1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/11/sbin/fsck_ffs/suj.c 356428 2020-01-06 21:23:14Z mckusick $");
31
32#include <sys/param.h>
33#include <sys/disk.h>
34#include <sys/disklabel.h>
35#include <sys/mount.h>
36#include <sys/stat.h>
37
38#include <ufs/ufs/ufsmount.h>
39#include <ufs/ufs/dinode.h>
40#include <ufs/ufs/dir.h>
41#include <ufs/ffs/fs.h>
42
43#include <assert.h>
44#include <err.h>
45#include <setjmp.h>
46#include <stdarg.h>
47#include <stdio.h>
48#include <stdlib.h>
49#include <stdint.h>
50#include <libufs.h>
51#include <string.h>
52#include <strings.h>
53#include <sysexits.h>
54#include <time.h>
55
56#include "fsck.h"
57
58#define	DOTDOT_OFFSET	DIRECTSIZ(1)
59#define	SUJ_HASHSIZE	2048
60#define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
61#define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
62
63struct suj_seg {
64	TAILQ_ENTRY(suj_seg) ss_next;
65	struct jsegrec	ss_rec;
66	uint8_t		*ss_blk;
67};
68
69struct suj_rec {
70	TAILQ_ENTRY(suj_rec) sr_next;
71	union jrec	*sr_rec;
72};
73TAILQ_HEAD(srechd, suj_rec);
74
75struct suj_ino {
76	LIST_ENTRY(suj_ino)	si_next;
77	struct srechd		si_recs;
78	struct srechd		si_newrecs;
79	struct srechd		si_movs;
80	struct jtrncrec		*si_trunc;
81	ino_t			si_ino;
82	char			si_skipparent;
83	char			si_hasrecs;
84	char			si_blkadj;
85	char			si_linkadj;
86	int			si_mode;
87	nlink_t			si_nlinkadj;
88	nlink_t			si_nlink;
89	nlink_t			si_dotlinks;
90};
91LIST_HEAD(inohd, suj_ino);
92
93struct suj_blk {
94	LIST_ENTRY(suj_blk)	sb_next;
95	struct srechd		sb_recs;
96	ufs2_daddr_t		sb_blk;
97};
98LIST_HEAD(blkhd, suj_blk);
99
100struct data_blk {
101	LIST_ENTRY(data_blk)	db_next;
102	uint8_t			*db_buf;
103	ufs2_daddr_t		db_blk;
104	int			db_size;
105	int			db_dirty;
106};
107
108struct ino_blk {
109	LIST_ENTRY(ino_blk)	ib_next;
110	uint8_t			*ib_buf;
111	int			ib_dirty;
112	ufs2_daddr_t		ib_blk;
113};
114LIST_HEAD(iblkhd, ino_blk);
115
116struct suj_cg {
117	LIST_ENTRY(suj_cg)	sc_next;
118	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
119	struct inohd		sc_inohash[SUJ_HASHSIZE];
120	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
121	struct ino_blk		*sc_lastiblk;
122	struct suj_ino		*sc_lastino;
123	struct suj_blk		*sc_lastblk;
124	uint8_t			*sc_cgbuf;
125	struct cg		*sc_cgp;
126	int			sc_dirty;
127	int			sc_cgx;
128};
129
130static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
131static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
132static struct suj_cg *lastcg;
133static struct data_blk *lastblk;
134
135static TAILQ_HEAD(seghd, suj_seg) allsegs;
136static uint64_t oldseq;
137static struct uufsd *disk = NULL;
138static struct fs *fs = NULL;
139static ino_t sujino;
140
141/*
142 * Summary statistics.
143 */
144static uint64_t freefrags;
145static uint64_t freeblocks;
146static uint64_t freeinos;
147static uint64_t freedir;
148static uint64_t jbytes;
149static uint64_t jrecs;
150
151static jmp_buf	jmpbuf;
152
153typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
154static void err_suj(const char *, ...) __dead2;
155static void ino_trunc(ino_t, off_t);
156static void ino_decr(ino_t);
157static void ino_adjust(struct suj_ino *);
158static void ino_build(struct suj_ino *);
159static int blk_isfree(ufs2_daddr_t);
160static void initsuj(void);
161
162static void *
163errmalloc(size_t n)
164{
165	void *a;
166
167	a = Malloc(n);
168	if (a == NULL)
169		err(EX_OSERR, "malloc(%zu)", n);
170	return (a);
171}
172
173/*
174 * When hit a fatal error in journalling check, print out
175 * the error and then offer to fallback to normal fsck.
176 */
177static void
178err_suj(const char * restrict fmt, ...)
179{
180	va_list ap;
181
182	if (preen)
183		(void)fprintf(stdout, "%s: ", cdevname);
184
185	va_start(ap, fmt);
186	(void)vfprintf(stdout, fmt, ap);
187	va_end(ap);
188
189	longjmp(jmpbuf, -1);
190}
191
192/*
193 * Open the given provider, load superblock.
194 */
195static void
196opendisk(const char *devnam)
197{
198	if (disk != NULL)
199		return;
200	disk = Malloc(sizeof(*disk));
201	if (disk == NULL)
202		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
203	if (ufs_disk_fillout(disk, devnam) == -1) {
204		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
205		    disk->d_error);
206	}
207	fs = &disk->d_fs;
208	if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
209	    &real_dev_bsize) == -1)
210		real_dev_bsize = secsize;
211	if (debug)
212		printf("dev_bsize %u\n", real_dev_bsize);
213}
214
215/*
216 * Mark file system as clean, write the super-block back, close the disk.
217 */
218static void
219closedisk(const char *devnam)
220{
221	struct csum *cgsum;
222	uint32_t i;
223
224	/*
225	 * Recompute the fs summary info from correct cs summaries.
226	 */
227	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
228	for (i = 0; i < fs->fs_ncg; i++) {
229		cgsum = &fs->fs_cs(fs, i);
230		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
231		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
232		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
233		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
234	}
235	fs->fs_pendinginodes = 0;
236	fs->fs_pendingblocks = 0;
237	fs->fs_clean = 1;
238	fs->fs_time = time(NULL);
239	fs->fs_mtime = time(NULL);
240	if (sbwrite(disk, 0) == -1)
241		err(EX_OSERR, "sbwrite(%s)", devnam);
242	if (ufs_disk_close(disk) == -1)
243		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
244	free(disk);
245	disk = NULL;
246	fs = NULL;
247}
248
249/*
250 * Lookup a cg by number in the hash so we can keep track of which cgs
251 * need stats rebuilt.
252 */
253static struct suj_cg *
254cg_lookup(int cgx)
255{
256	struct cghd *hd;
257	struct suj_cg *sc;
258
259	if (cgx < 0 || cgx >= fs->fs_ncg)
260		err_suj("Bad cg number %d\n", cgx);
261	if (lastcg && lastcg->sc_cgx == cgx)
262		return (lastcg);
263	hd = &cghash[SUJ_HASH(cgx)];
264	LIST_FOREACH(sc, hd, sc_next)
265		if (sc->sc_cgx == cgx) {
266			lastcg = sc;
267			return (sc);
268		}
269	sc = errmalloc(sizeof(*sc));
270	bzero(sc, sizeof(*sc));
271	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
272	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
273	sc->sc_cgx = cgx;
274	LIST_INSERT_HEAD(hd, sc, sc_next);
275	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
276	    fs->fs_bsize) == -1)
277		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
278
279	return (sc);
280}
281
282/*
283 * Lookup an inode number in the hash and allocate a suj_ino if it does
284 * not exist.
285 */
286static struct suj_ino *
287ino_lookup(ino_t ino, int creat)
288{
289	struct suj_ino *sino;
290	struct inohd *hd;
291	struct suj_cg *sc;
292
293	sc = cg_lookup(ino_to_cg(fs, ino));
294	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
295		return (sc->sc_lastino);
296	hd = &sc->sc_inohash[SUJ_HASH(ino)];
297	LIST_FOREACH(sino, hd, si_next)
298		if (sino->si_ino == ino)
299			return (sino);
300	if (creat == 0)
301		return (NULL);
302	sino = errmalloc(sizeof(*sino));
303	bzero(sino, sizeof(*sino));
304	sino->si_ino = ino;
305	TAILQ_INIT(&sino->si_recs);
306	TAILQ_INIT(&sino->si_newrecs);
307	TAILQ_INIT(&sino->si_movs);
308	LIST_INSERT_HEAD(hd, sino, si_next);
309
310	return (sino);
311}
312
313/*
314 * Lookup a block number in the hash and allocate a suj_blk if it does
315 * not exist.
316 */
317static struct suj_blk *
318blk_lookup(ufs2_daddr_t blk, int creat)
319{
320	struct suj_blk *sblk;
321	struct suj_cg *sc;
322	struct blkhd *hd;
323
324	sc = cg_lookup(dtog(fs, blk));
325	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
326		return (sc->sc_lastblk);
327	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
328	LIST_FOREACH(sblk, hd, sb_next)
329		if (sblk->sb_blk == blk)
330			return (sblk);
331	if (creat == 0)
332		return (NULL);
333	sblk = errmalloc(sizeof(*sblk));
334	bzero(sblk, sizeof(*sblk));
335	sblk->sb_blk = blk;
336	TAILQ_INIT(&sblk->sb_recs);
337	LIST_INSERT_HEAD(hd, sblk, sb_next);
338
339	return (sblk);
340}
341
342static struct data_blk *
343dblk_lookup(ufs2_daddr_t blk)
344{
345	struct data_blk *dblk;
346	struct dblkhd *hd;
347
348	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
349	if (lastblk && lastblk->db_blk == blk)
350		return (lastblk);
351	LIST_FOREACH(dblk, hd, db_next)
352		if (dblk->db_blk == blk)
353			return (dblk);
354	/*
355	 * The inode block wasn't located, allocate a new one.
356	 */
357	dblk = errmalloc(sizeof(*dblk));
358	bzero(dblk, sizeof(*dblk));
359	LIST_INSERT_HEAD(hd, dblk, db_next);
360	dblk->db_blk = blk;
361	return (dblk);
362}
363
364static uint8_t *
365dblk_read(ufs2_daddr_t blk, int size)
366{
367	struct data_blk *dblk;
368
369	dblk = dblk_lookup(blk);
370	/*
371	 * I doubt size mismatches can happen in practice but it is trivial
372	 * to handle.
