1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                        IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111# define ADDR_RAW_BUF_LEN        16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118    switch (afi) {
119    case IANA_AFI_IPV4:
120        return 4;
121    case IANA_AFI_IPV6:
122        return 16;
123    default:
124        return 0;
125    }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133    if (f == NULL
134            || f->addressFamily == NULL
135            || f->addressFamily->data == NULL
136            || f->addressFamily->length < 2)
137        return 0;
138    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static int addr_expand(unsigned char *addr,
146                       const ASN1_BIT_STRING *bs,
147                       const int length, const unsigned char fill)
148{
149    if (bs->length < 0 || bs->length > length)
150        return 0;
151    if (bs->length > 0) {
152        memcpy(addr, bs->data, bs->length);
153        if ((bs->flags & 7) != 0) {
154            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
155            if (fill == 0)
156                addr[bs->length - 1] &= ~mask;
157            else
158                addr[bs->length - 1] |= mask;
159        }
160    }
161    memset(addr + bs->length, fill, length - bs->length);
162    return 1;
163}
164
165/*
166 * Extract the prefix length from a bitstring.
167 */
168# define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
169
170/*
171 * i2r handler for one address bitstring.
172 */
173static int i2r_address(BIO *out,
174                       const unsigned afi,
175                       const unsigned char fill, const ASN1_BIT_STRING *bs)
176{
177    unsigned char addr[ADDR_RAW_BUF_LEN];
178    int i, n;
179
180    if (bs->length < 0)
181        return 0;
182    switch (afi) {
183    case IANA_AFI_IPV4:
184        if (!addr_expand(addr, bs, 4, fill))
185            return 0;
186        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
187        break;
188    case IANA_AFI_IPV6:
189        if (!addr_expand(addr, bs, 16, fill))
190            return 0;
191        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
192             n -= 2) ;
193        for (i = 0; i < n; i += 2)
194            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
195                       (i < 14 ? ":" : ""));
196        if (i < 16)
197            BIO_puts(out, ":");
198        if (i == 0)
199            BIO_puts(out, ":");
200        break;
201    default:
202        for (i = 0; i < bs->length; i++)
203            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
204        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
205        break;
206    }
207    return 1;
208}
209
210/*
211 * i2r handler for a sequence of addresses and ranges.
212 */
213static int i2r_IPAddressOrRanges(BIO *out,
214                                 const int indent,
215                                 const IPAddressOrRanges *aors,
216                                 const unsigned afi)
217{
218    int i;
219    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
220        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
221        BIO_printf(out, "%*s", indent, "");
222        switch (aor->type) {
223        case IPAddressOrRange_addressPrefix:
224            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
225                return 0;
226            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
227            continue;
228        case IPAddressOrRange_addressRange:
229            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
230                return 0;
231            BIO_puts(out, "-");
232            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
233                return 0;
234            BIO_puts(out, "\n");
235            continue;
236        }
237    }
238    return 1;
239}
240
241/*
242 * i2r handler for an IPAddrBlocks extension.
243 */
244static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
245                            void *ext, BIO *out, int indent)
246{
247    const IPAddrBlocks *addr = ext;
248    int i;
249    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
250        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
251        const unsigned int afi = v3_addr_get_afi(f);
252        switch (afi) {
253        case IANA_AFI_IPV4:
254            BIO_printf(out, "%*sIPv4", indent, "");
255            break;
256        case IANA_AFI_IPV6:
257            BIO_printf(out, "%*sIPv6", indent, "");
258            break;
259        default:
260            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
261            break;
262        }
263        if (f->addressFamily->length > 2) {
264            switch (f->addressFamily->data[2]) {
265            case 1:
266                BIO_puts(out, " (Unicast)");
267                break;
268            case 2:
269                BIO_puts(out, " (Multicast)");
270                break;
271            case 3:
272                BIO_puts(out, " (Unicast/Multicast)");
273                break;
274            case 4:
275                BIO_puts(out, " (MPLS)");
276                break;
277            case 64:
278                BIO_puts(out, " (Tunnel)");
279                break;
280            case 65:
281                BIO_puts(out, " (VPLS)");
282                break;
283            case 66:
284                BIO_puts(out, " (BGP MDT)");
285                break;
286            case 128:
287                BIO_puts(out, " (MPLS-labeled VPN)");
288                break;
289            default:
290                BIO_printf(out, " (Unknown SAFI %u)",
291                           (unsigned)f->addressFamily->data[2]);
292                break;
293            }
294        }
295        switch (f->ipAddressChoice->type) {
296        case IPAddressChoice_inherit:
297            BIO_puts(out, ": inherit\n");
298            break;
299        case IPAddressChoice_addressesOrRanges:
300            BIO_puts(out, ":\n");
301            if (!i2r_IPAddressOrRanges(out,
302                                       indent + 2,
303                                       f->ipAddressChoice->
304                                       u.addressesOrRanges, afi))
305                return 0;
306            break;
307        }
308    }
309    return 1;
310}
311
312/*
313 * Sort comparison function for a sequence of IPAddressOrRange
314 * elements.
