v3_addr.c revision 306195
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                        IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111# define ADDR_RAW_BUF_LEN        16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118    switch (afi) {
119    case IANA_AFI_IPV4:
120        return 4;
121    case IANA_AFI_IPV6:
122        return 16;
123    default:
124        return 0;
125    }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133    return ((f != NULL &&
134             f->addressFamily != NULL && f->addressFamily->data != NULL)
135            ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
136            : 0);
137}
138
139/*
140 * Expand the bitstring form of an address into a raw byte array.
141 * At the moment this is coded for simplicity, not speed.
142 */
143static int addr_expand(unsigned char *addr,
144                       const ASN1_BIT_STRING *bs,
145                       const int length, const unsigned char fill)
146{
147    if (bs->length < 0 || bs->length > length)
148        return 0;
149    if (bs->length > 0) {
150        memcpy(addr, bs->data, bs->length);
151        if ((bs->flags & 7) != 0) {
152            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
153            if (fill == 0)
154                addr[bs->length - 1] &= ~mask;
155            else
156                addr[bs->length - 1] |= mask;
157        }
158    }
159    memset(addr + bs->length, fill, length - bs->length);
160    return 1;
161}
162
163/*
164 * Extract the prefix length from a bitstring.
165 */
166# define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
167
168/*
169 * i2r handler for one address bitstring.
170 */
171static int i2r_address(BIO *out,
172                       const unsigned afi,
173                       const unsigned char fill, const ASN1_BIT_STRING *bs)
174{
175    unsigned char addr[ADDR_RAW_BUF_LEN];
176    int i, n;
177
178    if (bs->length < 0)
179        return 0;
180    switch (afi) {
181    case IANA_AFI_IPV4:
182        if (!addr_expand(addr, bs, 4, fill))
183            return 0;
184        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
185        break;
186    case IANA_AFI_IPV6:
187        if (!addr_expand(addr, bs, 16, fill))
188            return 0;
189        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
190             n -= 2) ;
191        for (i = 0; i < n; i += 2)
192            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
193                       (i < 14 ? ":" : ""));
194        if (i < 16)
195            BIO_puts(out, ":");
196        if (i == 0)
197            BIO_puts(out, ":");
198        break;
199    default:
200        for (i = 0; i < bs->length; i++)
201            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
202        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
203        break;
204    }
205    return 1;
206}
207
208/*
209 * i2r handler for a sequence of addresses and ranges.
210 */
211static int i2r_IPAddressOrRanges(BIO *out,
212                                 const int indent,
213                                 const IPAddressOrRanges *aors,
214                                 const unsigned afi)
215{
216    int i;
217    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
218        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
219        BIO_printf(out, "%*s", indent, "");
220        switch (aor->type) {
221        case IPAddressOrRange_addressPrefix:
222            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
223                return 0;
224            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
225            continue;
226        case IPAddressOrRange_addressRange:
227            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
228                return 0;
229            BIO_puts(out, "-");
230            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
231                return 0;
232            BIO_puts(out, "\n");
233            continue;
234        }
235    }
236    return 1;
237}
238
239/*
240 * i2r handler for an IPAddrBlocks extension.
241 */
242static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
243                            void *ext, BIO *out, int indent)
244{
245    const IPAddrBlocks *addr = ext;
246    int i;
247    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
248        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
249        const unsigned int afi = v3_addr_get_afi(f);
250        switch (afi) {
251        case IANA_AFI_IPV4:
252            BIO_printf(out, "%*sIPv4", indent, "");
253            break;
254        case IANA_AFI_IPV6:
255            BIO_printf(out, "%*sIPv6", indent, "");
256            break;
257        default:
258            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
259            break;
260        }
261        if (f->addressFamily->length > 2) {
262            switch (f->addressFamily->data[2]) {
263            case 1:
264                BIO_puts(out, " (Unicast)");
265                break;
266            case 2:
267                BIO_puts(out, " (Multicast)");
268                break;
269            case 3:
270                BIO_puts(out, " (Unicast/Multicast)");
271                break;
272            case 4:
273                BIO_puts(out, " (MPLS)");
274                break;
275            case 64:
276                BIO_puts(out, " (Tunnel)");
277                break;
278            case 65:
279                BIO_puts(out, " (VPLS)");
280                break;
281            case 66:
282                BIO_puts(out, " (BGP MDT)");
283                break;
284            case 128:
285                BIO_puts(out, " (MPLS-labeled VPN)");
286                break;
287            default:
288                BIO_printf(out, " (Unknown SAFI %u)",
289                           (unsigned)f->addressFamily->data[2]);
290                break;
291            }
292        }
293        switch (f->ipAddressChoice->type) {
294        case IPAddressChoice_inherit:
295            BIO_puts(out, ": inherit\n");
296            break;
297        case IPAddressChoice_addressesOrRanges:
298            BIO_puts(out, ":\n");
299            if (!i2r_IPAddressOrRanges(out,
300                                       indent + 2,
301                                       f->ipAddressChoice->
302                                       u.addressesOrRanges, afi))
303                return 0;
304            break;
305        }
306    }
307    return 1;
308}
309
310/*
311 * Sort comparison function for a sequence of IPAddressOrRange
312 * elements.
