1//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines structures to encapsulate the machine model as described in
10// the target description.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenSchedule.h"
15#include "CodeGenInstruction.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Regex.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/TableGen/Error.h"
27#include <algorithm>
28#include <iterator>
29#include <utility>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "subtarget-emitter"
34
35#ifndef NDEBUG
36static void dumpIdxVec(ArrayRef<unsigned> V) {
37  for (unsigned Idx : V)
38    dbgs() << Idx << ", ";
39}
40#endif
41
42namespace {
43
44// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45struct InstrsOp : public SetTheory::Operator {
46  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47             ArrayRef<SMLoc> Loc) override {
48    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49  }
50};
51
52// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53struct InstRegexOp : public SetTheory::Operator {
54  const CodeGenTarget &Target;
55  InstRegexOp(const CodeGenTarget &t): Target(t) {}
56
57  /// Remove any text inside of parentheses from S.
58  static std::string removeParens(llvm::StringRef S) {
59    std::string Result;
60    unsigned Paren = 0;
61    // NB: We don't care about escaped parens here.
62    for (char C : S) {
63      switch (C) {
64      case '(':
65        ++Paren;
66        break;
67      case ')':
68        --Paren;
69        break;
70      default:
71        if (Paren == 0)
72          Result += C;
73      }
74    }
75    return Result;
76  }
77
78  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79             ArrayRef<SMLoc> Loc) override {
80    ArrayRef<const CodeGenInstruction *> Instructions =
81        Target.getInstructionsByEnumValue();
82
83    unsigned NumGeneric = Target.getNumFixedInstructions();
84    unsigned NumPseudos = Target.getNumPseudoInstructions();
85    auto Generics = Instructions.slice(0, NumGeneric);
86    auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87    auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88
89    for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90      StringInit *SI = dyn_cast<StringInit>(Arg);
91      if (!SI)
92        PrintFatalError(Loc, "instregex requires pattern string: " +
93                                 Expr->getAsString());
94      StringRef Original = SI->getValue();
95
96      // Extract a prefix that we can binary search on.
97      static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98      auto FirstMeta = Original.find_first_of(RegexMetachars);
99
100      // Look for top-level | or ?. We cannot optimize them to binary search.
101      if (removeParens(Original).find_first_of("|?") != std::string::npos)
102        FirstMeta = 0;
103
104      Optional<Regex> Regexpr = None;
105      StringRef Prefix = Original.substr(0, FirstMeta);
106      StringRef PatStr = Original.substr(FirstMeta);
107      if (!PatStr.empty()) {
108        // For the rest use a python-style prefix match.
109        std::string pat = PatStr;
110        if (pat[0] != '^') {
111          pat.insert(0, "^(");
112          pat.insert(pat.end(), ')');
113        }
114        Regexpr = Regex(pat);
115      }
116
117      int NumMatches = 0;
118
119      // The generic opcodes are unsorted, handle them manually.
120      for (auto *Inst : Generics) {
121        StringRef InstName = Inst->TheDef->getName();
122        if (InstName.startswith(Prefix) &&
123            (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124          Elts.insert(Inst->TheDef);
125          NumMatches++;
126        }
127      }
128
129      // Target instructions are split into two ranges: pseudo instructions
130      // first, than non-pseudos. Each range is in lexicographical order
131      // sorted by name. Find the sub-ranges that start with our prefix.
132      struct Comp {
133        bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134          return LHS->TheDef->getName() < RHS;
135        }
136        bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137          return LHS < RHS->TheDef->getName() &&
138                 !RHS->TheDef->getName().startswith(LHS);
139        }
140      };
141      auto Range1 =
142          std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143      auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                     Prefix, Comp());
145
146      // For these ranges we know that instruction names start with the prefix.
147      // Check if there's a regex that needs to be checked.
148      const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149        StringRef InstName = Inst->TheDef->getName();
150        if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151          Elts.insert(Inst->TheDef);
152          NumMatches++;
153        }
154      };
155      std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156      std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157
158      if (0 == NumMatches)
159        PrintFatalError(Loc, "instregex has no matches: " + Original);
160    }
161  }
162};
163
164} // end anonymous namespace
165
166/// CodeGenModels ctor interprets machine model records and populates maps.
167CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                       const CodeGenTarget &TGT):
169  Records(RK), Target(TGT) {
170
171  Sets.addFieldExpander("InstRW", "Instrs");
172
173  // Allow Set evaluation to recognize the dags used in InstRW records:
174  // (instrs Op1, Op1...)
175  Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176  Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177
178  // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179  // that are explicitly referenced in tablegen records. Resources associated
180  // with each processor will be derived later. Populate ProcModelMap with the
181  // CodeGenProcModel instances.
182  collectProcModels();
183
184  // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185  // defined, and populate SchedReads and SchedWrites vectors. Implicit
186  // SchedReadWrites that represent sequences derived from expanded variant will
187  // be inferred later.
188  collectSchedRW();
189
190  // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191  // required by an instruction definition, and populate SchedClassIdxMap. Set
192  // NumItineraryClasses to the number of explicit itinerary classes referenced
193  // by instructions. Set NumInstrSchedClasses to the number of itinerary
194  // classes plus any classes implied by instructions that derive from class
195  // Sched and provide SchedRW list. This does not infer any new classes from
196  // SchedVariant.
197  collectSchedClasses();
198
199  // Find instruction itineraries for each processor. Sort and populate
200  // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201  // all itinerary classes to be discovered.
202  collectProcItins();
203
204  // Find ItinRW records for each processor and itinerary class.
205  // (For per-operand resources mapped to itinerary classes).
206  collectProcItinRW();
207
208  // Find UnsupportedFeatures records for each processor.
209  // (For per-operand resources mapped to itinerary classes).
210  collectProcUnsupportedFeatures();
211
212  // Infer new SchedClasses from SchedVariant.
213  inferSchedClasses();
214
215  // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216  // ProcResourceDefs.
217  LLVM_DEBUG(
218      dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219  collectProcResources();
220
221  // Collect optional processor description.
222  collectOptionalProcessorInfo();
223
224  // Check MCInstPredicate definitions.
225  checkMCInstPredicates();
226
227  // Check STIPredicate definitions.
228  checkSTIPredicates();
229
230  // Find STIPredicate definitions for each processor model, and construct
231  // STIPredicateFunction objects.
232  collectSTIPredicates();
233
234  checkCompleteness();
235}
236
237void CodeGenSchedModels::checkSTIPredicates() const {
238  DenseMap<StringRef, const Record *> Declarations;
239
240  // There cannot be multiple declarations with the same name.
241  const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242  for (const Record *R : Decls) {
243    StringRef Name = R->getValueAsString("Name");
244    const auto It = Declarations.find(Name);
245    if (It == Declarations.end()) {
246      Declarations[Name] = R;
247      continue;
248    }
249
250    PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251    PrintNote(It->second->getLoc(), "Previous declaration was here.");
252    PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
253  }
254
255  // Disallow InstructionEquivalenceClasses with an empty instruction list.
256  const RecVec Defs =
257      Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258  for (const Record *R : Defs) {
259    RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260    if (Opcodes.empty()) {
261      PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262                                   "defined with an empty opcode list.");
263    }
264  }
265}
266
267// Used by function `processSTIPredicate` to construct a mask of machine
268// instruction operands.
269static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270  APInt OperandMask;
271  if (Indices.empty())
272    return OperandMask;
273
274  int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275  assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276  OperandMask = OperandMask.zext(MaxIndex + 1);
277  for (const int64_t Index : Indices) {
278    assert(Index >= 0 && "Invalid negative indices!");
279    OperandMask.setBit(Index);
280  }
281
282  return OperandMask;
283}
284
285static void
286processSTIPredicate(STIPredicateFunction &Fn,
287                    const DenseMap<Record *, unsigned> &ProcModelMap) {
288  DenseMap<const Record *, unsigned> Opcode2Index;
289  using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290  std::vector<OpcodeMapPair> OpcodeMappings;
291  std::vector<std::pair<APInt, APInt>> OpcodeMasks;
292
293  DenseMap<const Record *, unsigned> Predicate2Index;
294  unsigned NumUniquePredicates = 0;
295
296  // Number unique predicates and opcodes used by InstructionEquivalenceClass
297  // definitions. Each unique opcode will be associated with an OpcodeInfo
298  // object.
299  for (const Record *Def : Fn.getDefinitions()) {
300    RecVec Classes = Def->getValueAsListOfDefs("Classes");
301    for (const Record *EC : Classes) {
302      const Record *Pred = EC->getValueAsDef("Predicate");
303      if (Predicate2Index.find(Pred) == Predicate2Index.end())
304        Predicate2Index[Pred] = NumUniquePredicates++;
305
306      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307      for (const Record *Opcode : Opcodes) {
308        if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309          Opcode2Index[Opcode] = OpcodeMappings.size();
310          OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
311        }
312      }
313    }
314  }
315
316  // Initialize vector `OpcodeMasks` with default values.  We want to keep track
317  // of which processors "use" which opcodes.  We also want to be able to
318  // identify predicates that are used by different processors for a same
319  // opcode.
