1#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# sha1_block procedure for ARMv4.
11#
12# January 2007.
13
14# Size/performance trade-off
15# ====================================================================
16# impl		size in bytes	comp cycles[*]	measured performance
17# ====================================================================
18# thumb		304		3212		4420
19# armv4-small	392/+29%	1958/+64%	2250/+96%
20# armv4-compact	740/+89%	1552/+26%	1840/+22%
21# armv4-large	1420/+92%	1307/+19%	1370/+34%[***]
22# full unroll	~5100/+260%	~1260/+4%	~1300/+5%
23# ====================================================================
24# thumb		= same as 'small' but in Thumb instructions[**] and
25#		  with recurring code in two private functions;
26# small		= detached Xload/update, loops are folded;
27# compact	= detached Xload/update, 5x unroll;
28# large		= interleaved Xload/update, 5x unroll;
29# full unroll	= interleaved Xload/update, full unroll, estimated[!];
30#
31# [*]	Manually counted instructions in "grand" loop body. Measured
32#	performance is affected by prologue and epilogue overhead,
33#	i-cache availability, branch penalties, etc.
34# [**]	While each Thumb instruction is twice smaller, they are not as
35#	diverse as ARM ones: e.g., there are only two arithmetic
36#	instructions with 3 arguments, no [fixed] rotate, addressing
37#	modes are limited. As result it takes more instructions to do
38#	the same job in Thumb, therefore the code is never twice as
39#	small and always slower.
40# [***]	which is also ~35% better than compiler generated code. Dual-
41#	issue Cortex A8 core was measured to process input block in
42#	~990 cycles.
43
44# August 2010.
45#
46# Rescheduling for dual-issue pipeline resulted in 13% improvement on
47# Cortex A8 core and in absolute terms ~870 cycles per input block
48# [or 13.6 cycles per byte].
49
50# February 2011.
51#
52# Profiler-assisted and platform-specific optimization resulted in 10%
53# improvement on Cortex A8 core and 12.2 cycles per byte.
54
55# September 2013.
56#
57# Add NEON implementation (see sha1-586.pl for background info). On
58# Cortex A8 it was measured to process one byte in 6.7 cycles or >80%
59# faster than integer-only code. Because [fully unrolled] NEON code
60# is ~2.5x larger and there are some redundant instructions executed
61# when processing last block, improvement is not as big for smallest
62# blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per
63# byte, which is also >80% faster than integer-only code.
64
65# May 2014.
66#
67# Add ARMv8 code path performing at 2.35 cpb on Apple A7.
68
69while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
70open STDOUT,">$output";
71
72$ctx="r0";
73$inp="r1";
74$len="r2";
75$a="r3";
76$b="r4";
77$c="r5";
78$d="r6";
79$e="r7";
80$K="r8";
81$t0="r9";
82$t1="r10";
83$t2="r11";
84$t3="r12";
85$Xi="r14";
86@V=($a,$b,$c,$d,$e);
87
88sub Xupdate {
89my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_;
90$code.=<<___;
91	ldr	$t0,[$Xi,#15*4]
92	ldr	$t1,[$Xi,#13*4]
93	ldr	$t2,[$Xi,#7*4]
94	add	$e,$K,$e,ror#2			@ E+=K_xx_xx
95	ldr	$t3,[$Xi,#2*4]
96	eor	$t0,$t0,$t1
97	eor	$t2,$t2,$t3			@ 1 cycle stall
98	eor	$t1,$c,$d			@ F_xx_xx
99	mov	$t0,$t0,ror#31
100	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
101	eor	$t0,$t0,$t2,ror#31
102	str	$t0,[$Xi,#-4]!