313 *
314 * There's no sane answer we can give if addr_expand() fails, and an
315 * assertion failure on externally supplied data is seriously uncool,
316 * so we just arbitrarily declare that if given invalid inputs this
317 * function returns -1.  If this messes up your preferred sort order
318 * for garbage input, tough noogies.
319 */
320static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
321                                const IPAddressOrRange *b, const int length)
322{
323    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
324    int prefixlen_a = 0, prefixlen_b = 0;
325    int r;
326
327    switch (a->type) {
328    case IPAddressOrRange_addressPrefix:
329        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
330            return -1;
331        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
332        break;
333    case IPAddressOrRange_addressRange:
334        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
335            return -1;
336        prefixlen_a = length * 8;
337        break;
338    }
339
340    switch (b->type) {
341    case IPAddressOrRange_addressPrefix:
342        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
343            return -1;
344        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
345        break;
346    case IPAddressOrRange_addressRange:
347        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
348            return -1;
349        prefixlen_b = length * 8;
350        break;
351    }
352
353    if ((r = memcmp(addr_a, addr_b, length)) != 0)
354        return r;
355    else
356        return prefixlen_a - prefixlen_b;
357}
358
359/*
360 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
361 * comparision routines are only allowed two arguments.
362 */
363static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
364                                  const IPAddressOrRange *const *b)
365{
366    return IPAddressOrRange_cmp(*a, *b, 4);
367}
368
369/*
370 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
371 * comparision routines are only allowed two arguments.
372 */
373static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
374                                  const IPAddressOrRange *const *b)
375{
376    return IPAddressOrRange_cmp(*a, *b, 16);
377}
378
379/*
380 * Calculate whether a range collapses to a prefix.
381 * See last paragraph of RFC 3779 2.2.3.7.
382 */
383static int range_should_be_prefix(const unsigned char *min,
384                                  const unsigned char *max, const int length)
385{
386    unsigned char mask;
387    int i, j;
388
389    OPENSSL_assert(memcmp(min, max, length) <= 0);
390    for (i = 0; i < length && min[i] == max[i]; i++) ;
391    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
392    if (i < j)
393        return -1;
394    if (i > j)
395        return i * 8;
396    mask = min[i] ^ max[i];
397    switch (mask) {
398    case 0x01:
399        j = 7;
400        break;
401    case 0x03:
402        j = 6;
403        break;
404    case 0x07:
405        j = 5;
406        break;
407    case 0x0F:
408        j = 4;
409        break;
410    case 0x1F:
411        j = 3;
412        break;
413    case 0x3F:
414        j = 2;
415        break;
416    case 0x7F:
417        j = 1;
418        break;
419    default:
420        return -1;
421    }
422    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
423        return -1;
424    else
425        return i * 8 + j;
426}
427
428/*
429 * Construct a prefix.
