sha512-ia64.pl revision 160814
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. Rights for redistribution and usage in source and binary
6# forms are granted according to the OpenSSL license.
7# ====================================================================
8#
9# SHA256/512_Transform for Itanium.
10#
11# sha512_block runs in 1003 cycles on Itanium 2, which is almost 50%
12# faster than gcc and >60%(!) faster than code generated by HP-UX
13# compiler (yes, HP-UX is generating slower code, because unlike gcc,
14# it failed to deploy "shift right pair," 'shrp' instruction, which
15# substitutes for 64-bit rotate).
16#
17# 924 cycles long sha256_block outperforms gcc by over factor of 2(!)
18# and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost
19# this one big time). Note that "formally" 924 is about 100 cycles
20# too much. I mean it's 64 32-bit rounds vs. 80 virtually identical
21# 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round,
22# are spent on extra work to provide for 32-bit rotations. 32-bit
23# rotations are still handled by 'shrp' instruction and for this
24# reason lower 32 bits are deposited to upper half of 64-bit register
25# prior 'shrp' issue. And in order to minimize the amount of such
26# operations, X[16] values are *maintained* with copies of lower
27# halves in upper halves, which is why you'll spot such instructions
28# as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel
29# 32-bit unsigned right shift," 'pshr4.u' instructions here.
30#
31# Rules of engagement.
32#
33# There is only one integer shifter meaning that if I have two rotate,
34# deposit or extract instructions in adjacent bundles, they shall
35# split [at run-time if they have to]. But note that variable and
36# parallel shifts are performed by multi-media ALU and *are* pairable
37# with rotates [and alike]. On the backside MMALU is rather slow: it
38# takes 2 extra cycles before the result of integer operation is
39# available *to* MMALU and 2(*) extra cycles before the result of MM
40# operation is available "back" *to* integer ALU, not to mention that
41# MMALU itself has 2 cycles latency. However! I explicitly scheduled
42# these MM instructions to avoid MM stalls, so that all these extra
43# latencies get "hidden" in instruction-level parallelism.
44#
45# (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule
46#     for 2 in order to provide for best *overall* performance,
47#     because on Itanium 1 stall on MM result is accompanied by
48#     pipeline flush, which takes 6 cycles:-(
49#
50# Resulting performance numbers for 900MHz Itanium 2 system:
51#
52# The 'numbers' are in 1000s of bytes per second processed.
53# type     16 bytes    64 bytes   256 bytes  1024 bytes  8192 bytes
54# sha1(*)   6210.14k   20376.30k   52447.83k   85870.05k  105478.12k
55# sha256    7476.45k   20572.05k   41538.34k   56062.29k   62093.18k
56# sha512    4996.56k   20026.28k   47597.20k   85278.79k  111501.31k
57#
58# (*) SHA1 numbers are for HP-UX compiler and are presented purely
59#     for reference purposes. I bet it can improved too...
60#
61# To generate code, pass the file name with either 256 or 512 in its
62# name and compiler flags.
