1/*
2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
3 *
4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5 *
6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7 *
8 * Features:
9 *  DCF77 decoding
10 *  simple NTP loopfilter logic for local clock
11 *  interactive display for debugging
12 *
13 * Lacks:
14 *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15 *
16 * Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org>
17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 * 3. Neither the name of the author nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 */
44
45#ifdef HAVE_CONFIG_H
46# include <config.h>
47#endif
48
49#include <sys/ioctl.h>
50#include <unistd.h>
51#include <stdio.h>
52#include <fcntl.h>
53#include <sys/types.h>
54#include <sys/time.h>
55#include <signal.h>
56#include <syslog.h>
57#include <time.h>
58
59/*
60 * NTP compilation environment
61 */
62#include "ntp_stdlib.h"
63#include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
64
65/*
66 * select which terminal handling to use (currently only SysV variants)
67 */
68#if defined(HAVE_TERMIOS_H) || defined(STREAM)
69#include <termios.h>
70#define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
71#define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
72#else  /* not HAVE_TERMIOS_H || STREAM */
73# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
74#  include <termio.h>
75#  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
76#  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
77# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
78#endif /* not HAVE_TERMIOS_H || STREAM */
79
80
81#ifndef TTY_GETATTR
82#include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
83#endif
84
85#ifndef days_per_year
86#define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
87#endif
88
89#define timernormalize(_a_) \
90	if ((_a_)->tv_usec >= 1000000) \
91	{ \
92		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
93		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
94	} \
95	if ((_a_)->tv_usec < 0) \
96	{ \
97		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
98		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
99	}
100
101#ifdef timeradd
102#undef timeradd
103#endif
104#define timeradd(_a_, _b_) \
105	(_a_)->tv_sec  += (_b_)->tv_sec; \
106	(_a_)->tv_usec += (_b_)->tv_usec; \
107	timernormalize((_a_))
108
109#ifdef timersub
110#undef timersub
111#endif
112#define timersub(_a_, _b_) \
113	(_a_)->tv_sec  -= (_b_)->tv_sec; \
114	(_a_)->tv_usec -= (_b_)->tv_usec; \
115	timernormalize((_a_))
116
117/*
118 * debug macros
119 */
120#define PRINTF if (interactive) printf
121#define LPRINTF if (interactive && loop_filter_debug) printf
122
123#ifdef DEBUG
124#define DPRINTF(_x_) LPRINTF _x_
125#else
126#define DPRINTF(_x_)
127#endif
128
129#ifdef DECL_ERRNO
130     extern int errno;
131#endif
132
133static char *revision = "4.18";
134
135/*
136 * display received data (avoids also detaching from tty)
137 */
138static int interactive = 0;
139
140/*
141 * display loopfilter (clock control) variables
142 */
143static int loop_filter_debug = 0;
144
145/*
146 * do not set/adjust system time
147 */
148static int no_set = 0;
149
150/*
151 * time that passes between start of DCF impulse and time stamping (fine
152 * adjustment) in microseconds (receiver/OS dependent)
153 */
154#define DEFAULT_DELAY	230000	/* rough estimate */
155
156/*
157 * The two states we can be in - eithe we receive nothing
158 * usable or we have the correct time
159 */
160#define NO_SYNC		0x01
161#define SYNC		0x02
162
163static int    sync_state = NO_SYNC;
164static time_t last_sync;
165
166static unsigned long ticks = 0;
167
168static char pat[] = "-\\|/";
169
170#define LINES		(24-2)	/* error lines after which the two headlines are repeated */
171
172#define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
173#define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
174
175/*
176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
177 */
178
179#define USECSCALE	10
180#define TIMECONSTANT	2
181#define ADJINTERVAL	0
182#define FREQ_WEIGHT	18
183#define PHASE_WEIGHT	7
184#define MAX_DRIFT	0x3FFFFFFF
185
186#define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
187
188static long max_adj_offset_usec = 128000;
189
190static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
191static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
192static long adjustments  = 0;
193static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
194
195/*
196 * DCF77 state flags
197 */
198#define DCFB_ANNOUNCE		0x0001 /* switch time zone warning (DST switch) */
199#define DCFB_DST		0x0002 /* DST in effect */
200#define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurrence) */
201#define DCFB_CALLBIT		0x0008 /* "call bit" used to signalize irregularities in the control facilities */
202
203struct clocktime		/* clock time broken up from time code */
204{
205	long wday;		/* Day of week: 1: Monday - 7: Sunday */
206	long day;
207	long month;
208	long year;
209	long hour;
210	long minute;
211	long second;
212	long usecond;
213	long utcoffset;	/* in minutes */
214	long flags;		/* current clock status  (DCF77 state flags) */
215};
216
217typedef struct clocktime clocktime_t;
218
219/*
220 * (usually) quick constant multiplications
221 */
222#ifndef TIMES10
223#define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
224#endif
225#ifndef TIMES24
226#define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
227#endif
228#ifndef TIMES60
229#define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
230#endif
231
232/*
233 * generic l_abs() function
234 */
235#define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
236
237/*
238 * conversion related return/error codes
239 */
240#define CVT_MASK	0x0000000F /* conversion exit code */
241#define   CVT_NONE	0x00000001 /* format not applicable */
242#define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
243#define   CVT_OK	0x00000004 /* conversion succeeded */
244#define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
245#define CVT_BADDATE	0x00000020 /* invalid date */
246#define CVT_BADTIME	0x00000040 /* invalid time */
247
248/*
249 * DCF77 raw time code
250 *
251 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
252 * und Berlin, Maerz 1989
253 *
254 * Timecode transmission:
255 * AM:
256 *	time marks are send every second except for the second before the
257 *	next minute mark
258 *	time marks consist of a reduction of transmitter power to 25%
259 *	of the nominal level
260 *	the falling edge is the time indication (on time)
261 *	time marks of a 100ms duration constitute a logical 0
262 *	time marks of a 200ms duration constitute a logical 1
263 * FM:
264 *	see the spec. (basically a (non-)inverted psuedo random phase shift)
265 *
266 * Encoding:
267 * Second	Contents
268 * 0  - 10	AM: free, FM: 0
269 * 11 - 14	free
270 * 15		R     - "call bit" used to signalize irregularities in the control facilities
271 *		        (until 2003 indicated transmission via alternate antenna)
272 * 16		A1    - expect zone change (1 hour before)
273 * 17 - 18	Z1,Z2 - time zone
274 *		 0  0 illegal
275 *		 0  1 MEZ  (MET)
276 *		 1  0 MESZ (MED, MET DST)
277 *		 1  1 illegal
278 * 19		A2    - expect leap insertion/deletion (1 hour before)
279 * 20		S     - start of time code (1)
280 * 21 - 24	M1    - BCD (lsb first) Minutes
281 * 25 - 27	M10   - BCD (lsb first) 10 Minutes
282 * 28		P1    - Minute Parity (even)
283 * 29 - 32	H1    - BCD (lsb first) Hours
284 * 33 - 34      H10   - BCD (lsb first) 10 Hours
285 * 35		P2    - Hour Parity (even)
286 * 36 - 39	D1    - BCD (lsb first) Days
287 * 40 - 41	D10   - BCD (lsb first) 10 Days
288 * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
289 * 45 - 49	MO    - BCD (lsb first) Month
290 * 50           MO0   - 10 Months
291 * 51 - 53	Y1    - BCD (lsb first) Years
292 * 54 - 57	Y10   - BCD (lsb first) 10 Years
293 * 58 		P3    - Date Parity (even)
294 * 59		      - usually missing (minute indication), except for leap insertion
295 */
296
297/*-----------------------------------------------------------------------
298 * conversion table to map DCF77 bit stream into data fields.