430 */
431static int make_addressPrefix(IPAddressOrRange **result,
432                              unsigned char *addr, const int prefixlen)
433{
434    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
435    IPAddressOrRange *aor = IPAddressOrRange_new();
436
437    if (aor == NULL)
438        return 0;
439    aor->type = IPAddressOrRange_addressPrefix;
440    if (aor->u.addressPrefix == NULL &&
441        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
442        goto err;
443    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
444        goto err;
445    aor->u.addressPrefix->flags &= ~7;
446    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
447    if (bitlen > 0) {
448        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
449        aor->u.addressPrefix->flags |= 8 - bitlen;
450    }
451
452    *result = aor;
453    return 1;
454
455 err:
456    IPAddressOrRange_free(aor);
457    return 0;
458}
459
460/*
461 * Construct a range.  If it can be expressed as a prefix,
462 * return a prefix instead.  Doing this here simplifies
463 * the rest of the code considerably.
464 */
465static int make_addressRange(IPAddressOrRange **result,
466                             unsigned char *min,
467                             unsigned char *max, const int length)
468{
469    IPAddressOrRange *aor;
470    int i, prefixlen;
471
472    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
473        return make_addressPrefix(result, min, prefixlen);
474
475    if ((aor = IPAddressOrRange_new()) == NULL)
476        return 0;
477    aor->type = IPAddressOrRange_addressRange;
478    OPENSSL_assert(aor->u.addressRange == NULL);
479    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
480        goto err;
481    if (aor->u.addressRange->min == NULL &&
482        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
483        goto err;
484    if (aor->u.addressRange->max == NULL &&
485        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
486        goto err;
487
488    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
489    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
490        goto err;
491    aor->u.addressRange->min->flags &= ~7;
492    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
493    if (i > 0) {
494        unsigned char b = min[i - 1];
495        int j = 1;
496        while ((b & (0xFFU >> j)) != 0)
497            ++j;
498        aor->u.addressRange->min->flags |= 8 - j;
499    }
500
501    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
502    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
503        goto err;
504    aor->u.addressRange->max->flags &= ~7;
505    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
506    if (i > 0) {
507        unsigned char b = max[i - 1];
508        int j = 1;
509        while ((b & (0xFFU >> j)) != (0xFFU >> j))
510            ++j;
511        aor->u.addressRange->max->flags |= 8 - j;
512    }
513
514    *result = aor;
515    return 1;
516
517 err:
518    IPAddressOrRange_free(aor);
519    return 0;
520}
521
522/*
523 * Construct a new address family or find an existing one.
524 */
525static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
526                                             const unsigned afi,
527                                             const unsigned *safi)
528{
529    IPAddressFamily *f;
530    unsigned char key[3];
531    unsigned keylen;
532    int i;
533
534    key[0] = (afi >> 8) & 0xFF;
535    key[1] = afi & 0xFF;
536    if (safi != NULL) {
537        key[2] = *safi & 0xFF;
538        keylen = 3;
539    } else {
540        keylen = 2;
541    }
542
543    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
544        f = sk_IPAddressFamily_value(addr, i);
545        OPENSSL_assert(f->addressFamily->data != NULL);
546        if (f->addressFamily->length == keylen &&
547            !memcmp(f->addressFamily->data, key, keylen))
548            return f;
549    }
550
551    if ((f = IPAddressFamily_new()) == NULL)
552        goto err;
553    if (f->ipAddressChoice == NULL &&
554        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
555        goto err;
556    if (f->addressFamily == NULL &&
557        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
558        goto err;
559    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
560        goto err;
561    if (!sk_IPAddressFamily_push(addr, f))
562        goto err;
563
564    return f;
565
566 err:
567    IPAddressFamily_free(f);
568    return NULL;
569}
570
571/*
572 * Add an inheritance element.
573 */
574int v3_addr_add_inherit(IPAddrBlocks *addr,
575                        const unsigned afi, const unsigned *safi)
576{
577    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
578    if (f == NULL ||
579        f->ipAddressChoice == NULL ||
580        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
581         f->ipAddressChoice->u.addressesOrRanges != NULL))
582        return 0;
583    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
584        f->ipAddressChoice->u.inherit != NULL)
585        return 1;
586    if (f->ipAddressChoice->u.inherit == NULL &&
587        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
588        return 0;
589    f->ipAddressChoice->type = IPAddressChoice_inherit;
590    return 1;
591}
592
593/*
594 * Construct an IPAddressOrRange sequence, or return an existing one.
