devstat.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1997, 1998 Kenneth D. Merry.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/lib/libdevstat/devstat.c 330897 2018-03-14 03:19:51Z eadler $");
33
34#include <sys/types.h>
35#include <sys/sysctl.h>
36#include <sys/errno.h>
37#include <sys/resource.h>
38#include <sys/queue.h>
39
40#include <ctype.h>
41#include <err.h>
42#include <fcntl.h>
43#include <limits.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <stdarg.h>
48#include <kvm.h>
49#include <nlist.h>
50
51#include "devstat.h"
52
53int
54compute_stats(struct devstat *current, struct devstat *previous,
55	      long double etime, u_int64_t *total_bytes,
56	      u_int64_t *total_transfers, u_int64_t *total_blocks,
57	      long double *kb_per_transfer, long double *transfers_per_second,
58	      long double *mb_per_second, long double *blocks_per_second,
59	      long double *ms_per_transaction);
60
61typedef enum {
62	DEVSTAT_ARG_NOTYPE,
63	DEVSTAT_ARG_UINT64,
64	DEVSTAT_ARG_LD,
65	DEVSTAT_ARG_SKIP
66} devstat_arg_type;
67
68char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
69
70/*
71 * Table to match descriptive strings with device types.  These are in
72 * order from most common to least common to speed search time.
73 */
74struct devstat_match_table match_table[] = {
75	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
76	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
77	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
78	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
79	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
80	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
81	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
82	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
83	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
84	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
85	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
86	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
87	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
88	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
89	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
90	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
91	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
92	{NULL,		0,			0}
93};
94
95struct devstat_args {
96	devstat_metric 		metric;
97	devstat_arg_type	argtype;
98} devstat_arg_list[] = {
99	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
100	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
101	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
102	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
103	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
104	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
105	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
106	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
107	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
108	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
109	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
110	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
111	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
112	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
113	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
114	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
115	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
116	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
117	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
118	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
119	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
120	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
121	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
122	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
123	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
124	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
125	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
126	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
127	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
128	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
129	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
130	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
131	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
133	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
134	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
135	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
136	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
137	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
138	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
139	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
140	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
141	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
142	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
143	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
144};
145
146static const char *namelist[] = {
147#define X_NUMDEVS	0
148	"_devstat_num_devs",
149#define X_GENERATION	1
150	"_devstat_generation",
151#define X_VERSION	2
152	"_devstat_version",
153#define X_DEVICE_STATQ	3
154	"_device_statq",
155#define X_TIME_UPTIME	4
156	"_time_uptime",
157#define X_END		5
158};
159
160/*
161 * Local function declarations.
162 */
163static int compare_select(const void *arg1, const void *arg2);
164static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
165static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
166static char *get_devstat_kvm(kvm_t *kd);
167
168#define KREADNL(kd, var, val) \
169	readkmem_nl(kd, namelist[var], &val, sizeof(val))
170
171int
172devstat_getnumdevs(kvm_t *kd)
173{
174	size_t numdevsize;
175	int numdevs;
176
177	numdevsize = sizeof(int);
178
179	/*
180	 * Find out how many devices we have in the system.
181	 */
182	if (kd == NULL) {
183		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
184				 &numdevsize, NULL, 0) == -1) {
185			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
186				 "%s: error getting number of devices\n"
187				 "%s: %s", __func__, __func__,
188				 strerror(errno));
189			return(-1);
190		} else
191			return(numdevs);
192	} else {
193
194		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
195			return(-1);
196		else
197			return(numdevs);
198	}
199}
200
201/*
202 * This is an easy way to get the generation number, but the generation is
203 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
204 * Because this generation sysctl is separate from the statistics sysctl,
205 * the device list and the generation could change between the time that
206 * this function is called and the device list is retrieved.
207 */
208long
209devstat_getgeneration(kvm_t *kd)
210{
211	size_t gensize;
212	long generation;
213
214	gensize = sizeof(long);
215
216	/*
217	 * Get the current generation number.
218	 */
219	if (kd == NULL) {
220		if (sysctlbyname("kern.devstat.generation", &generation,
221				 &gensize, NULL, 0) == -1) {
222			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
223				 "%s: error getting devstat generation\n%s: %s",
224				 __func__, __func__, strerror(errno));
225			return(-1);
226		} else
227			return(generation);
228	} else {
229		if (KREADNL(kd, X_GENERATION, generation) == -1)
230			return(-1);
231		else
232			return(generation);
233	}
234}
235
236/*
237 * Get the current devstat version.  The return value of this function
238 * should be compared with DEVSTAT_VERSION, which is defined in
239 * sys/devicestat.h.  This will enable userland programs to determine
240 * whether they are out of sync with the kernel.
241 */
242int
243devstat_getversion(kvm_t *kd)
244{
245	size_t versize;
246	int version;
247
248	versize = sizeof(int);
249
250	/*
251	 * Get the current devstat version.
252	 */
253	if (kd == NULL) {
254		if (sysctlbyname("kern.devstat.version", &version, &versize,
255				 NULL, 0) == -1) {
256			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
257				 "%s: error getting devstat version\n%s: %s",
258				 __func__, __func__, strerror(errno));
259			return(-1);
260		} else
261			return(version);
262	} else {
263		if (KREADNL(kd, X_VERSION, version) == -1)
264			return(-1);
265		else
266			return(version);
267	}
268}
269
270/*
271 * Check the devstat version we know about against the devstat version the
272 * kernel knows about.  If they don't match, print an error into the
273 * devstat error buffer, and return -1.  If they match, return 0.
274 */
275int
276devstat_checkversion(kvm_t *kd)
277{
278	int buflen, res, retval = 0, version;
279
280	version = devstat_getversion(kd);
281
282	if (version != DEVSTAT_VERSION) {
283		/*
284		 * If getversion() returns an error (i.e. -1), then it
285		 * has printed an error message in the buffer.  Therefore,
286		 * we need to add a \n to the end of that message before we
287		 * print our own message in the buffer.
