1/*
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program.
10 *
11 * Copyright (c) 1980, 1989, 1993
12 *	The Regents of the University of California.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#if 0
40#ifndef lint
41static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42#endif /* not lint */
43#endif
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: stable/11/sbin/newfs/mkfs.c 356905 2020-01-20 08:28:54Z eugen $");
46
47#include <sys/param.h>
48#include <sys/disklabel.h>
49#include <sys/file.h>
50#include <sys/ioctl.h>
51#include <sys/mman.h>
52#include <sys/resource.h>
53#include <sys/stat.h>
54#include <sys/wait.h>
55#include <err.h>
56#include <grp.h>
57#include <limits.h>
58#include <signal.h>
59#include <stdlib.h>
60#include <string.h>
61#include <stdint.h>
62#include <stdio.h>
63#include <time.h>
64#include <unistd.h>
65#include <ufs/ufs/dinode.h>
66#include <ufs/ufs/dir.h>
67#include <ufs/ffs/fs.h>
68#include "newfs.h"
69
70/*
71 * make file system for cylinder-group style file systems
72 */
73#define UMASK		0755
74#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75
76static struct	csum *fscs;
77#define	sblock	disk.d_fs
78#define	acg	disk.d_cg
79
80union dinode {
81	struct ufs1_dinode dp1;
82	struct ufs2_dinode dp2;
83};
84#define DIP(dp, field) \
85	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86	(dp)->dp1.field : (dp)->dp2.field)
87
88static caddr_t iobuf;
89static long iobufsize;
90static ufs2_daddr_t alloc(int size, int mode);
91static int charsperline(void);
92static void clrblock(struct fs *, unsigned char *, int);
93static void fsinit(time_t);
94static int ilog2(int);
95static void initcg(int, time_t);
96static int isblock(struct fs *, unsigned char *, int);
97static void iput(union dinode *, ino_t);
98static int makedir(struct direct *, int);
99static void setblock(struct fs *, unsigned char *, int);
100static void wtfs(ufs2_daddr_t, int, char *);
101static u_int32_t newfs_random(void);
102
103static int
104do_sbwrite(struct uufsd *disk)
105{
106	if (!disk->d_sblock)
107		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109	    disk->d_sblock) * disk->d_bsize)));
110}
111
112void
113mkfs(struct partition *pp, char *fsys)
114{
115	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116	long i, j, csfrags;
117	uint cg;
118	time_t utime;
119	quad_t sizepb;
120	int width;
121	ino_t maxinum;
122	int minfragsperinode;	/* minimum ratio of frags to inodes */
123	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124	struct fsrecovery *fsr;
125	char *fsrbuf;
126	union {
127		struct fs fdummy;
128		char cdummy[SBLOCKSIZE];
129	} dummy;
130#define fsdummy dummy.fdummy
131#define chdummy dummy.cdummy
132
133	/*
134	 * Our blocks == sector size, and the version of UFS we are using is
135	 * specified by Oflag.
136	 */
137	disk.d_bsize = sectorsize;
138	disk.d_ufs = Oflag;
139	if (Rflag)
140		utime = 1000000000;
141	else
142		time(&utime);
143	sblock.fs_old_flags = FS_FLAGS_UPDATED;
144	sblock.fs_flags = 0;
145	if (Uflag)
146		sblock.fs_flags |= FS_DOSOFTDEP;
147	if (Lflag)
148		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
149	if (Jflag)
150		sblock.fs_flags |= FS_GJOURNAL;
151	if (lflag)
152		sblock.fs_flags |= FS_MULTILABEL;
153	if (tflag)
154		sblock.fs_flags |= FS_TRIM;
155	/*
156	 * Validate the given file system size.
157	 * Verify that its last block can actually be accessed.
158	 * Convert to file system fragment sized units.