595 */
596static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
597                                               const unsigned afi,
598                                               const unsigned *safi)
599{
600    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
601    IPAddressOrRanges *aors = NULL;
602
603    if (f == NULL ||
604        f->ipAddressChoice == NULL ||
605        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
606         f->ipAddressChoice->u.inherit != NULL))
607        return NULL;
608    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
609        aors = f->ipAddressChoice->u.addressesOrRanges;
610    if (aors != NULL)
611        return aors;
612    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
613        return NULL;
614    switch (afi) {
615    case IANA_AFI_IPV4:
616        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
617        break;
618    case IANA_AFI_IPV6:
619        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
620        break;
621    }
622    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
623    f->ipAddressChoice->u.addressesOrRanges = aors;
624    return aors;
625}
626
627/*
628 * Add a prefix.
629 */
630int v3_addr_add_prefix(IPAddrBlocks *addr,
631                       const unsigned afi,
632                       const unsigned *safi,
633                       unsigned char *a, const int prefixlen)
634{
635    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636    IPAddressOrRange *aor;
637    if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638        return 0;
639    if (sk_IPAddressOrRange_push(aors, aor))
640        return 1;
641    IPAddressOrRange_free(aor);
642    return 0;
643}
644
645/*
646 * Add a range.
647 */
648int v3_addr_add_range(IPAddrBlocks *addr,
649                      const unsigned afi,
650                      const unsigned *safi,
651                      unsigned char *min, unsigned char *max)
652{
653    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
654    IPAddressOrRange *aor;
655    int length = length_from_afi(afi);
656    if (aors == NULL)
657        return 0;
658    if (!make_addressRange(&aor, min, max, length))
659        return 0;
660    if (sk_IPAddressOrRange_push(aors, aor))
661        return 1;
662    IPAddressOrRange_free(aor);
663    return 0;
664}
665
666/*
667 * Extract min and max values from an IPAddressOrRange.
668 */
669static int extract_min_max(IPAddressOrRange *aor,
670                           unsigned char *min, unsigned char *max, int length)
671{
672    if (aor == NULL || min == NULL || max == NULL)
673        return 0;
674    switch (aor->type) {
675    case IPAddressOrRange_addressPrefix:
676        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
677                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
678    case IPAddressOrRange_addressRange:
679        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
680                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
681    }
682    return 0;
683}
684
685/*
686 * Public wrapper for extract_min_max().
687 */
688int v3_addr_get_range(IPAddressOrRange *aor,
689                      const unsigned afi,
690                      unsigned char *min,
691                      unsigned char *max, const int length)
692{
693    int afi_length = length_from_afi(afi);
694    if (aor == NULL || min == NULL || max == NULL ||
695        afi_length == 0 || length < afi_length ||
696        (aor->type != IPAddressOrRange_addressPrefix &&
697         aor->type != IPAddressOrRange_addressRange) ||
698        !extract_min_max(aor, min, max, afi_length))
699        return 0;
700
701    return afi_length;
702}
703
704/*
705 * Sort comparision function for a sequence of IPAddressFamily.
706 *
707 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
708 * the ordering: I can read it as meaning that IPv6 without a SAFI
709 * comes before IPv4 with a SAFI, which seems pretty weird.  The
710 * examples in appendix B suggest that the author intended the
711 * null-SAFI rule to apply only within a single AFI, which is what I
712 * would have expected and is what the following code implements.
713 */
714static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
715                               const IPAddressFamily *const *b_)
716{
717    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
718    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
719    int len = ((a->length <= b->length) ? a->length : b->length);
720    int cmp = memcmp(a->data, b->data, len);
721    return cmp ? cmp : a->length - b->length;
722}
723
724/*
725 * Check whether an IPAddrBLocks is in canonical form.
726 */
727int v3_addr_is_canonical(IPAddrBlocks *addr)
728{
729    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
730    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
731    IPAddressOrRanges *aors;
732    int i, j, k;
733
734    /*
735     * Empty extension is cannonical.
736     */
737    if (addr == NULL)
738        return 1;
739
740    /*
741     * Check whether the top-level list is in order.
742     */
743    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
744        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
745        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
746        if (IPAddressFamily_cmp(&a, &b) >= 0)
747            return 0;
748    }
749
750    /*
751     * Top level's ok, now check each address family.
