1/*
2 * Copyright (c) 1997, 1998 Kenneth D. Merry.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/types.h>
33#include <sys/sysctl.h>
34#include <sys/errno.h>
35#include <sys/resource.h>
36#include <sys/queue.h>
37
38#include <ctype.h>
39#include <err.h>
40#include <fcntl.h>
41#include <limits.h>
42#include <stdio.h>
43#include <stdlib.h>
44#include <string.h>
45#include <stdarg.h>
46#include <kvm.h>
47#include <nlist.h>
48
49#include "devstat.h"
50
51int
52compute_stats(struct devstat *current, struct devstat *previous,
53	      long double etime, u_int64_t *total_bytes,
54	      u_int64_t *total_transfers, u_int64_t *total_blocks,
55	      long double *kb_per_transfer, long double *transfers_per_second,
56	      long double *mb_per_second, long double *blocks_per_second,
57	      long double *ms_per_transaction);
58
59typedef enum {
60	DEVSTAT_ARG_NOTYPE,
61	DEVSTAT_ARG_UINT64,
62	DEVSTAT_ARG_LD,
63	DEVSTAT_ARG_SKIP
64} devstat_arg_type;
65
66char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67
68/*
69 * Table to match descriptive strings with device types.  These are in
70 * order from most common to least common to speed search time.
71 */
72struct devstat_match_table match_table[] = {
73	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
74	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
75	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
76	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
77	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
78	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
79	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
81	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
82	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
83	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
84	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
85	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
86	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
87	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
88	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
89	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
90	{NULL,		0,			0}
91};
92
93struct devstat_args {
94	devstat_metric 		metric;
95	devstat_arg_type	argtype;
96} devstat_arg_list[] = {
97	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142};
143
144static const char *namelist[] = {
145#define X_NUMDEVS	0
146	"_devstat_num_devs",
147#define X_GENERATION	1
148	"_devstat_generation",
149#define X_VERSION	2
150	"_devstat_version",
151#define X_DEVICE_STATQ	3
152	"_device_statq",
153#define X_TIME_UPTIME	4
154	"_time_uptime",
155#define X_END		5
156};
157
158/*
159 * Local function declarations.
160 */
161static int compare_select(const void *arg1, const void *arg2);
162static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
163static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
164static char *get_devstat_kvm(kvm_t *kd);
165
166#define KREADNL(kd, var, val) \
167	readkmem_nl(kd, namelist[var], &val, sizeof(val))
168
169int
170devstat_getnumdevs(kvm_t *kd)
171{
172	size_t numdevsize;
173	int numdevs;
174
175	numdevsize = sizeof(int);
176
177	/*
178	 * Find out how many devices we have in the system.
179	 */
180	if (kd == NULL) {
181		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
182				 &numdevsize, NULL, 0) == -1) {
183			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
184				 "%s: error getting number of devices\n"
185				 "%s: %s", __func__, __func__,
186				 strerror(errno));
187			return(-1);
188		} else
189			return(numdevs);
190	} else {
191
192		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
193			return(-1);
194		else
195			return(numdevs);
196	}
197}
198
199/*
200 * This is an easy way to get the generation number, but the generation is
201 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
202 * Because this generation sysctl is separate from the statistics sysctl,
203 * the device list and the generation could change between the time that
204 * this function is called and the device list is retrieved.
205 */
206long
207devstat_getgeneration(kvm_t *kd)
208{
209	size_t gensize;
210	long generation;
211
212	gensize = sizeof(long);
213
214	/*
215	 * Get the current generation number.
216	 */
217	if (kd == NULL) {
218		if (sysctlbyname("kern.devstat.generation", &generation,
219				 &gensize, NULL, 0) == -1) {
220			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
221				 "%s: error getting devstat generation\n%s: %s",
222				 __func__, __func__, strerror(errno));
223			return(-1);
224		} else
225			return(generation);
226	} else {
227		if (KREADNL(kd, X_GENERATION, generation) == -1)
228			return(-1);
229		else
230			return(generation);
231	}
232}
233
234/*
235 * Get the current devstat version.  The return value of this function
236 * should be compared with DEVSTAT_VERSION, which is defined in
237 * sys/devicestat.h.  This will enable userland programs to determine
238 * whether they are out of sync with the kernel.
239 */
240int
241devstat_getversion(kvm_t *kd)
242{
243	size_t versize;
244	int version;
245
246	versize = sizeof(int);
247
248	/*
249	 * Get the current devstat version.
250	 */
251	if (kd == NULL) {
252		if (sysctlbyname("kern.devstat.version", &version, &versize,
253				 NULL, 0) == -1) {
254			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
255				 "%s: error getting devstat version\n%s: %s",
256				 __func__, __func__, strerror(errno));
257			return(-1);
258		} else
259			return(version);
260	} else {
261		if (KREADNL(kd, X_VERSION, version) == -1)
262			return(-1);
263		else
264			return(version);
265	}
266}
267
268/*
269 * Check the devstat version we know about against the devstat version the
270 * kernel knows about.  If they don't match, print an error into the
271 * devstat error buffer, and return -1.  If they match, return 0.
272 */
273int
274devstat_checkversion(kvm_t *kd)
275{
276	int buflen, res, retval = 0, version;
277
278	version = devstat_getversion(kd);
279
280	if (version != DEVSTAT_VERSION) {
281		/*
282		 * If getversion() returns an error (i.e. -1), then it
283		 * has printed an error message in the buffer.  Therefore,
284		 * we need to add a \n to the end of that message before we
285		 * print our own message in the buffer.
