1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This tablegen backend emits a target specifier matcher for converting parsed
10// assembly operands in the MCInst structures. It also emits a matcher for
11// custom operand parsing.
12//
13// Converting assembly operands into MCInst structures
14// ---------------------------------------------------
15//
16// The input to the target specific matcher is a list of literal tokens and
17// operands. The target specific parser should generally eliminate any syntax
18// which is not relevant for matching; for example, comma tokens should have
19// already been consumed and eliminated by the parser. Most instructions will
20// end up with a single literal token (the instruction name) and some number of
21// operands.
22//
23// Some example inputs, for X86:
24//   'addl' (immediate ...) (register ...)
25//   'add' (immediate ...) (memory ...)
26//   'call' '*' %epc
27//
28// The assembly matcher is responsible for converting this input into a precise
29// machine instruction (i.e., an instruction with a well defined encoding). This
30// mapping has several properties which complicate matching:
31//
32//  - It may be ambiguous; many architectures can legally encode particular
33//    variants of an instruction in different ways (for example, using a smaller
34//    encoding for small immediates). Such ambiguities should never be
35//    arbitrarily resolved by the assembler, the assembler is always responsible
36//    for choosing the "best" available instruction.
37//
38//  - It may depend on the subtarget or the assembler context. Instructions
39//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
40//    an SSE instruction in a file being assembled for i486) should be accepted
41//    and rejected by the assembler front end. However, if the proper encoding
42//    for an instruction is dependent on the assembler context then the matcher
43//    is responsible for selecting the correct machine instruction for the
44//    current mode.
45//
46// The core matching algorithm attempts to exploit the regularity in most
47// instruction sets to quickly determine the set of possibly matching
48// instructions, and the simplify the generated code. Additionally, this helps
49// to ensure that the ambiguities are intentionally resolved by the user.
50//
51// The matching is divided into two distinct phases:
52//
53//   1. Classification: Each operand is mapped to the unique set which (a)
54//      contains it, and (b) is the largest such subset for which a single
55//      instruction could match all members.
56//
57//      For register classes, we can generate these subgroups automatically. For
58//      arbitrary operands, we expect the user to define the classes and their
59//      relations to one another (for example, 8-bit signed immediates as a
60//      subset of 32-bit immediates).
61//
62//      By partitioning the operands in this way, we guarantee that for any
63//      tuple of classes, any single instruction must match either all or none
64//      of the sets of operands which could classify to that tuple.
65//
66//      In addition, the subset relation amongst classes induces a partial order
67//      on such tuples, which we use to resolve ambiguities.
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74// Custom Operand Parsing
75// ----------------------
76//
77//  Some targets need a custom way to parse operands, some specific instructions
78//  can contain arguments that can represent processor flags and other kinds of
79//  identifiers that need to be mapped to specific values in the final encoded
80//  instructions. The target specific custom operand parsing works in the
81//  following way:
82//
83//   1. A operand match table is built, each entry contains a mnemonic, an
84//      operand class, a mask for all operand positions for that same
85//      class/mnemonic and target features to be checked while trying to match.
86//
87//   2. The operand matcher will try every possible entry with the same
88//      mnemonic and will check if the target feature for this mnemonic also
89//      matches. After that, if the operand to be matched has its index
90//      present in the mask, a successful match occurs. Otherwise, fallback
91//      to the regular operand parsing.
92//
93//   3. For a match success, each operand class that has a 'ParserMethod'
94//      becomes part of a switch from where the custom method is called.
95//
96//===----------------------------------------------------------------------===//
97
98#include "CodeGenTarget.h"
99#include "SubtargetFeatureInfo.h"
100#include "Types.h"
101#include "llvm/ADT/CachedHashString.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/STLExtras.h"
104#include "llvm/ADT/SmallPtrSet.h"
105#include "llvm/ADT/SmallVector.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Config/llvm-config.h"
108#include "llvm/Support/CommandLine.h"
109#include "llvm/Support/Debug.h"
110#include "llvm/Support/ErrorHandling.h"
111#include "llvm/TableGen/Error.h"
112#include "llvm/TableGen/Record.h"
113#include "llvm/TableGen/StringMatcher.h"
114#include "llvm/TableGen/StringToOffsetTable.h"
115#include "llvm/TableGen/TableGenBackend.h"
116#include <cassert>
117#include <cctype>
118#include <forward_list>
119#include <map>
120#include <set>
121
122using namespace llvm;
123
124#define DEBUG_TYPE "asm-matcher-emitter"
125
126cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127
128static cl::opt<std::string>
129    MatchPrefix("match-prefix", cl::init(""),
130                cl::desc("Only match instructions with the given prefix"),
131                cl::cat(AsmMatcherEmitterCat));
132
133namespace {
134class AsmMatcherInfo;
135
136// Register sets are used as keys in some second-order sets TableGen creates
137// when generating its data structures. This means that the order of two
138// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139// can even affect compiler output (at least seen in diagnostics produced when
140// all matches fail). So we use a type that sorts them consistently.
141typedef std::set<Record*, LessRecordByID> RegisterSet;
142
143class AsmMatcherEmitter {
144  RecordKeeper &Records;
145public:
146  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147
148  void run(raw_ostream &o);
149};
150
151/// ClassInfo - Helper class for storing the information about a particular
152/// class of operands which can be matched.
153struct ClassInfo {
154  enum ClassInfoKind {
155    /// Invalid kind, for use as a sentinel value.
156    Invalid = 0,
157
158    /// The class for a particular token.
159    Token,
160
161    /// The (first) register class, subsequent register classes are
162    /// RegisterClass0+1, and so on.
163    RegisterClass0,
164
165    /// The (first) user defined class, subsequent user defined classes are
166    /// UserClass0+1, and so on.
167    UserClass0 = 1<<16
168  };
169
170  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171  /// N) for the Nth user defined class.
172  unsigned Kind;
173
174  /// SuperClasses - The super classes of this class. Note that for simplicities
175  /// sake user operands only record their immediate super class, while register
176  /// operands include all superclasses.
177  std::vector<ClassInfo*> SuperClasses;
178
179  /// Name - The full class name, suitable for use in an enum.
180  std::string Name;
181
182  /// ClassName - The unadorned generic name for this class (e.g., Token).
183  std::string ClassName;
184
185  /// ValueName - The name of the value this class represents; for a token this
186  /// is the literal token string, for an operand it is the TableGen class (or
187  /// empty if this is a derived class).
188  std::string ValueName;
189
190  /// PredicateMethod - The name of the operand method to test whether the
191  /// operand matches this class; this is not valid for Token or register kinds.
192  std::string PredicateMethod;
193
194  /// RenderMethod - The name of the operand method to add this operand to an
195  /// MCInst; this is not valid for Token or register kinds.
196  std::string RenderMethod;
197
198  /// ParserMethod - The name of the operand method to do a target specific
199  /// parsing on the operand.
200  std::string ParserMethod;
201
202  /// For register classes: the records for all the registers in this class.
203  RegisterSet Registers;
204
205  /// For custom match classes: the diagnostic kind for when the predicate fails.
206  std::string DiagnosticType;
207
208  /// For custom match classes: the diagnostic string for when the predicate fails.
209  std::string DiagnosticString;
210
211  /// Is this operand optional and not always required.
212  bool IsOptional;
213
214  /// DefaultMethod - The name of the method that returns the default operand
215  /// for optional operand
216  std::string DefaultMethod;
217
218public:
219  /// isRegisterClass() - Check if this is a register class.
220  bool isRegisterClass() const {
221    return Kind >= RegisterClass0 && Kind < UserClass0;
222  }
223
224  /// isUserClass() - Check if this is a user defined class.
225  bool isUserClass() const {
226    return Kind >= UserClass0;
227  }
228
229  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230  /// are related if they are in the same class hierarchy.
231  bool isRelatedTo(const ClassInfo &RHS) const {
232    // Tokens are only related to tokens.
233    if (Kind == Token || RHS.Kind == Token)
234      return Kind == Token && RHS.Kind == Token;
235
236    // Registers classes are only related to registers classes, and only if
237    // their intersection is non-empty.
238    if (isRegisterClass() || RHS.isRegisterClass()) {
239      if (!isRegisterClass() || !RHS.isRegisterClass())
240        return false;
241
242      RegisterSet Tmp;
243      std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244      std::set_intersection(Registers.begin(), Registers.end(),
245                            RHS.Registers.begin(), RHS.Registers.end(),
246                            II, LessRecordByID());
247
248      return !Tmp.empty();
249    }
250
251    // Otherwise we have two users operands; they are related if they are in the
252    // same class hierarchy.
253    //
254    // FIXME: This is an oversimplification, they should only be related if they
255    // intersect, however we don't have that information.
256    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257    const ClassInfo *Root = this;
258    while (!Root->SuperClasses.empty())
259      Root = Root->SuperClasses.front();
260
261    const ClassInfo *RHSRoot = &RHS;
262    while (!RHSRoot->SuperClasses.empty())
263      RHSRoot = RHSRoot->SuperClasses.front();
264
265    return Root == RHSRoot;
266  }
267
268  /// isSubsetOf - Test whether this class is a subset of \p RHS.
269  bool isSubsetOf(const ClassInfo &RHS) const {
270    // This is a subset of RHS if it is the same class...
271    if (this == &RHS)
272      return true;
273
274    // ... or if any of its super classes are a subset of RHS.
275    SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
276                                                SuperClasses.end());
277    SmallPtrSet<const ClassInfo *, 16> Visited;
278    while (!Worklist.empty()) {
279      auto *CI = Worklist.pop_back_val();
280      if (CI == &RHS)
281        return true;
282      for (auto *Super : CI->SuperClasses)
283        if (Visited.insert(Super).second)
284          Worklist.push_back(Super);
285    }
286
287    return false;
288  }
289
290  int getTreeDepth() const {
291    int Depth = 0;
292    const ClassInfo *Root = this;
293    while (!Root->SuperClasses.empty()) {
294      Depth++;
295      Root = Root->SuperClasses.front();
296    }
297    return Depth;
298  }
299
300  const ClassInfo *findRoot() const {
301    const ClassInfo *Root = this;
302    while (!Root->SuperClasses.empty())
303      Root = Root->SuperClasses.front();
304    return Root;
305  }
306
307  /// Compare two classes. This does not produce a total ordering, but does
308  /// guarantee that subclasses are sorted before their parents, and that the
309  /// ordering is transitive.
310  bool operator<(const ClassInfo &RHS) const {
311    if (this == &RHS)
312      return false;
313
314    // First, enforce the ordering between the three different types of class.
315    // Tokens sort before registers, which sort before user classes.
316    if (Kind == Token) {
317      if (RHS.Kind != Token)
318        return true;
319      assert(RHS.Kind == Token);
320    } else if (isRegisterClass()) {
321      if (RHS.Kind == Token)
322        return false;
323      else if (RHS.isUserClass())
324        return true;
325      assert(RHS.isRegisterClass());
326    } else if (isUserClass()) {
327      if (!RHS.isUserClass())
328        return false;
329      assert(RHS.isUserClass());
330    } else {
331      llvm_unreachable("Unknown ClassInfoKind");
332    }
333
334    if (Kind == Token || isUserClass()) {
335      // Related tokens and user classes get sorted by depth in the inheritence
336      // tree (so that subclasses are before their parents).
337      if (isRelatedTo(RHS)) {
338        if (getTreeDepth() > RHS.getTreeDepth())
339          return true;
340        if (getTreeDepth() < RHS.getTreeDepth())
341          return false;
342      } else {
343        // Unrelated tokens and user classes are ordered by the name of their
344        // root nodes, so that there is a consistent ordering between
345        // unconnected trees.
346        return findRoot()->ValueName < RHS.findRoot()->ValueName;
347      }
348    } else if (isRegisterClass()) {
349      // For register sets, sort by number of registers. This guarantees that
350      // a set will always sort before all of it's strict supersets.
351      if (Registers.size() != RHS.Registers.size())
352        return Registers.size() < RHS.Registers.size();
353    } else {
354      llvm_unreachable("Unknown ClassInfoKind");
355    }
356
357    // FIXME: We should be able to just return false here, as we only need a
358    // partial order (we use stable sorts, so this is deterministic) and the
359    // name of a class shouldn't be significant. However, some of the backends
360    // accidentally rely on this behaviour, so it will have to stay like this
361    // until they are fixed.
362    return ValueName < RHS.ValueName;
363  }
364};
365
366class AsmVariantInfo {
367public:
368  StringRef RegisterPrefix;
369  StringRef TokenizingCharacters;
370  StringRef SeparatorCharacters;
371  StringRef BreakCharacters;
372  StringRef Name;
373  int AsmVariantNo;
374};
375
376/// MatchableInfo - Helper class for storing the necessary information for an
377/// instruction or alias which is capable of being matched.
378struct MatchableInfo {
379  struct AsmOperand {
380    /// Token - This is the token that the operand came from.
381    StringRef Token;
382
383    /// The unique class instance this operand should match.
384    ClassInfo *Class;
385
386    /// The operand name this is, if anything.
387    StringRef SrcOpName;
388
389    /// The operand name this is, before renaming for tied operands.
390    StringRef OrigSrcOpName;
391
392    /// The suboperand index within SrcOpName, or -1 for the entire operand.
393    int SubOpIdx;
394
395    /// Whether the token is "isolated", i.e., it is preceded and followed
396    /// by separators.
397    bool IsIsolatedToken;
398
399    /// Register record if this token is singleton register.
400    Record *SingletonReg;
401
402    explicit AsmOperand(bool IsIsolatedToken, StringRef T)
403        : Token(T), Class(nullptr), SubOpIdx(-1),
404          IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
405  };
406
407  /// ResOperand - This represents a single operand in the result instruction
408  /// generated by the match.  In cases (like addressing modes) where a single
409  /// assembler operand expands to multiple MCOperands, this represents the
410  /// single assembler operand, not the MCOperand.
411  struct ResOperand {
412    enum {
413      /// RenderAsmOperand - This represents an operand result that is
414      /// generated by calling the render method on the assembly operand.  The
415      /// corresponding AsmOperand is specified by AsmOperandNum.
416      RenderAsmOperand,
417
418      /// TiedOperand - This represents a result operand that is a duplicate of
419      /// a previous result operand.
420      TiedOperand,
421
422      /// ImmOperand - This represents an immediate value that is dumped into
423      /// the operand.
424      ImmOperand,
425
426      /// RegOperand - This represents a fixed register that is dumped in.
427      RegOperand
428    } Kind;
429
430    /// Tuple containing the index of the (earlier) result operand that should
431    /// be copied from, as well as the indices of the corresponding (parsed)
432    /// operands in the asm string.
433    struct TiedOperandsTuple {
434      unsigned ResOpnd;
435      unsigned SrcOpnd1Idx;
436      unsigned SrcOpnd2Idx;
437    };
438
439    union {
440      /// This is the operand # in the AsmOperands list that this should be
441      /// copied from.
442      unsigned AsmOperandNum;
443
444      /// Description of tied operands.
445      TiedOperandsTuple TiedOperands;
446
447      /// ImmVal - This is the immediate value added to the instruction.
448      int64_t ImmVal;
449
450      /// Register - This is the register record.
451      Record *Register;
452    };
453
454    /// MINumOperands - The number of MCInst operands populated by this
455    /// operand.
456    unsigned MINumOperands;
457
458    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
459      ResOperand X;
460      X.Kind = RenderAsmOperand;
461      X.AsmOperandNum = AsmOpNum;
462      X.MINumOperands = NumOperands;
463      return X;
464    }
465
466    static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
467                                unsigned SrcOperand2) {
468      ResOperand X;
469      X.Kind = TiedOperand;
470      X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
471      X.MINumOperands = 1;
472      return X;
473    }
474
475    static ResOperand getImmOp(int64_t Val) {
476      ResOperand X;
477      X.Kind = ImmOperand;
478      X.ImmVal = Val;
479      X.MINumOperands = 1;
480      return X;
481    }
482
483    static ResOperand getRegOp(Record *Reg) {
484      ResOperand X;
485      X.Kind = RegOperand;
486      X.Register = Reg;
487      X.MINumOperands = 1;
488      return X;
489    }
490  };
491
492  /// AsmVariantID - Target's assembly syntax variant no.
493  int AsmVariantID;
494
495  /// AsmString - The assembly string for this instruction (with variants
496  /// removed), e.g. "movsx $src, $dst".
