1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file promotes memory references to be register references.  It promotes
10// alloca instructions which only have loads and stores as uses.  An alloca is
11// transformed by using iterated dominator frontiers to place PHI nodes, then
12// traversing the function in depth-first order to rewrite loads and stores as
13// appropriate.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/TinyPtrVector.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/Analysis/AssumptionCache.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/IteratedDominanceFrontier.h"
28#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DIBuilder.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/User.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Transforms/Utils/PromoteMemToReg.h"
49#include <algorithm>
50#include <cassert>
51#include <iterator>
52#include <utility>
53#include <vector>
54
55using namespace llvm;
56
57#define DEBUG_TYPE "mem2reg"
58
59STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63
64bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65  // FIXME: If the memory unit is of pointer or integer type, we can permit
66  // assignments to subsections of the memory unit.
67  unsigned AS = AI->getType()->getAddressSpace();
68
69  // Only allow direct and non-volatile loads and stores...
70  for (const User *U : AI->users()) {
71    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
72      // Note that atomic loads can be transformed; atomic semantics do
73      // not have any meaning for a local alloca.
74      if (LI->isVolatile())
75        return false;
76    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
77      if (SI->getOperand(0) == AI)
78        return false; // Don't allow a store OF the AI, only INTO the AI.
79      // Note that atomic stores can be transformed; atomic semantics do
80      // not have any meaning for a local alloca.
81      if (SI->isVolatile())
82        return false;
83    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
84      if (!II->isLifetimeStartOrEnd())
85        return false;
86    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87      if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
88        return false;
89      if (!onlyUsedByLifetimeMarkers(BCI))
90        return false;
91    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
92      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
93        return false;
94      if (!GEPI->hasAllZeroIndices())
95        return false;
96      if (!onlyUsedByLifetimeMarkers(GEPI))
97        return false;
98    } else {
99      return false;
100    }
101  }
102
103  return true;
104}
105
106namespace {
107
108struct AllocaInfo {
109  SmallVector<BasicBlock *, 32> DefiningBlocks;
110  SmallVector<BasicBlock *, 32> UsingBlocks;
111
112  StoreInst *OnlyStore;
113  BasicBlock *OnlyBlock;
114  bool OnlyUsedInOneBlock;
115
116  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
117
118  void clear() {
119    DefiningBlocks.clear();
120    UsingBlocks.clear();
121    OnlyStore = nullptr;
122    OnlyBlock = nullptr;
123    OnlyUsedInOneBlock = true;
124    DbgDeclares.clear();
125  }
126
127  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
128  /// by the rest of the pass to reason about the uses of this alloca.
129  void AnalyzeAlloca(AllocaInst *AI) {
130    clear();
131
132    // As we scan the uses of the alloca instruction, keep track of stores,
133    // and decide whether all of the loads and stores to the alloca are within
134    // the same basic block.
135    for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
136      Instruction *User = cast<Instruction>(*UI++);
137
138      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
139        // Remember the basic blocks which define new values for the alloca
140        DefiningBlocks.push_back(SI->getParent());
141        OnlyStore = SI;
142      } else {
143        LoadInst *LI = cast<LoadInst>(User);
144        // Otherwise it must be a load instruction, keep track of variable
145        // reads.
146        UsingBlocks.push_back(LI->getParent());
147      }
148
149      if (OnlyUsedInOneBlock) {
150        if (!OnlyBlock)
151          OnlyBlock = User->getParent();
152        else if (OnlyBlock != User->getParent())
153          OnlyUsedInOneBlock = false;
154      }
155    }
156
157    DbgDeclares = FindDbgAddrUses(AI);
158  }
159};
160
161/// Data package used by RenamePass().
162struct RenamePassData {
163  using ValVector = std::vector<Value *>;
164  using LocationVector = std::vector<DebugLoc>;
165
166  RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
167      : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
168
169  BasicBlock *BB;
170  BasicBlock *Pred;
171  ValVector Values;
172  LocationVector Locations;
173};
174
175/// This assigns and keeps a per-bb relative ordering of load/store
176/// instructions in the block that directly load or store an alloca.
177///
178/// This functionality is important because it avoids scanning large basic
179/// blocks multiple times when promoting many allocas in the same block.
180class LargeBlockInfo {
181  /// For each instruction that we track, keep the index of the
182  /// instruction.
183  ///
184  /// The index starts out as the number of the instruction from the start of
185  /// the block.
186  DenseMap<const Instruction *, unsigned> InstNumbers;
187
188public:
189
190  /// This code only looks at accesses to allocas.