159	 */
160	if (fssize <= 0) {
161		printf("preposterous size %jd\n", (intmax_t)fssize);
162		exit(13);
163	}
164	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
165	    (char *)&sblock);
166	/*
167	 * collect and verify the file system density info
168	 */
169	sblock.fs_avgfilesize = avgfilesize;
170	sblock.fs_avgfpdir = avgfilesperdir;
171	if (sblock.fs_avgfilesize <= 0)
172		printf("illegal expected average file size %d\n",
173		    sblock.fs_avgfilesize), exit(14);
174	if (sblock.fs_avgfpdir <= 0)
175		printf("illegal expected number of files per directory %d\n",
176		    sblock.fs_avgfpdir), exit(15);
177
178restart:
179	/*
180	 * collect and verify the block and fragment sizes
181	 */
182	sblock.fs_bsize = bsize;
183	sblock.fs_fsize = fsize;
184	if (!POWEROF2(sblock.fs_bsize)) {
185		printf("block size must be a power of 2, not %d\n",
186		    sblock.fs_bsize);
187		exit(16);
188	}
189	if (!POWEROF2(sblock.fs_fsize)) {
190		printf("fragment size must be a power of 2, not %d\n",
191		    sblock.fs_fsize);
192		exit(17);
193	}
194	if (sblock.fs_fsize < sectorsize) {
195		printf("increasing fragment size from %d to sector size (%d)\n",
196		    sblock.fs_fsize, sectorsize);
197		sblock.fs_fsize = sectorsize;
198	}
199	if (sblock.fs_bsize > MAXBSIZE) {
200		printf("decreasing block size from %d to maximum (%d)\n",
201		    sblock.fs_bsize, MAXBSIZE);
202		sblock.fs_bsize = MAXBSIZE;
203	}
204	if (sblock.fs_bsize < MINBSIZE) {
205		printf("increasing block size from %d to minimum (%d)\n",
206		    sblock.fs_bsize, MINBSIZE);
207		sblock.fs_bsize = MINBSIZE;
208	}
209	if (sblock.fs_fsize > MAXBSIZE) {
210		printf("decreasing fragment size from %d to maximum (%d)\n",
211		    sblock.fs_fsize, MAXBSIZE);
212		sblock.fs_fsize = MAXBSIZE;
213	}
214	if (sblock.fs_bsize < sblock.fs_fsize) {
215		printf("increasing block size from %d to fragment size (%d)\n",
216		    sblock.fs_bsize, sblock.fs_fsize);
217		sblock.fs_bsize = sblock.fs_fsize;
218	}
219	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
220		printf(
221		"increasing fragment size from %d to block size / %d (%d)\n",
222		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
223		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
224	}
225	if (maxbsize == 0)
226		maxbsize = bsize;
227	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
228		sblock.fs_maxbsize = sblock.fs_bsize;
229		printf("Extent size set to %d\n", sblock.fs_maxbsize);
230	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
231		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
232		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
233	} else {
234		sblock.fs_maxbsize = maxbsize;
235	}
236	/*
237	 * Maxcontig sets the default for the maximum number of blocks
238	 * that may be allocated sequentially. With file system clustering
239	 * it is possible to allocate contiguous blocks up to the maximum
240	 * transfer size permitted by the controller or buffering.
241	 */
242	if (maxcontig == 0)
243		maxcontig = MAX(1, MAXPHYS / bsize);
244	sblock.fs_maxcontig = maxcontig;
245	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
246		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
247		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
248	}
249	if (sblock.fs_maxcontig > 1)
250		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
251	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
252	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
253	sblock.fs_qbmask = ~sblock.fs_bmask;
254	sblock.fs_qfmask = ~sblock.fs_fmask;
255	sblock.fs_bshift = ilog2(sblock.fs_bsize);
256	sblock.fs_fshift = ilog2(sblock.fs_fsize);
257	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
258	sblock.fs_fragshift = ilog2(sblock.fs_frag);
259	if (sblock.fs_frag > MAXFRAG) {
260		printf("fragment size %d is still too small (can't happen)\n",
261		    sblock.fs_bsize / MAXFRAG);
262		exit(21);
263	}
264	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
265	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
266	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
267
268	/*
269	 * Before the filesystem is finally initialized, mark it
270	 * as incompletely initialized.
271	 */
272	sblock.fs_magic = FS_BAD_MAGIC;
273
274	if (Oflag == 1) {
275		sblock.fs_sblockloc = SBLOCK_UFS1;
276		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
277		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
278		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
279		    sizeof(ufs1_daddr_t));
280		sblock.fs_old_inodefmt = FS_44INODEFMT;
281		sblock.fs_old_cgoffset = 0;
282		sblock.fs_old_cgmask = 0xffffffff;
283		sblock.fs_old_size = sblock.fs_size;
284		sblock.fs_old_rotdelay = 0;
285		sblock.fs_old_rps = 60;
286		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
287		sblock.fs_old_cpg = 1;
288		sblock.fs_old_interleave = 1;
289		sblock.fs_old_trackskew = 0;
290		sblock.fs_old_cpc = 0;
291		sblock.fs_old_postblformat = 1;
292		sblock.fs_old_nrpos = 1;
293	} else {
294		sblock.fs_sblockloc = SBLOCK_UFS2;
295		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
298		    sizeof(ufs2_daddr_t));
299	}
300	sblock.fs_sblkno =
301	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302		sblock.fs_frag);
303	sblock.fs_cblkno = sblock.fs_sblkno +
304	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
307	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
308		sizepb *= NINDIR(&sblock);
309		sblock.fs_maxfilesize += sizepb;
310	}
311
312	/*
313	 * It's impossible to create a snapshot in case that fs_maxfilesize
314	 * is smaller than the fssize.