752     */
753    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
754        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
755        int length = length_from_afi(v3_addr_get_afi(f));
756
757        /*
758         * Inheritance is canonical.  Anything other than inheritance or
759         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
760         */
761        if (f == NULL || f->ipAddressChoice == NULL)
762            return 0;
763        switch (f->ipAddressChoice->type) {
764        case IPAddressChoice_inherit:
765            continue;
766        case IPAddressChoice_addressesOrRanges:
767            break;
768        default:
769            return 0;
770        }
771
772        /*
773         * It's an IPAddressOrRanges sequence, check it.
774         */
775        aors = f->ipAddressChoice->u.addressesOrRanges;
776        if (sk_IPAddressOrRange_num(aors) == 0)
777            return 0;
778        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
779            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
780            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
781
782            if (!extract_min_max(a, a_min, a_max, length) ||
783                !extract_min_max(b, b_min, b_max, length))
784                return 0;
785
786            /*
787             * Punt misordered list, overlapping start, or inverted range.
788             */
789            if (memcmp(a_min, b_min, length) >= 0 ||
790                memcmp(a_min, a_max, length) > 0 ||
791                memcmp(b_min, b_max, length) > 0)
792                return 0;
793
794            /*
795             * Punt if adjacent or overlapping.  Check for adjacency by
796             * subtracting one from b_min first.
797             */
798            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
799            if (memcmp(a_max, b_min, length) >= 0)
800                return 0;
801
802            /*
803             * Check for range that should be expressed as a prefix.
804             */
805            if (a->type == IPAddressOrRange_addressRange &&
806                range_should_be_prefix(a_min, a_max, length) >= 0)
807                return 0;
808        }
809
810        /*
811         * Check range to see if it's inverted or should be a
812         * prefix.
813         */
814        j = sk_IPAddressOrRange_num(aors) - 1;
815        {
816            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
817            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
818                if (!extract_min_max(a, a_min, a_max, length))
819                    return 0;
820                if (memcmp(a_min, a_max, length) > 0 ||
821                    range_should_be_prefix(a_min, a_max, length) >= 0)
822                    return 0;
823            }
824        }
825    }
826
827    /*
828     * If we made it through all that, we're happy.
829     */
830    return 1;
831}
832
833/*
834 * Whack an IPAddressOrRanges into canonical form.
835 */
836static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
837                                      const unsigned afi)
838{
839    int i, j, length = length_from_afi(afi);
840
841    /*
842     * Sort the IPAddressOrRanges sequence.
843     */
844    sk_IPAddressOrRange_sort(aors);
845
846    /*
847     * Clean up representation issues, punt on duplicates or overlaps.
848     */
849    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
850        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
851        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
852        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
853        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
854
855        if (!extract_min_max(a, a_min, a_max, length) ||
856            !extract_min_max(b, b_min, b_max, length))
857            return 0;
858
859        /*
860         * Punt inverted ranges.
861         */
862        if (memcmp(a_min, a_max, length) > 0 ||
863            memcmp(b_min, b_max, length) > 0)
864            return 0;
865
866        /*
867         * Punt overlaps.
868         */
869        if (memcmp(a_max, b_min, length) >= 0)
870            return 0;
871
872        /*
873         * Merge if a and b are adjacent.  We check for
874         * adjacency by subtracting one from b_min first.
875         */
876        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
877        if (memcmp(a_max, b_min, length) == 0) {
878            IPAddressOrRange *merged;
879            if (!make_addressRange(&merged, a_min, b_max, length))
880                return 0;
881            (void)sk_IPAddressOrRange_set(aors, i, merged);
882            (void)sk_IPAddressOrRange_delete(aors, i + 1);
883            IPAddressOrRange_free(a);
884            IPAddressOrRange_free(b);
885            --i;
886            continue;
887        }
888    }
889
890    /*
891     * Check for inverted final range.
892     */
893    j = sk_IPAddressOrRange_num(aors) - 1;
894    {
895        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
896        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
897            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
898            extract_min_max(a, a_min, a_max, length);
899            if (memcmp(a_min, a_max, length) > 0)
900                return 0;
901        }
902    }
903
904    return 1;
905}
906
907/*
908 * Whack an IPAddrBlocks extension into canonical form.
