*pap = pa;
2626
2627	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2628
2629	ptep = &l2b->l2b_kva[l2pte_index(va)];
2630	*ptep = L2_S_PROTO | pa | cache_mode |
2631	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2632	PTE_SYNC(ptep);
2633	return (0);
2634}
2635
2636/*
2637 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2638 * used by pmap_growkernel().
2639 */
2640static __inline struct l2_bucket *
2641pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2642{
2643	struct l2_dtable *l2;
2644	struct l2_bucket *l2b;
2645	struct l1_ttable *l1;
2646	pd_entry_t *pl1pd;
2647	u_short l1idx;
2648	vm_offset_t nva;
2649
2650	l1idx = L1_IDX(va);
2651
2652	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2653		/*
2654		 * No mapping at this address, as there is
2655		 * no entry in the L1 table.
2656		 * Need to allocate a new l2_dtable.
2657		 */
2658		nva = pmap_kernel_l2dtable_kva;
2659		if ((nva & PAGE_MASK) == 0) {
2660			/*
2661			 * Need to allocate a backing page
2662			 */
2663			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2664				return (NULL);
2665		}
2666
2667		l2 = (struct l2_dtable *)nva;
2668		nva += sizeof(struct l2_dtable);
2669
2670		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2671		    PAGE_MASK)) {
2672			/*
2673			 * The new l2_dtable straddles a page boundary.
2674			 * Map in another page to cover it.
2675			 */
2676			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2677				return (NULL);
2678		}
2679
2680		pmap_kernel_l2dtable_kva = nva;
2681
2682		/*
2683		 * Link it into the parent pmap
2684		 */
2685		pm->pm_l2[L2_IDX(l1idx)] = l2;
2686		memset(l2, 0, sizeof(*l2));
2687	}
2688
2689	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2690
2691	/*
2692	 * Fetch pointer to the L2 page table associated with the address.
2693	 */
2694	if (l2b->l2b_kva == NULL) {
2695		pt_entry_t *ptep;
2696
2697		/*
2698		 * No L2 page table has been allocated. Chances are, this
2699		 * is because we just allocated the l2_dtable, above.
2700		 */
2701		nva = pmap_kernel_l2ptp_kva;
2702		ptep = (pt_entry_t *)nva;
2703		if ((nva & PAGE_MASK) == 0) {
2704			/*
2705			 * Need to allocate a backing page
2706			 */
2707			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2708			    &pmap_kernel_l2ptp_phys))
2709				return (NULL);
2710			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2711		}
2712		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2713		l2->l2_occupancy++;
2714		l2b->l2b_kva = ptep;
2715		l2b->l2b_l1idx = l1idx;
2716		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2717
2718		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2719		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2720	}
2721
2722	/* Distribute new L1 entry to all other L1s */
2723	SLIST_FOREACH(l1, &l1_list, l1_link) {
2724			pl1pd = &l1->l1_kva[L1_IDX(va)];
2725			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2726			    L1_C_PROTO;
2727			PTE_SYNC(pl1pd);
2728	}
2729
2730	return (l2b);
2731}
2732
2733
2734/*
2735 * grow the number of kernel page table entries, if needed
2736 */
2737void
2738pmap_growkernel(vm_offset_t addr)
2739{
2740	pmap_t kpm = pmap_kernel();
2741	int s;
2742
2743	if (addr <= pmap_curmaxkvaddr)
2744		return;		/* we are OK */
2745
2746	/*
2747	 * whoops!   we need to add kernel PTPs
2748	 */
2749
2750	s = splhigh();	/* to be safe */
2751
2752	/* Map 1MB at a time */
2753	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2754		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2755
2756	/*
2757	 * flush out the cache, expensive but growkernel will happen so
2758	 * rarely
2759	 */
2760	cpu_dcache_wbinv_all();
2761	cpu_tlb_flushD();
2762	cpu_cpwait();
2763	kernel_vm_end = pmap_curmaxkvaddr;
2764
2765}
2766
2767
2768/*
2769 *      pmap_page_protect:
2770 *
2771 *      Lower the permission for all mappings to a given page.
2772 */
2773void
2774pmap_page_protect(vm_page_t m, vm_prot_t prot)
2775{
2776	switch(prot) {
2777	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2778	case VM_PROT_READ|VM_PROT_WRITE:
2779		return;
2780
2781	case VM_PROT_READ:
2782	case VM_PROT_READ|VM_PROT_EXECUTE:
2783		pmap_clearbit(m, PVF_WRITE);
2784		break;
2785
2786	default:
2787		pmap_remove_all(m);
2788		break;
2789	}
2790
2791}
2792
2793
2794/*
2795 * Remove all pages from specified address space
2796 * this aids process exit speeds.  Also, this code
2797 * is special cased for current process only, but
2798 * can have the more generic (and slightly slower)
2799 * mode enabled.  This is much faster than pmap_remove
2800 * in the case of running down an entire address space.
2801 */
2802void
2803pmap_remove_pages(pmap_t pmap)
2804{
2805	struct pv_entry *pv, *npv;
2806	struct l2_bucket *l2b = NULL;
2807	vm_page_t m;
2808	pt_entry_t *pt;
2809
2810	vm_page_lock_queues();
2811	PMAP_LOCK(pmap);
2812	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2813		if (pv->pv_flags & PVF_WIRED) {
2814			/* The page is wired, cannot remove it now. */
2815			npv = TAILQ_NEXT(pv, pv_plist);
2816			continue;
2817		}
2818		pmap->pm_stats.resident_count--;
2819		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2820		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2821		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2822		m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
2823		*pt = 0;
2824		PTE_SYNC(pt);
2825		npv = TAILQ_NEXT(pv, pv_plist);
2826		pmap_nuke_pv(m, pmap, pv);
2827		if (TAILQ_EMPTY(&m->md.pv_list))
2828			vm_page_flag_clear(m, PG_WRITEABLE);
2829		pmap_free_pv_entry(pv);
2830	}
2831	vm_page_unlock_queues();
2832	cpu_idcache_wbinv_all();
2833	cpu_tlb_flushID();
2834	cpu_cpwait();
2835	PMAP_UNLOCK(pmap);
2836}
2837
2838
2839/***************************************************
2840 * Low level mapping routines.....
2841 ***************************************************/
2842
2843/* Map a section into the KVA. */
2844
2845void
2846pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2847{
2848	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2849	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2850	struct l1_ttable *l1;
2851
2852	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2853	    ("Not a valid section mapping"));
2854	if (flags & SECTION_CACHE)
2855		pd |= pte_l1_s_cache_mode;
2856	else if (flags & SECTION_PT)
2857		pd |= pte_l1_s_cache_mode_pt;
2858	SLIST_FOREACH(l1, &l1_list, l1_link) {
2859		l1->l1_kva[L1_IDX(va)] = pd;
2860		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2861	}
2862}
2863
2864/*
2865 * add a wired page to the kva
2866 * note that in order for the mapping to take effect -- you
2867 * should do a invltlb after doing the pmap_kenter...
2868 */
2869static PMAP_INLINE void
2870pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2871{
2872	struct l2_bucket *l2b;
2873	pt_entry_t *pte;
2874	pt_entry_t opte;
2875	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2876	    (uint32_t) va, (uint32_t) pa));
2877
2878
2879	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2880	if (l2b == NULL)
2881		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2882	KASSERT(l2b != NULL, ("No L2 Bucket"));
2883	pte = &l2b->l2b_kva[l2pte_index(va)];
2884	opte = *pte;
2885	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2886	    (uint32_t) pte, opte, *pte));
2887	if (l2pte_valid(opte)) {
2888		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2889		cpu_tlb_flushD_SE(va);
2890		cpu_cpwait();
2891	} else {
2892		if (opte == 0)
2893			l2b->l2b_occupancy++;
2894	}
2895	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2896	    VM_PROT_READ | VM_PROT_WRITE);
2897	if (flags & KENTER_CACHE)
2898		*pte |= pte_l2_s_cache_mode;
2899	if (flags & KENTER_USER)
2900		*pte |= L2_S_PROT_U;
2901	PTE_SYNC(pte);
2902}
2903
2904void
2905pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2906{
2907	pmap_kenter_internal(va, pa, KENTER_CACHE);
2908}
2909
2910void
2911pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2912{
2913
2914	pmap_kenter_internal(va, pa, 0);
2915}
2916
2917void
2918pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2919{
2920
2921	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2922	/*
2923	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2924	 * at the first use of the new address, or bad things will happen,
2925	 * as we use one of these addresses in the exception handlers.