315	 */
316	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317		warnx("WARNING: You will be unable to create snapshots on this "
318		      "file system.  Correct by using a larger blocksize.");
319	}
320
321	/*
322	 * Calculate the number of blocks to put into each cylinder group.
323	 *
324	 * This algorithm selects the number of blocks per cylinder
325	 * group. The first goal is to have at least enough data blocks
326	 * in each cylinder group to meet the density requirement. Once
327	 * this goal is achieved we try to expand to have at least
328	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329	 * pack as many blocks into each cylinder group map as will fit.
330	 *
331	 * We start by calculating the smallest number of blocks that we
332	 * can put into each cylinder group. If this is too big, we reduce
333	 * the density until it fits.
334	 */
335	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
336	minfragsperinode = 1 + fssize / maxinum;
337	if (density == 0) {
338		density = MAX(NFPI, minfragsperinode) * fsize;
339	} else if (density < minfragsperinode * fsize) {
340		origdensity = density;
341		density = minfragsperinode * fsize;
342		fprintf(stderr, "density increased from %d to %d\n",
343		    origdensity, density);
344	}
345	origdensity = density;
346	for (;;) {
347		fragsperinode = MAX(numfrags(&sblock, density), 1);
348		if (fragsperinode < minfragsperinode) {
349			bsize <<= 1;
350			fsize <<= 1;
351			printf("Block size too small for a file system %s %d\n",
352			     "of this size. Increasing blocksize to", bsize);
353			goto restart;
354		}
355		minfpg = fragsperinode * INOPB(&sblock);
356		if (minfpg > sblock.fs_size)
357			minfpg = sblock.fs_size;
358		sblock.fs_ipg = INOPB(&sblock);
359		sblock.fs_fpg = roundup(sblock.fs_iblkno +
360		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
361		if (sblock.fs_fpg < minfpg)
362			sblock.fs_fpg = minfpg;
363		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
364		    INOPB(&sblock));
365		sblock.fs_fpg = roundup(sblock.fs_iblkno +
366		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
367		if (sblock.fs_fpg < minfpg)
368			sblock.fs_fpg = minfpg;
369		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370		    INOPB(&sblock));
371		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
372			break;
373		density -= sblock.fs_fsize;
374	}
375	if (density != origdensity)
376		printf("density reduced from %d to %d\n", origdensity, density);
377	/*
378	 * Start packing more blocks into the cylinder group until
379	 * it cannot grow any larger, the number of cylinder groups
380	 * drops below MINCYLGRPS, or we reach the size requested.
381	 * For UFS1 inodes per cylinder group are stored in an int16_t
382	 * so fs_ipg is limited to 2^15 - 1.
383	 */
384	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
385		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386		    INOPB(&sblock));
387		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
388			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
389				break;
390			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
391				continue;
392			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
393				break;
394		}
395		sblock.fs_fpg -= sblock.fs_frag;
396		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
397		    INOPB(&sblock));
398		break;
399	}
400	/*
401	 * Check to be sure that the last cylinder group has enough blocks
402	 * to be viable. If it is too small, reduce the number of blocks
403	 * per cylinder group which will have the effect of moving more
404	 * blocks into the last cylinder group.