497  std::string AsmString;
498
499  /// TheDef - This is the definition of the instruction or InstAlias that this
500  /// matchable came from.
501  Record *const TheDef;
502
503  /// DefRec - This is the definition that it came from.
504  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
505
506  const CodeGenInstruction *getResultInst() const {
507    if (DefRec.is<const CodeGenInstruction*>())
508      return DefRec.get<const CodeGenInstruction*>();
509    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
510  }
511
512  /// ResOperands - This is the operand list that should be built for the result
513  /// MCInst.
514  SmallVector<ResOperand, 8> ResOperands;
515
516  /// Mnemonic - This is the first token of the matched instruction, its
517  /// mnemonic.
518  StringRef Mnemonic;
519
520  /// AsmOperands - The textual operands that this instruction matches,
521  /// annotated with a class and where in the OperandList they were defined.
522  /// This directly corresponds to the tokenized AsmString after the mnemonic is
523  /// removed.
524  SmallVector<AsmOperand, 8> AsmOperands;
525
526  /// Predicates - The required subtarget features to match this instruction.
527  SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
528
529  /// ConversionFnKind - The enum value which is passed to the generated
530  /// convertToMCInst to convert parsed operands into an MCInst for this
531  /// function.
532  std::string ConversionFnKind;
533
534  /// If this instruction is deprecated in some form.
535  bool HasDeprecation;
536
537  /// If this is an alias, this is use to determine whether or not to using
538  /// the conversion function defined by the instruction's AsmMatchConverter
539  /// or to use the function generated by the alias.
540  bool UseInstAsmMatchConverter;
541
542  MatchableInfo(const CodeGenInstruction &CGI)
543    : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
544      UseInstAsmMatchConverter(true) {
545  }
546
547  MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
548    : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
549      DefRec(Alias.release()),
550      UseInstAsmMatchConverter(
551        TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
552  }
553
554  // Could remove this and the dtor if PointerUnion supported unique_ptr
555  // elements with a dynamic failure/assertion (like the one below) in the case
556  // where it was copied while being in an owning state.
557  MatchableInfo(const MatchableInfo &RHS)
558      : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
559        TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
560        Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
561        RequiredFeatures(RHS.RequiredFeatures),
562        ConversionFnKind(RHS.ConversionFnKind),
563        HasDeprecation(RHS.HasDeprecation),
564        UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
565    assert(!DefRec.is<const CodeGenInstAlias *>());
566  }
567
568  ~MatchableInfo() {
569    delete DefRec.dyn_cast<const CodeGenInstAlias*>();
570  }
571
572  // Two-operand aliases clone from the main matchable, but mark the second
573  // operand as a tied operand of the first for purposes of the assembler.
574  void formTwoOperandAlias(StringRef Constraint);
575
576  void initialize(const AsmMatcherInfo &Info,
577                  SmallPtrSetImpl<Record*> &SingletonRegisters,
578                  AsmVariantInfo const &Variant,
579                  bool HasMnemonicFirst);
580
581  /// validate - Return true if this matchable is a valid thing to match against
582  /// and perform a bunch of validity checking.
583  bool validate(StringRef CommentDelimiter, bool IsAlias) const;
584
585  /// findAsmOperand - Find the AsmOperand with the specified name and
586  /// suboperand index.
587  int findAsmOperand(StringRef N, int SubOpIdx) const {
588    auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
589      return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
590    });
591    return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
592  }
593
594  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
595  /// This does not check the suboperand index.
596  int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
597    auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
598                     [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
599    return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
600  }
601
602  int findAsmOperandOriginallyNamed(StringRef N) const {
603    auto I =
604        find_if(AsmOperands,
605                [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
606    return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
607  }
608
609  void buildInstructionResultOperands();
610  void buildAliasResultOperands(bool AliasConstraintsAreChecked);
611
612  /// operator< - Compare two matchables.
613  bool operator<(const MatchableInfo &RHS) const {
614    // The primary comparator is the instruction mnemonic.
615    if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
616      return Cmp == -1;
617
618    if (AsmOperands.size() != RHS.AsmOperands.size())
619      return AsmOperands.size() < RHS.AsmOperands.size();
620
621    // Compare lexicographically by operand. The matcher validates that other
622    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
623    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
624      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
625        return true;
626      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
627        return false;
628    }
629
630    // Give matches that require more features higher precedence. This is useful
631    // because we cannot define AssemblerPredicates with the negation of
632    // processor features. For example, ARM v6 "nop" may be either a HINT or
633    // MOV. With v6, we want to match HINT. The assembler has no way to
634    // predicate MOV under "NoV6", but HINT will always match first because it
635    // requires V6 while MOV does not.
636    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
637      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
638
639    return false;
640  }
641
642  /// couldMatchAmbiguouslyWith - Check whether this matchable could
643  /// ambiguously match the same set of operands as \p RHS (without being a
644  /// strictly superior match).
645  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
646    // The primary comparator is the instruction mnemonic.
647    if (Mnemonic != RHS.Mnemonic)
648      return false;
649
650    // Different variants can't conflict.
651    if (AsmVariantID != RHS.AsmVariantID)
652      return false;
653
654    // The number of operands is unambiguous.
655    if (AsmOperands.size() != RHS.AsmOperands.size())
656      return false;
657
658    // Otherwise, make sure the ordering of the two instructions is unambiguous
659    // by checking that either (a) a token or operand kind discriminates them,
660    // or (b) the ordering among equivalent kinds is consistent.
661
662    // Tokens and operand kinds are unambiguous (assuming a correct target
663    // specific parser).
664    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
665      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
666          AsmOperands[i].Class->Kind == ClassInfo::Token)
667        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
668            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
669          return false;
670
671    // Otherwise, this operand could commute if all operands are equivalent, or
672    // there is a pair of operands that compare less than and a pair that
673    // compare greater than.
674    bool HasLT = false, HasGT = false;
675    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
676      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
677        HasLT = true;
678      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
679        HasGT = true;
680    }
681
682    return HasLT == HasGT;
683  }
684
685  void dump() const;
686
687private:
688  void tokenizeAsmString(AsmMatcherInfo const &Info,
689                         AsmVariantInfo const &Variant);
690  void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
691};
692
693struct OperandMatchEntry {
694  unsigned OperandMask;
695  const MatchableInfo* MI;
696  ClassInfo *CI;
697
698  static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
699                                  unsigned opMask) {
700    OperandMatchEntry X;
701    X.OperandMask = opMask;
702    X.CI = ci;
703    X.MI = mi;
704    return X;
705  }
706};
707
708class AsmMatcherInfo {
709public:
710  /// Tracked Records
711  RecordKeeper &Records;
712
713  /// The tablegen AsmParser record.
714  Record *AsmParser;
715
716  /// Target - The target information.
717  CodeGenTarget &Target;
718
719  /// The classes which are needed for matching.
720  std::forward_list<ClassInfo> Classes;
721
722  /// The information on the matchables to match.
723  std::vector<std::unique_ptr<MatchableInfo>> Matchables;
724
725  /// Info for custom matching operands by user defined methods.
726  std::vector<OperandMatchEntry> OperandMatchInfo;
727
728  /// Map of Register records to their class information.
729  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
730  RegisterClassesTy RegisterClasses;
731
732  /// Map of Predicate records to their subtarget information.
733  std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
734
735  /// Map of AsmOperandClass records to their class information.
736  std::map<Record*, ClassInfo*> AsmOperandClasses;
737
738  /// Map of RegisterClass records to their class information.
739  std::map<Record*, ClassInfo*> RegisterClassClasses;
740
741private:
742  /// Map of token to class information which has already been constructed.
743  std::map<std::string, ClassInfo*> TokenClasses;
744
745private:
746  /// getTokenClass - Lookup or create the class for the given token.
747  ClassInfo *getTokenClass(StringRef Token);
748
749  /// getOperandClass - Lookup or create the class for the given operand.
750  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
751                             int SubOpIdx);
752  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
753
754  /// buildRegisterClasses - Build the ClassInfo* instances for register
755  /// classes.
756  void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
757
758  /// buildOperandClasses - Build the ClassInfo* instances for user defined
759  /// operand classes.
760  void buildOperandClasses();
761
762  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
763                                        unsigned AsmOpIdx);
764  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
765                                  MatchableInfo::AsmOperand &Op);
766
767public:
768  AsmMatcherInfo(Record *AsmParser,
769                 CodeGenTarget &Target,
770                 RecordKeeper &Records);
771
772  /// Construct the various tables used during matching.
773  void buildInfo();
774
775  /// buildOperandMatchInfo - Build the necessary information to handle user
776  /// defined operand parsing methods.
777  void buildOperandMatchInfo();
778
779  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
780  /// given operand.
781  const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
782    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
783    const auto &I = SubtargetFeatures.find(Def);
784    return I == SubtargetFeatures.end() ? nullptr : &I->second;
785  }
786
787  RecordKeeper &getRecords() const {
788    return Records;
789  }
790
791  bool hasOptionalOperands() const {
792    return find_if(Classes, [](const ClassInfo &Class) {
793             return Class.IsOptional;
794           }) != Classes.end();
795  }
796};
797
798} // end anonymous namespace
799
800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
801LLVM_DUMP_METHOD void MatchableInfo::dump() const {
802  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
803
804  errs() << "  variant: " << AsmVariantID << "\n";
805
806  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
807    const AsmOperand &Op = AsmOperands[i];
808    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
809    errs() << '\"' << Op.Token << "\"\n";
810  }
811}
812#endif
813
814static std::pair<StringRef, StringRef>
815parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
816  // Split via the '='.
817  std::pair<StringRef, StringRef> Ops = S.split('=');
818  if (Ops.second == "")
819    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
820  // Trim whitespace and the leading '$' on the operand names.
821  size_t start = Ops.first.find_first_of('$');
822  if (start == std::string::npos)
823    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
824  Ops.first = Ops.first.slice(start + 1, std::string::npos);
825  size_t end = Ops.first.find_last_of(" \t");
826  Ops.first = Ops.first.slice(0, end);
827  // Now the second operand.
828  start = Ops.second.find_first_of('$');
829  if (start == std::string::npos)
830    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
831  Ops.second = Ops.second.slice(start + 1, std::string::npos);
832  end = Ops.second.find_last_of(" \t");
833  Ops.first = Ops.first.slice(0, end);
834  return Ops;
835}
836
837void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
838  // Figure out which operands are aliased and mark them as tied.
839  std::pair<StringRef, StringRef> Ops =
840    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
841
842  // Find the AsmOperands that refer to the operands we're aliasing.
843  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
844  int DstAsmOperand = findAsmOperandNamed(Ops.second);
845  if (SrcAsmOperand == -1)
846    PrintFatalError(TheDef->getLoc(),
847                    "unknown source two-operand alias operand '" + Ops.first +
848                    "'.");
849  if (DstAsmOperand == -1)
850    PrintFatalError(TheDef->getLoc(),
851                    "unknown destination two-operand alias operand '" +
852                    Ops.second + "'.");
853
854  // Find the ResOperand that refers to the operand we're aliasing away
855  // and update it to refer to the combined operand instead.
856  for (ResOperand &Op : ResOperands) {
857    if (Op.Kind == ResOperand::RenderAsmOperand &&
858        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
859      Op.AsmOperandNum = DstAsmOperand;
860      break;
861    }
862  }
863  // Remove the AsmOperand for the alias operand.
864  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
865  // Adjust the ResOperand references to any AsmOperands that followed
866  // the one we just deleted.
867  for (ResOperand &Op : ResOperands) {
868    switch(Op.Kind) {
869    default:
870      // Nothing to do for operands that don't reference AsmOperands.
871      break;
872    case ResOperand::RenderAsmOperand:
873      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
874        --Op.AsmOperandNum;
875      break;
876    }
877  }
878}
879
880/// extractSingletonRegisterForAsmOperand - Extract singleton register,
881/// if present, from specified token.
882static void
883extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
884                                      const AsmMatcherInfo &Info,
885                                      StringRef RegisterPrefix) {
886  StringRef Tok = Op.Token;
887
888  // If this token is not an isolated token, i.e., it isn't separated from
889  // other tokens (e.g. with whitespace), don't interpret it as a register name.
890  if (!Op.IsIsolatedToken)
891    return;
892
893  if (RegisterPrefix.empty()) {
894    std::string LoweredTok = Tok.lower();
895    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
896      Op.SingletonReg = Reg->TheDef;
897    return;
898  }
899
900  if (!Tok.startswith(RegisterPrefix))
901    return;
902
903  StringRef RegName = Tok.substr(RegisterPrefix.size());
904  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
905    Op.SingletonReg = Reg->TheDef;
906
907  // If there is no register prefix (i.e. "%" in "%eax"), then this may
908  // be some random non-register token, just ignore it.
909}
910
911void MatchableInfo::initialize(const AsmMatcherInfo &Info,
912                               SmallPtrSetImpl<Record*> &SingletonRegisters,
913                               AsmVariantInfo const &Variant,
914                               bool HasMnemonicFirst) {
915  AsmVariantID = Variant.AsmVariantNo;
916  AsmString =
917    CodeGenInstruction::FlattenAsmStringVariants(AsmString,
918                                                 Variant.AsmVariantNo);
919
920  tokenizeAsmString(Info, Variant);
921
922  // The first token of the instruction is the mnemonic, which must be a
923  // simple string, not a $foo variable or a singleton register.
924  if (AsmOperands.empty())
925    PrintFatalError(TheDef->getLoc(),
926                  "Instruction '" + TheDef->getName() + "' has no tokens");
927
928  assert(!AsmOperands[0].Token.empty());
929  if (HasMnemonicFirst) {
930    Mnemonic = AsmOperands[0].Token;
931    if (Mnemonic[0] == '$')
932      PrintFatalError(TheDef->getLoc(),
933                      "Invalid instruction mnemonic '" + Mnemonic + "'!");
934
935    // Remove the first operand, it is tracked in the mnemonic field.
936    AsmOperands.erase(AsmOperands.begin());
937  } else if (AsmOperands[0].Token[0] != '$')
938    Mnemonic = AsmOperands[0].Token;
939
940  // Compute the require features.
941  for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
942    if (const SubtargetFeatureInfo *Feature =
943            Info.getSubtargetFeature(Predicate))
944      RequiredFeatures.push_back(Feature);
945
946  // Collect singleton registers, if used.
947  for (MatchableInfo::AsmOperand &Op : AsmOperands) {
948    extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
949    if (Record *Reg = Op.SingletonReg)
950      SingletonRegisters.insert(Reg);
951  }
952
953  const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
954  if (!DepMask)
955    DepMask = TheDef->getValue("ComplexDeprecationPredicate");
956
957  HasDeprecation =
958      DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
959}
960
961/// Append an AsmOperand for the given substring of AsmString.
962void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
963  AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
964}
965
966/// tokenizeAsmString - Tokenize a simplified assembly string.
967void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
968                                      AsmVariantInfo const &Variant) {
969  StringRef String = AsmString;
970  size_t Prev = 0;
971  bool InTok = false;
972  bool IsIsolatedToken = true;
973  for (size_t i = 0, e = String.size(); i != e; ++i) {
974    char Char = String[i];
975    if (Variant.BreakCharacters.find(Char) != std::string::npos) {
976      if (InTok) {
977        addAsmOperand(String.slice(Prev, i), false);
978        Prev = i;
979        IsIsolatedToken = false;
980      }
981      InTok = true;
982      continue;
983    }
984    if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
985      if (InTok) {
986        addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
987        InTok = false;
988        IsIsolatedToken = false;
989      }
990      addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
991      Prev = i + 1;
992      IsIsolatedToken = true;
993      continue;
994    }
995    if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
996      if (InTok) {
997        addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
998        InTok = false;
999      }
1000      Prev = i + 1;
1001      IsIsolatedToken = true;
1002      continue;
1003    }
1004
1005    switch (Char) {
1006    case '\\':
1007      if (InTok) {
1008        addAsmOperand(String.slice(Prev, i), false);
1009        InTok = false;
1010        IsIsolatedToken = false;
1011      }
1012      ++i;
1013      assert(i != String.size() && "Invalid quoted character");
1014      addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1015      Prev = i + 1;
1016      IsIsolatedToken = false;
1017      break;
1018
1019    case '$': {
1020      if (InTok) {
1021        addAsmOperand(String.slice(Prev, i), false);
1022        InTok = false;
1023        IsIsolatedToken = false;
1024      }
1025
1026      // If this isn't "${", start new identifier looking like "$xxx"
1027      if (i + 1 == String.size() || String[i + 1] != '{') {
1028        Prev = i;
1029        break;
1030      }
1031
1032      size_t EndPos = String.find('}', i);
1033      assert(EndPos != StringRef::npos &&
1034             "Missing brace in operand reference!");
1035      addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1036      Prev = EndPos + 1;
1037      i = EndPos;
1038      IsIsolatedToken = false;
1039      break;
1040    }
1041
1042    default:
1043      InTok = true;
1044      break;
1045    }
1046  }
1047  if (InTok && Prev != String.size())
1048    addAsmOperand(String.substr(Prev), IsIsolatedToken);
1049}
1050
1051bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1052  // Reject matchables with no .s string.