299 * Encoding:
300 *   Each field of the DCF77 code is described with two adjacent entries in
301 *   this table. The first entry specifies the offset into the DCF77 data stream
302 *   while the length is given as the difference between the start index and
303 *   the start index of the following field.
304 */
305static struct rawdcfcode
306{
307	char offset;			/* start bit */
308} rawdcfcode[] =
309{
310	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
311	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
312};
313
314/*-----------------------------------------------------------------------
315 * symbolic names for the fields of DCF77 describes in "rawdcfcode".
316 * see comment above for the structure of the DCF77 data
317 */
318#define DCF_M	0
319#define DCF_R	1
320#define DCF_A1	2
321#define DCF_Z	3
322#define DCF_A2	4
323#define DCF_S	5
324#define DCF_M1	6
325#define DCF_M10	7
326#define DCF_P1	8
327#define DCF_H1	9
328#define DCF_H10	10
329#define DCF_P2	11
330#define DCF_D1	12
331#define DCF_D10	13
332#define DCF_DW	14
333#define DCF_MO	15
334#define DCF_MO0	16
335#define DCF_Y1	17
336#define DCF_Y10	18
337#define DCF_P3	19
338
339/*-----------------------------------------------------------------------
340 * parity field table (same encoding as rawdcfcode)
341 * This table describes the sections of the DCF77 code that are
342 * parity protected
343 */
344static struct partab
345{
346	char offset;			/* start bit of parity field */
347} partab[] =
348{
349	{ 21 }, { 29 }, { 36 }, { 59 }
350};
351
352/*-----------------------------------------------------------------------
353 * offsets for parity field descriptions
354 */
355#define DCF_P_P1	0
356#define DCF_P_P2	1
357#define DCF_P_P3	2
358
359/*-----------------------------------------------------------------------
360 * legal values for time zone information
361 */
362#define DCF_Z_MET 0x2
363#define DCF_Z_MED 0x1
364
365/*-----------------------------------------------------------------------
366 * symbolic representation if the DCF77 data stream
367 */
368static struct dcfparam
369{
370	unsigned char onebits[60];
371	unsigned char zerobits[60];
372} dcfparam =
373{
374	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
375	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
376};
377
378/*-----------------------------------------------------------------------
379 * extract a bitfield from DCF77 datastream
380 * All numeric fields are LSB first.
381 * buf holds a pointer to a DCF77 data buffer in symbolic
382 *     representation
383 * idx holds the index to the field description in rawdcfcode
384 */
385static unsigned long
386ext_bf(
387	register unsigned char *buf,
388	register int   idx
389	)
390{
391	register unsigned long sum = 0;
392	register int i, first;
393
394	first = rawdcfcode[idx].offset;
395
396	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
397	{
398		sum <<= 1;
399		sum |= (buf[i] != dcfparam.zerobits[i]);
400	}
401	return sum;
402}
403
404/*-----------------------------------------------------------------------
405 * check even parity integrity for a bitfield
406 *
407 * buf holds a pointer to a DCF77 data buffer in symbolic
408 *     representation
409 * idx holds the index to the field description in partab
410 */
411static unsigned
412pcheck(
413	register unsigned char *buf,
414	register int   idx
415	)
416{
417	register int i,last;
418	register unsigned psum = 1;
419
420	last = partab[idx+1].offset;
421
422	for (i = partab[idx].offset; i < last; i++)
423	    psum ^= (buf[i] != dcfparam.zerobits[i]);
424
425	return psum;
426}
427
428/*-----------------------------------------------------------------------
429 * convert a DCF77 data buffer into wall clock time + flags
430 *
431 * buffer holds a pointer to a DCF77 data buffer in symbolic
432 *        representation
433 * size   describes the length of DCF77 information in bits (represented
434 *        as chars in symbolic notation
435 * clock  points to a wall clock time description of the DCF77 data (result)
436 */
437static unsigned long
438convert_rawdcf(
439	       unsigned char   *buffer,
440	       int              size,
441	       clocktime_t     *clock_time
442	       )
443{
444	if (size < 57)
445	{
446		PRINTF("%-30s", "*** INCOMPLETE");
447		return CVT_NONE;
448	}
449
450	/*
451	 * check Start and Parity bits
452	 */
453	if ((ext_bf(buffer, DCF_S) == 1) &&
454	    pcheck(buffer, DCF_P_P1) &&
455	    pcheck(buffer, DCF_P_P2) &&
456	    pcheck(buffer, DCF_P_P3))
457	{
458		/*
459		 * buffer OK - extract all fields and build wall clock time from them
460		 */
461
462		clock_time->flags  = 0;
463		clock_time->usecond= 0;
464		clock_time->second = 0;
465		clock_time->minute = ext_bf(buffer, DCF_M10);
466		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
467		clock_time->hour   = ext_bf(buffer, DCF_H10);