103	$opt1					@ F_xx_xx
104	$opt2					@ F_xx_xx
105	add	$e,$e,$t0			@ E+=X[i]
106___
107}
108
109sub BODY_00_15 {
110my ($a,$b,$c,$d,$e)=@_;
111$code.=<<___;
112#if __ARM_ARCH__<7
113	ldrb	$t1,[$inp,#2]
114	ldrb	$t0,[$inp,#3]
115	ldrb	$t2,[$inp,#1]
116	add	$e,$K,$e,ror#2			@ E+=K_00_19
117	ldrb	$t3,[$inp],#4
118	orr	$t0,$t0,$t1,lsl#8
119	eor	$t1,$c,$d			@ F_xx_xx
120	orr	$t0,$t0,$t2,lsl#16
121	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
122	orr	$t0,$t0,$t3,lsl#24
123#else
124	ldr	$t0,[$inp],#4			@ handles unaligned
125	add	$e,$K,$e,ror#2			@ E+=K_00_19
126	eor	$t1,$c,$d			@ F_xx_xx
127	add	$e,$e,$a,ror#27			@ E+=ROR(A,27)
128#ifdef __ARMEL__
129	rev	$t0,$t0				@ byte swap
130#endif
131#endif
132	and	$t1,$b,$t1,ror#2
133	add	$e,$e,$t0			@ E+=X[i]
134	eor	$t1,$t1,$d,ror#2		@ F_00_19(B,C,D)
135	str	$t0,[$Xi,#-4]!
136	add	$e,$e,$t1			@ E+=F_00_19(B,C,D)
137___
138}
139
140sub BODY_16_19 {
141my ($a,$b,$c,$d,$e)=@_;
142	&Xupdate(@_,"and $t1,$b,$t1,ror#2");
143$code.=<<___;
144	eor	$t1,$t1,$d,ror#2		@ F_00_19(B,C,D)
145	add	$e,$e,$t1			@ E+=F_00_19(B,C,D)
146___
147}
148
149sub BODY_20_39 {
150my ($a,$b,$c,$d,$e)=@_;
151	&Xupdate(@_,"eor $t1,$b,$t1,ror#2");
152$code.=<<___;
153	add	$e,$e,$t1			@ E+=F_20_39(B,C,D)
154___
155}
156
157sub BODY_40_59 {
158my ($a,$b,$c,$d,$e)=@_;
159	&Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d");
160$code.=<<___;
161	add	$e,$e,$t1			@ E+=F_40_59(B,C,D)
162	add	$e,$e,$t2,ror#2
163___
164}
165
166$code=<<___;
167#include "arm_arch.h"
168
169.text
170.code	32
171
172.global	sha1_block_data_order
173.type	sha1_block_data_order,%function
174
175.align	5
176sha1_block_data_order:
177#if __ARM_MAX_ARCH__>=7
178	sub	r3,pc,#8		@ sha1_block_data_order
179	ldr	r12,.LOPENSSL_armcap
180	ldr	r12,[r3,r12]		@ OPENSSL_armcap_P
181	tst	r12,#ARMV8_SHA1
182	bne	.LARMv8
183	tst	r12,#ARMV7_NEON
184	bne	.LNEON
185#endif
186	stmdb	sp!,{r4-r12,lr}
187	add	$len,$inp,$len,lsl#6	@ $len to point at the end of $inp
188	ldmia	$ctx,{$a,$b,$c,$d,$e}
189.Lloop:
190	ldr	$K,.LK_00_19
191	mov	$Xi,sp
192	sub	sp,sp,#15*4
193	mov	$c,$c,ror#30
194	mov	$d,$d,ror#30
195	mov	$e,$e,ror#30		@ [6]
196.L_00_15:
197___
198for($i=0;$i<5;$i++) {
199	&BODY_00_15(@V);	unshift(@V,pop(@V));
200}
201$code.=<<___;
202	teq	$Xi,sp
203	bne	.L_00_15		@ [((11+4)*5+2)*3]
204	sub	sp,sp,#25*4
205___
206	&BODY_00_15(@V);	unshift(@V,pop(@V));
207	&BODY_16_19(@V);	unshift(@V,pop(@V));
208	&BODY_16_19(@V);	unshift(@V,pop(@V));
209	&BODY_16_19(@V);	unshift(@V,pop(@V));
210	&BODY_16_19(@V);	unshift(@V,pop(@V));
211$code.=<<___;
212
213	ldr	$K,.LK_20_39		@ [+15+16*4]
214	cmn	sp,#0			@ [+3], clear carry to denote 20_39
215.L_20_39_or_60_79:
216___
217for($i=0;$i<5;$i++) {
218	&BODY_20_39(@V);	unshift(@V,pop(@V));
219}
220$code.=<<___;
221	teq	$Xi,sp			@ preserve carry
222	bne	.L_20_39_or_60_79	@ [+((12+3)*5+2)*4]
