1/*-
2 * Copyright (c) 2011 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * Developed by Ben Gray <ben.r.gray@gmail.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the company nor the name of the author may be used to
16 *    endorse or promote products derived from this software without specific
17 *    prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/**
33 * The ARM Cortex-A9 core can support a global timer plus a private and
34 * watchdog timer per core.  This driver reserves memory and interrupt
35 * resources for accessing both timer register sets, these resources are
36 * stored globally and used to setup the timecount and eventtimer.
37 *
38 * The timecount timer uses the global 64-bit counter, whereas the
39 * per-CPU eventtimer uses the private 32-bit counters.
40 *
41 *
42 * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: stable/11/sys/arm/arm/mpcore_timer.c 346551 2019-04-22 13:58:28Z ian $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bus.h>
51#include <sys/kernel.h>
52#include <sys/module.h>
53#include <sys/malloc.h>
54#include <sys/rman.h>
55#include <sys/timeet.h>
56#include <sys/timetc.h>
57#include <sys/watchdog.h>
58#include <machine/bus.h>
59#include <machine/cpu.h>
60#include <machine/intr.h>
61
62#include <dev/fdt/fdt_common.h>
63#include <dev/ofw/openfirm.h>
64#include <dev/ofw/ofw_bus.h>
65#include <dev/ofw/ofw_bus_subr.h>
66
67#include <machine/bus.h>
68
69#include <arm/arm/mpcore_timervar.h>
70
71/* Private (per-CPU) timer register map */
72#define PRV_TIMER_LOAD                 0x0000
73#define PRV_TIMER_COUNT                0x0004
74#define PRV_TIMER_CTRL                 0x0008
75#define PRV_TIMER_INTR                 0x000C
76
77#define PRV_TIMER_CTR_PRESCALER_SHIFT  8
78#define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
79#define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
80#define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
81
82#define PRV_TIMER_INTR_EVENT           (1UL << 0)
83
84/* Global timer register map */
85#define GBL_TIMER_COUNT_LOW            0x0000
86#define GBL_TIMER_COUNT_HIGH           0x0004
87#define GBL_TIMER_CTRL                 0x0008
88#define GBL_TIMER_INTR                 0x000C
89
90#define GBL_TIMER_CTR_PRESCALER_SHIFT  8
91#define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
92#define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
93#define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
94#define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
95
96#define GBL_TIMER_INTR_EVENT           (1UL << 0)
97
98struct arm_tmr_softc {
99	device_t		dev;
100	int			irqrid;
101	int			memrid;
102	struct resource *	gbl_mem;
103	struct resource *	prv_mem;
104	struct resource *	prv_irq;
105	uint64_t		clkfreq;
106	struct eventtimer	et;
107};
108
109static struct eventtimer *arm_tmr_et;
110static struct timecounter *arm_tmr_tc;
111static uint64_t arm_tmr_freq;
112static boolean_t arm_tmr_freq_varies;
113
114#define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
115#define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
116#define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
117#define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
118
119static timecounter_get_t arm_tmr_get_timecount;
120
121static struct timecounter arm_tmr_timecount = {
122	.tc_name           = "MPCore",
123	.tc_get_timecount  = arm_tmr_get_timecount,
124	.tc_poll_pps       = NULL,
125	.tc_counter_mask   = ~0u,
126	.tc_frequency      = 0,
127	.tc_quality        = 800,
128};
129
130#define	TMR_GBL		0x01
131#define	TMR_PRV		0x02
132#define	TMR_BOTH	(TMR_GBL | TMR_PRV)
133#define	TMR_NONE	0
134
135static struct ofw_compat_data compat_data[] = {
136	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
137	{"arm,cortex-a9-global-timer",	TMR_GBL},
138	{"arm,cortex-a5-global-timer",	TMR_GBL},
139	{"arm,cortex-a9-twd-timer",	TMR_PRV},
140	{"arm,cortex-a5-twd-timer",	TMR_PRV},
141	{"arm,arm11mp-twd-timer",	TMR_PRV},
142	{NULL,				TMR_NONE}
143};
144
145/**
146 *	arm_tmr_get_timecount - reads the timecount (global) timer
147 *	@tc: pointer to arm_tmr_timecount struct
148 *
149 *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
150 *	so (for now?) ignore the upper 32-bits.