468		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
469		clock_time->day    = ext_bf(buffer, DCF_D10);
470		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
471		clock_time->month  = ext_bf(buffer, DCF_MO0);
472		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
473		clock_time->year   = ext_bf(buffer, DCF_Y10);
474		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
475		clock_time->wday   = ext_bf(buffer, DCF_DW);
476
477		/*
478		 * determine offset to UTC by examining the time zone
479		 */
480		switch (ext_bf(buffer, DCF_Z))
481		{
482		    case DCF_Z_MET:
483			clock_time->utcoffset = -60;
484			break;
485
486		    case DCF_Z_MED:
487			clock_time->flags     |= DCFB_DST;
488			clock_time->utcoffset  = -120;
489			break;
490
491		    default:
492			PRINTF("%-30s", "*** BAD TIME ZONE");
493			return CVT_FAIL|CVT_BADFMT;
494		}
495
496		/*
497		 * extract various warnings from DCF77
498		 */
499		if (ext_bf(buffer, DCF_A1))
500		    clock_time->flags |= DCFB_ANNOUNCE;
501
502		if (ext_bf(buffer, DCF_A2))
503		    clock_time->flags |= DCFB_LEAP;
504
505		if (ext_bf(buffer, DCF_R))
506		    clock_time->flags |= DCFB_CALLBIT;
507
508		return CVT_OK;
509	}
510	else
511	{
512		/*
513		 * bad format - not for us
514		 */
515		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
516		return CVT_FAIL|CVT_BADFMT;
517	}
518}
519
520/*-----------------------------------------------------------------------
521 * raw dcf input routine - fix up 50 baud
522 * characters for 1/0 decision
523 */
524static unsigned long
525cvt_rawdcf(
526	   unsigned char   *buffer,
527	   int              size,
528	   clocktime_t     *clock_time
529	   )
530{
531	register unsigned char *s = buffer;
532	register unsigned char *e = buffer + size;
533	register unsigned char *b = dcfparam.onebits;
534	register unsigned char *c = dcfparam.zerobits;
535	register unsigned rtc = CVT_NONE;
536	register unsigned int i, lowmax, highmax, cutoff, span;
537#define BITS 9
538	unsigned char     histbuf[BITS];
539	/*
540	 * the input buffer contains characters with runs of consecutive
541	 * bits set. These set bits are an indication of the DCF77 pulse
542	 * length. We assume that we receive the pulse at 50 Baud. Thus
543	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
544	 * start bit)
545	 * a 200ms pulse would create all zeroes (and probably a frame error)
546	 *
547	 * The basic idea is that on corret reception we must have two
548	 * maxima in the pulse length distribution histogram. (one for
549	 * the zero representing pulses and one for the one representing
550	 * pulses)
551	 * There will always be ones in the datastream, thus we have to see
552	 * two maxima.
553	 * The best point to cut for a 1/0 decision is the minimum between those
554	 * between the maxima. The following code tries to find this cutoff point.
555	 */
556
557	/*
558	 * clear histogram buffer
559	 */
560	for (i = 0; i < BITS; i++)
561	{
562		histbuf[i] = 0;
563	}
564
565	cutoff = 0;
566	lowmax = 0;
567
568	/*
569	 * convert sequences of set bits into bits counts updating
570	 * the histogram alongway
571	 */
572	while (s < e)
573	{
574		register unsigned int ch = *s ^ 0xFF;
575		/*
576		 * check integrity and update histogramm
577		 */
578		if (!((ch+1) & ch) || !*s)
579		{
580			/*
581			 * character ok
582			 */
583			for (i = 0; ch; i++)
584			{
585				ch >>= 1;
586			}
587
588			*s = i;
589			histbuf[i]++;
590			cutoff += i;
591			lowmax++;
592		}
593		else
594		{
595			/*
596			 * invalid character (no consecutive bit sequence)
597			 */
598			DPRINTF(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n",
599				 (u_int)*s, (long)(s - buffer)));
600			*s = (unsigned char)~0;
601			rtc = CVT_FAIL|CVT_BADFMT;
602		}
603		s++;
604	}
605
606	/*
607	 * first cutoff estimate (average bit count - must be between both
608	 * maxima)
609	 */
610	if (lowmax)
611	{
612		cutoff /= lowmax;
613	}
614	else
615	{
616		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
617	}
618
619	DPRINTF(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
620
621	lowmax = 0;  /* weighted sum */
622	highmax = 0; /* bitcount */
623
624	/*
625	 * collect weighted sum of lower bits (left of initial guess)
626	 */
627	DPRINTF(("parse: cvt_rawdcf: histogram:"));
628	for (i = 0; i <= cutoff; i++)
629	{
630		lowmax  += histbuf[i] * i;
631		highmax += histbuf[i];
632		DPRINTF((" %d", histbuf[i]));
633	}
634	DPRINTF((" <M>"));
635
636	/*
637	 * round up
638	 */
639	lowmax += highmax / 2;
640
641	/*
642	 * calculate lower bit maximum (weighted sum / bit count)
643	 *
644	 * avoid divide by zero
645	 */
646	if (highmax)
647	{
648		lowmax /= highmax;
649	}
650	else
651	{
652		lowmax = 0;
653	}
654
655	highmax = 0; /* weighted sum of upper bits counts */
656	cutoff = 0;  /* bitcount */
657
658	/*
659	 * collect weighted sum of lower bits (right of initial guess)