2926	 */
2927	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2928}
2929
2930/*
2931 * remove a page rom the kernel pagetables
2932 */
2933PMAP_INLINE void
2934pmap_kremove(vm_offset_t va)
2935{
2936	struct l2_bucket *l2b;
2937	pt_entry_t *pte, opte;
2938
2939	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2940	if (!l2b)
2941		return;
2942	KASSERT(l2b != NULL, ("No L2 Bucket"));
2943	pte = &l2b->l2b_kva[l2pte_index(va)];
2944	opte = *pte;
2945	if (l2pte_valid(opte)) {
2946		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2947		cpu_tlb_flushD_SE(va);
2948		cpu_cpwait();
2949		*pte = 0;
2950	}
2951}
2952
2953
2954/*
2955 *	Used to map a range of physical addresses into kernel
2956 *	virtual address space.
2957 *
2958 *	The value passed in '*virt' is a suggested virtual address for
2959 *	the mapping. Architectures which can support a direct-mapped
2960 *	physical to virtual region can return the appropriate address
2961 *	within that region, leaving '*virt' unchanged. Other
2962 *	architectures should map the pages starting at '*virt' and
2963 *	update '*virt' with the first usable address after the mapped
2964 *	region.
2965 */
2966vm_offset_t
2967pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2968{
2969	vm_offset_t sva = *virt;
2970	vm_offset_t va = sva;
2971
2972	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2973	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2974	    prot));
2975
2976	while (start < end) {
2977		pmap_kenter(va, start);
2978		va += PAGE_SIZE;
2979		start += PAGE_SIZE;
2980	}
2981	*virt = va;
2982	return (sva);
2983}
2984
2985static void
2986pmap_wb_page(vm_page_t m)
2987{
2988	struct pv_entry *pv;
2989
2990	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2991	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
2992		(pv->pv_flags & PVF_WRITE) == 0);
2993}
2994
2995static void
2996pmap_inv_page(vm_page_t m)
2997{
2998	struct pv_entry *pv;
2999
3000	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
3001	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
3002}
3003/*
3004 * Add a list of wired pages to the kva
3005 * this routine is only used for temporary
3006 * kernel mappings that do not need to have
3007 * page modification or references recorded.
3008 * Note that old mappings are simply written
3009 * over.  The page *must* be wired.
3010 */
3011void
3012pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
3013{
3014	int i;
3015
3016	for (i = 0; i < count; i++) {
3017		pmap_wb_page(m[i]);
3018		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
3019		    KENTER_CACHE);
3020		va += PAGE_SIZE;
3021	}
3022}
3023
3024
3025/*
3026 * this routine jerks page mappings from the
3027 * kernel -- it is meant only for temporary mappings.
3028 */
3029void
3030pmap_qremove(vm_offset_t va, int count)
3031{
3032	vm_paddr_t pa;
3033	int i;
3034
3035	for (i = 0; i < count; i++) {
3036		pa = vtophys(va);
3037		if (pa) {
3038			pmap_inv_page(PHYS_TO_VM_PAGE(pa));
3039			pmap_kremove(va);
3040		}
3041		va += PAGE_SIZE;
3042	}
3043}
3044
3045
3046/*
3047 * pmap_object_init_pt preloads the ptes for a given object
3048 * into the specified pmap.  This eliminates the blast of soft
3049 * faults on process startup and immediately after an mmap.
3050 */
3051void
3052pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3053    vm_pindex_t pindex, vm_size_t size)
3054{
3055
3056	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3057	KASSERT(object->type == OBJT_DEVICE,
3058	    ("pmap_object_init_pt: non-device object"));
3059}
3060
3061
3062/*
3063 *	pmap_is_prefaultable:
3064 *
3065 *	Return whether or not the specified virtual address is elgible
3066 *	for prefault.
3067 */
3068boolean_t
3069pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3070{
3071	pd_entry_t *pde;
3072	pt_entry_t *pte;
3073
3074	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
3075		return (FALSE);
3076	KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
3077	if (*pte == 0)
3078		return (TRUE);
3079	return (FALSE);
3080}
3081
3082/*
3083 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3084 * Returns TRUE if the mapping exists, else FALSE.
3085 *
3086 * NOTE: This function is only used by a couple of arm-specific modules.
3087 * It is not safe to take any pmap locks here, since we could be right
3088 * in the middle of debugging the pmap anyway...
3089 *
3090 * It is possible for this routine to return FALSE even though a valid
3091 * mapping does exist. This is because we don't lock, so the metadata
3092 * state may be inconsistent.
3093 *
3094 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3095 * a "section" mapping.
3096 */
3097boolean_t
3098pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3099{
3100	struct l2_dtable *l2;
3101	pd_entry_t *pl1pd, l1pd;
3102	pt_entry_t *ptep;
3103	u_short l1idx;
3104
3105	if (pm->pm_l1 == NULL)
3106		return (FALSE);
3107
3108	l1idx = L1_IDX(va);
3109	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3110	l1pd = *pl1pd;
3111
3112	if (l1pte_section_p(l1pd)) {
3113		*ptp = NULL;
3114		return (TRUE);
3115	}
3116
3117	if (pm->pm_l2 == NULL)
3118		return (FALSE);
3119
3120	l2 = pm->pm_l2[L2_IDX(l1idx)];
3121
3122	if (l2 == NULL ||
3123	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3124		return (FALSE);
3125	}
3126
3127	*ptp = &ptep[l2pte_index(va)];
3128	return (TRUE);
3129}
3130
3131/*
3132 *      Routine:        pmap_remove_all
3133 *      Function:
3134 *              Removes this physical page from
3135 *              all physical maps in which it resides.
3136 *              Reflects back modify bits to the pager.
3137 *
3138 *      Notes:
3139 *              Original versions of this routine were very
3140 *              inefficient because they iteratively called
3141 *              pmap_remove (slow...)
3142 */
3143void
3144pmap_remove_all(vm_page_t m)
3145{
3146	pv_entry_t pv;
3147	pt_entry_t *ptep, pte;
3148	struct l2_bucket *l2b;
3149	boolean_t flush = FALSE;
3150	pmap_t curpm;
3151	int flags = 0;
3152
3153#if defined(PMAP_DEBUG)
3154	/*
3155	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
3156	 * pages!
3157	 */
3158	if (m->flags & PG_FICTITIOUS) {
3159		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
3160	}
3161#endif
3162
3163	if (TAILQ_EMPTY(&m->md.pv_list))
3164		return;
3165	curpm = vmspace_pmap(curproc->p_vmspace);
3166	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3167		if (flush == FALSE && (pv->pv_pmap == curpm ||
3168		    pv->pv_pmap == pmap_kernel()))
3169			flush = TRUE;
3170		PMAP_LOCK(pv->pv_pmap);
3171		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3172		KASSERT(l2b != NULL, ("No l2 bucket"));
3173		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3174		pte = *ptep;
3175		*ptep = 0;
3176		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3177		pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3178		if (pv->pv_flags & PVF_WIRED)
3179			pv->pv_pmap->pm_stats.wired_count--;
3180		pv->pv_pmap->pm_stats.resident_count--;
3181		flags |= pv->pv_flags;
3182		pmap_nuke_pv(m, pv->pv_pmap, pv);
3183		PMAP_UNLOCK(pv->pv_pmap);
3184		pmap_free_pv_entry(pv);
3185	}
3186
3187	if (flush) {
3188		if (PV_BEEN_EXECD(flags))
3189			pmap_tlb_flushID(curpm);
3190		else
3191			pmap_tlb_flushD(curpm);
3192	}
3193	vm_page_flag_clear(m, PG_WRITEABLE);
3194}
3195
3196
3197/*
3198 *	Set the physical protection on the
3199 *	specified range of this map as requested.