223	bcs	.L_done			@ [+((12+3)*5+2)*4], spare 300 bytes
224
225	ldr	$K,.LK_40_59
226	sub	sp,sp,#20*4		@ [+2]
227.L_40_59:
228___
229for($i=0;$i<5;$i++) {
230	&BODY_40_59(@V);	unshift(@V,pop(@V));
231}
232$code.=<<___;
233	teq	$Xi,sp
234	bne	.L_40_59		@ [+((12+5)*5+2)*4]
235
236	ldr	$K,.LK_60_79
237	sub	sp,sp,#20*4
238	cmp	sp,#0			@ set carry to denote 60_79
239	b	.L_20_39_or_60_79	@ [+4], spare 300 bytes
240.L_done:
241	add	sp,sp,#80*4		@ "deallocate" stack frame
242	ldmia	$ctx,{$K,$t0,$t1,$t2,$t3}
243	add	$a,$K,$a
244	add	$b,$t0,$b
245	add	$c,$t1,$c,ror#2
246	add	$d,$t2,$d,ror#2
247	add	$e,$t3,$e,ror#2
248	stmia	$ctx,{$a,$b,$c,$d,$e}
249	teq	$inp,$len
250	bne	.Lloop			@ [+18], total 1307
251
252#if __ARM_ARCH__>=5
253	ldmia	sp!,{r4-r12,pc}
254#else
255	ldmia	sp!,{r4-r12,lr}
256	tst	lr,#1
257	moveq	pc,lr			@ be binary compatible with V4, yet
258	bx	lr			@ interoperable with Thumb ISA:-)
259#endif
260.size	sha1_block_data_order,.-sha1_block_data_order
261
262.align	5
263.LK_00_19:	.word	0x5a827999
264.LK_20_39:	.word	0x6ed9eba1
265.LK_40_59:	.word	0x8f1bbcdc
266.LK_60_79:	.word	0xca62c1d6
267#if __ARM_MAX_ARCH__>=7
268.LOPENSSL_armcap:
269.word	OPENSSL_armcap_P-sha1_block_data_order
270#endif
271.asciz	"SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
272.align	5
273___
274#####################################################################
275# NEON stuff
276#
277{{{
278my @V=($a,$b,$c,$d,$e);
279my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14));
280my $Xi=4;
281my @X=map("q$_",(8..11,0..3));
282my @Tx=("q12","q13");
283my ($K,$zero)=("q14","q15");
284my $j=0;
285
286sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
287{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
288  my $arg = pop;
289    $arg = "#$arg" if ($arg*1 eq $arg);
290    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
291}
292
293sub body_00_19 () {
294	(
295	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
296	'&bic	($t0,$d,$b)',
297	'&add	($e,$e,$Ki)',		# e+=X[i]+K
298	'&and	($t1,$c,$b)',
299	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
300	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
301	'&eor	($t1,$t1,$t0)',		# F_00_19
302	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
303	'&add	($e,$e,$t1);'.		# e+=F_00_19
304	'$j++;	unshift(@V,pop(@V));'
305	)
306}
307sub body_20_39 () {
308	(
309	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
310	'&eor	($t0,$b,$d)',
311	'&add	($e,$e,$Ki)',		# e+=X[i]+K
312	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)',
313	'&eor	($t1,$t0,$c)',		# F_20_39
314	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
315	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
316	'&add	($e,$e,$t1);'.		# e+=F_20_39
317	'$j++;	unshift(@V,pop(@V));'
318	)
319}
320sub body_40_59 () {
321	(
322	'($a,$b,$c,$d,$e)=@V;'.		# '$code.="@ $j\n";'.