315 *
316 * There's no sane answer we can give if addr_expand() fails, and an
317 * assertion failure on externally supplied data is seriously uncool,
318 * so we just arbitrarily declare that if given invalid inputs this
319 * function returns -1.  If this messes up your preferred sort order
320 * for garbage input, tough noogies.
321 */
322static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
323                                const IPAddressOrRange *b, const int length)
324{
325    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
326    int prefixlen_a = 0, prefixlen_b = 0;
327    int r;
328
329    switch (a->type) {
330    case IPAddressOrRange_addressPrefix:
331        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
332            return -1;
333        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
334        break;
335    case IPAddressOrRange_addressRange:
336        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
337            return -1;
338        prefixlen_a = length * 8;
339        break;
340    }
341
342    switch (b->type) {
343    case IPAddressOrRange_addressPrefix:
344        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
345            return -1;
346        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
347        break;
348    case IPAddressOrRange_addressRange:
349        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
350            return -1;
351        prefixlen_b = length * 8;
352        break;
353    }
354
355    if ((r = memcmp(addr_a, addr_b, length)) != 0)
356        return r;
357    else
358        return prefixlen_a - prefixlen_b;
359}
360
361/*
362 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
363 * comparision routines are only allowed two arguments.
364 */
365static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
366                                  const IPAddressOrRange *const *b)
367{
368    return IPAddressOrRange_cmp(*a, *b, 4);
369}
370
371/*
372 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
373 * comparision routines are only allowed two arguments.
374 */
375static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
376                                  const IPAddressOrRange *const *b)
377{
378    return IPAddressOrRange_cmp(*a, *b, 16);
379}
380
381/*
382 * Calculate whether a range collapses to a prefix.
383 * See last paragraph of RFC 3779 2.2.3.7.
384 */
385static int range_should_be_prefix(const unsigned char *min,
386                                  const unsigned char *max, const int length)
387{
388    unsigned char mask;
389    int i, j;
390
391    OPENSSL_assert(memcmp(min, max, length) <= 0);
392    for (i = 0; i < length && min[i] == max[i]; i++) ;
393    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
394    if (i < j)
395        return -1;
396    if (i > j)
397        return i * 8;
398    mask = min[i] ^ max[i];
399    switch (mask) {
400    case 0x01:
401        j = 7;
402        break;
403    case 0x03:
404        j = 6;
405        break;
406    case 0x07:
407        j = 5;
408        break;
409    case 0x0F:
410        j = 4;
411        break;
412    case 0x1F:
413        j = 3;
414        break;
415    case 0x3F:
416        j = 2;
417        break;
418    case 0x7F:
419        j = 1;
420        break;
421    default:
422        return -1;
423    }
424    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
425        return -1;
426    else
427        return i * 8 + j;
428}
429
430/*
431 * Construct a prefix.
432 */
433static int make_addressPrefix(IPAddressOrRange **result,
434                              unsigned char *addr, const int prefixlen)
435{
436    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
437    IPAddressOrRange *aor = IPAddressOrRange_new();
438
439    if (aor == NULL)
440        return 0;
441    aor->type = IPAddressOrRange_addressPrefix;
442    if (aor->u.addressPrefix == NULL &&
443        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
444        goto err;
445    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
446        goto err;
447    aor->u.addressPrefix->flags &= ~7;
448    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
449    if (bitlen > 0) {
450        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
451        aor->u.addressPrefix->flags |= 8 - bitlen;
452    }
453
454    *result = aor;
455    return 1;
456
457 err:
458    IPAddressOrRange_free(aor);
459    return 0;
460}
461
462/*
463 * Construct a range.  If it can be expressed as a prefix,
464 * return a prefix instead.  Doing this here simplifies
465 * the rest of the code considerably.