63
64$output=shift;
65
66if ($output =~ /512.*\.[s|asm]/) {
67	$SZ=8;
68	$BITS=8*$SZ;
69	$LDW="ld8";
70	$STW="st8";
71	$ADD="add";
72	$SHRU="shr.u";
73	$TABLE="K512";
74	$func="sha512_block";
75	@Sigma0=(28,34,39);
76	@Sigma1=(14,18,41);
77	@sigma0=(1,  8, 7);
78	@sigma1=(19,61, 6);
79	$rounds=80;
80} elsif ($output =~ /256.*\.[s|asm]/) {
81	$SZ=4;
82	$BITS=8*$SZ;
83	$LDW="ld4";
84	$STW="st4";
85	$ADD="padd4";
86	$SHRU="pshr4.u";
87	$TABLE="K256";
88	$func="sha256_block";
89	@Sigma0=( 2,13,22);
90	@Sigma1=( 6,11,25);
91	@sigma0=( 7,18, 3);
92	@sigma1=(17,19,10);
93	$rounds=64;
94} else { die "nonsense $output"; }
95
96open STDOUT,">$output" || die "can't open $output: $!";
97
98if ($^O eq "hpux") {
99    $ADDP="addp4";
100    for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
101} else { $ADDP="add"; }
102for (@ARGV)  {	$big_endian=1 if (/\-DB_ENDIAN/);
103		$big_endian=0 if (/\-DL_ENDIAN/);  }
104if (!defined($big_endian))
105             {	$big_endian=(unpack('L',pack('N',1))==1);  }
106
107$code=<<___;
108.ident  \"$output, version 1.0\"
109.ident  \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
110.explicit
111.text
112
113prsave=r14;
114K=r15;
115A=r16;	B=r17;	C=r18;	D=r19;
116E=r20;	F=r21;	G=r22;	H=r23;
117T1=r24;	T2=r25;
118s0=r26;	s1=r27;	t0=r28;	t1=r29;
119Ktbl=r30;
120ctx=r31;	// 1st arg
121input=r48;	// 2nd arg
122num=r49;	// 3rd arg
123sgm0=r50;	sgm1=r51;	// small constants
124
125// void $func (SHA_CTX *ctx, const void *in,size_t num[,int host])
126.global	$func#
127.proc	$func#
128.align	32
129$func:
130	.prologue
131	.fframe	0
132	.save	ar.pfs,r2
133	.save	ar.lc,r3
134	.save	pr,prsave
135{ .mmi;	alloc	r2=ar.pfs,3,17,0,16
136	$ADDP	ctx=0,r32		// 1st arg
137	mov	r3=ar.lc	}
138{ .mmi;	$ADDP	input=0,r33		// 2nd arg
139	addl	Ktbl=\@ltoff($TABLE#),gp
140	mov	prsave=pr	};;
141
142	.body
143{ .mii;	ld8	Ktbl=[Ktbl]
144	mov	num=r34		};;	// 3rd arg
145
146{ .mib;	add	r8=0*$SZ,ctx
147	add	r9=1*$SZ,ctx
148	brp.loop.imp	.L_first16,.L_first16_ctop
149				}
150{ .mib;	add	r10=2*$SZ,ctx
151	add	r11=3*$SZ,ctx
152	brp.loop.imp	.L_rest,.L_rest_ctop
153				};;
154// load A-H
155{ .mmi;	$LDW	A=[r8],4*$SZ
156	$LDW	B=[r9],4*$SZ
157	mov	sgm0=$sigma0[2]	}
158{ .mmi;	$LDW	C=[r10],4*$SZ
159	$LDW	D=[r11],4*$SZ
160	mov	sgm1=$sigma1[2]	};;
161{ .mmi;	$LDW	E=[r8]
162	$LDW	F=[r9]		}
163{ .mmi;	$LDW	G=[r10]
164	$LDW	H=[r11]
165	cmp.ne	p15,p14=0,r35	};;	// used in sha256_block
166
167.L_outer:
168{ .mii;	mov	ar.lc=15
169	mov	ar.ec=1		};;
170.align	32
171.L_first16:
172.rotr	X[16]
173___
174$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
175{ .mib;	(p14)	add	r9=1,input
176	(p14)	add	r10=2,input	}
177{ .mib;	(p14)	add	r11=3,input
178	(p15)	br.dptk.few	.L_host	};;
179{ .mmi;	(p14)	ld1	r8=[input],$SZ
180	(p14)	ld1	r9=[r9]		}
181{ .mmi;	(p14)	ld1	r10=[r10]
182	(p14)	ld1	r11=[r11]	};;
183{ .mii;	(p14)	dep	r9=r8,r9,8,8
