dcfd.c revision 54359
1/*
2 * /src/NTP/ntp-4/parseutil/dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A
3 *
4 * dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A
5 *
6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7 *
8 * Features:
9 *  DCF77 decoding
10 *  simple NTP loopfilter logic for local clock
11 *  interactive display for debugging
12 *
13 * Lacks:
14 *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15 *
16 * Copyright (C) 1995-1999 by Frank Kardel <kardel@acm.org>
17 * Copyright (C) 1993-1994 by Frank Kardel
18 * Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 *
24 * This program may not be sold or used for profit without prior
25 * written consent of the author.
26 */
27
28#ifdef HAVE_CONFIG_H
29# include <config.h>
30#endif
31
32#include <unistd.h>
33#include <stdio.h>
34#include <fcntl.h>
35#include <sys/types.h>
36#include <sys/time.h>
37#include <signal.h>
38#include <syslog.h>
39#include <time.h>
40
41/*
42 * NTP compilation environment
43 */
44#include "ntp_stdlib.h"
45#include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
46
47/*
48 * select which terminal handling to use (currently only SysV variants)
49 */
50#if defined(HAVE_TERMIOS_H) || defined(STREAM)
51#include <termios.h>
52#define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
53#define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
54#else  /* not HAVE_TERMIOS_H || STREAM */
55# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
56#  include <termio.h>
57#  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
58#  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
59# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
60#endif /* not HAVE_TERMIOS_H || STREAM */
61
62
63#ifndef TTY_GETATTR
64#include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
65#endif
66
67#ifndef days_per_year
68#define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
69#endif
70
71#define timernormalize(_a_) \
72	if ((_a_)->tv_usec >= 1000000) \
73	{ \
74		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
75		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
76	} \
77	if ((_a_)->tv_usec < 0) \
78	{ \
79		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
80		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
81	}
82
83#ifdef timeradd
84#undef timeradd
85#endif
86#define timeradd(_a_, _b_) \
87	(_a_)->tv_sec  += (_b_)->tv_sec; \
88	(_a_)->tv_usec += (_b_)->tv_usec; \
89	timernormalize((_a_))
90
91#ifdef timersub
92#undef timersub
93#endif
94#define timersub(_a_, _b_) \
95	(_a_)->tv_sec  -= (_b_)->tv_sec; \
96	(_a_)->tv_usec -= (_b_)->tv_usec; \
97	timernormalize((_a_))
98
99/*
100 * debug macros
101 */
102#define PRINTF if (interactive) printf
103#define LPRINTF if (interactive && loop_filter_debug) printf
104
105#ifdef DEBUG
106#define dprintf(_x_) LPRINTF _x_
107#else
108#define dprintf(_x_)
109#endif
110
111     extern int errno;
112
113/*
114 * display received data (avoids also detaching from tty)
115 */
116static int interactive = 0;
117
118/*
119 * display loopfilter (clock control) variables
120 */
121static int loop_filter_debug = 0;
122
123/*
124 * do not set/adjust system time
125 */
126static int no_set = 0;
127
128/*
129 * time that passes between start of DCF impulse and time stamping (fine
130 * adjustment) in microseconds (receiver/OS dependent)
131 */
132#define DEFAULT_DELAY	230000	/* rough estimate */
133
134/*
135 * The two states we can be in - eithe we receive nothing
136 * usable or we have the correct time
137 */
138#define NO_SYNC		0x01
139#define SYNC		0x02
140
141static int    sync_state = NO_SYNC;
142static time_t last_sync;
143
144static unsigned long ticks = 0;
145
146static char pat[] = "-\\|/";
147
148#define LINES		(24-2)	/* error lines after which the two headlines are repeated */
149
150#define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
151#define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
152
153/*
154 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
155 */
156
157#define USECSCALE	10
158#define TIMECONSTANT	2
159#define ADJINTERVAL	0
160#define FREQ_WEIGHT	18
161#define PHASE_WEIGHT	7
162#define MAX_DRIFT	0x3FFFFFFF
163
164#define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
165
166static struct timeval max_adj_offset = { 0, 128000 };
167
168static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
169static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
170static long adjustments  = 0;
171static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
172
173/*
174 * DCF77 state flags
175 */
176#define DCFB_ANNOUNCE           0x0001 /* switch time zone warning (DST switch) */
177#define DCFB_DST                0x0002 /* DST in effect */
178#define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurence) */
179#define DCFB_ALTERNATE		0x0008 /* alternate antenna used */
180
181struct clocktime		/* clock time broken up from time code */
182{
183	long wday;		/* Day of week: 1: Monday - 7: Sunday */
184	long day;
185	long month;
186	long year;
187	long hour;
188	long minute;
189	long second;
190	long usecond;
191	long utcoffset;	/* in minutes */
192	long flags;		/* current clock status  (DCF77 state flags) */
193};
194
195typedef struct clocktime clocktime_t;
196
197/*
198 * (usually) quick constant multiplications
199 */
200#define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
201#define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
202#define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
203/*
204 * generic l_abs() function
205 */
206#define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
207
208/*
209 * conversion related return/error codes
210 */
211#define CVT_MASK	0x0000000F /* conversion exit code */
212#define   CVT_NONE	0x00000001 /* format not applicable */
213#define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
214#define   CVT_OK	0x00000004 /* conversion succeeded */
215#define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
216#define CVT_BADDATE	0x00000020 /* invalid date */
217#define CVT_BADTIME	0x00000040 /* invalid time */
218
219/*
220 * DCF77 raw time code
221 *
222 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
223 * und Berlin, Maerz 1989
224 *
225 * Timecode transmission:
226 * AM:
227 *	time marks are send every second except for the second before the
228 *	next minute mark
229 *	time marks consist of a reduction of transmitter power to 25%
230 *	of the nominal level
231 *	the falling edge is the time indication (on time)
232 *	time marks of a 100ms duration constitute a logical 0
233 *	time marks of a 200ms duration constitute a logical 1
234 * FM:
235 *	see the spec. (basically a (non-)inverted psuedo random phase shift)
236 *
237 * Encoding:
238 * Second	Contents
239 * 0  - 10	AM: free, FM: 0
240 * 11 - 14	free
241 * 15		R     - alternate antenna
242 * 16		A1    - expect zone change (1 hour before)
243 * 17 - 18	Z1,Z2 - time zone
244 *		 0  0 illegal
245 *		 0  1 MEZ  (MET)
246 *		 1  0 MESZ (MED, MET DST)
247 *		 1  1 illegal
248 * 19		A2    - expect leap insertion/deletion (1 hour before)
249 * 20		S     - start of time code (1)
250 * 21 - 24	M1    - BCD (lsb first) Minutes
251 * 25 - 27	M10   - BCD (lsb first) 10 Minutes
252 * 28		P1    - Minute Parity (even)
253 * 29 - 32	H1    - BCD (lsb first) Hours
254 * 33 - 34      H10   - BCD (lsb first) 10 Hours
255 * 35		P2    - Hour Parity (even)
256 * 36 - 39	D1    - BCD (lsb first) Days
257 * 40 - 41	D10   - BCD (lsb first) 10 Days
258 * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
259 * 45 - 49	MO    - BCD (lsb first) Month
260 * 50           MO0   - 10 Months
261 * 51 - 53	Y1    - BCD (lsb first) Years
262 * 54 - 57	Y10   - BCD (lsb first) 10 Years
263 * 58 		P3    - Date Parity (even)
264 * 59		      - usually missing (minute indication), except for leap insertion
265 */
266
267/*-----------------------------------------------------------------------
268 * conversion table to map DCF77 bit stream into data fields.