466 */
467static int make_addressRange(IPAddressOrRange **result,
468                             unsigned char *min,
469                             unsigned char *max, const int length)
470{
471    IPAddressOrRange *aor;
472    int i, prefixlen;
473
474    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
475        return make_addressPrefix(result, min, prefixlen);
476
477    if ((aor = IPAddressOrRange_new()) == NULL)
478        return 0;
479    aor->type = IPAddressOrRange_addressRange;
480    OPENSSL_assert(aor->u.addressRange == NULL);
481    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
482        goto err;
483    if (aor->u.addressRange->min == NULL &&
484        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
485        goto err;
486    if (aor->u.addressRange->max == NULL &&
487        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
488        goto err;
489
490    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
491    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
492        goto err;
493    aor->u.addressRange->min->flags &= ~7;
494    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
495    if (i > 0) {
496        unsigned char b = min[i - 1];
497        int j = 1;
498        while ((b & (0xFFU >> j)) != 0)
499            ++j;
500        aor->u.addressRange->min->flags |= 8 - j;
501    }
502
503    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
504    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
505        goto err;
506    aor->u.addressRange->max->flags &= ~7;
507    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
508    if (i > 0) {
509        unsigned char b = max[i - 1];
510        int j = 1;
511        while ((b & (0xFFU >> j)) != (0xFFU >> j))
512            ++j;
513        aor->u.addressRange->max->flags |= 8 - j;
514    }
515
516    *result = aor;
517    return 1;
518
519 err:
520    IPAddressOrRange_free(aor);
521    return 0;
522}
523
524/*
525 * Construct a new address family or find an existing one.
526 */
527static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
528                                             const unsigned afi,
529                                             const unsigned *safi)
530{
531    IPAddressFamily *f;
532    unsigned char key[3];
533    unsigned keylen;
534    int i;
535
536    key[0] = (afi >> 8) & 0xFF;
537    key[1] = afi & 0xFF;
538    if (safi != NULL) {
539        key[2] = *safi & 0xFF;
540        keylen = 3;
541    } else {
542        keylen = 2;
543    }
544
545    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
546        f = sk_IPAddressFamily_value(addr, i);
547        OPENSSL_assert(f->addressFamily->data != NULL);
548        if (f->addressFamily->length == keylen &&
549            !memcmp(f->addressFamily->data, key, keylen))
550            return f;
551    }
552
553    if ((f = IPAddressFamily_new()) == NULL)
554        goto err;
555    if (f->ipAddressChoice == NULL &&
556        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
557        goto err;
558    if (f->addressFamily == NULL &&
559        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
560        goto err;
561    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
562        goto err;
563    if (!sk_IPAddressFamily_push(addr, f))
564        goto err;
565
566    return f;
567
568 err:
569    IPAddressFamily_free(f);
570    return NULL;
571}
572
573/*
574 * Add an inheritance element.
575 */
576int v3_addr_add_inherit(IPAddrBlocks *addr,
577                        const unsigned afi, const unsigned *safi)
578{
579    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
580    if (f == NULL ||
581        f->ipAddressChoice == NULL ||
582        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
583         f->ipAddressChoice->u.addressesOrRanges != NULL))
584        return 0;
585    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
586        f->ipAddressChoice->u.inherit != NULL)
587        return 1;
588    if (f->ipAddressChoice->u.inherit == NULL &&
589        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
590        return 0;
591    f->ipAddressChoice->type = IPAddressChoice_inherit;
592    return 1;
593}
594
595/*
596 * Construct an IPAddressOrRange sequence, or return an existing one.
