1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# SHA256/512_Transform for Itanium.
11#
12# sha512_block runs in 1003 cycles on Itanium 2, which is almost 50%
13# faster than gcc and >60%(!) faster than code generated by HP-UX
14# compiler (yes, HP-UX is generating slower code, because unlike gcc,
15# it failed to deploy "shift right pair," 'shrp' instruction, which
16# substitutes for 64-bit rotate).
17#
18# 924 cycles long sha256_block outperforms gcc by over factor of 2(!)
19# and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost
20# this one big time). Note that "formally" 924 is about 100 cycles
21# too much. I mean it's 64 32-bit rounds vs. 80 virtually identical
22# 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round,
23# are spent on extra work to provide for 32-bit rotations. 32-bit
24# rotations are still handled by 'shrp' instruction and for this
25# reason lower 32 bits are deposited to upper half of 64-bit register
26# prior 'shrp' issue. And in order to minimize the amount of such
27# operations, X[16] values are *maintained* with copies of lower
28# halves in upper halves, which is why you'll spot such instructions
29# as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel
30# 32-bit unsigned right shift," 'pshr4.u' instructions here.
31#
32# Rules of engagement.
33#
34# There is only one integer shifter meaning that if I have two rotate,
35# deposit or extract instructions in adjacent bundles, they shall
36# split [at run-time if they have to]. But note that variable and
37# parallel shifts are performed by multi-media ALU and *are* pairable
38# with rotates [and alike]. On the backside MMALU is rather slow: it
39# takes 2 extra cycles before the result of integer operation is
40# available *to* MMALU and 2(*) extra cycles before the result of MM
41# operation is available "back" *to* integer ALU, not to mention that
42# MMALU itself has 2 cycles latency. However! I explicitly scheduled
43# these MM instructions to avoid MM stalls, so that all these extra
44# latencies get "hidden" in instruction-level parallelism.
45#
46# (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule
47#     for 2 in order to provide for best *overall* performance,
48#     because on Itanium 1 stall on MM result is accompanied by
49#     pipeline flush, which takes 6 cycles:-(
50#
51# June 2012
52#
53# Improve performance by 15-20%. Note about "rules of engagement"
54# above. Contemporary cores are equipped with additional shifter,
55# so that they should perform even better than below, presumably
56# by ~10%.
57#
58######################################################################
59# Current performance in cycles per processed byte for Itanium 2
60# pre-9000 series [little-endian] system:
61#
62# SHA1(*)	5.7
63# SHA256	12.6
64# SHA512	6.7
65#
66# (*) SHA1 result is presented purely for reference purposes.
67#
68# To generate code, pass the file name with either 256 or 512 in its
69# name and compiler flags.
70
71$output=shift;
72
73if ($output =~ /512.*\.[s|asm]/) {
74	$SZ=8;
75	$BITS=8*$SZ;
76	$LDW="ld8";
77	$STW="st8";
78	$ADD="add";