184	(p14)	dep	r11=r10,r11,8,8	};;
185{ .mib;	(p14)	dep	X[15]=r9,r11,16,16 };;
186.L_host:
187{ .mib;	(p15)	$LDW	X[15]=[input],$SZ	// X[i]=*input++
188		dep.z	$t1=E,32,32	}
189{ .mib;		$LDW	K=[Ktbl],$SZ
190		zxt4	E=E		};;
191{ .mmi;		or	$t1=$t1,E
192		and	T1=F,E
193		and	T2=A,B		}
194{ .mmi;		andcm	r8=G,E
195		and	r9=A,C
196		mux2	$t0=A,0x44	};;	// copy lower half to upper
197{ .mib;		xor	T1=T1,r8		// T1=((e & f) ^ (~e & g))
198		_rotr	r11=$t1,$Sigma1[0] }	// ROTR(e,14)
199{ .mib;		and	r10=B,C
200		xor	T2=T2,r9	};;
201___
202$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
203{ .mmi;		$LDW	X[15]=[input],$SZ	// X[i]=*input++
204		and	T1=F,E
205		and	T2=A,B		}
206{ .mmi;		$LDW	K=[Ktbl],$SZ
207		andcm	r8=G,E
208		and	r9=A,C		};;
209{ .mmi;		xor	T1=T1,r8		//T1=((e & f) ^ (~e & g))
210		and	r10=B,C
211		_rotr	r11=$t1,$Sigma1[0] }	// ROTR(e,14)
212{ .mmi;		xor	T2=T2,r9
213		mux1	X[15]=X[15],\@rev };;	// eliminated in big-endian
214___
215$code.=<<___;
216{ .mib;		add	T1=T1,H			// T1=Ch(e,f,g)+h
217		_rotr	r8=$t1,$Sigma1[1] }	// ROTR(e,18)
218{ .mib;		xor	T2=T2,r10		// T2=((a & b) ^ (a & c) ^ (b & c))
219		mov	H=G		};;
220{ .mib;		xor	r11=r8,r11
221		_rotr	r9=$t1,$Sigma1[2] }	// ROTR(e,41)
222{ .mib;		mov	G=F
223		mov	F=E		};;
224{ .mib;		xor	r9=r9,r11		// r9=Sigma1(e)
225		_rotr	r10=$t0,$Sigma0[0] }	// ROTR(a,28)
226{ .mib;		add	T1=T1,K			// T1=Ch(e,f,g)+h+K512[i]
227		mov	E=D		};;
228{ .mib;		add	T1=T1,r9		// T1+=Sigma1(e)
229		_rotr	r11=$t0,$Sigma0[1] }	// ROTR(a,34)
230{ .mib;		mov	D=C
231		mov	C=B		};;
232{ .mib;		add	T1=T1,X[15]		// T1+=X[i]
233		_rotr	r8=$t0,$Sigma0[2] }	// ROTR(a,39)
234{ .mib;		xor	r10=r10,r11
235		mux2	X[15]=X[15],0x44 };;	// eliminated in 64-bit
236{ .mmi;		xor	r10=r8,r10		// r10=Sigma0(a)
237		mov	B=A
238		add	A=T1,T2		};;
239.L_first16_ctop:
240{ .mib;		add	E=E,T1
241		add	A=A,r10			// T2=Maj(a,b,c)+Sigma0(a)
242	br.ctop.sptk	.L_first16	};;
243
244{ .mib;	mov	ar.lc=$rounds-17	}
245{ .mib;	mov	ar.ec=1			};;
246.align	32
247.L_rest:
248.rotr	X[16]
249{ .mib;		$LDW	K=[Ktbl],$SZ
250		_rotr	r8=X[15-1],$sigma0[0] }	// ROTR(s0,1)
251{ .mib; 	$ADD	X[15]=X[15],X[15-9]	// X[i&0xF]+=X[(i+9)&0xF]
252		$SHRU	s0=X[15-1],sgm0	};;	// s0=X[(i+1)&0xF]>>7
253{ .mib;		and	T1=F,E
254		_rotr	r9=X[15-1],$sigma0[1] }	// ROTR(s0,8)
255{ .mib;		andcm	r10=G,E
256		$SHRU	s1=X[15-14],sgm1 };;	// s1=X[(i+14)&0xF]>>6
257{ .mmi;		xor	T1=T1,r10		// T1=((e & f) ^ (~e & g))
258		xor	r9=r8,r9
259		_rotr	r10=X[15-14],$sigma1[0] };;// ROTR(s1,19)
260{ .mib;		and	T2=A,B
261		_rotr	r11=X[15-14],$sigma1[1] }// ROTR(s1,61)
262{ .mib;		and	r8=A,C		};;
263___
264$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
265// I adhere to mmi; in order to hold Itanium 1 back and avoid 6 cycle
266// pipeline flush in last bundle. Note that even on Itanium2 the
267// latter stalls for one clock cycle...