3200 */
3201void
3202pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3203{
3204	struct l2_bucket *l2b;
3205	pt_entry_t *ptep, pte;
3206	vm_offset_t next_bucket;
3207	u_int flags;
3208	int flush;
3209
3210	if ((prot & VM_PROT_READ) == 0) {
3211		pmap_remove(pm, sva, eva);
3212		return;
3213	}
3214
3215	if (prot & VM_PROT_WRITE) {
3216		/*
3217		 * If this is a read->write transition, just ignore it and let
3218		 * vm_fault() take care of it later.
3219		 */
3220		return;
3221	}
3222
3223	vm_page_lock_queues();
3224	PMAP_LOCK(pm);
3225
3226	/*
3227	 * OK, at this point, we know we're doing write-protect operation.
3228	 * If the pmap is active, write-back the range.
3229	 */
3230	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3231
3232	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3233	flags = 0;
3234
3235	while (sva < eva) {
3236		next_bucket = L2_NEXT_BUCKET(sva);
3237		if (next_bucket > eva)
3238			next_bucket = eva;
3239
3240		l2b = pmap_get_l2_bucket(pm, sva);
3241		if (l2b == NULL) {
3242			sva = next_bucket;
3243			continue;
3244		}
3245
3246		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3247
3248		while (sva < next_bucket) {
3249			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3250				struct vm_page *pg;
3251				u_int f;
3252
3253				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3254				pte &= ~L2_S_PROT_W;
3255				*ptep = pte;
3256				PTE_SYNC(ptep);
3257
3258				if (pg != NULL) {
3259					f = pmap_modify_pv(pg, pm, sva,
3260					    PVF_WRITE, 0);
3261					pmap_vac_me_harder(pg, pm, sva);
3262					vm_page_dirty(pg);
3263				} else
3264					f = PVF_REF | PVF_EXEC;
3265
3266				if (flush >= 0) {
3267					flush++;
3268					flags |= f;
3269				} else
3270				if (PV_BEEN_EXECD(f))
3271					pmap_tlb_flushID_SE(pm, sva);
3272				else
3273				if (PV_BEEN_REFD(f))
3274					pmap_tlb_flushD_SE(pm, sva);
3275			}
3276
3277			sva += PAGE_SIZE;
3278			ptep++;
3279		}
3280	}
3281
3282
3283	if (flush) {
3284		if (PV_BEEN_EXECD(flags))
3285			pmap_tlb_flushID(pm);
3286		else
3287		if (PV_BEEN_REFD(flags))
3288			pmap_tlb_flushD(pm);
3289	}
3290	vm_page_unlock_queues();
3291
3292 	PMAP_UNLOCK(pm);
3293}
3294
3295
3296/*
3297 *	Insert the given physical page (p) at
3298 *	the specified virtual address (v) in the
3299 *	target physical map with the protection requested.
3300 *
3301 *	If specified, the page will be wired down, meaning
3302 *	that the related pte can not be reclaimed.
3303 *
3304 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3305 *	or lose information.  That is, this routine must actually
3306 *	insert this page into the given map NOW.
3307 */
3308
3309void
3310pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3311    boolean_t wired)
3312{
3313
3314	vm_page_lock_queues();
3315	PMAP_LOCK(pmap);
3316	pmap_enter_locked(pmap, va, m, prot, wired);
3317	vm_page_unlock_queues();
3318 	PMAP_UNLOCK(pmap);
3319}
3320
3321/*
3322 *	The page queues and pmap must be locked.
3323 */
3324static void
3325pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3326    boolean_t wired)
3327{
3328	struct l2_bucket *l2b = NULL;
3329	struct vm_page *opg;
3330	struct pv_entry *pve = NULL;
3331	pt_entry_t *ptep, npte, opte;
3332	u_int nflags;
3333	u_int oflags;
3334	vm_paddr_t pa;
3335
3336	PMAP_ASSERT_LOCKED(pmap);
3337	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3338	if (va == vector_page) {
3339		pa = systempage.pv_pa;
3340		m = NULL;
3341	} else
3342		pa = VM_PAGE_TO_PHYS(m);
3343	nflags = 0;
3344	if (prot & VM_PROT_WRITE)
3345		nflags |= PVF_WRITE;
3346	if (prot & VM_PROT_EXECUTE)
3347		nflags |= PVF_EXEC;
3348	if (wired)
3349		nflags |= PVF_WIRED;
3350	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3351	    "wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired));
3352
3353	if (pmap == pmap_kernel()) {
3354		l2b = pmap_get_l2_bucket(pmap, va);
3355		if (l2b == NULL)
3356			l2b = pmap_grow_l2_bucket(pmap, va);
3357	} else
3358		l2b = pmap_alloc_l2_bucket(pmap, va);
3359		KASSERT(l2b != NULL,
3360		    ("pmap_enter: failed to allocate l2 bucket"));
3361	ptep = &l2b->l2b_kva[l2pte_index(va)];
3362
3363	opte = *ptep;
3364	npte = pa;
3365	oflags = 0;
3366	if (opte) {
3367		/*
3368		 * There is already a mapping at this address.
3369		 * If the physical address is different, lookup the
3370		 * vm_page.
3371		 */
3372		if (l2pte_pa(opte) != pa)
3373			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3374		else
3375			opg = m;
3376	} else
3377		opg = NULL;
3378
3379	if ((prot & (VM_PROT_ALL)) ||
3380	    (!m || m->md.pvh_attrs & PVF_REF)) {
3381		/*
3382		 * - The access type indicates that we don't need
3383		 *   to do referenced emulation.
3384		 * OR
3385		 * - The physical page has already been referenced
3386		 *   so no need to re-do referenced emulation here.
3387		 */
3388		npte |= L2_S_PROTO;
3389
3390		nflags |= PVF_REF;
3391
3392		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3393		    (m->md.pvh_attrs & PVF_MOD))) {
3394			/*
3395			 * This is a writable mapping, and the
3396			 * page's mod state indicates it has
3397			 * already been modified. Make it
3398			 * writable from the outset.
3399			 */
3400			nflags |= PVF_MOD;
3401			if (!(m->md.pvh_attrs & PVF_MOD))
3402				vm_page_dirty(m);
3403		}
3404		if (m && opte)
3405			vm_page_flag_set(m, PG_REFERENCED);
3406	} else {
3407		/*
3408		 * Need to do page referenced emulation.
3409		 */
3410		npte |= L2_TYPE_INV;
3411	}
3412
3413	if (prot & VM_PROT_WRITE)
3414		npte |= L2_S_PROT_W;
3415	npte |= pte_l2_s_cache_mode;
3416	if (m && m == opg) {
3417		/*
3418		 * We're changing the attrs of an existing mapping.
3419		 */
3420		oflags = pmap_modify_pv(m, pmap, va,
3421		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3422		    PVF_MOD | PVF_REF, nflags);
3423
3424		/*
3425		 * We may need to flush the cache if we're
3426		 * doing rw-ro...
3427		 */
3428		if (pmap_is_current(pmap) &&
3429		    (oflags & PVF_NC) == 0 &&
3430			    (opte & L2_S_PROT_W) != 0 &&
3431			    (prot & VM_PROT_WRITE) == 0)
3432			cpu_dcache_wb_range(va, PAGE_SIZE);
3433	} else {
3434		/*
3435		 * New mapping, or changing the backing page
3436		 * of an existing mapping.