286		 */
287		if (version == -1)
288			buflen = strlen(devstat_errbuf);
289		else
290			buflen = 0;
291
292		res = snprintf(devstat_errbuf + buflen,
293			       DEVSTAT_ERRBUF_SIZE - buflen,
294			       "%s%s: userland devstat version %d is not "
295			       "the same as the kernel\n%s: devstat "
296			       "version %d\n", version == -1 ? "\n" : "",
297			       __func__, DEVSTAT_VERSION, __func__, version);
298
299		if (res < 0)
300			devstat_errbuf[buflen] = '\0';
301
302		buflen = strlen(devstat_errbuf);
303		if (version < DEVSTAT_VERSION)
304			res = snprintf(devstat_errbuf + buflen,
305				       DEVSTAT_ERRBUF_SIZE - buflen,
306				       "%s: libdevstat newer than kernel\n",
307				       __func__);
308		else
309			res = snprintf(devstat_errbuf + buflen,
310				       DEVSTAT_ERRBUF_SIZE - buflen,
311				       "%s: kernel newer than libdevstat\n",
312				       __func__);
313
314		if (res < 0)
315			devstat_errbuf[buflen] = '\0';
316
317		retval = -1;
318	}
319
320	return(retval);
321}
322
323/*
324 * Get the current list of devices and statistics, and the current
325 * generation number.
326 *
327 * Return values:
328 * -1  -- error
329 *  0  -- device list is unchanged
330 *  1  -- device list has changed
331 */
332int
333devstat_getdevs(kvm_t *kd, struct statinfo *stats)
334{
335	int error;
336	size_t dssize;
337	long oldgeneration;
338	int retval = 0;
339	struct devinfo *dinfo;
340	struct timespec ts;
341
342	dinfo = stats->dinfo;
343
344	if (dinfo == NULL) {
345		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
346			 "%s: stats->dinfo was NULL", __func__);
347		return(-1);
348	}
349
350	oldgeneration = dinfo->generation;
351
352	if (kd == NULL) {
353		clock_gettime(CLOCK_MONOTONIC, &ts);
354		stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
355
356		/* If this is our first time through, mem_ptr will be null. */
357		if (dinfo->mem_ptr == NULL) {
358			/*
359			 * Get the number of devices.  If it's negative, it's an
360			 * error.  Don't bother setting the error string, since
361			 * getnumdevs() has already done that for us.
362			 */
363			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364				return(-1);
365
366			/*
367			 * The kern.devstat.all sysctl returns the current
368			 * generation number, as well as all the devices.
369			 * So we need four bytes more.
370			 */
371			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372				 sizeof(long);
373			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374			if (dinfo->mem_ptr == NULL) {
375				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376					 "%s: Cannot allocate memory for mem_ptr element",
377					 __func__);
378				return(-1);
379			}
380		} else
381			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382				 sizeof(long);
383
384		/*
385		 * Request all of the devices.  We only really allow for one
386		 * ENOMEM failure.  It would, of course, be possible to just go
387		 * in a loop and keep reallocing the device structure until we
388		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
389		 * If devices are being added to the system that quickly, maybe
390		 * the user can just wait until all devices are added.
391		 */
392		for (;;) {
393			error = sysctlbyname("kern.devstat.all",
394					     dinfo->mem_ptr,
395					     &dssize, NULL, 0);
396			if (error != -1 || errno != EBUSY)
397				break;
398		}
399		if (error == -1) {
400			/*
401			 * If we get ENOMEM back, that means that there are
402			 * more devices now, so we need to allocate more
403			 * space for the device array.
404			 */
405			if (errno == ENOMEM) {
406				/*
407				 * No need to set the error string here,
408				 * devstat_getnumdevs() will do that if it fails.
409				 */
410				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411					return(-1);
412
413				dssize = (dinfo->numdevs *
414					sizeof(struct devstat)) + sizeof(long);
415				dinfo->mem_ptr = (u_int8_t *)
416					realloc(dinfo->mem_ptr, dssize);
417				if ((error = sysctlbyname("kern.devstat.all",
418				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419					snprintf(devstat_errbuf,
420						 sizeof(devstat_errbuf),
421					    	 "%s: error getting device "
422					    	 "stats\n%s: %s", __func__,
423					    	 __func__, strerror(errno));
424					return(-1);
425				}
426			} else {
427				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428					 "%s: error getting device stats\n"
429					 "%s: %s", __func__, __func__,
430					 strerror(errno));
431				return(-1);
432			}
433		}
434
435	} else {
436		if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
437			return(-1);
438		else
439			stats->snap_time = ts.tv_sec;
440
441		/*
442		 * This is of course non-atomic, but since we are working
443		 * on a core dump, the generation is unlikely to change
444		 */
445		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
446			return(-1);
447		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
448			return(-1);
449	}
450	/*
451	 * The sysctl spits out the generation as the first four bytes,
452	 * then all of the device statistics structures.
453	 */
454	dinfo->generation = *(long *)dinfo->mem_ptr;
455
456	/*
457	 * If the generation has changed, and if the current number of
458	 * devices is not the same as the number of devices recorded in the
459	 * devinfo structure, it is likely that the device list has shrunk.
460	 * The reason that it is likely that the device list has shrunk in
461	 * this case is that if the device list has grown, the sysctl above
462	 * will return an ENOMEM error, and we will reset the number of
463	 * devices and reallocate the device array.  If the second sysctl
464	 * fails, we will return an error and therefore never get to this
465	 * point.  If the device list has shrunk, the sysctl will not
466	 * return an error since we have more space allocated than is
467	 * necessary.  So, in the shrinkage case, we catch it here and
468	 * reallocate the array so that we don't use any more space than is
469	 * necessary.
470	 */
471	if (oldgeneration != dinfo->generation) {
472		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
473			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
474				return(-1);
475			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
476				sizeof(long);
477			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
478							     dssize);
479		}
480		retval = 1;
481	}
482
483	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
484
485	return(retval);
486}
487
488/*
489 * selectdevs():
490 *
491 * Devices are selected/deselected based upon the following criteria:
492 * - devices specified by the user on the command line
493 * - devices matching any device type expressions given on the command line
494 * - devices with the highest I/O, if 'top' mode is enabled
495 * - the first n unselected devices in the device list, if maxshowdevs
496 *   devices haven't already been selected and if the user has not
497 *   specified any devices on the command line and if we're in "add" mode.
498 *
499 * Input parameters:
500 * - device selection list (dev_select)
501 * - current number of devices selected (num_selected)
502 * - total number of devices in the selection list (num_selections)
503 * - devstat generation as of the last time selectdevs() was called
504 *   (select_generation)
505 * - current devstat generation (current_generation)
506 * - current list of devices and statistics (devices)
507 * - number of devices in the current device list (numdevs)
508 * - compiled version of the command line device type arguments (matches)
509 *   - This is optional.  If the number of devices is 0, this will be ignored.