323	'&add	($e,$e,$Ki)',		# e+=X[i]+K
324	'&and	($t0,$c,$d)',
325	'&ldr	($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
326	'&add	($e,$e,$a,"ror#27")',	# e+=ROR(A,27)
327	'&eor	($t1,$c,$d)',
328	'&add	($e,$e,$t0)',
329	'&and	($t1,$t1,$b)',
330	'&mov	($b,$b,"ror#2")',	# b=ROR(b,2)
331	'&add	($e,$e,$t1);'.		# e+=F_40_59
332	'$j++;	unshift(@V,pop(@V));'
333	)
334}
335
336sub Xupdate_16_31 ()
337{ use integer;
338  my $body = shift;
339  my @insns = (&$body,&$body,&$body,&$body);
340  my ($a,$b,$c,$d,$e);
341
342	&vext_8		(@X[0],@X[-4&7],@X[-3&7],8);	# compose "X[-14]" in "X[0]"
343	 eval(shift(@insns));
344	 eval(shift(@insns));
345	 eval(shift(@insns));
346	  &vadd_i32	(@Tx[1],@X[-1&7],$K);
347	 eval(shift(@insns));
348	  &vld1_32	("{$K\[]}","[$K_XX_XX,:32]!")	if ($Xi%5==0);
349	 eval(shift(@insns));
350	&vext_8		(@Tx[0],@X[-1&7],$zero,4);	# "X[-3]", 3 words
351	 eval(shift(@insns));
352	 eval(shift(@insns));
353	 eval(shift(@insns));
354	&veor		(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
355	 eval(shift(@insns));
356	 eval(shift(@insns));
357	&veor		(@Tx[0],@Tx[0],@X[-2&7]);	# "X[-3]"^"X[-8]"
358	 eval(shift(@insns));
359	 eval(shift(@insns));
360	&veor		(@Tx[0],@Tx[0],@X[0]);		# "X[0]"^="X[-3]"^"X[-8]
361	 eval(shift(@insns));
362	 eval(shift(@insns));
363	  &vst1_32	("{@Tx[1]}","[$Xfer,:128]!");	# X[]+K xfer
364	  &sub		($Xfer,$Xfer,64)		if ($Xi%4==0);
365	 eval(shift(@insns));
366	 eval(shift(@insns));
367	&vext_8		(@Tx[1],$zero,@Tx[0],4);	# "X[0]"<<96, extract one dword
368	 eval(shift(@insns));
369	 eval(shift(@insns));
370	&vadd_i32	(@X[0],@Tx[0],@Tx[0]);
371	 eval(shift(@insns));
372	 eval(shift(@insns));
373	&vsri_32	(@X[0],@Tx[0],31);		# "X[0]"<<<=1
374	 eval(shift(@insns));
375	 eval(shift(@insns));
376	 eval(shift(@insns));
377	&vshr_u32	(@Tx[0],@Tx[1],30);
378	 eval(shift(@insns));
379	 eval(shift(@insns));
380	&vshl_u32	(@Tx[1],@Tx[1],2);
381	 eval(shift(@insns));
382	 eval(shift(@insns));
383	&veor		(@X[0],@X[0],@Tx[0]);
384	 eval(shift(@insns));
385	 eval(shift(@insns));
386	&veor		(@X[0],@X[0],@Tx[1]);		# "X[0]"^=("X[0]">>96)<<<2
387
388	foreach (@insns) { eval; }	# remaining instructions [if any]
389
390  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
391}
392
393sub Xupdate_32_79 ()
394{ use integer;
395  my $body = shift;
396  my @insns = (&$body,&$body,&$body,&$body);
397  my ($a,$b,$c,$d,$e);
398
399	&vext_8		(@Tx[0],@X[-2&7],@X[-1&7],8);	# compose "X[-6]"
400	 eval(shift(@insns));
401	 eval(shift(@insns));
402	 eval(shift(@insns));
403	&veor		(@X[0],@X[0],@X[-4&7]);		# "X[0]"="X[-32]"^"X[-16]"
404	 eval(shift(@insns));
405	 eval(shift(@insns));
406	&veor		(@X[0],@X[0],@X[-7&7]);		# "X[0]"^="X[-28]"
407	 eval(shift(@insns));