79	$SHRU="shr.u";
80	$TABLE="K512";
81	$func="sha512_block_data_order";
82	@Sigma0=(28,34,39);
83	@Sigma1=(14,18,41);
84	@sigma0=(1,  8, 7);
85	@sigma1=(19,61, 6);
86	$rounds=80;
87} elsif ($output =~ /256.*\.[s|asm]/) {
88	$SZ=4;
89	$BITS=8*$SZ;
90	$LDW="ld4";
91	$STW="st4";
92	$ADD="padd4";
93	$SHRU="pshr4.u";
94	$TABLE="K256";
95	$func="sha256_block_data_order";
96	@Sigma0=( 2,13,22);
97	@Sigma1=( 6,11,25);
98	@sigma0=( 7,18, 3);
99	@sigma1=(17,19,10);
100	$rounds=64;
101} else { die "nonsense $output"; }
102
103open STDOUT,">$output" || die "can't open $output: $!";
104
105if ($^O eq "hpux") {
106    $ADDP="addp4";
107    for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
108} else { $ADDP="add"; }
109for (@ARGV)  {	$big_endian=1 if (/\-DB_ENDIAN/);
110		$big_endian=0 if (/\-DL_ENDIAN/);  }
111if (!defined($big_endian))
112             {	$big_endian=(unpack('L',pack('N',1))==1);  }
113
114$code=<<___;
115.ident  \"$output, version 2.0\"
116.ident  \"IA-64 ISA artwork by Andy Polyakov <appro\@openssl.org>\"
117.explicit
118.text
119
120pfssave=r2;
121lcsave=r3;
122prsave=r14;
123K=r15;
124A_=r16; B_=r17; C_=r18; D_=r19;
125E_=r20; F_=r21; G_=r22; H_=r23;
126T1=r24;	T2=r25;
127s0=r26;	s1=r27;	t0=r28;	t1=r29;
128Ktbl=r30;
129ctx=r31;	// 1st arg
130input=r56;	// 2nd arg
131num=r57;	// 3rd arg
132sgm0=r58;	sgm1=r59;	// small constants
133
134// void $func (SHA_CTX *ctx, const void *in,size_t num[,int host])
135.global	$func#
136.proc	$func#
137.align	32
138.skip	16
139$func:
140	.prologue
141	.save	ar.pfs,pfssave
142{ .mmi;	alloc	pfssave=ar.pfs,3,25,0,24
143	$ADDP	ctx=0,r32		// 1st arg
144	.save	ar.lc,lcsave
145	mov	lcsave=ar.lc	}
146{ .mmi;	$ADDP	input=0,r33		// 2nd arg
147	mov	num=r34			// 3rd arg
148	.save	pr,prsave
149	mov	prsave=pr	};;
150
151	.body
152{ .mib;	add	r8=0*$SZ,ctx
153	add	r9=1*$SZ,ctx	}
154{ .mib;	add	r10=2*$SZ,ctx
155	add	r11=3*$SZ,ctx	};;
156
157// load A-H
158.Lpic_point:
159{ .mmi;	$LDW	A_=[r8],4*$SZ
160	$LDW	B_=[r9],4*$SZ
161	mov	Ktbl=ip		}
162{ .mmi;	$LDW	C_=[r10],4*$SZ
163	$LDW	D_=[r11],4*$SZ
164	mov	sgm0=$sigma0[2]	};;
165{ .mmi;	$LDW	E_=[r8]
166	$LDW	F_=[r9]
167	add	Ktbl=($TABLE#-.Lpic_point),Ktbl		}
168{ .mmi;	$LDW	G_=[r10]
169	$LDW	H_=[r11]
170	cmp.ne	p0,p16=0,r0	};;
171___
172$code.=<<___ if ($BITS==64);
173{ .mii;	and	r8=7,input
174	and	input=~7,input;;
175	cmp.eq	p9,p0=1,r8	}
176{ .mmi;	cmp.eq	p10,p0=2,r8
177	cmp.eq	p11,p0=3,r8
178	cmp.eq	p12,p0=4,r8	}
179{ .mmi;	cmp.eq	p13,p0=5,r8
180	cmp.eq	p14,p0=6,r8
181	cmp.eq	p15,p0=7,r8	};;
182___
183$code.=<<___;
184.L_outer:
185.rotr	R[8],X[16]
186A=R[0]; B=R[1]; C=R[2]; D=R[3]; E=R[4]; F=R[5]; G=R[6]; H=R[7]
187{ .mmi;	ld1	X[15]=[input],$SZ		// eliminated in sha512
188	mov	A=A_
189	mov	ar.lc=14	}
190{ .mmi;	mov	B=B_
191	mov	C=C_
192	mov	D=D_		}
193{ .mmi;	mov	E=E_
194	mov	F=F_
195	mov	ar.ec=2		};;
196{ .mmi;	mov	G=G_
197	mov	H=H_
198	mov	sgm1=$sigma1[2]	}
199{ .mib;	mov	r8=0
200	add	r9=1-$SZ,input
201	brp.loop.imp	.L_first16,.L_first16_end-16	};;
202___
203$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
204// in sha512 case I load whole X[16] at once and take care of alignment...