909 */
910int v3_addr_canonize(IPAddrBlocks *addr)
911{
912    int i;
913    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
914        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
915        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
916            !IPAddressOrRanges_canonize(f->ipAddressChoice->
917                                        u.addressesOrRanges,
918                                        v3_addr_get_afi(f)))
919            return 0;
920    }
921    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
922    sk_IPAddressFamily_sort(addr);
923    OPENSSL_assert(v3_addr_is_canonical(addr));
924    return 1;
925}
926
927/*
928 * v2i handler for the IPAddrBlocks extension.
929 */
930static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
931                              struct v3_ext_ctx *ctx,
932                              STACK_OF(CONF_VALUE) *values)
933{
934    static const char v4addr_chars[] = "0123456789.";
935    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
936    IPAddrBlocks *addr = NULL;
937    char *s = NULL, *t;
938    int i;
939
940    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
941        X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
942        return NULL;
943    }
944
945    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
946        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
947        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
948        unsigned afi, *safi = NULL, safi_;
949        const char *addr_chars;
950        int prefixlen, i1, i2, delim, length;
951
952        if (!name_cmp(val->name, "IPv4")) {
953            afi = IANA_AFI_IPV4;
954        } else if (!name_cmp(val->name, "IPv6")) {
955            afi = IANA_AFI_IPV6;
956        } else if (!name_cmp(val->name, "IPv4-SAFI")) {
957            afi = IANA_AFI_IPV4;
958            safi = &safi_;
959        } else if (!name_cmp(val->name, "IPv6-SAFI")) {
960            afi = IANA_AFI_IPV6;
961            safi = &safi_;
962        } else {
963            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
964                      X509V3_R_EXTENSION_NAME_ERROR);
965            X509V3_conf_err(val);
966            goto err;
967        }
968
969        switch (afi) {
970        case IANA_AFI_IPV4:
971            addr_chars = v4addr_chars;
972            break;
973        case IANA_AFI_IPV6:
974            addr_chars = v6addr_chars;
975            break;
976        }
977
978        length = length_from_afi(afi);
979
980        /*
981         * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
982         * the other input values.
983         */
984        if (safi != NULL) {
985            *safi = strtoul(val->value, &t, 0);
986            t += strspn(t, " \t");
987            if (*safi > 0xFF || *t++ != ':') {
988                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
989                X509V3_conf_err(val);
990                goto err;
991            }
992            t += strspn(t, " \t");
993            s = BUF_strdup(t);
994        } else {
995            s = BUF_strdup(val->value);
996        }
997        if (s == NULL) {
998            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
999            goto err;
1000        }
1001
1002        /*
1003         * Check for inheritance.  Not worth additional complexity to
1004         * optimize this (seldom-used) case.
1005         */
1006        if (!strcmp(s, "inherit")) {
1007            if (!v3_addr_add_inherit(addr, afi, safi)) {
1008                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1009                          X509V3_R_INVALID_INHERITANCE);
1010                X509V3_conf_err(val);
1011                goto err;
1012            }
1013            OPENSSL_free(s);
1014            s = NULL;
1015            continue;
1016        }
1017
1018        i1 = strspn(s, addr_chars);
1019        i2 = i1 + strspn(s + i1, " \t");
1020        delim = s[i2++];
1021        s[i1] = '\0';
1022
1023        if (a2i_ipadd(min, s) != length) {
1024            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1025            X509V3_conf_err(val);
1026            goto err;
1027        }
1028
1029        switch (delim) {
1030        case '/':
1031            prefixlen = (int)strtoul(s + i2, &t, 10);
1032            if (t == s + i2 || *t != '\0') {
1033                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034                          X509V3_R_EXTENSION_VALUE_ERROR);
1035                X509V3_conf_err(val);
1036                goto err;
1037            }
1038            if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1039                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040                goto err;
1041            }
1042            break;
1043        case '-':
1044            i1 = i2 + strspn(s + i2, " \t");
1045            i2 = i1 + strspn(s + i1, addr_chars);
1046            if (i1 == i2 || s[i2] != '\0') {
1047                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1048                          X509V3_R_EXTENSION_VALUE_ERROR);
1049                X509V3_conf_err(val);
1050                goto err;
1051            }
1052            if (a2i_ipadd(max, s + i1) != length) {
1053                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1054                          X509V3_R_INVALID_IPADDRESS);
1055                X509V3_conf_err(val);
1056                goto err;
1057            }
1058            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1060                          X509V3_R_EXTENSION_VALUE_ERROR);
1061                X509V3_conf_err(val);
1062                goto err;
1063            }
1064            if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1065                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1066                goto err;
1067            }
1068            break;
1069        case '\0':
1070            if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1071                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1072                goto err;
1073            }
1074            break;
1075        default:
1076            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1077                      X509V3_R_EXTENSION_VALUE_ERROR);
1078            X509V3_conf_err(val);
1079            goto err;
1080        }
1081
1082        OPENSSL_free(s);
1083        s = NULL;
1084    }
1085
1086    /*
1087     * Canonize the result, then we're done.