660	 */
661	for (; i < BITS; i++)
662	{
663		highmax+=histbuf[i] * i;
664		cutoff +=histbuf[i];
665		DPRINTF((" %d", histbuf[i]));
666	}
667	DPRINTF(("\n"));
668
669	/*
670	 * determine upper maximum (weighted sum / bit count)
671	 */
672	if (cutoff)
673	{
674		highmax /= cutoff;
675	}
676	else
677	{
678		highmax = BITS-1;
679	}
680
681	/*
682	 * following now holds:
683	 * lowmax <= cutoff(initial guess) <= highmax
684	 * best cutoff is the minimum nearest to higher bits
685	 */
686
687	/*
688	 * find the minimum between lowmax and highmax (detecting
689	 * possibly a minimum span)
690	 */
691	span = cutoff = lowmax;
692	for (i = lowmax; i <= highmax; i++)
693	{
694		if (histbuf[cutoff] > histbuf[i])
695		{
696			/*
697			 * got a new minimum move beginning of minimum (cutoff) and
698			 * end of minimum (span) there
699			 */
700			cutoff = span = i;
701		}
702		else
703		    if (histbuf[cutoff] == histbuf[i])
704		    {
705			    /*
706			     * minimum not better yet - but it spans more than
707			     * one bit value - follow it
708			     */
709			    span = i;
710		    }
711	}
712
713	/*
714	 * cutoff point for 1/0 decision is the middle of the minimum section
715	 * in the histogram
716	 */
717	cutoff = (cutoff + span) / 2;
718
719	DPRINTF(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
720
721	/*
722	 * convert the bit counts to symbolic 1/0 information for data conversion
723	 */
724	s = buffer;
725	while ((s < e) && *c && *b)
726	{
727		if (*s == (unsigned char)~0)
728		{
729			/*
730			 * invalid character
731			 */
732			*s = '?';
733		}
734		else
735		{
736			/*
737			 * symbolic 1/0 representation
738			 */
739			*s = (*s >= cutoff) ? *b : *c;
740		}
741		s++;
742		b++;
743		c++;
744	}
745
746	/*
747	 * if everything went well so far return the result of the symbolic
748	 * conversion routine else just the accumulated errors
749	 */
750	if (rtc != CVT_NONE)
751	{
752		PRINTF("%-30s", "*** BAD DATA");
753	}
754
755	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
756}
757
758/*-----------------------------------------------------------------------
759 * convert a wall clock time description of DCF77 to a Unix time (seconds
760 * since 1.1. 1970 UTC)
761 */
762static time_t
763dcf_to_unixtime(
764		clocktime_t   *clock_time,
765		unsigned *cvtrtc
766		)
767{
768#define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
769	static int days_of_month[] =
770	{
771		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
772	};
773	register int i;
774	time_t t;
775
776	/*
777	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
778	 */
779	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
780		clock_time->year += 100;	/* *year%100, make tm_year */
781						/* *(do we need this?) */
782	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
783	    clock_time->year += 1900;				/* Y2KFixes ] */
784
785	/*
786	 * must have been a really bad year code - drop it
787	 */
788	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
789	{
790		SETRTC(CVT_FAIL|CVT_BADDATE);
791		return -1;
792	}
793	/*
794	 * sorry, slow section here - but it's not time critical anyway
795	 */
796
797	/*
798	 * calculate days since 1970 (watching leap years)
799	 */
800	t = julian0( clock_time->year ) - julian0( 1970 );
801
802  				/* month */
803	if (clock_time->month <= 0 || clock_time->month > 12)
804	{
805		SETRTC(CVT_FAIL|CVT_BADDATE);
806		return -1;		/* bad month */
807	}
808				/* adjust current leap year */
809#if 0
810	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
811	    t--;
812#endif
813
814	/*
815	 * collect days from months excluding the current one
816	 */
817	for (i = 1; i < clock_time->month; i++)
818	{
819		t += days_of_month[i];
820	}
821				/* day */
822	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
823			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
824	{
825		SETRTC(CVT_FAIL|CVT_BADDATE);
826		return -1;		/* bad day */
827	}
828
829	/*
830	 * collect days from date excluding the current one
831	 */
832	t += clock_time->day - 1;
833
834				/* hour */
835	if (clock_time->hour < 0 || clock_time->hour >= 24)
836	{
837		SETRTC(CVT_FAIL|CVT_BADTIME);
838		return -1;		/* bad hour */
839	}
840
841	/*
842	 * calculate hours from 1. 1. 1970
843	 */
844	t = TIMES24(t) + clock_time->hour;
845
846  				/* min */
847	if (clock_time->minute < 0 || clock_time->minute > 59)
848	{
849		SETRTC(CVT_FAIL|CVT_BADTIME);
850		return -1;		/* bad min */
851	}
852
853	/*
854	 * calculate minutes from 1. 1. 1970
855	 */
856	t = TIMES60(t) + clock_time->minute;
857				/* sec */
858
859	/*
860	 * calculate UTC in minutes
861	 */
862	t += clock_time->utcoffset;
863
864	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
865	{
866		SETRTC(CVT_FAIL|CVT_BADTIME);
867		return -1;		/* bad sec */
868	}
869
870	/*
871	 * calculate UTC in seconds - phew !