405	 */
406	optimalfpg = sblock.fs_fpg;
407	for (;;) {
408		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
409		lastminfpg = roundup(sblock.fs_iblkno +
410		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
411		if (sblock.fs_size < lastminfpg) {
412			printf("Filesystem size %jd < minimum size of %d\n",
413			    (intmax_t)sblock.fs_size, lastminfpg);
414			exit(28);
415		}
416		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
417		    sblock.fs_size % sblock.fs_fpg == 0)
418			break;
419		sblock.fs_fpg -= sblock.fs_frag;
420		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
421		    INOPB(&sblock));
422	}
423	if (optimalfpg != sblock.fs_fpg)
424		printf("Reduced frags per cylinder group from %d to %d %s\n",
425		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
426	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
428	if (Oflag == 1) {
429		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
430		sblock.fs_old_nsect = sblock.fs_old_spc;
431		sblock.fs_old_npsect = sblock.fs_old_spc;
432		sblock.fs_old_ncyl = sblock.fs_ncg;
433	}
434	/*
435	 * fill in remaining fields of the super block
436	 */
437	sblock.fs_csaddr = cgdmin(&sblock, 0);
438	sblock.fs_cssize =
439	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
440	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
441	if (fscs == NULL)
442		errx(31, "calloc failed");
443	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
444	if (sblock.fs_sbsize > SBLOCKSIZE)
445		sblock.fs_sbsize = SBLOCKSIZE;
446	if (sblock.fs_sbsize < realsectorsize)
447		sblock.fs_sbsize = realsectorsize;
448	sblock.fs_minfree = minfree;
449	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
450		sblock.fs_metaspace = blknum(&sblock, metaspace);
451	else if (metaspace != -1)
452		/* reserve half of minfree for metadata blocks */
453		sblock.fs_metaspace = blknum(&sblock,
454		    (sblock.fs_fpg * minfree) / 200);
455	if (maxbpg == 0)
456		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
457	else
458		sblock.fs_maxbpg = maxbpg;
459	sblock.fs_optim = opt;
460	sblock.fs_cgrotor = 0;
461	sblock.fs_pendingblocks = 0;
462	sblock.fs_pendinginodes = 0;
463	sblock.fs_fmod = 0;
464	sblock.fs_ronly = 0;
465	sblock.fs_state = 0;
466	sblock.fs_clean = 1;
467	sblock.fs_id[0] = (long)utime;
468	sblock.fs_id[1] = newfs_random();
469	sblock.fs_fsmnt[0] = '\0';
470	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
471	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
472	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
473	sblock.fs_cstotal.cs_nbfree =
474	    fragstoblks(&sblock, sblock.fs_dsize) -
475	    howmany(csfrags, sblock.fs_frag);
476	sblock.fs_cstotal.cs_nffree =
477	    fragnum(&sblock, sblock.fs_size) +
478	    (fragnum(&sblock, csfrags) > 0 ?
479	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
480	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
481	sblock.fs_cstotal.cs_ndir = 0;
482	sblock.fs_dsize -= csfrags;
483	sblock.fs_time = utime;
484	if (Oflag == 1) {
485		sblock.fs_old_time = utime;
486		sblock.fs_old_dsize = sblock.fs_dsize;
487		sblock.fs_old_csaddr = sblock.fs_csaddr;
488		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
489		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
490		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
491		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
492	}
493
494	/*
495	 * Dump out summary information about file system.
496	 */
497#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
498	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
499	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
500	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
501	    sblock.fs_fsize);
502	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
503	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
504	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
505	if (sblock.fs_flags & FS_DOSOFTDEP)
506		printf("\twith soft updates\n");
507#	undef B2MBFACTOR
508
509	if (Eflag && !Nflag) {
510		printf("Erasing sectors [%jd...%jd]\n",
511		    sblock.fs_sblockloc / disk.d_bsize,
512		    fsbtodb(&sblock, sblock.fs_size) - 1);
513		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
514		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
515	}
516	/*
517	 * Wipe out old UFS1 superblock(s) if necessary.
518	 */
519	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
520		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
521		if (i == -1)
522			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
523
524		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
525			fsdummy.fs_magic = 0;
526			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
527			    chdummy, SBLOCKSIZE);
528			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
529				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
530					break;
531				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
532				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
533			}
534		}
535	}
536	if (!Nflag)
537		do_sbwrite(&disk);
538	if (Xflag == 1) {
539		printf("** Exiting on Xflag 1\n");
540		exit(0);
541	}
542	if (Xflag == 2)
543		printf("** Leaving BAD MAGIC on Xflag 2\n");
544	else
545		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
546
547	/*
548	 * Now build the cylinders group blocks and
549	 * then print out indices of cylinder groups.
550	 */
551	printf("super-block backups (for fsck_ffs -b #) at:\n");
552	i = 0;
553	width = charsperline();
554	/*
555	 * allocate space for superblock, cylinder group map, and
556	 * two sets of inode blocks.
557	 */
558	if (sblock.fs_bsize < SBLOCKSIZE)
559		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
560	else
561		iobufsize = 4 * sblock.fs_bsize;
562	if ((iobuf = calloc(1, iobufsize)) == 0) {
563		printf("Cannot allocate I/O buffer\n");
564		exit(38);
565	}
566	/*
567	 * Make a copy of the superblock into the buffer that we will be
568	 * writing out in each cylinder group.
569	 */
570	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
571	for (cg = 0; cg < sblock.fs_ncg; cg++) {
572		initcg(cg, utime);
573		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
574		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
575		    cg < (sblock.fs_ncg-1) ? "," : "");
576		if (j < 0)
577			tmpbuf[j = 0] = '\0';
578		if (i + j >= width) {
579			printf("\n");
580			i = 0;
581		}
582		i += j;
583		printf("%s", tmpbuf);
584		fflush(stdout);
585	}
586	printf("\n");
587	if (Nflag)
588		exit(0);
589	/*
590	 * Now construct the initial file system,
591	 * then write out the super-block.