320  // This information is used later on by this algorithm to sort OpcodeMapping
321  // elements based on their processor and predicate sets.
322  OpcodeMasks.resize(OpcodeMappings.size());
323  APInt DefaultProcMask(ProcModelMap.size(), 0);
324  APInt DefaultPredMask(NumUniquePredicates, 0);
325  for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326    MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
327
328  // Construct a OpcodeInfo object for every unique opcode declared by an
329  // InstructionEquivalenceClass definition.
330  for (const Record *Def : Fn.getDefinitions()) {
331    RecVec Classes = Def->getValueAsListOfDefs("Classes");
332    const Record *SchedModel = Def->getValueAsDef("SchedModel");
333    unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334    APInt ProcMask(ProcModelMap.size(), 0);
335    ProcMask.setBit(ProcIndex);
336
337    for (const Record *EC : Classes) {
338      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
339
340      std::vector<int64_t> OpIndices =
341          EC->getValueAsListOfInts("OperandIndices");
342      APInt OperandMask = constructOperandMask(OpIndices);
343
344      const Record *Pred = EC->getValueAsDef("Predicate");
345      APInt PredMask(NumUniquePredicates, 0);
346      PredMask.setBit(Predicate2Index[Pred]);
347
348      for (const Record *Opcode : Opcodes) {
349        unsigned OpcodeIdx = Opcode2Index[Opcode];
350        if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351          std::string Message =
352              "Opcode " + Opcode->getName().str() +
353              " used by multiple InstructionEquivalenceClass definitions.";
354          PrintFatalError(EC->getLoc(), Message);
355        }
356        OpcodeMasks[OpcodeIdx].first |= ProcMask;
357        OpcodeMasks[OpcodeIdx].second |= PredMask;
358        OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
359
360        OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
361      }
362    }
363  }
364
365  // Sort OpcodeMappings elements based on their CPU and predicate masks.
366  // As a last resort, order elements by opcode identifier.
367  llvm::sort(OpcodeMappings,
368             [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369               unsigned LhsIdx = Opcode2Index[Lhs.first];
370               unsigned RhsIdx = Opcode2Index[Rhs.first];
371               const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372               const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
373
374               auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375                 unsigned LhsCountPopulation = Lhs.countPopulation();
376                 unsigned RhsCountPopulation = Rhs.countPopulation();
377                 return ((LhsCountPopulation < RhsCountPopulation) ||
378                         ((LhsCountPopulation == RhsCountPopulation) &&
379                          (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
380               };
381
382               if (LhsMasks.first != RhsMasks.first)
383                 return LessThan(LhsMasks.first, RhsMasks.first);
384
385               if (LhsMasks.second != RhsMasks.second)
386                 return LessThan(LhsMasks.second, RhsMasks.second);
387
388               return LhsIdx < RhsIdx;
389             });
390
391  // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392  // expanding the body of a STIPredicate function. In particular, each opcode
393  // group is expanded into a sequence of labels in a switch statement.
394  // It identifies opcodes for which different processors define same predicates
395  // and same opcode masks.
396  for (OpcodeMapPair &Info : OpcodeMappings)
397    Fn.addOpcode(Info.first, std::move(Info.second));
398}
399
400void CodeGenSchedModels::collectSTIPredicates() {
401  // Map STIPredicateDecl records to elements of vector
402  // CodeGenSchedModels::STIPredicates.
403  DenseMap<const Record *, unsigned> Decl2Index;
404
405  RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406  for (const Record *R : RV) {
407    const Record *Decl = R->getValueAsDef("Declaration");
408
409    const auto It = Decl2Index.find(Decl);
410    if (It == Decl2Index.end()) {
411      Decl2Index[Decl] = STIPredicates.size();
412      STIPredicateFunction Predicate(Decl);
413      Predicate.addDefinition(R);
414      STIPredicates.emplace_back(std::move(Predicate));
415      continue;
416    }
417
418    STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419    PreviousDef.addDefinition(R);
420  }
421
422  for (STIPredicateFunction &Fn : STIPredicates)
423    processSTIPredicate(Fn, ProcModelMap);
424}
425
426void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427                                          const llvm::APInt &OperandMask,
428                                          const Record *Predicate) {
429  auto It = llvm::find_if(
430      Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431        return P.Predicate == Predicate && P.OperandMask == OperandMask;
432      });
433  if (It == Predicates.end()) {
434    Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435    return;
436  }
437  It->ProcModelMask |= CpuMask;
438}
439
440void CodeGenSchedModels::checkMCInstPredicates() const {
441  RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442  if (MCPredicates.empty())
443    return;
444
445  // A target cannot have multiple TIIPredicate definitions with a same name.
446  llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447  for (const Record *TIIPred : MCPredicates) {
448    StringRef Name = TIIPred->getValueAsString("FunctionName");
449    StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450    if (It == TIIPredicates.end()) {
451      TIIPredicates[Name] = TIIPred;
452      continue;
453    }
454
455    PrintError(TIIPred->getLoc(),
456               "TIIPredicate " + Name + " is multiply defined.");
457    PrintNote(It->second->getLoc(),
458              " Previous definition of " + Name + " was here.");
459    PrintFatalError(TIIPred->getLoc(),
460                    "Found conflicting definitions of TIIPredicate.");
461  }
462}
463
464void CodeGenSchedModels::collectRetireControlUnits() {
465  RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
466
467  for (Record *RCU : Units) {
468    CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469    if (PM.RetireControlUnit) {
470      PrintError(RCU->getLoc(),
471                 "Expected a single RetireControlUnit definition");
472      PrintNote(PM.RetireControlUnit->getLoc(),
473                "Previous definition of RetireControlUnit was here");
474    }
475    PM.RetireControlUnit = RCU;
476  }
477}
478
479void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480  RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
481
482  for (Record *Queue : Queues) {
483    CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484    if (Queue->isSubClassOf("LoadQueue")) {
485      if (PM.LoadQueue) {
486        PrintError(Queue->getLoc(),
487                   "Expected a single LoadQueue definition");
488        PrintNote(PM.LoadQueue->getLoc(),
489                  "Previous definition of LoadQueue was here");
490      }
491
492      PM.LoadQueue = Queue;
493    }
494
495    if (Queue->isSubClassOf("StoreQueue")) {
496      if (PM.StoreQueue) {
497        PrintError(Queue->getLoc(),
498                   "Expected a single StoreQueue definition");
499        PrintNote(PM.LoadQueue->getLoc(),
500                  "Previous definition of StoreQueue was here");
501      }
502
503      PM.StoreQueue = Queue;
504    }
505  }
506}
507
508/// Collect optional processor information.
509void CodeGenSchedModels::collectOptionalProcessorInfo() {
510  // Find register file definitions for each processor.
511  collectRegisterFiles();
512
513  // Collect processor RetireControlUnit descriptors if available.
514  collectRetireControlUnits();
515
516  // Collect information about load/store queues.
517  collectLoadStoreQueueInfo();
518
519  checkCompleteness();
520}
521
522/// Gather all processor models.
523void CodeGenSchedModels::collectProcModels() {
524  RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525  llvm::sort(ProcRecords, LessRecordFieldName());
526
527  // Reserve space because we can. Reallocation would be ok.
528  ProcModels.reserve(ProcRecords.size()+1);
529
530  // Use idx=0 for NoModel/NoItineraries.
531  Record *NoModelDef = Records.getDef("NoSchedModel");
532  Record *NoItinsDef = Records.getDef("NoItineraries");
533  ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534  ProcModelMap[NoModelDef] = 0;
535
536  // For each processor, find a unique machine model.
537  LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538  for (Record *ProcRecord : ProcRecords)
539    addProcModel(ProcRecord);
540}
541
542/// Get a unique processor model based on the defined MachineModel and
543/// ProcessorItineraries.
544void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545  Record *ModelKey = getModelOrItinDef(ProcDef);
546  if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547    return;
548
549  std::string Name = ModelKey->getName();
550  if (ModelKey->isSubClassOf("SchedMachineModel")) {
551    Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552    ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
553  }
554  else {
555    // An itinerary is defined without a machine model. Infer a new model.
556    if (!ModelKey->getValueAsListOfDefs("IID").empty())
557      Name = Name + "Model";
558    ProcModels.emplace_back(ProcModels.size(), Name,
559                            ProcDef->getValueAsDef("SchedModel"), ModelKey);
560  }
561  LLVM_DEBUG(ProcModels.back().dump());
562}
563
564// Recursively find all reachable SchedReadWrite records.
565static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566                        SmallPtrSet<Record*, 16> &RWSet) {
567  if (!RWSet.insert(RWDef).second)
568    return;
569  RWDefs.push_back(RWDef);
570  // Reads don't currently have sequence records, but it can be added later.