872	 */
873	t  = TIMES60(t) + clock_time->second;
874				/* done */
875	return t;
876}
877
878/*-----------------------------------------------------------------------
879 * cheap half baked 1/0 decision - for interactive operation only
880 */
881static char
882type(
883     unsigned int c
884     )
885{
886	c ^= 0xFF;
887	return (c > 0xF);
888}
889
890/*-----------------------------------------------------------------------
891 * week day representation
892 */
893static const char *wday[8] =
894{
895	"??",
896	"Mo",
897	"Tu",
898	"We",
899	"Th",
900	"Fr",
901	"Sa",
902	"Su"
903};
904
905/*-----------------------------------------------------------------------
906 * generate a string representation for a timeval
907 */
908static char *
909pr_timeval(
910	struct timeval *val
911	)
912{
913	static char buf[20];
914
915	if (val->tv_sec == 0)
916		snprintf(buf, sizeof(buf), "%c0.%06ld",
917			 (val->tv_usec < 0) ? '-' : '+',
918			 (long int)l_abs(val->tv_usec));
919	else
920		snprintf(buf, sizeof(buf), "%ld.%06ld",
921			 (long int)val->tv_sec,
922			 (long int)l_abs(val->tv_usec));
923	return buf;
924}
925
926/*-----------------------------------------------------------------------
927 * correct the current time by an offset by setting the time rigorously
928 */
929static void
930set_time(
931	 struct timeval *offset
932	 )
933{
934	struct timeval the_time;
935
936	if (no_set)
937	    return;
938
939	LPRINTF("set_time: %s ", pr_timeval(offset));
940	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
941
942	if (gettimeofday(&the_time, 0L) == -1)
943	{
944		perror("gettimeofday()");
945	}
946	else
947	{
948		timeradd(&the_time, offset);
949		if (settimeofday(&the_time, 0L) == -1)
950		{
951			perror("settimeofday()");
952		}
953	}
954}
955
956/*-----------------------------------------------------------------------
957 * slew the time by a given offset
958 */
959static void
960adj_time(
961	 long offset
962	 )
963{
964	struct timeval time_offset;
965
966	if (no_set)
967	    return;
968
969	time_offset.tv_sec  = offset / 1000000;
970	time_offset.tv_usec = offset % 1000000;
971
972	LPRINTF("adj_time: %ld us ", (long int)offset);
973	if (adjtime(&time_offset, 0L) == -1)
974	    perror("adjtime()");
975}
976
977/*-----------------------------------------------------------------------
978 * read in a possibly previously written drift value
979 */
980static void
981read_drift(
982	   const char *drift_file
983	   )
984{
985	FILE *df;
986
987	df = fopen(drift_file, "r");
988	if (df != NULL)
989	{
990		int idrift = 0, fdrift = 0;
991
992		fscanf(df, "%4d.%03d", &idrift, &fdrift);
993		fclose(df);
994		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
995
996		accum_drift = idrift << USECSCALE;
997		fdrift     = (fdrift << USECSCALE) / 1000;
998		accum_drift += fdrift & (1<<USECSCALE);
999		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
1000	}
1001}
1002
1003/*-----------------------------------------------------------------------
1004 * write out the current drift value
1005 */
1006static void
1007update_drift(
1008	     const char *drift_file,
1009	     long offset,
1010	     time_t reftime
1011	     )
1012{
1013	FILE *df;
1014
1015	df = fopen(drift_file, "w");
1016	if (df != NULL)
1017	{
1018		int idrift = R_SHIFT(accum_drift, USECSCALE);
1019		int fdrift = accum_drift & ((1<<USECSCALE)-1);
1020
1021		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1022		fdrift = (fdrift * 1000) / (1<<USECSCALE);
1023		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1024			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1025			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1026		fclose(df);
1027		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1028	}
1029}
1030
1031/*-----------------------------------------------------------------------
1032 * process adjustments derived from the DCF77 observation
1033 * (controls clock PLL)
1034 */
1035static void
1036adjust_clock(
1037	     struct timeval *offset,
1038	     const char *drift_file,
1039	     time_t reftime
1040	     )
1041{
1042	struct timeval toffset;
1043	register long usecoffset;
1044	int tmp;
1045
1046	if (no_set)
1047	    return;
1048
1049	if (skip_adjust)
1050	{
1051		skip_adjust = 0;
1052		return;
1053	}
1054
1055	toffset = *offset;
1056	toffset.tv_sec  = l_abs(toffset.tv_sec);
1057	toffset.tv_usec = l_abs(toffset.tv_usec);
1058	if (toffset.tv_sec ||
1059	    (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec))
1060	{
1061		/*
1062		 * hopeless - set the clock - and clear the timing
1063		 */
1064		set_time(offset);
1065		clock_adjust = 0;
1066		skip_adjust  = 1;
1067		return;
1068	}
1069
1070	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1071
1072	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1073
1074	tmp = 0;
1075	while (adjustments > (1 << tmp))
1076	    tmp++;
1077	adjustments = 0;
1078	if (tmp > FREQ_WEIGHT)
1079	    tmp = FREQ_WEIGHT;
1080
1081	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1082
1083	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1084	    accum_drift = MAX_DRIFT;
1085	else
1086	    if (accum_drift < -MAX_DRIFT)
1087		accum_drift = -MAX_DRIFT;
1088
1089	update_drift(drift_file, usecoffset, reftime);
1090	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1091		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1092		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1093}
1094
1095/*-----------------------------------------------------------------------
1096 * adjust the clock by a small mount to simulate frequency correction
1097 */
1098static void
1099periodic_adjust(
1100		void
1101		)
1102{
1103	register long adjustment;
1104
1105	adjustments++;
1106
1107	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1108
1109	clock_adjust -= adjustment;
1110
1111	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1112
1113	adj_time(adjustment);
1114}
1115
1116/*-----------------------------------------------------------------------
1117 * control synchronisation status (warnings) and do periodic adjusts
1118 * (frequency control simulation)
1119 */
1120static void
1121tick(
1122     int signum
1123     )
1124{
1125	static unsigned long last_notice = 0;
1126
1127#if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1128	(void)signal(SIGALRM, tick);
1129#endif
1130
1131	periodic_adjust();
1132
1133	ticks += 1<<ADJINTERVAL;
1134
1135	if ((ticks - last_sync) > MAX_UNSYNC)
1136	{
1137		/*
1138		 * not getting time for a while
1139		 */
1140		if (sync_state == SYNC)