191  static bool isInterestingInstruction(const Instruction *I) {
192    return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
193           (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
194  }
195
196  /// Get or calculate the index of the specified instruction.
197  unsigned getInstructionIndex(const Instruction *I) {
198    assert(isInterestingInstruction(I) &&
199           "Not a load/store to/from an alloca?");
200
201    // If we already have this instruction number, return it.
202    DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
203    if (It != InstNumbers.end())
204      return It->second;
205
206    // Scan the whole block to get the instruction.  This accumulates
207    // information for every interesting instruction in the block, in order to
208    // avoid gratuitus rescans.
209    const BasicBlock *BB = I->getParent();
210    unsigned InstNo = 0;
211    for (const Instruction &BBI : *BB)
212      if (isInterestingInstruction(&BBI))
213        InstNumbers[&BBI] = InstNo++;
214    It = InstNumbers.find(I);
215
216    assert(It != InstNumbers.end() && "Didn't insert instruction?");
217    return It->second;
218  }
219
220  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
221
222  void clear() { InstNumbers.clear(); }
223};
224
225struct PromoteMem2Reg {
226  /// The alloca instructions being promoted.
227  std::vector<AllocaInst *> Allocas;
228
229  DominatorTree &DT;
230  DIBuilder DIB;
231
232  /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
233  AssumptionCache *AC;
234
235  const SimplifyQuery SQ;
236
237  /// Reverse mapping of Allocas.
238  DenseMap<AllocaInst *, unsigned> AllocaLookup;
239
240  /// The PhiNodes we're adding.
241  ///
242  /// That map is used to simplify some Phi nodes as we iterate over it, so
243  /// it should have deterministic iterators.  We could use a MapVector, but
244  /// since we already maintain a map from BasicBlock* to a stable numbering
245  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
246  DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
247
248  /// For each PHI node, keep track of which entry in Allocas it corresponds
249  /// to.
250  DenseMap<PHINode *, unsigned> PhiToAllocaMap;
251
252  /// For each alloca, we keep track of the dbg.declare intrinsic that
253  /// describes it, if any, so that we can convert it to a dbg.value
254  /// intrinsic if the alloca gets promoted.
255  SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
256
257  /// The set of basic blocks the renamer has already visited.
258  SmallPtrSet<BasicBlock *, 16> Visited;
259
260  /// Contains a stable numbering of basic blocks to avoid non-determinstic
261  /// behavior.
262  DenseMap<BasicBlock *, unsigned> BBNumbers;
263
264  /// Lazily compute the number of predecessors a block has.
265  DenseMap<const BasicBlock *, unsigned> BBNumPreds;
266
267public:
268  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
269                 AssumptionCache *AC)
270      : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
271        DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
272        AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
273                   nullptr, &DT, AC) {}
274
275  void run();
276
277private:
278  void RemoveFromAllocasList(unsigned &AllocaIdx) {
279    Allocas[AllocaIdx] = Allocas.back();
280    Allocas.pop_back();
281    --AllocaIdx;
282  }
283
284  unsigned getNumPreds(const BasicBlock *BB) {
285    unsigned &NP = BBNumPreds[BB];
286    if (NP == 0)
287      NP = pred_size(BB) + 1;
288    return NP - 1;
289  }
290
291  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
292                           const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
293                           SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
294  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
295                  RenamePassData::ValVector &IncVals,
296                  RenamePassData::LocationVector &IncLocs,
297                  std::vector<RenamePassData> &Worklist);
298  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
299};
300
301} // end anonymous namespace
302
303/// Given a LoadInst LI this adds assume(LI != null) after it.
304static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
305  Function *AssumeIntrinsic =
306      Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
307  ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
308                                       Constant::getNullValue(LI->getType()));
309  LoadNotNull->insertAfter(LI);
310  CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
311  CI->insertAfter(LoadNotNull);
312  AC->registerAssumption(CI);
313}
314
315static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
316  // Knowing that this alloca is promotable, we know that it's safe to kill all
317  // instructions except for load and store.
318
319  for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
320    Instruction *I = cast<Instruction>(*UI);
321    ++UI;
322    if (isa<LoadInst>(I) || isa<StoreInst>(I))
323      continue;
324
325    if (!I->getType()->isVoidTy()) {
326      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
327      // Follow the use/def chain to erase them now instead of leaving it for
328      // dead code elimination later.
329      for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
330        Instruction *Inst = cast<Instruction>(*UUI);
331        ++UUI;
332        Inst->eraseFromParent();
333      }
334    }
335    I->eraseFromParent();
336  }
337}
338
339/// Rewrite as many loads as possible given a single store.