592	 */
593	fsinit(utime);
594	if (Oflag == 1) {
595		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
596		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
597		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
598		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
599	}
600	if (Xflag == 3) {
601		printf("** Exiting on Xflag 3\n");
602		exit(0);
603	}
604	if (!Nflag) {
605		do_sbwrite(&disk);
606		/*
607		 * For UFS1 filesystems with a blocksize of 64K, the first
608		 * alternate superblock resides at the location used for
609		 * the default UFS2 superblock. As there is a valid
610		 * superblock at this location, the boot code will use
611		 * it as its first choice. Thus we have to ensure that
612		 * all of its statistcs on usage are correct.
613		 */
614		if (Oflag == 1 && sblock.fs_bsize == 65536)
615			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
616			    sblock.fs_bsize, (char *)&sblock);
617	}
618	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
619		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
620			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
621			((char *)fscs) + i);
622	/*
623	 * Read the last sector of the boot block, replace the last
624	 * 20 bytes with the recovery information, then write it back.
625	 * The recovery information only works for UFS2 filesystems.
626	 */
627	if (sblock.fs_magic == FS_UFS2_MAGIC) {
628		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
629		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
630		    fsrbuf, realsectorsize) == -1)
631			err(1, "can't read recovery area: %s", disk.d_error);
632		fsr =
633		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
634		fsr->fsr_magic = sblock.fs_magic;
635		fsr->fsr_fpg = sblock.fs_fpg;
636		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
637		fsr->fsr_sblkno = sblock.fs_sblkno;
638		fsr->fsr_ncg = sblock.fs_ncg;
639		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
640		    realsectorsize, fsrbuf);
641		free(fsrbuf);
642	}
643	/*
644	 * Update information about this partition in pack
645	 * label, to that it may be updated on disk.
646	 */
647	if (pp != NULL) {
648		pp->p_fstype = FS_BSDFFS;
649		pp->p_fsize = sblock.fs_fsize;
650		pp->p_frag = sblock.fs_frag;
651		pp->p_cpg = sblock.fs_fpg;
652	}
653}
654
655/*
656 * Initialize a cylinder group.
657 */
658void
659initcg(int cylno, time_t utime)
660{
661	long blkno, start;
662	uint i, j, d, dlower, dupper;
663	ufs2_daddr_t cbase, dmax;
664	struct ufs1_dinode *dp1;
665	struct ufs2_dinode *dp2;
666	struct csum *cs;
667
668	/*
669	 * Determine block bounds for cylinder group.
670	 * Allow space for super block summary information in first
671	 * cylinder group.
672	 */
673	cbase = cgbase(&sblock, cylno);
674	dmax = cbase + sblock.fs_fpg;
675	if (dmax > sblock.fs_size)
676		dmax = sblock.fs_size;
677	dlower = cgsblock(&sblock, cylno) - cbase;
678	dupper = cgdmin(&sblock, cylno) - cbase;
679	if (cylno == 0)
680		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
681	cs = &fscs[cylno];
682	memset(&acg, 0, sblock.fs_cgsize);
683	acg.cg_time = utime;
684	acg.cg_magic = CG_MAGIC;
685	acg.cg_cgx = cylno;
686	acg.cg_niblk = sblock.fs_ipg;
687	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
688	acg.cg_ndblk = dmax - cbase;
689	if (sblock.fs_contigsumsize > 0)
690		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
691	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
692	if (Oflag == 2) {
693		acg.cg_iusedoff = start;
694	} else {
695		acg.cg_old_ncyl = sblock.fs_old_cpg;
696		acg.cg_old_time = acg.cg_time;
697		acg.cg_time = 0;
698		acg.cg_old_niblk = acg.cg_niblk;
699		acg.cg_niblk = 0;
700		acg.cg_initediblk = 0;
701		acg.cg_old_btotoff = start;
702		acg.cg_old_boff = acg.cg_old_btotoff +
703		    sblock.fs_old_cpg * sizeof(int32_t);
704		acg.cg_iusedoff = acg.cg_old_boff +
705		    sblock.fs_old_cpg * sizeof(u_int16_t);
706	}
707	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
708	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
709	if (sblock.fs_contigsumsize > 0) {
710		acg.cg_clustersumoff =
711		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
712		acg.cg_clustersumoff -= sizeof(u_int32_t);
713		acg.cg_clusteroff = acg.cg_clustersumoff +
714		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
715		acg.cg_nextfreeoff = acg.cg_clusteroff +
716		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
717	}
718	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
719		printf("Panic: cylinder group too big\n");
720		exit(37);
721	}
722	acg.cg_cs.cs_nifree += sblock.fs_ipg;
723	if (cylno == 0)
724		for (i = 0; i < (long)ROOTINO; i++) {
725			setbit(cg_inosused(&acg), i);
726			acg.cg_cs.cs_nifree--;
727		}
728	if (cylno > 0) {
729		/*
730		 * In cylno 0, beginning space is reserved
731		 * for boot and super blocks.