1141		{
1142			/*
1143			 * completely lost information
1144			 */
1145			sync_state = NO_SYNC;
1146			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1147			last_notice = ticks;
1148		}
1149		else
1150		    /*
1151		     * in NO_SYNC state - look whether its time to speak up again
1152		     */
1153		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1154		    {
1155			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1156			    last_notice = ticks;
1157		    }
1158	}
1159
1160#ifndef ITIMER_REAL
1161	(void) alarm(1<<ADJINTERVAL);
1162#endif
1163}
1164
1165/*-----------------------------------------------------------------------
1166 * break association from terminal to avoid catching terminal
1167 * or process group related signals (-> daemon operation)
1168 */
1169static void
1170detach(
1171       void
1172       )
1173{
1174#   ifdef HAVE_DAEMON
1175	daemon(0, 0);
1176#   else /* not HAVE_DAEMON */
1177	if (fork())
1178	    exit(0);
1179
1180	{
1181		u_long s;
1182		int max_fd;
1183
1184#if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1185		max_fd = sysconf(_SC_OPEN_MAX);
1186#else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1187		max_fd = getdtablesize();
1188#endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1189		for (s = 0; s < max_fd; s++)
1190		    (void) close((int)s);
1191		(void) open("/", 0);
1192		(void) dup2(0, 1);
1193		(void) dup2(0, 2);
1194#ifdef SYS_DOMAINOS
1195		{
1196			uid_$t puid;
1197			status_$t st;
1198
1199			proc2_$who_am_i(&puid);
1200			proc2_$make_server(&puid, &st);
1201		}
1202#endif /* SYS_DOMAINOS */
1203#if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1204# ifdef HAVE_SETSID
1205		if (setsid() == (pid_t)-1)
1206		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1207# else
1208		if (setpgid(0, 0) == -1)
1209		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1210# endif
1211#else /* HAVE_SETPGID || HAVE_SETSID */
1212		{
1213			int fid;
1214
1215			fid = open("/dev/tty", 2);
1216			if (fid >= 0)
1217			{
1218				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1219				(void) close(fid);
1220			}
1221# ifdef HAVE_SETPGRP_0
1222			(void) setpgrp();
1223# else /* HAVE_SETPGRP_0 */
1224			(void) setpgrp(0, getpid());
1225# endif /* HAVE_SETPGRP_0 */
1226		}
1227#endif /* HAVE_SETPGID || HAVE_SETSID */
1228	}
1229#endif /* not HAVE_DAEMON */
1230}
1231
1232/*-----------------------------------------------------------------------
1233 * list possible arguments and options
1234 */
1235static void
1236usage(
1237      char *program
1238      )
1239{
1240  fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1241	fprintf(stderr, "\t-n              do not change time\n");
1242	fprintf(stderr, "\t-i              interactive\n");
1243	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1244	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1245	fprintf(stderr, "\t-l              print loop filter debug information\n");
1246	fprintf(stderr, "\t-o              print offet average for current minute\n");
1247	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1248	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1249	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1250}
1251
1252/*-----------------------------------------------------------------------
1253 * check_y2k() - internal check of Y2K logic
1254 *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1255 */
1256static int
1257check_y2k( void )
1258{
1259    int  year;			/* current working year */
1260    int  year0 = 1900;		/* sarting year for NTP time */
1261    int  yearend;		/* ending year we test for NTP time.
1262				    * 32-bit systems: through 2036, the
1263				      **year in which NTP time overflows.
1264				    * 64-bit systems: a reasonable upper
1265				      **limit (well, maybe somewhat beyond
1266				      **reasonable, but well before the
1267				      **max time, by which time the earth
1268				      **will be dead.) */
1269    time_t Time;
1270    struct tm LocalTime;
1271
1272    int Fatals, Warnings;
1273#define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1274	Warnings++; else Fatals++
1275
1276    Fatals = Warnings = 0;
1277
1278    Time = time( (time_t *)NULL );
1279    LocalTime = *localtime( &Time );
1280
1281    year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1282		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1283		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1284			/* NOTE: will automacially expand test years on
1285			 * 64 bit machines.... this may cause some of the
1286			 * existing ntp logic to fail for years beyond
1287			 * 2036 (the current 32-bit limit). If all checks
1288			 * fail ONLY beyond year 2036 you may ignore such
1289			 * errors, at least for a decade or so. */
1290    yearend = year0 + year;
1291
1292    year = 1900+YEAR_PIVOT;
1293    printf( "  starting year %04d\n", (int) year );
1294    printf( "  ending year   %04d\n", (int) yearend );
1295
1296    for ( ; year < yearend; year++ )
1297    {
1298	clocktime_t  ct;
1299	time_t	     Observed;
1300	time_t	     Expected;
1301	unsigned     Flag;
1302	unsigned long t;
1303
1304	ct.day = 1;
1305	ct.month = 1;
1306	ct.year = year;
1307	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1308	ct.utcoffset = 0;
1309	ct.flags = 0;
1310
1311	Flag = 0;
1312 	Observed = dcf_to_unixtime( &ct, &Flag );
1313		/* seems to be a clone of parse_to_unixtime() with
1314		 * *a minor difference to arg2 type */
1315	if ( ct.year != year )
1316	{
1317	    fprintf( stdout,
1318	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1319	       (int)year, (int)Flag, (int)ct.year );
1320	    Error(year);
1321	    break;
1322	}
1323	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1324	Expected = t * 24 * 60 * 60;
1325	if ( Observed != Expected  ||  Flag )
1326	{   /* time difference */
1327	    fprintf( stdout,
1328	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1329	       year, (int)Flag,
1330	       (unsigned long)Observed, (unsigned long)Expected,
1331	       ((long)Observed - (long)Expected) );
1332	    Error(year);
1333	    break;
1334	}
1335
1336    }
1337
1338    return ( Fatals );
1339}
1340
1341/*--------------------------------------------------
1342 * rawdcf_init - set up modem lines for RAWDCF receivers
1343 */
1344#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1345static void
1346rawdcf_init(
1347	int fd
1348	)
1349{
1350	/*
1351	 * You can use the RS232 to supply the power for a DCF77 receiver.