510 *   - The matching code pays attention to the current selection mode.  So
511 *     if you pass in a matching expression, it will be evaluated based
512 *     upon the selection mode that is passed in.  See below for details.
513 * - number of device type matching expressions (num_matches)
514 *   - Set to 0 to disable the matching code.
515 * - list of devices specified on the command line by the user (dev_selections)
516 * - number of devices selected on the command line by the user
517 *   (num_dev_selections)
518 * - Our selection mode.  There are four different selection modes:
519 *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
520 *        selected by the user or devices matching a pattern given by the
521 *        user will be selected in addition to devices that are already
522 *        selected.  Additional devices will be selected, up to maxshowdevs
523 *        number of devices.
524 *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
525 *        explicitly given by the user or devices matching a pattern
526 *        given by the user will be selected.  No other devices will be
527 *        selected.
528 *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
529 *        only.  Basically, this will not de-select any devices that are
530 *        current selected, as only mode would, but it will also not
531 *        gratuitously select up to maxshowdevs devices as add mode would.
532 *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
533 *        explicitly selected by the user or devices matching a pattern
534 *        given by the user will be de-selected.
535 * - maximum number of devices we can select (maxshowdevs)
536 * - flag indicating whether or not we're in 'top' mode (perf_select)
537 *
538 * Output data:
539 * - the device selection list may be modified and passed back out
540 * - the number of devices selected and the total number of items in the
541 *   device selection list may be changed
542 * - the selection generation may be changed to match the current generation
543 *
544 * Return values:
545 * -1  -- error
546 *  0  -- selected devices are unchanged
547 *  1  -- selected devices changed
548 */
549int
550devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
551		   int *num_selections, long *select_generation,
552		   long current_generation, struct devstat *devices,
553		   int numdevs, struct devstat_match *matches, int num_matches,
554		   char **dev_selections, int num_dev_selections,
555		   devstat_select_mode select_mode, int maxshowdevs,
556		   int perf_select)
557{
558	int i, j, k;
559	int init_selections = 0, init_selected_var = 0;
560	struct device_selection *old_dev_select = NULL;
561	int old_num_selections = 0, old_num_selected;
562	int selection_number = 0;
563	int changed = 0, found = 0;
564
565	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
566		return(-1);
567
568	/*
569	 * We always want to make sure that we have as many dev_select
570	 * entries as there are devices.
571	 */
572	/*
573	 * In this case, we haven't selected devices before.
574	 */
575	if (*dev_select == NULL) {
576		*dev_select = (struct device_selection *)malloc(numdevs *
577			sizeof(struct device_selection));
578		*select_generation = current_generation;
579		init_selections = 1;
580		changed = 1;
581	/*
582	 * In this case, we have selected devices before, but the device
583	 * list has changed since we last selected devices, so we need to
584	 * either enlarge or reduce the size of the device selection list.
585	 */
586	} else if (*num_selections != numdevs) {
587		*dev_select = (struct device_selection *)reallocf(*dev_select,
588			numdevs * sizeof(struct device_selection));
589		*select_generation = current_generation;
590		init_selections = 1;
591	/*
592	 * In this case, we've selected devices before, and the selection
593	 * list is the same size as it was the last time, but the device
594	 * list has changed.
595	 */
596	} else if (*select_generation < current_generation) {
597		*select_generation = current_generation;
598		init_selections = 1;
599	}
600
601	if (*dev_select == NULL) {
602		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
603			 "%s: Cannot (re)allocate memory for dev_select argument",
604			 __func__);
605		return(-1);
606	}
607
608	/*
609	 * If we're in "only" mode, we want to clear out the selected
610	 * variable since we're going to select exactly what the user wants
611	 * this time through.
612	 */
613	if (select_mode == DS_SELECT_ONLY)
614		init_selected_var = 1;
615
616	/*
617	 * In all cases, we want to back up the number of selected devices.
618	 * It is a quick and accurate way to determine whether the selected
619	 * devices have changed.
620	 */
621	old_num_selected = *num_selected;
622
623	/*
624	 * We want to make a backup of the current selection list if
625	 * the list of devices has changed, or if we're in performance
626	 * selection mode.  In both cases, we don't want to make a backup
627	 * if we already know for sure that the list will be different.
628	 * This is certainly the case if this is our first time through the
629	 * selection code.
630	 */
631	if (((init_selected_var != 0) || (init_selections != 0)
632	 || (perf_select != 0)) && (changed == 0)){
633		old_dev_select = (struct device_selection *)malloc(
634		    *num_selections * sizeof(struct device_selection));
635		if (old_dev_select == NULL) {
636			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
637				 "%s: Cannot allocate memory for selection list backup",
638				 __func__);
639			return(-1);
640		}
641		old_num_selections = *num_selections;
642		bcopy(*dev_select, old_dev_select,
643		    sizeof(struct device_selection) * *num_selections);
644	}
645
646	if (init_selections != 0) {
647		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
648
649		for (i = 0; i < numdevs; i++) {
650			(*dev_select)[i].device_number =
651				devices[i].device_number;
652			strncpy((*dev_select)[i].device_name,
653				devices[i].device_name,
654				DEVSTAT_NAME_LEN);
655			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
656			(*dev_select)[i].unit_number = devices[i].unit_number;
657			(*dev_select)[i].position = i;
658		}
659		*num_selections = numdevs;
660	} else if (init_selected_var != 0) {
661		for (i = 0; i < numdevs; i++)
662			(*dev_select)[i].selected = 0;
663	}
664
665	/* we haven't gotten around to selecting anything yet.. */
666	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
667	 || (init_selected_var != 0))
668		*num_selected = 0;
669
670	/*
671	 * Look through any devices the user specified on the command line
672	 * and see if they match known devices.  If so, select them.
673	 */
674	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
675		char tmpstr[80];
676
677		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
678			 (*dev_select)[i].device_name,
679			 (*dev_select)[i].unit_number);
680		for (j = 0; j < num_dev_selections; j++) {
681			if (strcmp(tmpstr, dev_selections[j]) == 0) {
682				/*
683				 * Here we do different things based on the
684				 * mode we're in.  If we're in add or
685				 * addonly mode, we only select this device
686				 * if it hasn't already been selected.