269 * Encoding:
270 *   Each field of the DCF77 code is described with two adjacent entries in
271 *   this table. The first entry specifies the offset into the DCF77 data stream
272 *   while the length is given as the difference between the start index and
273 *   the start index of the following field.
274 */
275static struct rawdcfcode
276{
277	char offset;			/* start bit */
278} rawdcfcode[] =
279{
280	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
281	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
282};
283
284/*-----------------------------------------------------------------------
285 * symbolic names for the fields of DCF77 describes in "rawdcfcode".
286 * see comment above for the structure of the DCF77 data
287 */
288#define DCF_M	0
289#define DCF_R	1
290#define DCF_A1	2
291#define DCF_Z	3
292#define DCF_A2	4
293#define DCF_S	5
294#define DCF_M1	6
295#define DCF_M10	7
296#define DCF_P1	8
297#define DCF_H1	9
298#define DCF_H10	10
299#define DCF_P2	11
300#define DCF_D1	12
301#define DCF_D10	13
302#define DCF_DW	14
303#define DCF_MO	15
304#define DCF_MO0	16
305#define DCF_Y1	17
306#define DCF_Y10	18
307#define DCF_P3	19
308
309/*-----------------------------------------------------------------------
310 * parity field table (same encoding as rawdcfcode)
311 * This table describes the sections of the DCF77 code that are
312 * parity protected
313 */
314static struct partab
315{
316	char offset;			/* start bit of parity field */
317} partab[] =
318{
319	{ 21 }, { 29 }, { 36 }, { 59 }
320};
321
322/*-----------------------------------------------------------------------
323 * offsets for parity field descriptions
324 */
325#define DCF_P_P1	0
326#define DCF_P_P2	1
327#define DCF_P_P3	2
328
329/*-----------------------------------------------------------------------
330 * legal values for time zone information
331 */
332#define DCF_Z_MET 0x2
333#define DCF_Z_MED 0x1
334
335/*-----------------------------------------------------------------------
336 * symbolic representation if the DCF77 data stream
337 */
338static struct dcfparam
339{
340	unsigned char onebits[60];
341	unsigned char zerobits[60];
342} dcfparam =
343{
344	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
345	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
346};
347
348/*-----------------------------------------------------------------------
349 * extract a bitfield from DCF77 datastream
350 * All numeric fields are LSB first.
351 * buf holds a pointer to a DCF77 data buffer in symbolic
352 *     representation
353 * idx holds the index to the field description in rawdcfcode
354 */
355static unsigned long
356ext_bf(
357	register unsigned char *buf,
358	register int   idx
359	)
360{
361	register unsigned long sum = 0;
362	register int i, first;
363
364	first = rawdcfcode[idx].offset;
365
366	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
367	{
368		sum <<= 1;
369		sum |= (buf[i] != dcfparam.zerobits[i]);
370	}
371	return sum;
372}
373
374/*-----------------------------------------------------------------------
375 * check even parity integrity for a bitfield
376 *
377 * buf holds a pointer to a DCF77 data buffer in symbolic
378 *     representation
379 * idx holds the index to the field description in partab
380 */
381static unsigned
382pcheck(
383	register unsigned char *buf,
384	register int   idx
385	)
386{
387	register int i,last;
388	register unsigned psum = 1;
389
390	last = partab[idx+1].offset;
391
392	for (i = partab[idx].offset; i < last; i++)
393	    psum ^= (buf[i] != dcfparam.zerobits[i]);
394
395	return psum;
396}
397
398/*-----------------------------------------------------------------------
399 * convert a DCF77 data buffer into wall clock time + flags
400 *
401 * buffer holds a pointer to a DCF77 data buffer in symbolic
402 *        representation
403 * size   describes the length of DCF77 information in bits (represented
404 *        as chars in symbolic notation
405 * clock  points to a wall clock time description of the DCF77 data (result)
406 */
407static unsigned long
408convert_rawdcf(
409	       unsigned char   *buffer,
410	       int              size,
411	       clocktime_t     *clock_time
412	       )
413{
414	if (size < 57)
415	{
416		PRINTF("%-30s", "*** INCOMPLETE");
417		return CVT_NONE;
418	}
419
420	/*
421	 * check Start and Parity bits
422	 */
423	if ((ext_bf(buffer, DCF_S) == 1) &&
424	    pcheck(buffer, DCF_P_P1) &&
425	    pcheck(buffer, DCF_P_P2) &&
426	    pcheck(buffer, DCF_P_P3))
427	{
428		/*
429		 * buffer OK - extract all fields and build wall clock time from them
430		 */
431
432		clock_time->flags  = 0;
433		clock_time->usecond= 0;
434		clock_time->second = 0;
435		clock_time->minute = ext_bf(buffer, DCF_M10);
436		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
437		clock_time->hour   = ext_bf(buffer, DCF_H10);