597 */
598static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
599                                               const unsigned afi,
600                                               const unsigned *safi)
601{
602    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
603    IPAddressOrRanges *aors = NULL;
604
605    if (f == NULL ||
606        f->ipAddressChoice == NULL ||
607        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
608         f->ipAddressChoice->u.inherit != NULL))
609        return NULL;
610    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
611        aors = f->ipAddressChoice->u.addressesOrRanges;
612    if (aors != NULL)
613        return aors;
614    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
615        return NULL;
616    switch (afi) {
617    case IANA_AFI_IPV4:
618        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
619        break;
620    case IANA_AFI_IPV6:
621        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
622        break;
623    }
624    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
625    f->ipAddressChoice->u.addressesOrRanges = aors;
626    return aors;
627}
628
629/*
630 * Add a prefix.
631 */
632int v3_addr_add_prefix(IPAddrBlocks *addr,
633                       const unsigned afi,
634                       const unsigned *safi,
635                       unsigned char *a, const int prefixlen)
636{
637    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
638    IPAddressOrRange *aor;
639    if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
640        return 0;
641    if (sk_IPAddressOrRange_push(aors, aor))
642        return 1;
643    IPAddressOrRange_free(aor);
644    return 0;
645}
646
647/*
648 * Add a range.
649 */
650int v3_addr_add_range(IPAddrBlocks *addr,
651                      const unsigned afi,
652                      const unsigned *safi,
653                      unsigned char *min, unsigned char *max)
654{
655    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
656    IPAddressOrRange *aor;
657    int length = length_from_afi(afi);
658    if (aors == NULL)
659        return 0;
660    if (!make_addressRange(&aor, min, max, length))
661        return 0;
662    if (sk_IPAddressOrRange_push(aors, aor))
663        return 1;
664    IPAddressOrRange_free(aor);
665    return 0;
666}
667
668/*
669 * Extract min and max values from an IPAddressOrRange.
670 */
671static int extract_min_max(IPAddressOrRange *aor,
672                           unsigned char *min, unsigned char *max, int length)
673{
674    if (aor == NULL || min == NULL || max == NULL)
675        return 0;
676    switch (aor->type) {
677    case IPAddressOrRange_addressPrefix:
678        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
679                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
680    case IPAddressOrRange_addressRange:
681        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
682                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
683    }
684    return 0;
685}
686
687/*
688 * Public wrapper for extract_min_max().
689 */
690int v3_addr_get_range(IPAddressOrRange *aor,
691                      const unsigned afi,
692                      unsigned char *min,
693                      unsigned char *max, const int length)
694{
695    int afi_length = length_from_afi(afi);
696    if (aor == NULL || min == NULL || max == NULL ||
697        afi_length == 0 || length < afi_length ||
698        (aor->type != IPAddressOrRange_addressPrefix &&
699         aor->type != IPAddressOrRange_addressRange) ||
700        !extract_min_max(aor, min, max, afi_length))
701        return 0;
702
703    return afi_length;
704}
705
706/*
707 * Sort comparision function for a sequence of IPAddressFamily.
708 *
709 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
710 * the ordering: I can read it as meaning that IPv6 without a SAFI
711 * comes before IPv4 with a SAFI, which seems pretty weird.  The
712 * examples in appendix B suggest that the author intended the
713 * null-SAFI rule to apply only within a single AFI, which is what I
714 * would have expected and is what the following code implements.
715 */
716static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
717                               const IPAddressFamily *const *b_)
718{
719    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
720    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
721    int len = ((a->length <= b->length) ? a->length : b->length);
722    int cmp = memcmp(a->data, b->data, len);
723    return cmp ? cmp : a->length - b->length;
724}
725
726/*
727 * Check whether an IPAddrBLocks is in canonical form.
728 */
729int v3_addr_is_canonical(IPAddrBlocks *addr)
730{
731    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
732    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
733    IPAddressOrRanges *aors;
734    int i, j, k;
735
736    /*
737     * Empty extension is cannonical.
738     */
739    if (addr == NULL)
740        return 1;
741
742    /*
743     * Check whether the top-level list is in order.
744     */
745    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
746        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
747        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
748        if (IPAddressFamily_cmp(&a, &b) >= 0)
749            return 0;
750    }
751
752    /*
753     * Top level's ok, now check each address family.