732		 */
733		for (d = 0; d < dlower; d += sblock.fs_frag) {
734			blkno = d / sblock.fs_frag;
735			setblock(&sblock, cg_blksfree(&acg), blkno);
736			if (sblock.fs_contigsumsize > 0)
737				setbit(cg_clustersfree(&acg), blkno);
738			acg.cg_cs.cs_nbfree++;
739		}
740	}
741	if ((i = dupper % sblock.fs_frag)) {
742		acg.cg_frsum[sblock.fs_frag - i]++;
743		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
744			setbit(cg_blksfree(&acg), dupper);
745			acg.cg_cs.cs_nffree++;
746		}
747	}
748	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
749	     d += sblock.fs_frag) {
750		blkno = d / sblock.fs_frag;
751		setblock(&sblock, cg_blksfree(&acg), blkno);
752		if (sblock.fs_contigsumsize > 0)
753			setbit(cg_clustersfree(&acg), blkno);
754		acg.cg_cs.cs_nbfree++;
755	}
756	if (d < acg.cg_ndblk) {
757		acg.cg_frsum[acg.cg_ndblk - d]++;
758		for (; d < acg.cg_ndblk; d++) {
759			setbit(cg_blksfree(&acg), d);
760			acg.cg_cs.cs_nffree++;
761		}
762	}
763	if (sblock.fs_contigsumsize > 0) {
764		int32_t *sump = cg_clustersum(&acg);
765		u_char *mapp = cg_clustersfree(&acg);
766		int map = *mapp++;
767		int bit = 1;
768		int run = 0;
769
770		for (i = 0; i < acg.cg_nclusterblks; i++) {
771			if ((map & bit) != 0)
772				run++;
773			else if (run != 0) {
774				if (run > sblock.fs_contigsumsize)
775					run = sblock.fs_contigsumsize;
776				sump[run]++;
777				run = 0;
778			}
779			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
780				bit <<= 1;
781			else {
782				map = *mapp++;
783				bit = 1;
784			}
785		}
786		if (run != 0) {
787			if (run > sblock.fs_contigsumsize)
788				run = sblock.fs_contigsumsize;
789			sump[run]++;
790		}
791	}
792	*cs = acg.cg_cs;
793	/*
794	 * Write out the duplicate super block, the cylinder group map
795	 * and two blocks worth of inodes in a single write.
796	 */
797	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
798	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
799	start += sblock.fs_bsize;
800	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
801	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
802	for (i = 0; i < acg.cg_initediblk; i++) {
803		if (sblock.fs_magic == FS_UFS1_MAGIC) {
804			dp1->di_gen = newfs_random();
805			dp1++;
806		} else {
807			dp2->di_gen = newfs_random();
808			dp2++;
809		}
810	}
811	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
812	/*
813	 * For the old file system, we have to initialize all the inodes.