438		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
439		clock_time->day    = ext_bf(buffer, DCF_D10);
440		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
441		clock_time->month  = ext_bf(buffer, DCF_MO0);
442		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
443		clock_time->year   = ext_bf(buffer, DCF_Y10);
444		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
445		clock_time->wday   = ext_bf(buffer, DCF_DW);
446
447		/*
448		 * determine offset to UTC by examining the time zone
449		 */
450		switch (ext_bf(buffer, DCF_Z))
451		{
452		    case DCF_Z_MET:
453			clock_time->utcoffset = -60;
454			break;
455
456		    case DCF_Z_MED:
457			clock_time->flags     |= DCFB_DST;
458			clock_time->utcoffset  = -120;
459			break;
460
461		    default:
462			PRINTF("%-30s", "*** BAD TIME ZONE");
463			return CVT_FAIL|CVT_BADFMT;
464		}
465
466		/*
467		 * extract various warnings from DCF77
468		 */
469		if (ext_bf(buffer, DCF_A1))
470		    clock_time->flags |= DCFB_ANNOUNCE;
471
472		if (ext_bf(buffer, DCF_A2))
473		    clock_time->flags |= DCFB_LEAP;
474
475		if (ext_bf(buffer, DCF_R))
476		    clock_time->flags |= DCFB_ALTERNATE;
477
478		return CVT_OK;
479	}
480	else
481	{
482		/*
483		 * bad format - not for us
484		 */
485		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
486		return CVT_FAIL|CVT_BADFMT;
487	}
488}
489
490/*-----------------------------------------------------------------------
491 * raw dcf input routine - fix up 50 baud
492 * characters for 1/0 decision
493 */
494static unsigned long
495cvt_rawdcf(
496	   unsigned char   *buffer,
497	   int              size,
498	   clocktime_t     *clock_time
499	   )
500{
501	register unsigned char *s = buffer;
502	register unsigned char *e = buffer + size;
503	register unsigned char *b = dcfparam.onebits;
504	register unsigned char *c = dcfparam.zerobits;
505	register unsigned rtc = CVT_NONE;
506	register unsigned int i, lowmax, highmax, cutoff, span;
507#define BITS 9
508	unsigned char     histbuf[BITS];
509	/*
510	 * the input buffer contains characters with runs of consecutive
511	 * bits set. These set bits are an indication of the DCF77 pulse
512	 * length. We assume that we receive the pulse at 50 Baud. Thus
513	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
514	 * start bit)
515	 * a 200ms pulse would create all zeroes (and probably a frame error)
516	 *
517	 * The basic idea is that on corret reception we must have two
518	 * maxima in the pulse length distribution histogram. (one for
519	 * the zero representing pulses and one for the one representing
520	 * pulses)
521	 * There will always be ones in the datastream, thus we have to see
522	 * two maxima.
523	 * The best point to cut for a 1/0 decision is the minimum between those
524	 * between the maxima. The following code tries to find this cutoff point.
525	 */
526
527	/*
528	 * clear histogram buffer
529	 */
530	for (i = 0; i < BITS; i++)
531	{
532		histbuf[i] = 0;
533	}
534
535	cutoff = 0;
536	lowmax = 0;
537
538	/*
539	 * convert sequences of set bits into bits counts updating
540	 * the histogram alongway
541	 */
542	while (s < e)
543	{
544		register unsigned int ch = *s ^ 0xFF;
545		/*
546		 * check integrity and update histogramm
547		 */
548		if (!((ch+1) & ch) || !*s)
549		{
550			/*
551			 * character ok
552			 */
553			for (i = 0; ch; i++)
554			{
555				ch >>= 1;
556			}
557
558			*s = i;
559			histbuf[i]++;
560			cutoff += i;
561			lowmax++;
562		}
563		else
564		{
565			/*
566			 * invalid character (no consecutive bit sequence)
567			 */
568			dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
569			*s = (unsigned char)~0;
570			rtc = CVT_FAIL|CVT_BADFMT;
571		}
572		s++;
573	}
574
575	/*
576	 * first cutoff estimate (average bit count - must be between both
577	 * maxima)
578	 */
579	if (lowmax)
580	{
581		cutoff /= lowmax;
582	}
583	else
584	{
585		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
586	}
587
588	dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
589
590	lowmax = 0;  /* weighted sum */
591	highmax = 0; /* bitcount */
592
593	/*
594	 * collect weighted sum of lower bits (left of initial guess)
595	 */
596	dprintf(("parse: cvt_rawdcf: histogram:"));
597	for (i = 0; i <= cutoff; i++)
598	{
599		lowmax  += histbuf[i] * i;
600		highmax += histbuf[i];
601		dprintf((" %d", histbuf[i]));
602	}
603	dprintf((" <M>"));
604
605	/*
606	 * round up
607	 */
608	lowmax += highmax / 2;
609
610	/*
611	 * calculate lower bit maximum (weighted sum / bit count)
612	 *
613	 * avoid divide by zero
614	 */
615	if (highmax)
616	{
617		lowmax /= highmax;
618	}
619	else
620	{
621		lowmax = 0;
622	}
623
624	highmax = 0; /* weighted sum of upper bits counts */
625	cutoff = 0;  /* bitcount */
626
627	/*
628	 * collect weighted sum of lower bits (right of initial guess)