3437		 */
3438		if (opg) {
3439			/*
3440			 * Replacing an existing mapping with a new one.
3441			 * It is part of our managed memory so we
3442			 * must remove it from the PV list
3443			 */
3444			pve = pmap_remove_pv(opg, pmap, va);
3445			if (m && (m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) &&
3446			    pve)
3447				pmap_free_pv_entry(pve);
3448			else if (!pve &&
3449			    !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS)))
3450				pve = pmap_get_pv_entry();
3451			KASSERT(pve != NULL, ("No pv"));
3452			oflags = pve->pv_flags;
3453
3454			/*
3455			 * If the old mapping was valid (ref/mod
3456			 * emulation creates 'invalid' mappings
3457			 * initially) then make sure to frob
3458			 * the cache.
3459			 */
3460			if ((oflags & PVF_NC) == 0 &&
3461			    l2pte_valid(opte)) {
3462				if (PV_BEEN_EXECD(oflags)) {
3463					pmap_idcache_wbinv_range(pmap, va,
3464					    PAGE_SIZE);
3465				} else
3466					if (PV_BEEN_REFD(oflags)) {
3467						pmap_dcache_wb_range(pmap, va,
3468						    PAGE_SIZE, TRUE,
3469						    (oflags & PVF_WRITE) == 0);
3470					}
3471			}
3472		} else if (m && !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS)))
3473			if ((pve = pmap_get_pv_entry()) == NULL) {
3474				panic("pmap_enter: no pv entries");
3475			}
3476		if (m && !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS))) {
3477			KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3478			    ("pmap_enter: managed mapping within the clean submap"));
3479			pmap_enter_pv(m, pve, pmap, va, nflags);
3480		}
3481	}
3482	/*
3483	 * Make sure userland mappings get the right permissions
3484	 */
3485	if (pmap != pmap_kernel() && va != vector_page) {
3486		npte |= L2_S_PROT_U;
3487	}
3488
3489	/*
3490	 * Keep the stats up to date
3491	 */
3492	if (opte == 0) {
3493		l2b->l2b_occupancy++;
3494		pmap->pm_stats.resident_count++;
3495	}
3496
3497
3498	/*
3499	 * If this is just a wiring change, the two PTEs will be
3500	 * identical, so there's no need to update the page table.
3501	 */
3502	if (npte != opte) {
3503		boolean_t is_cached = pmap_is_current(pmap);
3504
3505		*ptep = npte;
3506		if (is_cached) {
3507			/*
3508			 * We only need to frob the cache/tlb if this pmap
3509			 * is current
3510			 */
3511			PTE_SYNC(ptep);
3512			if (L1_IDX(va) != L1_IDX(vector_page) &&
3513			    l2pte_valid(npte)) {
3514				/*
3515				 * This mapping is likely to be accessed as
3516				 * soon as we return to userland. Fix up the
3517				 * L1 entry to avoid taking another
3518				 * page/domain fault.
3519				 */
3520				pd_entry_t *pl1pd, l1pd;
3521
3522				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3523				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3524				    L1_C_PROTO;
3525				if (*pl1pd != l1pd) {
3526					*pl1pd = l1pd;
3527					PTE_SYNC(pl1pd);
3528				}
3529			}
3530		}
3531
3532		if (PV_BEEN_EXECD(oflags))
3533			pmap_tlb_flushID_SE(pmap, va);
3534		else if (PV_BEEN_REFD(oflags))
3535			pmap_tlb_flushD_SE(pmap, va);
3536
3537
3538		if (m)
3539			pmap_vac_me_harder(m, pmap, va);
3540	}
3541}
3542
3543/*
3544 * Maps a sequence of resident pages belonging to the same object.
3545 * The sequence begins with the given page m_start.  This page is
3546 * mapped at the given virtual address start.  Each subsequent page is
3547 * mapped at a virtual address that is offset from start by the same
3548 * amount as the page is offset from m_start within the object.  The
3549 * last page in the sequence is the page with the largest offset from
3550 * m_start that can be mapped at a virtual address less than the given
3551 * virtual address end.  Not every virtual page between start and end
3552 * is mapped; only those for which a resident page exists with the
3553 * corresponding offset from m_start are mapped.
3554 */
3555void
3556pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3557    vm_page_t m_start, vm_prot_t prot)
3558{
3559	vm_page_t m;
3560	vm_pindex_t diff, psize;
3561
3562	psize = atop(end - start);
3563	m = m_start;
3564	PMAP_LOCK(pmap);
3565	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3566		pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
3567		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
3568		m = TAILQ_NEXT(m, listq);
3569	}
3570 	PMAP_UNLOCK(pmap);
3571}
3572
3573/*
3574 * this code makes some *MAJOR* assumptions:
3575 * 1. Current pmap & pmap exists.
3576 * 2. Not wired.
3577 * 3. Read access.
3578 * 4. No page table pages.
3579 * but is *MUCH* faster than pmap_enter...
3580 */
3581
3582vm_page_t
3583pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3584    vm_page_t mpte)
3585{
3586
3587 	PMAP_LOCK(pmap);
3588	pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
3589	    FALSE);
3590 	PMAP_UNLOCK(pmap);
3591	return (NULL);
3592}
3593
3594/*
3595 *	Routine:	pmap_change_wiring
3596 *	Function:	Change the wiring attribute for a map/virtual-address
3597 *			pair.
3598 *	In/out conditions:
3599 *			The mapping must already exist in the pmap.
3600 */
3601void
3602pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3603{
3604	struct l2_bucket *l2b;
3605	pt_entry_t *ptep, pte;
3606	vm_page_t pg;
3607
3608	vm_page_lock_queues();
3609 	PMAP_LOCK(pmap);
3610	l2b = pmap_get_l2_bucket(pmap, va);
3611	KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
3612	ptep = &l2b->l2b_kva[l2pte_index(va)];
3613	pte = *ptep;
3614	pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3615	if (pg)
3616		pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired);
3617	vm_page_unlock_queues();
3618 	PMAP_UNLOCK(pmap);
3619}
3620
3621
3622/*
3623 *	Copy the range specified by src_addr/len
3624 *	from the source map to the range dst_addr/len
3625 *	in the destination map.
3626 *
3627 *	This routine is only advisory and need not do anything.
3628 */
3629void
3630pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3631    vm_size_t len, vm_offset_t src_addr)
3632{
3633}
3634
3635
3636/*
3637 *	Routine:	pmap_extract
3638 *	Function:
3639 *		Extract the physical page address associated
3640 *		with the given map/virtual_address pair.
3641 */
3642vm_paddr_t
3643pmap_extract(pmap_t pm, vm_offset_t va)
3644{
3645	struct l2_dtable *l2;
3646	pd_entry_t l1pd;
3647	pt_entry_t *ptep, pte;
3648	vm_paddr_t pa;
3649	u_int l1idx;
3650	l1idx = L1_IDX(va);
3651
3652	PMAP_LOCK(pm);
3653	l1pd = pm->pm_l1->l1_kva[l1idx];
3654	if (l1pte_section_p(l1pd)) {
3655		/*
3656		 * These should only happen for pmap_kernel()
3657		 */
3658		KASSERT(pm == pmap_kernel(), ("huh"));
3659		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3660	} else {
3661		/*
3662		 * Note that we can't rely on the validity of the L1
3663		 * descriptor as an indication that a mapping exists.
3664		 * We have to look it up in the L2 dtable.
3665		 */
3666		l2 = pm->pm_l2[L2_IDX(l1idx)];
3667
3668		if (l2 == NULL ||
3669		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3670			PMAP_UNLOCK(pm);
3671			return (0);
3672		}
3673
3674		ptep = &ptep[l2pte_index(va)];
3675		pte = *ptep;
3676
3677		if (pte == 0) {
3678			PMAP_UNLOCK(pm);
3679			return (0);
3680		}
3681
3682		switch (pte & L2_TYPE_MASK) {
3683		case L2_TYPE_L:
3684			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3685			break;
3686
3687		default:
3688			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3689			break;
3690		}
3691	}
3692
3693	PMAP_UNLOCK(pm);
3694	return (pa);
3695}
3696
3697/*
3698 * Atomically extract and hold the physical page with the given
3699 * pmap and virtual address pair if that mapping permits the given
3700 * protection.