288		 */
289		if (version == -1)
290			buflen = strlen(devstat_errbuf);
291		else
292			buflen = 0;
293
294		res = snprintf(devstat_errbuf + buflen,
295			       DEVSTAT_ERRBUF_SIZE - buflen,
296			       "%s%s: userland devstat version %d is not "
297			       "the same as the kernel\n%s: devstat "
298			       "version %d\n", version == -1 ? "\n" : "",
299			       __func__, DEVSTAT_VERSION, __func__, version);
300
301		if (res < 0)
302			devstat_errbuf[buflen] = '\0';
303
304		buflen = strlen(devstat_errbuf);
305		if (version < DEVSTAT_VERSION)
306			res = snprintf(devstat_errbuf + buflen,
307				       DEVSTAT_ERRBUF_SIZE - buflen,
308				       "%s: libdevstat newer than kernel\n",
309				       __func__);
310		else
311			res = snprintf(devstat_errbuf + buflen,
312				       DEVSTAT_ERRBUF_SIZE - buflen,
313				       "%s: kernel newer than libdevstat\n",
314				       __func__);
315
316		if (res < 0)
317			devstat_errbuf[buflen] = '\0';
318
319		retval = -1;
320	}
321
322	return(retval);
323}
324
325/*
326 * Get the current list of devices and statistics, and the current
327 * generation number.
328 *
329 * Return values:
330 * -1  -- error
331 *  0  -- device list is unchanged
332 *  1  -- device list has changed
333 */
334int
335devstat_getdevs(kvm_t *kd, struct statinfo *stats)
336{
337	int error;
338	size_t dssize;
339	long oldgeneration;
340	int retval = 0;
341	struct devinfo *dinfo;
342	struct timespec ts;
343
344	dinfo = stats->dinfo;
345
346	if (dinfo == NULL) {
347		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
348			 "%s: stats->dinfo was NULL", __func__);
349		return(-1);
350	}
351
352	oldgeneration = dinfo->generation;
353
354	if (kd == NULL) {
355		clock_gettime(CLOCK_MONOTONIC, &ts);
356		stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
357
358		/* If this is our first time through, mem_ptr will be null. */
359		if (dinfo->mem_ptr == NULL) {
360			/*
361			 * Get the number of devices.  If it's negative, it's an
362			 * error.  Don't bother setting the error string, since
363			 * getnumdevs() has already done that for us.
364			 */
365			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
366				return(-1);
367
368			/*
369			 * The kern.devstat.all sysctl returns the current
370			 * generation number, as well as all the devices.
371			 * So we need four bytes more.
372			 */
373			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
374				 sizeof(long);
375			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
376			if (dinfo->mem_ptr == NULL) {
377				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
378					 "%s: Cannot allocate memory for mem_ptr element",
379					 __func__);
380				return(-1);
381			}
382		} else
383			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
384				 sizeof(long);
385
386		/*
387		 * Request all of the devices.  We only really allow for one
388		 * ENOMEM failure.  It would, of course, be possible to just go
389		 * in a loop and keep reallocing the device structure until we
390		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
391		 * If devices are being added to the system that quickly, maybe
392		 * the user can just wait until all devices are added.
393		 */
394		for (;;) {
395			error = sysctlbyname("kern.devstat.all",
396					     dinfo->mem_ptr,
397					     &dssize, NULL, 0);
398			if (error != -1 || errno != EBUSY)
399				break;
400		}
401		if (error == -1) {
402			/*
403			 * If we get ENOMEM back, that means that there are
404			 * more devices now, so we need to allocate more
405			 * space for the device array.
406			 */
407			if (errno == ENOMEM) {
408				/*
409				 * No need to set the error string here,
410				 * devstat_getnumdevs() will do that if it fails.
411				 */
412				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
413					return(-1);
414
415				dssize = (dinfo->numdevs *
416					sizeof(struct devstat)) + sizeof(long);
417				dinfo->mem_ptr = (u_int8_t *)
418					realloc(dinfo->mem_ptr, dssize);
419				if ((error = sysctlbyname("kern.devstat.all",
420				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
421					snprintf(devstat_errbuf,
422						 sizeof(devstat_errbuf),
423					    	 "%s: error getting device "
424					    	 "stats\n%s: %s", __func__,
425					    	 __func__, strerror(errno));
426					return(-1);
427				}
428			} else {
429				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
430					 "%s: error getting device stats\n"
431					 "%s: %s", __func__, __func__,
432					 strerror(errno));
433				return(-1);
434			}
435		}
436
437	} else {
438		if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
439			return(-1);
440		else
441			stats->snap_time = ts.tv_sec;
442
443		/*
444		 * This is of course non-atomic, but since we are working
445		 * on a core dump, the generation is unlikely to change
446		 */
447		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
448			return(-1);
449		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
450			return(-1);
451	}
452	/*
453	 * The sysctl spits out the generation as the first four bytes,
454	 * then all of the device statistics structures.
455	 */
456	dinfo->generation = *(long *)dinfo->mem_ptr;
457
458	/*
459	 * If the generation has changed, and if the current number of
460	 * devices is not the same as the number of devices recorded in the
461	 * devinfo structure, it is likely that the device list has shrunk.
462	 * The reason that it is likely that the device list has shrunk in
463	 * this case is that if the device list has grown, the sysctl above
464	 * will return an ENOMEM error, and we will reset the number of
465	 * devices and reallocate the device array.  If the second sysctl
466	 * fails, we will return an error and therefore never get to this
467	 * point.  If the device list has shrunk, the sysctl will not
468	 * return an error since we have more space allocated than is
469	 * necessary.  So, in the shrinkage case, we catch it here and
470	 * reallocate the array so that we don't use any more space than is
471	 * necessary.
472	 */
473	if (oldgeneration != dinfo->generation) {
474		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
475			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
476				return(-1);
477			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
478				sizeof(long);
479			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
480							     dssize);
481		}
482		retval = 1;
483	}
484
485	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
486
487	return(retval);
488}
489
490/*
491 * selectdevs():
492 *
493 * Devices are selected/deselected based upon the following criteria:
494 * - devices specified by the user on the command line
495 * - devices matching any device type expressions given on the command line
496 * - devices with the highest I/O, if 'top' mode is enabled
497 * - the first n unselected devices in the device list, if maxshowdevs
498 *   devices haven't already been selected and if the user has not
499 *   specified any devices on the command line and if we're in "add" mode.