629	 */
630	for (; i < BITS; i++)
631	{
632		highmax+=histbuf[i] * i;
633		cutoff +=histbuf[i];
634		dprintf((" %d", histbuf[i]));
635	}
636	dprintf(("\n"));
637
638	/*
639	 * determine upper maximum (weighted sum / bit count)
640	 */
641	if (cutoff)
642	{
643		highmax /= cutoff;
644	}
645	else
646	{
647		highmax = BITS-1;
648	}
649
650	/*
651	 * following now holds:
652	 * lowmax <= cutoff(initial guess) <= highmax
653	 * best cutoff is the minimum nearest to higher bits
654	 */
655
656	/*
657	 * find the minimum between lowmax and highmax (detecting
658	 * possibly a minimum span)
659	 */
660	span = cutoff = lowmax;
661	for (i = lowmax; i <= highmax; i++)
662	{
663		if (histbuf[cutoff] > histbuf[i])
664		{
665			/*
666			 * got a new minimum move beginning of minimum (cutoff) and
667			 * end of minimum (span) there
668			 */
669			cutoff = span = i;
670		}
671		else
672		    if (histbuf[cutoff] == histbuf[i])
673		    {
674			    /*
675			     * minimum not better yet - but it spans more than
676			     * one bit value - follow it
677			     */
678			    span = i;
679		    }
680	}
681
682	/*
683	 * cutoff point for 1/0 decision is the middle of the minimum section
684	 * in the histogram
685	 */
686	cutoff = (cutoff + span) / 2;
687
688	dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
689
690	/*
691	 * convert the bit counts to symbolic 1/0 information for data conversion
692	 */
693	s = buffer;
694	while ((s < e) && *c && *b)
695	{
696		if (*s == (unsigned char)~0)
697		{
698			/*
699			 * invalid character
700			 */
701			*s = '?';
702		}
703		else
704		{
705			/*
706			 * symbolic 1/0 representation
707			 */
708			*s = (*s >= cutoff) ? *b : *c;
709		}
710		s++;
711		b++;
712		c++;
713	}
714
715	/*
716	 * if everything went well so far return the result of the symbolic
717	 * conversion routine else just the accumulated errors
718	 */
719	if (rtc != CVT_NONE)
720	{
721		PRINTF("%-30s", "*** BAD DATA");
722	}
723
724	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
725}
726
727/*-----------------------------------------------------------------------
728 * convert a wall clock time description of DCF77 to a Unix time (seconds
729 * since 1.1. 1970 UTC)
730 */
731time_t
732dcf_to_unixtime(
733		clocktime_t   *clock_time,
734		unsigned *cvtrtc
735		)
736{
737#define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
738	static int days_of_month[] =
739	{
740		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
741	};
742	register int i;
743	time_t t;
744
745	/*
746	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
747	 */
748	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
749		clock_time->year += 100;	/* *year%100, make tm_year */
750						/* *(do we need this?) */
751	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
752	    clock_time->year += 1900;				/* Y2KFixes ] */
753
754	/*
755	 * must have been a really bad year code - drop it
756	 */
757	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
758	{
759		SETRTC(CVT_FAIL|CVT_BADDATE);
760		return -1;
761	}
762	/*
763	 * sorry, slow section here - but it's not time critical anyway
764	 */
765
766	/*
767	 * calculate days since 1970 (watching leap years)
768	 */
769	t = julian0( clock_time->year ) - julian0( 1970 );
770
771  				/* month */
772	if (clock_time->month <= 0 || clock_time->month > 12)
773	{
774		SETRTC(CVT_FAIL|CVT_BADDATE);
775		return -1;		/* bad month */
776	}
777				/* adjust current leap year */
778#if 0
779	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
780	    t--;
781#endif
782
783	/*
784	 * collect days from months excluding the current one
785	 */
786	for (i = 1; i < clock_time->month; i++)
787	{
788		t += days_of_month[i];
789	}
790				/* day */
791	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
792			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
793	{
794		SETRTC(CVT_FAIL|CVT_BADDATE);
795		return -1;		/* bad day */
796	}
797
798	/*
799	 * collect days from date excluding the current one
800	 */
801	t += clock_time->day - 1;
802
803				/* hour */
804	if (clock_time->hour < 0 || clock_time->hour >= 24)
805	{
806		SETRTC(CVT_FAIL|CVT_BADTIME);
807		return -1;		/* bad hour */
808	}
809
810	/*
811	 * calculate hours from 1. 1. 1970
812	 */
813	t = TIMES24(t) + clock_time->hour;
814
815  				/* min */
816	if (clock_time->minute < 0 || clock_time->minute > 59)
817	{
818		SETRTC(CVT_FAIL|CVT_BADTIME);
819		return -1;		/* bad min */
820	}
821
822	/*
823	 * calculate minutes from 1. 1. 1970
824	 */
825	t = TIMES60(t) + clock_time->minute;
826				/* sec */
827
828	/*
829	 * calculate UTC in minutes
830	 */
831	t += clock_time->utcoffset;
832
833	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
834	{
835		SETRTC(CVT_FAIL|CVT_BADTIME);
836		return -1;		/* bad sec */
837	}
838
839	/*
840	 * calculate UTC in seconds - phew !