373	 */
374	if (size != dblk->db_size) {
375		if (dblk->db_buf)
376			free(dblk->db_buf);
377		dblk->db_buf = errmalloc(size);
378		dblk->db_size = size;
379		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
380			err_suj("Failed to read data block %jd\n", blk);
381	}
382	return (dblk->db_buf);
383}
384
385static void
386dblk_dirty(ufs2_daddr_t blk)
387{
388	struct data_blk *dblk;
389
390	dblk = dblk_lookup(blk);
391	dblk->db_dirty = 1;
392}
393
394static void
395dblk_write(void)
396{
397	struct data_blk *dblk;
398	int i;
399
400	for (i = 0; i < SUJ_HASHSIZE; i++) {
401		LIST_FOREACH(dblk, &dbhash[i], db_next) {
402			if (dblk->db_dirty == 0 || dblk->db_size == 0)
403				continue;
404			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
405			    dblk->db_buf, dblk->db_size) == -1)
406				err_suj("Unable to write block %jd\n",
407				    dblk->db_blk);
408		}
409	}
410}
411
412static union dinode *
413ino_read(ino_t ino)
414{
415	struct ino_blk *iblk;
416	struct iblkhd *hd;
417	struct suj_cg *sc;
418	ufs2_daddr_t blk;
419	int off;
420
421	blk = ino_to_fsba(fs, ino);
422	sc = cg_lookup(ino_to_cg(fs, ino));
423	iblk = sc->sc_lastiblk;
424	if (iblk && iblk->ib_blk == blk)
425		goto found;
426	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
427	LIST_FOREACH(iblk, hd, ib_next)
428		if (iblk->ib_blk == blk)
429			goto found;
430	/*
431	 * The inode block wasn't located, allocate a new one.
432	 */
433	iblk = errmalloc(sizeof(*iblk));
434	bzero(iblk, sizeof(*iblk));
435	iblk->ib_buf = errmalloc(fs->fs_bsize);
436	iblk->ib_blk = blk;
437	LIST_INSERT_HEAD(hd, iblk, ib_next);
438	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
439		err_suj("Failed to read inode block %jd\n", blk);
440found:
441	sc->sc_lastiblk = iblk;
442	off = ino_to_fsbo(fs, ino);
443	if (fs->fs_magic == FS_UFS1_MAGIC)
444		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
445	else
446		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
447}
448
449static void
450ino_dirty(ino_t ino)
451{
452	struct ino_blk *iblk;
453	struct iblkhd *hd;
454	struct suj_cg *sc;
455	ufs2_daddr_t blk;
456
457	blk = ino_to_fsba(fs, ino);
458	sc = cg_lookup(ino_to_cg(fs, ino));
459	iblk = sc->sc_lastiblk;
460	if (iblk && iblk->ib_blk == blk) {
461		iblk->ib_dirty = 1;
462		return;
463	}
464	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
465	LIST_FOREACH(iblk, hd, ib_next) {
466		if (iblk->ib_blk == blk) {
467			iblk->ib_dirty = 1;
468			return;
469		}
470	}
471	ino_read(ino);
472	ino_dirty(ino);
473}
474
475static void
476iblk_write(struct ino_blk *iblk)
477{
478
479	if (iblk->ib_dirty == 0)
480		return;
481	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
482	    fs->fs_bsize) == -1)
483		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
484}
485
486static int
487blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
488{
489	ufs2_daddr_t bstart;
490	ufs2_daddr_t bend;
491	ufs2_daddr_t end;
492
493	end = start + frags;
494	bstart = brec->jb_blkno + brec->jb_oldfrags;
495	bend = bstart + brec->jb_frags;
496	if (start < bend && end > bstart)
497		return (1);
498	return (0);
499}
500
501static int
502blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
503    int frags)
504{
505
506	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
507		return (0);
508	if (brec->jb_blkno + brec->jb_oldfrags != start)
509		return (0);
510	if (brec->jb_frags < frags)
511		return (0);
512	return (1);
513}
514
515static void
516blk_setmask(struct jblkrec *brec, int *mask)
517{
518	int i;
519
520	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
521		*mask |= 1 << i;
522}
523
524/*
525 * Determine whether a given block has been reallocated to a new location.
526 * Returns a mask of overlapping bits if any frags have been reused or
527 * zero if the block has not been re-used and the contents can be trusted.
528 *
529 * This is used to ensure that an orphaned pointer due to truncate is safe
530 * to be freed.  The mask value can be used to free partial blocks.
531 */
532static int
533blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
534{
535	struct suj_blk *sblk;
536	struct suj_rec *srec;
537	struct jblkrec *brec;
538	int mask;
539	int off;
540
541	/*
542	 * To be certain we're not freeing a reallocated block we lookup
543	 * this block in the blk hash and see if there is an allocation
544	 * journal record that overlaps with any fragments in the block
545	 * we're concerned with.  If any fragments have ben reallocated
546	 * the block has already been freed and re-used for another purpose.
547	 */
548	mask = 0;
549	sblk = blk_lookup(blknum(fs, blk), 0);
550	if (sblk == NULL)
551		return (0);
552	off = blk - sblk->sb_blk;
553	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
554		brec = (struct jblkrec *)srec->sr_rec;
555		/*
556		 * If the block overlaps but does not match
557		 * exactly this record refers to the current
558		 * location.
559		 */
560		if (blk_overlaps(brec, blk, frags) == 0)
561			continue;
562		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
563			mask = 0;
564		else
565			blk_setmask(brec, &mask);
566	}
567	if (debug)
568		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
569		    blk, sblk->sb_blk, off, mask);
570	return (mask >> off);
571}
572
573/*
574 * Determine whether it is safe to follow an indirect.  It is not safe
575 * if any part of the indirect has been reallocated or the last journal
576 * entry was an allocation.  Just allocated indirects may not have valid
577 * pointers yet and all of their children will have their own records.
578 * It is also not safe to follow an indirect if the cg bitmap has been
579 * cleared as a new allocation may write to the block prior to the journal
580 * being written.
581 *
582 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
583 */
584static int
585blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
586{
587	struct suj_blk *sblk;
588	struct jblkrec *brec;
589
590	sblk = blk_lookup(blk, 0);
591	if (sblk == NULL)
592		return (1);
593	if (TAILQ_EMPTY(&sblk->sb_recs))
594		return (1);
595	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
596	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
597		if (brec->jb_op == JOP_FREEBLK)
598			return (!blk_isfree(blk));
599	return (0);
600}
601
602/*
603 * Clear an inode from the cg bitmap.  If the inode was already clear return
604 * 0 so the caller knows it does not have to check the inode contents.
605 */
606static int
607ino_free(ino_t ino, int mode)
608{
609	struct suj_cg *sc;
610	uint8_t *inosused;
611	struct cg *cgp;
612	int cg;
613
614	cg = ino_to_cg(fs, ino);
615	ino = ino % fs->fs_ipg;
616	sc = cg_lookup(cg);
617	cgp = sc->sc_cgp;
618	inosused = cg_inosused(cgp);
619	/*
620	 * The bitmap may never have made it to the disk so we have to
621	 * conditionally clear.  We can avoid writing the cg in this case.
622	 */
623	if (isclr(inosused, ino))
624		return (0);
625	freeinos++;
626	clrbit(inosused, ino);
627	if (ino < cgp->cg_irotor)
628		cgp->cg_irotor = ino;
629	cgp->cg_cs.cs_nifree++;
630	if ((mode & IFMT) == IFDIR) {
631		freedir++;
632		cgp->cg_cs.cs_ndir--;
633	}
634	sc->sc_dirty = 1;
635
636	return (1);
637}
638
639/*
640 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
641 * set in the mask.
642 */
643static void
644blk_free(ufs2_daddr_t bno, int mask, int frags)
645{
646	ufs1_daddr_t fragno, cgbno;
647	struct suj_cg *sc;
648	struct cg *cgp;
649	int i, cg;
650	uint8_t *blksfree;
651
652	if (debug)
653		printf("Freeing %d frags at blk %jd mask 0x%x\n",
654		    frags, bno, mask);
655	cg = dtog(fs, bno);
656	sc = cg_lookup(cg);
657	cgp = sc->sc_cgp;
658	cgbno = dtogd(fs, bno);
659	blksfree = cg_blksfree(cgp);
660
661	/*
662	 * If it's not allocated we only wrote the journal entry
663	 * and never the bitmaps.  Here we unconditionally clear and
664	 * resolve the cg summary later.
665	 */
666	if (frags == fs->fs_frag && mask == 0) {
667		fragno = fragstoblks(fs, cgbno);
668		ffs_setblock(fs, blksfree, fragno);
669		freeblocks++;
670	} else {
671		/*
672		 * deallocate the fragment
673		 */
674		for (i = 0; i < frags; i++)
675			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
676				freefrags++;
677				setbit(blksfree, cgbno + i);
678			}
679	}
680	sc->sc_dirty = 1;
681}
682
683/*
684 * Returns 1 if the whole block starting at 'bno' is marked free and 0
685 * otherwise.
686 */
687static int
688blk_isfree(ufs2_daddr_t bno)
689{
690	struct suj_cg *sc;
691
692	sc = cg_lookup(dtog(fs, bno));
693	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
694}
695
696/*
697 * Fetch an indirect block to find the block at a given lbn.  The lbn
698 * may be negative to fetch a specific indirect block pointer or positive
699 * to fetch a specific block.
700 */
701static ufs2_daddr_t
702indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
703{
704	ufs2_daddr_t *bap2;
705	ufs2_daddr_t *bap1;
706	ufs_lbn_t lbnadd;
707	ufs_lbn_t base;
708	int level;
709	int i;
710
711	if (blk == 0)
712		return (0);
713	level = lbn_level(cur);
714	if (level == -1)
715		err_suj("Invalid indir lbn %jd\n", lbn);
716	if (level == 0 && lbn < 0)
717		err_suj("Invalid lbn %jd\n", lbn);
718	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
719	bap1 = (void *)bap2;
720	lbnadd = 1;
721	base = -(cur + level);
722	for (i = level; i > 0; i--)
723		lbnadd *= NINDIR(fs);
724	if (lbn > 0)
725		i = (lbn - base) / lbnadd;
726	else
727		i = (-lbn - base) / lbnadd;
728	if (i < 0 || i >= NINDIR(fs))
729		err_suj("Invalid indirect index %d produced by lbn %jd\n",
730		    i, lbn);
731	if (level == 0)
732		cur = base + (i * lbnadd);
733	else
734		cur = -(base + (i * lbnadd)) - (level - 1);
735	if (fs->fs_magic == FS_UFS1_MAGIC)
736		blk = bap1[i];
737	else
738		blk = bap2[i];
739	if (cur == lbn)
740		return (blk);
741	if (level == 0)
742		err_suj("Invalid lbn %jd at level 0\n", lbn);
743	return indir_blkatoff(blk, ino, cur, lbn);
744}
745
746/*
747 * Finds the disk block address at the specified lbn within the inode
748 * specified by ip.  This follows the whole tree and honors di_size and
749 * di_extsize so it is a true test of reachability.  The lbn may be
750 * negative if an extattr or indirect block is requested.
751 */
752static ufs2_daddr_t
753ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
754{
755	ufs_lbn_t tmpval;
756	ufs_lbn_t cur;
757	ufs_lbn_t next;
758	int i;
759
760	/*
761	 * Handle extattr blocks first.