500 *
501 * Input parameters:
502 * - device selection list (dev_select)
503 * - current number of devices selected (num_selected)
504 * - total number of devices in the selection list (num_selections)
505 * - devstat generation as of the last time selectdevs() was called
506 *   (select_generation)
507 * - current devstat generation (current_generation)
508 * - current list of devices and statistics (devices)
509 * - number of devices in the current device list (numdevs)
510 * - compiled version of the command line device type arguments (matches)
511 *   - This is optional.  If the number of devices is 0, this will be ignored.
512 *   - The matching code pays attention to the current selection mode.  So
513 *     if you pass in a matching expression, it will be evaluated based
514 *     upon the selection mode that is passed in.  See below for details.
515 * - number of device type matching expressions (num_matches)
516 *   - Set to 0 to disable the matching code.
517 * - list of devices specified on the command line by the user (dev_selections)
518 * - number of devices selected on the command line by the user
519 *   (num_dev_selections)
520 * - Our selection mode.  There are four different selection modes:
521 *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
522 *        selected by the user or devices matching a pattern given by the
523 *        user will be selected in addition to devices that are already
524 *        selected.  Additional devices will be selected, up to maxshowdevs
525 *        number of devices.
526 *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
527 *        explicitly given by the user or devices matching a pattern
528 *        given by the user will be selected.  No other devices will be
529 *        selected.
530 *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
531 *        only.  Basically, this will not de-select any devices that are
532 *        current selected, as only mode would, but it will also not
533 *        gratuitously select up to maxshowdevs devices as add mode would.
534 *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
535 *        explicitly selected by the user or devices matching a pattern
536 *        given by the user will be de-selected.
537 * - maximum number of devices we can select (maxshowdevs)
538 * - flag indicating whether or not we're in 'top' mode (perf_select)
539 *
540 * Output data:
541 * - the device selection list may be modified and passed back out
542 * - the number of devices selected and the total number of items in the
543 *   device selection list may be changed
544 * - the selection generation may be changed to match the current generation
545 *
546 * Return values:
547 * -1  -- error
548 *  0  -- selected devices are unchanged
549 *  1  -- selected devices changed
550 */
551int
552devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
553		   int *num_selections, long *select_generation,
554		   long current_generation, struct devstat *devices,
555		   int numdevs, struct devstat_match *matches, int num_matches,
556		   char **dev_selections, int num_dev_selections,
557		   devstat_select_mode select_mode, int maxshowdevs,
558		   int perf_select)
559{
560	int i, j, k;
561	int init_selections = 0, init_selected_var = 0;
562	struct device_selection *old_dev_select = NULL;
563	int old_num_selections = 0, old_num_selected;
564	int selection_number = 0;
565	int changed = 0, found = 0;
566
567	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
568		return(-1);
569
570	/*
571	 * We always want to make sure that we have as many dev_select
572	 * entries as there are devices.
573	 */
574	/*
575	 * In this case, we haven't selected devices before.
576	 */
577	if (*dev_select == NULL) {
578		*dev_select = (struct device_selection *)malloc(numdevs *
579			sizeof(struct device_selection));
580		*select_generation = current_generation;
581		init_selections = 1;
582		changed = 1;
583	/*
584	 * In this case, we have selected devices before, but the device
585	 * list has changed since we last selected devices, so we need to
586	 * either enlarge or reduce the size of the device selection list.
587	 */
588	} else if (*num_selections != numdevs) {
589		*dev_select = (struct device_selection *)reallocf(*dev_select,
590			numdevs * sizeof(struct device_selection));
591		*select_generation = current_generation;
592		init_selections = 1;
593	/*
594	 * In this case, we've selected devices before, and the selection
595	 * list is the same size as it was the last time, but the device
596	 * list has changed.
597	 */
598	} else if (*select_generation < current_generation) {
599		*select_generation = current_generation;
600		init_selections = 1;
601	}
602
603	if (*dev_select == NULL) {
604		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
605			 "%s: Cannot (re)allocate memory for dev_select argument",
606			 __func__);
607		return(-1);
608	}
609
610	/*
611	 * If we're in "only" mode, we want to clear out the selected
612	 * variable since we're going to select exactly what the user wants
613	 * this time through.
614	 */
615	if (select_mode == DS_SELECT_ONLY)
616		init_selected_var = 1;
617
618	/*
619	 * In all cases, we want to back up the number of selected devices.
620	 * It is a quick and accurate way to determine whether the selected
621	 * devices have changed.
622	 */
623	old_num_selected = *num_selected;
624
625	/*
626	 * We want to make a backup of the current selection list if
627	 * the list of devices has changed, or if we're in performance
628	 * selection mode.  In both cases, we don't want to make a backup
629	 * if we already know for sure that the list will be different.
630	 * This is certainly the case if this is our first time through the
631	 * selection code.
632	 */
633	if (((init_selected_var != 0) || (init_selections != 0)
634	 || (perf_select != 0)) && (changed == 0)){
635		old_dev_select = (struct device_selection *)malloc(
636		    *num_selections * sizeof(struct device_selection));
637		if (old_dev_select == NULL) {
638			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
639				 "%s: Cannot allocate memory for selection list backup",
640				 __func__);
641			return(-1);
642		}
643		old_num_selections = *num_selections;
644		bcopy(*dev_select, old_dev_select,
645		    sizeof(struct device_selection) * *num_selections);
646	}
647
648	if (init_selections != 0) {
649		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
650
651		for (i = 0; i < numdevs; i++) {
652			(*dev_select)[i].device_number =
653				devices[i].device_number;
654			strncpy((*dev_select)[i].device_name,
655				devices[i].device_name,
656				DEVSTAT_NAME_LEN);
657			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
658			(*dev_select)[i].unit_number = devices[i].unit_number;
659			(*dev_select)[i].position = i;
660		}
661		*num_selections = numdevs;
662	} else if (init_selected_var != 0) {
663		for (i = 0; i < numdevs; i++)
664			(*dev_select)[i].selected = 0;
665	}
666
667	/* we haven't gotten around to selecting anything yet.. */
668	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
669	 || (init_selected_var != 0))
670		*num_selected = 0;
671
672	/*
673	 * Look through any devices the user specified on the command line
674	 * and see if they match known devices.  If so, select them.