1088     */
1089    if (!v3_addr_canonize(addr))
1090        goto err;
1091    return addr;
1092
1093 err:
1094    OPENSSL_free(s);
1095    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1096    return NULL;
1097}
1098
1099/*
1100 * OpenSSL dispatch
1101 */
1102const X509V3_EXT_METHOD v3_addr = {
1103    NID_sbgp_ipAddrBlock,       /* nid */
1104    0,                          /* flags */
1105    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1106    0, 0, 0, 0,                 /* old functions, ignored */
1107    0,                          /* i2s */
1108    0,                          /* s2i */
1109    0,                          /* i2v */
1110    v2i_IPAddrBlocks,           /* v2i */
1111    i2r_IPAddrBlocks,           /* i2r */
1112    0,                          /* r2i */
1113    NULL                        /* extension-specific data */
1114};
1115
1116/*
1117 * Figure out whether extension sues inheritance.
1118 */
1119int v3_addr_inherits(IPAddrBlocks *addr)
1120{
1121    int i;
1122    if (addr == NULL)
1123        return 0;
1124    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1125        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1126        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1127            return 1;
1128    }
1129    return 0;
1130}
1131
1132/*
1133 * Figure out whether parent contains child.
1134 */
1135static int addr_contains(IPAddressOrRanges *parent,
1136                         IPAddressOrRanges *child, int length)
1137{
1138    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1139    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1140    int p, c;
1141
1142    if (child == NULL || parent == child)
1143        return 1;
1144    if (parent == NULL)
1145        return 0;
1146
1147    p = 0;
1148    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1149        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1150                             c_min, c_max, length))
1151            return -1;
1152        for (;; p++) {
1153            if (p >= sk_IPAddressOrRange_num(parent))
1154                return 0;
1155            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1156                                 p_min, p_max, length))
1157                return 0;
1158            if (memcmp(p_max, c_max, length) < 0)
1159                continue;
1160            if (memcmp(p_min, c_min, length) > 0)
1161                return 0;
1162            break;
1163        }
1164    }
1165
1166    return 1;
1167}
1168
1169/*
1170 * Test whether a is a subset of b.
1171 */
1172int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1173{
1174    int i;
1175    if (a == NULL || a == b)
1176        return 1;
1177    if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1178        return 0;
1179    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1180    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1181        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1182        int j = sk_IPAddressFamily_find(b, fa);
1183        IPAddressFamily *fb;
1184        fb = sk_IPAddressFamily_value(b, j);
1185        if (fb == NULL)
1186            return 0;
1187        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1188                           fa->ipAddressChoice->u.addressesOrRanges,
1189                           length_from_afi(v3_addr_get_afi(fb))))
1190            return 0;
1191    }
1192    return 1;
1193}
1194
1195/*
1196 * Validation error handling via callback.
1197 */
1198# define validation_err(_err_)           \
1199  do {                                  \
1200    if (ctx != NULL) {                  \
1201      ctx->error = _err_;               \
1202      ctx->error_depth = i;             \
1203      ctx->current_cert = x;            \
1204      ret = ctx->verify_cb(0, ctx);     \
1205    } else {                            \
1206      ret = 0;                          \
1207    }                                   \
1208    if (!ret)                           \
1209      goto done;                        \
1210  } while (0)
1211
1212/*
1213 * Core code for RFC 3779 2.3 path validation.