762	 */
763	if (lbn < 0 && lbn >= -NXADDR) {
764		lbn = -1 - lbn;
765		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
766			return (0);
767		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
768		return (ip->dp2.di_extb[lbn]);
769	}
770	/*
771	 * Now direct and indirect.
772	 */
773	if (DIP(ip, di_mode) == IFLNK &&
774	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
775		return (0);
776	if (lbn >= 0 && lbn < NDADDR) {
777		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
778		return (DIP(ip, di_db[lbn]));
779	}
780	*frags = fs->fs_frag;
781
782	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
783	    tmpval *= NINDIR(fs), cur = next) {
784		next = cur + tmpval;
785		if (lbn == -cur - i)
786			return (DIP(ip, di_ib[i]));
787		/*
788		 * Determine whether the lbn in question is within this tree.
789		 */
790		if (lbn < 0 && -lbn >= next)
791			continue;
792		if (lbn > 0 && lbn >= next)
793			continue;
794		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
795	}
796	err_suj("lbn %jd not in ino\n", lbn);
797	/* NOTREACHED */
798}
799
800/*
801 * Determine whether a block exists at a particular lbn in an inode.
802 * Returns 1 if found, 0 if not.  lbn may be negative for indirects
803 * or ext blocks.
804 */
805static int
806blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
807{
808	union dinode *ip;
809	ufs2_daddr_t nblk;
810
811	ip = ino_read(ino);
812
813	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
814		return (0);
815	nblk = ino_blkatoff(ip, ino, lbn, frags);
816
817	return (nblk == blk);
818}
819
820/*
821 * Clear the directory entry at diroff that should point to child.  Minimal
822 * checking is done and it is assumed that this path was verified with isat.
823 */
824static void
825ino_clrat(ino_t parent, off_t diroff, ino_t child)
826{
827	union dinode *dip;
828	struct direct *dp;
829	ufs2_daddr_t blk;
830	uint8_t *block;
831	ufs_lbn_t lbn;
832	int blksize;
833	int frags;
834	int doff;
835
836	if (debug)
837		printf("Clearing inode %ju from parent %ju at offset %jd\n",
838		    (uintmax_t)child, (uintmax_t)parent, diroff);
839
840	lbn = lblkno(fs, diroff);
841	doff = blkoff(fs, diroff);
842	dip = ino_read(parent);
843	blk = ino_blkatoff(dip, parent, lbn, &frags);
844	blksize = sblksize(fs, DIP(dip, di_size), lbn);
845	block = dblk_read(blk, blksize);
846	dp = (struct direct *)&block[doff];
847	if (dp->d_ino != child)
848		errx(1, "Inode %ju does not exist in %ju at %jd",
849		    (uintmax_t)child, (uintmax_t)parent, diroff);
850	dp->d_ino = 0;
851	dblk_dirty(blk);
852	/*
853	 * The actual .. reference count will already have been removed
854	 * from the parent by the .. remref record.
855	 */
856}
857
858/*
859 * Determines whether a pointer to an inode exists within a directory
860 * at a specified offset.  Returns the mode of the found entry.
861 */
862static int
863ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
864{
865	union dinode *dip;
866	struct direct *dp;
867	ufs2_daddr_t blk;
868	uint8_t *block;
869	ufs_lbn_t lbn;
870	int blksize;
871	int frags;
872	int dpoff;
873	int doff;
874
875	*isdot = 0;
876	dip = ino_read(parent);
877	*mode = DIP(dip, di_mode);
878	if ((*mode & IFMT) != IFDIR) {
879		if (debug) {
880			/*
881			 * This can happen if the parent inode
882			 * was reallocated.
883			 */
884			if (*mode != 0)
885				printf("Directory %ju has bad mode %o\n",
886				    (uintmax_t)parent, *mode);
887			else
888				printf("Directory %ju has zero mode\n",
889				    (uintmax_t)parent);
890		}
891		return (0);
892	}
893	lbn = lblkno(fs, diroff);
894	doff = blkoff(fs, diroff);
895	blksize = sblksize(fs, DIP(dip, di_size), lbn);
896	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
897		if (debug)
898			printf("ino %ju absent from %ju due to offset %jd"
899			    " exceeding size %jd\n",
900			    (uintmax_t)child, (uintmax_t)parent, diroff,
901			    DIP(dip, di_size));
902		return (0);
903	}
904	blk = ino_blkatoff(dip, parent, lbn, &frags);
905	if (blk <= 0) {
906		if (debug)
907			printf("Sparse directory %ju", (uintmax_t)parent);
908		return (0);
909	}
910	block = dblk_read(blk, blksize);
911	/*
912	 * Walk through the records from the start of the block to be
913	 * certain we hit a valid record and not some junk in the middle
914	 * of a file name.  Stop when we reach or pass the expected offset.
915	 */
916	dpoff = rounddown(doff, DIRBLKSIZ);
917	do {
918		dp = (struct direct *)&block[dpoff];
919		if (dpoff == doff)
920			break;
921		if (dp->d_reclen == 0)
922			break;
923		dpoff += dp->d_reclen;
924	} while (dpoff <= doff);
925	if (dpoff > fs->fs_bsize)
926		err_suj("Corrupt directory block in dir ino %ju\n",
927		    (uintmax_t)parent);
928	/* Not found. */
929	if (dpoff != doff) {
930		if (debug)
931			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
932			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
933		return (0);
934	}
935	/*
936	 * We found the item in question.  Record the mode and whether it's
937	 * a . or .. link for the caller.
938	 */
939	if (dp->d_ino == child) {
940		if (child == parent)
941			*isdot = 1;
942		else if (dp->d_namlen == 2 &&
943		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
944			*isdot = 1;
945		*mode = DTTOIF(dp->d_type);
946		return (1);
947	}
948	if (debug)
949		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
950		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
951	return (0);
952}
953
954#define	VISIT_INDIR	0x0001
955#define	VISIT_EXT	0x0002
956#define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
957
958/*
959 * Read an indirect level which may or may not be linked into an inode.
960 */
961static void
962indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
963    ino_visitor visitor, int flags)
964{
965	ufs2_daddr_t *bap2;
966	ufs1_daddr_t *bap1;
967	ufs_lbn_t lbnadd;
968	ufs2_daddr_t nblk;
969	ufs_lbn_t nlbn;
970	int level;
971	int i;
972
973	/*
974	 * Don't visit indirect blocks with contents we can't trust.  This
975	 * should only happen when indir_visit() is called to complete a
976	 * truncate that never finished and not when a pointer is found via
977	 * an inode.
978	 */
979	if (blk == 0)
980		return;
981	level = lbn_level(lbn);
982	if (level == -1)
983		err_suj("Invalid level for lbn %jd\n", lbn);
984	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
985		if (debug)
986			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
987			    blk, (uintmax_t)ino, lbn, level);
988		goto out;
989	}
990	lbnadd = 1;
991	for (i = level; i > 0; i--)
992		lbnadd *= NINDIR(fs);
993	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
994	bap2 = (void *)bap1;
995	for (i = 0; i < NINDIR(fs); i++) {
996		if (fs->fs_magic == FS_UFS1_MAGIC)
997			nblk = *bap1++;
998		else
999			nblk = *bap2++;
1000		if (nblk == 0)
1001			continue;
1002		if (level == 0) {
1003			nlbn = -lbn + i * lbnadd;
1004			(*frags) += fs->fs_frag;
1005			visitor(ino, nlbn, nblk, fs->fs_frag);
1006		} else {
1007			nlbn = (lbn + 1) - (i * lbnadd);
1008			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1009		}
1010	}
1011out:
1012	if (flags & VISIT_INDIR) {
1013		(*frags) += fs->fs_frag;
1014		visitor(ino, lbn, blk, fs->fs_frag);
1015	}
1016}
1017
1018/*
1019 * Visit each block in an inode as specified by 'flags' and call a
1020 * callback function.  The callback may inspect or free blocks.  The
1021 * count of frags found according to the size in the file is returned.
1022 * This is not valid for sparse files but may be used to determine
1023 * the correct di_blocks for a file.
1024 */
1025static uint64_t
1026ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1027{
1028	ufs_lbn_t nextlbn;
1029	ufs_lbn_t tmpval;
1030	ufs_lbn_t lbn;
1031	uint64_t size;
1032	uint64_t fragcnt;
1033	int mode;
1034	int frags;
1035	int i;
1036
1037	size = DIP(ip, di_size);
1038	mode = DIP(ip, di_mode) & IFMT;
1039	fragcnt = 0;
1040	if ((flags & VISIT_EXT) &&
1041	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1042		for (i = 0; i < NXADDR; i++) {
1043			if (ip->dp2.di_extb[i] == 0)
1044				continue;
1045			frags = sblksize(fs, ip->dp2.di_extsize, i);
1046			frags = numfrags(fs, frags);
1047			fragcnt += frags;
1048			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1049		}
1050	}
1051	/* Skip datablocks for short links and devices. */
1052	if (mode == IFBLK || mode == IFCHR ||
1053	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1054		return (fragcnt);
1055	for (i = 0; i < NDADDR; i++) {
1056		if (DIP(ip, di_db[i]) == 0)
1057			continue;
1058		frags = sblksize(fs, size, i);
1059		frags = numfrags(fs, frags);
1060		fragcnt += frags;
1061		visitor(ino, i, DIP(ip, di_db[i]), frags);
1062	}
1063	/*
1064	 * We know the following indirects are real as we're following
1065	 * real pointers to them.
1066	 */
1067	flags |= VISIT_ROOT;
1068	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1069	    lbn = nextlbn) {
1070		nextlbn = lbn + tmpval;
1071		tmpval *= NINDIR(fs);
1072		if (DIP(ip, di_ib[i]) == 0)
1073			continue;
1074		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1075		    flags);
1076	}
1077	return (fragcnt);
1078}
1079
1080/*
1081 * Null visitor function used when we just want to count blocks and
1082 * record the lbn.
1083 */
1084ufs_lbn_t visitlbn;
1085static void
1086null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1087{
1088	if (lbn > 0)
1089		visitlbn = lbn;
1090}
1091
1092/*
1093 * Recalculate di_blocks when we discover that a block allocation or
1094 * free was not successfully completed.  The kernel does not roll this back
1095 * because it would be too expensive to compute which indirects were
1096 * reachable at the time the inode was written.
1097 */
1098static void
1099ino_adjblks(struct suj_ino *sino)
1100{
1101	union dinode *ip;
1102	uint64_t blocks;
1103	uint64_t frags;
1104	off_t isize;
1105	off_t size;
1106	ino_t ino;
1107
1108	ino = sino->si_ino;
1109	ip = ino_read(ino);
1110	/* No need to adjust zero'd inodes. */
1111	if (DIP(ip, di_mode) == 0)
1112		return;
1113	/*
1114	 * Visit all blocks and count them as well as recording the last
1115	 * valid lbn in the file.  If the file size doesn't agree with the
1116	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1117	 * the blocks count.