268{ .mmi;		xor	s0=s0,r9		// s0=sigma0(X[(i+1)&0xF])
269		dep.z	$t1=E,32,32	}
270{ .mmi;		xor	r10=r11,r10
271		zxt4	E=E		};;
272{ .mmi;		or	$t1=$t1,E
273		xor	s1=s1,r10		// s1=sigma1(X[(i+14)&0xF])
274		mux2	$t0=A,0x44	};;	// copy lower half to upper
275{ .mmi;		xor	T2=T2,r8
276		_rotr	r9=$t1,$Sigma1[0] }	// ROTR(e,14)
277{ .mmi;		and	r10=B,C
278		add	T1=T1,H			// T1=Ch(e,f,g)+h
279		$ADD	X[15]=X[15],s0	};;	// X[i&0xF]+=sigma0(X[(i+1)&0xF])
280___
281$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
282{ .mib;		xor	s0=s0,r9		// s0=sigma0(X[(i+1)&0xF])
283		_rotr	r9=$t1,$Sigma1[0] }	// ROTR(e,14)
284{ .mib;		xor	r10=r11,r10
285		xor	T2=T2,r8	};;
286{ .mib;		xor	s1=s1,r10		// s1=sigma1(X[(i+14)&0xF])
287		add	T1=T1,H		}
288{ .mib;		and	r10=B,C
289		$ADD	X[15]=X[15],s0	};;	// X[i&0xF]+=sigma0(X[(i+1)&0xF])
290___
291$code.=<<___;
292{ .mmi;		xor	T2=T2,r10		// T2=((a & b) ^ (a & c) ^ (b & c))
293		mov	H=G
294		_rotr	r8=$t1,$Sigma1[1] };;	// ROTR(e,18)
295{ .mmi;		xor	r11=r8,r9
296		$ADD	X[15]=X[15],s1		// X[i&0xF]+=sigma1(X[(i+14)&0xF])
297		_rotr	r9=$t1,$Sigma1[2] }	// ROTR(e,41)
298{ .mmi;		mov	G=F
299		mov	F=E		};;
300{ .mib;		xor	r9=r9,r11		// r9=Sigma1(e)
301		_rotr	r10=$t0,$Sigma0[0] }	// ROTR(a,28)
302{ .mib;		add	T1=T1,K			// T1=Ch(e,f,g)+h+K512[i]
303		mov	E=D		};;
304{ .mib;		add	T1=T1,r9		// T1+=Sigma1(e)
305		_rotr	r11=$t0,$Sigma0[1] }	// ROTR(a,34)
306{ .mib;		mov	D=C
307		mov	C=B		};;
308{ .mmi;		add	T1=T1,X[15]		// T1+=X[i]
309		xor	r10=r10,r11
310		_rotr	r8=$t0,$Sigma0[2] };;	// ROTR(a,39)
311{ .mmi;		xor	r10=r8,r10		// r10=Sigma0(a)
312		mov	B=A
313		add	A=T1,T2		};;
314.L_rest_ctop:
315{ .mib;		add	E=E,T1
316		add	A=A,r10			// T2=Maj(a,b,c)+Sigma0(a)
317	br.ctop.sptk	.L_rest	};;
318
319{ .mib;	add	r8=0*$SZ,ctx
320	add	r9=1*$SZ,ctx		}
321{ .mib;	add	r10=2*$SZ,ctx
322	add	r11=3*$SZ,ctx		};;
323{ .mmi;	$LDW	r32=[r8],4*$SZ
324	$LDW	r33=[r9],4*$SZ		}
325{ .mmi;	$LDW	r34=[r10],4*$SZ
326	$LDW	r35=[r11],4*$SZ
327	cmp.ltu	p6,p7=1,num		};;
328{ .mmi;	$LDW	r36=[r8],-4*$SZ
329	$LDW	r37=[r9],-4*$SZ
330(p6)	add	Ktbl=-$SZ*$rounds,Ktbl	}
331{ .mmi;	$LDW	r38=[r10],-4*$SZ
332	$LDW	r39=[r11],-4*$SZ
333(p7)	mov	ar.lc=r3		};;
334{ .mmi;	add	A=A,r32
335	add	B=B,r33
336	add	C=C,r34			}
337{ .mmi;	add	D=D,r35
338	add	E=E,r36
339	add	F=F,r37			};;
340{ .mmi;	$STW	[r8]=A,4*$SZ
341	$STW	[r9]=B,4*$SZ
342	add	G=G,r38			}
343{ .mmi;	$STW	[r10]=C,4*$SZ
344	$STW	[r11]=D,4*$SZ
345	add	H=H,r39			};;
346{ .mmi;	$STW	[r8]=E
347	$STW	[r9]=F
348(p6)	add	num=-1,num		}
349{ .mmb;	$STW	[r10]=G
350	$STW	[r11]=H
351(p6)	br.dptk.many	.L_outer	};;
352
353{ .mib;	mov	pr=prsave,0x1ffff
354	br.ret.sptk.many	b0	};;
355.endp	$func#
356___
357
358$code =~ s/\`([^\`]*)\`/eval $1/gem;
359$code =~ s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm;
360if ($BITS==64) {
361    $code =~ s/mux2(\s+)\S+/nop.i$1 0x0/gm;
362    $code =~ s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian);
363}
364
365print $code;
366
367print<<___ if ($BITS==32);
368.align	64
369.type	K256#,\@object
370K256:	data4	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
371	data4	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