3701 *
3702 */
3703vm_page_t
3704pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3705{
3706	struct l2_dtable *l2;
3707	pd_entry_t l1pd;
3708	pt_entry_t *ptep, pte;
3709	vm_paddr_t pa;
3710	vm_page_t m = NULL;
3711	u_int l1idx;
3712	l1idx = L1_IDX(va);
3713
3714	vm_page_lock_queues();
3715 	PMAP_LOCK(pmap);
3716	l1pd = pmap->pm_l1->l1_kva[l1idx];
3717	if (l1pte_section_p(l1pd)) {
3718		/*
3719		 * These should only happen for pmap_kernel()
3720		 */
3721		KASSERT(pmap == pmap_kernel(), ("huh"));
3722		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3723		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3724			m = PHYS_TO_VM_PAGE(pa);
3725			vm_page_hold(m);
3726		}
3727
3728	} else {
3729		/*
3730		 * Note that we can't rely on the validity of the L1
3731		 * descriptor as an indication that a mapping exists.
3732		 * We have to look it up in the L2 dtable.
3733		 */
3734		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3735
3736		if (l2 == NULL ||
3737		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3738		 	PMAP_UNLOCK(pmap);
3739			vm_page_unlock_queues();
3740			return (NULL);
3741		}
3742
3743		ptep = &ptep[l2pte_index(va)];
3744		pte = *ptep;
3745
3746		if (pte == 0) {
3747		 	PMAP_UNLOCK(pmap);
3748			vm_page_unlock_queues();
3749			return (NULL);
3750		}
3751		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3752			switch (pte & L2_TYPE_MASK) {
3753			case L2_TYPE_L:
3754				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3755				break;
3756
3757			default:
3758				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3759				break;
3760			}
3761			m = PHYS_TO_VM_PAGE(pa);
3762			vm_page_hold(m);
3763		}
3764	}
3765
3766 	PMAP_UNLOCK(pmap);
3767	vm_page_unlock_queues();
3768	return (m);
3769}
3770
3771/*
3772 * Initialize a preallocated and zeroed pmap structure,
3773 * such as one in a vmspace structure.
3774 */
3775
3776void
3777pmap_pinit(pmap_t pmap)
3778{
3779	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3780
3781	PMAP_LOCK_INIT(pmap);
3782	pmap_alloc_l1(pmap);
3783	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3784
3785	pmap->pm_count = 1;
3786	pmap->pm_active = 0;
3787
3788	TAILQ_INIT(&pmap->pm_pvlist);
3789	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3790	pmap->pm_stats.resident_count = 1;
3791	if (vector_page < KERNBASE) {
3792		pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
3793		    VM_PROT_READ, 1);
3794	}
3795}
3796
3797
3798/***************************************************
3799 * page management routines.
3800 ***************************************************/
3801
3802
3803static void
3804pmap_free_pv_entry(pv_entry_t pv)
3805{
3806	pv_entry_count--;
3807	uma_zfree(pvzone, pv);
3808}
3809
3810
3811/*
3812 * get a new pv_entry, allocating a block from the system
3813 * when needed.
3814 * the memory allocation is performed bypassing the malloc code
3815 * because of the possibility of allocations at interrupt time.
3816 */
3817static pv_entry_t
3818pmap_get_pv_entry(void)
3819{
3820	pv_entry_t ret_value;
3821
3822	pv_entry_count++;
3823	if ((pv_entry_count > pv_entry_high_water) &&
3824	    (pmap_pagedaemon_waken == 0)) {
3825	    	pmap_pagedaemon_waken = 1;
3826	    	wakeup (&vm_pages_needed);
3827	}
3828	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3829	return ret_value;
3830}
3831
3832
3833/*
3834 *	Remove the given range of addresses from the specified map.
3835 *
3836 *	It is assumed that the start and end are properly
3837 *	rounded to the page size.
3838 */
3839#define  PMAP_REMOVE_CLEAN_LIST_SIZE     3
3840void
3841pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3842{
3843	struct l2_bucket *l2b;
3844	vm_offset_t next_bucket;
3845	pt_entry_t *ptep;
3846	u_int cleanlist_idx, total, cnt;
3847	struct {
3848		vm_offset_t va;
3849		pt_entry_t *pte;
3850	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3851	u_int mappings, is_exec, is_refd;
3852	int flushall = 0;
3853
3854
3855	/*
3856	 * we lock in the pmap => pv_head direction
3857	 */
3858
3859	vm_page_lock_queues();
3860	PMAP_LOCK(pm);
3861	if (!pmap_is_current(pm)) {
3862		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3863	} else
3864		cleanlist_idx = 0;
3865
3866	total = 0;
3867	while (sva < eva) {
3868		/*
3869		 * Do one L2 bucket's worth at a time.
3870		 */
3871		next_bucket = L2_NEXT_BUCKET(sva);
3872		if (next_bucket > eva)
3873			next_bucket = eva;
3874
3875		l2b = pmap_get_l2_bucket(pm, sva);
3876		if (l2b == NULL) {
3877			sva = next_bucket;
3878			continue;
3879		}
3880
3881		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3882		mappings = 0;
3883
3884		while (sva < next_bucket) {
3885			struct vm_page *pg;
3886			pt_entry_t pte;
3887			vm_paddr_t pa;
3888
3889			pte = *ptep;
3890
3891			if (pte == 0) {
3892				/*
3893				 * Nothing here, move along
3894				 */
3895				sva += PAGE_SIZE;
3896				ptep++;
3897				continue;
3898			}
3899
3900			pm->pm_stats.resident_count--;
3901			pa = l2pte_pa(pte);
3902			is_exec = 0;
3903			is_refd = 1;
3904
3905			/*
3906			 * Update flags. In a number of circumstances,
3907			 * we could cluster a lot of these and do a
3908			 * number of sequential pages in one go.
3909			 */
3910			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3911				struct pv_entry *pve;
3912
3913				pve = pmap_remove_pv(pg, pm, sva);
3914				if (pve) {
3915					is_exec = PV_BEEN_EXECD(pve->pv_flags);
3916					is_refd = PV_BEEN_REFD(pve->pv_flags);
3917					pmap_free_pv_entry(pve);
3918				}
3919			}
3920
3921			if (!l2pte_valid(pte)) {
3922				*ptep = 0;
3923				PTE_SYNC_CURRENT(pm, ptep);
3924				sva += PAGE_SIZE;
3925				ptep++;
3926				mappings++;
3927				continue;
3928			}
3929
3930			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3931				/* Add to the clean list. */
3932				cleanlist[cleanlist_idx].pte = ptep;
3933				cleanlist[cleanlist_idx].va =
3934				    sva | (is_exec & 1);
3935				cleanlist_idx++;
3936			} else
3937			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3938				/* Nuke everything if needed. */
3939				pmap_idcache_wbinv_all(pm);
3940				pmap_tlb_flushID(pm);
3941
3942				/*
3943				 * Roll back the previous PTE list,
3944				 * and zero out the current PTE.