1214 *
1215 * Returns 1 for success, 0 on error.
1216 *
1217 * When returning 0, ctx->error MUST be set to an appropriate value other than
1218 * X509_V_OK.
1219 */
1220static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1221                                          STACK_OF(X509) *chain,
1222                                          IPAddrBlocks *ext)
1223{
1224    IPAddrBlocks *child = NULL;
1225    int i, j, ret = 1;
1226    X509 *x;
1227
1228    OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1229    OPENSSL_assert(ctx != NULL || ext != NULL);
1230    OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1231
1232    /*
1233     * Figure out where to start.  If we don't have an extension to
1234     * check, we're done.  Otherwise, check canonical form and
1235     * set up for walking up the chain.
1236     */
1237    if (ext != NULL) {
1238        i = -1;
1239        x = NULL;
1240    } else {
1241        i = 0;
1242        x = sk_X509_value(chain, i);
1243        OPENSSL_assert(x != NULL);
1244        if ((ext = x->rfc3779_addr) == NULL)
1245            goto done;
1246    }
1247    if (!v3_addr_is_canonical(ext))
1248        validation_err(X509_V_ERR_INVALID_EXTENSION);
1249    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1250    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1251        X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1252                  ERR_R_MALLOC_FAILURE);
1253        ctx->error = X509_V_ERR_OUT_OF_MEM;
1254        ret = 0;
1255        goto done;
1256    }
1257
1258    /*
1259     * Now walk up the chain.  No cert may list resources that its
1260     * parent doesn't list.
1261     */
1262    for (i++; i < sk_X509_num(chain); i++) {
1263        x = sk_X509_value(chain, i);
1264        OPENSSL_assert(x != NULL);
1265        if (!v3_addr_is_canonical(x->rfc3779_addr))
1266            validation_err(X509_V_ERR_INVALID_EXTENSION);
1267        if (x->rfc3779_addr == NULL) {
1268            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1269                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1270                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1271                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1272                    break;
1273                }
1274            }
1275            continue;
1276        }
1277        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1278                                              IPAddressFamily_cmp);
1279        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1280            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1281            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1282            IPAddressFamily *fp =
1283                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1284            if (fp == NULL) {
1285                if (fc->ipAddressChoice->type ==
1286                    IPAddressChoice_addressesOrRanges) {
1287                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1288                    break;
1289                }
1290                continue;
1291            }
1292            if (fp->ipAddressChoice->type ==
1293                IPAddressChoice_addressesOrRanges) {
1294                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1295                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1296                                     fc->ipAddressChoice->u.addressesOrRanges,
1297                                     length_from_afi(v3_addr_get_afi(fc))))
1298                    sk_IPAddressFamily_set(child, j, fp);
1299                else
1300                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1301            }
1302        }
1303    }
1304
1305    /*
1306     * Trust anchor can't inherit.
1307     */
1308    OPENSSL_assert(x != NULL);
1309    if (x->rfc3779_addr != NULL) {
1310        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1311            IPAddressFamily *fp =
1312                sk_IPAddressFamily_value(x->rfc3779_addr, j);
1313            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1314                && sk_IPAddressFamily_find(child, fp) >= 0)
1315                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1316        }
1317    }
1318
1319 done:
1320    sk_IPAddressFamily_free(child);
1321    return ret;
1322}
1323
1324# undef validation_err
1325
1326/*
1327 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1328 */
1329int v3_addr_validate_path(X509_STORE_CTX *ctx)
1330{
1331    return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1332}
1333
1334/*
1335 * RFC 3779 2.3 path validation of an extension.
1336 * Test whether chain covers extension.
1337 */
1338int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1339                                  IPAddrBlocks *ext, int allow_inheritance)
1340{
1341    if (ext == NULL)
1342        return 1;
1343    if (chain == NULL || sk_X509_num(chain) == 0)
1344        return 0;
1345    if (!allow_inheritance && v3_addr_inherits(ext))
1346        return 0;
1347    return v3_addr_validate_path_internal(NULL, chain, ext);
1348}
1349
1350#endif                          /* OPENSSL_NO_RFC3779 */
1351