687				 * Otherwise, we would be unnecessarily
688				 * changing the selection order and
689				 * incrementing the selection count.  If
690				 * we're in only mode, we unconditionally
691				 * select this device, since in only mode
692				 * any previous selections are erased and
693				 * manually specified devices are the first
694				 * ones to be selected.  If we're in remove
695				 * mode, we de-select the specified device and
696				 * decrement the selection count.
697				 */
698				switch(select_mode) {
699				case DS_SELECT_ADD:
700				case DS_SELECT_ADDONLY:
701					if ((*dev_select)[i].selected)
702						break;
703					/* FALLTHROUGH */
704				case DS_SELECT_ONLY:
705					(*dev_select)[i].selected =
706						++selection_number;
707					(*num_selected)++;
708					break;
709				case DS_SELECT_REMOVE:
710					(*dev_select)[i].selected = 0;
711					(*num_selected)--;
712					/*
713					 * This isn't passed back out, we
714					 * just use it to keep track of
715					 * how many devices we've removed.
716					 */
717					num_dev_selections--;
718					break;
719				}
720				break;
721			}
722		}
723	}
724
725	/*
726	 * Go through the user's device type expressions and select devices
727	 * accordingly.  We only do this if the number of devices already
728	 * selected is less than the maximum number we can show.
729	 */
730	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
731		/* We should probably indicate some error here */
732		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
733		 || (matches[i].num_match_categories <= 0))
734			continue;
735
736		for (j = 0; j < numdevs; j++) {
737			int num_match_categories;
738
739			num_match_categories = matches[i].num_match_categories;
740
741			/*
742			 * Determine whether or not the current device
743			 * matches the given matching expression.  This if
744			 * statement consists of three components:
745			 *   - the device type check
746			 *   - the device interface check
747			 *   - the passthrough check
748			 * If a the matching test is successful, it
749			 * decrements the number of matching categories,
750			 * and if we've reached the last element that
751			 * needed to be matched, the if statement succeeds.
752			 *
753			 */
754			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
755			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
756			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
757			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
758			   || (((matches[i].match_fields &
759				DEVSTAT_MATCH_PASS) == 0)
760			    && ((devices[j].device_type &
761			        DEVSTAT_TYPE_PASS) == 0)))
762			  && (--num_match_categories == 0))
763			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
764			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
765			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
766			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
767			   || (((matches[i].match_fields &
768				DEVSTAT_MATCH_PASS) == 0)
769			    && ((devices[j].device_type &
770				DEVSTAT_TYPE_PASS) == 0)))
771			  && (--num_match_categories == 0))
772			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
773			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
774			  && (--num_match_categories == 0))) {
775
776				/*
777				 * This is probably a non-optimal solution
778				 * to the problem that the devices in the
779				 * device list will not be in the same
780				 * order as the devices in the selection
781				 * array.
782				 */
783				for (k = 0; k < numdevs; k++) {
784					if ((*dev_select)[k].position == j) {
785						found = 1;
786						break;
787					}
788				}
789
790				/*
791				 * There shouldn't be a case where a device
792				 * in the device list is not in the
793				 * selection list...but it could happen.
794				 */
795				if (found != 1) {
796					fprintf(stderr, "selectdevs: couldn't"
797						" find %s%d in selection "
798						"list\n",
799						devices[j].device_name,
800						devices[j].unit_number);
801					break;
802				}
803
804				/*
805				 * We do different things based upon the
806				 * mode we're in.  If we're in add or only
807				 * mode, we go ahead and select this device
808				 * if it hasn't already been selected.  If
809				 * it has already been selected, we leave
810				 * it alone so we don't mess up the
811				 * selection ordering.  Manually specified
812				 * devices have already been selected, and
813				 * they have higher priority than pattern
814				 * matched devices.  If we're in remove
815				 * mode, we de-select the given device and
816				 * decrement the selected count.
817				 */
818				switch(select_mode) {
819				case DS_SELECT_ADD:
820				case DS_SELECT_ADDONLY:
821				case DS_SELECT_ONLY:
822					if ((*dev_select)[k].selected != 0)
823						break;
824					(*dev_select)[k].selected =
825						++selection_number;
826					(*num_selected)++;
827					break;
828				case DS_SELECT_REMOVE:
829					(*dev_select)[k].selected = 0;
830					(*num_selected)--;
831					break;
832				}
833			}
834		}
835	}
836
837	/*
838	 * Here we implement "top" mode.  Devices are sorted in the
839	 * selection array based on two criteria:  whether or not they are
840	 * selected (not selection number, just the fact that they are
841	 * selected!) and the number of bytes in the "bytes" field of the
842	 * selection structure.  The bytes field generally must be kept up
843	 * by the user.  In the future, it may be maintained by library
844	 * functions, but for now the user has to do the work.
845	 *
846	 * At first glance, it may seem wrong that we don't go through and
847	 * select every device in the case where the user hasn't specified
848	 * any devices or patterns.  In fact, though, it won't make any
849	 * difference in the device sorting.  In that particular case (i.e.
850	 * when we're in "add" or "only" mode, and the user hasn't
851	 * specified anything) the first time through no devices will be
852	 * selected, so the only criterion used to sort them will be their
853	 * performance.  The second time through, and every time thereafter,
854	 * all devices will be selected, so again selection won't matter.
855	 */
856	if (perf_select != 0) {
857
858		/* Sort the device array by throughput  */
859		qsort(*dev_select, *num_selections,
860		      sizeof(struct device_selection),
861		      compare_select);
862
863		if (*num_selected == 0) {
864			/*
865			 * Here we select every device in the array, if it
866			 * isn't already selected.  Because the 'selected'
867			 * variable in the selection array entries contains
868			 * the selection order, the devstats routine can show
869			 * the devices that were selected first.