3945				 */
3946				for (cnt = 0;
3947				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3948					*cleanlist[cnt].pte = 0;
3949				}
3950				*ptep = 0;
3951				PTE_SYNC(ptep);
3952				cleanlist_idx++;
3953				flushall = 1;
3954			} else {
3955				*ptep = 0;
3956				PTE_SYNC(ptep);
3957					if (is_exec)
3958						pmap_tlb_flushID_SE(pm, sva);
3959					else
3960					if (is_refd)
3961						pmap_tlb_flushD_SE(pm, sva);
3962			}
3963
3964			sva += PAGE_SIZE;
3965			ptep++;
3966			mappings++;
3967		}
3968
3969		/*
3970		 * Deal with any left overs
3971		 */
3972		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3973			total += cleanlist_idx;
3974			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3975				vm_offset_t clva =
3976				    cleanlist[cnt].va & ~1;
3977				if (cleanlist[cnt].va & 1) {
3978					pmap_idcache_wbinv_range(pm,
3979					    clva, PAGE_SIZE);
3980					pmap_tlb_flushID_SE(pm, clva);
3981				} else {
3982					pmap_dcache_wb_range(pm,
3983					    clva, PAGE_SIZE, TRUE,
3984					    FALSE);
3985					pmap_tlb_flushD_SE(pm, clva);
3986				}
3987				*cleanlist[cnt].pte = 0;
3988				PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
3989			}
3990
3991			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3992				cleanlist_idx = 0;
3993			else {
3994				/*
3995				 * We are removing so much entries it's just
3996				 * easier to flush the whole cache.
3997				 */
3998				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3999				pmap_idcache_wbinv_all(pm);
4000				flushall = 1;
4001			}
4002		}
4003
4004		pmap_free_l2_bucket(pm, l2b, mappings);
4005	}
4006
4007	vm_page_unlock_queues();
4008	if (flushall)
4009		cpu_tlb_flushID();
4010 	PMAP_UNLOCK(pm);
4011}
4012
4013
4014
4015
4016/*
4017 * pmap_zero_page()
4018 *
4019 * Zero a given physical page by mapping it at a page hook point.
4020 * In doing the zero page op, the page we zero is mapped cachable, as with
4021 * StrongARM accesses to non-cached pages are non-burst making writing
4022 * _any_ bulk data very slow.
4023 */
4024#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4025void
4026pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
4027{
4028#ifdef DEBUG
4029	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4030
4031	if (pg->md.pvh_list != NULL)
4032		panic("pmap_zero_page: page has mappings");
4033#endif
4034
4035	if (_arm_bzero &&
4036	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
4037		return;
4038
4039
4040	mtx_lock(&cmtx);
4041	/*
4042	 * Hook in the page, zero it, and purge the cache for that
4043	 * zeroed page. Invalidate the TLB as needed.
4044	 */
4045	*cdst_pte = L2_S_PROTO | phys |
4046	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4047	PTE_SYNC(cdst_pte);
4048	cpu_tlb_flushD_SE(cdstp);
4049	cpu_cpwait();
4050	if (off || size != PAGE_SIZE)
4051		bzero((void *)(cdstp + off), size);
4052	else
4053		bzero_page(cdstp);
4054	mtx_unlock(&cmtx);
4055	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4056}
4057#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4058
4059#if ARM_MMU_XSCALE == 1
4060void
4061pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
4062{
4063
4064	if (_arm_bzero &&
4065	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
4066		return;
4067	mtx_lock(&cmtx);
4068	/*
4069	 * Hook in the page, zero it, and purge the cache for that
4070	 * zeroed page. Invalidate the TLB as needed.
4071	 */
4072	*cdst_pte = L2_S_PROTO | phys |
4073	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4074	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4075	PTE_SYNC(cdst_pte);
4076	cpu_tlb_flushD_SE(cdstp);
4077	cpu_cpwait();
4078	if (off || size != PAGE_SIZE)
4079		bzero((void *)(cdstp + off), size);
4080	else
4081		bzero_page(cdstp);
4082	mtx_unlock(&cmtx);
4083	xscale_cache_clean_minidata();
4084}
4085
4086/*
4087 * Change the PTEs for the specified kernel mappings such that they
4088 * will use the mini data cache instead of the main data cache.
4089 */
4090void
4091pmap_use_minicache(vm_offset_t va, vm_size_t size)
4092{
4093	struct l2_bucket *l2b;
4094	pt_entry_t *ptep, *sptep, pte;
4095	vm_offset_t next_bucket, eva;
4096
4097#if (ARM_NMMUS > 1)
4098	if (xscale_use_minidata == 0)
4099		return;
4100#endif
4101
4102	eva = va + size;
4103
4104	while (va < eva) {
4105		next_bucket = L2_NEXT_BUCKET(va);
4106		if (next_bucket > eva)
4107			next_bucket = eva;
4108
4109		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4110
4111		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4112
4113		while (va < next_bucket) {
4114			pte = *ptep;
4115			if (!l2pte_minidata(pte)) {
4116				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4117				cpu_tlb_flushD_SE(va);
4118				*ptep = pte & ~L2_B;
4119			}
4120			ptep++;
4121			va += PAGE_SIZE;
4122		}
4123		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4124	}
4125	cpu_cpwait();
4126}
4127#endif /* ARM_MMU_XSCALE == 1 */
4128
4129/*
4130 *	pmap_zero_page zeros the specified hardware page by mapping
4131 *	the page into KVM and using bzero to clear its contents.
4132 */
4133void
4134pmap_zero_page(vm_page_t m)
4135{
4136	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4137}
4138
4139
4140/*
4141 *	pmap_zero_page_area zeros the specified hardware page by mapping
4142 *	the page into KVM and using bzero to clear its contents.
4143 *
4144 *	off and size may not cover an area beyond a single hardware page.
4145 */
4146void
4147pmap_zero_page_area(vm_page_t m, int off, int size)
4148{
4149
4150	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4151}
4152
4153
4154/*
4155 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4156 *	the page into KVM and using bzero to clear its contents.  This
4157 *	is intended to be called from the vm_pagezero process only and
4158 *	outside of Giant.
4159 */
4160void
4161pmap_zero_page_idle(vm_page_t m)
4162{
4163
4164	pmap_zero_page(m);
4165}
4166
4167#if 0
4168/*
4169 * pmap_clean_page()
4170 *
4171 * This is a local function used to work out the best strategy to clean
4172 * a single page referenced by its entry in the PV table. It's used by
4173 * pmap_copy_page, pmap_zero page and maybe some others later on.
4174 *
4175 * Its policy is effectively:
4176 *  o If there are no mappings, we don't bother doing anything with the cache.
4177 *  o If there is one mapping, we clean just that page.
4178 *  o If there are multiple mappings, we clean the entire cache.
4179 *
4180 * So that some functions can be further optimised, it returns 0 if it didn't
4181 * clean the entire cache, or 1 if it did.
4182 *
4183 * XXX One bug in this routine is that if the pv_entry has a single page
4184 * mapped at 0x00000000 a whole cache clean will be performed rather than
4185 * just the 1 page. Since this should not occur in everyday use and if it does
4186 * it will just result in not the most efficient clean for the page.
4187 */
4188static int
4189pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4190{
4191	pmap_t pm, pm_to_clean = NULL;
4192	struct pv_entry *npv;
4193	u_int cache_needs_cleaning = 0;
4194	u_int flags = 0;
4195	vm_offset_t page_to_clean = 0;
4196
4197	if (pv == NULL) {
4198		/* nothing mapped in so nothing to flush */
4199		return (0);
4200	}
4201
4202	/*
4203	 * Since we flush the cache each time we change to a different
4204	 * user vmspace, we only need to flush the page if it is in the
4205	 * current pmap.
4206	 */
4207	if (curthread)
4208		pm = vmspace_pmap(curproc->p_vmspace);
4209	else
4210		pm = pmap_kernel();
4211
4212	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4213		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
4214			flags |= npv->pv_flags;
4215			/*
4216			 * The page is mapped non-cacheable in
4217			 * this map.  No need to flush the cache.