1053  if (AsmString.empty())
1054    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1055
1056  // Reject any matchables with a newline in them, they should be marked
1057  // isCodeGenOnly if they are pseudo instructions.
1058  if (AsmString.find('\n') != std::string::npos)
1059    PrintFatalError(TheDef->getLoc(),
1060                  "multiline instruction is not valid for the asmparser, "
1061                  "mark it isCodeGenOnly");
1062
1063  // Remove comments from the asm string.  We know that the asmstring only
1064  // has one line.
1065  if (!CommentDelimiter.empty() &&
1066      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1067    PrintFatalError(TheDef->getLoc(),
1068                  "asmstring for instruction has comment character in it, "
1069                  "mark it isCodeGenOnly");
1070
1071  // Reject matchables with operand modifiers, these aren't something we can
1072  // handle, the target should be refactored to use operands instead of
1073  // modifiers.
1074  //
1075  // Also, check for instructions which reference the operand multiple times,
1076  // if they don't define a custom AsmMatcher: this implies a constraint that
1077  // the built-in matching code would not honor.
1078  std::set<std::string> OperandNames;
1079  for (const AsmOperand &Op : AsmOperands) {
1080    StringRef Tok = Op.Token;
1081    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1082      PrintFatalError(TheDef->getLoc(),
1083                      "matchable with operand modifier '" + Tok +
1084                      "' not supported by asm matcher.  Mark isCodeGenOnly!");
1085    // Verify that any operand is only mentioned once.
1086    // We reject aliases and ignore instructions for now.
1087    if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1088        Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1089      LLVM_DEBUG({
1090        errs() << "warning: '" << TheDef->getName() << "': "
1091               << "ignoring instruction with tied operand '"
1092               << Tok << "'\n";
1093      });
1094      return false;
1095    }
1096  }
1097
1098  return true;
1099}
1100
1101static std::string getEnumNameForToken(StringRef Str) {
1102  std::string Res;
1103
1104  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1105    switch (*it) {
1106    case '*': Res += "_STAR_"; break;
1107    case '%': Res += "_PCT_"; break;
1108    case ':': Res += "_COLON_"; break;
1109    case '!': Res += "_EXCLAIM_"; break;
1110    case '.': Res += "_DOT_"; break;
1111    case '<': Res += "_LT_"; break;
1112    case '>': Res += "_GT_"; break;
1113    case '-': Res += "_MINUS_"; break;
1114    case '#': Res += "_HASH_"; break;
1115    default:
1116      if ((*it >= 'A' && *it <= 'Z') ||
1117          (*it >= 'a' && *it <= 'z') ||
1118          (*it >= '0' && *it <= '9'))
1119        Res += *it;
1120      else
1121        Res += "_" + utostr((unsigned) *it) + "_";
1122    }
1123  }
1124
1125  return Res;
1126}
1127
1128ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1129  ClassInfo *&Entry = TokenClasses[Token];
1130
1131  if (!Entry) {
1132    Classes.emplace_front();
1133    Entry = &Classes.front();
1134    Entry->Kind = ClassInfo::Token;
1135    Entry->ClassName = "Token";
1136    Entry->Name = "MCK_" + getEnumNameForToken(Token);
1137    Entry->ValueName = Token;
1138    Entry->PredicateMethod = "<invalid>";
1139    Entry->RenderMethod = "<invalid>";
1140    Entry->ParserMethod = "";
1141    Entry->DiagnosticType = "";
1142    Entry->IsOptional = false;
1143    Entry->DefaultMethod = "<invalid>";
1144  }
1145
1146  return Entry;
1147}
1148
1149ClassInfo *
1150AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1151                                int SubOpIdx) {
1152  Record *Rec = OI.Rec;
1153  if (SubOpIdx != -1)
1154    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1155  return getOperandClass(Rec, SubOpIdx);
1156}
1157
1158ClassInfo *
1159AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1160  if (Rec->isSubClassOf("RegisterOperand")) {
1161    // RegisterOperand may have an associated ParserMatchClass. If it does,
1162    // use it, else just fall back to the underlying register class.
1163    const RecordVal *R = Rec->getValue("ParserMatchClass");
1164    if (!R || !R->getValue())
1165      PrintFatalError(Rec->getLoc(),
1166                      "Record `" + Rec->getName() +
1167                          "' does not have a ParserMatchClass!\n");
1168
1169    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1170      Record *MatchClass = DI->getDef();
1171      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1172        return CI;
1173    }
1174
1175    // No custom match class. Just use the register class.
1176    Record *ClassRec = Rec->getValueAsDef("RegClass");
1177    if (!ClassRec)
1178      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1179                    "' has no associated register class!\n");
1180    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1181      return CI;
1182    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1183  }
1184
1185  if (Rec->isSubClassOf("RegisterClass")) {
1186    if (ClassInfo *CI = RegisterClassClasses[Rec])
1187      return CI;
1188    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1189  }
1190
1191  if (!Rec->isSubClassOf("Operand"))
1192    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1193                  "' does not derive from class Operand!\n");
1194  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1195  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1196    return CI;
1197
1198  PrintFatalError(Rec->getLoc(), "operand has no match class!");
1199}
1200
1201struct LessRegisterSet {
1202  bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1203    // std::set<T> defines its own compariso "operator<", but it
1204    // performs a lexicographical comparison by T's innate comparison
1205    // for some reason. We don't want non-deterministic pointer
1206    // comparisons so use this instead.
1207    return std::lexicographical_compare(LHS.begin(), LHS.end(),
1208                                        RHS.begin(), RHS.end(),
1209                                        LessRecordByID());
1210  }
1211};
1212
1213void AsmMatcherInfo::
1214buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1215  const auto &Registers = Target.getRegBank().getRegisters();
1216  auto &RegClassList = Target.getRegBank().getRegClasses();
1217
1218  typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1219
1220  // The register sets used for matching.
1221  RegisterSetSet RegisterSets;
1222
1223  // Gather the defined sets.
1224  for (const CodeGenRegisterClass &RC : RegClassList)
1225    RegisterSets.insert(
1226        RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1227
1228  // Add any required singleton sets.
1229  for (Record *Rec : SingletonRegisters) {
1230    RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1231  }
1232
1233  // Introduce derived sets where necessary (when a register does not determine
1234  // a unique register set class), and build the mapping of registers to the set
1235  // they should classify to.
1236  std::map<Record*, RegisterSet> RegisterMap;
1237  for (const CodeGenRegister &CGR : Registers) {
1238    // Compute the intersection of all sets containing this register.
1239    RegisterSet ContainingSet;
1240
1241    for (const RegisterSet &RS : RegisterSets) {
1242      if (!RS.count(CGR.TheDef))
1243        continue;
1244
1245      if (ContainingSet.empty()) {
1246        ContainingSet = RS;
1247        continue;
1248      }
1249
1250      RegisterSet Tmp;
1251      std::swap(Tmp, ContainingSet);
1252      std::insert_iterator<RegisterSet> II(ContainingSet,
1253                                           ContainingSet.begin());
1254      std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1255                            LessRecordByID());
1256    }
1257
1258    if (!ContainingSet.empty()) {
1259      RegisterSets.insert(ContainingSet);
1260      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1261    }
1262  }
1263
1264  // Construct the register classes.
1265  std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1266  unsigned Index = 0;
1267  for (const RegisterSet &RS : RegisterSets) {
1268    Classes.emplace_front();
1269    ClassInfo *CI = &Classes.front();
1270    CI->Kind = ClassInfo::RegisterClass0 + Index;
1271    CI->ClassName = "Reg" + utostr(Index);
1272    CI->Name = "MCK_Reg" + utostr(Index);
1273    CI->ValueName = "";
1274    CI->PredicateMethod = ""; // unused
1275    CI->RenderMethod = "addRegOperands";
1276    CI->Registers = RS;
1277    // FIXME: diagnostic type.
1278    CI->DiagnosticType = "";
1279    CI->IsOptional = false;
1280    CI->DefaultMethod = ""; // unused
1281    RegisterSetClasses.insert(std::make_pair(RS, CI));
1282    ++Index;
1283  }
1284
1285  // Find the superclasses; we could compute only the subgroup lattice edges,
1286  // but there isn't really a point.
1287  for (const RegisterSet &RS : RegisterSets) {
1288    ClassInfo *CI = RegisterSetClasses[RS];
1289    for (const RegisterSet &RS2 : RegisterSets)
1290      if (RS != RS2 &&
1291          std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1292                        LessRecordByID()))
1293        CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1294  }
1295
1296  // Name the register classes which correspond to a user defined RegisterClass.
1297  for (const CodeGenRegisterClass &RC : RegClassList) {
1298    // Def will be NULL for non-user defined register classes.
1299    Record *Def = RC.getDef();
1300    if (!Def)
1301      continue;
1302    ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1303                                                   RC.getOrder().end())];
1304    if (CI->ValueName.empty()) {
1305      CI->ClassName = RC.getName();
1306      CI->Name = "MCK_" + RC.getName();
1307      CI->ValueName = RC.getName();
1308    } else
1309      CI->ValueName = CI->ValueName + "," + RC.getName();
1310
1311    Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1312    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1313      CI->DiagnosticType = SI->getValue();
1314
1315    Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1316    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1317      CI->DiagnosticString = SI->getValue();
1318
1319    // If we have a diagnostic string but the diagnostic type is not specified
1320    // explicitly, create an anonymous diagnostic type.
1321    if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1322      CI->DiagnosticType = RC.getName();
1323
1324    RegisterClassClasses.insert(std::make_pair(Def, CI));
1325  }
1326
1327  // Populate the map for individual registers.
1328  for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1329         ie = RegisterMap.end(); it != ie; ++it)
1330    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1331
1332  // Name the register classes which correspond to singleton registers.
1333  for (Record *Rec : SingletonRegisters) {
1334    ClassInfo *CI = RegisterClasses[Rec];
1335    assert(CI && "Missing singleton register class info!");
1336
1337    if (CI->ValueName.empty()) {
1338      CI->ClassName = Rec->getName();
1339      CI->Name = "MCK_" + Rec->getName().str();
1340      CI->ValueName = Rec->getName();
1341    } else
1342      CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1343  }
1344}
1345
1346void AsmMatcherInfo::buildOperandClasses() {
1347  std::vector<Record*> AsmOperands =
1348    Records.getAllDerivedDefinitions("AsmOperandClass");
1349
1350  // Pre-populate AsmOperandClasses map.
1351  for (Record *Rec : AsmOperands) {
1352    Classes.emplace_front();
1353    AsmOperandClasses[Rec] = &Classes.front();
1354  }
1355
1356  unsigned Index = 0;
1357  for (Record *Rec : AsmOperands) {
1358    ClassInfo *CI = AsmOperandClasses[Rec];
1359    CI->Kind = ClassInfo::UserClass0 + Index;
1360
1361    ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1362    for (Init *I : Supers->getValues()) {
1363      DefInit *DI = dyn_cast<DefInit>(I);
1364      if (!DI) {
1365        PrintError(Rec->getLoc(), "Invalid super class reference!");
1366        continue;
1367      }
1368
1369      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1370      if (!SC)
1371        PrintError(Rec->getLoc(), "Invalid super class reference!");
1372      else
1373        CI->SuperClasses.push_back(SC);
1374    }
1375    CI->ClassName = Rec->getValueAsString("Name");
1376    CI->Name = "MCK_" + CI->ClassName;
1377    CI->ValueName = Rec->getName();
1378
1379    // Get or construct the predicate method name.
1380    Init *PMName = Rec->getValueInit("PredicateMethod");
1381    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1382      CI->PredicateMethod = SI->getValue();
1383    } else {
1384      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1385      CI->PredicateMethod = "is" + CI->ClassName;
1386    }
1387
1388    // Get or construct the render method name.
1389    Init *RMName = Rec->getValueInit("RenderMethod");
1390    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1391      CI->RenderMethod = SI->getValue();
1392    } else {
1393      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1394      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1395    }
1396
1397    // Get the parse method name or leave it as empty.
1398    Init *PRMName = Rec->getValueInit("ParserMethod");
1399    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1400      CI->ParserMethod = SI->getValue();
1401
1402    // Get the diagnostic type and string or leave them as empty.
1403    Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1404    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1405      CI->DiagnosticType = SI->getValue();
1406    Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1407    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1408      CI->DiagnosticString = SI->getValue();
1409    // If we have a DiagnosticString, we need a DiagnosticType for use within
1410    // the matcher.
1411    if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1412      CI->DiagnosticType = CI->ClassName;
1413
1414    Init *IsOptional = Rec->getValueInit("IsOptional");
1415    if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1416      CI->IsOptional = BI->getValue();
1417
1418    // Get or construct the default method name.
1419    Init *DMName = Rec->getValueInit("DefaultMethod");
1420    if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1421      CI->DefaultMethod = SI->getValue();
1422    } else {
1423      assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1424      CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1425    }
1426
1427    ++Index;
1428  }
1429}
1430
1431AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1432                               CodeGenTarget &target,
1433                               RecordKeeper &records)
1434  : Records(records), AsmParser(asmParser), Target(target) {
1435}
1436
1437/// buildOperandMatchInfo - Build the necessary information to handle user
1438/// defined operand parsing methods.
1439void AsmMatcherInfo::buildOperandMatchInfo() {
1440
1441  /// Map containing a mask with all operands indices that can be found for
1442  /// that class inside a instruction.
1443  typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1444  OpClassMaskTy OpClassMask;
1445
1446  for (const auto &MI : Matchables) {
1447    OpClassMask.clear();
1448
1449    // Keep track of all operands of this instructions which belong to the
1450    // same class.
1451    for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1452      const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1453      if (Op.Class->ParserMethod.empty())
1454        continue;
1455      unsigned &OperandMask = OpClassMask[Op.Class];
1456      OperandMask |= (1 << i);
1457    }
1458
1459    // Generate operand match info for each mnemonic/operand class pair.
1460    for (const auto &OCM : OpClassMask) {
1461      unsigned OpMask = OCM.second;
1462      ClassInfo *CI = OCM.first;
1463      OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1464                                                           OpMask));
1465    }
1466  }
1467}
1468
1469void AsmMatcherInfo::buildInfo() {
1470  // Build information about all of the AssemblerPredicates.
1471  const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1472      &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1473  SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1474                           SubtargetFeaturePairs.end());
1475#ifndef NDEBUG
1476  for (const auto &Pair : SubtargetFeatures)
1477    LLVM_DEBUG(Pair.second.dump());
1478#endif // NDEBUG
1479
1480  bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1481  bool ReportMultipleNearMisses =
1482      AsmParser->getValueAsBit("ReportMultipleNearMisses");
1483
1484  // Parse the instructions; we need to do this first so that we can gather the
1485  // singleton register classes.
1486  SmallPtrSet<Record*, 16> SingletonRegisters;
1487  unsigned VariantCount = Target.getAsmParserVariantCount();
1488  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1489    Record *AsmVariant = Target.getAsmParserVariant(VC);
1490    StringRef CommentDelimiter =
1491        AsmVariant->getValueAsString("CommentDelimiter");
1492    AsmVariantInfo Variant;
1493    Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1494    Variant.TokenizingCharacters =
1495        AsmVariant->getValueAsString("TokenizingCharacters");
1496    Variant.SeparatorCharacters =
1497        AsmVariant->getValueAsString("SeparatorCharacters");
1498    Variant.BreakCharacters =
1499        AsmVariant->getValueAsString("BreakCharacters");
1500    Variant.Name = AsmVariant->getValueAsString("Name");
1501    Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1502
1503    for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1504
1505      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1506      // filter the set of instructions we consider.