841	 */
842	t  = TIMES60(t) + clock_time->second;
843				/* done */
844	return t;
845}
846
847/*-----------------------------------------------------------------------
848 * cheap half baked 1/0 decision - for interactive operation only
849 */
850static char
851type(
852     unsigned int c
853     )
854{
855	c ^= 0xFF;
856	return (c > 0xF);
857}
858
859/*-----------------------------------------------------------------------
860 * week day representation
861 */
862static const char *wday[8] =
863{
864	"??",
865	"Mo",
866	"Tu",
867	"We",
868	"Th",
869	"Fr",
870	"Sa",
871	"Su"
872};
873
874/*-----------------------------------------------------------------------
875 * generate a string representation for a timeval
876 */
877static char *
878pr_timeval(
879	   struct timeval *val
880	   )
881{
882	static char buf[20];
883
884	if (val->tv_sec == 0)
885	    sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
886	else
887	    sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
888	return buf;
889}
890
891/*-----------------------------------------------------------------------
892 * correct the current time by an offset by setting the time rigorously
893 */
894static void
895set_time(
896	 struct timeval *offset
897	 )
898{
899	struct timeval the_time;
900
901	if (no_set)
902	    return;
903
904	LPRINTF("set_time: %s ", pr_timeval(offset));
905	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
906
907	if (gettimeofday(&the_time, 0L) == -1)
908	{
909		perror("gettimeofday()");
910	}
911	else
912	{
913		timeradd(&the_time, offset);
914		if (settimeofday(&the_time, 0L) == -1)
915		{
916			perror("settimeofday()");
917		}
918	}
919}
920
921/*-----------------------------------------------------------------------
922 * slew the time by a given offset
923 */
924static void
925adj_time(
926	 long offset
927	 )
928{
929	struct timeval time_offset;
930
931	if (no_set)
932	    return;
933
934	time_offset.tv_sec  = offset / 1000000;
935	time_offset.tv_usec = offset % 1000000;
936
937	LPRINTF("adj_time: %ld us ", (long int)offset);
938	if (adjtime(&time_offset, 0L) == -1)
939	    perror("adjtime()");
940}
941
942/*-----------------------------------------------------------------------
943 * read in a possibly previously written drift value
944 */
945static void
946read_drift(
947	   const char *drift_file
948	   )
949{
950	FILE *df;
951
952	df = fopen(drift_file, "r");
953	if (df != NULL)
954	{
955		int idrift = 0, fdrift = 0;
956
957		fscanf(df, "%4d.%03d", &idrift, &fdrift);
958		fclose(df);
959		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
960
961		accum_drift = idrift << USECSCALE;
962		fdrift     = (fdrift << USECSCALE) / 1000;
963		accum_drift += fdrift & (1<<USECSCALE);
964		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
965	}
966}
967
968/*-----------------------------------------------------------------------
969 * write out the current drift value
970 */
971static void
972update_drift(
973	     const char *drift_file,
974	     long offset,
975	     time_t reftime
976	     )
977{
978	FILE *df;
979
980	df = fopen(drift_file, "w");
981	if (df != NULL)
982	{
983		int idrift = R_SHIFT(accum_drift, USECSCALE);
984		int fdrift = accum_drift & ((1<<USECSCALE)-1);
985
986		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
987		fdrift = (fdrift * 1000) / (1<<USECSCALE);
988		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
989			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
990			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
991		fclose(df);
992		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
993	}
994}
995
996/*-----------------------------------------------------------------------
997 * process adjustments derived from the DCF77 observation
998 * (controls clock PLL)
999 */
1000static void
1001adjust_clock(
1002	     struct timeval *offset,
1003	     const char *drift_file,
1004	     time_t reftime
1005	     )
1006{
1007	struct timeval toffset;
1008	register long usecoffset;
1009	int tmp;
1010
1011	if (no_set)
1012	    return;
1013
1014	if (skip_adjust)
1015	{
1016		skip_adjust = 0;
1017		return;
1018	}
1019
1020	toffset = *offset;
1021	toffset.tv_sec  = l_abs(toffset.tv_sec);
1022	toffset.tv_usec = l_abs(toffset.tv_usec);
1023	if (timercmp(&toffset, &max_adj_offset, >))
1024	{
1025		/*
1026		 * hopeless - set the clock - and clear the timing
1027		 */
1028		set_time(offset);
1029		clock_adjust = 0;
1030		skip_adjust  = 1;
1031		return;
1032	}
1033
1034	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1035
1036	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1037
1038	tmp = 0;
1039	while (adjustments > (1 << tmp))
1040	    tmp++;
1041	adjustments = 0;
1042	if (tmp > FREQ_WEIGHT)
1043	    tmp = FREQ_WEIGHT;
1044
1045	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1046
1047	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1048	    accum_drift = MAX_DRIFT;
1049	else
1050	    if (accum_drift < -MAX_DRIFT)
1051		accum_drift = -MAX_DRIFT;
1052
1053	update_drift(drift_file, usecoffset, reftime);
1054	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1055		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1056		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1057}
1058
1059/*-----------------------------------------------------------------------
1060 * adjust the clock by a small mount to simulate frequency correction
1061 */
1062static void
1063periodic_adjust(
1064		void
1065		)
1066{
1067	register long adjustment;
1068
1069	adjustments++;
1070
1071	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1072
1073	clock_adjust -= adjustment;
1074
1075	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1076
1077	adj_time(adjustment);
1078}
1079
1080/*-----------------------------------------------------------------------
1081 * control synchronisation status (warnings) and do periodic adjusts
1082 * (frequency control simulation)
1083 */
1084static void
1085tick(
1086     void
1087     )
1088{
1089	static unsigned long last_notice = 0;
1090
1091#if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1092	(void)signal(SIGALRM, tick);
1093#endif
1094
1095	periodic_adjust();
1096
1097	ticks += 1<<ADJINTERVAL;
1098
1099	if ((ticks - last_sync) > MAX_UNSYNC)
1100	{
1101		/*
1102		 * not getting time for a while
1103		 */
1104		if (sync_state == SYNC)
1105		{
1106			/*
1107			 * completely lost information
1108			 */
1109			sync_state = NO_SYNC;
1110			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1111			last_notice = ticks;
1112		}
1113		else
1114		    /*
1115		     * in NO_SYNC state - look whether its time to speak up again
1116		     */
1117		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1118		    {
1119			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1120			    last_notice = ticks;
1121		    }
1122	}
1123
1124#ifndef ITIMER_REAL
1125	(void) alarm(1<<ADJINTERVAL);
1126#endif
1127}
1128
1129/*-----------------------------------------------------------------------