754     */
755    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
756        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
757        int length = length_from_afi(v3_addr_get_afi(f));
758
759        /*
760         * Inheritance is canonical.  Anything other than inheritance or
761         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
762         */
763        if (f == NULL || f->ipAddressChoice == NULL)
764            return 0;
765        switch (f->ipAddressChoice->type) {
766        case IPAddressChoice_inherit:
767            continue;
768        case IPAddressChoice_addressesOrRanges:
769            break;
770        default:
771            return 0;
772        }
773
774        /*
775         * It's an IPAddressOrRanges sequence, check it.
776         */
777        aors = f->ipAddressChoice->u.addressesOrRanges;
778        if (sk_IPAddressOrRange_num(aors) == 0)
779            return 0;
780        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
781            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
782            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
783
784            if (!extract_min_max(a, a_min, a_max, length) ||
785                !extract_min_max(b, b_min, b_max, length))
786                return 0;
787
788            /*
789             * Punt misordered list, overlapping start, or inverted range.
790             */
791            if (memcmp(a_min, b_min, length) >= 0 ||
792                memcmp(a_min, a_max, length) > 0 ||
793                memcmp(b_min, b_max, length) > 0)
794                return 0;
795
796            /*
797             * Punt if adjacent or overlapping.  Check for adjacency by
798             * subtracting one from b_min first.
799             */
800            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
801            if (memcmp(a_max, b_min, length) >= 0)
802                return 0;
803
804            /*
805             * Check for range that should be expressed as a prefix.
806             */
807            if (a->type == IPAddressOrRange_addressRange &&
808                range_should_be_prefix(a_min, a_max, length) >= 0)
809                return 0;
810        }
811
812        /*
813         * Check range to see if it's inverted or should be a
814         * prefix.
815         */
816        j = sk_IPAddressOrRange_num(aors) - 1;
817        {
818            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
819            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
820                if (!extract_min_max(a, a_min, a_max, length))
821                    return 0;
822                if (memcmp(a_min, a_max, length) > 0 ||
823                    range_should_be_prefix(a_min, a_max, length) >= 0)
824                    return 0;
825            }
826        }
827    }
828
829    /*
830     * If we made it through all that, we're happy.
831     */
832    return 1;
833}
834
835/*
836 * Whack an IPAddressOrRanges into canonical form.
837 */
838static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
839                                      const unsigned afi)
840{
841    int i, j, length = length_from_afi(afi);
842
843    /*
844     * Sort the IPAddressOrRanges sequence.
845     */
846    sk_IPAddressOrRange_sort(aors);
847
848    /*
849     * Clean up representation issues, punt on duplicates or overlaps.
850     */
851    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
852        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
853        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
854        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
855        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
856
857        if (!extract_min_max(a, a_min, a_max, length) ||
858            !extract_min_max(b, b_min, b_max, length))
859            return 0;
860
861        /*
862         * Punt inverted ranges.
863         */
864        if (memcmp(a_min, a_max, length) > 0 ||
865            memcmp(b_min, b_max, length) > 0)
866            return 0;
867
868        /*
869         * Punt overlaps.
870         */
871        if (memcmp(a_max, b_min, length) >= 0)
872            return 0;
873
874        /*
875         * Merge if a and b are adjacent.  We check for
876         * adjacency by subtracting one from b_min first.
877         */
878        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
879        if (memcmp(a_max, b_min, length) == 0) {
880            IPAddressOrRange *merged;
881            if (!make_addressRange(&merged, a_min, b_max, length))
882                return 0;
883            (void)sk_IPAddressOrRange_set(aors, i, merged);
884            (void)sk_IPAddressOrRange_delete(aors, i + 1);
885            IPAddressOrRange_free(a);
886            IPAddressOrRange_free(b);
887            --i;
888            continue;
889        }
890    }
891
892    /*
893     * Check for inverted final range.
894     */
895    j = sk_IPAddressOrRange_num(aors) - 1;
896    {
897        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
898        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
899            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
900            extract_min_max(a, a_min, a_max, length);
901            if (memcmp(a_min, a_max, length) > 0)
902                return 0;
903        }
904    }
905
906    return 1;
907}
908
909/*
910 * Whack an IPAddrBlocks extension into canonical form.