571  if (RWDef->isSubClassOf("WriteSequence")) {
572    RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573    for (Record *WSRec : Seq)
574      scanSchedRW(WSRec, RWDefs, RWSet);
575  }
576  else if (RWDef->isSubClassOf("SchedVariant")) {
577    // Visit each variant (guarded by a different predicate).
578    RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579    for (Record *Variant : Vars) {
580      // Visit each RW in the sequence selected by the current variant.
581      RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582      for (Record *SelDef : Selected)
583        scanSchedRW(SelDef, RWDefs, RWSet);
584    }
585  }
586}
587
588// Collect and sort all SchedReadWrites reachable via tablegen records.
589// More may be inferred later when inferring new SchedClasses from variants.
590void CodeGenSchedModels::collectSchedRW() {
591  // Reserve idx=0 for invalid writes/reads.
592  SchedWrites.resize(1);
593  SchedReads.resize(1);
594
595  SmallPtrSet<Record*, 16> RWSet;
596
597  // Find all SchedReadWrites referenced by instruction defs.
598  RecVec SWDefs, SRDefs;
599  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600    Record *SchedDef = Inst->TheDef;
601    if (SchedDef->isValueUnset("SchedRW"))
602      continue;
603    RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604    for (Record *RW : RWs) {
605      if (RW->isSubClassOf("SchedWrite"))
606        scanSchedRW(RW, SWDefs, RWSet);
607      else {
608        assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609        scanSchedRW(RW, SRDefs, RWSet);
610      }
611    }
612  }
613  // Find all ReadWrites referenced by InstRW.
614  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615  for (Record *InstRWDef : InstRWDefs) {
616    // For all OperandReadWrites.
617    RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618    for (Record *RWDef : RWDefs) {
619      if (RWDef->isSubClassOf("SchedWrite"))
620        scanSchedRW(RWDef, SWDefs, RWSet);
621      else {
622        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623        scanSchedRW(RWDef, SRDefs, RWSet);
624      }
625    }
626  }
627  // Find all ReadWrites referenced by ItinRW.
628  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629  for (Record *ItinRWDef : ItinRWDefs) {
630    // For all OperandReadWrites.
631    RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632    for (Record *RWDef : RWDefs) {
633      if (RWDef->isSubClassOf("SchedWrite"))
634        scanSchedRW(RWDef, SWDefs, RWSet);
635      else {
636        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637        scanSchedRW(RWDef, SRDefs, RWSet);
638      }
639    }
640  }
641  // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642  // for the loop below that initializes Alias vectors.
643  RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644  llvm::sort(AliasDefs, LessRecord());
645  for (Record *ADef : AliasDefs) {
646    Record *MatchDef = ADef->getValueAsDef("MatchRW");
647    Record *AliasDef = ADef->getValueAsDef("AliasRW");
648    if (MatchDef->isSubClassOf("SchedWrite")) {
649      if (!AliasDef->isSubClassOf("SchedWrite"))
650        PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651      scanSchedRW(AliasDef, SWDefs, RWSet);
652    }
653    else {
654      assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655      if (!AliasDef->isSubClassOf("SchedRead"))
656        PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657      scanSchedRW(AliasDef, SRDefs, RWSet);
658    }
659  }
660  // Sort and add the SchedReadWrites directly referenced by instructions or
661  // itinerary resources. Index reads and writes in separate domains.
662  llvm::sort(SWDefs, LessRecord());
663  for (Record *SWDef : SWDefs) {
664    assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665    SchedWrites.emplace_back(SchedWrites.size(), SWDef);
666  }
667  llvm::sort(SRDefs, LessRecord());
668  for (Record *SRDef : SRDefs) {
669    assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670    SchedReads.emplace_back(SchedReads.size(), SRDef);
671  }
672  // Initialize WriteSequence vectors.
673  for (CodeGenSchedRW &CGRW : SchedWrites) {
674    if (!CGRW.IsSequence)
675      continue;
676    findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677            /*IsRead=*/false);
678  }
679  // Initialize Aliases vectors.
680  for (Record *ADef : AliasDefs) {
681    Record *AliasDef = ADef->getValueAsDef("AliasRW");
682    getSchedRW(AliasDef).IsAlias = true;
683    Record *MatchDef = ADef->getValueAsDef("MatchRW");
684    CodeGenSchedRW &RW = getSchedRW(MatchDef);
685    if (RW.IsAlias)
686      PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687    RW.Aliases.push_back(ADef);
688  }
689  LLVM_DEBUG(
690      dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691      for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692        dbgs() << WIdx << ": ";
693        SchedWrites[WIdx].dump();
694        dbgs() << '\n';
695      } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696             ++RIdx) {
697        dbgs() << RIdx << ": ";
698        SchedReads[RIdx].dump();
699        dbgs() << '\n';
700      } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701      for (Record *RWDef
702           : RWDefs) {
703        if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704          StringRef Name = RWDef->getName();
705          if (Name != "NoWrite" && Name != "ReadDefault")
706            dbgs() << "Unused SchedReadWrite " << Name << '\n';
707        }
708      });
709}
710
711/// Compute a SchedWrite name from a sequence of writes.
712std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713  std::string Name("(");
714  for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715    if (I != Seq.begin())
716      Name += '_';
717    Name += getSchedRW(*I, IsRead).Name;
718  }
719  Name += ')';
720  return Name;
721}
722
723unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724                                           bool IsRead) const {
725  const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726  const auto I = find_if(
727      RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
729}
730
731bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732  for (const CodeGenSchedRW &Read : SchedReads) {
733    Record *ReadDef = Read.TheDef;
734    if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735      continue;
736
737    RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738    if (is_contained(ValidWrites, WriteDef)) {
739      return true;
740    }
741  }
742  return false;
743}
744
745static void splitSchedReadWrites(const RecVec &RWDefs,
746                                 RecVec &WriteDefs, RecVec &ReadDefs) {
747  for (Record *RWDef : RWDefs) {
748    if (RWDef->isSubClassOf("SchedWrite"))
749      WriteDefs.push_back(RWDef);
750    else {
751      assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752      ReadDefs.push_back(RWDef);
753    }
754  }
755}
756
757// Split the SchedReadWrites defs and call findRWs for each list.
758void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759                                 IdxVec &Writes, IdxVec &Reads) const {
760  RecVec WriteDefs;
761  RecVec ReadDefs;
762  splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763  findRWs(WriteDefs, Writes, false);
764  findRWs(ReadDefs, Reads, true);
765}
766
767// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769                                 bool IsRead) const {
770  for (Record *RWDef : RWDefs) {
771    unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772    assert(Idx && "failed to collect SchedReadWrite");
773    RWs.push_back(Idx);
774  }
775}
776
777void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778                                          bool IsRead) const {
779  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780  if (!SchedRW.IsSequence) {
781    RWSeq.push_back(RWIdx);
782    return;
783  }
784  int Repeat =
785    SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786  for (int i = 0; i < Repeat; ++i) {
787    for (unsigned I : SchedRW.Sequence) {
788      expandRWSequence(I, RWSeq, IsRead);
789    }
790  }
791}
792
793// Expand a SchedWrite as a sequence following any aliases that coincide with
794// the given processor model.
795void CodeGenSchedModels::expandRWSeqForProc(
796  unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797  const CodeGenProcModel &ProcModel) const {
798
799  const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800  Record *AliasDef = nullptr;
801  for (const Record *Rec : SchedWrite.Aliases) {
802    const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803    if (Rec->getValueInit("SchedModel")->isComplete()) {
804      Record *ModelDef = Rec->getValueAsDef("SchedModel");
805      if (&getProcModel(ModelDef) != &ProcModel)
806        continue;
807    }
808    if (AliasDef)
809      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810                      "defined for processor " + ProcModel.ModelName +
811                      " Ensure only one SchedAlias exists per RW.");
812    AliasDef = AliasRW.TheDef;
813  }
814  if (AliasDef) {
815    expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816                       RWSeq, IsRead,ProcModel);
817    return;
818  }
819  if (!SchedWrite.IsSequence) {
820    RWSeq.push_back(RWIdx);
821    return;
822  }
823  int Repeat =
824    SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825  for (int I = 0, E = Repeat; I < E; ++I) {
826    for (unsigned Idx : SchedWrite.Sequence) {
827      expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
828    }
829  }
830}
831
832// Find the existing SchedWrite that models this sequence of writes.
833unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834                                               bool IsRead) {
835  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
836
837  auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838    return makeArrayRef(RW.Sequence) == Seq;
839  });
840  // Index zero reserved for invalid RW.
841  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
842}
843
844/// Add this ReadWrite if it doesn't already exist.
845unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846                                            bool IsRead) {
847  assert(!Seq.empty() && "cannot insert empty sequence");
848  if (Seq.size() == 1)
849    return Seq.back();
850
851  unsigned Idx = findRWForSequence(Seq, IsRead);
852  if (Idx)
853    return Idx;
854
855  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856  unsigned RWIdx = RWVec.size();
857  CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858  RWVec.push_back(SchedRW);
859  return RWIdx;
860}
861
862/// Visit all the instruction definitions for this target to gather and
863/// enumerate the itinerary classes. These are the explicitly specified
864/// SchedClasses. More SchedClasses may be inferred.
865void CodeGenSchedModels::collectSchedClasses() {
866
867  // NoItinerary is always the first class at Idx=0
868  assert(SchedClasses.empty() && "Expected empty sched class");
869  SchedClasses.emplace_back(0, "NoInstrModel",
870                            Records.getDef("NoItinerary"));
871  SchedClasses.back().ProcIndices.push_back(0);
872
873  // Create a SchedClass for each unique combination of itinerary class and
874  // SchedRW list.
875  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876    Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877    IdxVec Writes, Reads;
878    if (!Inst->TheDef->isValueUnset("SchedRW"))
879      findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
880
881    // ProcIdx == 0 indicates the class applies to all processors.
882    unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883    InstrClassMap[Inst->TheDef] = SCIdx;
884  }
885  // Create classes for InstRW defs.
886  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887  llvm::sort(InstRWDefs, LessRecord());
888  LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889  for (Record *RWDef : InstRWDefs)
890    createInstRWClass(RWDef);
891
892  NumInstrSchedClasses = SchedClasses.size();
893
894  bool EnableDump = false;
895  LLVM_DEBUG(EnableDump = true);
896  if (!EnableDump)
897    return;
898
899  LLVM_DEBUG(
900      dbgs()
901      << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903    StringRef InstName = Inst->TheDef->getName();
904    unsigned SCIdx = getSchedClassIdx(*Inst);
905    if (!SCIdx) {
906      LLVM_DEBUG({
907        if (!Inst->hasNoSchedulingInfo)
908          dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
909      });
910      continue;
911    }
912    CodeGenSchedClass &SC = getSchedClass(SCIdx);
913    if (SC.ProcIndices[0] != 0)
914      PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915                      "must not be subtarget specific.");
916
917    IdxVec ProcIndices;
918    if (SC.ItinClassDef->getName() != "NoItinerary") {
919      ProcIndices.push_back(0);
920      dbgs() << "Itinerary for " << InstName << ": "
921             << SC.ItinClassDef->getName() << '\n';
922    }
923    if (!SC.Writes.empty()) {
924      ProcIndices.push_back(0);
925      LLVM_DEBUG({
926        dbgs() << "SchedRW machine model for " << InstName;
927        for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928             ++WI)
929          dbgs() << " " << SchedWrites[*WI].Name;
930        for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931          dbgs() << " " << SchedReads[*RI].Name;
932        dbgs() << '\n';
933      });
934    }
935    const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936    for (Record *RWDef : RWDefs) {
937      const CodeGenProcModel &ProcModel =
938          getProcModel(RWDef->getValueAsDef("SchedModel"));
939      ProcIndices.push_back(ProcModel.Index);
940      LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941                        << InstName);
942      IdxVec Writes;
943      IdxVec Reads;
944      findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945              Writes, Reads);
946      LLVM_DEBUG({
947        for (unsigned WIdx : Writes)
948          dbgs() << " " << SchedWrites[WIdx].Name;
949        for (unsigned RIdx : Reads)
950          dbgs() << " " << SchedReads[RIdx].Name;
951        dbgs() << '\n';
952      });
953    }
954    // If ProcIndices contains zero, the class applies to all processors.
955    LLVM_DEBUG({
956      if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957        for (const CodeGenProcModel &PM : ProcModels) {
958          if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959            dbgs() << "No machine model for " << Inst->TheDef->getName()
960                   << " on processor " << PM.ModelName << '\n';
961        }
962      }
963    });
964  }
965}
966
967// Get the SchedClass index for an instruction.
968unsigned
969CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970  return InstrClassMap.lookup(Inst.TheDef);
971}
972
973std::string
974CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975                                         ArrayRef<unsigned> OperWrites,
976                                         ArrayRef<unsigned> OperReads) {
977
978  std::string Name;
979  if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980    Name = ItinClassDef->getName();
981  for (unsigned Idx : OperWrites) {
982    if (!Name.empty())
983      Name += '_';
984    Name += SchedWrites[Idx].Name;
985  }
986  for (unsigned Idx : OperReads) {
987    Name += '_';
988    Name += SchedReads[Idx].Name;
989  }
990  return Name;
991}
992
993std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
994
995  std::string Name;
996  for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997    if (I != InstDefs.begin())
998      Name += '_';
999    Name += (*I)->getName();
1000  }
1001  return Name;
1002}
1003
1004/// Add an inferred sched class from an itinerary class and per-operand list of
1005/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006/// processors that may utilize this class.
1007unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008                                           ArrayRef<unsigned> OperWrites,
1009                                           ArrayRef<unsigned> OperReads,
1010                                           ArrayRef<unsigned> ProcIndices) {
1011  assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1012
1013  auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014                     return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1015                   };
1016
1017  auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018  unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019  if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020    IdxVec PI;
1021    std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022                   SchedClasses[Idx].ProcIndices.end(),
1023                   ProcIndices.begin(), ProcIndices.end(),
1024                   std::back_inserter(PI));
1025    SchedClasses[Idx].ProcIndices = std::move(PI);
1026    return Idx;
1027  }
1028  Idx = SchedClasses.size();
1029  SchedClasses.emplace_back(Idx,
1030                            createSchedClassName(ItinClassDef, OperWrites,
1031                                                 OperReads),
1032                            ItinClassDef);
1033  CodeGenSchedClass &SC = SchedClasses.back();
1034  SC.Writes = OperWrites;
1035  SC.Reads = OperReads;
1036  SC.ProcIndices = ProcIndices;
1037
1038  return Idx;
1039}
1040
1041// Create classes for each set of opcodes that are in the same InstReadWrite
1042// definition across all processors.
1043void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044  // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045  // intersects with an existing class via a previous InstRWDef. Instrs that do
1046  // not intersect with an existing class refer back to their former class as
1047  // determined from ItinDef or SchedRW.
1048  SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049  // Sort Instrs into sets.
1050  const RecVec *InstDefs = Sets.expand(InstRWDef);
1051  if (InstDefs->empty())
1052    PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1053
1054  for (Record *InstDef : *InstDefs) {
1055    InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056    if (Pos == InstrClassMap.end())
1057      PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058    unsigned SCIdx = Pos->second;
1059    ClassInstrs[SCIdx].push_back(InstDef);
1060  }
1061  // For each set of Instrs, create a new class if necessary, and map or remap
1062  // the Instrs to it.
1063  for (auto &Entry : ClassInstrs) {
1064    unsigned OldSCIdx = Entry.first;
1065    ArrayRef<Record*> InstDefs = Entry.second;
1066    // If the all instrs in the current class are accounted for, then leave
1067    // them mapped to their old class.
1068    if (OldSCIdx) {
1069      const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070      if (!RWDefs.empty()) {
1071        const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072        unsigned OrigNumInstrs =
1073          count_if(*OrigInstDefs, [&](Record *OIDef) {
1074                     return InstrClassMap[OIDef] == OldSCIdx;
1075                   });
1076        if (OrigNumInstrs == InstDefs.size()) {
1077          assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078                 "expected a generic SchedClass");
1079          Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080          // Make sure we didn't already have a InstRW containing this
1081          // instruction on this model.
1082          for (Record *RWD : RWDefs) {
1083            if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084                RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085              for (Record *Inst : InstDefs) {
1086                PrintFatalError
1087                    (InstRWDef->getLoc(),
1088                     "Overlapping InstRW definition for \"" +
1089                     Inst->getName() +
1090                     "\" also matches previous \"" +
1091                     RWD->getValue("Instrs")->getValue()->getAsString() +
1092                     "\".");
1093              }
1094            }
1095          }
1096          LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1097                            << SchedClasses[OldSCIdx].Name << " on "
1098                            << RWModelDef->getName() << "\n");
1099          SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1100          continue;
1101        }
1102      }
1103    }
1104    unsigned SCIdx = SchedClasses.size();
1105    SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1106    CodeGenSchedClass &SC = SchedClasses.back();
1107    LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1108                      << InstRWDef->getValueAsDef("SchedModel")->getName()
1109                      << "\n");
1110
1111    // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1112    SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1113    SC.Writes = SchedClasses[OldSCIdx].Writes;
1114    SC.Reads = SchedClasses[OldSCIdx].Reads;
1115    SC.ProcIndices.push_back(0);
1116    // If we had an old class, copy it's InstRWs to this new class.
1117    if (OldSCIdx) {
1118      Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1119      for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1120        if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1121          for (Record *InstDef : InstDefs) {
1122            PrintFatalError
1123                (InstRWDef->getLoc(),
1124                 "Overlapping InstRW definition for \"" +
1125                 InstDef->getName() +
1126                 "\" also matches previous \"" +
1127                 OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1128                 "\".");
1129          }
1130        }
1131        assert(OldRWDef != InstRWDef &&
1132               "SchedClass has duplicate InstRW def");
1133        SC.InstRWs.push_back(OldRWDef);
1134      }
1135    }
1136    // Map each Instr to this new class.