1352	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1353	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1354	 */
1355
1356#ifdef TIOCM_DTR
1357	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1358#else
1359	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1360#endif
1361
1362	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1363	{
1364		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1365	}
1366}
1367#else
1368static void
1369rawdcf_init(
1370	    int fd
1371	)
1372{
1373	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1374}
1375#endif  /* DTR initialisation type */
1376
1377/*-----------------------------------------------------------------------
1378 * main loop - argument interpreter / setup / main loop
1379 */
1380int
1381main(
1382     int argc,
1383     char **argv
1384     )
1385{
1386	unsigned char c;
1387	char **a = argv;
1388	int  ac = argc;
1389	char *file = NULL;
1390	const char *drift_file = "/etc/dcfd.drift";
1391	int fd;
1392	int offset = 15;
1393	int offsets = 0;
1394	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1395	int trace = 0;
1396	int errs = 0;
1397
1398	/*
1399	 * process arguments
1400	 */
1401	while (--ac)
1402	{
1403		char *arg = *++a;
1404		if (*arg == '-')
1405		    while ((c = *++arg))
1406			switch (c)
1407			{
1408			    case 't':
1409				trace = 1;
1410				interactive = 1;
1411				break;
1412
1413			    case 'f':
1414				offset = 0;
1415				interactive = 1;
1416				break;
1417
1418			    case 'l':
1419				loop_filter_debug = 1;
1420				offsets = 1;
1421				interactive = 1;
1422				break;
1423
1424			    case 'n':
1425				no_set = 1;
1426				break;
1427
1428			    case 'o':
1429				offsets = 1;
1430				interactive = 1;
1431				break;
1432
1433			    case 'i':
1434				interactive = 1;
1435				break;
1436
1437			    case 'D':
1438				if (ac > 1)
1439				{
1440					delay = atoi(*++a);
1441					ac--;
1442				}
1443				else
1444				{
1445					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1446					errs=1;
1447				}
1448				break;
1449
1450			    case 'd':
1451				if (ac > 1)
1452				{
1453					drift_file = *++a;
1454					ac--;
1455				}
1456				else
1457				{
1458					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1459					errs=1;
1460				}
1461				break;
1462
1463			    case 'Y':
1464				errs=check_y2k();
1465				exit( errs ? 1 : 0 );
1466
1467			    default:
1468				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1469				errs=1;
1470				break;
1471			}
1472		else
1473		    if (file == NULL)
1474			file = arg;
1475		    else
1476		    {
1477			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1478			    errs=1;
1479		    }
1480	}
1481
1482	if (errs)
1483	{
1484		usage(argv[0]);
1485		exit(1);
1486	}
1487	else
1488	    if (file == NULL)
1489	    {
1490		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1491		    usage(argv[0]);
1492		    exit(1);
1493	    }
1494
1495	errs = LINES+1;
1496
1497	/*
1498	 * get access to DCF77 tty port
1499	 */
1500	fd = open(file, O_RDONLY);
1501	if (fd == -1)
1502	{
1503		perror(file);
1504		exit(1);
1505	}
1506	else
1507	{
1508		int i, rrc;
1509		struct timeval t, tt, tlast;
1510		struct timeval timeout;
1511		struct timeval phase;
1512		struct timeval time_offset;
1513		char pbuf[61];		/* printable version */
1514		char buf[61];		/* raw data */
1515		clocktime_t clock_time;	/* wall clock time */
1516		time_t utc_time = 0;
1517		time_t last_utc_time = 0;
1518		long usecerror = 0;
1519		long lasterror = 0;
1520#if defined(HAVE_TERMIOS_H) || defined(STREAM)
1521		struct termios term;
1522#else  /* not HAVE_TERMIOS_H || STREAM */
1523# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1524		struct termio term;
1525# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1526#endif /* not HAVE_TERMIOS_H || STREAM */
1527		unsigned int rtc = CVT_NONE;
1528
1529		rawdcf_init(fd);
1530
1531		timeout.tv_sec  = 1;
1532		timeout.tv_usec = 500000;
1533
1534		phase.tv_sec    = 0;
1535		phase.tv_usec   = delay;
1536
1537		/*
1538		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1539		 */
1540		if (TTY_GETATTR(fd,  &term) == -1)
1541		{
1542			perror("tcgetattr");
1543			exit(1);
1544		}
1545
1546		memset(term.c_cc, 0, sizeof(term.c_cc));
1547		term.c_cc[VMIN] = 1;
1548#ifdef NO_PARENB_IGNPAR
1549		term.c_cflag = CS8|CREAD|CLOCAL;
1550#else
1551		term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1552#endif
1553		term.c_iflag = IGNPAR;
1554		term.c_oflag = 0;
1555		term.c_lflag = 0;
1556
1557		cfsetispeed(&term, B50);
1558		cfsetospeed(&term, B50);
1559
1560		if (TTY_SETATTR(fd, &term) == -1)
1561		{
1562			perror("tcsetattr");
1563			exit(1);
1564		}
1565
1566		/*
1567		 * lose terminal if in daemon operation
1568		 */
1569		if (!interactive)
1570		    detach();
1571
1572		/*
1573		 * get syslog() initialized
1574		 */
1575#ifdef LOG_DAEMON
1576		openlog("dcfd", LOG_PID, LOG_DAEMON);
1577#else
1578		openlog("dcfd", LOG_PID);
1579#endif
1580
1581		/*
1582		 * setup periodic operations (state control / frequency control)
1583		 */
1584#ifdef HAVE_SIGACTION
1585		{
1586			struct sigaction act;
1587
1588# ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1589			act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0;
1590# endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1591			act.sa_handler   = tick;
1592			sigemptyset(&act.sa_mask);
1593			act.sa_flags     = 0;
1594
1595			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1596			{
1597				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1598				exit(1);
1599			}
1600		}
1601#else
1602#ifdef HAVE_SIGVEC
1603		{
1604			struct sigvec vec;
1605
1606			vec.sv_handler   = tick;
1607			vec.sv_mask      = 0;
1608			vec.sv_flags     = 0;
1609
1610			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1611			{
1612				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1613				exit(1);
1614			}
1615		}
1616#else
1617		(void) signal(SIGALRM, tick);
1618#endif
1619#endif
1620
1621#ifdef ITIMER_REAL
1622		{
1623			struct itimerval it;
1624
1625			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1626			it.it_interval.tv_usec = 0;
1627			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1628			it.it_value.tv_usec    = 0;
1629
1630			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1631			{
1632				syslog(LOG_ERR, "setitimer: %m");
1633				exit(1);
1634			}
1635		}
1636#else
1637		(void) alarm(1<<ADJINTERVAL);
1638#endif
1639
1640		PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1641
1642		pbuf[60] = '\0';
1643		for ( i = 0; i < 60; i++)
1644		    pbuf[i] = '.';
1645
1646		read_drift(drift_file);
1647
1648		/*
1649		 * what time is it now (for interval measurement)
1650		 */
1651		gettimeofday(&tlast, 0L);
1652		i = 0;
1653		/*
1654		 * loop until input trouble ...