870			 */
871			for (i = 0; i < *num_selections; i++) {
872				if ((*dev_select)[i].selected == 0) {
873					(*dev_select)[i].selected =
874						++selection_number;
875					(*num_selected)++;
876				}
877			}
878		} else {
879			selection_number = 0;
880			for (i = 0; i < *num_selections; i++) {
881				if ((*dev_select)[i].selected != 0) {
882					(*dev_select)[i].selected =
883						++selection_number;
884				}
885			}
886		}
887	}
888
889	/*
890	 * If we're in the "add" selection mode and if we haven't already
891	 * selected maxshowdevs number of devices, go through the array and
892	 * select any unselected devices.  If we're in "only" mode, we
893	 * obviously don't want to select anything other than what the user
894	 * specifies.  If we're in "remove" mode, it probably isn't a good
895	 * idea to go through and select any more devices, since we might
896	 * end up selecting something that the user wants removed.  Through
897	 * more complicated logic, we could actually figure this out, but
898	 * that would probably require combining this loop with the various
899	 * selections loops above.
900	 */
901	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
902		for (i = 0; i < *num_selections; i++)
903			if ((*dev_select)[i].selected == 0) {
904				(*dev_select)[i].selected = ++selection_number;
905				(*num_selected)++;
906			}
907	}
908
909	/*
910	 * Look at the number of devices that have been selected.  If it
911	 * has changed, set the changed variable.  Otherwise, if we've
912	 * made a backup of the selection list, compare it to the current
913	 * selection list to see if the selected devices have changed.
914	 */
915	if ((changed == 0) && (old_num_selected != *num_selected))
916		changed = 1;
917	else if ((changed == 0) && (old_dev_select != NULL)) {
918		/*
919		 * Now we go through the selection list and we look at
920		 * it three different ways.
921		 */
922		for (i = 0; (i < *num_selections) && (changed == 0) &&
923		     (i < old_num_selections); i++) {
924			/*
925			 * If the device at index i in both the new and old
926			 * selection arrays has the same device number and
927			 * selection status, it hasn't changed.  We
928			 * continue on to the next index.
929			 */
930			if (((*dev_select)[i].device_number ==
931			     old_dev_select[i].device_number)
932			 && ((*dev_select)[i].selected ==
933			     old_dev_select[i].selected))
934				continue;
935
936			/*
937			 * Now, if we're still going through the if
938			 * statement, the above test wasn't true.  So we
939			 * check here to see if the device at index i in
940			 * the current array is the same as the device at
941			 * index i in the old array.  If it is, that means
942			 * that its selection number has changed.  Set
943			 * changed to 1 and exit the loop.
944			 */
945			else if ((*dev_select)[i].device_number ==
946			          old_dev_select[i].device_number) {
947				changed = 1;
948				break;
949			}
950			/*
951			 * If we get here, then the device at index i in
952			 * the current array isn't the same device as the
953			 * device at index i in the old array.
954			 */
955			else {
956				found = 0;
957
958				/*
959				 * Search through the old selection array
960				 * looking for a device with the same
961				 * device number as the device at index i
962				 * in the current array.  If the selection
963				 * status is the same, then we mark it as
964				 * found.  If the selection status isn't
965				 * the same, we break out of the loop.
966				 * Since found isn't set, changed will be
967				 * set to 1 below.
968				 */
969				for (j = 0; j < old_num_selections; j++) {
970					if (((*dev_select)[i].device_number ==
971					      old_dev_select[j].device_number)
972					 && ((*dev_select)[i].selected ==
973					      old_dev_select[j].selected)){
974						found = 1;
975						break;
976					}
977					else if ((*dev_select)[i].device_number
978					    == old_dev_select[j].device_number)
979						break;
980				}
981				if (found == 0)
982					changed = 1;
983			}
984		}
985	}
986	if (old_dev_select != NULL)
987		free(old_dev_select);
988
989	return(changed);
990}
991
992/*
993 * Comparison routine for qsort() above.  Note that the comparison here is
994 * backwards -- generally, it should return a value to indicate whether
995 * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
996 * it returns the opposite is so that the selection array will be sorted in
997 * order of decreasing performance.  We sort on two parameters.  The first
998 * sort key is whether or not one or the other of the devices in question
999 * has been selected.  If one of them has, and the other one has not, the
1000 * selected device is automatically more important than the unselected
1001 * device.  If neither device is selected, we judge the devices based upon
1002 * performance.
1003 */
1004static int
1005compare_select(const void *arg1, const void *arg2)
1006{
1007	if ((((const struct device_selection *)arg1)->selected)
1008	 && (((const struct device_selection *)arg2)->selected == 0))
1009		return(-1);
1010	else if ((((const struct device_selection *)arg1)->selected == 0)
1011	      && (((const struct device_selection *)arg2)->selected))
1012		return(1);
1013	else if (((const struct device_selection *)arg2)->bytes <
1014	         ((const struct device_selection *)arg1)->bytes)
1015		return(-1);
1016	else if (((const struct device_selection *)arg2)->bytes >
1017		 ((const struct device_selection *)arg1)->bytes)
1018		return(1);
1019	else
1020		return(0);
1021}
1022
1023/*
1024 * Take a string with the general format "arg1,arg2,arg3", and build a
1025 * device matching expression from it.
1026 */
1027int
1028devstat_buildmatch(char *match_str, struct devstat_match **matches,
1029		   int *num_matches)
1030{
1031	char *tstr[5];
1032	char **tempstr;
1033	int num_args;
1034	int i, j;
1035
1036	/* We can't do much without a string to parse */
1037	if (match_str == NULL) {
1038		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1039			 "%s: no match expression", __func__);
1040		return(-1);
1041	}
1042
1043	/*
1044	 * Break the (comma delimited) input string out into separate strings.
1045	 */
1046	for (tempstr = tstr, num_args  = 0;
1047	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1048		if (**tempstr != '\0') {
1049			num_args++;
1050			if (++tempstr >= &tstr[5])
1051				break;
1052		}
1053
1054	/* The user gave us too many type arguments */
1055	if (num_args > 3) {
1056		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1057			 "%s: too many type arguments", __func__);
1058		return(-1);
1059	}
1060
1061	if (*num_matches == 0)
1062		*matches = NULL;
1063
1064	*matches = (struct devstat_match *)reallocf(*matches,
1065		  sizeof(struct devstat_match) * (*num_matches + 1));
1066
1067	if (*matches == NULL) {
1068		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1069			 "%s: Cannot allocate memory for matches list", __func__);
1070		return(-1);
1071	}
1072
1073	/* Make sure the current entry is clear */
1074	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1075
1076	/*
1077	 * Step through the arguments the user gave us and build a device
1078	 * matching expression from them.