151 *
152 *	RETURNS
153 *	The lower 32-bits of the counter.
154 */
155static unsigned
156arm_tmr_get_timecount(struct timecounter *tc)
157{
158	struct arm_tmr_softc *sc;
159
160	sc = tc->tc_priv;
161	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
162}
163
164/**
165 *	arm_tmr_start - starts the eventtimer (private) timer
166 *	@et: pointer to eventtimer struct
167 *	@first: the number of seconds and fractional sections to trigger in
168 *	@period: the period (in seconds and fractional sections) to set
169 *
170 *	If the eventtimer is required to be in oneshot mode, period will be
171 *	NULL and first will point to the time to trigger.  If in periodic mode
172 *	period will contain the time period and first may optionally contain
173 *	the time for the first period.
174 *
175 *	RETURNS
176 *	Always returns 0
177 */
178static int
179arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
180{
181	struct arm_tmr_softc *sc;
182	uint32_t load, count;
183	uint32_t ctrl;
184
185	sc = et->et_priv;
186	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
187	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
188
189	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
190
191	if (period != 0) {
192		load = ((uint32_t)et->et_frequency * period) >> 32;
193		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
194	} else
195		load = 0;
196
197	if (first != 0)
198		count = (uint32_t)((et->et_frequency * first) >> 32);
199	else
200		count = load;
201
202	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
203	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
204	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
205
206	return (0);
207}
208
209/**
210 *	arm_tmr_stop - stops the eventtimer (private) timer
211 *	@et: pointer to eventtimer struct
212 *
213 *	Simply stops the private timer by clearing all bits in the ctrl register.
214 *
215 *	RETURNS
216 *	Always returns 0
217 */
218static int
219arm_tmr_stop(struct eventtimer *et)
220{
221	struct arm_tmr_softc *sc;
222
223	sc = et->et_priv;
224	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
225	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
226	return (0);
227}
228
229/**
230 *	arm_tmr_intr - ISR for the eventtimer (private) timer
231 *	@arg: pointer to arm_tmr_softc struct
232 *
233 *	Clears the event register and then calls the eventtimer callback.
234 *
235 *	RETURNS
236 *	Always returns FILTER_HANDLED
237 */
238static int
239arm_tmr_intr(void *arg)
240{
241	struct arm_tmr_softc *sc;
242
243	sc = arg;
244	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
245	if (sc->et.et_active)
246		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
247	return (FILTER_HANDLED);
248}
249
250
251
252
253/**
254 *	arm_tmr_probe - timer probe routine
255 *	@dev: new device
256 *
257 *	The probe function returns success when probed with the fdt compatible
258 *	string set to "arm,mpcore-timers".