1137    for (Record *InstDef : InstDefs)
1138      InstrClassMap[InstDef] = SCIdx;
1139    SC.InstRWs.push_back(InstRWDef);
1140  }
1141}
1142
1143// True if collectProcItins found anything.
1144bool CodeGenSchedModels::hasItineraries() const {
1145  for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1146    if (PM.hasItineraries())
1147      return true;
1148  return false;
1149}
1150
1151// Gather the processor itineraries.
1152void CodeGenSchedModels::collectProcItins() {
1153  LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1154  for (CodeGenProcModel &ProcModel : ProcModels) {
1155    if (!ProcModel.hasItineraries())
1156      continue;
1157
1158    RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1159    assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1160
1161    // Populate ItinDefList with Itinerary records.
1162    ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1163
1164    // Insert each itinerary data record in the correct position within
1165    // the processor model's ItinDefList.
1166    for (Record *ItinData : ItinRecords) {
1167      const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1168      bool FoundClass = false;
1169
1170      for (const CodeGenSchedClass &SC :
1171           make_range(schedClassBegin(), schedClassEnd())) {
1172        // Multiple SchedClasses may share an itinerary. Update all of them.
1173        if (SC.ItinClassDef == ItinDef) {
1174          ProcModel.ItinDefList[SC.Index] = ItinData;
1175          FoundClass = true;
1176        }
1177      }
1178      if (!FoundClass) {
1179        LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1180                          << " missing class for itinerary "
1181                          << ItinDef->getName() << '\n');
1182      }
1183    }
1184    // Check for missing itinerary entries.
1185    assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1186    LLVM_DEBUG(
1187        for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1188          if (!ProcModel.ItinDefList[i])
1189            dbgs() << ProcModel.ItinsDef->getName()
1190                   << " missing itinerary for class " << SchedClasses[i].Name
1191                   << '\n';
1192        });
1193  }
1194}
1195
1196// Gather the read/write types for each itinerary class.
1197void CodeGenSchedModels::collectProcItinRW() {
1198  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1199  llvm::sort(ItinRWDefs, LessRecord());
1200  for (Record *RWDef  : ItinRWDefs) {
1201    if (!RWDef->getValueInit("SchedModel")->isComplete())
1202      PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1203    Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1204    ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1205    if (I == ProcModelMap.end()) {
1206      PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1207                    + ModelDef->getName());
1208    }
1209    ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1210  }
1211}
1212
1213// Gather the unsupported features for processor models.
1214void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1215  for (CodeGenProcModel &ProcModel : ProcModels) {
1216    for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1217       ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1218    }
1219  }
1220}
1221
1222/// Infer new classes from existing classes. In the process, this may create new
1223/// SchedWrites from sequences of existing SchedWrites.
1224void CodeGenSchedModels::inferSchedClasses() {
1225  LLVM_DEBUG(
1226      dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1227  LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1228
1229  // Visit all existing classes and newly created classes.
1230  for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1231    assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1232
1233    if (SchedClasses[Idx].ItinClassDef)
1234      inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1235    if (!SchedClasses[Idx].InstRWs.empty())
1236      inferFromInstRWs(Idx);
1237    if (!SchedClasses[Idx].Writes.empty()) {
1238      inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1239                  Idx, SchedClasses[Idx].ProcIndices);
1240    }
1241    assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1242           "too many SchedVariants");
1243  }
1244}
1245
1246/// Infer classes from per-processor itinerary resources.
1247void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1248                                            unsigned FromClassIdx) {
1249  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1250    const CodeGenProcModel &PM = ProcModels[PIdx];
1251    // For all ItinRW entries.
1252    bool HasMatch = false;
1253    for (const Record *Rec : PM.ItinRWDefs) {
1254      RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1255      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1256        continue;
1257      if (HasMatch)
1258        PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1259                      + ItinClassDef->getName()
1260                      + " in ItinResources for " + PM.ModelName);
1261      HasMatch = true;
1262      IdxVec Writes, Reads;
1263      findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1264      inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1265    }
1266  }
1267}
1268
1269/// Infer classes from per-processor InstReadWrite definitions.
1270void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1271  for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1272    assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1273    Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1274    const RecVec *InstDefs = Sets.expand(Rec);
1275    RecIter II = InstDefs->begin(), IE = InstDefs->end();
1276    for (; II != IE; ++II) {
1277      if (InstrClassMap[*II] == SCIdx)
1278        break;
1279    }
1280    // If this class no longer has any instructions mapped to it, it has become
1281    // irrelevant.
1282    if (II == IE)
1283      continue;
1284    IdxVec Writes, Reads;
1285    findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1286    unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1287    inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1288  }
1289}
1290
1291namespace {
1292
1293// Helper for substituteVariantOperand.
1294struct TransVariant {
1295  Record *VarOrSeqDef;  // Variant or sequence.
1296  unsigned RWIdx;       // Index of this variant or sequence's matched type.
1297  unsigned ProcIdx;     // Processor model index or zero for any.
1298  unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1299
1300  TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1301    VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1302};
1303
1304// Associate a predicate with the SchedReadWrite that it guards.
1305// RWIdx is the index of the read/write variant.
1306struct PredCheck {
1307  bool IsRead;
1308  unsigned RWIdx;
1309  Record *Predicate;
1310
1311  PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1312};
1313
1314// A Predicate transition is a list of RW sequences guarded by a PredTerm.
1315struct PredTransition {
1316  // A predicate term is a conjunction of PredChecks.
1317  SmallVector<PredCheck, 4> PredTerm;
1318  SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1319  SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1320  SmallVector<unsigned, 4> ProcIndices;
1321};
1322
1323// Encapsulate a set of partially constructed transitions.
1324// The results are built by repeated calls to substituteVariants.
1325class PredTransitions {
1326  CodeGenSchedModels &SchedModels;
1327
1328public:
1329  std::vector<PredTransition> TransVec;
1330
1331  PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1332
1333  void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1334                                bool IsRead, unsigned StartIdx);
1335
1336  void substituteVariants(const PredTransition &Trans);
1337
1338#ifndef NDEBUG
1339  void dump() const;
1340#endif
1341
1342private:
1343  bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1344  void getIntersectingVariants(
1345    const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1346    std::vector<TransVariant> &IntersectingVariants);
1347  void pushVariant(const TransVariant &VInfo, bool IsRead);
1348};
1349
1350} // end anonymous namespace
1351
1352// Return true if this predicate is mutually exclusive with a PredTerm. This
1353// degenerates into checking if the predicate is mutually exclusive with any
1354// predicate in the Term's conjunction.
1355//
1356// All predicates associated with a given SchedRW are considered mutually
1357// exclusive. This should work even if the conditions expressed by the
1358// predicates are not exclusive because the predicates for a given SchedWrite
1359// are always checked in the order they are defined in the .td file. Later
1360// conditions implicitly negate any prior condition.
1361bool PredTransitions::mutuallyExclusive(Record *PredDef,
1362                                        ArrayRef<PredCheck> Term) {
1363  for (const PredCheck &PC: Term) {
1364    if (PC.Predicate == PredDef)
1365      return false;
1366
1367    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1368    assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1369    RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1370    if (any_of(Variants, [PredDef](const Record *R) {
1371          return R->getValueAsDef("Predicate") == PredDef;
1372        }))
1373      return true;
1374  }
1375  return false;
1376}
1377
1378static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1379                               CodeGenSchedModels &SchedModels) {
1380  if (RW.HasVariants)
1381    return true;
1382
1383  for (Record *Alias : RW.Aliases) {
1384    const CodeGenSchedRW &AliasRW =
1385      SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1386    if (AliasRW.HasVariants)
1387      return true;
1388    if (AliasRW.IsSequence) {
1389      IdxVec ExpandedRWs;
1390      SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1391      for (unsigned SI : ExpandedRWs) {
1392        if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1393                               SchedModels))
1394          return true;
1395      }
1396    }
1397  }
1398  return false;
1399}
1400
1401static bool hasVariant(ArrayRef<PredTransition> Transitions,
1402                       CodeGenSchedModels &SchedModels) {
1403  for (const PredTransition &PTI : Transitions) {
1404    for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1405      for (unsigned WI : WSI)
1406        if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1407          return true;
1408
1409    for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1410      for (unsigned RI : RSI)
1411        if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1412          return true;
1413  }
1414  return false;
1415}
1416
1417// Populate IntersectingVariants with any variants or aliased sequences of the
1418// given SchedRW whose processor indices and predicates are not mutually
1419// exclusive with the given transition.