1507      if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1508        continue;
1509
1510      // Ignore "codegen only" instructions.
1511      if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1512        continue;
1513
1514      // Ignore instructions for different instructions
1515      StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1516      if (!V.empty() && V != Variant.Name)
1517        continue;
1518
1519      auto II = std::make_unique<MatchableInfo>(*CGI);
1520
1521      II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1522
1523      // Ignore instructions which shouldn't be matched and diagnose invalid
1524      // instruction definitions with an error.
1525      if (!II->validate(CommentDelimiter, false))
1526        continue;
1527
1528      Matchables.push_back(std::move(II));
1529    }
1530
1531    // Parse all of the InstAlias definitions and stick them in the list of
1532    // matchables.
1533    std::vector<Record*> AllInstAliases =
1534      Records.getAllDerivedDefinitions("InstAlias");
1535    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1536      auto Alias = std::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1537                                                       Target);
1538
1539      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1540      // filter the set of instruction aliases we consider, based on the target
1541      // instruction.
1542      if (!StringRef(Alias->ResultInst->TheDef->getName())
1543            .startswith( MatchPrefix))
1544        continue;
1545
1546      StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1547      if (!V.empty() && V != Variant.Name)
1548        continue;
1549
1550      auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1551
1552      II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1553
1554      // Validate the alias definitions.
1555      II->validate(CommentDelimiter, true);
1556
1557      Matchables.push_back(std::move(II));
1558    }
1559  }
1560
1561  // Build info for the register classes.
1562  buildRegisterClasses(SingletonRegisters);
1563
1564  // Build info for the user defined assembly operand classes.
1565  buildOperandClasses();
1566
1567  // Build the information about matchables, now that we have fully formed
1568  // classes.
1569  std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1570  for (auto &II : Matchables) {
1571    // Parse the tokens after the mnemonic.
1572    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1573    // don't precompute the loop bound.
1574    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1575      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1576      StringRef Token = Op.Token;
1577
1578      // Check for singleton registers.
1579      if (Record *RegRecord = Op.SingletonReg) {
1580        Op.Class = RegisterClasses[RegRecord];
1581        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1582               "Unexpected class for singleton register");
1583        continue;
1584      }
1585
1586      // Check for simple tokens.
1587      if (Token[0] != '$') {
1588        Op.Class = getTokenClass(Token);
1589        continue;
1590      }
1591
1592      if (Token.size() > 1 && isdigit(Token[1])) {
1593        Op.Class = getTokenClass(Token);
1594        continue;
1595      }
1596
1597      // Otherwise this is an operand reference.
1598      StringRef OperandName;
1599      if (Token[1] == '{')
1600        OperandName = Token.substr(2, Token.size() - 3);
1601      else
1602        OperandName = Token.substr(1);
1603
1604      if (II->DefRec.is<const CodeGenInstruction*>())
1605        buildInstructionOperandReference(II.get(), OperandName, i);
1606      else
1607        buildAliasOperandReference(II.get(), OperandName, Op);
1608    }
1609
1610    if (II->DefRec.is<const CodeGenInstruction*>()) {
1611      II->buildInstructionResultOperands();
1612      // If the instruction has a two-operand alias, build up the
1613      // matchable here. We'll add them in bulk at the end to avoid
1614      // confusing this loop.
1615      StringRef Constraint =
1616          II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1617      if (Constraint != "") {
1618        // Start by making a copy of the original matchable.
1619        auto AliasII = std::make_unique<MatchableInfo>(*II);
1620
1621        // Adjust it to be a two-operand alias.
1622        AliasII->formTwoOperandAlias(Constraint);
1623
1624        // Add the alias to the matchables list.
1625        NewMatchables.push_back(std::move(AliasII));
1626      }
1627    } else
1628      // FIXME: The tied operands checking is not yet integrated with the
1629      // framework for reporting multiple near misses. To prevent invalid
1630      // formats from being matched with an alias if a tied-operands check
1631      // would otherwise have disallowed it, we just disallow such constructs
1632      // in TableGen completely.
1633      II->buildAliasResultOperands(!ReportMultipleNearMisses);
1634  }
1635  if (!NewMatchables.empty())
1636    Matchables.insert(Matchables.end(),
1637                      std::make_move_iterator(NewMatchables.begin()),
1638                      std::make_move_iterator(NewMatchables.end()));
1639
1640  // Process token alias definitions and set up the associated superclass
1641  // information.
1642  std::vector<Record*> AllTokenAliases =
1643    Records.getAllDerivedDefinitions("TokenAlias");
1644  for (Record *Rec : AllTokenAliases) {
1645    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1646    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1647    if (FromClass == ToClass)
1648      PrintFatalError(Rec->getLoc(),
1649                    "error: Destination value identical to source value.");
1650    FromClass->SuperClasses.push_back(ToClass);
1651  }
1652
1653  // Reorder classes so that classes precede super classes.
1654  Classes.sort();
1655
1656#ifdef EXPENSIVE_CHECKS
1657  // Verify that the table is sorted and operator < works transitively.
1658  for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1659    for (auto J = I; J != E; ++J) {
1660      assert(!(*J < *I));
1661      assert(I == J || !J->isSubsetOf(*I));
1662    }
1663  }
1664#endif
1665}
1666
1667/// buildInstructionOperandReference - The specified operand is a reference to a
1668/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1669void AsmMatcherInfo::
1670buildInstructionOperandReference(MatchableInfo *II,
1671                                 StringRef OperandName,
1672                                 unsigned AsmOpIdx) {
1673  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1674  const CGIOperandList &Operands = CGI.Operands;
1675  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1676
1677  // Map this token to an operand.
1678  unsigned Idx;
1679  if (!Operands.hasOperandNamed(OperandName, Idx))
1680    PrintFatalError(II->TheDef->getLoc(),
1681                    "error: unable to find operand: '" + OperandName + "'");
1682
1683  // If the instruction operand has multiple suboperands, but the parser
1684  // match class for the asm operand is still the default "ImmAsmOperand",
1685  // then handle each suboperand separately.
1686  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1687    Record *Rec = Operands[Idx].Rec;
1688    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1689    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1690    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1691      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1692      StringRef Token = Op->Token; // save this in case Op gets moved
1693      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1694        MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1695        NewAsmOp.SubOpIdx = SI;
1696        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1697      }
1698      // Replace Op with first suboperand.
1699      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1700      Op->SubOpIdx = 0;
1701    }
1702  }
1703
1704  // Set up the operand class.
1705  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1706  Op->OrigSrcOpName = OperandName;
1707
1708  // If the named operand is tied, canonicalize it to the untied operand.
1709  // For example, something like:
1710  //   (outs GPR:$dst), (ins GPR:$src)
1711  // with an asmstring of
1712  //   "inc $src"
1713  // we want to canonicalize to:
1714  //   "inc $dst"
1715  // so that we know how to provide the $dst operand when filling in the result.
1716  int OITied = -1;
1717  if (Operands[Idx].MINumOperands == 1)
1718    OITied = Operands[Idx].getTiedRegister();
1719  if (OITied != -1) {
1720    // The tied operand index is an MIOperand index, find the operand that
1721    // contains it.
1722    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1723    OperandName = Operands[Idx.first].Name;
1724    Op->SubOpIdx = Idx.second;
1725  }
1726
1727  Op->SrcOpName = OperandName;
1728}
1729
1730/// buildAliasOperandReference - When parsing an operand reference out of the
1731/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1732/// operand reference is by looking it up in the result pattern definition.
1733void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1734                                                StringRef OperandName,
1735                                                MatchableInfo::AsmOperand &Op) {
1736  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1737
1738  // Set up the operand class.
1739  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1740    if (CGA.ResultOperands[i].isRecord() &&
1741        CGA.ResultOperands[i].getName() == OperandName) {
1742      // It's safe to go with the first one we find, because CodeGenInstAlias
1743      // validates that all operands with the same name have the same record.
1744      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1745      // Use the match class from the Alias definition, not the
1746      // destination instruction, as we may have an immediate that's
1747      // being munged by the match class.
1748      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1749                                 Op.SubOpIdx);
1750      Op.SrcOpName = OperandName;
1751      Op.OrigSrcOpName = OperandName;
1752      return;
1753    }
1754
1755  PrintFatalError(II->TheDef->getLoc(),
1756                  "error: unable to find operand: '" + OperandName + "'");
1757}
1758
1759void MatchableInfo::buildInstructionResultOperands() {
1760  const CodeGenInstruction *ResultInst = getResultInst();
1761
1762  // Loop over all operands of the result instruction, determining how to
1763  // populate them.
1764  for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1765    // If this is a tied operand, just copy from the previously handled operand.
1766    int TiedOp = -1;
1767    if (OpInfo.MINumOperands == 1)
1768      TiedOp = OpInfo.getTiedRegister();
1769    if (TiedOp != -1) {
1770      int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1771      if (TiedSrcOperand != -1 &&
1772          ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1773        ResOperands.push_back(ResOperand::getTiedOp(
1774            TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1775      else
1776        ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1777      continue;
1778    }
1779
1780    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1781    if (OpInfo.Name.empty() || SrcOperand == -1) {
1782      // This may happen for operands that are tied to a suboperand of a
1783      // complex operand.  Simply use a dummy value here; nobody should
1784      // use this operand slot.
1785      // FIXME: The long term goal is for the MCOperand list to not contain
1786      // tied operands at all.
1787      ResOperands.push_back(ResOperand::getImmOp(0));
1788      continue;
1789    }
1790
1791    // Check if the one AsmOperand populates the entire operand.
1792    unsigned NumOperands = OpInfo.MINumOperands;
1793    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1794      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1795      continue;
1796    }
1797
1798    // Add a separate ResOperand for each suboperand.
1799    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1800      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1801             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1802             "unexpected AsmOperands for suboperands");
1803      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1804    }
1805  }
1806}
1807
1808void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1809  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1810  const CodeGenInstruction *ResultInst = getResultInst();
1811
1812  // Map of:  $reg -> #lastref
1813  //   where $reg is the name of the operand in the asm string
1814  //   where #lastref is the last processed index where $reg was referenced in
1815  //   the asm string.
1816  SmallDenseMap<StringRef, int> OperandRefs;
1817
1818  // Loop over all operands of the result instruction, determining how to
1819  // populate them.
1820  unsigned AliasOpNo = 0;
1821  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1822  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1823    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1824
1825    // If this is a tied operand, just copy from the previously handled operand.
1826    int TiedOp = -1;
1827    if (OpInfo->MINumOperands == 1)
1828      TiedOp = OpInfo->getTiedRegister();
1829    if (TiedOp != -1) {
1830      unsigned SrcOp1 = 0;
1831      unsigned SrcOp2 = 0;
1832
1833      // If an operand has been specified twice in the asm string,
1834      // add the two source operand's indices to the TiedOp so that
1835      // at runtime the 'tied' constraint is checked.
1836      if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1837        SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1838
1839        // Find the next operand (similarly named operand) in the string.
1840        StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1841        auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1842        SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1843
1844        // Not updating the record in OperandRefs will cause TableGen
1845        // to fail with an error at the end of this function.
1846        if (AliasConstraintsAreChecked)
1847          Insert.first->second = SrcOp2;
1848
1849        // In case it only has one reference in the asm string,
1850        // it doesn't need to be checked for tied constraints.
1851        SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1852      }
1853
1854      // If the alias operand is of a different operand class, we only want
1855      // to benefit from the tied-operands check and just match the operand
1856      // as a normal, but not copy the original (TiedOp) to the result
1857      // instruction. We do this by passing -1 as the tied operand to copy.
1858      if (ResultInst->Operands[i].Rec->getName() !=
1859          ResultInst->Operands[TiedOp].Rec->getName()) {
1860        SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1861        int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1862        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1863        SrcOp2 = findAsmOperand(Name, SubIdx);
1864        ResOperands.push_back(
1865            ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1866      } else {
1867        ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1868        continue;
1869      }
1870    }
1871
1872    // Handle all the suboperands for this operand.
1873    const std::string &OpName = OpInfo->Name;
1874    for ( ; AliasOpNo <  LastOpNo &&
1875            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1876      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1877
1878      // Find out what operand from the asmparser that this MCInst operand
1879      // comes from.
1880      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1881      case CodeGenInstAlias::ResultOperand::K_Record: {
1882        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1883        int SrcOperand = findAsmOperand(Name, SubIdx);
1884        if (SrcOperand == -1)
1885          PrintFatalError(TheDef->getLoc(), "Instruction '" +
1886                        TheDef->getName() + "' has operand '" + OpName +
1887                        "' that doesn't appear in asm string!");
1888
1889        // Add it to the operand references. If it is added a second time, the
1890        // record won't be updated and it will fail later on.
1891        OperandRefs.try_emplace(Name, SrcOperand);
1892
1893        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1894        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1895                                                        NumOperands));
1896        break;
1897      }
1898      case CodeGenInstAlias::ResultOperand::K_Imm: {
1899        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1900        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1901        break;
1902      }
1903      case CodeGenInstAlias::ResultOperand::K_Reg: {
1904        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1905        ResOperands.push_back(ResOperand::getRegOp(Reg));
1906        break;
1907      }
1908      }
1909    }
1910  }
1911
1912  // Check that operands are not repeated more times than is supported.
1913  for (auto &T : OperandRefs) {
1914    if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1915      PrintFatalError(TheDef->getLoc(),
1916                      "Operand '" + T.first + "' can never be matched");
1917  }
1918}
1919
1920static unsigned
1921getConverterOperandID(const std::string &Name,
1922                      SmallSetVector<CachedHashString, 16> &Table,
1923                      bool &IsNew) {
1924  IsNew = Table.insert(CachedHashString(Name));
1925
1926  unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1927
1928  assert(ID < Table.size());
1929
1930  return ID;
1931}
1932
1933static unsigned
1934emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1935                 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1936                 bool HasMnemonicFirst, bool HasOptionalOperands,
1937                 raw_ostream &OS) {
1938  SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1939  SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1940  std::vector<std::vector<uint8_t> > ConversionTable;
1941  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1942
1943  // TargetOperandClass - This is the target's operand class, like X86Operand.
1944  std::string TargetOperandClass = Target.getName().str() + "Operand";
1945
1946  // Write the convert function to a separate stream, so we can drop it after
1947  // the enum. We'll build up the conversion handlers for the individual
1948  // operand types opportunistically as we encounter them.
1949  std::string ConvertFnBody;
1950  raw_string_ostream CvtOS(ConvertFnBody);
1951  // Start the unified conversion function.
1952  if (HasOptionalOperands) {
1953    CvtOS << "void " << Target.getName() << ClassName << "::\n"
1954          << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1955          << "unsigned Opcode,\n"
1956          << "                const OperandVector &Operands,\n"
1957          << "                const SmallBitVector &OptionalOperandsMask) {\n";
1958  } else {
1959    CvtOS << "void " << Target.getName() << ClassName << "::\n"
1960          << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1961          << "unsigned Opcode,\n"
1962          << "                const OperandVector &Operands) {\n";
1963  }
1964  CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1965  CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1966  if (HasOptionalOperands) {
1967    size_t MaxNumOperands = 0;
1968    for (const auto &MI : Infos) {
1969      MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1970    }
1971    CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1972          << "] = { 0 };\n";
1973    CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1974          << ");\n";
1975    CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1976          << "; ++i) {\n";
1977    CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1978    CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1979    CvtOS << "  }\n";
1980  }
1981  CvtOS << "  unsigned OpIdx;\n";
1982  CvtOS << "  Inst.setOpcode(Opcode);\n";
1983  CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1984  if (HasOptionalOperands) {
1985    CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1986  } else {
1987    CvtOS << "    OpIdx = *(p + 1);\n";
1988  }
1989  CvtOS << "    switch (*p) {\n";
1990  CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1991  CvtOS << "    case CVT_Reg:\n";
1992  CvtOS << "      static_cast<" << TargetOperandClass
1993        << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1994  CvtOS << "      break;\n";
1995  CvtOS << "    case CVT_Tied: {\n";
1996  CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1997  CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n";
1998  CvtOS << "             \"Tied operand not found\");\n";
1999  CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
2000  CvtOS << "      if (TiedResOpnd != (uint8_t) -1)\n";
2001  CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2002  CvtOS << "      break;\n";
2003  CvtOS << "    }\n";
2004
2005  std::string OperandFnBody;
2006  raw_string_ostream OpOS(OperandFnBody);
2007  // Start the operand number lookup function.