675	 */
676	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
677		char tmpstr[80];
678
679		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
680			 (*dev_select)[i].device_name,
681			 (*dev_select)[i].unit_number);
682		for (j = 0; j < num_dev_selections; j++) {
683			if (strcmp(tmpstr, dev_selections[j]) == 0) {
684				/*
685				 * Here we do different things based on the
686				 * mode we're in.  If we're in add or
687				 * addonly mode, we only select this device
688				 * if it hasn't already been selected.
689				 * Otherwise, we would be unnecessarily
690				 * changing the selection order and
691				 * incrementing the selection count.  If
692				 * we're in only mode, we unconditionally
693				 * select this device, since in only mode
694				 * any previous selections are erased and
695				 * manually specified devices are the first
696				 * ones to be selected.  If we're in remove
697				 * mode, we de-select the specified device and
698				 * decrement the selection count.
699				 */
700				switch(select_mode) {
701				case DS_SELECT_ADD:
702				case DS_SELECT_ADDONLY:
703					if ((*dev_select)[i].selected)
704						break;
705					/* FALLTHROUGH */
706				case DS_SELECT_ONLY:
707					(*dev_select)[i].selected =
708						++selection_number;
709					(*num_selected)++;
710					break;
711				case DS_SELECT_REMOVE:
712					(*dev_select)[i].selected = 0;
713					(*num_selected)--;
714					/*
715					 * This isn't passed back out, we
716					 * just use it to keep track of
717					 * how many devices we've removed.
718					 */
719					num_dev_selections--;
720					break;
721				}
722				break;
723			}
724		}
725	}
726
727	/*
728	 * Go through the user's device type expressions and select devices
729	 * accordingly.  We only do this if the number of devices already
730	 * selected is less than the maximum number we can show.
731	 */
732	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
733		/* We should probably indicate some error here */
734		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
735		 || (matches[i].num_match_categories <= 0))
736			continue;
737
738		for (j = 0; j < numdevs; j++) {
739			int num_match_categories;
740
741			num_match_categories = matches[i].num_match_categories;
742
743			/*
744			 * Determine whether or not the current device
745			 * matches the given matching expression.  This if
746			 * statement consists of three components:
747			 *   - the device type check
748			 *   - the device interface check
749			 *   - the passthrough check
750			 * If a the matching test is successful, it
751			 * decrements the number of matching categories,
752			 * and if we've reached the last element that
753			 * needed to be matched, the if statement succeeds.
754			 *
755			 */
756			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
757			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
758			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
759			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
760			   || (((matches[i].match_fields &
761				DEVSTAT_MATCH_PASS) == 0)
762			    && ((devices[j].device_type &
763			        DEVSTAT_TYPE_PASS) == 0)))
764			  && (--num_match_categories == 0))
765			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
766			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
767			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
768			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
769			   || (((matches[i].match_fields &
770				DEVSTAT_MATCH_PASS) == 0)
771			    && ((devices[j].device_type &
772				DEVSTAT_TYPE_PASS) == 0)))
773			  && (--num_match_categories == 0))
774			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
775			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
776			  && (--num_match_categories == 0))) {
777
778				/*
779				 * This is probably a non-optimal solution
780				 * to the problem that the devices in the
781				 * device list will not be in the same
782				 * order as the devices in the selection
783				 * array.
784				 */
785				for (k = 0; k < numdevs; k++) {
786					if ((*dev_select)[k].position == j) {
787						found = 1;
788						break;
789					}
790				}
791
792				/*
793				 * There shouldn't be a case where a device
794				 * in the device list is not in the
795				 * selection list...but it could happen.
796				 */
797				if (found != 1) {
798					fprintf(stderr, "selectdevs: couldn't"
799						" find %s%d in selection "
800						"list\n",
801						devices[j].device_name,
802						devices[j].unit_number);
803					break;
804				}
805
806				/*
807				 * We do different things based upon the
808				 * mode we're in.  If we're in add or only
809				 * mode, we go ahead and select this device
810				 * if it hasn't already been selected.  If
811				 * it has already been selected, we leave
812				 * it alone so we don't mess up the
813				 * selection ordering.  Manually specified
814				 * devices have already been selected, and
815				 * they have higher priority than pattern
816				 * matched devices.  If we're in remove
817				 * mode, we de-select the given device and
818				 * decrement the selected count.
819				 */
820				switch(select_mode) {
821				case DS_SELECT_ADD:
822				case DS_SELECT_ADDONLY:
823				case DS_SELECT_ONLY:
824					if ((*dev_select)[k].selected != 0)
825						break;
826					(*dev_select)[k].selected =
827						++selection_number;
828					(*num_selected)++;
829					break;
830				case DS_SELECT_REMOVE:
831					(*dev_select)[k].selected = 0;
832					(*num_selected)--;
833					break;
834				}
835			}
836		}
837	}
838
839	/*
840	 * Here we implement "top" mode.  Devices are sorted in the
841	 * selection array based on two criteria:  whether or not they are
842	 * selected (not selection number, just the fact that they are
843	 * selected!) and the number of bytes in the "bytes" field of the
844	 * selection structure.  The bytes field generally must be kept up
845	 * by the user.  In the future, it may be maintained by library
846	 * functions, but for now the user has to do the work.
847	 *
848	 * At first glance, it may seem wrong that we don't go through and
849	 * select every device in the case where the user hasn't specified
850	 * any devices or patterns.  In fact, though, it won't make any
851	 * difference in the device sorting.  In that particular case (i.e.
852	 * when we're in "add" or "only" mode, and the user hasn't
853	 * specified anything) the first time through no devices will be
854	 * selected, so the only criterion used to sort them will be their
855	 * performance.  The second time through, and every time thereafter,
856	 * all devices will be selected, so again selection won't matter.
857	 */
858	if (perf_select != 0) {
859
860		/* Sort the device array by throughput  */
861		qsort(*dev_select, *num_selections,
862		      sizeof(struct device_selection),
863		      compare_select);
864
865		if (*num_selected == 0) {
866			/*
867			 * Here we select every device in the array, if it
868			 * isn't already selected.  Because the 'selected'
869			 * variable in the selection array entries contains
870			 * the selection order, the devstats routine can show
871			 * the devices that were selected first.