205{ .mmi;	add	r8=1*$SZ,input
206	add	r9=2*$SZ,input
207	add	r10=3*$SZ,input		};;
208{ .mmb;	$LDW	X[15]=[input],4*$SZ
209	$LDW	X[14]=[r8],4*$SZ
210(p9)	br.cond.dpnt.many	.L1byte	};;
211{ .mmb;	$LDW	X[13]=[r9],4*$SZ
212	$LDW	X[12]=[r10],4*$SZ
213(p10)	br.cond.dpnt.many	.L2byte	};;
214{ .mmb;	$LDW	X[11]=[input],4*$SZ
215	$LDW	X[10]=[r8],4*$SZ
216(p11)	br.cond.dpnt.many	.L3byte	};;
217{ .mmb;	$LDW	X[ 9]=[r9],4*$SZ
218	$LDW	X[ 8]=[r10],4*$SZ
219(p12)	br.cond.dpnt.many	.L4byte	};;
220{ .mmb;	$LDW	X[ 7]=[input],4*$SZ
221	$LDW	X[ 6]=[r8],4*$SZ
222(p13)	br.cond.dpnt.many	.L5byte	};;
223{ .mmb;	$LDW	X[ 5]=[r9],4*$SZ
224	$LDW	X[ 4]=[r10],4*$SZ
225(p14)	br.cond.dpnt.many	.L6byte	};;
226{ .mmb;	$LDW	X[ 3]=[input],4*$SZ
227	$LDW	X[ 2]=[r8],4*$SZ
228(p15)	br.cond.dpnt.many	.L7byte	};;
229{ .mmb;	$LDW	X[ 1]=[r9],4*$SZ
230	$LDW	X[ 0]=[r10],4*$SZ	}
231{ .mib;	mov	r8=0
232	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
233	br.many	.L_first16		};;
234.L1byte:
235{ .mmi;	$LDW	X[13]=[r9],4*$SZ
236	$LDW	X[12]=[r10],4*$SZ
237	shrp	X[15]=X[15],X[14],56	};;
238{ .mmi;	$LDW	X[11]=[input],4*$SZ
239	$LDW	X[10]=[r8],4*$SZ
240	shrp	X[14]=X[14],X[13],56	}
241{ .mmi;	$LDW	X[ 9]=[r9],4*$SZ
242	$LDW	X[ 8]=[r10],4*$SZ
243	shrp	X[13]=X[13],X[12],56	};;
244{ .mmi;	$LDW	X[ 7]=[input],4*$SZ
245	$LDW	X[ 6]=[r8],4*$SZ
246	shrp	X[12]=X[12],X[11],56	}
247{ .mmi;	$LDW	X[ 5]=[r9],4*$SZ
248	$LDW	X[ 4]=[r10],4*$SZ
249	shrp	X[11]=X[11],X[10],56	};;
250{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
251	$LDW	X[ 2]=[r8],4*$SZ
252	shrp	X[10]=X[10],X[ 9],56	}
253{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
254	$LDW	X[ 0]=[r10],4*$SZ
255	shrp	X[ 9]=X[ 9],X[ 8],56	};;
256{ .mii;	$LDW	T1=[input]
257	shrp	X[ 8]=X[ 8],X[ 7],56
258	shrp	X[ 7]=X[ 7],X[ 6],56	}
259{ .mii;	shrp	X[ 6]=X[ 6],X[ 5],56
260	shrp	X[ 5]=X[ 5],X[ 4],56	};;
261{ .mii;	shrp	X[ 4]=X[ 4],X[ 3],56
262	shrp	X[ 3]=X[ 3],X[ 2],56	}
263{ .mii;	shrp	X[ 2]=X[ 2],X[ 1],56
264	shrp	X[ 1]=X[ 1],X[ 0],56	}
265{ .mib;	shrp	X[ 0]=X[ 0],T1,56	}
266{ .mib;	mov	r8=0
267	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
268	br.many	.L_first16		};;
269.L2byte:
270{ .mmi;	$LDW	X[11]=[input],4*$SZ
271	$LDW	X[10]=[r8],4*$SZ
272	shrp	X[15]=X[15],X[14],48	}
273{ .mmi;	$LDW	X[ 9]=[r9],4*$SZ
274	$LDW	X[ 8]=[r10],4*$SZ
275	shrp	X[14]=X[14],X[13],48	};;
276{ .mmi;	$LDW	X[ 7]=[input],4*$SZ
277	$LDW	X[ 6]=[r8],4*$SZ
278	shrp	X[13]=X[13],X[12],48	}
279{ .mmi;	$LDW	X[ 5]=[r9],4*$SZ
280	$LDW	X[ 4]=[r10],4*$SZ
281	shrp	X[12]=X[12],X[11],48	};;
282{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
283	$LDW	X[ 2]=[r8],4*$SZ
284	shrp	X[11]=X[11],X[10],48	}
285{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
286	$LDW	X[ 0]=[r10],4*$SZ
287	shrp	X[10]=X[10],X[ 9],48	};;
288{ .mii;	$LDW	T1=[input]
289	shrp	X[ 9]=X[ 9],X[ 8],48
290	shrp	X[ 8]=X[ 8],X[ 7],48	}
291{ .mii;	shrp	X[ 7]=X[ 7],X[ 6],48