1420void PredTransitions::getIntersectingVariants(
1421  const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1422  std::vector<TransVariant> &IntersectingVariants) {
1423
1424  bool GenericRW = false;
1425
1426  std::vector<TransVariant> Variants;
1427  if (SchedRW.HasVariants) {
1428    unsigned VarProcIdx = 0;
1429    if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1430      Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1431      VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1432    }
1433    // Push each variant. Assign TransVecIdx later.
1434    const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1435    for (Record *VarDef : VarDefs)
1436      Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1437    if (VarProcIdx == 0)
1438      GenericRW = true;
1439  }
1440  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1441       AI != AE; ++AI) {
1442    // If either the SchedAlias itself or the SchedReadWrite that it aliases
1443    // to is defined within a processor model, constrain all variants to
1444    // that processor.
1445    unsigned AliasProcIdx = 0;
1446    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1447      Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1448      AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1449    }
1450    const CodeGenSchedRW &AliasRW =
1451      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1452
1453    if (AliasRW.HasVariants) {
1454      const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1455      for (Record *VD : VarDefs)
1456        Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1457    }
1458    if (AliasRW.IsSequence)
1459      Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1460    if (AliasProcIdx == 0)
1461      GenericRW = true;
1462  }
1463  for (TransVariant &Variant : Variants) {
1464    // Don't expand variants if the processor models don't intersect.
1465    // A zero processor index means any processor.
1466    SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1467    if (ProcIndices[0] && Variant.ProcIdx) {
1468      unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1469                                Variant.ProcIdx);
1470      if (!Cnt)
1471        continue;
1472      if (Cnt > 1) {
1473        const CodeGenProcModel &PM =
1474          *(SchedModels.procModelBegin() + Variant.ProcIdx);
1475        PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1476                        "Multiple variants defined for processor " +
1477                        PM.ModelName +
1478                        " Ensure only one SchedAlias exists per RW.");
1479      }
1480    }
1481    if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1482      Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1483      if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1484        continue;
1485    }
1486    if (IntersectingVariants.empty()) {
1487      // The first variant builds on the existing transition.
1488      Variant.TransVecIdx = TransIdx;
1489      IntersectingVariants.push_back(Variant);
1490    }
1491    else {
1492      // Push another copy of the current transition for more variants.
1493      Variant.TransVecIdx = TransVec.size();
1494      IntersectingVariants.push_back(Variant);
1495      TransVec.push_back(TransVec[TransIdx]);
1496    }
1497  }
1498  if (GenericRW && IntersectingVariants.empty()) {
1499    PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1500                    "a matching predicate on any processor");
1501  }
1502}
1503
1504// Push the Reads/Writes selected by this variant onto the PredTransition
1505// specified by VInfo.
1506void PredTransitions::
1507pushVariant(const TransVariant &VInfo, bool IsRead) {
1508  PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1509
1510  // If this operand transition is reached through a processor-specific alias,
1511  // then the whole transition is specific to this processor.
1512  if (VInfo.ProcIdx != 0)
1513    Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1514
1515  IdxVec SelectedRWs;
1516  if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1517    Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1518    Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1519    RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1520    SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1521  }
1522  else {
1523    assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1524           "variant must be a SchedVariant or aliased WriteSequence");
1525    SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1526  }
1527
1528  const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1529
1530  SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1531    ? Trans.ReadSequences : Trans.WriteSequences;
1532  if (SchedRW.IsVariadic) {
1533    unsigned OperIdx = RWSequences.size()-1;
1534    // Make N-1 copies of this transition's last sequence.
1535    RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1536                       RWSequences[OperIdx]);
1537    // Push each of the N elements of the SelectedRWs onto a copy of the last
1538    // sequence (split the current operand into N operands).
1539    // Note that write sequences should be expanded within this loop--the entire
1540    // sequence belongs to a single operand.
1541    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1542         RWI != RWE; ++RWI, ++OperIdx) {
1543      IdxVec ExpandedRWs;
1544      if (IsRead)
1545        ExpandedRWs.push_back(*RWI);
1546      else
1547        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1548      RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1549                                  ExpandedRWs.begin(), ExpandedRWs.end());
1550    }
1551    assert(OperIdx == RWSequences.size() && "missed a sequence");
1552  }
1553  else {
1554    // Push this transition's expanded sequence onto this transition's last
1555    // sequence (add to the current operand's sequence).
1556    SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1557    IdxVec ExpandedRWs;
1558    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1559         RWI != RWE; ++RWI) {
1560      if (IsRead)
1561        ExpandedRWs.push_back(*RWI);
1562      else
1563        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1564    }
1565    Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1566  }
1567}
1568
1569// RWSeq is a sequence of all Reads or all Writes for the next read or write
1570// operand. StartIdx is an index into TransVec where partial results
1571// starts. RWSeq must be applied to all transitions between StartIdx and the end
1572// of TransVec.
1573void PredTransitions::substituteVariantOperand(
1574  const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1575
1576  // Visit each original RW within the current sequence.
1577  for (SmallVectorImpl<unsigned>::const_iterator
1578         RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1579    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1580    // Push this RW on all partial PredTransitions or distribute variants.
1581    // New PredTransitions may be pushed within this loop which should not be
1582    // revisited (TransEnd must be loop invariant).
1583    for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1584         TransIdx != TransEnd; ++TransIdx) {
1585      // In the common case, push RW onto the current operand's sequence.
1586      if (!hasAliasedVariants(SchedRW, SchedModels)) {
1587        if (IsRead)
1588          TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1589        else
1590          TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1591        continue;
1592      }
1593      // Distribute this partial PredTransition across intersecting variants.
1594      // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1595      std::vector<TransVariant> IntersectingVariants;
1596      getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1597      // Now expand each variant on top of its copy of the transition.
1598      for (std::vector<TransVariant>::const_iterator
1599             IVI = IntersectingVariants.begin(),
1600             IVE = IntersectingVariants.end();
1601           IVI != IVE; ++IVI) {
1602        pushVariant(*IVI, IsRead);
1603      }
1604    }
1605  }
1606}
1607
1608// For each variant of a Read/Write in Trans, substitute the sequence of
1609// Read/Writes guarded by the variant. This is exponential in the number of
1610// variant Read/Writes, but in practice detection of mutually exclusive
1611// predicates should result in linear growth in the total number variants.
1612//
1613// This is one step in a breadth-first search of nested variants.
1614void PredTransitions::substituteVariants(const PredTransition &Trans) {
1615  // Build up a set of partial results starting at the back of
1616  // PredTransitions. Remember the first new transition.
1617  unsigned StartIdx = TransVec.size();
1618  TransVec.emplace_back();
1619  TransVec.back().PredTerm = Trans.PredTerm;
1620  TransVec.back().ProcIndices = Trans.ProcIndices;
1621
1622  // Visit each original write sequence.
1623  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1624         WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1625       WSI != WSE; ++WSI) {
1626    // Push a new (empty) write sequence onto all partial Transitions.
1627    for (std::vector<PredTransition>::iterator I =
1628           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1629      I->WriteSequences.emplace_back();
1630    }
1631    substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1632  }
1633  // Visit each original read sequence.
1634  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1635         RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1636       RSI != RSE; ++RSI) {
1637    // Push a new (empty) read sequence onto all partial Transitions.
1638    for (std::vector<PredTransition>::iterator I =
1639           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1640      I->ReadSequences.emplace_back();
1641    }
1642    substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1643  }
1644}
1645
1646// Create a new SchedClass for each variant found by inferFromRW. Pass
1647static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1648                                 unsigned FromClassIdx,
1649                                 CodeGenSchedModels &SchedModels) {
1650  // For each PredTransition, create a new CodeGenSchedTransition, which usually
1651  // requires creating a new SchedClass.
1652  for (ArrayRef<PredTransition>::iterator
1653         I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1654    IdxVec OperWritesVariant;
1655    transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1656              [&SchedModels](ArrayRef<unsigned> WS) {
1657                return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1658              });
1659    IdxVec OperReadsVariant;
1660    transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1661              [&SchedModels](ArrayRef<unsigned> RS) {
1662                return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1663              });
1664    CodeGenSchedTransition SCTrans;
1665    SCTrans.ToClassIdx =
1666      SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1667                                OperReadsVariant, I->ProcIndices);
1668    SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1669    // The final PredTerm is unique set of predicates guarding the transition.
1670    RecVec Preds;
1671    transform(I->PredTerm, std::back_inserter(Preds),
1672              [](const PredCheck &P) {
1673                return P.Predicate;
1674              });
1675    Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1676    SCTrans.PredTerm = std::move(Preds);
1677    SchedModels.getSchedClass(FromClassIdx)
1678        .Transitions.push_back(std::move(SCTrans));
1679  }
1680}
1681
1682// Create new SchedClasses for the given ReadWrite list. If any of the
1683// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1684// of the ReadWrite list, following Aliases if necessary.
1685void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1686                                     ArrayRef<unsigned> OperReads,
1687                                     unsigned FromClassIdx,
1688                                     ArrayRef<unsigned> ProcIndices) {
1689  LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1690             dbgs() << ") ");
1691
1692  // Create a seed transition with an empty PredTerm and the expanded sequences
1693  // of SchedWrites for the current SchedClass.