340///
341/// When there is only a single store, we can use the domtree to trivially
342/// replace all of the dominated loads with the stored value. Do so, and return
343/// true if this has successfully promoted the alloca entirely. If this returns
344/// false there were some loads which were not dominated by the single store
345/// and thus must be phi-ed with undef. We fall back to the standard alloca
346/// promotion algorithm in that case.
347static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
348                                     LargeBlockInfo &LBI, const DataLayout &DL,
349                                     DominatorTree &DT, AssumptionCache *AC) {
350  StoreInst *OnlyStore = Info.OnlyStore;
351  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
352  BasicBlock *StoreBB = OnlyStore->getParent();
353  int StoreIndex = -1;
354
355  // Clear out UsingBlocks.  We will reconstruct it here if needed.
356  Info.UsingBlocks.clear();
357
358  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
359    Instruction *UserInst = cast<Instruction>(*UI++);
360    if (UserInst == OnlyStore)
361      continue;
362    LoadInst *LI = cast<LoadInst>(UserInst);
363
364    // Okay, if we have a load from the alloca, we want to replace it with the
365    // only value stored to the alloca.  We can do this if the value is
366    // dominated by the store.  If not, we use the rest of the mem2reg machinery
367    // to insert the phi nodes as needed.
368    if (!StoringGlobalVal) { // Non-instructions are always dominated.
369      if (LI->getParent() == StoreBB) {
370        // If we have a use that is in the same block as the store, compare the
371        // indices of the two instructions to see which one came first.  If the
372        // load came before the store, we can't handle it.
373        if (StoreIndex == -1)
374          StoreIndex = LBI.getInstructionIndex(OnlyStore);
375
376        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
377          // Can't handle this load, bail out.
378          Info.UsingBlocks.push_back(StoreBB);
379          continue;
380        }
381      } else if (!DT.dominates(StoreBB, LI->getParent())) {
382        // If the load and store are in different blocks, use BB dominance to
383        // check their relationships.  If the store doesn't dom the use, bail
384        // out.
385        Info.UsingBlocks.push_back(LI->getParent());
386        continue;
387      }
388    }
389
390    // Otherwise, we *can* safely rewrite this load.
391    Value *ReplVal = OnlyStore->getOperand(0);
392    // If the replacement value is the load, this must occur in unreachable
393    // code.
394    if (ReplVal == LI)
395      ReplVal = UndefValue::get(LI->getType());
396
397    // If the load was marked as nonnull we don't want to lose
398    // that information when we erase this Load. So we preserve
399    // it with an assume.
400    if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
401        !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
402      addAssumeNonNull(AC, LI);
403
404    LI->replaceAllUsesWith(ReplVal);
405    LI->eraseFromParent();
406    LBI.deleteValue(LI);
407  }
408
409  // Finally, after the scan, check to see if the store is all that is left.
410  if (!Info.UsingBlocks.empty())
411    return false; // If not, we'll have to fall back for the remainder.
412
413  // Record debuginfo for the store and remove the declaration's
414  // debuginfo.
415  for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
416    DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
417    ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
418    DII->eraseFromParent();
419  }
420  // Remove the (now dead) store and alloca.
421  Info.OnlyStore->eraseFromParent();
422  LBI.deleteValue(Info.OnlyStore);
423
424  AI->eraseFromParent();
425  return true;
426}
427
428/// Many allocas are only used within a single basic block.  If this is the
429/// case, avoid traversing the CFG and inserting a lot of potentially useless
430/// PHI nodes by just performing a single linear pass over the basic block
431/// using the Alloca.
432///
433/// If we cannot promote this alloca (because it is read before it is written),
434/// return false.  This is necessary in cases where, due to control flow, the
435/// alloca is undefined only on some control flow paths.  e.g. code like
436/// this is correct in LLVM IR:
437///  // A is an alloca with no stores so far
438///  for (...) {
439///    int t = *A;
440///    if (!first_iteration)
441///      use(t);
442///    *A = 42;
443///  }
444static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
445                                     LargeBlockInfo &LBI,
446                                     const DataLayout &DL,
447                                     DominatorTree &DT,
448                                     AssumptionCache *AC) {
449  // The trickiest case to handle is when we have large blocks. Because of this,
450  // this code is optimized assuming that large blocks happen.  This does not
451  // significantly pessimize the small block case.  This uses LargeBlockInfo to
452  // make it efficient to get the index of various operations in the block.
453
454  // Walk the use-def list of the alloca, getting the locations of all stores.