292	shrp	X[ 6]=X[ 6],X[ 5],48	};;
293{ .mii;	shrp	X[ 5]=X[ 5],X[ 4],48
294	shrp	X[ 4]=X[ 4],X[ 3],48	}
295{ .mii;	shrp	X[ 3]=X[ 3],X[ 2],48
296	shrp	X[ 2]=X[ 2],X[ 1],48	}
297{ .mii;	shrp	X[ 1]=X[ 1],X[ 0],48
298	shrp	X[ 0]=X[ 0],T1,48	}
299{ .mib;	mov	r8=0
300	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
301	br.many	.L_first16		};;
302.L3byte:
303{ .mmi;	$LDW	X[ 9]=[r9],4*$SZ
304	$LDW	X[ 8]=[r10],4*$SZ
305	shrp	X[15]=X[15],X[14],40	};;
306{ .mmi;	$LDW	X[ 7]=[input],4*$SZ
307	$LDW	X[ 6]=[r8],4*$SZ
308	shrp	X[14]=X[14],X[13],40	}
309{ .mmi;	$LDW	X[ 5]=[r9],4*$SZ
310	$LDW	X[ 4]=[r10],4*$SZ
311	shrp	X[13]=X[13],X[12],40	};;
312{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
313	$LDW	X[ 2]=[r8],4*$SZ
314	shrp	X[12]=X[12],X[11],40	}
315{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
316	$LDW	X[ 0]=[r10],4*$SZ
317	shrp	X[11]=X[11],X[10],40	};;
318{ .mii;	$LDW	T1=[input]
319	shrp	X[10]=X[10],X[ 9],40
320	shrp	X[ 9]=X[ 9],X[ 8],40	}
321{ .mii;	shrp	X[ 8]=X[ 8],X[ 7],40
322	shrp	X[ 7]=X[ 7],X[ 6],40	};;
323{ .mii;	shrp	X[ 6]=X[ 6],X[ 5],40
324	shrp	X[ 5]=X[ 5],X[ 4],40	}
325{ .mii;	shrp	X[ 4]=X[ 4],X[ 3],40
326	shrp	X[ 3]=X[ 3],X[ 2],40	}
327{ .mii;	shrp	X[ 2]=X[ 2],X[ 1],40
328	shrp	X[ 1]=X[ 1],X[ 0],40	}
329{ .mib;	shrp	X[ 0]=X[ 0],T1,40	}
330{ .mib;	mov	r8=0
331	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
332	br.many	.L_first16		};;
333.L4byte:
334{ .mmi;	$LDW	X[ 7]=[input],4*$SZ
335	$LDW	X[ 6]=[r8],4*$SZ
336	shrp	X[15]=X[15],X[14],32	}
337{ .mmi;	$LDW	X[ 5]=[r9],4*$SZ
338	$LDW	X[ 4]=[r10],4*$SZ
339	shrp	X[14]=X[14],X[13],32	};;
340{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
341	$LDW	X[ 2]=[r8],4*$SZ
342	shrp	X[13]=X[13],X[12],32	}
343{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
344	$LDW	X[ 0]=[r10],4*$SZ
345	shrp	X[12]=X[12],X[11],32	};;
346{ .mii;	$LDW	T1=[input]
347	shrp	X[11]=X[11],X[10],32
348	shrp	X[10]=X[10],X[ 9],32	}
349{ .mii;	shrp	X[ 9]=X[ 9],X[ 8],32
350	shrp	X[ 8]=X[ 8],X[ 7],32	};;
351{ .mii;	shrp	X[ 7]=X[ 7],X[ 6],32
352	shrp	X[ 6]=X[ 6],X[ 5],32	}
353{ .mii;	shrp	X[ 5]=X[ 5],X[ 4],32
354	shrp	X[ 4]=X[ 4],X[ 3],32	}
355{ .mii;	shrp	X[ 3]=X[ 3],X[ 2],32
356	shrp	X[ 2]=X[ 2],X[ 1],32	}
357{ .mii;	shrp	X[ 1]=X[ 1],X[ 0],32
358	shrp	X[ 0]=X[ 0],T1,32	}
359{ .mib;	mov	r8=0
360	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
361	br.many	.L_first16		};;
362.L5byte:
363{ .mmi;	$LDW	X[ 5]=[r9],4*$SZ
364	$LDW	X[ 4]=[r10],4*$SZ
365	shrp	X[15]=X[15],X[14],24	};;
366{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
367	$LDW	X[ 2]=[r8],4*$SZ
368	shrp	X[14]=X[14],X[13],24	}
369{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
370	$LDW	X[ 0]=[r10],4*$SZ
371	shrp	X[13]=X[13],X[12],24	};;
372{ .mii;	$LDW	T1=[input]
373	shrp	X[12]=X[12],X[11],24
374	shrp	X[11]=X[11],X[10],24	}
375{ .mii;	shrp	X[10]=X[10],X[ 9],24