408	 eval(shift(@insns));
409	  &vadd_i32	(@Tx[1],@X[-1&7],$K);
410	 eval(shift(@insns));
411	  &vld1_32	("{$K\[]}","[$K_XX_XX,:32]!")	if ($Xi%5==0);
412	 eval(shift(@insns));
413	&veor		(@Tx[0],@Tx[0],@X[0]);		# "X[-6]"^="X[0]"
414	 eval(shift(@insns));
415	 eval(shift(@insns));
416	&vshr_u32	(@X[0],@Tx[0],30);
417	 eval(shift(@insns));
418	 eval(shift(@insns));
419	  &vst1_32	("{@Tx[1]}","[$Xfer,:128]!");	# X[]+K xfer
420	  &sub		($Xfer,$Xfer,64)		if ($Xi%4==0);
421	 eval(shift(@insns));
422	 eval(shift(@insns));
423	&vsli_32	(@X[0],@Tx[0],2);		# "X[0]"="X[-6]"<<<2
424
425	foreach (@insns) { eval; }	# remaining instructions [if any]
426
427  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
428}
429
430sub Xuplast_80 ()
431{ use integer;
432  my $body = shift;
433  my @insns = (&$body,&$body,&$body,&$body);
434  my ($a,$b,$c,$d,$e);
435
436	&vadd_i32	(@Tx[1],@X[-1&7],$K);
437	 eval(shift(@insns));
438	 eval(shift(@insns));
439	&vst1_32	("{@Tx[1]}","[$Xfer,:128]!");
440	&sub		($Xfer,$Xfer,64);
441
442	&teq		($inp,$len);
443	&sub		($K_XX_XX,$K_XX_XX,16);	# rewind $K_XX_XX
444	&subeq		($inp,$inp,64);		# reload last block to avoid SEGV
445	&vld1_8		("{@X[-4&7]-@X[-3&7]}","[$inp]!");
446	 eval(shift(@insns));
447	 eval(shift(@insns));
448	&vld1_8		("{@X[-2&7]-@X[-1&7]}","[$inp]!");
449	 eval(shift(@insns));
450	 eval(shift(@insns));
451	&vld1_32	("{$K\[]}","[$K_XX_XX,:32]!");	# load K_00_19
452	 eval(shift(@insns));
453	 eval(shift(@insns));
454	&vrev32_8	(@X[-4&7],@X[-4&7]);
455
456	foreach (@insns) { eval; }		# remaining instructions
457
458   $Xi=0;
459}
460
461sub Xloop()
462{ use integer;
463  my $body = shift;
464  my @insns = (&$body,&$body,&$body,&$body);
465  my ($a,$b,$c,$d,$e);
466
467	&vrev32_8	(@X[($Xi-3)&7],@X[($Xi-3)&7]);
468	 eval(shift(@insns));
469	 eval(shift(@insns));
470	&vadd_i32	(@X[$Xi&7],@X[($Xi-4)&7],$K);
471	 eval(shift(@insns));
472	 eval(shift(@insns));
473	&vst1_32	("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU
474
475	foreach (@insns) { eval; }
476
477  $Xi++;
478}
479
480$code.=<<___;
481#if __ARM_MAX_ARCH__>=7
482.arch	armv7-a
483.fpu	neon
484
485.type	sha1_block_data_order_neon,%function
486.align	4
487sha1_block_data_order_neon:
488.LNEON:
489	stmdb	sp!,{r4-r12,lr}
490	add	$len,$inp,$len,lsl#6	@ $len to point at the end of $inp
491	@ dmb				@ errata #451034 on early Cortex A8
492	@ vstmdb	sp!,{d8-d15}	@ ABI specification says so
493	mov	$saved_sp,sp
494	sub	sp,sp,#64		@ alloca
495	adr	$K_XX_XX,.LK_00_19
496	bic	sp,sp,#15		@ align for 128-bit stores
497
498	ldmia	$ctx,{$a,$b,$c,$d,$e}	@ load context
499	mov	$Xfer,sp
500
501	vld1.8		{@X[-4&7]-@X[-3&7]},[$inp]!	@ handles unaligned
502	veor		$zero,$zero,$zero
503	vld1.8		{@X[-2&7]-@X[-1&7]},[$inp]!