1118	 */
1119	visitlbn = 0;
1120	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1121	blocks = fsbtodb(fs, frags);
1122	/*
1123	 * We assume the size and direct block list is kept coherent by
1124	 * softdep.  For files that have extended into indirects we truncate
1125	 * to the size in the inode or the maximum size permitted by
1126	 * populated indirects.
1127	 */
1128	if (visitlbn >= NDADDR) {
1129		isize = DIP(ip, di_size);
1130		size = lblktosize(fs, visitlbn + 1);
1131		if (isize > size)
1132			isize = size;
1133		/* Always truncate to free any unpopulated indirects. */
1134		ino_trunc(sino->si_ino, isize);
1135		return;
1136	}
1137	if (blocks == DIP(ip, di_blocks))
1138		return;
1139	if (debug)
1140		printf("ino %ju adjusting block count from %jd to %jd\n",
1141		    (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1142	DIP_SET(ip, di_blocks, blocks);
1143	ino_dirty(ino);
1144}
1145
1146static void
1147blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1148{
1149
1150	blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1151}
1152
1153/*
1154 * Free a block or tree of blocks that was previously rooted in ino at
1155 * the given lbn.  If the lbn is an indirect all children are freed
1156 * recursively.
1157 */
1158static void
1159blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1160{
1161	uint64_t resid;
1162	int mask;
1163
1164	mask = blk_freemask(blk, ino, lbn, frags);
1165	resid = 0;
1166	if (lbn <= -NDADDR && follow && mask == 0)
1167		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1168	else
1169		blk_free(blk, mask, frags);
1170}
1171
1172static void
1173ino_setskip(struct suj_ino *sino, ino_t parent)
1174{
1175	int isdot;
1176	int mode;
1177
1178	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1179		sino->si_skipparent = 1;
1180}
1181
1182static void
1183ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1184{
1185	struct suj_ino *sino;
1186	struct suj_rec *srec;
1187	struct jrefrec *rrec;
1188
1189	/*
1190	 * Lookup this inode to see if we have a record for it.
1191	 */
1192	sino = ino_lookup(child, 0);
1193	/*
1194	 * Tell any child directories we've already removed their
1195	 * parent link cnt.  Don't try to adjust our link down again.
1196	 */
1197	if (sino != NULL && isdotdot == 0)
1198		ino_setskip(sino, parent);
1199	/*
1200	 * No valid record for this inode.  Just drop the on-disk
1201	 * link by one.
1202	 */
1203	if (sino == NULL || sino->si_hasrecs == 0) {
1204		ino_decr(child);
1205		return;
1206	}
1207	/*
1208	 * Use ino_adjust() if ino_check() has already processed this
1209	 * child.  If we lose the last non-dot reference to a
1210	 * directory it will be discarded.
1211	 */
1212	if (sino->si_linkadj) {
1213		sino->si_nlink--;
1214		if (isdotdot)
1215			sino->si_dotlinks--;
1216		ino_adjust(sino);
1217		return;
1218	}
1219	/*
1220	 * If we haven't yet processed this inode we need to make
1221	 * sure we will successfully discover the lost path.  If not
1222	 * use nlinkadj to remember.
1223	 */
1224	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1225		rrec = (struct jrefrec *)srec->sr_rec;
1226		if (rrec->jr_parent == parent &&
1227		    rrec->jr_diroff == diroff)
1228			return;
1229	}
1230	sino->si_nlinkadj++;
1231}
1232
1233/*
1234 * Free the children of a directory when the directory is discarded.
1235 */
1236static void
1237ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1238{
1239	struct suj_ino *sino;
1240	struct direct *dp;
1241	off_t diroff;
1242	uint8_t *block;
1243	int skipparent;
1244	int isdotdot;
1245	int dpoff;
1246	int size;
1247
1248	sino = ino_lookup(ino, 0);
1249	if (sino)
1250		skipparent = sino->si_skipparent;
1251	else
1252		skipparent = 0;
1253	size = lfragtosize(fs, frags);
1254	block = dblk_read(blk, size);
1255	dp = (struct direct *)&block[0];
1256	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1257		dp = (struct direct *)&block[dpoff];
1258		if (dp->d_ino == 0 || dp->d_ino == WINO)
1259			continue;
1260		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1261			continue;
1262		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1263		    dp->d_name[1] == '.';
1264		if (isdotdot && skipparent == 1)
1265			continue;
1266		if (debug)
1267			printf("Directory %ju removing ino %ju name %s\n",
1268			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1269		diroff = lblktosize(fs, lbn) + dpoff;
1270		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1271	}
1272}
1273
1274/*
1275 * Reclaim an inode, freeing all blocks and decrementing all children's
1276 * link counts.  Free the inode back to the cg.
1277 */
1278static void
1279ino_reclaim(union dinode *ip, ino_t ino, int mode)
1280{
1281	uint32_t gen;
1282
1283	if (ino == ROOTINO)
1284		err_suj("Attempting to free ROOTINO\n");
1285	if (debug)
1286		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1287		    (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1288
1289	/* We are freeing an inode or directory. */
1290	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1291		ino_visit(ip, ino, ino_free_children, 0);
1292	DIP_SET(ip, di_nlink, 0);
1293	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1294	/* Here we have to clear the inode and release any blocks it holds. */
1295	gen = DIP(ip, di_gen);
1296	if (fs->fs_magic == FS_UFS1_MAGIC)
1297		bzero(ip, sizeof(struct ufs1_dinode));
1298	else
1299		bzero(ip, sizeof(struct ufs2_dinode));
1300	DIP_SET(ip, di_gen, gen);
1301	ino_dirty(ino);
1302	ino_free(ino, mode);
1303	return;
1304}
1305
1306/*
1307 * Adjust an inode's link count down by one when a directory goes away.
1308 */
1309static void
1310ino_decr(ino_t ino)
1311{
1312	union dinode *ip;
1313	int reqlink;
1314	int nlink;
1315	int mode;
1316
1317	ip = ino_read(ino);
1318	nlink = DIP(ip, di_nlink);
1319	mode = DIP(ip, di_mode);
1320	if (nlink < 1)
1321		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1322	if (mode == 0)
1323		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1324	nlink--;
1325	if ((mode & IFMT) == IFDIR)
1326		reqlink = 2;
1327	else
1328		reqlink = 1;
1329	if (nlink < reqlink) {
1330		if (debug)
1331			printf("ino %ju not enough links to live %d < %d\n",
1332			    (uintmax_t)ino, nlink, reqlink);
1333		ino_reclaim(ip, ino, mode);
1334		return;
1335	}
1336	DIP_SET(ip, di_nlink, nlink);
1337	ino_dirty(ino);
1338}
1339
1340/*
1341 * Adjust the inode link count to 'nlink'.  If the count reaches zero
1342 * free it.
1343 */
1344static void
1345ino_adjust(struct suj_ino *sino)
1346{
1347	struct jrefrec *rrec;
1348	struct suj_rec *srec;
1349	struct suj_ino *stmp;
1350	union dinode *ip;
1351	nlink_t nlink;
1352	int recmode;
1353	int reqlink;
1354	int isdot;
1355	int mode;
1356	ino_t ino;
1357
1358	nlink = sino->si_nlink;
1359	ino = sino->si_ino;
1360	mode = sino->si_mode & IFMT;
1361	/*
1362	 * If it's a directory with no dot links, it was truncated before
1363	 * the name was cleared.  We need to clear the dirent that
1364	 * points at it.
1365	 */
1366	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1367		sino->si_nlink = nlink = 0;
1368		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1369			rrec = (struct jrefrec *)srec->sr_rec;
1370			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1371			    &recmode, &isdot) == 0)
1372				continue;
1373			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1374			break;
1375		}
1376		if (srec == NULL)
1377			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1378	}
1379	/*
1380	 * If it's a directory with no real names pointing to it go ahead
1381	 * and truncate it.  This will free any children.
1382	 */
1383	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1384		sino->si_nlink = nlink = 0;
1385		/*
1386		 * Mark any .. links so they know not to free this inode
1387		 * when they are removed.
1388		 */
1389		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1390			rrec = (struct jrefrec *)srec->sr_rec;
1391			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1392				stmp = ino_lookup(rrec->jr_parent, 0);
1393				if (stmp)
1394					ino_setskip(stmp, ino);
1395			}
1396		}
1397	}
1398	ip = ino_read(ino);
1399	mode = DIP(ip, di_mode) & IFMT;
1400	if (nlink > LINK_MAX)
1401		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1402		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink));
1403	if (debug)
1404	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1405		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink),
1406		    sino->si_mode);
1407	if (mode == 0) {
1408		if (debug)
1409			printf("ino %ju, zero inode freeing bitmap\n",
1410			    (uintmax_t)ino);
1411		ino_free(ino, sino->si_mode);
1412		return;
1413	}
1414	/* XXX Should be an assert? */
1415	if (mode != sino->si_mode && debug)
1416		printf("ino %ju, mode %o != %o\n",
1417		    (uintmax_t)ino, mode, sino->si_mode);
1418	if ((mode & IFMT) == IFDIR)
1419		reqlink = 2;
1420	else
1421		reqlink = 1;
1422	/* If the inode doesn't have enough links to live, free it. */
1423	if (nlink < reqlink) {
1424		if (debug)
1425			printf("ino %ju not enough links to live %ju < %ju\n",
1426			    (uintmax_t)ino, (uintmax_t)nlink,
1427			    (uintmax_t)reqlink);
1428		ino_reclaim(ip, ino, mode);
1429		return;
1430	}
1431	/* If required write the updated link count. */
1432	if (DIP(ip, di_nlink) == nlink) {
1433		if (debug)
1434			printf("ino %ju, link matches, skipping.\n",
1435			    (uintmax_t)ino);
1436		return;
1437	}
1438	DIP_SET(ip, di_nlink, nlink);
1439	ino_dirty(ino);
1440}
1441
1442/*
1443 * Truncate some or all blocks in an indirect, freeing any that are required
1444 * and zeroing the indirect.
1445 */
1446static void
1447indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1448{
1449	ufs2_daddr_t *bap2;
1450	ufs1_daddr_t *bap1;
1451	ufs_lbn_t lbnadd;
1452	ufs2_daddr_t nblk;
1453	ufs_lbn_t next;
1454	ufs_lbn_t nlbn;
1455	int dirty;
1456	int level;
1457	int i;
1458
1459	if (blk == 0)
1460		return;
1461	dirty = 0;
1462	level = lbn_level(lbn);
1463	if (level == -1)
1464		err_suj("Invalid level for lbn %jd\n", lbn);
1465	lbnadd = 1;
1466	for (i = level; i > 0; i--)
1467		lbnadd *= NINDIR(fs);
1468	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1469	bap2 = (void *)bap1;
1470	for (i = 0; i < NINDIR(fs); i++) {
1471		if (fs->fs_magic == FS_UFS1_MAGIC)
1472			nblk = *bap1++;
1473		else
1474			nblk = *bap2++;
1475		if (nblk == 0)
1476			continue;
1477		if (level != 0) {
1478			nlbn = (lbn + 1) - (i * lbnadd);
1479			/*
1480			 * Calculate the lbn of the next indirect to
1481			 * determine if any of this indirect must be
1482			 * reclaimed.