2008  OpOS << "void " << Target.getName() << ClassName << "::\n"
2009       << "convertToMapAndConstraints(unsigned Kind,\n";
2010  OpOS.indent(27);
2011  OpOS << "const OperandVector &Operands) {\n"
2012       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2013       << "  unsigned NumMCOperands = 0;\n"
2014       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2015       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
2016       << "    switch (*p) {\n"
2017       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2018       << "    case CVT_Reg:\n"
2019       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2020       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2021       << "      ++NumMCOperands;\n"
2022       << "      break;\n"
2023       << "    case CVT_Tied:\n"
2024       << "      ++NumMCOperands;\n"
2025       << "      break;\n";
2026
2027  // Pre-populate the operand conversion kinds with the standard always
2028  // available entries.
2029  OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2030  OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2031  OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2032  enum { CVT_Done, CVT_Reg, CVT_Tied };
2033
2034  // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2035  std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2036  TiedOperandsEnumMap;
2037
2038  for (auto &II : Infos) {
2039    // Check if we have a custom match function.
2040    StringRef AsmMatchConverter =
2041        II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2042    if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2043      std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2044      II->ConversionFnKind = Signature;
2045
2046      // Check if we have already generated this signature.
2047      if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2048        continue;
2049
2050      // Remember this converter for the kind enum.
2051      unsigned KindID = OperandConversionKinds.size();
2052      OperandConversionKinds.insert(
2053          CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2054
2055      // Add the converter row for this instruction.
2056      ConversionTable.emplace_back();
2057      ConversionTable.back().push_back(KindID);
2058      ConversionTable.back().push_back(CVT_Done);
2059
2060      // Add the handler to the conversion driver function.
2061      CvtOS << "    case CVT_"
2062            << getEnumNameForToken(AsmMatchConverter) << ":\n"
2063            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2064            << "      break;\n";
2065
2066      // FIXME: Handle the operand number lookup for custom match functions.
2067      continue;
2068    }
2069
2070    // Build the conversion function signature.
2071    std::string Signature = "Convert";
2072
2073    std::vector<uint8_t> ConversionRow;
2074
2075    // Compute the convert enum and the case body.
2076    MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2077
2078    for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2079      const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2080
2081      // Generate code to populate each result operand.
2082      switch (OpInfo.Kind) {
2083      case MatchableInfo::ResOperand::RenderAsmOperand: {
2084        // This comes from something we parsed.
2085        const MatchableInfo::AsmOperand &Op =
2086          II->AsmOperands[OpInfo.AsmOperandNum];
2087
2088        // Registers are always converted the same, don't duplicate the
2089        // conversion function based on them.
2090        Signature += "__";
2091        std::string Class;
2092        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2093        Signature += Class;
2094        Signature += utostr(OpInfo.MINumOperands);
2095        Signature += "_" + itostr(OpInfo.AsmOperandNum);
2096
2097        // Add the conversion kind, if necessary, and get the associated ID
2098        // the index of its entry in the vector).
2099        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2100                                     Op.Class->RenderMethod);
2101        if (Op.Class->IsOptional) {
2102          // For optional operands we must also care about DefaultMethod
2103          assert(HasOptionalOperands);
2104          Name += "_" + Op.Class->DefaultMethod;
2105        }
2106        Name = getEnumNameForToken(Name);
2107
2108        bool IsNewConverter = false;
2109        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2110                                            IsNewConverter);
2111
2112        // Add the operand entry to the instruction kind conversion row.
2113        ConversionRow.push_back(ID);
2114        ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2115
2116        if (!IsNewConverter)
2117          break;
2118
2119        // This is a new operand kind. Add a handler for it to the
2120        // converter driver.
2121        CvtOS << "    case " << Name << ":\n";
2122        if (Op.Class->IsOptional) {
2123          // If optional operand is not present in actual instruction then we
2124          // should call its DefaultMethod before RenderMethod
2125          assert(HasOptionalOperands);
2126          CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2127                << "        " << Op.Class->DefaultMethod << "()"
2128                << "->" << Op.Class->RenderMethod << "(Inst, "
2129                << OpInfo.MINumOperands << ");\n"
2130                << "      } else {\n"
2131                << "        static_cast<" << TargetOperandClass
2132                << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2133                << "(Inst, " << OpInfo.MINumOperands << ");\n"
2134                << "      }\n";
2135        } else {
2136          CvtOS << "      static_cast<" << TargetOperandClass
2137                << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2138                << "(Inst, " << OpInfo.MINumOperands << ");\n";
2139        }
2140        CvtOS << "      break;\n";
2141
2142        // Add a handler for the operand number lookup.
2143        OpOS << "    case " << Name << ":\n"
2144             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2145
2146        if (Op.Class->isRegisterClass())
2147          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2148        else
2149          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2150        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2151             << "      break;\n";
2152        break;
2153      }
2154      case MatchableInfo::ResOperand::TiedOperand: {
2155        // If this operand is tied to a previous one, just copy the MCInst
2156        // operand from the earlier one.We can only tie single MCOperand values.
2157        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2158        uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2159        uint8_t SrcOp1 =
2160            OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2161        uint8_t SrcOp2 =
2162            OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2163        assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2164               "Tied operand precedes its target!");
2165        auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2166                             utostr(SrcOp1) + '_' + utostr(SrcOp2);
2167        Signature += "__" + TiedTupleName;
2168        ConversionRow.push_back(CVT_Tied);
2169        ConversionRow.push_back(TiedOp);
2170        ConversionRow.push_back(SrcOp1);
2171        ConversionRow.push_back(SrcOp2);
2172
2173        // Also create an 'enum' for this combination of tied operands.
2174        auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2175        TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2176        break;
2177      }
2178      case MatchableInfo::ResOperand::ImmOperand: {
2179        int64_t Val = OpInfo.ImmVal;
2180        std::string Ty = "imm_" + itostr(Val);
2181        Ty = getEnumNameForToken(Ty);
2182        Signature += "__" + Ty;
2183
2184        std::string Name = "CVT_" + Ty;
2185        bool IsNewConverter = false;
2186        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2187                                            IsNewConverter);
2188        // Add the operand entry to the instruction kind conversion row.
2189        ConversionRow.push_back(ID);
2190        ConversionRow.push_back(0);
2191
2192        if (!IsNewConverter)
2193          break;
2194
2195        CvtOS << "    case " << Name << ":\n"
2196              << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2197              << "      break;\n";
2198
2199        OpOS << "    case " << Name << ":\n"
2200             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2201             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2202             << "      ++NumMCOperands;\n"
2203             << "      break;\n";
2204        break;
2205      }
2206      case MatchableInfo::ResOperand::RegOperand: {
2207        std::string Reg, Name;
2208        if (!OpInfo.Register) {
2209          Name = "reg0";
2210          Reg = "0";
2211        } else {
2212          Reg = getQualifiedName(OpInfo.Register);
2213          Name = "reg" + OpInfo.Register->getName().str();
2214        }
2215        Signature += "__" + Name;
2216        Name = "CVT_" + Name;
2217        bool IsNewConverter = false;
2218        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2219                                            IsNewConverter);
2220        // Add the operand entry to the instruction kind conversion row.
2221        ConversionRow.push_back(ID);
2222        ConversionRow.push_back(0);
2223
2224        if (!IsNewConverter)
2225          break;
2226        CvtOS << "    case " << Name << ":\n"
2227              << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2228              << "      break;\n";
2229
2230        OpOS << "    case " << Name << ":\n"
2231             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2232             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2233             << "      ++NumMCOperands;\n"
2234             << "      break;\n";
2235      }
2236      }
2237    }
2238
2239    // If there were no operands, add to the signature to that effect
2240    if (Signature == "Convert")
2241      Signature += "_NoOperands";
2242
2243    II->ConversionFnKind = Signature;
2244
2245    // Save the signature. If we already have it, don't add a new row
2246    // to the table.
2247    if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2248      continue;
2249
2250    // Add the row to the table.
2251    ConversionTable.push_back(std::move(ConversionRow));
2252  }
2253
2254  // Finish up the converter driver function.
2255  CvtOS << "    }\n  }\n}\n\n";
2256
2257  // Finish up the operand number lookup function.
2258  OpOS << "    }\n  }\n}\n\n";
2259
2260  // Output a static table for tied operands.
2261  if (TiedOperandsEnumMap.size()) {
2262    // The number of tied operand combinations will be small in practice,
2263    // but just add the assert to be sure.
2264    assert(TiedOperandsEnumMap.size() <= 254 &&
2265           "Too many tied-operand combinations to reference with "
2266           "an 8bit offset from the conversion table, where index "
2267           "'255' is reserved as operand not to be copied.");
2268
2269    OS << "enum {\n";
2270    for (auto &KV : TiedOperandsEnumMap) {
2271      OS << "  " << KV.second << ",\n";
2272    }
2273    OS << "};\n\n";
2274
2275    OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2276    for (auto &KV : TiedOperandsEnumMap) {
2277      OS << "  /* " << KV.second << " */ { "
2278         << utostr(std::get<0>(KV.first)) << ", "
2279         << utostr(std::get<1>(KV.first)) << ", "
2280         << utostr(std::get<2>(KV.first)) << " },\n";
2281    }
2282    OS << "};\n\n";
2283  } else
2284    OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2285          "{ /* empty  */ {0, 0, 0} };\n\n";
2286
2287  OS << "namespace {\n";
2288
2289  // Output the operand conversion kind enum.
2290  OS << "enum OperatorConversionKind {\n";
2291  for (const auto &Converter : OperandConversionKinds)
2292    OS << "  " << Converter << ",\n";
2293  OS << "  CVT_NUM_CONVERTERS\n";
2294  OS << "};\n\n";
2295
2296  // Output the instruction conversion kind enum.
2297  OS << "enum InstructionConversionKind {\n";
2298  for (const auto &Signature : InstructionConversionKinds)
2299    OS << "  " << Signature << ",\n";
2300  OS << "  CVT_NUM_SIGNATURES\n";
2301  OS << "};\n\n";
2302
2303  OS << "} // end anonymous namespace\n\n";
2304
2305  // Output the conversion table.
2306  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2307     << MaxRowLength << "] = {\n";
2308
2309  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2310    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2311    OS << "  // " << InstructionConversionKinds[Row] << "\n";
2312    OS << "  { ";
2313    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2314      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2315      if (OperandConversionKinds[ConversionTable[Row][i]] !=
2316          CachedHashString("CVT_Tied")) {
2317        OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2318        continue;
2319      }
2320
2321      // For a tied operand, emit a reference to the TiedAsmOperandTable
2322      // that contains the operand to copy, and the parsed operands to
2323      // check for their tied constraints.
2324      auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2325                                 (uint8_t)ConversionTable[Row][i + 2],
2326                                 (uint8_t)ConversionTable[Row][i + 3]);
2327      auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2328      assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2329             "No record for tied operand pair");
2330      OS << TiedOpndEnum->second << ", ";
2331      i += 2;
2332    }
2333    OS << "CVT_Done },\n";
2334  }
2335
2336  OS << "};\n\n";
2337
2338  // Spit out the conversion driver function.
2339  OS << CvtOS.str();
2340
2341  // Spit out the operand number lookup function.
2342  OS << OpOS.str();
2343
2344  return ConversionTable.size();
2345}
2346
2347/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2348static void emitMatchClassEnumeration(CodeGenTarget &Target,
2349                                      std::forward_list<ClassInfo> &Infos,
2350                                      raw_ostream &OS) {
2351  OS << "namespace {\n\n";
2352
2353  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2354     << "/// instruction matching.\n";
2355  OS << "enum MatchClassKind {\n";
2356  OS << "  InvalidMatchClass = 0,\n";
2357  OS << "  OptionalMatchClass = 1,\n";
2358  ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2359  StringRef LastName = "OptionalMatchClass";
2360  for (const auto &CI : Infos) {
2361    if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2362      OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2363    } else if (LastKind < ClassInfo::UserClass0 &&
2364               CI.Kind >= ClassInfo::UserClass0) {
2365      OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2366    }
2367    LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2368    LastName = CI.Name;
2369
2370    OS << "  " << CI.Name << ", // ";
2371    if (CI.Kind == ClassInfo::Token) {
2372      OS << "'" << CI.ValueName << "'\n";
2373    } else if (CI.isRegisterClass()) {
2374      if (!CI.ValueName.empty())
2375        OS << "register class '" << CI.ValueName << "'\n";
2376      else
2377        OS << "derived register class\n";
2378    } else {
2379      OS << "user defined class '" << CI.ValueName << "'\n";
2380    }
2381  }
2382  OS << "  NumMatchClassKinds\n";
2383  OS << "};\n\n";
2384
2385  OS << "} // end anonymous namespace\n\n";
2386}
2387
2388/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2389/// used when an assembly operand does not match the expected operand class.
2390static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2391  // If the target does not use DiagnosticString for any operands, don't emit
2392  // an unused function.
2393  if (std::all_of(
2394          Info.Classes.begin(), Info.Classes.end(),
2395          [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
2396    return;
2397
2398  OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2399     << "AsmParser::" << Info.Target.getName()
2400     << "MatchResultTy MatchResult) {\n";
2401  OS << "  switch (MatchResult) {\n";
2402
2403  for (const auto &CI: Info.Classes) {
2404    if (!CI.DiagnosticString.empty()) {
2405      assert(!CI.DiagnosticType.empty() &&
2406             "DiagnosticString set without DiagnosticType");
2407      OS << "  case " << Info.Target.getName()
2408         << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2409      OS << "    return \"" << CI.DiagnosticString << "\";\n";
2410    }
2411  }
2412
2413  OS << "  default:\n";
2414  OS << "    return nullptr;\n";
2415
2416  OS << "  }\n";
2417  OS << "}\n\n";
2418}
2419
2420static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2421  OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2422        "RegisterClass) {\n";
2423  if (none_of(Info.Classes, [](const ClassInfo &CI) {
2424        return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2425      })) {
2426    OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2427  } else {
2428    OS << "  switch (RegisterClass) {\n";
2429    for (const auto &CI: Info.Classes) {
2430      if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2431        OS << "  case " << CI.Name << ":\n";
2432        OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2433           << CI.DiagnosticType << ";\n";
2434      }
2435    }
2436
2437    OS << "  default:\n";
2438    OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2439
2440    OS << "  }\n";
2441  }
2442  OS << "}\n\n";
2443}
2444
2445/// emitValidateOperandClass - Emit the function to validate an operand class.
2446static void emitValidateOperandClass(AsmMatcherInfo &Info,
2447                                     raw_ostream &OS) {
2448  OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2449     << "MatchClassKind Kind) {\n";
2450  OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2451     << Info.Target.getName() << "Operand&)GOp;\n";
2452
2453  // The InvalidMatchClass is not to match any operand.
2454  OS << "  if (Kind == InvalidMatchClass)\n";
2455  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2456
2457  // Check for Token operands first.
2458  // FIXME: Use a more specific diagnostic type.
2459  OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2460  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2461     << "             MCTargetAsmParser::Match_Success :\n"
2462     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2463
2464  // Check the user classes. We don't care what order since we're only
2465  // actually matching against one of them.
2466  OS << "  switch (Kind) {\n"
2467        "  default: break;\n";
2468  for (const auto &CI : Info.Classes) {
2469    if (!CI.isUserClass())
2470      continue;
2471
2472    OS << "  // '" << CI.ClassName << "' class\n";
2473    OS << "  case " << CI.Name << ": {\n";
2474    OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2475       << "());\n";
2476    OS << "    if (DP.isMatch())\n";
2477    OS << "      return MCTargetAsmParser::Match_Success;\n";
2478    if (!CI.DiagnosticType.empty()) {
2479      OS << "    if (DP.isNearMatch())\n";
2480      OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2481         << CI.DiagnosticType << ";\n";
2482      OS << "    break;\n";
2483    }
2484    else
2485      OS << "    break;\n";
2486    OS << "    }\n";
2487  }
2488  OS << "  } // end switch (Kind)\n\n";
2489
2490  // Check for register operands, including sub-classes.