1130 * break association from terminal to avoid catching terminal
1131 * or process group related signals (-> daemon operation)
1132 */
1133static void
1134detach(
1135       void
1136       )
1137{
1138#   ifdef HAVE_DAEMON
1139	daemon(0, 0);
1140#   else /* not HAVE_DAEMON */
1141	if (fork())
1142	    exit(0);
1143
1144	{
1145		u_long s;
1146		int max_fd;
1147
1148#if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1149		max_fd = sysconf(_SC_OPEN_MAX);
1150#else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1151		max_fd = getdtablesize();
1152#endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1153		for (s = 0; s < max_fd; s++)
1154		    (void) close((int)s);
1155		(void) open("/", 0);
1156		(void) dup2(0, 1);
1157		(void) dup2(0, 2);
1158#ifdef SYS_DOMAINOS
1159		{
1160			uid_$t puid;
1161			status_$t st;
1162
1163			proc2_$who_am_i(&puid);
1164			proc2_$make_server(&puid, &st);
1165		}
1166#endif /* SYS_DOMAINOS */
1167#if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1168# ifdef HAVE_SETSID
1169		if (setsid() == (pid_t)-1)
1170		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1171# else
1172		if (setpgid(0, 0) == -1)
1173		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1174# endif
1175#else /* HAVE_SETPGID || HAVE_SETSID */
1176		{
1177			int fid;
1178
1179			fid = open("/dev/tty", 2);
1180			if (fid >= 0)
1181			{
1182				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1183				(void) close(fid);
1184			}
1185# ifdef HAVE_SETPGRP_0
1186			(void) setpgrp();
1187# else /* HAVE_SETPGRP_0 */
1188			(void) setpgrp(0, getpid());
1189# endif /* HAVE_SETPGRP_0 */
1190		}
1191#endif /* HAVE_SETPGID || HAVE_SETSID */
1192	}
1193#endif /* not HAVE_DAEMON */
1194}
1195
1196/*-----------------------------------------------------------------------
1197 * list possible arguments and options
1198 */
1199static void
1200usage(
1201      char *program
1202      )
1203{
1204  fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1205	fprintf(stderr, "\t-n              do not change time\n");
1206	fprintf(stderr, "\t-i              interactive\n");
1207	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1208	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1209	fprintf(stderr, "\t-l              print loop filter debug information\n");
1210	fprintf(stderr, "\t-o              print offet average for current minute\n");
1211	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1212	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1213	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1214}
1215
1216/*-----------------------------------------------------------------------
1217 * check_y2k() - internal check of Y2K logic
1218 *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1219 */
1220int
1221check_y2k( void )
1222{
1223    int  year;			/* current working year */
1224    int  year0 = 1900;		/* sarting year for NTP time */
1225    int  yearend;		/* ending year we test for NTP time.
1226				    * 32-bit systems: through 2036, the
1227				      **year in which NTP time overflows.
1228				    * 64-bit systems: a reasonable upper
1229				      **limit (well, maybe somewhat beyond
1230				      **reasonable, but well before the
1231				      **max time, by which time the earth
1232				      **will be dead.) */
1233    time_t Time;
1234    struct tm LocalTime;
1235
1236    int Fatals, Warnings;
1237#define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1238	Warnings++; else Fatals++
1239
1240    Fatals = Warnings = 0;
1241
1242    Time = time( (time_t *)NULL );
1243    LocalTime = *localtime( &Time );
1244
1245    year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1246		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1247		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1248			/* NOTE: will automacially expand test years on
1249			 * 64 bit machines.... this may cause some of the
1250			 * existing ntp logic to fail for years beyond
1251			 * 2036 (the current 32-bit limit). If all checks
1252			 * fail ONLY beyond year 2036 you may ignore such
1253			 * errors, at least for a decade or so. */
1254    yearend = year0 + year;
1255
1256    year = 1900+YEAR_PIVOT;
1257    printf( "  starting year %04d\n", (int) year );
1258    printf( "  ending year   %04d\n", (int) yearend );
1259
1260    for ( ; year < yearend; year++ )
1261    {
1262	clocktime_t  ct;
1263	time_t	     Observed;
1264	time_t	     Expected;
1265	unsigned     Flag;
1266	unsigned long t;
1267
1268	ct.day = 1;
1269	ct.month = 1;
1270	ct.year = year;
1271	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1272	ct.utcoffset = 0;
1273	ct.flags = 0;
1274
1275	Flag = 0;
1276 	Observed = dcf_to_unixtime( &ct, &Flag );
1277		/* seems to be a clone of parse_to_unixtime() with
1278		 * *a minor difference to arg2 type */
1279	if ( ct.year != year )
1280	{
1281	    fprintf( stdout,
1282	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1283	       (int)year, (int)Flag, (int)ct.year );
1284	    Error(year);
1285	    break;
1286	}
1287	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1288	Expected = t * 24 * 60 * 60;
1289	if ( Observed != Expected  ||  Flag )
1290	{   /* time difference */
1291	    fprintf( stdout,
1292	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1293	       year, (int)Flag,
1294	       (unsigned long)Observed, (unsigned long)Expected,
1295	       ((long)Observed - (long)Expected) );
1296	    Error(year);
1297	    break;
1298	}
1299
1300	if ( year >= YEAR_PIVOT+1900 )
1301	{
1302	    /* check year % 100 code we put into dcf_to_unixtime() */
1303	    ct.year = year % 100;
1304	    Flag = 0;
1305
1306	    Observed = dcf_to_unixtime( &ct, &Flag );
1307
1308	    if ( Observed != Expected  ||  Flag )
1309	    {   /* time difference */
1310		fprintf( stdout,
1311"%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1312		   year, (int)ct.year, (int)Flag,
1313		   (unsigned long)Observed, (unsigned long)Expected,
1314		   ((long)Observed - (long)Expected) );
1315		Error(year);
1316		break;
1317	    }
1318
1319	    /* check year - 1900 code we put into dcf_to_unixtime() */
1320	    ct.year = year - 1900;
1321	    Flag = 0;
1322
1323	    Observed = dcf_to_unixtime( &ct, &Flag );
1324
1325	    if ( Observed != Expected  ||  Flag ) {   /* time difference */
1326		    fprintf( stdout,
1327			     "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1328			     year, (int)ct.year, (int)Flag,
1329			     (unsigned long)Observed, (unsigned long)Expected,
1330			     ((long)Observed - (long)Expected) );
1331		    Error(year);
1332		break;
1333	    }
1334
1335
1336	}
1337    }
1338
1339    return ( Fatals );
1340}
1341
1342/*--------------------------------------------------
1343 * rawdcf_init - set up modem lines for RAWDCF receivers
1344 */
1345#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1346static void
1347rawdcf_init(
1348	int fd
1349	)
1350{
1351	/*
1352	 * You can use the RS232 to supply the power for a DCF77 receiver.