1655		 */
1656		do
1657		{
1658			/*
1659			 * get an impulse
1660			 */
1661			while ((rrc = read(fd, &c, 1)) == 1)
1662			{
1663				gettimeofday(&t, 0L);
1664				tt = t;
1665				timersub(&t, &tlast);
1666
1667				if (errs > LINES)
1668				{
1669					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1670					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1671					errs = 0;
1672				}
1673
1674				/*
1675				 * timeout -> possible minute mark -> interpretation
1676				 */
1677				if (timercmp(&t, &timeout, >))
1678				{
1679					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1680
1681					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1682					{
1683						/*
1684						 * this data was bad - well - forget synchronisation for now
1685						 */
1686						PRINTF("\n");
1687						if (sync_state == SYNC)
1688						{
1689							sync_state = NO_SYNC;
1690							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1691						}
1692						errs++;
1693					}
1694					else
1695					    if (trace)
1696					    {
1697						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1698					    }
1699
1700
1701					buf[0] = c;
1702
1703					/*
1704					 * collect first character
1705					 */
1706					if (((c^0xFF)+1) & (c^0xFF))
1707					    pbuf[0] = '?';
1708					else
1709					    pbuf[0] = type(c) ? '#' : '-';
1710
1711					for ( i = 1; i < 60; i++)
1712					    pbuf[i] = '.';
1713
1714					i = 0;
1715				}
1716				else
1717				{
1718					/*
1719					 * collect character
1720					 */
1721					buf[i] = c;
1722
1723					/*
1724					 * initial guess (usually correct)
1725					 */
1726					if (((c^0xFF)+1) & (c^0xFF))
1727					    pbuf[i] = '?';
1728					else
1729					    pbuf[i] = type(c) ? '#' : '-';
1730
1731					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1732				}
1733
1734				if (i == 0 && rtc == CVT_OK)
1735				{
1736					/*
1737					 * we got a good time code here - try to convert it to
1738					 * UTC
1739					 */
1740					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1741					{
1742						PRINTF("*** BAD CONVERSION\n");
1743					}
1744
1745					if (utc_time != (last_utc_time + 60))
1746					{
1747						/*
1748						 * well, two successive sucessful telegrams are not 60 seconds
1749						 * apart
1750						 */
1751						PRINTF("*** NO MINUTE INC\n");
1752						if (sync_state == SYNC)
1753						{
1754							sync_state = NO_SYNC;
1755							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1756						}
1757						errs++;
1758						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1759					}
1760					else
1761					    usecerror = 0;
1762
1763					last_utc_time = utc_time;
1764				}
1765
1766				if (rtc == CVT_OK)
1767				{
1768					if (i == 0)
1769					{
1770						/*
1771						 * valid time code - determine offset and
1772						 * note regained reception
1773						 */
1774						last_sync = ticks;
1775						if (sync_state == NO_SYNC)
1776						{
1777							syslog(LOG_INFO, "receiving DCF77");
1778						}
1779						else
1780						{
1781							/*
1782							 * we had at least one minute SYNC - thus
1783							 * last error is valid
1784							 */
1785							time_offset.tv_sec  = lasterror / 1000000;
1786							time_offset.tv_usec = lasterror % 1000000;
1787							adjust_clock(&time_offset, drift_file, utc_time);
1788						}
1789						sync_state = SYNC;
1790					}
1791
1792					time_offset.tv_sec  = utc_time + i;
1793					time_offset.tv_usec = 0;
1794
1795					timeradd(&time_offset, &phase);
1796
1797					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1798						-tt.tv_usec;
1799
1800					/*
1801					 * output interpreted DCF77 data
1802					 */
1803					PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1804					       "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1805					       wday[clock_time.wday],
1806					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1807					       clock_time.year,
1808					       (clock_time.flags & DCFB_CALLBIT) ? "R" : "_",
1809					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1810					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1811					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1812					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1813					       );
1814
1815					if (trace && (i == 0))
1816					{
1817						PRINTF("\n");
1818						errs++;
1819					}
1820					lasterror = usecerror / (i+1);
1821				}
1822				else
1823				{
1824					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1825				}
1826
1827				PRINTF("\r");
1828
1829				if (i < 60)
1830				{
1831					i++;
1832				}
1833
1834				tlast = tt;
1835
1836				if (interactive)
1837				    fflush(stdout);
1838			}
1839		} while ((rrc == -1) && (errno == EINTR));
1840
1841		/*
1842		 * lost IO - sorry guys
1843		 */
1844		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1845
1846		(void)close(fd);
1847	}
1848
1849	closelog();
1850
1851	return 0;
1852}
1853
1854/*
1855 * History:
1856 *
1857 * dcfd.c,v
1858 * Revision 4.18  2005/10/07 22:08:18  kardel
1859 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1860 *
1861 * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1862 * work around configure not detecting a missing sigvec compatibility
1863 * interface on NetBSD 3.99.9 and above
1864 *
1865 * Revision 4.17  2005/08/10 10:09:44  kardel
1866 * output revision information
1867 *
1868 * Revision 4.16  2005/08/10 06:33:25  kardel
1869 * cleanup warnings
1870 *
1871 * Revision 4.15  2005/08/10 06:28:45  kardel
1872 * fix setting of baud rate
1873 *
1874 * Revision 4.14  2005/04/16 17:32:10  kardel
1875 * update copyright
1876 *
1877 * Revision 4.13  2004/11/14 15:29:41  kardel
1878 * support PPSAPI, upgrade Copyright to Berkeley style
1879 *
1880 */
1881