1079	 */
1080	for (i = 0; i < num_args; i++) {
1081		char *tempstr2, *tempstr3;
1082
1083		/*
1084		 * Get rid of leading white space.
1085		 */
1086		tempstr2 = tstr[i];
1087		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1088			tempstr2++;
1089
1090		/*
1091		 * Get rid of trailing white space.
1092		 */
1093		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1094
1095		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1096		    && (isspace(*tempstr3))) {
1097			*tempstr3 = '\0';
1098			tempstr3--;
1099		}
1100
1101		/*
1102		 * Go through the match table comparing the user's
1103		 * arguments to known device types, interfaces, etc.
1104		 */
1105		for (j = 0; match_table[j].match_str != NULL; j++) {
1106			/*
1107			 * We do case-insensitive matching, in case someone
1108			 * wants to enter "SCSI" instead of "scsi" or
1109			 * something like that.  Only compare as many
1110			 * characters as are in the string in the match
1111			 * table.  This should help if someone tries to use
1112			 * a super-long match expression.
1113			 */
1114			if (strncasecmp(tempstr2, match_table[j].match_str,
1115			    strlen(match_table[j].match_str)) == 0) {
1116				/*
1117				 * Make sure the user hasn't specified two
1118				 * items of the same type, like "da" and
1119				 * "cd".  One device cannot be both.
1120				 */
1121				if (((*matches)[*num_matches].match_fields &
1122				    match_table[j].match_field) != 0) {
1123					snprintf(devstat_errbuf,
1124						 sizeof(devstat_errbuf),
1125						 "%s: cannot have more than "
1126						 "one match item in a single "
1127						 "category", __func__);
1128					return(-1);
1129				}
1130				/*
1131				 * If we've gotten this far, we have a
1132				 * winner.  Set the appropriate fields in
1133				 * the match entry.
1134				 */
1135				(*matches)[*num_matches].match_fields |=
1136					match_table[j].match_field;
1137				(*matches)[*num_matches].device_type |=
1138					match_table[j].type;
1139				(*matches)[*num_matches].num_match_categories++;
1140				break;
1141			}
1142		}
1143		/*
1144		 * We should have found a match in the above for loop.  If
1145		 * not, that means the user entered an invalid device type
1146		 * or interface.
1147		 */
1148		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1149			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1150				 "%s: unknown match item \"%s\"", __func__,
1151				 tstr[i]);
1152			return(-1);
1153		}
1154	}
1155
1156	(*num_matches)++;
1157
1158	return(0);
1159}
1160
1161/*
1162 * Compute a number of device statistics.  Only one field is mandatory, and
1163 * that is "current".  Everything else is optional.  The caller passes in
1164 * pointers to variables to hold the various statistics he desires.  If he
1165 * doesn't want a particular staistic, he should pass in a NULL pointer.
1166 * Return values:
1167 * 0   -- success
1168 * -1  -- failure
1169 */
1170int
1171compute_stats(struct devstat *current, struct devstat *previous,
1172	      long double etime, u_int64_t *total_bytes,
1173	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1174	      long double *kb_per_transfer, long double *transfers_per_second,
1175	      long double *mb_per_second, long double *blocks_per_second,
1176	      long double *ms_per_transaction)
1177{
1178	return(devstat_compute_statistics(current, previous, etime,
1179	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1180	       total_bytes,
1181	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1182	       total_transfers,
1183	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1184	       total_blocks,
1185	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1186	       kb_per_transfer,
1187	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1188	       transfers_per_second,
1189	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1190	       mb_per_second,
1191	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1192	       blocks_per_second,
1193	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1194	       ms_per_transaction,
1195	       DSM_NONE));
1196}
1197
1198
1199/* This is 1/2^64 */
1200#define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1201
1202long double
1203devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1204{
1205	long double etime;
1206
1207	etime = cur_time->sec;
1208	etime += cur_time->frac * BINTIME_SCALE;
1209	if (prev_time != NULL) {
1210		etime -= prev_time->sec;
1211		etime -= prev_time->frac * BINTIME_SCALE;
1212	}
1213	return(etime);
1214}
1215
1216#define DELTA(field, index)				\
1217	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1218
1219#define DELTA_T(field)					\
1220	devstat_compute_etime(&current->field,  	\
1221	(previous ? &previous->field : NULL))
1222
1223int
1224devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1225			   long double etime, ...)
1226{
1227	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1228	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1229	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1230	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1231	long double totalduration, totaldurationread, totaldurationwrite;
1232	long double totaldurationfree, totaldurationother;
1233	va_list ap;
1234	devstat_metric metric;
1235	u_int64_t *destu64;
1236	long double *destld;
1237	int retval;
1238
1239	retval = 0;
1240
1241	/*
1242	 * current is the only mandatory field.