1694  std::vector<PredTransition> LastTransitions;
1695  LastTransitions.emplace_back();
1696  LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1697                                            ProcIndices.end());
1698
1699  for (unsigned WriteIdx : OperWrites) {
1700    IdxVec WriteSeq;
1701    expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1702    LastTransitions[0].WriteSequences.emplace_back();
1703    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1704    Seq.append(WriteSeq.begin(), WriteSeq.end());
1705    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1706  }
1707  LLVM_DEBUG(dbgs() << " Reads: ");
1708  for (unsigned ReadIdx : OperReads) {
1709    IdxVec ReadSeq;
1710    expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1711    LastTransitions[0].ReadSequences.emplace_back();
1712    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1713    Seq.append(ReadSeq.begin(), ReadSeq.end());
1714    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1715  }
1716  LLVM_DEBUG(dbgs() << '\n');
1717
1718  // Collect all PredTransitions for individual operands.
1719  // Iterate until no variant writes remain.
1720  while (hasVariant(LastTransitions, *this)) {
1721    PredTransitions Transitions(*this);
1722    for (const PredTransition &Trans : LastTransitions)
1723      Transitions.substituteVariants(Trans);
1724    LLVM_DEBUG(Transitions.dump());
1725    LastTransitions.swap(Transitions.TransVec);
1726  }
1727  // If the first transition has no variants, nothing to do.
1728  if (LastTransitions[0].PredTerm.empty())
1729    return;
1730
1731  // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1732  // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1733  inferFromTransitions(LastTransitions, FromClassIdx, *this);
1734}
1735
1736// Check if any processor resource group contains all resource records in
1737// SubUnits.
1738bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1739  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1740    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1741      continue;
1742    RecVec SuperUnits =
1743      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1744    RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1745    for ( ; RI != RE; ++RI) {
1746      if (!is_contained(SuperUnits, *RI)) {
1747        break;
1748      }
1749    }
1750    if (RI == RE)
1751      return true;
1752  }
1753  return false;
1754}
1755
1756// Verify that overlapping groups have a common supergroup.
1757void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1758  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1759    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1760      continue;
1761    RecVec CheckUnits =
1762      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1763    for (unsigned j = i+1; j < e; ++j) {
1764      if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1765        continue;
1766      RecVec OtherUnits =
1767        PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1768      if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1769                             OtherUnits.begin(), OtherUnits.end())
1770          != CheckUnits.end()) {
1771        // CheckUnits and OtherUnits overlap
1772        OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1773                          CheckUnits.end());
1774        if (!hasSuperGroup(OtherUnits, PM)) {
1775          PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1776                          "proc resource group overlaps with "
1777                          + PM.ProcResourceDefs[j]->getName()
1778                          + " but no supergroup contains both.");
1779        }
1780      }
1781    }
1782  }
1783}
1784
1785// Collect all the RegisterFile definitions available in this target.
1786void CodeGenSchedModels::collectRegisterFiles() {
1787  RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1788
1789  // RegisterFiles is the vector of CodeGenRegisterFile.
1790  for (Record *RF : RegisterFileDefs) {
1791    // For each register file definition, construct a CodeGenRegisterFile object
1792    // and add it to the appropriate scheduling model.
1793    CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1794    PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1795    CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1796    CGRF.MaxMovesEliminatedPerCycle =
1797        RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1798    CGRF.AllowZeroMoveEliminationOnly =
1799        RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1800
1801    // Now set the number of physical registers as well as the cost of registers
1802    // in each register class.
1803    CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1804    if (!CGRF.NumPhysRegs) {
1805      PrintFatalError(RF->getLoc(),
1806                      "Invalid RegisterFile with zero physical registers");
1807    }
1808
1809    RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1810    std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1811    ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1812    for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1813      int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1814
1815      bool AllowMoveElim = false;
1816      if (MoveElimInfo->size() > I) {
1817        BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1818        AllowMoveElim = Val->getValue();
1819      }
1820
1821      CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1822    }
1823  }
1824}
1825
1826// Collect and sort WriteRes, ReadAdvance, and ProcResources.
1827void CodeGenSchedModels::collectProcResources() {
1828  ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1829  ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1830
1831  // Add any subtarget-specific SchedReadWrites that are directly associated
1832  // with processor resources. Refer to the parent SchedClass's ProcIndices to
1833  // determine which processors they apply to.
1834  for (const CodeGenSchedClass &SC :
1835       make_range(schedClassBegin(), schedClassEnd())) {
1836    if (SC.ItinClassDef) {
1837      collectItinProcResources(SC.ItinClassDef);
1838      continue;
1839    }
1840
1841    // This class may have a default ReadWrite list which can be overriden by
1842    // InstRW definitions.
1843    for (Record *RW : SC.InstRWs) {
1844      Record *RWModelDef = RW->getValueAsDef("SchedModel");
1845      unsigned PIdx = getProcModel(RWModelDef).Index;
1846      IdxVec Writes, Reads;
1847      findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1848      collectRWResources(Writes, Reads, PIdx);
1849    }
1850
1851    collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1852  }
1853  // Add resources separately defined by each subtarget.
1854  RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1855  for (Record *WR : WRDefs) {
1856    Record *ModelDef = WR->getValueAsDef("SchedModel");
1857    addWriteRes(WR, getProcModel(ModelDef).Index);
1858  }
1859  RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1860  for (Record *SWR : SWRDefs) {
1861    Record *ModelDef = SWR->getValueAsDef("SchedModel");
1862    addWriteRes(SWR, getProcModel(ModelDef).Index);
1863  }
1864  RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1865  for (Record *RA : RADefs) {
1866    Record *ModelDef = RA->getValueAsDef("SchedModel");
1867    addReadAdvance(RA, getProcModel(ModelDef).Index);
1868  }
1869  RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1870  for (Record *SRA : SRADefs) {
1871    if (SRA->getValueInit("SchedModel")->isComplete()) {
1872      Record *ModelDef = SRA->getValueAsDef("SchedModel");
1873      addReadAdvance(SRA, getProcModel(ModelDef).Index);
1874    }
1875  }
1876  // Add ProcResGroups that are defined within this processor model, which may
1877  // not be directly referenced but may directly specify a buffer size.
1878  RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1879  for (Record *PRG : ProcResGroups) {
1880    if (!PRG->getValueInit("SchedModel")->isComplete())
1881      continue;
1882    CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1883    if (!is_contained(PM.ProcResourceDefs, PRG))
1884      PM.ProcResourceDefs.push_back(PRG);
1885  }
1886  // Add ProcResourceUnits unconditionally.
1887  for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1888    if (!PRU->getValueInit("SchedModel")->isComplete())
1889      continue;
1890    CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1891    if (!is_contained(PM.ProcResourceDefs, PRU))
1892      PM.ProcResourceDefs.push_back(PRU);
1893  }
1894  // Finalize each ProcModel by sorting the record arrays.
1895  for (CodeGenProcModel &PM : ProcModels) {
1896    llvm::sort(PM.WriteResDefs, LessRecord());
1897    llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1898    llvm::sort(PM.ProcResourceDefs, LessRecord());
1899    LLVM_DEBUG(
1900        PM.dump();
1901        dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1902                                         RE = PM.WriteResDefs.end();
1903                                         RI != RE; ++RI) {
1904          if ((*RI)->isSubClassOf("WriteRes"))
1905            dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1906          else
1907            dbgs() << (*RI)->getName() << " ";
1908        } dbgs() << "\nReadAdvanceDefs: ";
1909        for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1910             RE = PM.ReadAdvanceDefs.end();
1911             RI != RE; ++RI) {
1912          if ((*RI)->isSubClassOf("ReadAdvance"))
1913            dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1914          else
1915            dbgs() << (*RI)->getName() << " ";
1916        } dbgs()
1917        << "\nProcResourceDefs: ";
1918        for (RecIter RI = PM.ProcResourceDefs.begin(),
1919             RE = PM.ProcResourceDefs.end();
1920             RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1921        << '\n');
1922    verifyProcResourceGroups(PM);
1923  }
1924
1925  ProcResourceDefs.clear();
1926  ProcResGroups.clear();
1927}
1928
1929void CodeGenSchedModels::checkCompleteness() {
1930  bool Complete = true;
1931  bool HadCompleteModel = false;
1932  for (const CodeGenProcModel &ProcModel : procModels()) {
1933    const bool HasItineraries = ProcModel.hasItineraries();
1934    if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1935      continue;
1936    for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1937      if (Inst->hasNoSchedulingInfo)
1938        continue;
1939      if (ProcModel.isUnsupported(*Inst))
1940        continue;
1941      unsigned SCIdx = getSchedClassIdx(*Inst);
1942      if (!SCIdx) {
1943        if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1944          PrintError(Inst->TheDef->getLoc(),
1945                     "No schedule information for instruction '" +
1946                         Inst->TheDef->getName() + "' in SchedMachineModel '" +
1947                     ProcModel.ModelDef->getName() + "'");
1948          Complete = false;
1949        }
1950        continue;
1951      }
1952
1953      const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1954      if (!SC.Writes.empty())
1955        continue;
1956      if (HasItineraries && SC.ItinClassDef != nullptr &&
1957          SC.ItinClassDef->getName() != "NoItinerary")
1958        continue;
1959
1960      const RecVec &InstRWs = SC.InstRWs;
1961      auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1962        return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1963      });
1964      if (I == InstRWs.end()) {
1965        PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1966                                               "' lacks information for '" +
1967                                               Inst->TheDef->getName() + "'");
1968        Complete = false;
1969      }
1970    }
1971    HadCompleteModel = true;
1972  }
1973  if (!Complete) {
1974    errs() << "\n\nIncomplete schedule models found.\n"
1975      << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1976      << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1977      << "- Instructions should usually have Sched<[...]> as a superclass, "
1978         "you may temporarily use an empty list.\n"
1979      << "- Instructions related to unsupported features can be excluded with "
1980         "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1981         "processor model.\n\n";
1982    PrintFatalError("Incomplete schedule model");
1983  }
1984}
1985
1986// Collect itinerary class resources for each processor.