4218			 */
4219			if (npv->pv_flags & PVF_NC) {
4220#ifdef DIAGNOSTIC
4221				if (cache_needs_cleaning)
4222					panic("pmap_clean_page: "
4223					    "cache inconsistency");
4224#endif
4225				break;
4226			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4227				continue;
4228			if (cache_needs_cleaning) {
4229				page_to_clean = 0;
4230				break;
4231			} else {
4232				page_to_clean = npv->pv_va;
4233				pm_to_clean = npv->pv_pmap;
4234			}
4235			cache_needs_cleaning = 1;
4236		}
4237	}
4238	if (page_to_clean) {
4239		if (PV_BEEN_EXECD(flags))
4240			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4241			    PAGE_SIZE);
4242		else
4243			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4244			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4245	} else if (cache_needs_cleaning) {
4246		if (PV_BEEN_EXECD(flags))
4247			pmap_idcache_wbinv_all(pm);
4248		else
4249			pmap_dcache_wbinv_all(pm);
4250		return (1);
4251	}
4252	return (0);
4253}
4254#endif
4255
4256/*
4257 *	pmap_copy_page copies the specified (machine independent)
4258 *	page by mapping the page into virtual memory and using
4259 *	bcopy to copy the page, one machine dependent page at a
4260 *	time.
4261 */
4262
4263/*
4264 * pmap_copy_page()
4265 *
4266 * Copy one physical page into another, by mapping the pages into
4267 * hook points. The same comment regarding cachability as in
4268 * pmap_zero_page also applies here.
4269 */
4270#if  (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4271void
4272pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4273{
4274#if 0
4275	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4276#endif
4277#ifdef DEBUG
4278	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4279
4280	if (dst_pg->md.pvh_list != NULL)
4281		panic("pmap_copy_page: dst page has mappings");
4282#endif
4283
4284
4285	/*
4286	 * Clean the source page.  Hold the source page's lock for
4287	 * the duration of the copy so that no other mappings can
4288	 * be created while we have a potentially aliased mapping.
4289	 */
4290#if 0
4291	/*
4292	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4293	 * pmap_copy_page().
4294	 */
4295	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4296#endif
4297	/*
4298	 * Map the pages into the page hook points, copy them, and purge
4299	 * the cache for the appropriate page. Invalidate the TLB
4300	 * as required.
4301	 */
4302	mtx_lock(&cmtx);
4303	*csrc_pte = L2_S_PROTO | src |
4304	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4305	PTE_SYNC(csrc_pte);
4306	*cdst_pte = L2_S_PROTO | dst |
4307	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4308	PTE_SYNC(cdst_pte);
4309	cpu_tlb_flushD_SE(csrcp);
4310	cpu_tlb_flushD_SE(cdstp);
4311	cpu_cpwait();
4312	bcopy_page(csrcp, cdstp);
4313	mtx_unlock(&cmtx);
4314	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4315	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4316}
4317#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4318
4319#if ARM_MMU_XSCALE == 1
4320void
4321pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4322{
4323#if 0
4324	/* XXX: Only needed for pmap_clean_page(), which is commented out. */
4325	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4326#endif
4327#ifdef DEBUG
4328	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4329
4330	if (dst_pg->md.pvh_list != NULL)
4331		panic("pmap_copy_page: dst page has mappings");
4332#endif
4333
4334
4335	/*
4336	 * Clean the source page.  Hold the source page's lock for
4337	 * the duration of the copy so that no other mappings can
4338	 * be created while we have a potentially aliased mapping.
4339	 */
4340#if 0
4341	/*
4342	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4343	 * pmap_copy_page().
4344	 */
4345	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4346#endif
4347	/*
4348	 * Map the pages into the page hook points, copy them, and purge
4349	 * the cache for the appropriate page. Invalidate the TLB
4350	 * as required.
4351	 */
4352	mtx_lock(&cmtx);
4353	*csrc_pte = L2_S_PROTO | src |
4354	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4355	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4356	PTE_SYNC(csrc_pte);
4357	*cdst_pte = L2_S_PROTO | dst |
4358	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4359	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4360	PTE_SYNC(cdst_pte);
4361	cpu_tlb_flushD_SE(csrcp);
4362	cpu_tlb_flushD_SE(cdstp);
4363	cpu_cpwait();
4364	bcopy_page(csrcp, cdstp);
4365	mtx_unlock(&cmtx);
4366	xscale_cache_clean_minidata();
4367}
4368#endif /* ARM_MMU_XSCALE == 1 */
4369
4370void
4371pmap_copy_page(vm_page_t src, vm_page_t dst)
4372{
4373	cpu_dcache_wbinv_all();
4374	if (_arm_memcpy &&
4375	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4376	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4377		return;
4378	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4379}
4380
4381
4382
4383
4384/*
4385 * this routine returns true if a physical page resides
4386 * in the given pmap.
4387 */
4388boolean_t
4389pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4390{
4391	pv_entry_t pv;
4392	int loops = 0;
4393	int s;
4394
4395	if (m->flags & PG_FICTITIOUS)
4396		return (FALSE);
4397
4398	s = splvm();
4399
4400	/*
4401	 * Not found, check current mappings returning immediately
4402	 */
4403	for (pv = TAILQ_FIRST(&m->md.pv_list);
4404	    pv;
4405	    pv = TAILQ_NEXT(pv, pv_list)) {
4406	    	if (pv->pv_pmap == pmap) {
4407	    		splx(s);
4408	    		return (TRUE);
4409	    	}
4410		loops++;
4411		if (loops >= 16)
4412			break;
4413	}
4414	splx(s);
4415	return (FALSE);
4416}
4417
4418
4419/*
4420 *	pmap_ts_referenced:
4421 *
4422 *	Return the count of reference bits for a page, clearing all of them.
4423 */
4424int
4425pmap_ts_referenced(vm_page_t m)
4426{
4427	return (pmap_clearbit(m, PVF_REF));
4428}
4429
4430
4431boolean_t
4432pmap_is_modified(vm_page_t m)
4433{
4434
4435	if (m->md.pvh_attrs & PVF_MOD)
4436		return (TRUE);
4437
4438	return(FALSE);
4439}
4440
4441
4442/*
4443 *	Clear the modify bits on the specified physical page.
4444 */
4445void
4446pmap_clear_modify(vm_page_t m)
4447{
4448
4449	if (m->md.pvh_attrs & PVF_MOD)
4450		pmap_clearbit(m, PVF_MOD);
4451}
4452
4453
4454/*
4455 *	pmap_clear_reference:
4456 *
4457 *	Clear the reference bit on the specified physical page.
4458 */
4459void
4460pmap_clear_reference(vm_page_t m)
4461{
4462
4463	if (m->md.pvh_attrs & PVF_REF)
4464		pmap_clearbit(m, PVF_REF);
4465}
4466
4467
4468/*
4469 * perform the pmap work for mincore
4470 */
4471int
4472pmap_mincore(pmap_t pmap, vm_offset_t addr)
4473{
4474	printf("pmap_mincore()\n");
4475
4476	return (0);
4477}
4478
4479
4480vm_offset_t
4481pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4482{
4483
4484	return(addr);
4485}
4486
4487
4488/*
4489 * Map a set of physical memory pages into the kernel virtual
4490 * address space. Return a pointer to where it is mapped. This
4491 * routine is intended to be used for mapping device memory,
4492 * NOT real memory.
4493 */
4494void *
4495pmap_mapdev(vm_offset_t pa, vm_size_t size)
4496{
4497	vm_offset_t va, tmpva, offset;
4498
4499	offset = pa & PAGE_MASK;
4500	size = roundup(size, PAGE_SIZE);
4501
4502	GIANT_REQUIRED;
4503
4504	va = kmem_alloc_nofault(kernel_map, size);
4505	if (!va)
4506		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4507	for (tmpva = va; size > 0;) {
4508		pmap_kenter_internal(tmpva, pa, 0);
4509		size -= PAGE_SIZE;
4510		tmpva += PAGE_SIZE;
4511		pa += PAGE_SIZE;
4512	}
4513
4514	return ((void *)(va + offset));
4515}
4516
4517#define BOOTSTRAP_DEBUG
4518
4519/*
4520 * pmap_map_section:
4521 *
4522 *	Create a single section mapping.