1483			 */
1484			next = -(lbn + level) + ((i+1) * lbnadd);
1485			if (next <= lastlbn)
1486				continue;
1487			indir_trunc(ino, nlbn, nblk, lastlbn);
1488			/* If all of this indirect was reclaimed, free it. */
1489			nlbn = next - lbnadd;
1490			if (nlbn < lastlbn)
1491				continue;
1492		} else {
1493			nlbn = -lbn + i * lbnadd;
1494			if (nlbn < lastlbn)
1495				continue;
1496		}
1497		dirty = 1;
1498		blk_free(nblk, 0, fs->fs_frag);
1499		if (fs->fs_magic == FS_UFS1_MAGIC)
1500			*(bap1 - 1) = 0;
1501		else
1502			*(bap2 - 1) = 0;
1503	}
1504	if (dirty)
1505		dblk_dirty(blk);
1506}
1507
1508/*
1509 * Truncate an inode to the minimum of the given size or the last populated
1510 * block after any over size have been discarded.  The kernel would allocate
1511 * the last block in the file but fsck does not and neither do we.  This
1512 * code never extends files, only shrinks them.
1513 */
1514static void
1515ino_trunc(ino_t ino, off_t size)
1516{
1517	union dinode *ip;
1518	ufs2_daddr_t bn;
1519	uint64_t totalfrags;
1520	ufs_lbn_t nextlbn;
1521	ufs_lbn_t lastlbn;
1522	ufs_lbn_t tmpval;
1523	ufs_lbn_t lbn;
1524	ufs_lbn_t i;
1525	int frags;
1526	off_t cursize;
1527	off_t off;
1528	int mode;
1529
1530	ip = ino_read(ino);
1531	mode = DIP(ip, di_mode) & IFMT;
1532	cursize = DIP(ip, di_size);
1533	if (debug)
1534		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1535		    (uintmax_t)ino, mode, size, cursize);
1536
1537	/* Skip datablocks for short links and devices. */
1538	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1539	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1540		return;
1541	/* Don't extend. */
1542	if (size > cursize)
1543		size = cursize;
1544	lastlbn = lblkno(fs, blkroundup(fs, size));
1545	for (i = lastlbn; i < NDADDR; i++) {
1546		if (DIP(ip, di_db[i]) == 0)
1547			continue;
1548		frags = sblksize(fs, cursize, i);
1549		frags = numfrags(fs, frags);
1550		blk_free(DIP(ip, di_db[i]), 0, frags);
1551		DIP_SET(ip, di_db[i], 0);
1552	}
1553	/*
1554	 * Follow indirect blocks, freeing anything required.
1555	 */
1556	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1557	    lbn = nextlbn) {
1558		nextlbn = lbn + tmpval;
1559		tmpval *= NINDIR(fs);
1560		/* If we're not freeing any in this indirect range skip it. */
1561		if (lastlbn >= nextlbn)
1562			continue;
1563		if (DIP(ip, di_ib[i]) == 0)
1564			continue;
1565		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1566		/* If we freed everything in this indirect free the indir. */
1567		if (lastlbn > lbn)
1568			continue;
1569		blk_free(DIP(ip, di_ib[i]), 0, fs->fs_frag);
1570		DIP_SET(ip, di_ib[i], 0);
1571	}
1572	ino_dirty(ino);
1573	/*
1574	 * Now that we've freed any whole blocks that exceed the desired
1575	 * truncation size, figure out how many blocks remain and what the
1576	 * last populated lbn is.  We will set the size to this last lbn
1577	 * rather than worrying about allocating the final lbn as the kernel
1578	 * would've done.  This is consistent with normal fsck behavior.
1579	 */
1580	visitlbn = 0;
1581	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1582	if (size > lblktosize(fs, visitlbn + 1))
1583		size = lblktosize(fs, visitlbn + 1);
1584	/*
1585	 * If we're truncating direct blocks we have to adjust frags
1586	 * accordingly.
1587	 */
1588	if (visitlbn < NDADDR && totalfrags) {
1589		long oldspace, newspace;
1590
1591		bn = DIP(ip, di_db[visitlbn]);
1592		if (bn == 0)
1593			err_suj("Bad blk at ino %ju lbn %jd\n",
1594			    (uintmax_t)ino, visitlbn);
1595		oldspace = sblksize(fs, cursize, visitlbn);
1596		newspace = sblksize(fs, size, visitlbn);
1597		if (oldspace != newspace) {
1598			bn += numfrags(fs, newspace);
1599			frags = numfrags(fs, oldspace - newspace);
1600			blk_free(bn, 0, frags);
1601			totalfrags -= frags;
1602		}
1603	}
1604	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1605	DIP_SET(ip, di_size, size);
1606	/*
1607	 * If we've truncated into the middle of a block or frag we have
1608	 * to zero it here.  Otherwise the file could extend into
1609	 * uninitialized space later.
1610	 */
1611	off = blkoff(fs, size);
1612	if (off && DIP(ip, di_mode) != IFDIR) {
1613		uint8_t *buf;
1614		long clrsize;
1615
1616		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1617		if (bn == 0)
1618			err_suj("Block missing from ino %ju at lbn %jd\n",
1619			    (uintmax_t)ino, visitlbn);
1620		clrsize = frags * fs->fs_fsize;
1621		buf = dblk_read(bn, clrsize);
1622		clrsize -= off;
1623		buf += off;
1624		bzero(buf, clrsize);
1625		dblk_dirty(bn);
1626	}
1627	return;
1628}
1629
1630/*
1631 * Process records available for one inode and determine whether the
1632 * link count is correct or needs adjusting.
1633 */
1634static void
1635ino_check(struct suj_ino *sino)
1636{
1637	struct suj_rec *srec;
1638	struct jrefrec *rrec;
1639	nlink_t dotlinks;
1640	int newlinks;
1641	int removes;
1642	int nlink;
1643	ino_t ino;
1644	int isdot;
1645	int isat;
1646	int mode;
1647
1648	if (sino->si_hasrecs == 0)
1649		return;
1650	ino = sino->si_ino;
1651	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1652	nlink = rrec->jr_nlink;
1653	newlinks = 0;
1654	dotlinks = 0;
1655	removes = sino->si_nlinkadj;
1656	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1657		rrec = (struct jrefrec *)srec->sr_rec;
1658		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1659		    rrec->jr_ino, &mode, &isdot);
1660		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1661			err_suj("Inode mode/directory type mismatch %o != %o\n",
1662			    mode, rrec->jr_mode);
1663		if (debug)
1664			printf("jrefrec: op %d ino %ju, nlink %ju, parent %ju, "
1665			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1666			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1667			    (uintmax_t)rrec->jr_nlink,
1668			    (uintmax_t)rrec->jr_parent,
1669			    (uintmax_t)rrec->jr_diroff,
1670			    rrec->jr_mode, isat, isdot);
1671		mode = rrec->jr_mode & IFMT;
1672		if (rrec->jr_op == JOP_REMREF)
1673			removes++;
1674		newlinks += isat;
1675		if (isdot)
1676			dotlinks += isat;
1677	}
1678	/*
1679	 * The number of links that remain are the starting link count
1680	 * subtracted by the total number of removes with the total
1681	 * links discovered back in.  An incomplete remove thus
1682	 * makes no change to the link count but an add increases
1683	 * by one.
1684	 */
1685	if (debug)
1686		printf(
1687		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1688		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1689		    (uintmax_t)removes, (uintmax_t)dotlinks);
1690	nlink += newlinks;
1691	nlink -= removes;
1692	sino->si_linkadj = 1;
1693	sino->si_nlink = nlink;
1694	sino->si_dotlinks = dotlinks;
1695	sino->si_mode = mode;
1696	ino_adjust(sino);
1697}
1698
1699/*
1700 * Process records available for one block and determine whether it is
1701 * still allocated and whether the owning inode needs to be updated or
1702 * a free completed.
1703 */
1704static void
1705blk_check(struct suj_blk *sblk)
1706{
1707	struct suj_rec *srec;
1708	struct jblkrec *brec;
1709	struct suj_ino *sino;
1710	ufs2_daddr_t blk;
1711	int mask;
1712	int frags;
1713	int isat;
1714
1715	/*
1716	 * Each suj_blk actually contains records for any fragments in that
1717	 * block.  As a result we must evaluate each record individually.
1718	 */
1719	sino = NULL;
1720	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1721		brec = (struct jblkrec *)srec->sr_rec;
1722		frags = brec->jb_frags;
1723		blk = brec->jb_blkno + brec->jb_oldfrags;
1724		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1725		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1726			sino = ino_lookup(brec->jb_ino, 1);
1727			sino->si_blkadj = 1;
1728		}
1729		if (debug)
1730			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1731			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1732			    brec->jb_lbn, brec->jb_frags, isat, frags);
1733		/*
1734		 * If we found the block at this address we still have to
1735		 * determine if we need to free the tail end that was
1736		 * added by adding contiguous fragments from the same block.
1737		 */
1738		if (isat == 1) {
1739			if (frags == brec->jb_frags)
1740				continue;
1741			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1742			    brec->jb_frags);
1743			mask >>= frags;
1744			blk += frags;
1745			frags = brec->jb_frags - frags;
1746			blk_free(blk, mask, frags);
1747			continue;
1748		}
1749		/*
1750	 	 * The block wasn't found, attempt to free it.  It won't be
1751		 * freed if it was actually reallocated.  If this was an
1752		 * allocation we don't want to follow indirects as they
1753		 * may not be written yet.  Any children of the indirect will
1754		 * have their own records.  If it's a free we need to
1755		 * recursively free children.
1756		 */
1757		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1758		    brec->jb_op == JOP_FREEBLK);
1759	}
1760}
1761
1762/*
1763 * Walk the list of inode records for this cg and resolve moved and duplicate
1764 * inode references now that we have a complete picture.
1765 */
1766static void
1767cg_build(struct suj_cg *sc)
1768{
1769	struct suj_ino *sino;
1770	int i;
1771
1772	for (i = 0; i < SUJ_HASHSIZE; i++)
1773		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1774			ino_build(sino);
1775}
1776
1777/*
1778 * Handle inodes requiring truncation.  This must be done prior to
1779 * looking up any inodes in directories.