872			 */
873			for (i = 0; i < *num_selections; i++) {
874				if ((*dev_select)[i].selected == 0) {
875					(*dev_select)[i].selected =
876						++selection_number;
877					(*num_selected)++;
878				}
879			}
880		} else {
881			selection_number = 0;
882			for (i = 0; i < *num_selections; i++) {
883				if ((*dev_select)[i].selected != 0) {
884					(*dev_select)[i].selected =
885						++selection_number;
886				}
887			}
888		}
889	}
890
891	/*
892	 * If we're in the "add" selection mode and if we haven't already
893	 * selected maxshowdevs number of devices, go through the array and
894	 * select any unselected devices.  If we're in "only" mode, we
895	 * obviously don't want to select anything other than what the user
896	 * specifies.  If we're in "remove" mode, it probably isn't a good
897	 * idea to go through and select any more devices, since we might
898	 * end up selecting something that the user wants removed.  Through
899	 * more complicated logic, we could actually figure this out, but
900	 * that would probably require combining this loop with the various
901	 * selections loops above.
902	 */
903	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
904		for (i = 0; i < *num_selections; i++)
905			if ((*dev_select)[i].selected == 0) {
906				(*dev_select)[i].selected = ++selection_number;
907				(*num_selected)++;
908			}
909	}
910
911	/*
912	 * Look at the number of devices that have been selected.  If it
913	 * has changed, set the changed variable.  Otherwise, if we've
914	 * made a backup of the selection list, compare it to the current
915	 * selection list to see if the selected devices have changed.
916	 */
917	if ((changed == 0) && (old_num_selected != *num_selected))
918		changed = 1;
919	else if ((changed == 0) && (old_dev_select != NULL)) {
920		/*
921		 * Now we go through the selection list and we look at
922		 * it three different ways.
923		 */
924		for (i = 0; (i < *num_selections) && (changed == 0) &&
925		     (i < old_num_selections); i++) {
926			/*
927			 * If the device at index i in both the new and old
928			 * selection arrays has the same device number and
929			 * selection status, it hasn't changed.  We
930			 * continue on to the next index.
931			 */
932			if (((*dev_select)[i].device_number ==
933			     old_dev_select[i].device_number)
934			 && ((*dev_select)[i].selected ==
935			     old_dev_select[i].selected))
936				continue;
937
938			/*
939			 * Now, if we're still going through the if
940			 * statement, the above test wasn't true.  So we
941			 * check here to see if the device at index i in
942			 * the current array is the same as the device at
943			 * index i in the old array.  If it is, that means
944			 * that its selection number has changed.  Set
945			 * changed to 1 and exit the loop.
946			 */
947			else if ((*dev_select)[i].device_number ==
948			          old_dev_select[i].device_number) {
949				changed = 1;
950				break;
951			}
952			/*
953			 * If we get here, then the device at index i in
954			 * the current array isn't the same device as the
955			 * device at index i in the old array.
956			 */
957			else {
958				found = 0;
959
960				/*
961				 * Search through the old selection array
962				 * looking for a device with the same
963				 * device number as the device at index i
964				 * in the current array.  If the selection
965				 * status is the same, then we mark it as
966				 * found.  If the selection status isn't
967				 * the same, we break out of the loop.
968				 * Since found isn't set, changed will be
969				 * set to 1 below.
970				 */
971				for (j = 0; j < old_num_selections; j++) {
972					if (((*dev_select)[i].device_number ==
973					      old_dev_select[j].device_number)
974					 && ((*dev_select)[i].selected ==
975					      old_dev_select[j].selected)){
976						found = 1;
977						break;
978					}
979					else if ((*dev_select)[i].device_number
980					    == old_dev_select[j].device_number)
981						break;
982				}
983				if (found == 0)
984					changed = 1;
985			}
986		}
987	}
988	if (old_dev_select != NULL)
989		free(old_dev_select);
990
991	return(changed);
992}
993
994/*
995 * Comparison routine for qsort() above.  Note that the comparison here is
996 * backwards -- generally, it should return a value to indicate whether
997 * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
998 * it returns the opposite is so that the selection array will be sorted in
999 * order of decreasing performance.  We sort on two parameters.  The first
1000 * sort key is whether or not one or the other of the devices in question
1001 * has been selected.  If one of them has, and the other one has not, the
1002 * selected device is automatically more important than the unselected
1003 * device.  If neither device is selected, we judge the devices based upon
1004 * performance.
1005 */
1006static int
1007compare_select(const void *arg1, const void *arg2)
1008{
1009	if ((((const struct device_selection *)arg1)->selected)
1010	 && (((const struct device_selection *)arg2)->selected == 0))
1011		return(-1);
1012	else if ((((const struct device_selection *)arg1)->selected == 0)
1013	      && (((const struct device_selection *)arg2)->selected))
1014		return(1);
1015	else if (((const struct device_selection *)arg2)->bytes <
1016	         ((const struct device_selection *)arg1)->bytes)
1017		return(-1);
1018	else if (((const struct device_selection *)arg2)->bytes >
1019		 ((const struct device_selection *)arg1)->bytes)
1020		return(1);
1021	else
1022		return(0);
1023}
1024
1025/*
1026 * Take a string with the general format "arg1,arg2,arg3", and build a
1027 * device matching expression from it.
1028 */
1029int
1030devstat_buildmatch(char *match_str, struct devstat_match **matches,
1031		   int *num_matches)
1032{
1033	char *tstr[5];
1034	char **tempstr;
1035	int num_args;
1036	int i, j;
1037
1038	/* We can't do much without a string to parse */
1039	if (match_str == NULL) {
1040		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1041			 "%s: no match expression", __func__);
1042		return(-1);
1043	}
1044
1045	/*
1046	 * Break the (comma delimited) input string out into separate strings.