504	vld1.32		{${K}\[]},[$K_XX_XX,:32]!	@ load K_00_19
505	vrev32.8	@X[-4&7],@X[-4&7]		@ yes, even on
506	vrev32.8	@X[-3&7],@X[-3&7]		@ big-endian...
507	vrev32.8	@X[-2&7],@X[-2&7]
508	vadd.i32	@X[0],@X[-4&7],$K
509	vrev32.8	@X[-1&7],@X[-1&7]
510	vadd.i32	@X[1],@X[-3&7],$K
511	vst1.32		{@X[0]},[$Xfer,:128]!
512	vadd.i32	@X[2],@X[-2&7],$K
513	vst1.32		{@X[1]},[$Xfer,:128]!
514	vst1.32		{@X[2]},[$Xfer,:128]!
515	ldr		$Ki,[sp]			@ big RAW stall
516
517.Loop_neon:
518___
519	&Xupdate_16_31(\&body_00_19);
520	&Xupdate_16_31(\&body_00_19);
521	&Xupdate_16_31(\&body_00_19);
522	&Xupdate_16_31(\&body_00_19);
523	&Xupdate_32_79(\&body_00_19);
524	&Xupdate_32_79(\&body_20_39);
525	&Xupdate_32_79(\&body_20_39);
526	&Xupdate_32_79(\&body_20_39);
527	&Xupdate_32_79(\&body_20_39);
528	&Xupdate_32_79(\&body_20_39);
529	&Xupdate_32_79(\&body_40_59);
530	&Xupdate_32_79(\&body_40_59);
531	&Xupdate_32_79(\&body_40_59);
532	&Xupdate_32_79(\&body_40_59);
533	&Xupdate_32_79(\&body_40_59);
534	&Xupdate_32_79(\&body_20_39);
535	&Xuplast_80(\&body_20_39);
536	&Xloop(\&body_20_39);
537	&Xloop(\&body_20_39);
538	&Xloop(\&body_20_39);
539$code.=<<___;
540	ldmia	$ctx,{$Ki,$t0,$t1,$Xfer}	@ accumulate context
541	add	$a,$a,$Ki
542	ldr	$Ki,[$ctx,#16]
543	add	$b,$b,$t0
544	add	$c,$c,$t1
545	add	$d,$d,$Xfer
546	moveq	sp,$saved_sp
547	add	$e,$e,$Ki
548	ldrne	$Ki,[sp]
549	stmia	$ctx,{$a,$b,$c,$d,$e}
550	addne	$Xfer,sp,#3*16
551	bne	.Loop_neon
552
553	@ vldmia	sp!,{d8-d15}
554	ldmia	sp!,{r4-r12,pc}
555.size	sha1_block_data_order_neon,.-sha1_block_data_order_neon
556#endif
557___
558}}}
559#####################################################################
560# ARMv8 stuff
561#
562{{{
563my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3));
564my @MSG=map("q$_",(4..7));
565my @Kxx=map("q$_",(8..11));
566my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14));
567
568$code.=<<___;
569#if __ARM_MAX_ARCH__>=7
570.type	sha1_block_data_order_armv8,%function
571.align	5
572sha1_block_data_order_armv8:
573.LARMv8:
574	vstmdb	sp!,{d8-d15}		@ ABI specification says so
575
576	veor	$E,$E,$E
577	adr	r3,.LK_00_19
578	vld1.32	{$ABCD},[$ctx]!
579	vld1.32	{$E\[0]},[$ctx]
580	sub	$ctx,$ctx,#16
581	vld1.32	{@Kxx[0]\[]},[r3,:32]!
582	vld1.32	{@Kxx[1]\[]},[r3,:32]!
583	vld1.32	{@Kxx[2]\[]},[r3,:32]!