259 *
260 *	RETURNS
261 *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
262 */
263static int
264arm_tmr_probe(device_t dev)
265{
266
267	if (!ofw_bus_status_okay(dev))
268		return (ENXIO);
269
270	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
271		return (ENXIO);
272
273	device_set_desc(dev, "ARM MPCore Timers");
274	return (BUS_PROBE_DEFAULT);
275}
276
277static int
278attach_tc(struct arm_tmr_softc *sc)
279{
280	int rid;
281
282	if (arm_tmr_tc != NULL)
283		return (EBUSY);
284
285	rid = sc->memrid;
286	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
287	    RF_ACTIVE);
288	if (sc->gbl_mem == NULL) {
289		device_printf(sc->dev, "could not allocate gbl mem resources\n");
290		return (ENXIO);
291	}
292	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
293
294	arm_tmr_timecount.tc_frequency = sc->clkfreq;
295	arm_tmr_timecount.tc_priv = sc;
296	tc_init(&arm_tmr_timecount);
297	arm_tmr_tc = &arm_tmr_timecount;
298
299	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
300
301	return (0);
302}
303
304static int
305attach_et(struct arm_tmr_softc *sc)
306{
307	void *ihl;
308	int irid, mrid;
309
310	if (arm_tmr_et != NULL)
311		return (EBUSY);
312
313	mrid = sc->memrid;
314	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
315	    RF_ACTIVE);
316	if (sc->prv_mem == NULL) {
317		device_printf(sc->dev, "could not allocate prv mem resources\n");
318		return (ENXIO);
319	}
320	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
321
322	irid = sc->irqrid;
323	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
324	if (sc->prv_irq == NULL) {
325		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
326		device_printf(sc->dev, "could not allocate prv irq resources\n");
327		return (ENXIO);
328	}
329
330	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
331			NULL, sc, &ihl) != 0) {
332		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
333		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
334		device_printf(sc->dev, "unable to setup the et irq handler.\n");
335		return (ENXIO);
336	}
337
338	/*
339	 * Setup and register the eventtimer.  Most event timers set their min
340	 * and max period values to some value calculated from the clock
341	 * frequency.  We might not know yet what our runtime clock frequency
342	 * will be, so we just use some safe values.  A max of 2 seconds ensures
343	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
344	 * we won't overflow our 32-bit timer count register.  A min of 20
345	 * nanoseconds is pretty much completely arbitrary.
346	 */
347	sc->et.et_name = "MPCore";
348	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
349	sc->et.et_quality = 1000;
350	sc->et.et_frequency = sc->clkfreq;
351	sc->et.et_min_period = nstosbt(20);
352	sc->et.et_max_period =  2 * SBT_1S;
353	sc->et.et_start = arm_tmr_start;
354	sc->et.et_stop = arm_tmr_stop;
355	sc->et.et_priv = sc;
356	et_register(&sc->et);
357	arm_tmr_et = &sc->et;
358
359	return (0);
360}
361
362/**
363 *	arm_tmr_attach - attaches the timer to the simplebus
364 *	@dev: new device
365 *
366 *	Reserves memory and interrupt resources, stores the softc structure
367 *	globally and registers both the timecount and eventtimer objects.
368 *
369 *	RETURNS
370 *	Zero on success or ENXIO if an error occuried.
371 */
372static int
373arm_tmr_attach(device_t dev)
374{
375	struct arm_tmr_softc *sc;
376	phandle_t node;
377	pcell_t clock;
378	int et_err, tc_err, tmrtype;
379
380	sc = device_get_softc(dev);
381	sc->dev = dev;
382
383	if (arm_tmr_freq_varies) {
384		sc->clkfreq = arm_tmr_freq;
385	} else {
386		if (arm_tmr_freq != 0) {
387			sc->clkfreq = arm_tmr_freq;
388		} else {
389			/* Get the base clock frequency */
390			node = ofw_bus_get_node(dev);
391			if ((OF_getencprop(node, "clock-frequency", &clock,
392			    sizeof(clock))) <= 0) {
393				device_printf(dev, "missing clock-frequency "
394				    "attribute in FDT\n");
395				return (ENXIO);
396			}
397			sc->clkfreq = clock;
398		}
399	}
400
401	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
402	tc_err = ENXIO;
403	et_err = ENXIO;
404
405	/*
406	 * If we're handling the global timer and it is fixed-frequency, set it
407	 * up to use as a timecounter.  If it's variable frequency it won't work
408	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
409	 * platform provides its own implementation. If it doesn't, ours will
410	 * get used, but since the frequency isn't set, it will only use the
411	 * bogus loop counter.