1353	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1354	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1355	 */
1356
1357#ifdef TIOCM_DTR
1358	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1359#else
1360	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1361#endif
1362
1363	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1364	{
1365		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1366	}
1367}
1368#else
1369static void
1370rawdcf_init(
1371	    int fd
1372	)
1373{
1374	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1375}
1376#endif  /* DTR initialisation type */
1377
1378/*-----------------------------------------------------------------------
1379 * main loop - argument interpreter / setup / main loop
1380 */
1381int
1382main(
1383     int argc,
1384     char **argv
1385     )
1386{
1387	unsigned char c;
1388	char **a = argv;
1389	int  ac = argc;
1390	char *file = NULL;
1391	const char *drift_file = "/etc/dcfd.drift";
1392	int fd;
1393	int offset = 15;
1394	int offsets = 0;
1395	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1396	int trace = 0;
1397	int errs = 0;
1398
1399	/*
1400	 * process arguments
1401	 */
1402	while (--ac)
1403	{
1404		char *arg = *++a;
1405		if (*arg == '-')
1406		    while ((c = *++arg))
1407			switch (c)
1408			{
1409			    case 't':
1410				trace = 1;
1411				interactive = 1;
1412				break;
1413
1414			    case 'f':
1415				offset = 0;
1416				interactive = 1;
1417				break;
1418
1419			    case 'l':
1420				loop_filter_debug = 1;
1421				offsets = 1;
1422				interactive = 1;
1423				break;
1424
1425			    case 'n':
1426				no_set = 1;
1427				break;
1428
1429			    case 'o':
1430				offsets = 1;
1431				interactive = 1;
1432				break;
1433
1434			    case 'i':
1435				interactive = 1;
1436				break;
1437
1438			    case 'D':
1439				if (ac > 1)
1440				{
1441					delay = atoi(*++a);
1442					ac--;
1443				}
1444				else
1445				{
1446					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1447					errs=1;
1448				}
1449				break;
1450
1451			    case 'd':
1452				if (ac > 1)
1453				{
1454					drift_file = *++a;
1455					ac--;
1456				}
1457				else
1458				{
1459					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1460					errs=1;
1461				}
1462				break;
1463
1464			    case 'Y':
1465				errs=check_y2k();
1466				exit( errs ? 1 : 0 );
1467
1468			    default:
1469				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1470				errs=1;
1471				break;
1472			}
1473		else
1474		    if (file == NULL)
1475			file = arg;
1476		    else
1477		    {
1478			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1479			    errs=1;
1480		    }
1481	}
1482
1483	if (errs)
1484	{
1485		usage(argv[0]);
1486		exit(1);
1487	}
1488	else
1489	    if (file == NULL)
1490	    {
1491		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1492		    usage(argv[0]);
1493		    exit(1);
1494	    }
1495
1496	errs = LINES+1;
1497
1498	/*
1499	 * get access to DCF77 tty port
1500	 */
1501	fd = open(file, O_RDONLY);
1502	if (fd == -1)
1503	{
1504		perror(file);
1505		exit(1);
1506	}
1507	else
1508	{
1509		int i, rrc;
1510		struct timeval t, tt, tlast;
1511		struct timeval timeout;
1512		struct timeval phase;
1513		struct timeval time_offset;
1514		char pbuf[61];		/* printable version */
1515		char buf[61];		/* raw data */
1516		clocktime_t clock_time;	/* wall clock time */
1517		time_t utc_time = 0;
1518		time_t last_utc_time = 0;
1519		long usecerror = 0;
1520		long lasterror = 0;
1521#if defined(HAVE_TERMIOS_H) || defined(STREAM)
1522		struct termios term;
1523#else  /* not HAVE_TERMIOS_H || STREAM */
1524# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1525		struct termio term;
1526# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1527#endif /* not HAVE_TERMIOS_H || STREAM */
1528		unsigned int rtc = CVT_NONE;
1529
1530		rawdcf_init(fd);
1531
1532		timeout.tv_sec  = 1;
1533		timeout.tv_usec = 500000;
1534
1535		phase.tv_sec    = 0;
1536		phase.tv_usec   = delay;
1537
1538		/*
1539		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1540		 */
1541		if (TTY_GETATTR(fd,  &term) == -1)
1542		{
1543			perror("tcgetattr");
1544			exit(1);
1545		}
1546
1547		memset(term.c_cc, 0, sizeof(term.c_cc));
1548		term.c_cc[VMIN] = 1;
1549#ifdef NO_PARENB_IGNPAR
1550		term.c_cflag = B50|CS8|CREAD|CLOCAL;
1551#else
1552		term.c_cflag = B50|CS8|CREAD|CLOCAL|PARENB;
1553#endif
1554		term.c_iflag = IGNPAR;
1555		term.c_oflag = 0;
1556		term.c_lflag = 0;
1557
1558		if (TTY_SETATTR(fd, &term) == -1)
1559		{
1560			perror("tcsetattr");
1561			exit(1);
1562		}
1563
1564		/*
1565		 * loose terminal if in daemon operation
1566		 */
1567		if (!interactive)
1568		    detach();
1569
1570		/*
1571		 * get syslog() initialized
1572		 */
1573#ifdef LOG_DAEMON
1574		openlog("dcfd", LOG_PID, LOG_DAEMON);
1575#else
1576		openlog("dcfd", LOG_PID);
1577#endif
1578
1579		/*
1580		 * setup periodic operations (state control / frequency control)
1581		 */
1582#ifdef HAVE_SIGVEC
1583		{
1584			struct sigvec vec;
1585
1586			vec.sv_handler   = tick;
1587			vec.sv_mask      = 0;
1588			vec.sv_flags     = 0;
1589
1590			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1591			{
1592				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1593				exit(1);
1594			}
1595		}
1596#else
1597#ifdef HAVE_SIGACTION
1598		{
1599			struct sigaction act;
1600
1601			act.sa_handler   = tick;
1602# ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1603			act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0;
1604# endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1605			sigemptyset(&act.sa_mask);
1606			act.sa_flags     = 0;
1607
1608			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1609			{
1610				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1611				exit(1);
1612			}
1613		}
1614#else
1615		(void) signal(SIGALRM, tick);
1616#endif
1617#endif
1618
1619#ifdef ITIMER_REAL
1620		{
1621			struct itimerval it;
1622
1623			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1624			it.it_interval.tv_usec = 0;
1625			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1626			it.it_value.tv_usec    = 0;
1627
1628			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1629			{
1630				syslog(LOG_ERR, "setitimer: %m");
1631				exit(1);
1632			}
1633		}
1634#else
1635		(void) alarm(1<<ADJINTERVAL);
1636#endif
1637
1638		PRINTF("  DCF77 monitor - Copyright (C) 1993-1998 by Frank Kardel\n\n");
1639
1640		pbuf[60] = '\0';
1641		for ( i = 0; i < 60; i++)
1642		    pbuf[i] = '.';
1643
1644		read_drift(drift_file);
1645
1646		/*
1647		 * what time is it now (for interval measurement)
1648		 */
1649		gettimeofday(&tlast, 0L);
1650		i = 0;
1651		/*
1652		 * loop until input trouble ...