1047	 */
1048	for (tempstr = tstr, num_args  = 0;
1049	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1050		if (**tempstr != '\0') {
1051			num_args++;
1052			if (++tempstr >= &tstr[5])
1053				break;
1054		}
1055
1056	/* The user gave us too many type arguments */
1057	if (num_args > 3) {
1058		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1059			 "%s: too many type arguments", __func__);
1060		return(-1);
1061	}
1062
1063	if (*num_matches == 0)
1064		*matches = NULL;
1065
1066	*matches = (struct devstat_match *)reallocf(*matches,
1067		  sizeof(struct devstat_match) * (*num_matches + 1));
1068
1069	if (*matches == NULL) {
1070		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1071			 "%s: Cannot allocate memory for matches list", __func__);
1072		return(-1);
1073	}
1074
1075	/* Make sure the current entry is clear */
1076	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1077
1078	/*
1079	 * Step through the arguments the user gave us and build a device
1080	 * matching expression from them.
1081	 */
1082	for (i = 0; i < num_args; i++) {
1083		char *tempstr2, *tempstr3;
1084
1085		/*
1086		 * Get rid of leading white space.
1087		 */
1088		tempstr2 = tstr[i];
1089		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1090			tempstr2++;
1091
1092		/*
1093		 * Get rid of trailing white space.
1094		 */
1095		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1096
1097		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1098		    && (isspace(*tempstr3))) {
1099			*tempstr3 = '\0';
1100			tempstr3--;
1101		}
1102
1103		/*
1104		 * Go through the match table comparing the user's
1105		 * arguments to known device types, interfaces, etc.
1106		 */
1107		for (j = 0; match_table[j].match_str != NULL; j++) {
1108			/*
1109			 * We do case-insensitive matching, in case someone
1110			 * wants to enter "SCSI" instead of "scsi" or
1111			 * something like that.  Only compare as many
1112			 * characters as are in the string in the match
1113			 * table.  This should help if someone tries to use
1114			 * a super-long match expression.
1115			 */
1116			if (strncasecmp(tempstr2, match_table[j].match_str,
1117			    strlen(match_table[j].match_str)) == 0) {
1118				/*
1119				 * Make sure the user hasn't specified two
1120				 * items of the same type, like "da" and
1121				 * "cd".  One device cannot be both.
1122				 */
1123				if (((*matches)[*num_matches].match_fields &
1124				    match_table[j].match_field) != 0) {
1125					snprintf(devstat_errbuf,
1126						 sizeof(devstat_errbuf),
1127						 "%s: cannot have more than "
1128						 "one match item in a single "
1129						 "category", __func__);
1130					return(-1);
1131				}
1132				/*
1133				 * If we've gotten this far, we have a
1134				 * winner.  Set the appropriate fields in
1135				 * the match entry.
1136				 */
1137				(*matches)[*num_matches].match_fields |=
1138					match_table[j].match_field;
1139				(*matches)[*num_matches].device_type |=
1140					match_table[j].type;
1141				(*matches)[*num_matches].num_match_categories++;
1142				break;
1143			}
1144		}
1145		/*
1146		 * We should have found a match in the above for loop.  If
1147		 * not, that means the user entered an invalid device type
1148		 * or interface.
1149		 */
1150		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1151			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1152				 "%s: unknown match item \"%s\"", __func__,
1153				 tstr[i]);
1154			return(-1);
1155		}
1156	}
1157
1158	(*num_matches)++;
1159
1160	return(0);
1161}
1162
1163/*
1164 * Compute a number of device statistics.  Only one field is mandatory, and
1165 * that is "current".  Everything else is optional.  The caller passes in
1166 * pointers to variables to hold the various statistics he desires.  If he
1167 * doesn't want a particular staistic, he should pass in a NULL pointer.
1168 * Return values:
1169 * 0   -- success
1170 * -1  -- failure
1171 */
1172int
1173compute_stats(struct devstat *current, struct devstat *previous,
1174	      long double etime, u_int64_t *total_bytes,
1175	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1176	      long double *kb_per_transfer, long double *transfers_per_second,
1177	      long double *mb_per_second, long double *blocks_per_second,
1178	      long double *ms_per_transaction)
1179{
1180	return(devstat_compute_statistics(current, previous, etime,
1181	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1182	       total_bytes,
1183	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1184	       total_transfers,
1185	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1186	       total_blocks,
1187	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1188	       kb_per_transfer,
1189	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1190	       transfers_per_second,
1191	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1192	       mb_per_second,
1193	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1194	       blocks_per_second,
1195	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1196	       ms_per_transaction,
1197	       DSM_NONE));
1198}
1199
1200
1201/* This is 1/2^64 */
1202#define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1203
1204long double
1205devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1206{
1207	long double etime;
1208
1209	etime = cur_time->sec;
1210	etime += cur_time->frac * BINTIME_SCALE;
1211	if (prev_time != NULL) {
1212		etime -= prev_time->sec;
1213		etime -= prev_time->frac * BINTIME_SCALE;
1214	}
1215	return(etime);
1216}
1217
1218#define DELTA(field, index)				\
1219	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1220
1221#define DELTA_T(field)					\
1222	devstat_compute_etime(&current->field,  	\
1223	(previous ? &previous->field : NULL))
1224
1225int
1226devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1227			   long double etime, ...)
1228{
1229	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1230	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1231	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1232	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1233	long double totalduration, totaldurationread, totaldurationwrite;
1234	long double totaldurationfree, totaldurationother;
1235	va_list ap;
1236	devstat_metric metric;
1237	u_int64_t *destu64;
1238	long double *destld;
1239	int retval;
1240
1241	retval = 0;
1242
1243	/*
1244	 * current is the only mandatory field.