376	shrp	X[ 9]=X[ 9],X[ 8],24	};;
377{ .mii;	shrp	X[ 8]=X[ 8],X[ 7],24
378	shrp	X[ 7]=X[ 7],X[ 6],24	}
379{ .mii;	shrp	X[ 6]=X[ 6],X[ 5],24
380	shrp	X[ 5]=X[ 5],X[ 4],24	}
381{ .mii;	shrp	X[ 4]=X[ 4],X[ 3],24
382	shrp	X[ 3]=X[ 3],X[ 2],24	}
383{ .mii;	shrp	X[ 2]=X[ 2],X[ 1],24
384	shrp	X[ 1]=X[ 1],X[ 0],24	}
385{ .mib;	shrp	X[ 0]=X[ 0],T1,24	}
386{ .mib;	mov	r8=0
387	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
388	br.many	.L_first16		};;
389.L6byte:
390{ .mmi;	$LDW	X[ 3]=[input],4*$SZ
391	$LDW	X[ 2]=[r8],4*$SZ
392	shrp	X[15]=X[15],X[14],16	}
393{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
394	$LDW	X[ 0]=[r10],4*$SZ
395	shrp	X[14]=X[14],X[13],16	};;
396{ .mii;	$LDW	T1=[input]
397	shrp	X[13]=X[13],X[12],16
398	shrp	X[12]=X[12],X[11],16	}
399{ .mii;	shrp	X[11]=X[11],X[10],16
400	shrp	X[10]=X[10],X[ 9],16	};;
401{ .mii;	shrp	X[ 9]=X[ 9],X[ 8],16
402	shrp	X[ 8]=X[ 8],X[ 7],16	}
403{ .mii;	shrp	X[ 7]=X[ 7],X[ 6],16
404	shrp	X[ 6]=X[ 6],X[ 5],16	}
405{ .mii;	shrp	X[ 5]=X[ 5],X[ 4],16
406	shrp	X[ 4]=X[ 4],X[ 3],16	}
407{ .mii;	shrp	X[ 3]=X[ 3],X[ 2],16
408	shrp	X[ 2]=X[ 2],X[ 1],16	}
409{ .mii;	shrp	X[ 1]=X[ 1],X[ 0],16
410	shrp	X[ 0]=X[ 0],T1,16	}
411{ .mib;	mov	r8=0
412	mux1	X[15]=X[15],\@rev		// eliminated on big-endian
413	br.many	.L_first16		};;
414.L7byte:
415{ .mmi;	$LDW	X[ 1]=[r9],4*$SZ
416	$LDW	X[ 0]=[r10],4*$SZ
417	shrp	X[15]=X[15],X[14],8	};;
418{ .mii;	$LDW	T1=[input]
419	shrp	X[14]=X[14],X[13],8
420	shrp	X[13]=X[13],X[12],8	}
421{ .mii;	shrp	X[12]=X[12],X[11],8
422	shrp	X[11]=X[11],X[10],8	};;
423{ .mii;	shrp	X[10]=X[10],X[ 9],8
424	shrp	X[ 9]=X[ 9],X[ 8],8	}
425{ .mii;	shrp	X[ 8]=X[ 8],X[ 7],8
426	shrp	X[ 7]=X[ 7],X[ 6],8	}
427{ .mii;	shrp	X[ 6]=X[ 6],X[ 5],8
428	shrp	X[ 5]=X[ 5],X[ 4],8	}
429{ .mii;	shrp	X[ 4]=X[ 4],X[ 3],8
430	shrp	X[ 3]=X[ 3],X[ 2],8	}
431{ .mii;	shrp	X[ 2]=X[ 2],X[ 1],8
432	shrp	X[ 1]=X[ 1],X[ 0],8	}
433{ .mib;	shrp	X[ 0]=X[ 0],T1,8	}
434{ .mib;	mov	r8=0
435	mux1	X[15]=X[15],\@rev	};;	// eliminated on big-endian
436
437.align	32
438.L_first16:
439{ .mmi;		$LDW	K=[Ktbl],$SZ
440		add	A=A,r8			// H+=Sigma(0) from the past
441		_rotr	r10=$t1,$Sigma1[0]  }	// ROTR(e,14)
442{ .mmi;		and	T1=F,E
443		andcm	r8=G,E
444	(p16)	mux1	X[14]=X[14],\@rev   };;	// eliminated on big-endian
445{ .mmi;		and	T2=A,B
446		and	r9=A,C
447		_rotr	r11=$t1,$Sigma1[1]  }	// ROTR(e,41)
448{ .mmi;		xor	T1=T1,r8		// T1=((e & f) ^ (~e & g))
449		and	r8=B,C		    };;
450___
451$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
452.align	32
453.L_first16:
454{ .mmi;		add	A=A,r8			// H+=Sigma(0) from the past
455		add	r10=2-$SZ,input
456		add	r11=3-$SZ,input	};;
457{ .mmi;		ld1	r9=[r9]
458		ld1	r10=[r10]
459		dep.z	$t1=E,32,32	}
460{ .mmi;		ld1	r11=[r11]
461		$LDW	K=[Ktbl],$SZ
462		zxt4	E=E		};;
463{ .mii;		or	$t1=$t1,E
464		dep	X[15]=X[15],r9,8,8