1987void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1988  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1989    const CodeGenProcModel &PM = ProcModels[PIdx];
1990    // For all ItinRW entries.
1991    bool HasMatch = false;
1992    for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1993         II != IE; ++II) {
1994      RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1995      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1996        continue;
1997      if (HasMatch)
1998        PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1999                        + ItinClassDef->getName()
2000                        + " in ItinResources for " + PM.ModelName);
2001      HasMatch = true;
2002      IdxVec Writes, Reads;
2003      findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2004      collectRWResources(Writes, Reads, PIdx);
2005    }
2006  }
2007}
2008
2009void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2010                                            ArrayRef<unsigned> ProcIndices) {
2011  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2012  if (SchedRW.TheDef) {
2013    if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2014      for (unsigned Idx : ProcIndices)
2015        addWriteRes(SchedRW.TheDef, Idx);
2016    }
2017    else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2018      for (unsigned Idx : ProcIndices)
2019        addReadAdvance(SchedRW.TheDef, Idx);
2020    }
2021  }
2022  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2023       AI != AE; ++AI) {
2024    IdxVec AliasProcIndices;
2025    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2026      AliasProcIndices.push_back(
2027        getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2028    }
2029    else
2030      AliasProcIndices = ProcIndices;
2031    const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2032    assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2033
2034    IdxVec ExpandedRWs;
2035    expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2036    for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2037         SI != SE; ++SI) {
2038      collectRWResources(*SI, IsRead, AliasProcIndices);
2039    }
2040  }
2041}
2042
2043// Collect resources for a set of read/write types and processor indices.
2044void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2045                                            ArrayRef<unsigned> Reads,
2046                                            ArrayRef<unsigned> ProcIndices) {
2047  for (unsigned Idx : Writes)
2048    collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2049
2050  for (unsigned Idx : Reads)
2051    collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2052}
2053
2054// Find the processor's resource units for this kind of resource.
2055Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2056                                             const CodeGenProcModel &PM,
2057                                             ArrayRef<SMLoc> Loc) const {
2058  if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2059    return ProcResKind;
2060
2061  Record *ProcUnitDef = nullptr;
2062  assert(!ProcResourceDefs.empty());
2063  assert(!ProcResGroups.empty());
2064
2065  for (Record *ProcResDef : ProcResourceDefs) {
2066    if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2067        && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2068      if (ProcUnitDef) {
2069        PrintFatalError(Loc,
2070                        "Multiple ProcessorResourceUnits associated with "
2071                        + ProcResKind->getName());
2072      }
2073      ProcUnitDef = ProcResDef;
2074    }
2075  }
2076  for (Record *ProcResGroup : ProcResGroups) {
2077    if (ProcResGroup == ProcResKind
2078        && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2079      if (ProcUnitDef) {
2080        PrintFatalError(Loc,
2081                        "Multiple ProcessorResourceUnits associated with "
2082                        + ProcResKind->getName());
2083      }
2084      ProcUnitDef = ProcResGroup;
2085    }
2086  }
2087  if (!ProcUnitDef) {
2088    PrintFatalError(Loc,
2089                    "No ProcessorResources associated with "
2090                    + ProcResKind->getName());
2091  }
2092  return ProcUnitDef;
2093}
2094
2095// Iteratively add a resource and its super resources.
2096void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2097                                         CodeGenProcModel &PM,
2098                                         ArrayRef<SMLoc> Loc) {
2099  while (true) {
2100    Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2101
2102    // See if this ProcResource is already associated with this processor.
2103    if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2104      return;
2105
2106    PM.ProcResourceDefs.push_back(ProcResUnits);
2107    if (ProcResUnits->isSubClassOf("ProcResGroup"))
2108      return;
2109
2110    if (!ProcResUnits->getValueInit("Super")->isComplete())
2111      return;
2112
2113    ProcResKind = ProcResUnits->getValueAsDef("Super");
2114  }
2115}
2116
2117// Add resources for a SchedWrite to this processor if they don't exist.
2118void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2119  assert(PIdx && "don't add resources to an invalid Processor model");
2120
2121  RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2122  if (is_contained(WRDefs, ProcWriteResDef))
2123    return;
2124  WRDefs.push_back(ProcWriteResDef);
2125
2126  // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2127  RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2128  for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2129       WritePRI != WritePRE; ++WritePRI) {
2130    addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2131  }
2132}
2133
2134// Add resources for a ReadAdvance to this processor if they don't exist.
2135void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2136                                        unsigned PIdx) {
2137  RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2138  if (is_contained(RADefs, ProcReadAdvanceDef))
2139    return;
2140  RADefs.push_back(ProcReadAdvanceDef);
2141}
2142
2143unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2144  RecIter PRPos = find(ProcResourceDefs, PRDef);
2145  if (PRPos == ProcResourceDefs.end())
2146    PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2147                    "the ProcResources list for " + ModelName);
2148  // Idx=0 is reserved for invalid.
2149  return 1 + (PRPos - ProcResourceDefs.begin());
2150}
2151
2152bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2153  for (const Record *TheDef : UnsupportedFeaturesDefs) {
2154    for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2155      if (TheDef->getName() == PredDef->getName())
2156        return true;
2157    }
2158  }
2159  return false;
2160}
2161
2162#ifndef NDEBUG
2163void CodeGenProcModel::dump() const {
2164  dbgs() << Index << ": " << ModelName << " "
2165         << (ModelDef ? ModelDef->getName() : "inferred") << " "
2166         << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2167}
2168
2169void CodeGenSchedRW::dump() const {
2170  dbgs() << Name << (IsVariadic ? " (V) " : " ");
2171  if (IsSequence) {
2172    dbgs() << "(";
2173    dumpIdxVec(Sequence);
2174    dbgs() << ")";
2175  }
2176}
2177
2178void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2179  dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2180         << "  Writes: ";
2181  for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2182    SchedModels->getSchedWrite(Writes[i]).dump();
2183    if (i < N-1) {
2184      dbgs() << '\n';
2185      dbgs().indent(10);
2186    }
2187  }
2188  dbgs() << "\n  Reads: ";
2189  for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2190    SchedModels->getSchedRead(Reads[i]).dump();
2191    if (i < N-1) {
2192      dbgs() << '\n';
2193      dbgs().indent(10);
2194    }
2195  }
2196  dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2197  if (!Transitions.empty()) {
2198    dbgs() << "\n Transitions for Proc ";
2199    for (const CodeGenSchedTransition &Transition : Transitions) {
2200      dumpIdxVec(Transition.ProcIndices);
2201    }
2202  }
2203}
2204
2205void PredTransitions::dump() const {
2206  dbgs() << "Expanded Variants:\n";
2207  for (std::vector<PredTransition>::const_iterator
2208         TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2209    dbgs() << "{";
2210    for (SmallVectorImpl<PredCheck>::const_iterator
2211           PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2212         PCI != PCE; ++PCI) {
2213      if (PCI != TI->PredTerm.begin())
2214        dbgs() << ", ";
2215      dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2216             << ":" << PCI->Predicate->getName();
2217    }
2218    dbgs() << "},\n  => {";
2219    for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2220           WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2221         WSI != WSE; ++WSI) {
2222      dbgs() << "(";
2223      for (SmallVectorImpl<unsigned>::const_iterator
2224             WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2225        if (WI != WSI->begin())
2226          dbgs() << ", ";
2227        dbgs() << SchedModels.getSchedWrite(*WI).Name;
2228      }
2229      dbgs() << "),";
2230    }
2231    dbgs() << "}\n";
2232  }
2233}
2234#endif // NDEBUG
2235