1245	 */
1246	if (current == NULL) {
1247		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1248			 "%s: current stats structure was NULL", __func__);
1249		return(-1);
1250	}
1251
1252	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1253	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1254	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1255	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1256
1257	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1258	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1259	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1260	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1261	totaltransfers = totaltransfersread + totaltransferswrite +
1262			 totaltransfersother + totaltransfersfree;
1263
1264	totalblocks = totalbytes;
1265	totalblocksread = totalbytesread;
1266	totalblockswrite = totalbyteswrite;
1267	totalblocksfree = totalbytesfree;
1268
1269	if (current->block_size > 0) {
1270		totalblocks /= current->block_size;
1271		totalblocksread /= current->block_size;
1272		totalblockswrite /= current->block_size;
1273		totalblocksfree /= current->block_size;
1274	} else {
1275		totalblocks /= 512;
1276		totalblocksread /= 512;
1277		totalblockswrite /= 512;
1278		totalblocksfree /= 512;
1279	}
1280
1281	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1282	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1283	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1284	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1285	totalduration = totaldurationread + totaldurationwrite +
1286	    totaldurationfree + totaldurationother;
1287
1288	va_start(ap, etime);
1289
1290	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1291
1292		if (metric == DSM_NONE)
1293			break;
1294
1295		if (metric >= DSM_MAX) {
1296			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1297				 "%s: metric %d is out of range", __func__,
1298				 metric);
1299			retval = -1;
1300			goto bailout;
1301		}
1302
1303		switch (devstat_arg_list[metric].argtype) {
1304		case DEVSTAT_ARG_UINT64:
1305			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1306			break;
1307		case DEVSTAT_ARG_LD:
1308			destld = (long double *)va_arg(ap, long double *);
1309			break;
1310		case DEVSTAT_ARG_SKIP:
1311			destld = (long double *)va_arg(ap, long double *);
1312			break;
1313		default:
1314			retval = -1;
1315			goto bailout;
1316			break; /* NOTREACHED */
1317		}
1318
1319		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1320			continue;
1321
1322		switch (metric) {
1323		case DSM_TOTAL_BYTES:
1324			*destu64 = totalbytes;
1325			break;
1326		case DSM_TOTAL_BYTES_READ:
1327			*destu64 = totalbytesread;
1328			break;
1329		case DSM_TOTAL_BYTES_WRITE:
1330			*destu64 = totalbyteswrite;
1331			break;
1332		case DSM_TOTAL_BYTES_FREE:
1333			*destu64 = totalbytesfree;
1334			break;
1335		case DSM_TOTAL_TRANSFERS:
1336			*destu64 = totaltransfers;
1337			break;
1338		case DSM_TOTAL_TRANSFERS_READ:
1339			*destu64 = totaltransfersread;
1340			break;
1341		case DSM_TOTAL_TRANSFERS_WRITE:
1342			*destu64 = totaltransferswrite;
1343			break;
1344		case DSM_TOTAL_TRANSFERS_FREE:
1345			*destu64 = totaltransfersfree;
1346			break;
1347		case DSM_TOTAL_TRANSFERS_OTHER:
1348			*destu64 = totaltransfersother;
1349			break;
1350		case DSM_TOTAL_BLOCKS:
1351			*destu64 = totalblocks;
1352			break;
1353		case DSM_TOTAL_BLOCKS_READ:
1354			*destu64 = totalblocksread;
1355			break;
1356		case DSM_TOTAL_BLOCKS_WRITE:
1357			*destu64 = totalblockswrite;
1358			break;
1359		case DSM_TOTAL_BLOCKS_FREE:
1360			*destu64 = totalblocksfree;
1361			break;
1362		case DSM_KB_PER_TRANSFER:
1363			*destld = totalbytes;
1364			*destld /= 1024;
1365			if (totaltransfers > 0)
1366				*destld /= totaltransfers;
1367			else
1368				*destld = 0.0;
1369			break;
1370		case DSM_KB_PER_TRANSFER_READ:
1371			*destld = totalbytesread;
1372			*destld /= 1024;
1373			if (totaltransfersread > 0)
1374				*destld /= totaltransfersread;
1375			else
1376				*destld = 0.0;
1377			break;
1378		case DSM_KB_PER_TRANSFER_WRITE:
1379			*destld = totalbyteswrite;
1380			*destld /= 1024;
1381			if (totaltransferswrite > 0)
1382				*destld /= totaltransferswrite;
1383			else
1384				*destld = 0.0;
1385			break;
1386		case DSM_KB_PER_TRANSFER_FREE:
1387			*destld = totalbytesfree;
1388			*destld /= 1024;
1389			if (totaltransfersfree > 0)
1390				*destld /= totaltransfersfree;
1391			else
1392				*destld = 0.0;
1393			break;
1394		case DSM_TRANSFERS_PER_SECOND:
1395			if (etime > 0.0) {
1396				*destld = totaltransfers;
1397				*destld /= etime;
1398			} else
1399				*destld = 0.0;
1400			break;
1401		case DSM_TRANSFERS_PER_SECOND_READ:
1402			if (etime > 0.0) {
1403				*destld = totaltransfersread;
1404				*destld /= etime;
1405			} else
1406				*destld = 0.0;
1407			break;
1408		case DSM_TRANSFERS_PER_SECOND_WRITE:
1409			if (etime > 0.0) {
1410				*destld = totaltransferswrite;
1411				*destld /= etime;
1412			} else
1413				*destld = 0.0;
1414			break;
1415		case DSM_TRANSFERS_PER_SECOND_FREE:
1416			if (etime > 0.0) {
1417				*destld = totaltransfersfree;
1418				*destld /= etime;
1419			} else
1420				*destld = 0.0;
1421			break;
1422		case DSM_TRANSFERS_PER_SECOND_OTHER:
1423			if (etime > 0.0) {
1424				*destld = totaltransfersother;
1425				*destld /= etime;
1426			} else
1427				*destld = 0.0;
1428			break;
1429		case DSM_MB_PER_SECOND:
1430			*destld = totalbytes;
1431			*destld /= 1024 * 1024;
1432			if (etime > 0.0)
1433				*destld /= etime;
1434			else
1435				*destld = 0.0;
1436			break;
1437		case DSM_MB_PER_SECOND_READ:
1438			*destld = totalbytesread;
1439			*destld /= 1024 * 1024;
1440			if (etime > 0.0)
1441				*destld /= etime;
1442			else
1443				*destld = 0.0;
1444			break;
1445		case DSM_MB_PER_SECOND_WRITE:
1446			*destld = totalbyteswrite;
1447			*destld /= 1024 * 1024;
1448			if (etime > 0.0)
1449				*destld /= etime;
1450			else
1451				*destld = 0.0;
1452			break;
1453		case DSM_MB_PER_SECOND_FREE:
1454			*destld = totalbytesfree;
1455			*destld /= 1024 * 1024;
1456			if (etime > 0.0)
1457				*destld /= etime;
1458			else
1459				*destld = 0.0;
1460			break;
1461		case DSM_BLOCKS_PER_SECOND:
1462			*destld = totalblocks;
1463			if (etime > 0.0)
1464				*destld /= etime;
1465			else
1466				*destld = 0.0;
1467			break;
1468		case DSM_BLOCKS_PER_SECOND_READ:
1469			*destld = totalblocksread;
1470			if (etime > 0.0)
1471				*destld /= etime;
1472			else
1473				*destld = 0.0;
1474			break;
1475		case DSM_BLOCKS_PER_SECOND_WRITE:
1476			*destld = totalblockswrite;
1477			if (etime > 0.0)
1478				*destld /= etime;
1479			else
1480				*destld = 0.0;
1481			break;
1482		case DSM_BLOCKS_PER_SECOND_FREE:
1483			*destld = totalblocksfree;
1484			if (etime > 0.0)
1485				*destld /= etime;
1486			else
1487				*destld = 0.0;
1488			break;
1489		/*
1490		 * Some devstat callers update the duration and some don't.