911 */
912int v3_addr_canonize(IPAddrBlocks *addr)
913{
914    int i;
915    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
916        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
917        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
918            !IPAddressOrRanges_canonize(f->ipAddressChoice->
919                                        u.addressesOrRanges,
920                                        v3_addr_get_afi(f)))
921            return 0;
922    }
923    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
924    sk_IPAddressFamily_sort(addr);
925    OPENSSL_assert(v3_addr_is_canonical(addr));
926    return 1;
927}
928
929/*
930 * v2i handler for the IPAddrBlocks extension.
931 */
932static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
933                              struct v3_ext_ctx *ctx,
934                              STACK_OF(CONF_VALUE) *values)
935{
936    static const char v4addr_chars[] = "0123456789.";
937    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
938    IPAddrBlocks *addr = NULL;
939    char *s = NULL, *t;
940    int i;
941
942    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
943        X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
944        return NULL;
945    }
946
947    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
948        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
949        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
950        unsigned afi, *safi = NULL, safi_;
951        const char *addr_chars;
952        int prefixlen, i1, i2, delim, length;
953
954        if (!name_cmp(val->name, "IPv4")) {
955            afi = IANA_AFI_IPV4;
956        } else if (!name_cmp(val->name, "IPv6")) {
957            afi = IANA_AFI_IPV6;
958        } else if (!name_cmp(val->name, "IPv4-SAFI")) {
959            afi = IANA_AFI_IPV4;
960            safi = &safi_;
961        } else if (!name_cmp(val->name, "IPv6-SAFI")) {
962            afi = IANA_AFI_IPV6;
963            safi = &safi_;
964        } else {
965            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
966                      X509V3_R_EXTENSION_NAME_ERROR);
967            X509V3_conf_err(val);
968            goto err;
969        }
970
971        switch (afi) {
972        case IANA_AFI_IPV4:
973            addr_chars = v4addr_chars;
974            break;
975        case IANA_AFI_IPV6:
976            addr_chars = v6addr_chars;
977            break;
978        }
979
980        length = length_from_afi(afi);
981
982        /*
983         * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
984         * the other input values.
985         */
986        if (safi != NULL) {
987            *safi = strtoul(val->value, &t, 0);
988            t += strspn(t, " \t");
989            if (*safi > 0xFF || *t++ != ':') {
990                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
991                X509V3_conf_err(val);
992                goto err;
993            }
994            t += strspn(t, " \t");
995            s = BUF_strdup(t);
996        } else {
997            s = BUF_strdup(val->value);
998        }
999        if (s == NULL) {
1000            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1001            goto err;
1002        }
1003
1004        /*
1005         * Check for inheritance.  Not worth additional complexity to
1006         * optimize this (seldom-used) case.
1007         */
1008        if (!strcmp(s, "inherit")) {
1009            if (!v3_addr_add_inherit(addr, afi, safi)) {
1010                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1011                          X509V3_R_INVALID_INHERITANCE);
1012                X509V3_conf_err(val);
1013                goto err;
1014            }
1015            OPENSSL_free(s);
1016            s = NULL;
1017            continue;
1018        }
1019
1020        i1 = strspn(s, addr_chars);
1021        i2 = i1 + strspn(s + i1, " \t");
1022        delim = s[i2++];
1023        s[i1] = '\0';
1024
1025        if (a2i_ipadd(min, s) != length) {
1026            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1027            X509V3_conf_err(val);
1028            goto err;
1029        }
1030
1031        switch (delim) {
1032        case '/':
1033            prefixlen = (int)strtoul(s + i2, &t, 10);
1034            if (t == s + i2 || *t != '\0') {
1035                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1036                          X509V3_R_EXTENSION_VALUE_ERROR);
1037                X509V3_conf_err(val);
1038                goto err;
1039            }
1040            if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1041                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1042                goto err;
1043            }
1044            break;
1045        case '-':
1046            i1 = i2 + strspn(s + i2, " \t");
1047            i2 = i1 + strspn(s + i1, addr_chars);
1048            if (i1 == i2 || s[i2] != '\0') {
1049                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1050                          X509V3_R_EXTENSION_VALUE_ERROR);
1051                X509V3_conf_err(val);
1052                goto err;
1053            }
1054            if (a2i_ipadd(max, s + i1) != length) {
1055                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1056                          X509V3_R_INVALID_IPADDRESS);
1057                X509V3_conf_err(val);
1058                goto err;
1059            }
1060            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1061                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1062                          X509V3_R_EXTENSION_VALUE_ERROR);
1063                X509V3_conf_err(val);
1064                goto err;
1065            }
1066            if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1067                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1068                goto err;
1069            }
1070            break;
1071        case '\0':
1072            if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1073                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1074                goto err;
1075            }
1076            break;
1077        default:
1078            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1079                      X509V3_R_EXTENSION_VALUE_ERROR);
1080            X509V3_conf_err(val);
1081            goto err;
1082        }
1083
1084        OPENSSL_free(s);
1085        s = NULL;
1086    }
1087
1088    /*
1089     * Canonize the result, then we're done.