1780 */
1781static void
1782cg_trunc(struct suj_cg *sc)
1783{
1784	struct suj_ino *sino;
1785	int i;
1786
1787	for (i = 0; i < SUJ_HASHSIZE; i++) {
1788		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1789			if (sino->si_trunc) {
1790				ino_trunc(sino->si_ino,
1791				    sino->si_trunc->jt_size);
1792				sino->si_blkadj = 0;
1793				sino->si_trunc = NULL;
1794			}
1795			if (sino->si_blkadj)
1796				ino_adjblks(sino);
1797		}
1798	}
1799}
1800
1801static void
1802cg_adj_blk(struct suj_cg *sc)
1803{
1804	struct suj_ino *sino;
1805	int i;
1806
1807	for (i = 0; i < SUJ_HASHSIZE; i++) {
1808		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1809			if (sino->si_blkadj)
1810				ino_adjblks(sino);
1811		}
1812	}
1813}
1814
1815/*
1816 * Free any partially allocated blocks and then resolve inode block
1817 * counts.
1818 */
1819static void
1820cg_check_blk(struct suj_cg *sc)
1821{
1822	struct suj_blk *sblk;
1823	int i;
1824
1825
1826	for (i = 0; i < SUJ_HASHSIZE; i++)
1827		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1828			blk_check(sblk);
1829}
1830
1831/*
1832 * Walk the list of inode records for this cg, recovering any
1833 * changes which were not complete at the time of crash.
1834 */
1835static void
1836cg_check_ino(struct suj_cg *sc)
1837{
1838	struct suj_ino *sino;
1839	int i;
1840
1841	for (i = 0; i < SUJ_HASHSIZE; i++)
1842		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1843			ino_check(sino);
1844}
1845
1846/*
1847 * Write a potentially dirty cg.  Recalculate the summary information and
1848 * update the superblock summary.
1849 */
1850static void
1851cg_write(struct suj_cg *sc)
1852{
1853	ufs1_daddr_t fragno, cgbno, maxbno;
1854	u_int8_t *blksfree;
1855	struct cg *cgp;
1856	int blk;
1857	int i;
1858
1859	if (sc->sc_dirty == 0)
1860		return;
1861	/*
1862	 * Fix the frag and cluster summary.
1863	 */
1864	cgp = sc->sc_cgp;
1865	cgp->cg_cs.cs_nbfree = 0;
1866	cgp->cg_cs.cs_nffree = 0;
1867	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1868	maxbno = fragstoblks(fs, fs->fs_fpg);
1869	if (fs->fs_contigsumsize > 0) {
1870		for (i = 1; i <= fs->fs_contigsumsize; i++)
1871			cg_clustersum(cgp)[i] = 0;
1872		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1873	}
1874	blksfree = cg_blksfree(cgp);
1875	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1876		if (ffs_isfreeblock(fs, blksfree, cgbno))
1877			continue;
1878		if (ffs_isblock(fs, blksfree, cgbno)) {
1879			ffs_clusteracct(fs, cgp, cgbno, 1);
1880			cgp->cg_cs.cs_nbfree++;
1881			continue;
1882		}
1883		fragno = blkstofrags(fs, cgbno);
1884		blk = blkmap(fs, blksfree, fragno);
1885		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1886		for (i = 0; i < fs->fs_frag; i++)
1887			if (isset(blksfree, fragno + i))
1888				cgp->cg_cs.cs_nffree++;
1889	}
1890	/*
1891	 * Update the superblock cg summary from our now correct values
1892	 * before writing the block.
1893	 */
1894	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1895	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1896	    fs->fs_bsize) == -1)
1897		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1898}
1899
1900/*
1901 * Write out any modified inodes.
1902 */
1903static void
1904cg_write_inos(struct suj_cg *sc)
1905{
1906	struct ino_blk *iblk;
1907	int i;
1908
1909	for (i = 0; i < SUJ_HASHSIZE; i++)
1910		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1911			if (iblk->ib_dirty)
1912				iblk_write(iblk);
1913}
1914
1915static void
1916cg_apply(void (*apply)(struct suj_cg *))
1917{
1918	struct suj_cg *scg;
1919	int i;
1920
1921	for (i = 0; i < SUJ_HASHSIZE; i++)
1922		LIST_FOREACH(scg, &cghash[i], sc_next)
1923			apply(scg);
1924}
1925
1926/*
1927 * Process the unlinked but referenced file list.  Freeing all inodes.
1928 */
1929static void
1930ino_unlinked(void)
1931{
1932	union dinode *ip;
1933	uint16_t mode;
1934	ino_t inon;
1935	ino_t ino;
1936
1937	ino = fs->fs_sujfree;
1938	fs->fs_sujfree = 0;
1939	while (ino != 0) {
1940		ip = ino_read(ino);
1941		mode = DIP(ip, di_mode) & IFMT;
1942		inon = DIP(ip, di_freelink);
1943		DIP_SET(ip, di_freelink, 0);
1944		/*
1945		 * XXX Should this be an errx?
1946		 */
1947		if (DIP(ip, di_nlink) == 0) {
1948			if (debug)
1949				printf("Freeing unlinked ino %ju mode %o\n",
1950				    (uintmax_t)ino, mode);
1951			ino_reclaim(ip, ino, mode);
1952		} else if (debug)
1953			printf("Skipping ino %ju mode %o with link %d\n",
1954			    (uintmax_t)ino, mode, DIP(ip, di_nlink));
1955		ino = inon;
1956	}
1957}
1958
1959/*
1960 * Append a new record to the list of records requiring processing.
1961 */
1962static void
1963ino_append(union jrec *rec)
1964{
1965	struct jrefrec *refrec;
1966	struct jmvrec *mvrec;
1967	struct suj_ino *sino;
1968	struct suj_rec *srec;
1969
1970	mvrec = &rec->rec_jmvrec;
1971	refrec = &rec->rec_jrefrec;
1972	if (debug && mvrec->jm_op == JOP_MVREF)
1973		printf("ino move: ino %ju, parent %ju, "
1974		    "diroff %jd, oldoff %jd\n",
1975		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1976		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1977	else if (debug &&
1978	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1979		printf("ino ref: op %d, ino %ju, nlink %ju, "
1980		    "parent %ju, diroff %jd\n",
1981		    refrec->jr_op, (uintmax_t)refrec->jr_ino,
1982		    (uintmax_t)refrec->jr_nlink,
1983		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
1984	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1985	sino->si_hasrecs = 1;
1986	srec = errmalloc(sizeof(*srec));
1987	srec->sr_rec = rec;
1988	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1989}
1990
1991/*
1992 * Add a reference adjustment to the sino list and eliminate dups.  The
1993 * primary loop in ino_build_ref() checks for dups but new ones may be
1994 * created as a result of offset adjustments.
1995 */
1996static void
1997ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1998{
1999	struct jrefrec *refrec;
2000	struct suj_rec *srn;
2001	struct jrefrec *rrn;
2002
2003	refrec = (struct jrefrec *)srec->sr_rec;
2004	/*
2005	 * We walk backwards so that the oldest link count is preserved.  If
2006	 * an add record conflicts with a remove keep the remove.  Redundant
2007	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
2008	 * oldest record at a given location.
2009	 */
2010	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
2011	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
2012		rrn = (struct jrefrec *)srn->sr_rec;
2013		if (rrn->jr_parent != refrec->jr_parent ||
2014		    rrn->jr_diroff != refrec->jr_diroff)
2015			continue;
2016		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2017			rrn->jr_mode = refrec->jr_mode;
2018			return;
2019		}
2020		/*
2021		 * Adding a remove.
2022		 *
2023		 * Replace the record in place with the old nlink in case
2024		 * we replace the head of the list.  Abandon srec as a dup.
2025		 */
2026		refrec->jr_nlink = rrn->jr_nlink;
2027		srn->sr_rec = srec->sr_rec;
2028		return;
2029	}
2030	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2031}
2032
2033/*
2034 * Create a duplicate of a reference at a previous location.
2035 */
2036static void
2037ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2038{
2039	struct jrefrec *rrn;
2040	struct suj_rec *srn;
2041
2042	rrn = errmalloc(sizeof(*refrec));
2043	*rrn = *refrec;
2044	rrn->jr_op = JOP_ADDREF;
2045	rrn->jr_diroff = diroff;
2046	srn = errmalloc(sizeof(*srn));
2047	srn->sr_rec = (union jrec *)rrn;
2048	ino_add_ref(sino, srn);
2049}
2050
2051/*
2052 * Add a reference to the list at all known locations.  We follow the offset
2053 * changes for a single instance and create duplicate add refs at each so
2054 * that we can tolerate any version of the directory block.  Eliminate
2055 * removes which collide with adds that are seen in the journal.  They should
2056 * not adjust the link count down.
2057 */
2058static void
2059ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2060{
2061	struct jrefrec *refrec;
2062	struct jmvrec *mvrec;
2063	struct suj_rec *srp;
2064	struct suj_rec *srn;
2065	struct jrefrec *rrn;
2066	off_t diroff;
2067
2068	refrec = (struct jrefrec *)srec->sr_rec;
2069	/*
2070	 * Search for a mvrec that matches this offset.  Whether it's an add
2071	 * or a remove we can delete the mvref after creating a dup record in
2072	 * the old location.
2073	 */
2074	if (!TAILQ_EMPTY(&sino->si_movs)) {
2075		diroff = refrec->jr_diroff;
2076		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2077			srp = TAILQ_PREV(srn, srechd, sr_next);
2078			mvrec = (struct jmvrec *)srn->sr_rec;
2079			if (mvrec->jm_parent != refrec->jr_parent ||
2080			    mvrec->jm_newoff != diroff)
2081				continue;
2082			diroff = mvrec->jm_oldoff;
2083			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2084			free(srn);
2085			ino_dup_ref(sino, refrec, diroff);
2086		}
2087	}
2088	/*
2089	 * If a remove wasn't eliminated by an earlier add just append it to
2090	 * the list.
2091	 */
2092	if (refrec->jr_op == JOP_REMREF) {
2093		ino_add_ref(sino, srec);
2094		return;
2095	}
2096	/*
2097	 * Walk the list of records waiting to be added to the list.  We
2098	 * must check for moves that apply to our current offset and remove
2099	 * them from the list.  Remove any duplicates to eliminate removes
2100	 * with corresponding adds.
2101	 */
2102	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2103		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2104		case JOP_ADDREF:
2105			/*
2106			 * This should actually be an error we should
2107			 * have a remove for every add journaled.
2108			 */
2109			rrn = (struct jrefrec *)srn->sr_rec;
2110			if (rrn->jr_parent != refrec->jr_parent ||
2111			    rrn->jr_diroff != refrec->jr_diroff)
2112				break;
2113			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2114			break;
2115		case JOP_REMREF:
2116			/*
2117			 * Once we remove the current iteration of the
2118			 * record at this address we're done.
2119			 */
2120			rrn = (struct jrefrec *)srn->sr_rec;
2121			if (rrn->jr_parent != refrec->jr_parent ||
2122			    rrn->jr_diroff != refrec->jr_diroff)
2123				break;
2124			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2125			ino_add_ref(sino, srec);
2126			return;
2127		case JOP_MVREF:
2128			/*
2129			 * Update our diroff based on any moves that match
2130			 * and remove the move.