2491  OS << "  if (Operand.isReg()) {\n";
2492  OS << "    MatchClassKind OpKind;\n";
2493  OS << "    switch (Operand.getReg()) {\n";
2494  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2495  for (const auto &RC : Info.RegisterClasses)
2496    OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2497       << RC.first->getName() << ": OpKind = " << RC.second->Name
2498       << "; break;\n";
2499  OS << "    }\n";
2500  OS << "    return isSubclass(OpKind, Kind) ? "
2501     << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2502     << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2503
2504  // Expected operand is a register, but actual is not.
2505  OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2506  OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2507
2508  // Generic fallthrough match failure case for operands that don't have
2509  // specialized diagnostic types.
2510  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2511  OS << "}\n\n";
2512}
2513
2514/// emitIsSubclass - Emit the subclass predicate function.
2515static void emitIsSubclass(CodeGenTarget &Target,
2516                           std::forward_list<ClassInfo> &Infos,
2517                           raw_ostream &OS) {
2518  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2519  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2520  OS << "  if (A == B)\n";
2521  OS << "    return true;\n\n";
2522
2523  bool EmittedSwitch = false;
2524  for (const auto &A : Infos) {
2525    std::vector<StringRef> SuperClasses;
2526    if (A.IsOptional)
2527      SuperClasses.push_back("OptionalMatchClass");
2528    for (const auto &B : Infos) {
2529      if (&A != &B && A.isSubsetOf(B))
2530        SuperClasses.push_back(B.Name);
2531    }
2532
2533    if (SuperClasses.empty())
2534      continue;
2535
2536    // If this is the first SuperClass, emit the switch header.
2537    if (!EmittedSwitch) {
2538      OS << "  switch (A) {\n";
2539      OS << "  default:\n";
2540      OS << "    return false;\n";
2541      EmittedSwitch = true;
2542    }
2543
2544    OS << "\n  case " << A.Name << ":\n";
2545
2546    if (SuperClasses.size() == 1) {
2547      OS << "    return B == " << SuperClasses.back() << ";\n";
2548      continue;
2549    }
2550
2551    if (!SuperClasses.empty()) {
2552      OS << "    switch (B) {\n";
2553      OS << "    default: return false;\n";
2554      for (StringRef SC : SuperClasses)
2555        OS << "    case " << SC << ": return true;\n";
2556      OS << "    }\n";
2557    } else {
2558      // No case statement to emit
2559      OS << "    return false;\n";
2560    }
2561  }
2562
2563  // If there were case statements emitted into the string stream write the
2564  // default.
2565  if (EmittedSwitch)
2566    OS << "  }\n";
2567  else
2568    OS << "  return false;\n";
2569
2570  OS << "}\n\n";
2571}
2572
2573/// emitMatchTokenString - Emit the function to match a token string to the
2574/// appropriate match class value.
2575static void emitMatchTokenString(CodeGenTarget &Target,
2576                                 std::forward_list<ClassInfo> &Infos,
2577                                 raw_ostream &OS) {
2578  // Construct the match list.
2579  std::vector<StringMatcher::StringPair> Matches;
2580  for (const auto &CI : Infos) {
2581    if (CI.Kind == ClassInfo::Token)
2582      Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2583  }
2584
2585  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2586
2587  StringMatcher("Name", Matches, OS).Emit();
2588
2589  OS << "  return InvalidMatchClass;\n";
2590  OS << "}\n\n";
2591}
2592
2593/// emitMatchRegisterName - Emit the function to match a string to the target
2594/// specific register enum.
2595static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2596                                  raw_ostream &OS) {
2597  // Construct the match list.
2598  std::vector<StringMatcher::StringPair> Matches;
2599  const auto &Regs = Target.getRegBank().getRegisters();
2600  for (const CodeGenRegister &Reg : Regs) {
2601    if (Reg.TheDef->getValueAsString("AsmName").empty())
2602      continue;
2603
2604    Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2605                         "return " + utostr(Reg.EnumValue) + ";");
2606  }
2607
2608  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2609
2610  bool IgnoreDuplicates =
2611      AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2612  StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2613
2614  OS << "  return 0;\n";
2615  OS << "}\n\n";
2616}
2617
2618/// Emit the function to match a string to the target
2619/// specific register enum.
2620static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2621                                     raw_ostream &OS) {
2622  // Construct the match list.
2623  std::vector<StringMatcher::StringPair> Matches;
2624  const auto &Regs = Target.getRegBank().getRegisters();
2625  for (const CodeGenRegister &Reg : Regs) {
2626
2627    auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2628
2629    for (auto AltName : AltNames) {
2630      AltName = StringRef(AltName).trim();
2631
2632      // don't handle empty alternative names
2633      if (AltName.empty())
2634        continue;
2635
2636      Matches.emplace_back(AltName,
2637                           "return " + utostr(Reg.EnumValue) + ";");
2638    }
2639  }
2640
2641  OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2642
2643  bool IgnoreDuplicates =
2644      AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2645  StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2646
2647  OS << "  return 0;\n";
2648  OS << "}\n\n";
2649}
2650
2651/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2652static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2653  // Get the set of diagnostic types from all of the operand classes.
2654  std::set<StringRef> Types;
2655  for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2656    if (!OpClassEntry.second->DiagnosticType.empty())
2657      Types.insert(OpClassEntry.second->DiagnosticType);
2658  }
2659  for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2660    if (!OpClassEntry.second->DiagnosticType.empty())
2661      Types.insert(OpClassEntry.second->DiagnosticType);
2662  }
2663
2664  if (Types.empty()) return;
2665
2666  // Now emit the enum entries.
2667  for (StringRef Type : Types)
2668    OS << "  Match_" << Type << ",\n";
2669  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2670}
2671
2672/// emitGetSubtargetFeatureName - Emit the helper function to get the
2673/// user-level name for a subtarget feature.
2674static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2675  OS << "// User-level names for subtarget features that participate in\n"
2676     << "// instruction matching.\n"
2677     << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2678  if (!Info.SubtargetFeatures.empty()) {
2679    OS << "  switch(Val) {\n";
2680    for (const auto &SF : Info.SubtargetFeatures) {
2681      const SubtargetFeatureInfo &SFI = SF.second;
2682      // FIXME: Totally just a placeholder name to get the algorithm working.
2683      OS << "  case " << SFI.getEnumBitName() << ": return \""
2684         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2685    }
2686    OS << "  default: return \"(unknown)\";\n";
2687    OS << "  }\n";
2688  } else {
2689    // Nothing to emit, so skip the switch
2690    OS << "  return \"(unknown)\";\n";
2691  }
2692  OS << "}\n\n";
2693}
2694
2695static std::string GetAliasRequiredFeatures(Record *R,
2696                                            const AsmMatcherInfo &Info) {
2697  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2698  std::string Result;
2699
2700  if (ReqFeatures.empty())
2701    return Result;
2702
2703  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2704    const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2705
2706    if (!F)
2707      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2708                    "' is not marked as an AssemblerPredicate!");
2709
2710    if (i)
2711      Result += " && ";
2712
2713    Result += "Features.test(" + F->getEnumBitName() + ')';
2714  }
2715
2716  return Result;
2717}
2718
2719static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2720                                     std::vector<Record*> &Aliases,
2721                                     unsigned Indent = 0,
2722                                  StringRef AsmParserVariantName = StringRef()){
2723  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2724  // iteration order of the map is stable.
2725  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2726
2727  for (Record *R : Aliases) {
2728    // FIXME: Allow AssemblerVariantName to be a comma separated list.
2729    StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2730    if (AsmVariantName != AsmParserVariantName)
2731      continue;
2732    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2733  }
2734  if (AliasesFromMnemonic.empty())
2735    return;
2736
2737  // Process each alias a "from" mnemonic at a time, building the code executed
2738  // by the string remapper.
2739  std::vector<StringMatcher::StringPair> Cases;
2740  for (const auto &AliasEntry : AliasesFromMnemonic) {
2741    const std::vector<Record*> &ToVec = AliasEntry.second;
2742
2743    // Loop through each alias and emit code that handles each case.  If there
2744    // are two instructions without predicates, emit an error.  If there is one,
2745    // emit it last.
2746    std::string MatchCode;
2747    int AliasWithNoPredicate = -1;
2748
2749    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2750      Record *R = ToVec[i];
2751      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2752
2753      // If this unconditionally matches, remember it for later and diagnose
2754      // duplicates.
2755      if (FeatureMask.empty()) {
2756        if (AliasWithNoPredicate != -1) {
2757          // We can't have two aliases from the same mnemonic with no predicate.
2758          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2759                     "two MnemonicAliases with the same 'from' mnemonic!");
2760          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2761        }
2762
2763        AliasWithNoPredicate = i;
2764        continue;
2765      }
2766      if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2767        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2768
2769      if (!MatchCode.empty())
2770        MatchCode += "else ";
2771      MatchCode += "if (" + FeatureMask + ")\n";
2772      MatchCode += "  Mnemonic = \"";
2773      MatchCode += R->getValueAsString("ToMnemonic");
2774      MatchCode += "\";\n";
2775    }
2776
2777    if (AliasWithNoPredicate != -1) {
2778      Record *R = ToVec[AliasWithNoPredicate];
2779      if (!MatchCode.empty())
2780        MatchCode += "else\n  ";
2781      MatchCode += "Mnemonic = \"";
2782      MatchCode += R->getValueAsString("ToMnemonic");
2783      MatchCode += "\";\n";
2784    }
2785
2786    MatchCode += "return;";
2787
2788    Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2789  }
2790  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2791}
2792
2793/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2794/// emit a function for them and return true, otherwise return false.
2795static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2796                                CodeGenTarget &Target) {
2797  // Ignore aliases when match-prefix is set.
2798  if (!MatchPrefix.empty())
2799    return false;
2800
2801  std::vector<Record*> Aliases =
2802    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2803  if (Aliases.empty()) return false;
2804
2805  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2806    "const FeatureBitset &Features, unsigned VariantID) {\n";
2807  OS << "  switch (VariantID) {\n";
2808  unsigned VariantCount = Target.getAsmParserVariantCount();
2809  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2810    Record *AsmVariant = Target.getAsmParserVariant(VC);
2811    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2812    StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2813    OS << "    case " << AsmParserVariantNo << ":\n";
2814    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2815                             AsmParserVariantName);
2816    OS << "    break;\n";
2817  }
2818  OS << "  }\n";
2819
2820  // Emit aliases that apply to all variants.
2821  emitMnemonicAliasVariant(OS, Info, Aliases);
2822
2823  OS << "}\n\n";
2824
2825  return true;
2826}
2827
2828static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2829                              const AsmMatcherInfo &Info, StringRef ClassName,
2830                              StringToOffsetTable &StringTable,
2831                              unsigned MaxMnemonicIndex,
2832                              unsigned MaxFeaturesIndex,
2833                              bool HasMnemonicFirst) {
2834  unsigned MaxMask = 0;
2835  for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2836    MaxMask |= OMI.OperandMask;
2837  }
2838
2839  // Emit the static custom operand parsing table;
2840  OS << "namespace {\n";
2841  OS << "  struct OperandMatchEntry {\n";
2842  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2843               << " Mnemonic;\n";
2844  OS << "    " << getMinimalTypeForRange(MaxMask)
2845               << " OperandMask;\n";
2846  OS << "    " << getMinimalTypeForRange(std::distance(
2847                      Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2848  OS << "    " << getMinimalTypeForRange(MaxFeaturesIndex)
2849               << " RequiredFeaturesIdx;\n\n";
2850  OS << "    StringRef getMnemonic() const {\n";
2851  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2852  OS << "                       MnemonicTable[Mnemonic]);\n";
2853  OS << "    }\n";
2854  OS << "  };\n\n";
2855
2856  OS << "  // Predicate for searching for an opcode.\n";
2857  OS << "  struct LessOpcodeOperand {\n";
2858  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2859  OS << "      return LHS.getMnemonic()  < RHS;\n";
2860  OS << "    }\n";
2861  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2862  OS << "      return LHS < RHS.getMnemonic();\n";
2863  OS << "    }\n";
2864  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2865  OS << " const OperandMatchEntry &RHS) {\n";
2866  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2867  OS << "    }\n";
2868  OS << "  };\n";
2869
2870  OS << "} // end anonymous namespace\n\n";
2871
2872  OS << "static const OperandMatchEntry OperandMatchTable["
2873     << Info.OperandMatchInfo.size() << "] = {\n";
2874
2875  OS << "  /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2876  for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2877    const MatchableInfo &II = *OMI.MI;
2878
2879    OS << "  { ";
2880
2881    // Store a pascal-style length byte in the mnemonic.
2882    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2883    OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2884       << " /* " << II.Mnemonic << " */, ";
2885
2886    OS << OMI.OperandMask;
2887    OS << " /* ";
2888    bool printComma = false;
2889    for (int i = 0, e = 31; i !=e; ++i)
2890      if (OMI.OperandMask & (1 << i)) {
2891        if (printComma)
2892          OS << ", ";
2893        OS << i;
2894        printComma = true;
2895      }
2896    OS << " */, ";
2897
2898    OS << OMI.CI->Name;
2899
2900    // Write the required features mask.
2901    OS << ", AMFBS";
2902    if (II.RequiredFeatures.empty())
2903      OS << "_None";
2904    else
2905      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2906        OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2907
2908    OS << " },\n";
2909  }
2910  OS << "};\n\n";
2911
2912  // Emit the operand class switch to call the correct custom parser for
2913  // the found operand class.
2914  OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2915     << "tryCustomParseOperand(OperandVector"
2916     << " &Operands,\n                      unsigned MCK) {\n\n"
2917     << "  switch(MCK) {\n";
2918
2919  for (const auto &CI : Info.Classes) {
2920    if (CI.ParserMethod.empty())
2921      continue;
2922    OS << "  case " << CI.Name << ":\n"
2923       << "    return " << CI.ParserMethod << "(Operands);\n";
2924  }
2925
2926  OS << "  default:\n";
2927  OS << "    return MatchOperand_NoMatch;\n";
2928  OS << "  }\n";
2929  OS << "  return MatchOperand_NoMatch;\n";
2930  OS << "}\n\n";
2931
2932  // Emit the static custom operand parser. This code is very similar with
2933  // the other matcher. Also use MatchResultTy here just in case we go for
2934  // a better error handling.
2935  OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2936     << "MatchOperandParserImpl(OperandVector"
2937     << " &Operands,\n                       StringRef Mnemonic,\n"
2938     << "                       bool ParseForAllFeatures) {\n";
2939
2940  // Emit code to get the available features.
2941  OS << "  // Get the current feature set.\n";
2942  OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2943
2944  OS << "  // Get the next operand index.\n";
2945  OS << "  unsigned NextOpNum = Operands.size()"
2946     << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2947
2948  // Emit code to search the table.
2949  OS << "  // Search the table.\n";
2950  if (HasMnemonicFirst) {
2951    OS << "  auto MnemonicRange =\n";
2952    OS << "    std::equal_range(std::begin(OperandMatchTable), "
2953          "std::end(OperandMatchTable),\n";
2954    OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2955  } else {
2956    OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2957          " std::end(OperandMatchTable));\n";
2958    OS << "  if (!Mnemonic.empty())\n";
2959    OS << "    MnemonicRange =\n";
2960    OS << "      std::equal_range(std::begin(OperandMatchTable), "
2961          "std::end(OperandMatchTable),\n";
2962    OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2963  }
2964
2965  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2966  OS << "    return MatchOperand_NoMatch;\n\n";
2967
2968  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2969     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2970
2971  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2972  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2973
2974  // Emit check that the required features are available.
2975  OS << "    // check if the available features match\n";
2976  OS << "    const FeatureBitset &RequiredFeatures = "
2977        "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2978  OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2979        "RequiredFeatures) != RequiredFeatures)\n";
2980  OS << "        continue;\n\n";
2981
2982  // Emit check to ensure the operand number matches.