814	 */
815	if (Oflag == 1) {
816		for (i = 2 * sblock.fs_frag;
817		     i < sblock.fs_ipg / INOPF(&sblock);
818		     i += sblock.fs_frag) {
819			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
820			for (j = 0; j < INOPB(&sblock); j++) {
821				dp1->di_gen = newfs_random();
822				dp1++;
823			}
824			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
825			    sblock.fs_bsize, &iobuf[start]);
826		}
827	}
828}
829
830/*
831 * initialize the file system
832 */
833#define ROOTLINKCNT 3
834
835static struct direct root_dir[] = {
836	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
837	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
838	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
839};
840
841#define SNAPLINKCNT 2
842
843static struct direct snap_dir[] = {
844	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
845	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
846};
847
848void
849fsinit(time_t utime)
850{
851	union dinode node;
852	struct group *grp;
853	gid_t gid;
854	int entries;
855
856	memset(&node, 0, sizeof node);
857	if ((grp = getgrnam("operator")) != NULL) {
858		gid = grp->gr_gid;
859	} else {
860		warnx("Cannot retrieve operator gid, using gid 0.");
861		gid = 0;
862	}
863	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
864	if (sblock.fs_magic == FS_UFS1_MAGIC) {
865		/*
866		 * initialize the node
867		 */
868		node.dp1.di_atime = utime;
869		node.dp1.di_mtime = utime;
870		node.dp1.di_ctime = utime;
871		/*
872		 * create the root directory
873		 */
874		node.dp1.di_mode = IFDIR | UMASK;
875		node.dp1.di_nlink = entries;
876		node.dp1.di_size = makedir(root_dir, entries);
877		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
878		node.dp1.di_blocks =
879		    btodb(fragroundup(&sblock, node.dp1.di_size));
880		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
881		    iobuf);
882		iput(&node, ROOTINO);
883		if (!nflag) {
884			/*
885			 * create the .snap directory
886			 */
887			node.dp1.di_mode |= 020;
888			node.dp1.di_gid = gid;
889			node.dp1.di_nlink = SNAPLINKCNT;
890			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
891				node.dp1.di_db[0] =
892				    alloc(sblock.fs_fsize, node.dp1.di_mode);
893			node.dp1.di_blocks =
894			    btodb(fragroundup(&sblock, node.dp1.di_size));
895				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
896				    sblock.fs_fsize, iobuf);
897			iput(&node, ROOTINO + 1);
898		}
899	} else {
900		/*
901		 * initialize the node
902		 */
903		node.dp2.di_atime = utime;
904		node.dp2.di_mtime = utime;
905		node.dp2.di_ctime = utime;
906		node.dp2.di_birthtime = utime;
907		/*
908		 * create the root directory
909		 */
910		node.dp2.di_mode = IFDIR | UMASK;
911		node.dp2.di_nlink = entries;
912		node.dp2.di_size = makedir(root_dir, entries);
913		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
914		node.dp2.di_blocks =
915		    btodb(fragroundup(&sblock, node.dp2.di_size));
916		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
917		    iobuf);
918		iput(&node, ROOTINO);
919		if (!nflag) {
920			/*
921			 * create the .snap directory
922			 */
923			node.dp2.di_mode |= 020;
924			node.dp2.di_gid = gid;
925			node.dp2.di_nlink = SNAPLINKCNT;
926			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
927				node.dp2.di_db[0] =
928				    alloc(sblock.fs_fsize, node.dp2.di_mode);
929			node.dp2.di_blocks =
930			    btodb(fragroundup(&sblock, node.dp2.di_size));
931				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
932				    sblock.fs_fsize, iobuf);
933			iput(&node, ROOTINO + 1);
934		}
935	}
936}
937
938/*
939 * construct a set of directory entries in "iobuf".
940 * return size of directory.
941 */
942int
943makedir(struct direct *protodir, int entries)
944{
945	char *cp;
946	int i, spcleft;
947
948	spcleft = DIRBLKSIZ;
949	memset(iobuf, 0, DIRBLKSIZ);
950	for (cp = iobuf, i = 0; i < entries - 1; i++) {
951		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
952		memmove(cp, &protodir[i], protodir[i].d_reclen);
953		cp += protodir[i].d_reclen;
954		spcleft -= protodir[i].d_reclen;
955	}
956	protodir[i].d_reclen = spcleft;
957	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
958	return (DIRBLKSIZ);
959}
960
961/*
962 * allocate a block or frag
963 */
964ufs2_daddr_t
965alloc(int size, int mode)
966{
967	int i, blkno, frag;
968	uint d;
969
970	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
971	    sblock.fs_cgsize);
972	if (acg.cg_magic != CG_MAGIC) {
973		printf("cg 0: bad magic number\n");
974		exit(38);
975	}
976	if (acg.cg_cs.cs_nbfree == 0) {
977		printf("first cylinder group ran out of space\n");
978		exit(39);
979	}
980	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
981		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
982			goto goth;
983	printf("internal error: can't find block in cyl 0\n");
984	exit(40);
985goth:
986	blkno = fragstoblks(&sblock, d);