1243	 */
1244	if (current == NULL) {
1245		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1246			 "%s: current stats structure was NULL", __func__);
1247		return(-1);
1248	}
1249
1250	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1251	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1252	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1253	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1254
1255	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1256	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1257	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1258	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1259	totaltransfers = totaltransfersread + totaltransferswrite +
1260			 totaltransfersother + totaltransfersfree;
1261
1262	totalblocks = totalbytes;
1263	totalblocksread = totalbytesread;
1264	totalblockswrite = totalbyteswrite;
1265	totalblocksfree = totalbytesfree;
1266
1267	if (current->block_size > 0) {
1268		totalblocks /= current->block_size;
1269		totalblocksread /= current->block_size;
1270		totalblockswrite /= current->block_size;
1271		totalblocksfree /= current->block_size;
1272	} else {
1273		totalblocks /= 512;
1274		totalblocksread /= 512;
1275		totalblockswrite /= 512;
1276		totalblocksfree /= 512;
1277	}
1278
1279	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1280	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1281	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1282	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1283	totalduration = totaldurationread + totaldurationwrite +
1284	    totaldurationfree + totaldurationother;
1285
1286	va_start(ap, etime);
1287
1288	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1289
1290		if (metric == DSM_NONE)
1291			break;
1292
1293		if (metric >= DSM_MAX) {
1294			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1295				 "%s: metric %d is out of range", __func__,
1296				 metric);
1297			retval = -1;
1298			goto bailout;
1299		}
1300
1301		switch (devstat_arg_list[metric].argtype) {
1302		case DEVSTAT_ARG_UINT64:
1303			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1304			break;
1305		case DEVSTAT_ARG_LD:
1306			destld = (long double *)va_arg(ap, long double *);
1307			break;
1308		case DEVSTAT_ARG_SKIP:
1309			destld = (long double *)va_arg(ap, long double *);
1310			break;
1311		default:
1312			retval = -1;
1313			goto bailout;
1314			break; /* NOTREACHED */
1315		}
1316
1317		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1318			continue;
1319
1320		switch (metric) {
1321		case DSM_TOTAL_BYTES:
1322			*destu64 = totalbytes;
1323			break;
1324		case DSM_TOTAL_BYTES_READ:
1325			*destu64 = totalbytesread;
1326			break;
1327		case DSM_TOTAL_BYTES_WRITE:
1328			*destu64 = totalbyteswrite;
1329			break;
1330		case DSM_TOTAL_BYTES_FREE:
1331			*destu64 = totalbytesfree;
1332			break;
1333		case DSM_TOTAL_TRANSFERS:
1334			*destu64 = totaltransfers;
1335			break;
1336		case DSM_TOTAL_TRANSFERS_READ:
1337			*destu64 = totaltransfersread;
1338			break;
1339		case DSM_TOTAL_TRANSFERS_WRITE:
1340			*destu64 = totaltransferswrite;
1341			break;
1342		case DSM_TOTAL_TRANSFERS_FREE:
1343			*destu64 = totaltransfersfree;
1344			break;
1345		case DSM_TOTAL_TRANSFERS_OTHER:
1346			*destu64 = totaltransfersother;
1347			break;
1348		case DSM_TOTAL_BLOCKS:
1349			*destu64 = totalblocks;
1350			break;
1351		case DSM_TOTAL_BLOCKS_READ:
1352			*destu64 = totalblocksread;
1353			break;
1354		case DSM_TOTAL_BLOCKS_WRITE:
1355			*destu64 = totalblockswrite;
1356			break;
1357		case DSM_TOTAL_BLOCKS_FREE:
1358			*destu64 = totalblocksfree;
1359			break;
1360		case DSM_KB_PER_TRANSFER:
1361			*destld = totalbytes;
1362			*destld /= 1024;
1363			if (totaltransfers > 0)
1364				*destld /= totaltransfers;
1365			else
1366				*destld = 0.0;
1367			break;
1368		case DSM_KB_PER_TRANSFER_READ:
1369			*destld = totalbytesread;
1370			*destld /= 1024;
1371			if (totaltransfersread > 0)
1372				*destld /= totaltransfersread;
1373			else
1374				*destld = 0.0;
1375			break;
1376		case DSM_KB_PER_TRANSFER_WRITE:
1377			*destld = totalbyteswrite;
1378			*destld /= 1024;
1379			if (totaltransferswrite > 0)
1380				*destld /= totaltransferswrite;
1381			else
1382				*destld = 0.0;
1383			break;
1384		case DSM_KB_PER_TRANSFER_FREE:
1385			*destld = totalbytesfree;
1386			*destld /= 1024;
1387			if (totaltransfersfree > 0)
1388				*destld /= totaltransfersfree;
1389			else
1390				*destld = 0.0;
1391			break;
1392		case DSM_TRANSFERS_PER_SECOND:
1393			if (etime > 0.0) {
1394				*destld = totaltransfers;
1395				*destld /= etime;
1396			} else
1397				*destld = 0.0;
1398			break;
1399		case DSM_TRANSFERS_PER_SECOND_READ:
1400			if (etime > 0.0) {
1401				*destld = totaltransfersread;
1402				*destld /= etime;
1403			} else
1404				*destld = 0.0;
1405			break;
1406		case DSM_TRANSFERS_PER_SECOND_WRITE:
1407			if (etime > 0.0) {
1408				*destld = totaltransferswrite;
1409				*destld /= etime;
1410			} else
1411				*destld = 0.0;
1412			break;
1413		case DSM_TRANSFERS_PER_SECOND_FREE:
1414			if (etime > 0.0) {
1415				*destld = totaltransfersfree;
1416				*destld /= etime;
1417			} else
1418				*destld = 0.0;
1419			break;
1420		case DSM_TRANSFERS_PER_SECOND_OTHER:
1421			if (etime > 0.0) {
1422				*destld = totaltransfersother;
1423				*destld /= etime;
1424			} else
1425				*destld = 0.0;
1426			break;
1427		case DSM_MB_PER_SECOND:
1428			*destld = totalbytes;
1429			*destld /= 1024 * 1024;
1430			if (etime > 0.0)
1431				*destld /= etime;
1432			else
1433				*destld = 0.0;
1434			break;
1435		case DSM_MB_PER_SECOND_READ:
1436			*destld = totalbytesread;
1437			*destld /= 1024 * 1024;
1438			if (etime > 0.0)
1439				*destld /= etime;
1440			else
1441				*destld = 0.0;
1442			break;
1443		case DSM_MB_PER_SECOND_WRITE:
1444			*destld = totalbyteswrite;
1445			*destld /= 1024 * 1024;
1446			if (etime > 0.0)
1447				*destld /= etime;
1448			else
1449				*destld = 0.0;
1450			break;
1451		case DSM_MB_PER_SECOND_FREE:
1452			*destld = totalbytesfree;
1453			*destld /= 1024 * 1024;
1454			if (etime > 0.0)
1455				*destld /= etime;
1456			else
1457				*destld = 0.0;
1458			break;
1459		case DSM_BLOCKS_PER_SECOND:
1460			*destld = totalblocks;
1461			if (etime > 0.0)
1462				*destld /= etime;
1463			else
1464				*destld = 0.0;
1465			break;
1466		case DSM_BLOCKS_PER_SECOND_READ:
1467			*destld = totalblocksread;
1468			if (etime > 0.0)
1469				*destld /= etime;
1470			else
1471				*destld = 0.0;
1472			break;
1473		case DSM_BLOCKS_PER_SECOND_WRITE:
1474			*destld = totalblockswrite;
1475			if (etime > 0.0)
1476				*destld /= etime;
1477			else
1478				*destld = 0.0;
1479			break;
1480		case DSM_BLOCKS_PER_SECOND_FREE:
1481			*destld = totalblocksfree;
1482			if (etime > 0.0)
1483				*destld /= etime;
1484			else
1485				*destld = 0.0;
1486			break;
1487		/*
1488		 * Some devstat callers update the duration and some don't.