412	 */
413	if (tmrtype & TMR_GBL) {
414		if (!arm_tmr_freq_varies)
415			tc_err = attach_tc(sc);
416		else if (bootverbose)
417			device_printf(sc->dev,
418			    "not using variable-frequency device as timecounter\n");
419		sc->memrid++;
420		sc->irqrid++;
421	}
422
423	/* If we are handling the private timer, set it up as an eventtimer. */
424	if (tmrtype & TMR_PRV) {
425		et_err = attach_et(sc);
426	}
427
428	/*
429	 * If we didn't successfully set up a timecounter or eventtimer then we
430	 * didn't actually attach at all, return error.
431	 */
432	if (tc_err != 0 && et_err != 0) {
433		return (ENXIO);
434	}
435	return (0);
436}
437
438static device_method_t arm_tmr_methods[] = {
439	DEVMETHOD(device_probe,		arm_tmr_probe),
440	DEVMETHOD(device_attach,	arm_tmr_attach),
441	{ 0, 0 }
442};
443
444static driver_t arm_tmr_driver = {
445	"mp_tmr",
446	arm_tmr_methods,
447	sizeof(struct arm_tmr_softc),
448};
449
450static devclass_t arm_tmr_devclass;
451
452EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
453    BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
454EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
455    BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
456
457/*
458 * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
459 * frequency.  When the CPU frequency changes due to power-saving or thermal
460 * management, the platform-specific code that causes the frequency change calls
461 * this routine to inform the clock driver, and we in turn inform the event
462 * timer system, which actually updates the value in et->frequency for us and
463 * reschedules the current event(s) in a way that's atomic with respect to
464 * start/stop/intr code that may be running on various CPUs at the time of the
465 * call.
466 *
467 * This routine can also be called by a platform's early init code.  If the
468 * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
469 * to register as an eventtimer, but not a timecounter.  If the value passed in
470 * is any other non-zero value it is used as the fixed frequency for the timer.
471 */
472void
473arm_tmr_change_frequency(uint64_t newfreq)
474{
475
476	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
477		arm_tmr_freq_varies = true;
478		return;
479	}
480
481	arm_tmr_freq = newfreq;
482	if (arm_tmr_et != NULL)
483		et_change_frequency(arm_tmr_et, newfreq);
484}
485
486/**
487 *	DELAY - Delay for at least usec microseconds.
488 *	@usec: number of microseconds to delay by
489 *
490 *	This function is called all over the kernel and is suppose to provide a
491 *	consistent delay.  This function may also be called before the console
492 *	is setup so no printf's can be called here.
493 *
494 *	RETURNS:
495 *	nothing
496 */
497static void __used /* Must emit function code for the weak ref below. */
498arm_tmr_DELAY(int usec)
499{
500	struct arm_tmr_softc *sc;
501	int32_t counts_per_usec;
502	int32_t counts;
503	uint32_t first, last;
504
505	/* Check the timers are setup, if not just use a for loop for the meantime */
506	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
507		for (; usec > 0; usec--)
508			for (counts = 200; counts > 0; counts--)
509				cpufunc_nullop();	/* Prevent gcc from optimizing
510							 * out the loop
511							 */
512		return;
513	}
514
515	sc = arm_tmr_tc->tc_priv;
516
517	/* Get the number of times to count */
518	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
519
520	/*
521	 * Clamp the timeout at a maximum value (about 32 seconds with
522	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
523	 * near that length of time and if they are, they should be hung
524	 * out to dry.
525	 */
526	if (usec >= (0x80000000U / counts_per_usec))
527		counts = (0x80000000U / counts_per_usec) - 1;
528	else
529		counts = usec * counts_per_usec;
530
531	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
532
533	while (counts > 0) {
534		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
535		counts -= (int32_t)(last - first);
536		first = last;
537	}
538}
539
540/*
541 * Supply a DELAY() implementation via weak linkage.  A platform may want to use
542 * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
543 * especially when the core frequency can change on the fly.
544 */
545__weak_reference(arm_tmr_DELAY, DELAY);
546
547