4523 */
4524void
4525pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4526    int prot, int cache)
4527{
4528	pd_entry_t *pde = (pd_entry_t *) l1pt;
4529	pd_entry_t fl;
4530
4531	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4532
4533	switch (cache) {
4534	case PTE_NOCACHE:
4535	default:
4536		fl = 0;
4537		break;
4538
4539	case PTE_CACHE:
4540		fl = pte_l1_s_cache_mode;
4541		break;
4542
4543	case PTE_PAGETABLE:
4544		fl = pte_l1_s_cache_mode_pt;
4545		break;
4546	}
4547
4548	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4549	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4550	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4551
4552}
4553
4554/*
4555 * pmap_link_l2pt:
4556 *
4557 *	Link the L2 page table specified by "pa" into the L1
4558 *	page table at the slot for "va".
4559 */
4560void
4561pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4562{
4563	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4564	u_int slot = va >> L1_S_SHIFT;
4565
4566	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4567
4568	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4569	PTE_SYNC(&pde[slot]);
4570
4571	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4572
4573
4574}
4575
4576/*
4577 * pmap_map_entry
4578 *
4579 * 	Create a single page mapping.
4580 */
4581void
4582pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4583    int cache)
4584{
4585	pd_entry_t *pde = (pd_entry_t *) l1pt;
4586	pt_entry_t fl;
4587	pt_entry_t *pte;
4588
4589	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4590
4591	switch (cache) {
4592	case PTE_NOCACHE:
4593	default:
4594		fl = 0;
4595		break;
4596
4597	case PTE_CACHE:
4598		fl = pte_l2_s_cache_mode;
4599		break;
4600
4601	case PTE_PAGETABLE:
4602		fl = pte_l2_s_cache_mode_pt;
4603		break;
4604	}
4605
4606	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4607		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4608
4609	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4610
4611	if (pte == NULL)
4612		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4613
4614	pte[l2pte_index(va)] =
4615	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4616	PTE_SYNC(&pte[l2pte_index(va)]);
4617}
4618
4619/*
4620 * pmap_map_chunk:
4621 *
4622 *	Map a chunk of memory using the most efficient mappings
4623 *	possible (section. large page, small page) into the
4624 *	provided L1 and L2 tables at the specified virtual address.
4625 */
4626vm_size_t
4627pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4628    vm_size_t size, int prot, int cache)
4629{
4630	pd_entry_t *pde = (pd_entry_t *) l1pt;
4631	pt_entry_t *pte, f1, f2s, f2l;
4632	vm_size_t resid;
4633	int i;
4634
4635	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4636
4637	if (l1pt == 0)
4638		panic("pmap_map_chunk: no L1 table provided");
4639
4640#ifdef VERBOSE_INIT_ARM
4641	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
4642	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4643#endif
4644
4645	switch (cache) {
4646	case PTE_NOCACHE:
4647	default:
4648		f1 = 0;
4649		f2l = 0;
4650		f2s = 0;
4651		break;
4652
4653	case PTE_CACHE:
4654		f1 = pte_l1_s_cache_mode;
4655		f2l = pte_l2_l_cache_mode;
4656		f2s = pte_l2_s_cache_mode;
4657		break;
4658
4659	case PTE_PAGETABLE:
4660		f1 = pte_l1_s_cache_mode_pt;
4661		f2l = pte_l2_l_cache_mode_pt;
4662		f2s = pte_l2_s_cache_mode_pt;
4663		break;
4664	}
4665
4666	size = resid;
4667
4668	while (resid > 0) {
4669		/* See if we can use a section mapping. */
4670		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4671#ifdef VERBOSE_INIT_ARM
4672			printf("S");
4673#endif
4674			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4675			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4676			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4677			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4678			va += L1_S_SIZE;
4679			pa += L1_S_SIZE;
4680			resid -= L1_S_SIZE;
4681			continue;
4682		}
4683
4684		/*
4685		 * Ok, we're going to use an L2 table.  Make sure
4686		 * one is actually in the corresponding L1 slot
4687		 * for the current VA.
4688		 */
4689		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4690			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4691
4692		pte = (pt_entry_t *) kernel_pt_lookup(
4693		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4694		if (pte == NULL)
4695			panic("pmap_map_chunk: can't find L2 table for VA"
4696			    "0x%08x", va);
4697		/* See if we can use a L2 large page mapping. */
4698		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4699#ifdef VERBOSE_INIT_ARM
4700			printf("L");
4701#endif
4702			for (i = 0; i < 16; i++) {
4703				pte[l2pte_index(va) + i] =
4704				    L2_L_PROTO | pa |
4705				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4706				PTE_SYNC(&pte[l2pte_index(va) + i]);
4707			}
4708			va += L2_L_SIZE;
4709			pa += L2_L_SIZE;
4710			resid -= L2_L_SIZE;
4711			continue;
4712		}
4713
4714		/* Use a small page mapping. */
4715#ifdef VERBOSE_INIT_ARM
4716		printf("P");
4717#endif
4718		pte[l2pte_index(va)] =
4719		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4720		PTE_SYNC(&pte[l2pte_index(va)]);
4721		va += PAGE_SIZE;
4722		pa += PAGE_SIZE;
4723		resid -= PAGE_SIZE;
4724	}
4725#ifdef VERBOSE_INIT_ARM
4726	printf("\n");
4727#endif
4728	return (size);
4729
4730}
4731
4732/********************** Static device map routines ***************************/
4733
4734static const struct pmap_devmap *pmap_devmap_table;
4735
4736/*
4737 * Register the devmap table.  This is provided in case early console
4738 * initialization needs to register mappings created by bootstrap code
4739 * before pmap_devmap_bootstrap() is called.
4740 */
4741void
4742pmap_devmap_register(const struct pmap_devmap *table)
4743{
4744
4745	pmap_devmap_table = table;
4746}
4747
4748/*
4749 * Map all of the static regions in the devmap table, and remember
4750 * the devmap table so other parts of the kernel can look up entries
4751 * later.
4752 */
4753void
4754pmap_devmap_bootstrap(vm_offset_t l1pt, const struct pmap_devmap *table)
4755{
4756	int i;
4757
4758	pmap_devmap_table = table;
4759
4760	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4761#ifdef VERBOSE_INIT_ARM
4762		printf("devmap: %08x -> %08x @ %08x\n",
4763		    pmap_devmap_table[i].pd_pa,
4764		    pmap_devmap_table[i].pd_pa +
4765			pmap_devmap_table[i].pd_size - 1,
4766		    pmap_devmap_table[i].pd_va);
4767#endif
4768		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4769		    pmap_devmap_table[i].pd_pa,
4770		    pmap_devmap_table[i].pd_size,
4771		    pmap_devmap_table[i].pd_prot,
4772		    pmap_devmap_table[i].pd_cache);
4773	}
4774}
4775
4776const struct pmap_devmap *
4777pmap_devmap_find_pa(vm_paddr_t pa, vm_size_t size)
4778{
4779	int i;
4780
4781	if (pmap_devmap_table == NULL)
4782		return (NULL);
4783
4784	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4785		if (pa >= pmap_devmap_table[i].pd_pa &&
4786		    pa + size <= pmap_devmap_table[i].pd_pa +
4787				 pmap_devmap_table[i].pd_size)
4788			return (&pmap_devmap_table[i]);
4789	}
4790
4791	return (NULL);
4792}
4793
4794const struct pmap_devmap *
4795pmap_devmap_find_va(vm_offset_t va, vm_size_t size)
4796{
4797	int i;
4798
4799	if (pmap_devmap_table == NULL)
4800		return (NULL);
4801
4802	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4803		if (va >= pmap_devmap_table[i].pd_va &&
4804		    va + size <= pmap_devmap_table[i].pd_va +
4805				 pmap_devmap_table[i].pd_size)
4806			return (&pmap_devmap_table[i]);
4807	}
4808
4809	return (NULL);
4810}
4811
4812