1489		 * So this will only be accurate if they provide the
1490		 * duration.
1491		 */
1492		case DSM_MS_PER_TRANSACTION:
1493			if (totaltransfers > 0) {
1494				*destld = totalduration;
1495				*destld /= totaltransfers;
1496				*destld *= 1000;
1497			} else
1498				*destld = 0.0;
1499			break;
1500		case DSM_MS_PER_TRANSACTION_READ:
1501			if (totaltransfersread > 0) {
1502				*destld = totaldurationread;
1503				*destld /= totaltransfersread;
1504				*destld *= 1000;
1505			} else
1506				*destld = 0.0;
1507			break;
1508		case DSM_MS_PER_TRANSACTION_WRITE:
1509			if (totaltransferswrite > 0) {
1510				*destld = totaldurationwrite;
1511				*destld /= totaltransferswrite;
1512				*destld *= 1000;
1513			} else
1514				*destld = 0.0;
1515			break;
1516		case DSM_MS_PER_TRANSACTION_FREE:
1517			if (totaltransfersfree > 0) {
1518				*destld = totaldurationfree;
1519				*destld /= totaltransfersfree;
1520				*destld *= 1000;
1521			} else
1522				*destld = 0.0;
1523			break;
1524		case DSM_MS_PER_TRANSACTION_OTHER:
1525			if (totaltransfersother > 0) {
1526				*destld = totaldurationother;
1527				*destld /= totaltransfersother;
1528				*destld *= 1000;
1529			} else
1530				*destld = 0.0;
1531			break;
1532		case DSM_BUSY_PCT:
1533			*destld = DELTA_T(busy_time);
1534			if (*destld < 0)
1535				*destld = 0;
1536			*destld /= etime;
1537			*destld *= 100;
1538			if (*destld < 0)
1539				*destld = 0;
1540			break;
1541		case DSM_QUEUE_LENGTH:
1542			*destu64 = current->start_count - current->end_count;
1543			break;
1544		case DSM_TOTAL_DURATION:
1545			*destld = totalduration;
1546			break;
1547		case DSM_TOTAL_DURATION_READ:
1548			*destld = totaldurationread;
1549			break;
1550		case DSM_TOTAL_DURATION_WRITE:
1551			*destld = totaldurationwrite;
1552			break;
1553		case DSM_TOTAL_DURATION_FREE:
1554			*destld = totaldurationfree;
1555			break;
1556		case DSM_TOTAL_DURATION_OTHER:
1557			*destld = totaldurationother;
1558			break;
1559		case DSM_TOTAL_BUSY_TIME:
1560			*destld = DELTA_T(busy_time);
1561			break;
1562/*
1563 * XXX: comment out the default block to see if any case's are missing.
1564 */
1565#if 1
1566		default:
1567			/*
1568			 * This shouldn't happen, since we should have
1569			 * caught any out of range metrics at the top of
1570			 * the loop.
1571			 */
1572			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1573				 "%s: unknown metric %d", __func__, metric);
1574			retval = -1;
1575			goto bailout;
1576			break; /* NOTREACHED */
1577#endif
1578		}
1579	}
1580
1581bailout:
1582
1583	va_end(ap);
1584	return(retval);
1585}
1586
1587static int
1588readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1589{
1590
1591	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1592		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1593			 "%s: error reading value (kvm_read): %s", __func__,
1594			 kvm_geterr(kd));
1595		return(-1);
1596	}
1597	return(0);
1598}
1599
1600static int
1601readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1602{
1603	struct nlist nl[2];
1604
1605	nl[0].n_name = (char *)name;
1606	nl[1].n_name = NULL;
1607
1608	if (kvm_nlist(kd, nl) == -1) {
1609		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1610			 "%s: error getting name list (kvm_nlist): %s",
1611			 __func__, kvm_geterr(kd));
1612		return(-1);
1613	}
1614	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1615}
1616
1617/*
1618 * This duplicates the functionality of the kernel sysctl handler for poking
1619 * through crash dumps.
1620 */
1621static char *
1622get_devstat_kvm(kvm_t *kd)
1623{
1624	int i, wp;
1625	long gen;
1626	struct devstat *nds;
1627	struct devstat ds;
1628	struct devstatlist dhead;
1629	int num_devs;
1630	char *rv = NULL;
1631
1632	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1633		return(NULL);
1634	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1635		return(NULL);
1636
1637	nds = STAILQ_FIRST(&dhead);
1638
1639	if ((rv = malloc(sizeof(gen))) == NULL) {
1640		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1641			 "%s: out of memory (initial malloc failed)",
1642			 __func__);
1643		return(NULL);
1644	}
1645	gen = devstat_getgeneration(kd);
1646	memcpy(rv, &gen, sizeof(gen));
1647	wp = sizeof(gen);
1648	/*
1649	 * Now push out all the devices.
1650	 */
1651	for (i = 0; (nds != NULL) && (i < num_devs);
1652	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1653		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1654			free(rv);
1655			return(NULL);
1656		}
1657		nds = &ds;
1658		rv = (char *)reallocf(rv, sizeof(gen) +
1659				      sizeof(ds) * (i + 1));
1660		if (rv == NULL) {
1661			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1662				 "%s: out of memory (malloc failed)",
1663				 __func__);
1664			return(NULL);
1665		}
1666		memcpy(rv + wp, &ds, sizeof(ds));
1667		wp += sizeof(ds);
1668	}
1669	return(rv);
1670}
1671