2983  OS << "    // check if the operand in question has a custom parser.\n";
2984  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2985  OS << "      continue;\n\n";
2986
2987  // Emit call to the custom parser method
2988  OS << "    // call custom parse method to handle the operand\n";
2989  OS << "    OperandMatchResultTy Result = ";
2990  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2991  OS << "    if (Result != MatchOperand_NoMatch)\n";
2992  OS << "      return Result;\n";
2993  OS << "  }\n\n";
2994
2995  OS << "  // Okay, we had no match.\n";
2996  OS << "  return MatchOperand_NoMatch;\n";
2997  OS << "}\n\n";
2998}
2999
3000static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3001                                          AsmMatcherInfo &Info,
3002                                          raw_ostream &OS) {
3003  std::string AsmParserName =
3004      Info.AsmParser->getValueAsString("AsmParserClassName");
3005  OS << "static bool ";
3006  OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3007     << AsmParserName << "&AsmParser,\n";
3008  OS << "                               unsigned Kind,\n";
3009  OS << "                               const OperandVector &Operands,\n";
3010  OS << "                               uint64_t &ErrorInfo) {\n";
3011  OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3012  OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
3013  OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
3014  OS << "    switch (*p) {\n";
3015  OS << "    case CVT_Tied: {\n";
3016  OS << "      unsigned OpIdx = *(p+1);\n";
3017  OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3018  OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
3019  OS << "             \"Tied operand not found\");\n";
3020  OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3021  OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3022  OS << "      if (OpndNum1 != OpndNum2) {\n";
3023  OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
3024  OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3025  OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3026  OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3027  OS << "            ErrorInfo = OpndNum2;\n";
3028  OS << "            return false;\n";
3029  OS << "          }\n";
3030  OS << "        }\n";
3031  OS << "      }\n";
3032  OS << "      break;\n";
3033  OS << "    }\n";
3034  OS << "    default:\n";
3035  OS << "      break;\n";
3036  OS << "    }\n";
3037  OS << "  }\n";
3038  OS << "  return true;\n";
3039  OS << "}\n\n";
3040}
3041
3042static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3043                                     unsigned VariantCount) {
3044  OS << "static std::string " << Target.getName()
3045     << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3046     << " unsigned VariantID) {\n";
3047  if (!VariantCount)
3048    OS <<  "  return \"\";";
3049  else {
3050    OS << "  const unsigned MaxEditDist = 2;\n";
3051    OS << "  std::vector<StringRef> Candidates;\n";
3052    OS << "  StringRef Prev = \"\";\n\n";
3053
3054    OS << "  // Find the appropriate table for this asm variant.\n";
3055    OS << "  const MatchEntry *Start, *End;\n";
3056    OS << "  switch (VariantID) {\n";
3057    OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3058    for (unsigned VC = 0; VC != VariantCount; ++VC) {
3059      Record *AsmVariant = Target.getAsmParserVariant(VC);
3060      int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3061      OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3062         << "); End = std::end(MatchTable" << VC << "); break;\n";
3063    }
3064    OS << "  }\n\n";
3065    OS << "  for (auto I = Start; I < End; I++) {\n";
3066    OS << "    // Ignore unsupported instructions.\n";
3067    OS << "    const FeatureBitset &RequiredFeatures = "
3068          "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3069    OS << "    if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3070    OS << "      continue;\n";
3071    OS << "\n";
3072    OS << "    StringRef T = I->getMnemonic();\n";
3073    OS << "    // Avoid recomputing the edit distance for the same string.\n";
3074    OS << "    if (T.equals(Prev))\n";
3075    OS << "      continue;\n";
3076    OS << "\n";
3077    OS << "    Prev = T;\n";
3078    OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3079    OS << "    if (Dist <= MaxEditDist)\n";
3080    OS << "      Candidates.push_back(T);\n";
3081    OS << "  }\n";
3082    OS << "\n";
3083    OS << "  if (Candidates.empty())\n";
3084    OS << "    return \"\";\n";
3085    OS << "\n";
3086    OS << "  std::string Res = \", did you mean: \";\n";
3087    OS << "  unsigned i = 0;\n";
3088    OS << "  for( ; i < Candidates.size() - 1; i++)\n";
3089    OS << "    Res += Candidates[i].str() + \", \";\n";
3090    OS << "  return Res + Candidates[i].str() + \"?\";\n";
3091  }
3092  OS << "}\n";
3093  OS << "\n";
3094}
3095
3096
3097// Emit a function mapping match classes to strings, for debugging.
3098static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3099                                    raw_ostream &OS) {
3100  OS << "#ifndef NDEBUG\n";
3101  OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3102  OS << "  switch (Kind) {\n";
3103
3104  OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3105  OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3106  for (const auto &CI : Infos) {
3107    OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3108  }
3109  OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3110
3111  OS << "  }\n";
3112  OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3113  OS << "}\n\n";
3114  OS << "#endif // NDEBUG\n";
3115}
3116
3117static std::string
3118getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3119  std::string Name = "AMFBS";
3120  for (const auto &Feature : FeatureBitset)
3121    Name += ("_" + Feature->getName()).str();
3122  return Name;
3123}
3124
3125void AsmMatcherEmitter::run(raw_ostream &OS) {
3126  CodeGenTarget Target(Records);
3127  Record *AsmParser = Target.getAsmParser();
3128  StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3129
3130  // Compute the information on the instructions to match.
3131  AsmMatcherInfo Info(AsmParser, Target, Records);
3132  Info.buildInfo();
3133
3134  // Sort the instruction table using the partial order on classes. We use
3135  // stable_sort to ensure that ambiguous instructions are still
3136  // deterministically ordered.
3137  llvm::stable_sort(
3138      Info.Matchables,
3139      [](const std::unique_ptr<MatchableInfo> &a,
3140         const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3141
3142#ifdef EXPENSIVE_CHECKS
3143  // Verify that the table is sorted and operator < works transitively.
3144  for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3145       ++I) {
3146    for (auto J = I; J != E; ++J) {
3147      assert(!(**J < **I));
3148    }
3149  }
3150#endif
3151
3152  DEBUG_WITH_TYPE("instruction_info", {
3153      for (const auto &MI : Info.Matchables)
3154        MI->dump();
3155    });
3156
3157  // Check for ambiguous matchables.
3158  DEBUG_WITH_TYPE("ambiguous_instrs", {
3159    unsigned NumAmbiguous = 0;
3160    for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3161         ++I) {
3162      for (auto J = std::next(I); J != E; ++J) {
3163        const MatchableInfo &A = **I;
3164        const MatchableInfo &B = **J;
3165
3166        if (A.couldMatchAmbiguouslyWith(B)) {
3167          errs() << "warning: ambiguous matchables:\n";
3168          A.dump();
3169          errs() << "\nis incomparable with:\n";
3170          B.dump();
3171          errs() << "\n\n";
3172          ++NumAmbiguous;
3173        }
3174      }
3175    }
3176    if (NumAmbiguous)
3177      errs() << "warning: " << NumAmbiguous
3178             << " ambiguous matchables!\n";
3179  });
3180
3181  // Compute the information on the custom operand parsing.
3182  Info.buildOperandMatchInfo();
3183
3184  bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3185  bool HasOptionalOperands = Info.hasOptionalOperands();
3186  bool ReportMultipleNearMisses =
3187      AsmParser->getValueAsBit("ReportMultipleNearMisses");
3188
3189  // Write the output.
3190
3191  // Information for the class declaration.
3192  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3193  OS << "#undef GET_ASSEMBLER_HEADER\n";
3194  OS << "  // This should be included into the middle of the declaration of\n";
3195  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3196  OS << "  FeatureBitset ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
3197  if (HasOptionalOperands) {
3198    OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3199       << "unsigned Opcode,\n"
3200       << "                       const OperandVector &Operands,\n"
3201       << "                       const SmallBitVector &OptionalOperandsMask);\n";
3202  } else {
3203    OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3204       << "unsigned Opcode,\n"
3205       << "                       const OperandVector &Operands);\n";
3206  }
3207  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3208  OS << "           const OperandVector &Operands) override;\n";
3209  OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3210     << "                                MCInst &Inst,\n";
3211  if (ReportMultipleNearMisses)
3212    OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3213  else
3214    OS << "                                uint64_t &ErrorInfo,\n"
3215       << "                                FeatureBitset &MissingFeatures,\n";
3216  OS << "                                bool matchingInlineAsm,\n"
3217     << "                                unsigned VariantID = 0);\n";
3218  if (!ReportMultipleNearMisses)
3219    OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3220       << "                                MCInst &Inst,\n"
3221       << "                                uint64_t &ErrorInfo,\n"
3222       << "                                bool matchingInlineAsm,\n"
3223       << "                                unsigned VariantID = 0) {\n"
3224       << "    FeatureBitset MissingFeatures;\n"
3225       << "    return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3226       << "                                matchingInlineAsm, VariantID);\n"
3227       << "  }\n\n";
3228
3229
3230  if (!Info.OperandMatchInfo.empty()) {
3231    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3232    OS << "    OperandVector &Operands,\n";
3233    OS << "    StringRef Mnemonic,\n";
3234    OS << "    bool ParseForAllFeatures = false);\n";
3235
3236    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3237    OS << "    OperandVector &Operands,\n";
3238    OS << "    unsigned MCK);\n\n";
3239  }
3240
3241  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3242
3243  // Emit the operand match diagnostic enum names.
3244  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3245  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3246  emitOperandDiagnosticTypes(Info, OS);
3247  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3248
3249  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3250  OS << "#undef GET_REGISTER_MATCHER\n\n";
3251
3252  // Emit the subtarget feature enumeration.
3253  SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3254      Info.SubtargetFeatures, OS);
3255
3256  // Emit the function to match a register name to number.
3257  // This should be omitted for Mips target
3258  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3259    emitMatchRegisterName(Target, AsmParser, OS);
3260
3261  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3262    emitMatchRegisterAltName(Target, AsmParser, OS);
3263
3264  OS << "#endif // GET_REGISTER_MATCHER\n\n";
3265
3266  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3267  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3268
3269  // Generate the helper function to get the names for subtarget features.
3270  emitGetSubtargetFeatureName(Info, OS);
3271
3272  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3273
3274  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3275  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3276
3277  // Generate the function that remaps for mnemonic aliases.
3278  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3279
3280  // Generate the convertToMCInst function to convert operands into an MCInst.
3281  // Also, generate the convertToMapAndConstraints function for MS-style inline
3282  // assembly.  The latter doesn't actually generate a MCInst.
3283  unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3284                                            HasMnemonicFirst,
3285                                            HasOptionalOperands, OS);
3286
3287  // Emit the enumeration for classes which participate in matching.
3288  emitMatchClassEnumeration(Target, Info.Classes, OS);
3289
3290  // Emit a function to get the user-visible string to describe an operand
3291  // match failure in diagnostics.
3292  emitOperandMatchErrorDiagStrings(Info, OS);
3293
3294  // Emit a function to map register classes to operand match failure codes.
3295  emitRegisterMatchErrorFunc(Info, OS);
3296
3297  // Emit the routine to match token strings to their match class.
3298  emitMatchTokenString(Target, Info.Classes, OS);
3299
3300  // Emit the subclass predicate routine.
3301  emitIsSubclass(Target, Info.Classes, OS);
3302
3303  // Emit the routine to validate an operand against a match class.
3304  emitValidateOperandClass(Info, OS);
3305
3306  emitMatchClassKindNames(Info.Classes, OS);
3307
3308  // Emit the available features compute function.
3309  SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3310      Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3311      Info.SubtargetFeatures, OS);
3312
3313  if (!ReportMultipleNearMisses)
3314    emitAsmTiedOperandConstraints(Target, Info, OS);
3315
3316  StringToOffsetTable StringTable;
3317
3318  size_t MaxNumOperands = 0;
3319  unsigned MaxMnemonicIndex = 0;
3320  bool HasDeprecation = false;
3321  for (const auto &MI : Info.Matchables) {
3322    MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3323    HasDeprecation |= MI->HasDeprecation;
3324
3325    // Store a pascal-style length byte in the mnemonic.
3326    std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3327    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3328                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
3329  }
3330
3331  OS << "static const char *const MnemonicTable =\n";
3332  StringTable.EmitString(OS);
3333  OS << ";\n\n";
3334
3335  std::vector<std::vector<Record *>> FeatureBitsets;
3336  for (const auto &MI : Info.Matchables) {
3337    if (MI->RequiredFeatures.empty())
3338      continue;
3339    FeatureBitsets.emplace_back();
3340    for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3341      FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3342  }
3343
3344  llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3345                                 const std::vector<Record *> &B) {
3346    if (A.size() < B.size())
3347      return true;
3348    if (A.size() > B.size())
3349      return false;
3350    for (auto Pair : zip(A, B)) {
3351      if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3352        return true;
3353      if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3354        return false;
3355    }
3356    return false;
3357  });
3358  FeatureBitsets.erase(
3359      std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3360      FeatureBitsets.end());
3361  OS << "// Feature bitsets.\n"
3362     << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3363     << "  AMFBS_None,\n";
3364  for (const auto &FeatureBitset : FeatureBitsets) {
3365    if (FeatureBitset.empty())
3366      continue;
3367    OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3368  }
3369  OS << "};\n\n"
3370     << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3371     << "  {}, // AMFBS_None\n";
3372  for (const auto &FeatureBitset : FeatureBitsets) {
3373    if (FeatureBitset.empty())
3374      continue;
3375    OS << "  {";
3376    for (const auto &Feature : FeatureBitset) {
3377      const auto &I = Info.SubtargetFeatures.find(Feature);
3378      assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3379      OS << I->second.getEnumBitName() << ", ";
3380    }
3381    OS << "},\n";
3382  }
3383  OS << "};\n\n";
3384
3385  // Emit the static match table; unused classes get initialized to 0 which is
3386  // guaranteed to be InvalidMatchClass.
3387  //
3388  // FIXME: We can reduce the size of this table very easily. First, we change
3389  // it so that store the kinds in separate bit-fields for each index, which
3390  // only needs to be the max width used for classes at that index (we also need
3391  // to reject based on this during classification). If we then make sure to
3392  // order the match kinds appropriately (putting mnemonics last), then we
3393  // should only end up using a few bits for each class, especially the ones
3394  // following the mnemonic.
3395  OS << "namespace {\n";
3396  OS << "  struct MatchEntry {\n";
3397  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3398               << " Mnemonic;\n";
3399  OS << "    uint16_t Opcode;\n";
3400  OS << "    " << getMinimalTypeForRange(NumConverters)
3401               << " ConvertFn;\n";
3402  OS << "    " << getMinimalTypeForRange(FeatureBitsets.size())
3403               << " RequiredFeaturesIdx;\n";
3404  OS << "    " << getMinimalTypeForRange(
3405                      std::distance(Info.Classes.begin(), Info.Classes.end()))
3406     << " Classes[" << MaxNumOperands << "];\n";
3407  OS << "    StringRef getMnemonic() const {\n";
3408  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3409  OS << "                       MnemonicTable[Mnemonic]);\n";
3410  OS << "    }\n";
3411  OS << "  };\n\n";
3412
3413  OS << "  // Predicate for searching for an opcode.\n";
3414  OS << "  struct LessOpcode {\n";
3415  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3416  OS << "      return LHS.getMnemonic() < RHS;\n";
3417  OS << "    }\n";
3418  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3419  OS << "      return LHS < RHS.getMnemonic();\n";
3420  OS << "    }\n";
3421  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3422  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3423  OS << "    }\n";
3424  OS << "  };\n";
3425
3426  OS << "} // end anonymous namespace\n\n";
3427
3428  unsigned VariantCount = Target.getAsmParserVariantCount();
3429  for (unsigned VC = 0; VC != VariantCount; ++VC) {
3430    Record *AsmVariant = Target.getAsmParserVariant(VC);
3431    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3432
3433    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3434
3435    for (const auto &MI : Info.Matchables) {
3436      if (MI->AsmVariantID != AsmVariantNo)
3437        continue;
3438
3439      // Store a pascal-style length byte in the mnemonic.
3440      std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3441      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3442         << " /* " << MI->Mnemonic << " */, "
3443         << Target.getInstNamespace() << "::"
3444         << MI->getResultInst()->TheDef->getName() << ", "
3445         << MI->ConversionFnKind << ", ";
3446
3447      // Write the required features mask.
3448      OS << "AMFBS";
3449      if (MI->RequiredFeatures.empty())
3450        OS << "_None";
3451      else
3452        for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3453          OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3454
3455      OS << ", { ";
3456      for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3457        const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3458
3459        if (i) OS << ", ";
3460        OS << Op.Class->Name;
3461      }
3462      OS << " }, },\n";
3463    }
3464
3465    OS << "};\n\n";
3466  }
3467
3468  OS << "#include \"llvm/Support/Debug.h\"\n";
3469  OS << "#include \"llvm/Support/Format.h\"\n\n";
3470
3471  // Finally, build the match function.