1653		 */
1654		do
1655		{
1656			/*
1657			 * get an impulse
1658			 */
1659			while ((rrc = read(fd, &c, 1)) == 1)
1660			{
1661				gettimeofday(&t, 0L);
1662				tt = t;
1663				timersub(&t, &tlast);
1664
1665				if (errs > LINES)
1666				{
1667					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1668					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1669					errs = 0;
1670				}
1671
1672				/*
1673				 * timeout -> possible minute mark -> interpretation
1674				 */
1675				if (timercmp(&t, &timeout, >))
1676				{
1677					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1678
1679					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1680					{
1681						/*
1682						 * this data was bad - well - forget synchronisation for now
1683						 */
1684						PRINTF("\n");
1685						if (sync_state == SYNC)
1686						{
1687							sync_state = NO_SYNC;
1688							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1689						}
1690						errs++;
1691					}
1692					else
1693					    if (trace)
1694					    {
1695						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1696					    }
1697
1698
1699					buf[0] = c;
1700
1701					/*
1702					 * collect first character
1703					 */
1704					if (((c^0xFF)+1) & (c^0xFF))
1705					    pbuf[0] = '?';
1706					else
1707					    pbuf[0] = type(c) ? '#' : '-';
1708
1709					for ( i = 1; i < 60; i++)
1710					    pbuf[i] = '.';
1711
1712					i = 0;
1713				}
1714				else
1715				{
1716					/*
1717					 * collect character
1718					 */
1719					buf[i] = c;
1720
1721					/*
1722					 * initial guess (usually correct)
1723					 */
1724					if (((c^0xFF)+1) & (c^0xFF))
1725					    pbuf[i] = '?';
1726					else
1727					    pbuf[i] = type(c) ? '#' : '-';
1728
1729					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1730				}
1731
1732				if (i == 0 && rtc == CVT_OK)
1733				{
1734					/*
1735					 * we got a good time code here - try to convert it to
1736					 * UTC
1737					 */
1738					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1739					{
1740						PRINTF("*** BAD CONVERSION\n");
1741					}
1742
1743					if (utc_time != (last_utc_time + 60))
1744					{
1745						/*
1746						 * well, two successive sucessful telegrams are not 60 seconds
1747						 * apart
1748						 */
1749						PRINTF("*** NO MINUTE INC\n");
1750						if (sync_state == SYNC)
1751						{
1752							sync_state = NO_SYNC;
1753							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1754						}
1755						errs++;
1756						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1757					}
1758					else
1759					    usecerror = 0;
1760
1761					last_utc_time = utc_time;
1762				}
1763
1764				if (rtc == CVT_OK)
1765				{
1766					if (i == 0)
1767					{
1768						/*
1769						 * valid time code - determine offset and
1770						 * note regained reception
1771						 */
1772						last_sync = ticks;
1773						if (sync_state == NO_SYNC)
1774						{
1775							syslog(LOG_INFO, "receiving DCF77");
1776						}
1777						else
1778						{
1779							/*
1780							 * we had at least one minute SYNC - thus
1781							 * last error is valid
1782							 */
1783							time_offset.tv_sec  = lasterror / 1000000;
1784							time_offset.tv_usec = lasterror % 1000000;
1785							adjust_clock(&time_offset, drift_file, utc_time);
1786						}
1787						sync_state = SYNC;
1788					}
1789
1790					time_offset.tv_sec  = utc_time + i;
1791					time_offset.tv_usec = 0;
1792
1793					timeradd(&time_offset, &phase);
1794
1795					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1796						-tt.tv_usec;
1797
1798					/*
1799					 * output interpreted DCF77 data
1800					 */
1801					PRINTF(offsets ? "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s> (%c%d.%06ds)" :
1802					       "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s>",
1803					       wday[clock_time.wday],
1804					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1805					       clock_time.year,
1806					       (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1807					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1808					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1809					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1810					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1811					       );
1812
1813					if (trace && (i == 0))
1814					{
1815						PRINTF("\n");
1816						errs++;
1817					}
1818					lasterror = usecerror / (i+1);
1819				}
1820				else
1821				{
1822					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1823				}
1824
1825				PRINTF("\r");
1826
1827				if (i < 60)
1828				{
1829					i++;
1830				}
1831
1832				tlast = tt;
1833
1834				if (interactive)
1835				    fflush(stdout);
1836			}
1837		} while ((rrc == -1) && (errno == EINTR));
1838
1839		/*
1840		 * lost IO - sorry guys
1841		 */
1842		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1843
1844		(void)close(fd);
1845	}
1846
1847	closelog();
1848
1849	return 0;
1850}
1851