1090     */
1091    if (!v3_addr_canonize(addr))
1092        goto err;
1093    return addr;
1094
1095 err:
1096    OPENSSL_free(s);
1097    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1098    return NULL;
1099}
1100
1101/*
1102 * OpenSSL dispatch
1103 */
1104const X509V3_EXT_METHOD v3_addr = {
1105    NID_sbgp_ipAddrBlock,       /* nid */
1106    0,                          /* flags */
1107    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1108    0, 0, 0, 0,                 /* old functions, ignored */
1109    0,                          /* i2s */
1110    0,                          /* s2i */
1111    0,                          /* i2v */
1112    v2i_IPAddrBlocks,           /* v2i */
1113    i2r_IPAddrBlocks,           /* i2r */
1114    0,                          /* r2i */
1115    NULL                        /* extension-specific data */
1116};
1117
1118/*
1119 * Figure out whether extension sues inheritance.
1120 */
1121int v3_addr_inherits(IPAddrBlocks *addr)
1122{
1123    int i;
1124    if (addr == NULL)
1125        return 0;
1126    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1127        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1128        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1129            return 1;
1130    }
1131    return 0;
1132}
1133
1134/*
1135 * Figure out whether parent contains child.
1136 */
1137static int addr_contains(IPAddressOrRanges *parent,
1138                         IPAddressOrRanges *child, int length)
1139{
1140    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1141    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1142    int p, c;
1143
1144    if (child == NULL || parent == child)
1145        return 1;
1146    if (parent == NULL)
1147        return 0;
1148
1149    p = 0;
1150    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1151        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1152                             c_min, c_max, length))
1153            return -1;
1154        for (;; p++) {
1155            if (p >= sk_IPAddressOrRange_num(parent))
1156                return 0;
1157            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1158                                 p_min, p_max, length))
1159                return 0;
1160            if (memcmp(p_max, c_max, length) < 0)
1161                continue;
1162            if (memcmp(p_min, c_min, length) > 0)
1163                return 0;
1164            break;
1165        }
1166    }
1167
1168    return 1;
1169}
1170
1171/*
1172 * Test whether a is a subset of b.
1173 */
1174int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1175{
1176    int i;
1177    if (a == NULL || a == b)
1178        return 1;
1179    if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1180        return 0;
1181    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1182    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1183        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1184        int j = sk_IPAddressFamily_find(b, fa);
1185        IPAddressFamily *fb;
1186        fb = sk_IPAddressFamily_value(b, j);
1187        if (fb == NULL)
1188            return 0;
1189        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1190                           fa->ipAddressChoice->u.addressesOrRanges,
1191                           length_from_afi(v3_addr_get_afi(fb))))
1192            return 0;
1193    }
1194    return 1;
1195}
1196
1197/*
1198 * Validation error handling via callback.
1199 */
1200# define validation_err(_err_)           \
1201  do {                                  \
1202    if (ctx != NULL) {                  \
1203      ctx->error = _err_;               \
1204      ctx->error_depth = i;             \
1205      ctx->current_cert = x;            \
1206      ret = ctx->verify_cb(0, ctx);     \
1207    } else {                            \
1208      ret = 0;                          \
1209    }                                   \
1210    if (!ret)                           \
1211      goto done;                        \
1212  } while (0)
1213
1214/*
1215 * Core code for RFC 3779 2.3 path validation.