3472  OS << "unsigned " << Target.getName() << ClassName << "::\n"
3473     << "MatchInstructionImpl(const OperandVector &Operands,\n";
3474  OS << "                     MCInst &Inst,\n";
3475  if (ReportMultipleNearMisses)
3476    OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3477  else
3478    OS << "                     uint64_t &ErrorInfo,\n"
3479       << "                     FeatureBitset &MissingFeatures,\n";
3480  OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3481
3482  if (!ReportMultipleNearMisses) {
3483    OS << "  // Eliminate obvious mismatches.\n";
3484    OS << "  if (Operands.size() > "
3485       << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3486    OS << "    ErrorInfo = "
3487       << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3488    OS << "    return Match_InvalidOperand;\n";
3489    OS << "  }\n\n";
3490  }
3491
3492  // Emit code to get the available features.
3493  OS << "  // Get the current feature set.\n";
3494  OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3495
3496  OS << "  // Get the instruction mnemonic, which is the first token.\n";
3497  if (HasMnemonicFirst) {
3498    OS << "  StringRef Mnemonic = ((" << Target.getName()
3499       << "Operand&)*Operands[0]).getToken();\n\n";
3500  } else {
3501    OS << "  StringRef Mnemonic;\n";
3502    OS << "  if (Operands[0]->isToken())\n";
3503    OS << "    Mnemonic = ((" << Target.getName()
3504       << "Operand&)*Operands[0]).getToken();\n\n";
3505  }
3506
3507  if (HasMnemonicAliases) {
3508    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3509    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3510  }
3511
3512  // Emit code to compute the class list for this operand vector.
3513  if (!ReportMultipleNearMisses) {
3514    OS << "  // Some state to try to produce better error messages.\n";
3515    OS << "  bool HadMatchOtherThanFeatures = false;\n";
3516    OS << "  bool HadMatchOtherThanPredicate = false;\n";
3517    OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3518    OS << "  MissingFeatures.set();\n";
3519    OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3520    OS << "  // wrong for all instances of the instruction.\n";
3521    OS << "  ErrorInfo = ~0ULL;\n";
3522  }
3523
3524  if (HasOptionalOperands) {
3525    OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3526  }
3527
3528  // Emit code to search the table.
3529  OS << "  // Find the appropriate table for this asm variant.\n";
3530  OS << "  const MatchEntry *Start, *End;\n";
3531  OS << "  switch (VariantID) {\n";
3532  OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3533  for (unsigned VC = 0; VC != VariantCount; ++VC) {
3534    Record *AsmVariant = Target.getAsmParserVariant(VC);
3535    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3536    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3537       << "); End = std::end(MatchTable" << VC << "); break;\n";
3538  }
3539  OS << "  }\n";
3540
3541  OS << "  // Search the table.\n";
3542  if (HasMnemonicFirst) {
3543    OS << "  auto MnemonicRange = "
3544          "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3545  } else {
3546    OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3547    OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3548    OS << "  if (!Mnemonic.empty())\n";
3549    OS << "    MnemonicRange = "
3550          "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3551  }
3552
3553  OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3554     << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
3555     << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3556
3557  OS << "  // Return a more specific error code if no mnemonics match.\n";
3558  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3559  OS << "    return Match_MnemonicFail;\n\n";
3560
3561  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3562     << "*ie = MnemonicRange.second;\n";
3563  OS << "       it != ie; ++it) {\n";
3564  OS << "    const FeatureBitset &RequiredFeatures = "
3565        "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3566  OS << "    bool HasRequiredFeatures =\n";
3567  OS << "      (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3568  OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3569  OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3570
3571  if (ReportMultipleNearMisses) {
3572    OS << "    // Some state to record ways in which this instruction did not match.\n";
3573    OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3574    OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3575    OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3576    OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3577    OS << "    bool MultipleInvalidOperands = false;\n";
3578  }
3579
3580  if (HasMnemonicFirst) {
3581    OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3582    OS << "    assert(Mnemonic == it->getMnemonic());\n";
3583  }
3584
3585  // Emit check that the subclasses match.
3586  if (!ReportMultipleNearMisses)
3587    OS << "    bool OperandsValid = true;\n";
3588  if (HasOptionalOperands) {
3589    OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3590  }
3591  OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3592     << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3593     << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3594  OS << "      auto Formal = "
3595     << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3596  OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3597  OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3598  OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3599  OS << "      if (ActualIdx < Operands.size())\n";
3600  OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3601  OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3602  OS << "      else\n";
3603  OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3604  OS << "      if (ActualIdx >= Operands.size()) {\n";
3605  OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3606  if (ReportMultipleNearMisses) {
3607    OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3608                                   "isSubclass(Formal, OptionalMatchClass);\n";
3609    OS << "        if (!ThisOperandValid) {\n";
3610    OS << "          if (!OperandNearMiss) {\n";
3611    OS << "            // Record info about match failure for later use.\n";
3612    OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3613    OS << "            OperandNearMiss =\n";
3614    OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3615    OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3616    OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3617    OS << "            DEBUG_WITH_TYPE(\n";
3618    OS << "                \"asm-matcher\",\n";
3619    OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3620    OS << "            MultipleInvalidOperands = true;\n";
3621    OS << "            break;\n";
3622    OS << "          }\n";
3623    OS << "        } else {\n";
3624    OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3625    OS << "          break;\n";
3626    OS << "        }\n";
3627    OS << "        continue;\n";
3628  } else {
3629    OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3630    OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3631    if (HasOptionalOperands) {
3632      OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3633         << ");\n";
3634    }
3635    OS << "        break;\n";
3636  }
3637  OS << "      }\n";
3638  OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3639  OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3640  OS << "      if (Diag == Match_Success) {\n";
3641  OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3642  OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3643  OS << "        ++ActualIdx;\n";
3644  OS << "        continue;\n";
3645  OS << "      }\n";
3646  OS << "      // If the generic handler indicates an invalid operand\n";
3647  OS << "      // failure, check for a special case.\n";
3648  OS << "      if (Diag != Match_Success) {\n";
3649  OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3650  OS << "        if (TargetDiag == Match_Success) {\n";
3651  OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3652  OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3653  OS << "          ++ActualIdx;\n";
3654  OS << "          continue;\n";
3655  OS << "        }\n";
3656  OS << "        // If the target matcher returned a specific error code use\n";
3657  OS << "        // that, else use the one from the generic matcher.\n";
3658  OS << "        if (TargetDiag != Match_InvalidOperand && "
3659        "HasRequiredFeatures)\n";
3660  OS << "          Diag = TargetDiag;\n";
3661  OS << "      }\n";
3662  OS << "      // If current formal operand wasn't matched and it is optional\n"
3663     << "      // then try to match next formal operand\n";
3664  OS << "      if (Diag == Match_InvalidOperand "
3665     << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3666  if (HasOptionalOperands) {
3667    OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3668  }
3669    OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3670  OS << "        continue;\n";
3671  OS << "      }\n";
3672
3673  if (ReportMultipleNearMisses) {
3674    OS << "      if (!OperandNearMiss) {\n";
3675    OS << "        // If this is the first invalid operand we have seen, record some\n";
3676    OS << "        // information about it.\n";
3677    OS << "        DEBUG_WITH_TYPE(\n";
3678    OS << "            \"asm-matcher\",\n";
3679    OS << "            dbgs()\n";
3680    OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3681    OS << "                << Diag << \"\\n\");\n";
3682    OS << "        OperandNearMiss =\n";
3683    OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3684    OS << "        ++ActualIdx;\n";
3685    OS << "      } else {\n";
3686    OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3687    OS << "        DEBUG_WITH_TYPE(\n";
3688    OS << "            \"asm-matcher\",\n";
3689    OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3690    OS << "        MultipleInvalidOperands = true;\n";
3691    OS << "        break;\n";
3692    OS << "      }\n";
3693    OS << "    }\n\n";
3694  } else {
3695    OS << "      // If this operand is broken for all of the instances of this\n";
3696    OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3697    OS << "      // If we already had a match that only failed due to a\n";
3698    OS << "      // target predicate, that diagnostic is preferred.\n";
3699    OS << "      if (!HadMatchOtherThanPredicate &&\n";
3700    OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3701    OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3702          "!= Match_InvalidOperand))\n";
3703    OS << "          RetCode = Diag;\n";
3704    OS << "        ErrorInfo = ActualIdx;\n";
3705    OS << "      }\n";
3706    OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3707    OS << "      OperandsValid = false;\n";
3708    OS << "      break;\n";
3709    OS << "    }\n\n";
3710  }
3711
3712  if (ReportMultipleNearMisses)
3713    OS << "    if (MultipleInvalidOperands) {\n";
3714  else
3715    OS << "    if (!OperandsValid) {\n";
3716  OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3717  OS << "                                               \"operand mismatches, ignoring \"\n";
3718  OS << "                                               \"this opcode\\n\");\n";
3719  OS << "      continue;\n";
3720  OS << "    }\n";
3721
3722  // Emit check that the required features are available.
3723  OS << "    if (!HasRequiredFeatures) {\n";
3724  if (!ReportMultipleNearMisses)
3725    OS << "      HadMatchOtherThanFeatures = true;\n";
3726  OS << "      FeatureBitset NewMissingFeatures = RequiredFeatures & "
3727        "~AvailableFeatures;\n";
3728  OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3729  OS << "                       for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3730  OS << "                         if (NewMissingFeatures[I])\n";
3731  OS << "                           dbgs() << ' ' << I;\n";
3732  OS << "                       dbgs() << \"\\n\");\n";
3733  if (ReportMultipleNearMisses) {
3734    OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3735  } else {
3736    OS << "      if (NewMissingFeatures.count() <=\n"
3737          "          MissingFeatures.count())\n";
3738    OS << "        MissingFeatures = NewMissingFeatures;\n";
3739    OS << "      continue;\n";
3740  }
3741  OS << "    }\n";
3742  OS << "\n";
3743  OS << "    Inst.clear();\n\n";
3744  OS << "    Inst.setOpcode(it->Opcode);\n";
3745  // Verify the instruction with the target-specific match predicate function.
3746  OS << "    // We have a potential match but have not rendered the operands.\n"
3747     << "    // Check the target predicate to handle any context sensitive\n"
3748        "    // constraints.\n"
3749     << "    // For example, Ties that are referenced multiple times must be\n"
3750        "    // checked here to ensure the input is the same for each match\n"
3751        "    // constraints. If we leave it any later the ties will have been\n"
3752        "    // canonicalized\n"
3753     << "    unsigned MatchResult;\n"
3754     << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3755        "Operands)) != Match_Success) {\n"
3756     << "      Inst.clear();\n";
3757  OS << "      DEBUG_WITH_TYPE(\n";
3758  OS << "          \"asm-matcher\",\n";
3759  OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3760  OS << "                 << MatchResult << \"\\n\");\n";
3761  if (ReportMultipleNearMisses) {
3762    OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3763  } else {
3764    OS << "      RetCode = MatchResult;\n"
3765       << "      HadMatchOtherThanPredicate = true;\n"
3766       << "      continue;\n";
3767  }
3768  OS << "    }\n\n";
3769
3770  if (ReportMultipleNearMisses) {
3771    OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3772    OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3773    OS << "    if (OperandNearMiss) {\n";
3774    OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3775    OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3776    OS << "        DEBUG_WITH_TYPE(\n";
3777    OS << "            \"asm-matcher\",\n";
3778    OS << "            dbgs()\n";
3779    OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3780    OS << "        NearMisses->push_back(OperandNearMiss);\n";
3781    OS << "      } else {\n";
3782    OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3783    OS << "                                                 \"types of mismatch, so not \"\n";
3784    OS << "                                                 \"reporting near-miss\\n\");\n";
3785    OS << "      }\n";
3786    OS << "      continue;\n";
3787    OS << "    }\n\n";
3788  }
3789
3790  OS << "    if (matchingInlineAsm) {\n";
3791  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3792  if (!ReportMultipleNearMisses) {
3793    OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3794          "Operands, ErrorInfo))\n";
3795    OS << "        return Match_InvalidTiedOperand;\n";
3796    OS << "\n";
3797  }
3798  OS << "      return Match_Success;\n";
3799  OS << "    }\n\n";
3800  OS << "    // We have selected a definite instruction, convert the parsed\n"
3801     << "    // operands into the appropriate MCInst.\n";
3802  if (HasOptionalOperands) {
3803    OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3804       << "                    OptionalOperandsMask);\n";
3805  } else {
3806    OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3807  }
3808  OS << "\n";
3809
3810  // Verify the instruction with the target-specific match predicate function.
3811  OS << "    // We have a potential match. Check the target predicate to\n"
3812     << "    // handle any context sensitive constraints.\n"
3813     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3814     << " Match_Success) {\n"
3815     << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3816     << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3817     << "                             << MatchResult << \"\\n\");\n"
3818     << "      Inst.clear();\n";
3819  if (ReportMultipleNearMisses) {
3820    OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3821  } else {
3822    OS << "      RetCode = MatchResult;\n"
3823       << "      HadMatchOtherThanPredicate = true;\n"
3824       << "      continue;\n";
3825  }
3826  OS << "    }\n\n";
3827
3828  if (ReportMultipleNearMisses) {
3829    OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3830    OS << "                         (int)(bool)FeaturesNearMiss +\n";
3831    OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3832    OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3833    OS << "    if (NumNearMisses == 1) {\n";
3834    OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3835    OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3836    OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3837    OS << "                                            \"mismatch, so reporting a \"\n";
3838    OS << "                                            \"near-miss\\n\");\n";
3839    OS << "      if (NearMisses && FeaturesNearMiss)\n";
3840    OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3841    OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3842    OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3843    OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3844    OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3845    OS << "\n";
3846    OS << "      continue;\n";
3847    OS << "    } else if (NumNearMisses > 1) {\n";
3848    OS << "      // This instruction missed in more than one way, so ignore it.\n";
3849    OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3850    OS << "                                               \"types of mismatch, so not \"\n";
3851    OS << "                                               \"reporting near-miss\\n\");\n";
3852    OS << "      continue;\n";
3853    OS << "    }\n";
3854  }
3855
3856  // Call the post-processing function, if used.
3857  StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3858  if (!InsnCleanupFn.empty())
3859    OS << "    " << InsnCleanupFn << "(Inst);\n";
3860
3861  if (HasDeprecation) {
3862    OS << "    std::string Info;\n";
3863    OS << "    if (!getParser().getTargetParser().\n";
3864    OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3865    OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3866    OS << "      SMLoc Loc = ((" << Target.getName()
3867       << "Operand&)*Operands[0]).getStartLoc();\n";
3868    OS << "      getParser().Warning(Loc, Info, None);\n";
3869    OS << "    }\n";
3870  }
3871
3872  if (!ReportMultipleNearMisses) {
3873    OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3874          "Operands, ErrorInfo))\n";
3875    OS << "      return Match_InvalidTiedOperand;\n";
3876    OS << "\n";
3877  }
3878
3879  OS << "    DEBUG_WITH_TYPE(\n";
3880  OS << "        \"asm-matcher\",\n";
3881  OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3882  OS << "    return Match_Success;\n";
3883  OS << "  }\n\n";
3884
3885  if (ReportMultipleNearMisses) {
3886    OS << "  // No instruction variants matched exactly.\n";
3887    OS << "  return Match_NearMisses;\n";
3888  } else {
3889    OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3890    OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3891    OS << "    return RetCode;\n\n";
3892    OS << "  ErrorInfo = 0;\n";
3893    OS << "  return Match_MissingFeature;\n";
3894  }
3895  OS << "}\n\n";
3896
3897  if (!Info.OperandMatchInfo.empty())
3898    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3899                             MaxMnemonicIndex, FeatureBitsets.size(),
3900                             HasMnemonicFirst);
3901
3902  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3903
3904  OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3905  OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3906
3907  emitMnemonicSpellChecker(OS, Target, VariantCount);
3908
3909  OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3910}
3911
3912namespace llvm {
3913
3914void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3915  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3916  AsmMatcherEmitter(RK).run(OS);
3917}
3918
3919} // end namespace llvm
3920