2131			 */
2132			mvrec = (struct jmvrec *)srn->sr_rec;
2133			if (mvrec->jm_parent != refrec->jr_parent ||
2134			    mvrec->jm_oldoff != refrec->jr_diroff)
2135				break;
2136			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2137			refrec->jr_diroff = mvrec->jm_newoff;
2138			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2139			break;
2140		default:
2141			err_suj("ino_build_ref: Unknown op %d\n",
2142			    srn->sr_rec->rec_jrefrec.jr_op);
2143		}
2144	}
2145	ino_add_ref(sino, srec);
2146}
2147
2148/*
2149 * Walk the list of new records and add them in-order resolving any
2150 * dups and adjusted offsets.
2151 */
2152static void
2153ino_build(struct suj_ino *sino)
2154{
2155	struct suj_rec *srec;
2156
2157	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2158		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2159		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2160		case JOP_ADDREF:
2161		case JOP_REMREF:
2162			ino_build_ref(sino, srec);
2163			break;
2164		case JOP_MVREF:
2165			/*
2166			 * Add this mvrec to the queue of pending mvs.
2167			 */
2168			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2169			break;
2170		default:
2171			err_suj("ino_build: Unknown op %d\n",
2172			    srec->sr_rec->rec_jrefrec.jr_op);
2173		}
2174	}
2175	if (TAILQ_EMPTY(&sino->si_recs))
2176		sino->si_hasrecs = 0;
2177}
2178
2179/*
2180 * Modify journal records so they refer to the base block number
2181 * and a start and end frag range.  This is to facilitate the discovery
2182 * of overlapping fragment allocations.
2183 */
2184static void
2185blk_build(struct jblkrec *blkrec)
2186{
2187	struct suj_rec *srec;
2188	struct suj_blk *sblk;
2189	struct jblkrec *blkrn;
2190	ufs2_daddr_t blk;
2191	int frag;
2192
2193	if (debug)
2194		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2195		    "ino %ju lbn %jd\n",
2196		    blkrec->jb_op, (uintmax_t)blkrec->jb_blkno,
2197		    blkrec->jb_frags, blkrec->jb_oldfrags,
2198		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
2199
2200	blk = blknum(fs, blkrec->jb_blkno);
2201	frag = fragnum(fs, blkrec->jb_blkno);
2202	sblk = blk_lookup(blk, 1);
2203	/*
2204	 * Rewrite the record using oldfrags to indicate the offset into
2205	 * the block.  Leave jb_frags as the actual allocated count.
2206	 */
2207	blkrec->jb_blkno -= frag;
2208	blkrec->jb_oldfrags = frag;
2209	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2210		err_suj("Invalid fragment count %d oldfrags %d\n",
2211		    blkrec->jb_frags, frag);
2212	/*
2213	 * Detect dups.  If we detect a dup we always discard the oldest
2214	 * record as it is superseded by the new record.  This speeds up
2215	 * later stages but also eliminates free records which are used
2216	 * to indicate that the contents of indirects can be trusted.
2217	 */
2218	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2219		blkrn = (struct jblkrec *)srec->sr_rec;
2220		if (blkrn->jb_ino != blkrec->jb_ino ||
2221		    blkrn->jb_lbn != blkrec->jb_lbn ||
2222		    blkrn->jb_blkno != blkrec->jb_blkno ||
2223		    blkrn->jb_frags != blkrec->jb_frags ||
2224		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2225			continue;
2226		if (debug)
2227			printf("Removed dup.\n");
2228		/* Discard the free which is a dup with an alloc. */
2229		if (blkrec->jb_op == JOP_FREEBLK)
2230			return;
2231		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2232		free(srec);
2233		break;
2234	}
2235	srec = errmalloc(sizeof(*srec));
2236	srec->sr_rec = (union jrec *)blkrec;
2237	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2238}
2239
2240static void
2241ino_build_trunc(struct jtrncrec *rec)
2242{
2243	struct suj_ino *sino;
2244
2245	if (debug)
2246		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
2247		    rec->jt_op, (uintmax_t)rec->jt_ino,
2248		    (uintmax_t)rec->jt_size);
2249	sino = ino_lookup(rec->jt_ino, 1);
2250	if (rec->jt_op == JOP_SYNC) {
2251		sino->si_trunc = NULL;
2252		return;
2253	}
2254	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2255		sino->si_trunc = rec;
2256}
2257
2258/*
2259 * Build up tables of the operations we need to recover.
2260 */
2261static void
2262suj_build(void)
2263{
2264	struct suj_seg *seg;
2265	union jrec *rec;
2266	int off;
2267	int i;
2268
2269	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2270		if (debug)
2271			printf("seg %jd has %d records, oldseq %jd.\n",
2272			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2273			    seg->ss_rec.jsr_oldest);
2274		off = 0;
2275		rec = (union jrec *)seg->ss_blk;
2276		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2277			/* skip the segrec. */
2278			if ((off % real_dev_bsize) == 0)
2279				continue;
2280			switch (rec->rec_jrefrec.jr_op) {
2281			case JOP_ADDREF:
2282			case JOP_REMREF:
2283			case JOP_MVREF:
2284				ino_append(rec);
2285				break;
2286			case JOP_NEWBLK:
2287			case JOP_FREEBLK:
2288				blk_build((struct jblkrec *)rec);
2289				break;
2290			case JOP_TRUNC:
2291			case JOP_SYNC:
2292				ino_build_trunc((struct jtrncrec *)rec);
2293				break;
2294			default:
2295				err_suj("Unknown journal operation %d (%d)\n",
2296				    rec->rec_jrefrec.jr_op, off);
2297			}
2298			i++;
2299		}
2300	}
2301}
2302
2303/*
2304 * Prune the journal segments to those we care about based on the
2305 * oldest sequence in the newest segment.  Order the segment list
2306 * based on sequence number.
2307 */
2308static void
2309suj_prune(void)
2310{
2311	struct suj_seg *seg;
2312	struct suj_seg *segn;
2313	uint64_t newseq;
2314	int discard;
2315
2316	if (debug)
2317		printf("Pruning up to %jd\n", oldseq);
2318	/* First free the expired segments. */
2319	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2320		if (seg->ss_rec.jsr_seq >= oldseq)
2321			continue;
2322		TAILQ_REMOVE(&allsegs, seg, ss_next);
2323		free(seg->ss_blk);
2324		free(seg);
2325	}
2326	/* Next ensure that segments are ordered properly. */
2327	seg = TAILQ_FIRST(&allsegs);
2328	if (seg == NULL) {
2329		if (debug)
2330			printf("Empty journal\n");
2331		return;
2332	}
2333	newseq = seg->ss_rec.jsr_seq;
2334	for (;;) {
2335		seg = TAILQ_LAST(&allsegs, seghd);
2336		if (seg->ss_rec.jsr_seq >= newseq)
2337			break;
2338		TAILQ_REMOVE(&allsegs, seg, ss_next);
2339		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2340		newseq = seg->ss_rec.jsr_seq;
2341
2342	}
2343	if (newseq != oldseq) {
2344		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2345			printf("%jd, ", seg->ss_rec.jsr_seq);
2346		}
2347		printf("\n");
2348		err_suj("Journal file sequence mismatch %jd != %jd\n",
2349		    newseq, oldseq);
2350	}
2351	/*
2352	 * The kernel may asynchronously write segments which can create
2353	 * gaps in the sequence space.  Throw away any segments after the
2354	 * gap as the kernel guarantees only those that are contiguously
2355	 * reachable are marked as completed.
2356	 */
2357	discard = 0;
2358	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2359		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2360			jrecs += seg->ss_rec.jsr_cnt;
2361			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2362			continue;
2363		}
2364		discard = 1;
2365		if (debug)
2366			printf("Journal order mismatch %jd != %jd pruning\n",
2367			    newseq-1, seg->ss_rec.jsr_seq);
2368		TAILQ_REMOVE(&allsegs, seg, ss_next);
2369		free(seg->ss_blk);
2370		free(seg);
2371	}
2372	if (debug)
2373		printf("Processing journal segments from %jd to %jd\n",
2374		    oldseq, newseq-1);
2375}
2376
2377/*
2378 * Verify the journal inode before attempting to read records.
2379 */
2380static int
2381suj_verifyino(union dinode *ip)
2382{
2383
2384	if (DIP(ip, di_nlink) != 1) {
2385		printf("Invalid link count %d for journal inode %ju\n",
2386		    DIP(ip, di_nlink), (uintmax_t)sujino);
2387		return (-1);
2388	}
2389
2390	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2391	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2392		printf("Invalid flags 0x%X for journal inode %ju\n",
2393		    DIP(ip, di_flags), (uintmax_t)sujino);
2394		return (-1);
2395	}
2396
2397	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2398		printf("Invalid mode %o for journal inode %ju\n",
2399		    DIP(ip, di_mode), (uintmax_t)sujino);
2400		return (-1);
2401	}
2402
2403	if (DIP(ip, di_size) < SUJ_MIN) {
2404		printf("Invalid size %jd for journal inode %ju\n",
2405		    DIP(ip, di_size), (uintmax_t)sujino);
2406		return (-1);
2407	}
2408
2409	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2410		printf("Journal timestamp does not match fs mount time\n");
2411		return (-1);
2412	}
2413
2414	return (0);
2415}
2416
2417struct jblocks {
2418	struct jextent *jb_extent;	/* Extent array. */
2419	int		jb_avail;	/* Available extents. */
2420	int		jb_used;	/* Last used extent. */
2421	int		jb_head;	/* Allocator head. */
2422	int		jb_off;		/* Allocator extent offset. */
2423};
2424struct jextent {
2425	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2426	int		je_blocks;	/* Disk block count. */
2427};
2428
2429static struct jblocks *suj_jblocks;
2430
2431static struct jblocks *
2432jblocks_create(void)
2433{
2434	struct jblocks *jblocks;
2435	int size;
2436
2437	jblocks = errmalloc(sizeof(*jblocks));
2438	jblocks->jb_avail = 10;
2439	jblocks->jb_used = 0;
2440	jblocks->jb_head = 0;
2441	jblocks->jb_off = 0;
2442	size = sizeof(struct jextent) * jblocks->jb_avail;
2443	jblocks->jb_extent = errmalloc(size);
2444	bzero(jblocks->jb_extent, size);
2445
2446	return (jblocks);
2447}
2448
2449/*
2450 * Return the next available disk block and the amount of contiguous
2451 * free space it contains.