1216 *
1217 * Returns 1 for success, 0 on error.
1218 *
1219 * When returning 0, ctx->error MUST be set to an appropriate value other than
1220 * X509_V_OK.
1221 */
1222static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1223                                          STACK_OF(X509) *chain,
1224                                          IPAddrBlocks *ext)
1225{
1226    IPAddrBlocks *child = NULL;
1227    int i, j, ret = 1;
1228    X509 *x;
1229
1230    OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1231    OPENSSL_assert(ctx != NULL || ext != NULL);
1232    OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1233
1234    /*
1235     * Figure out where to start.  If we don't have an extension to
1236     * check, we're done.  Otherwise, check canonical form and
1237     * set up for walking up the chain.
1238     */
1239    if (ext != NULL) {
1240        i = -1;
1241        x = NULL;
1242    } else {
1243        i = 0;
1244        x = sk_X509_value(chain, i);
1245        OPENSSL_assert(x != NULL);
1246        if ((ext = x->rfc3779_addr) == NULL)
1247            goto done;
1248    }
1249    if (!v3_addr_is_canonical(ext))
1250        validation_err(X509_V_ERR_INVALID_EXTENSION);
1251    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1252    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1253        X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1254                  ERR_R_MALLOC_FAILURE);
1255        ctx->error = X509_V_ERR_OUT_OF_MEM;
1256        ret = 0;
1257        goto done;
1258    }
1259
1260    /*
1261     * Now walk up the chain.  No cert may list resources that its
1262     * parent doesn't list.
1263     */
1264    for (i++; i < sk_X509_num(chain); i++) {
1265        x = sk_X509_value(chain, i);
1266        OPENSSL_assert(x != NULL);
1267        if (!v3_addr_is_canonical(x->rfc3779_addr))
1268            validation_err(X509_V_ERR_INVALID_EXTENSION);
1269        if (x->rfc3779_addr == NULL) {
1270            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1273                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1274                    break;
1275                }
1276            }
1277            continue;
1278        }
1279        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1280                                              IPAddressFamily_cmp);
1281        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1282            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1283            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1284            IPAddressFamily *fp =
1285                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1286            if (fp == NULL) {
1287                if (fc->ipAddressChoice->type ==
1288                    IPAddressChoice_addressesOrRanges) {
1289                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1290                    break;
1291                }
1292                continue;
1293            }
1294            if (fp->ipAddressChoice->type ==
1295                IPAddressChoice_addressesOrRanges) {
1296                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1297                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1298                                     fc->ipAddressChoice->u.addressesOrRanges,
1299                                     length_from_afi(v3_addr_get_afi(fc))))
1300                    sk_IPAddressFamily_set(child, j, fp);
1301                else
1302                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1303            }
1304        }
1305    }
1306
1307    /*
1308     * Trust anchor can't inherit.
1309     */
1310    OPENSSL_assert(x != NULL);
1311    if (x->rfc3779_addr != NULL) {
1312        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1313            IPAddressFamily *fp =
1314                sk_IPAddressFamily_value(x->rfc3779_addr, j);
1315            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1316                && sk_IPAddressFamily_find(child, fp) >= 0)
1317                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1318        }
1319    }
1320
1321 done:
1322    sk_IPAddressFamily_free(child);
1323    return ret;
1324}
1325
1326# undef validation_err
1327
1328/*
1329 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1330 */
1331int v3_addr_validate_path(X509_STORE_CTX *ctx)
1332{
1333    return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1334}
1335
1336/*
1337 * RFC 3779 2.3 path validation of an extension.
1338 * Test whether chain covers extension.
1339 */
1340int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1341                                  IPAddrBlocks *ext, int allow_inheritance)
1342{
1343    if (ext == NULL)
1344        return 1;
1345    if (chain == NULL || sk_X509_num(chain) == 0)
1346        return 0;
1347    if (!allow_inheritance && v3_addr_inherits(ext))
1348        return 0;
1349    return v3_addr_validate_path_internal(NULL, chain, ext);
1350}
1351
1352#endif                          /* OPENSSL_NO_RFC3779 */
1353