372	data4	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
373	data4	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
374	data4	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
375	data4	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
376	data4	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
377	data4	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
378	data4	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
379	data4	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
380	data4	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
381	data4	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
382	data4	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
383	data4	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
384	data4	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
385	data4	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
386.size	K256#,$SZ*$rounds
387___
388print<<___ if ($BITS==64);
389.align	64
390.type	K512#,\@object
391K512:	data8	0x428a2f98d728ae22,0x7137449123ef65cd
392	data8	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
393	data8	0x3956c25bf348b538,0x59f111f1b605d019
394	data8	0x923f82a4af194f9b,0xab1c5ed5da6d8118
395	data8	0xd807aa98a3030242,0x12835b0145706fbe
396	data8	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
397	data8	0x72be5d74f27b896f,0x80deb1fe3b1696b1
398	data8	0x9bdc06a725c71235,0xc19bf174cf692694
399	data8	0xe49b69c19ef14ad2,0xefbe4786384f25e3
400	data8	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
401	data8	0x2de92c6f592b0275,0x4a7484aa6ea6e483
402	data8	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
403	data8	0x983e5152ee66dfab,0xa831c66d2db43210
404	data8	0xb00327c898fb213f,0xbf597fc7beef0ee4
405	data8	0xc6e00bf33da88fc2,0xd5a79147930aa725
406	data8	0x06ca6351e003826f,0x142929670a0e6e70
407	data8	0x27b70a8546d22ffc,0x2e1b21385c26c926
408	data8	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
409	data8	0x650a73548baf63de,0x766a0abb3c77b2a8
410	data8	0x81c2c92e47edaee6,0x92722c851482353b
411	data8	0xa2bfe8a14cf10364,0xa81a664bbc423001
412	data8	0xc24b8b70d0f89791,0xc76c51a30654be30
413	data8	0xd192e819d6ef5218,0xd69906245565a910
414	data8	0xf40e35855771202a,0x106aa07032bbd1b8
415	data8	0x19a4c116b8d2d0c8,0x1e376c085141ab53
416	data8	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
417	data8	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
418	data8	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
419	data8	0x748f82ee5defb2fc,0x78a5636f43172f60
420	data8	0x84c87814a1f0ab72,0x8cc702081a6439ec
421	data8	0x90befffa23631e28,0xa4506cebde82bde9
422	data8	0xbef9a3f7b2c67915,0xc67178f2e372532b
423	data8	0xca273eceea26619c,0xd186b8c721c0c207
424	data8	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
425	data8	0x06f067aa72176fba,0x0a637dc5a2c898a6
426	data8	0x113f9804bef90dae,0x1b710b35131c471b
427	data8	0x28db77f523047d84,0x32caab7b40c72493
428	data8	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
429	data8	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
430	data8	0x5fcb6fab3ad6faec,0x6c44198c4a475817
431.size	K512#,$SZ*$rounds
432___
433