465		mux2	$t0=A,0x44	};;	// copy lower half to upper
466{ .mmi;		and	T1=F,E
467		andcm	r8=G,E
468		dep	r11=r10,r11,8,8	};;
469{ .mmi;		and	T2=A,B
470		and	r9=A,C
471		dep	X[15]=X[15],r11,16,16	};;
472{ .mmi;	(p16)	ld1	X[15-1]=[input],$SZ	// prefetch
473		xor	T1=T1,r8		// T1=((e & f) ^ (~e & g))
474		_rotr	r10=$t1,$Sigma1[0] }	// ROTR(e,14)
475{ .mmi;		and	r8=B,C
476		_rotr	r11=$t1,$Sigma1[1] };;	// ROTR(e,18)
477___
478$code.=<<___;
479{ .mmi;		add	T1=T1,H			// T1=Ch(e,f,g)+h
480		xor	r10=r10,r11
481		_rotr	r11=$t1,$Sigma1[2]  }	// ROTR(e,41)
482{ .mmi;		xor	T2=T2,r9
483		add	K=K,X[15]	    };;
484{ .mmi;		add	T1=T1,K			// T1+=K[i]+X[i]
485		xor	T2=T2,r8		// T2=((a & b) ^ (a & c) ^ (b & c))
486		_rotr	r8=$t0,$Sigma0[0]   }	// ROTR(a,28)
487{ .mmi;		xor	r11=r11,r10		// Sigma1(e)
488		_rotr	r9=$t0,$Sigma0[1]   };;	// ROTR(a,34)
489{ .mmi;		add	T1=T1,r11		// T+=Sigma1(e)
490		xor	r8=r8,r9
491		_rotr	r9=$t0,$Sigma0[2]   };;	// ROTR(a,39)
492{ .mmi;		xor	r8=r8,r9		// Sigma0(a)
493		add	D=D,T1
494		mux2	H=X[15],0x44	    }	// mov H=X[15] in sha512
495{ .mib;	(p16)	add	r9=1-$SZ,input		// not used in sha512
496		add	X[15]=T1,T2		// H=T1+Maj(a,b,c)
497	br.ctop.sptk	.L_first16	    };;
498.L_first16_end:
499
500{ .mib;	mov	ar.lc=$rounds-17
501	brp.loop.imp	.L_rest,.L_rest_end-16		}
502{ .mib;	mov	ar.ec=1
503	br.many	.L_rest			};;
504
505.align	32
506.L_rest:
507{ .mmi;		$LDW	K=[Ktbl],$SZ
508		add	A=A,r8			// H+=Sigma0(a) from the past
509		_rotr	r8=X[15-1],$sigma0[0] }	// ROTR(s0,1)
510{ .mmi; 	add	X[15]=X[15],X[15-9]	// X[i&0xF]+=X[(i+9)&0xF]
511		$SHRU	s0=X[15-1],sgm0	    };;	// s0=X[(i+1)&0xF]>>7
512{ .mib;		and	T1=F,E
513		_rotr	r9=X[15-1],$sigma0[1] }	// ROTR(s0,8)
514{ .mib;		andcm	r10=G,E
515		$SHRU	s1=X[15-14],sgm1    };;	// s1=X[(i+14)&0xF]>>6
516// Pair of mmi; splits on Itanium 1 and prevents pipeline flush
517// upon $SHRU output usage
518{ .mmi;		xor	T1=T1,r10		// T1=((e & f) ^ (~e & g))
519		xor	r9=r8,r9
520		_rotr	r10=X[15-14],$sigma1[0] }// ROTR(s1,19)
521{ .mmi;		and	T2=A,B
522		and	r8=A,C
523		_rotr	r11=X[15-14],$sigma1[1] };;// ROTR(s1,61)
524___
525$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
526{ .mib;		xor	s0=s0,r9		// s0=sigma0(X[(i+1)&0xF])
527		dep.z	$t1=E,32,32	    }
528{ .mib;		xor	r10=r11,r10
529		zxt4	E=E		    };;
530{ .mii;		xor	s1=s1,r10		// s1=sigma1(X[(i+14)&0xF])
531		shrp	r9=E,$t1,32+$Sigma1[0]	// ROTR(e,14)
532		mux2	$t0=A,0x44	    };;	// copy lower half to upper
533// Pair of mmi; splits on Itanium 1 and prevents pipeline flush
534// upon mux2 output usage
535{ .mmi;		xor	T2=T2,r8
536		shrp	r8=E,$t1,32+$Sigma1[1]}	// ROTR(e,18)
537{ .mmi;		and	r10=B,C
538		add	T1=T1,H			// T1=Ch(e,f,g)+h
539		or	$t1=$t1,E   	    };;
540___
541$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
542{ .mib;		xor	s0=s0,r9		// s0=sigma0(X[(i+1)&0xF])
543		_rotr	r9=$t1,$Sigma1[0]   }	// ROTR(e,14)