1491		 * So this will only be accurate if they provide the
1492		 * duration.
1493		 */
1494		case DSM_MS_PER_TRANSACTION:
1495			if (totaltransfers > 0) {
1496				*destld = totalduration;
1497				*destld /= totaltransfers;
1498				*destld *= 1000;
1499			} else
1500				*destld = 0.0;
1501			break;
1502		case DSM_MS_PER_TRANSACTION_READ:
1503			if (totaltransfersread > 0) {
1504				*destld = totaldurationread;
1505				*destld /= totaltransfersread;
1506				*destld *= 1000;
1507			} else
1508				*destld = 0.0;
1509			break;
1510		case DSM_MS_PER_TRANSACTION_WRITE:
1511			if (totaltransferswrite > 0) {
1512				*destld = totaldurationwrite;
1513				*destld /= totaltransferswrite;
1514				*destld *= 1000;
1515			} else
1516				*destld = 0.0;
1517			break;
1518		case DSM_MS_PER_TRANSACTION_FREE:
1519			if (totaltransfersfree > 0) {
1520				*destld = totaldurationfree;
1521				*destld /= totaltransfersfree;
1522				*destld *= 1000;
1523			} else
1524				*destld = 0.0;
1525			break;
1526		case DSM_MS_PER_TRANSACTION_OTHER:
1527			if (totaltransfersother > 0) {
1528				*destld = totaldurationother;
1529				*destld /= totaltransfersother;
1530				*destld *= 1000;
1531			} else
1532				*destld = 0.0;
1533			break;
1534		case DSM_BUSY_PCT:
1535			*destld = DELTA_T(busy_time);
1536			if (*destld < 0)
1537				*destld = 0;
1538			*destld /= etime;
1539			*destld *= 100;
1540			if (*destld < 0)
1541				*destld = 0;
1542			break;
1543		case DSM_QUEUE_LENGTH:
1544			*destu64 = current->start_count - current->end_count;
1545			break;
1546		case DSM_TOTAL_DURATION:
1547			*destld = totalduration;
1548			break;
1549		case DSM_TOTAL_DURATION_READ:
1550			*destld = totaldurationread;
1551			break;
1552		case DSM_TOTAL_DURATION_WRITE:
1553			*destld = totaldurationwrite;
1554			break;
1555		case DSM_TOTAL_DURATION_FREE:
1556			*destld = totaldurationfree;
1557			break;
1558		case DSM_TOTAL_DURATION_OTHER:
1559			*destld = totaldurationother;
1560			break;
1561		case DSM_TOTAL_BUSY_TIME:
1562			*destld = DELTA_T(busy_time);
1563			break;
1564/*
1565 * XXX: comment out the default block to see if any case's are missing.
1566 */
1567#if 1
1568		default:
1569			/*
1570			 * This shouldn't happen, since we should have
1571			 * caught any out of range metrics at the top of
1572			 * the loop.
1573			 */
1574			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1575				 "%s: unknown metric %d", __func__, metric);
1576			retval = -1;
1577			goto bailout;
1578			break; /* NOTREACHED */
1579#endif
1580		}
1581	}
1582
1583bailout:
1584
1585	va_end(ap);
1586	return(retval);
1587}
1588
1589static int
1590readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1591{
1592
1593	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1594		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1595			 "%s: error reading value (kvm_read): %s", __func__,
1596			 kvm_geterr(kd));
1597		return(-1);
1598	}
1599	return(0);
1600}
1601
1602static int
1603readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1604{
1605	struct nlist nl[2];
1606
1607	nl[0].n_name = (char *)name;
1608	nl[1].n_name = NULL;
1609
1610	if (kvm_nlist(kd, nl) == -1) {
1611		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1612			 "%s: error getting name list (kvm_nlist): %s",
1613			 __func__, kvm_geterr(kd));
1614		return(-1);
1615	}
1616	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1617}
1618
1619/*
1620 * This duplicates the functionality of the kernel sysctl handler for poking
1621 * through crash dumps.
1622 */
1623static char *
1624get_devstat_kvm(kvm_t *kd)
1625{
1626	int i, wp;
1627	long gen;
1628	struct devstat *nds;
1629	struct devstat ds;
1630	struct devstatlist dhead;
1631	int num_devs;
1632	char *rv = NULL;
1633
1634	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1635		return(NULL);
1636	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1637		return(NULL);
1638
1639	nds = STAILQ_FIRST(&dhead);
1640
1641	if ((rv = malloc(sizeof(gen))) == NULL) {
1642		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1643			 "%s: out of memory (initial malloc failed)",
1644			 __func__);
1645		return(NULL);
1646	}
1647	gen = devstat_getgeneration(kd);
1648	memcpy(rv, &gen, sizeof(gen));
1649	wp = sizeof(gen);
1650	/*
1651	 * Now push out all the devices.
1652	 */
1653	for (i = 0; (nds != NULL) && (i < num_devs);
1654	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1655		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1656			free(rv);
1657			return(NULL);
1658		}
1659		nds = &ds;
1660		rv = (char *)reallocf(rv, sizeof(gen) +
1661				      sizeof(ds) * (i + 1));
1662		if (rv == NULL) {
1663			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1664				 "%s: out of memory (malloc failed)",
1665				 __func__);
1666			return(NULL);
1667		}
1668		memcpy(rv + wp, &ds, sizeof(ds));
1669		wp += sizeof(ds);
1670	}
1671	return(rv);
1672}
1673