584	vld1.32	{@Kxx[3]\[]},[r3,:32]
585
586.Loop_v8:
587	vld1.8		{@MSG[0]-@MSG[1]},[$inp]!
588	vld1.8		{@MSG[2]-@MSG[3]},[$inp]!
589	vrev32.8	@MSG[0],@MSG[0]
590	vrev32.8	@MSG[1],@MSG[1]
591
592	vadd.i32	$W0,@Kxx[0],@MSG[0]
593	vrev32.8	@MSG[2],@MSG[2]
594	vmov		$ABCD_SAVE,$ABCD	@ offload
595	subs		$len,$len,#1
596
597	vadd.i32	$W1,@Kxx[0],@MSG[1]
598	vrev32.8	@MSG[3],@MSG[3]
599	sha1h		$E1,$ABCD		@ 0
600	sha1c		$ABCD,$E,$W0
601	vadd.i32	$W0,@Kxx[$j],@MSG[2]
602	sha1su0		@MSG[0],@MSG[1],@MSG[2]
603___
604for ($j=0,$i=1;$i<20-3;$i++) {
605my $f=("c","p","m","p")[$i/5];
606$code.=<<___;
607	sha1h		$E0,$ABCD		@ $i
608	sha1$f		$ABCD,$E1,$W1
609	vadd.i32	$W1,@Kxx[$j],@MSG[3]
610	sha1su1		@MSG[0],@MSG[3]
611___
612$code.=<<___ if ($i<20-4);
613	sha1su0		@MSG[1],@MSG[2],@MSG[3]
614___
615	($E0,$E1)=($E1,$E0);	($W0,$W1)=($W1,$W0);
616	push(@MSG,shift(@MSG));	$j++ if ((($i+3)%5)==0);
617}
618$code.=<<___;
619	sha1h		$E0,$ABCD		@ $i
620	sha1p		$ABCD,$E1,$W1
621	vadd.i32	$W1,@Kxx[$j],@MSG[3]
622
623	sha1h		$E1,$ABCD		@ 18
624	sha1p		$ABCD,$E0,$W0
625
626	sha1h		$E0,$ABCD		@ 19
627	sha1p		$ABCD,$E1,$W1
628
629	vadd.i32	$E,$E,$E0
630	vadd.i32	$ABCD,$ABCD,$ABCD_SAVE
631	bne		.Loop_v8
632
633	vst1.32		{$ABCD},[$ctx]!
634	vst1.32		{$E\[0]},[$ctx]
635
636	vldmia	sp!,{d8-d15}
637	ret					@ bx lr
638.size	sha1_block_data_order_armv8,.-sha1_block_data_order_armv8
639#endif
640___
641}}}
642$code.=<<___;
643#if __ARM_MAX_ARCH__>=7
644.comm	OPENSSL_armcap_P,4,4
645#endif
646___
647
648{   my  %opcode = (
649	"sha1c"		=> 0xf2000c40,	"sha1p"		=> 0xf2100c40,
650	"sha1m"		=> 0xf2200c40,	"sha1su0"	=> 0xf2300c40,
651	"sha1h"		=> 0xf3b902c0,	"sha1su1"	=> 0xf3ba0380	);
652
653    sub unsha1 {
654	my ($mnemonic,$arg)=@_;
655
656	if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
657	    my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
658					 |(($2&7)<<17)|(($2&8)<<4)
659					 |(($3&7)<<1) |(($3&8)<<2);
660	    # since ARMv7 instructions are always encoded little-endian.
661	    # correct solution is to use .inst directive, but older
662	    # assemblers don't implement it:-(
663	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
664			$word&0xff,($word>>8)&0xff,
665			($word>>16)&0xff,($word>>24)&0xff,
666			$mnemonic,$arg;
667	}
668    }
669}
670
671foreach (split($/,$code)) {
672	s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo	or
673	s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo;
674
675	s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo;
676
677	s/\bret\b/bx	lr/o		or
678	s/\bbx\s+lr\b/.word\t0xe12fff1e/o;	# make it possible to compile with -march=armv4
679
680	print $_,$/;
681}
682
683close STDOUT; # enforce flush
684