987	clrblock(&sblock, cg_blksfree(&acg), blkno);
988	if (sblock.fs_contigsumsize > 0)
989		clrbit(cg_clustersfree(&acg), blkno);
990	acg.cg_cs.cs_nbfree--;
991	sblock.fs_cstotal.cs_nbfree--;
992	fscs[0].cs_nbfree--;
993	if (mode & IFDIR) {
994		acg.cg_cs.cs_ndir++;
995		sblock.fs_cstotal.cs_ndir++;
996		fscs[0].cs_ndir++;
997	}
998	if (size != sblock.fs_bsize) {
999		frag = howmany(size, sblock.fs_fsize);
1000		fscs[0].cs_nffree += sblock.fs_frag - frag;
1001		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1002		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1003		acg.cg_frsum[sblock.fs_frag - frag]++;
1004		for (i = frag; i < sblock.fs_frag; i++)
1005			setbit(cg_blksfree(&acg), d + i);
1006	}
1007	/* XXX cgwrite(&disk, 0)??? */
1008	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1009	    (char *)&acg);
1010	return ((ufs2_daddr_t)d);
1011}
1012
1013/*
1014 * Allocate an inode on the disk
1015 */
1016void
1017iput(union dinode *ip, ino_t ino)
1018{
1019	ufs2_daddr_t d;
1020
1021	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1022	    sblock.fs_cgsize);
1023	if (acg.cg_magic != CG_MAGIC) {
1024		printf("cg 0: bad magic number\n");
1025		exit(31);
1026	}
1027	acg.cg_cs.cs_nifree--;
1028	setbit(cg_inosused(&acg), ino);
1029	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1030	    (char *)&acg);
1031	sblock.fs_cstotal.cs_nifree--;
1032	fscs[0].cs_nifree--;
1033	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1034		printf("fsinit: inode value out of range (%ju).\n",
1035		    (uintmax_t)ino);
1036		exit(32);
1037	}
1038	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1039	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1040	if (sblock.fs_magic == FS_UFS1_MAGIC)
1041		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1042		    ip->dp1;
1043	else
1044		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1045		    ip->dp2;
1046	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1047}
1048
1049/*
1050 * possibly write to disk
1051 */
1052static void
1053wtfs(ufs2_daddr_t bno, int size, char *bf)
1054{
1055	if (Nflag)
1056		return;
1057	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1058		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1059}
1060
1061/*
1062 * check if a block is available
1063 */
1064static int
1065isblock(struct fs *fs, unsigned char *cp, int h)
1066{
1067	unsigned char mask;
1068
1069	switch (fs->fs_frag) {
1070	case 8:
1071		return (cp[h] == 0xff);
1072	case 4:
1073		mask = 0x0f << ((h & 0x1) << 2);
1074		return ((cp[h >> 1] & mask) == mask);
1075	case 2:
1076		mask = 0x03 << ((h & 0x3) << 1);
1077		return ((cp[h >> 2] & mask) == mask);
1078	case 1:
1079		mask = 0x01 << (h & 0x7);
1080		return ((cp[h >> 3] & mask) == mask);
1081	default:
1082		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1083		return (0);
1084	}
1085}
1086
1087/*
1088 * take a block out of the map
1089 */
1090static void
1091clrblock(struct fs *fs, unsigned char *cp, int h)
1092{
1093	switch ((fs)->fs_frag) {
1094	case 8:
1095		cp[h] = 0;
1096		return;
1097	case 4:
1098		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1099		return;
1100	case 2:
1101		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1102		return;
1103	case 1:
1104		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1105		return;
1106	default:
1107		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1108		return;
1109	}
1110}
1111
1112/*
1113 * put a block into the map
1114 */
1115static void
1116setblock(struct fs *fs, unsigned char *cp, int h)
1117{
1118	switch (fs->fs_frag) {
1119	case 8:
1120		cp[h] = 0xff;
1121		return;
1122	case 4:
1123		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1124		return;
1125	case 2:
1126		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1127		return;
1128	case 1:
1129		cp[h >> 3] |= (0x01 << (h & 0x7));
1130		return;
1131	default:
1132		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1133		return;
1134	}
1135}
1136
1137/*
1138 * Determine the number of characters in a
1139 * single line.
1140 */
1141
1142static int
1143charsperline(void)
1144{
1145	int columns;
1146	char *cp;
1147	struct winsize ws;
1148
1149	columns = 0;
1150	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1151		columns = ws.ws_col;
1152	if (columns == 0 && (cp = getenv("COLUMNS")))
1153		columns = atoi(cp);
1154	if (columns == 0)
1155		columns = 80;	/* last resort */
1156	return (columns);
1157}
1158
1159static int
1160ilog2(int val)
1161{
1162	u_int n;
1163
1164	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1165		if (1 << n == val)
1166			return (n);
1167	errx(1, "ilog2: %d is not a power of 2\n", val);
1168}
1169
1170/*
1171 * For the regression test, return predictable random values.
1172 * Otherwise use a true random number generator.
1173 */
1174static u_int32_t
1175newfs_random(void)
1176{
1177	static int nextnum = 1;
1178
1179	if (Rflag)
1180		return (nextnum++);
1181	return (arc4random());
1182}
1183