544{ .mib;		xor	r10=r11,r10
545		xor	T2=T2,r8	    };;
546{ .mib;		xor	s1=s1,r10		// s1=sigma1(X[(i+14)&0xF])
547		_rotr	r8=$t1,$Sigma1[1]   }	// ROTR(e,18)
548{ .mib;		and	r10=B,C
549		add	T1=T1,H		    };;	// T1+=H
550___
551$code.=<<___;
552{ .mib;		xor	r9=r9,r8
553		_rotr	r8=$t1,$Sigma1[2]   }	// ROTR(e,41)
554{ .mib;		xor	T2=T2,r10		// T2=((a & b) ^ (a & c) ^ (b & c))
555		add	X[15]=X[15],s0	    };;	// X[i]+=sigma0(X[i+1])
556{ .mmi;		xor	r9=r9,r8		// Sigma1(e)
557		add	X[15]=X[15],s1		// X[i]+=sigma0(X[i+14])
558		_rotr	r8=$t0,$Sigma0[0]   };;	// ROTR(a,28)
559{ .mmi;		add	K=K,X[15]
560		add	T1=T1,r9		// T1+=Sigma1(e)
561		_rotr	r9=$t0,$Sigma0[1]   };;	// ROTR(a,34)
562{ .mmi;		add	T1=T1,K			// T1+=K[i]+X[i]
563		xor	r8=r8,r9
564		_rotr	r9=$t0,$Sigma0[2]   };;	// ROTR(a,39)
565{ .mib;		add	D=D,T1
566		mux2	H=X[15],0x44	    }	// mov H=X[15] in sha512
567{ .mib;		xor	r8=r8,r9		// Sigma0(a)
568		add	X[15]=T1,T2		// H=T1+Maj(a,b,c)
569	br.ctop.sptk	.L_rest		    };;
570.L_rest_end:
571
572{ .mmi;	add	A=A,r8			};;	// H+=Sigma0(a) from the past
573{ .mmi;	add	A_=A_,A
574	add	B_=B_,B
575	add	C_=C_,C			}
576{ .mmi;	add	D_=D_,D
577	add	E_=E_,E
578	cmp.ltu	p16,p0=1,num		};;
579{ .mmi;	add	F_=F_,F
580	add	G_=G_,G
581	add	H_=H_,H			}
582{ .mmb;	add	Ktbl=-$SZ*$rounds,Ktbl
583(p16)	add	num=-1,num
584(p16)	br.dptk.many	.L_outer	};;
585
586{ .mib;	add	r8=0*$SZ,ctx
587	add	r9=1*$SZ,ctx		}
588{ .mib;	add	r10=2*$SZ,ctx
589	add	r11=3*$SZ,ctx		};;
590{ .mmi;	$STW	[r8]=A_,4*$SZ
591	$STW	[r9]=B_,4*$SZ
592	mov	ar.lc=lcsave		}
593{ .mmi;	$STW	[r10]=C_,4*$SZ
594	$STW	[r11]=D_,4*$SZ
595	mov	pr=prsave,0x1ffff	};;
596{ .mmb;	$STW	[r8]=E_
597	$STW	[r9]=F_			}
598{ .mmb;	$STW	[r10]=G_
599	$STW	[r11]=H_
600	br.ret.sptk.many	b0	};;
601.endp	$func#
602___
603
604foreach(split($/,$code)) {
605    s/\`([^\`]*)\`/eval $1/gem;
606    s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm;
607    if ($BITS==64) {
608	s/mux2(\s+)([^=]+)=([^,]+),\S+/mov$1 $2=$3/gm;
609	s/mux1(\s+)\S+/nop.i$1 0x0/gm	if ($big_endian);
610	s/(shrp\s+X\[[^=]+)=([^,]+),([^,]+),([1-9]+)/$1=$3,$2,64-$4/gm
611    						if (!$big_endian);
612	s/ld1(\s+)X\[\S+/nop.m$1 0x0/gm;
613    }
614
615    print $_,"\n";
616}
617
618print<<___ if ($BITS==32);
619.align	64
620.type	K256#,\@object
621K256:	data4	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
622	data4	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
623	data4	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
624	data4	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
625	data4	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
626	data4	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
627	data4	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
628	data4	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
629	data4	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