2452 */
2453static ufs2_daddr_t
2454jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2455{
2456	struct jextent *jext;
2457	ufs2_daddr_t daddr;
2458	int freecnt;
2459	int blocks;
2460
2461	blocks = bytes / disk->d_bsize;
2462	jext = &jblocks->jb_extent[jblocks->jb_head];
2463	freecnt = jext->je_blocks - jblocks->jb_off;
2464	if (freecnt == 0) {
2465		jblocks->jb_off = 0;
2466		if (++jblocks->jb_head > jblocks->jb_used)
2467			return (0);
2468		jext = &jblocks->jb_extent[jblocks->jb_head];
2469		freecnt = jext->je_blocks;
2470	}
2471	if (freecnt > blocks)
2472		freecnt = blocks;
2473	*actual = freecnt * disk->d_bsize;
2474	daddr = jext->je_daddr + jblocks->jb_off;
2475
2476	return (daddr);
2477}
2478
2479/*
2480 * Advance the allocation head by a specified number of bytes, consuming
2481 * one journal segment.
2482 */
2483static void
2484jblocks_advance(struct jblocks *jblocks, int bytes)
2485{
2486
2487	jblocks->jb_off += bytes / disk->d_bsize;
2488}
2489
2490static void
2491jblocks_destroy(struct jblocks *jblocks)
2492{
2493
2494	free(jblocks->jb_extent);
2495	free(jblocks);
2496}
2497
2498static void
2499jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2500{
2501	struct jextent *jext;
2502	int size;
2503
2504	jext = &jblocks->jb_extent[jblocks->jb_used];
2505	/* Adding the first block. */
2506	if (jext->je_daddr == 0) {
2507		jext->je_daddr = daddr;
2508		jext->je_blocks = blocks;
2509		return;
2510	}
2511	/* Extending the last extent. */
2512	if (jext->je_daddr + jext->je_blocks == daddr) {
2513		jext->je_blocks += blocks;
2514		return;
2515	}
2516	/* Adding a new extent. */
2517	if (++jblocks->jb_used == jblocks->jb_avail) {
2518		jblocks->jb_avail *= 2;
2519		size = sizeof(struct jextent) * jblocks->jb_avail;
2520		jext = errmalloc(size);
2521		bzero(jext, size);
2522		bcopy(jblocks->jb_extent, jext,
2523		    sizeof(struct jextent) * jblocks->jb_used);
2524		free(jblocks->jb_extent);
2525		jblocks->jb_extent = jext;
2526	}
2527	jext = &jblocks->jb_extent[jblocks->jb_used];
2528	jext->je_daddr = daddr;
2529	jext->je_blocks = blocks;
2530
2531	return;
2532}
2533
2534/*
2535 * Add a file block from the journal to the extent map.  We can't read
2536 * each file block individually because the kernel treats it as a circular
2537 * buffer and segments may span mutliple contiguous blocks.
2538 */
2539static void
2540suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2541{
2542
2543	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2544}
2545
2546static void
2547suj_read(void)
2548{
2549	uint8_t block[1 * 1024 * 1024];
2550	struct suj_seg *seg;
2551	struct jsegrec *recn;
2552	struct jsegrec *rec;
2553	ufs2_daddr_t blk;
2554	int readsize;
2555	int blocks;
2556	int recsize;
2557	int size;
2558	int i;
2559
2560	/*
2561	 * Read records until we exhaust the journal space.  If we find
2562	 * an invalid record we start searching for a valid segment header
2563	 * at the next block.  This is because we don't have a head/tail
2564	 * pointer and must recover the information indirectly.  At the gap
2565	 * between the head and tail we won't necessarily have a valid
2566	 * segment.
2567	 */
2568restart:
2569	for (;;) {
2570		size = sizeof(block);
2571		blk = jblocks_next(suj_jblocks, size, &readsize);
2572		if (blk == 0)
2573			return;
2574		size = readsize;
2575		/*
2576		 * Read 1MB at a time and scan for records within this block.
2577		 */
2578		if (bread(disk, blk, &block, size) == -1) {
2579			err_suj("Error reading journal block %jd\n",
2580			    (intmax_t)blk);
2581		}
2582		for (rec = (void *)block; size; size -= recsize,
2583		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2584			recsize = real_dev_bsize;
2585			if (rec->jsr_time != fs->fs_mtime) {
2586				if (debug)
2587					printf("Rec time %jd != fs mtime %jd\n",
2588					    rec->jsr_time, fs->fs_mtime);
2589				jblocks_advance(suj_jblocks, recsize);
2590				continue;
2591			}
2592			if (rec->jsr_cnt == 0) {
2593				if (debug)
2594					printf("Found illegal count %d\n",
2595					    rec->jsr_cnt);
2596				jblocks_advance(suj_jblocks, recsize);
2597				continue;
2598			}
2599			blocks = rec->jsr_blocks;
2600			recsize = blocks * real_dev_bsize;
2601			if (recsize > size) {
2602				/*
2603				 * We may just have run out of buffer, restart
2604				 * the loop to re-read from this spot.
2605				 */
2606				if (size < fs->fs_bsize &&
2607				    size != readsize &&
2608				    recsize <= fs->fs_bsize)
2609					goto restart;
2610				if (debug)
2611					printf("Found invalid segsize %d > %d\n",
2612					    recsize, size);
2613				recsize = real_dev_bsize;
2614				jblocks_advance(suj_jblocks, recsize);
2615				continue;
2616			}
2617			/*
2618			 * Verify that all blocks in the segment are present.
2619			 */
2620			for (i = 1; i < blocks; i++) {
2621				recn = (void *)((uintptr_t)rec) + i *
2622				    real_dev_bsize;
2623				if (recn->jsr_seq == rec->jsr_seq &&
2624				    recn->jsr_time == rec->jsr_time)
2625					continue;
2626				if (debug)
2627					printf("Incomplete record %jd (%d)\n",
2628					    rec->jsr_seq, i);
2629				recsize = i * real_dev_bsize;
2630				jblocks_advance(suj_jblocks, recsize);
2631				goto restart;
2632			}
2633			seg = errmalloc(sizeof(*seg));
2634			seg->ss_blk = errmalloc(recsize);
2635			seg->ss_rec = *rec;
2636			bcopy((void *)rec, seg->ss_blk, recsize);
2637			if (rec->jsr_oldest > oldseq)
2638				oldseq = rec->jsr_oldest;
2639			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2640			jblocks_advance(suj_jblocks, recsize);
2641		}
2642	}
2643}
2644
2645/*
2646 * Search a directory block for the SUJ_FILE.
2647 */
2648static void
2649suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2650{
2651	char block[MAXBSIZE];
2652	struct direct *dp;
2653	int bytes;
2654	int off;
2655
2656	if (sujino)
2657		return;
2658	bytes = lfragtosize(fs, frags);
2659	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2660		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2661	for (off = 0; off < bytes; off += dp->d_reclen) {
2662		dp = (struct direct *)&block[off];
2663		if (dp->d_reclen == 0)
2664			break;
2665		if (dp->d_ino == 0)
2666			continue;
2667		if (dp->d_namlen != strlen(SUJ_FILE))
2668			continue;
2669		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2670			continue;
2671		sujino = dp->d_ino;
2672		return;
2673	}
2674}
2675
2676/*
2677 * Orchestrate the verification of a filesystem via the softupdates journal.
2678 */
2679int
2680suj_check(const char *filesys)
2681{
2682	union dinode *jip;
2683	union dinode *ip;
2684	uint64_t blocks;
2685	int retval;
2686	struct suj_seg *seg;
2687	struct suj_seg *segn;
2688
2689	initsuj();
2690	opendisk(filesys);
2691
2692	/*
2693	 * Set an exit point when SUJ check failed
2694	 */
2695	retval = setjmp(jmpbuf);
2696	if (retval != 0) {
2697		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2698		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2699			TAILQ_REMOVE(&allsegs, seg, ss_next);
2700				free(seg->ss_blk);
2701				free(seg);
2702		}
2703		if (reply("FALLBACK TO FULL FSCK") == 0) {
2704			ckfini(0);
2705			exit(EEXIT);
2706		} else
2707			return (-1);
2708	}
2709
2710	/*
2711	 * Find the journal inode.
2712	 */
2713	ip = ino_read(ROOTINO);
2714	sujino = 0;
2715	ino_visit(ip, ROOTINO, suj_find, 0);
2716	if (sujino == 0) {
2717		printf("Journal inode removed.  Use tunefs to re-create.\n");
2718		sblock.fs_flags &= ~FS_SUJ;
2719		sblock.fs_sujfree = 0;
2720		return (-1);
2721	}
2722	/*
2723	 * Fetch the journal inode and verify it.
2724	 */
2725	jip = ino_read(sujino);
2726	printf("** SU+J Recovering %s\n", filesys);
2727	if (suj_verifyino(jip) != 0)
2728		return (-1);
2729	if (!preen && !reply("USE JOURNAL"))
2730		return (-1);
2731	/*
2732	 * Build a list of journal blocks in jblocks before parsing the
2733	 * available journal blocks in with suj_read().
2734	 */
2735	printf("** Reading %jd byte journal from inode %ju.\n",
2736	    DIP(jip, di_size), (uintmax_t)sujino);
2737	suj_jblocks = jblocks_create();
2738	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2739	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2740		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2741		return (-1);
2742	}
2743	suj_read();
2744	jblocks_destroy(suj_jblocks);
2745	suj_jblocks = NULL;
2746	if (preen || reply("RECOVER")) {
2747		printf("** Building recovery table.\n");
2748		suj_prune();
2749		suj_build();
2750		cg_apply(cg_build);
2751		printf("** Resolving unreferenced inode list.\n");
2752		ino_unlinked();
2753		printf("** Processing journal entries.\n");
2754		cg_apply(cg_trunc);
2755		cg_apply(cg_check_blk);
2756		cg_apply(cg_adj_blk);
2757		cg_apply(cg_check_ino);
2758	}
2759	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2760		return (0);
2761	/*
2762	 * To remain idempotent with partial truncations the free bitmaps
2763	 * must be written followed by indirect blocks and lastly inode
2764	 * blocks.  This preserves access to the modified pointers until
2765	 * they are freed.
2766	 */
2767	cg_apply(cg_write);
2768	dblk_write();
2769	cg_apply(cg_write_inos);
2770	/* Write back superblock. */
2771	closedisk(filesys);
2772	if (jrecs > 0 || jbytes > 0) {
2773		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2774		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2775		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2776		    freeinos, freedir, freeblocks, freefrags);
2777	}
2778
2779	return (0);
2780}
2781
2782static void
2783initsuj(void)
2784{
2785	int i;
2786
2787	for (i = 0; i < SUJ_HASHSIZE; i++) {
2788		LIST_INIT(&cghash[i]);
2789		LIST_INIT(&dbhash[i]);
2790	}
2791	lastcg = NULL;
2792	lastblk = NULL;
2793	TAILQ_INIT(&allsegs);
2794	oldseq = 0;
2795	disk = NULL;
2796	fs = NULL;
2797	sujino = 0;
2798	freefrags = 0;
2799	freeblocks = 0;
2800	freeinos = 0;
2801	freedir = 0;
2802	jbytes = 0;
2803	jrecs = 0;
2804	suj_jblocks = NULL;
2805}
2806