630	data4	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
631	data4	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
632	data4	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
633	data4	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
634	data4	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
635	data4	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
636	data4	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
637.size	K256#,$SZ*$rounds
638stringz	"SHA256 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
639___
640print<<___ if ($BITS==64);
641.align	64
642.type	K512#,\@object
643K512:	data8	0x428a2f98d728ae22,0x7137449123ef65cd
644	data8	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
645	data8	0x3956c25bf348b538,0x59f111f1b605d019
646	data8	0x923f82a4af194f9b,0xab1c5ed5da6d8118
647	data8	0xd807aa98a3030242,0x12835b0145706fbe
648	data8	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
649	data8	0x72be5d74f27b896f,0x80deb1fe3b1696b1
650	data8	0x9bdc06a725c71235,0xc19bf174cf692694
651	data8	0xe49b69c19ef14ad2,0xefbe4786384f25e3
652	data8	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
653	data8	0x2de92c6f592b0275,0x4a7484aa6ea6e483
654	data8	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
655	data8	0x983e5152ee66dfab,0xa831c66d2db43210
656	data8	0xb00327c898fb213f,0xbf597fc7beef0ee4
657	data8	0xc6e00bf33da88fc2,0xd5a79147930aa725
658	data8	0x06ca6351e003826f,0x142929670a0e6e70
659	data8	0x27b70a8546d22ffc,0x2e1b21385c26c926
660	data8	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
661	data8	0x650a73548baf63de,0x766a0abb3c77b2a8
662	data8	0x81c2c92e47edaee6,0x92722c851482353b
663	data8	0xa2bfe8a14cf10364,0xa81a664bbc423001
664	data8	0xc24b8b70d0f89791,0xc76c51a30654be30
665	data8	0xd192e819d6ef5218,0xd69906245565a910
666	data8	0xf40e35855771202a,0x106aa07032bbd1b8
667	data8	0x19a4c116b8d2d0c8,0x1e376c085141ab53
668	data8	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
669	data8	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
670	data8	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
671	data8	0x748f82ee5defb2fc,0x78a5636f43172f60
672	data8	0x84c87814a1f0ab72,0x8cc702081a6439ec
673	data8	0x90befffa23631e28,0xa4506cebde82bde9
674	data8	0xbef9a3f7b2c67915,0xc67178f2e372532b
675	data8	0xca273eceea26619c,0xd186b8c721c0c207
676	data8	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
677	data8	0x06f067aa72176fba,0x0a637dc5a2c898a6
678	data8	0x113f9804bef90dae,0x1b710b35131c471b
679	data8	0x28db77f523047d84,0x32caab7b40c72493
680	data8	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
681	data8	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
682	data8	0x5fcb6fab3ad6faec,0x6c44198c4a475817
683.size	K512#,$SZ*$rounds
684stringz	"SHA512 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
685___
686