455  using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
456  StoresByIndexTy StoresByIndex;
457
458  for (User *U : AI->users())
459    if (StoreInst *SI = dyn_cast<StoreInst>(U))
460      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
461
462  // Sort the stores by their index, making it efficient to do a lookup with a
463  // binary search.
464  llvm::sort(StoresByIndex, less_first());
465
466  // Walk all of the loads from this alloca, replacing them with the nearest
467  // store above them, if any.
468  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
469    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
470    if (!LI)
471      continue;
472
473    unsigned LoadIdx = LBI.getInstructionIndex(LI);
474
475    // Find the nearest store that has a lower index than this load.
476    StoresByIndexTy::iterator I = llvm::lower_bound(
477        StoresByIndex,
478        std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
479        less_first());
480    if (I == StoresByIndex.begin()) {
481      if (StoresByIndex.empty())
482        // If there are no stores, the load takes the undef value.
483        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
484      else
485        // There is no store before this load, bail out (load may be affected
486        // by the following stores - see main comment).
487        return false;
488    } else {
489      // Otherwise, there was a store before this load, the load takes its value.
490      // Note, if the load was marked as nonnull we don't want to lose that
491      // information when we erase it. So we preserve it with an assume.
492      Value *ReplVal = std::prev(I)->second->getOperand(0);
493      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
494          !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
495        addAssumeNonNull(AC, LI);
496
497      // If the replacement value is the load, this must occur in unreachable
498      // code.
499      if (ReplVal == LI)
500        ReplVal = UndefValue::get(LI->getType());
501
502      LI->replaceAllUsesWith(ReplVal);
503    }
504
505    LI->eraseFromParent();
506    LBI.deleteValue(LI);
507  }
508
509  // Remove the (now dead) stores and alloca.
510  while (!AI->use_empty()) {
511    StoreInst *SI = cast<StoreInst>(AI->user_back());
512    // Record debuginfo for the store before removing it.
513    for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
514      DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
515      ConvertDebugDeclareToDebugValue(DII, SI, DIB);
516    }
517    SI->eraseFromParent();
518    LBI.deleteValue(SI);
519  }
520
521  AI->eraseFromParent();
522
523  // The alloca's debuginfo can be removed as well.
524  for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
525    DII->eraseFromParent();
526
527  ++NumLocalPromoted;
528  return true;
529}
530
531void PromoteMem2Reg::run() {
532  Function &F = *DT.getRoot()->getParent();
533
534  AllocaDbgDeclares.resize(Allocas.size());
535
536  AllocaInfo Info;
537  LargeBlockInfo LBI;
538  ForwardIDFCalculator IDF(DT);
539
540  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
541    AllocaInst *AI = Allocas[AllocaNum];
542
543    assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
544    assert(AI->getParent()->getParent() == &F &&
545           "All allocas should be in the same function, which is same as DF!");
546
547    removeLifetimeIntrinsicUsers(AI);
548
549    if (AI->use_empty()) {
550      // If there are no uses of the alloca, just delete it now.
551      AI->eraseFromParent();
552
553      // Remove the alloca from the Allocas list, since it has been processed
554      RemoveFromAllocasList(AllocaNum);
555      ++NumDeadAlloca;
556      continue;
557    }
558
559    // Calculate the set of read and write-locations for each alloca.  This is
560    // analogous to finding the 'uses' and 'definitions' of each variable.
561    Info.AnalyzeAlloca(AI);
562
563    // If there is only a single store to this value, replace any loads of
564    // it that are directly dominated by the definition with the value stored.
565    if (Info.DefiningBlocks.size() == 1) {
566      if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
567        // The alloca has been processed, move on.
568        RemoveFromAllocasList(AllocaNum);
569        ++NumSingleStore;
570        continue;
571      }
572    }
573
574    // If the alloca is only read and written in one basic block, just perform a
575    // linear sweep over the block to eliminate it.
576    if (Info.OnlyUsedInOneBlock &&
577        promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
578      // The alloca has been processed, move on.
579      RemoveFromAllocasList(AllocaNum);
580      continue;
581    }
582
583    // If we haven't computed a numbering for the BB's in the function, do so
584    // now.
585    if (BBNumbers.empty()) {
586      unsigned ID = 0;
587      for (auto &BB : F)
588        BBNumbers[&BB] = ID++;
589    }
590
591    // Remember the dbg.declare intrinsic describing this alloca, if any.
592    if (!Info.DbgDeclares.empty())
593      AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
594
595    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
596    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
597
598    // At this point, we're committed to promoting the alloca using IDF's, and
599    // the standard SSA construction algorithm.  Determine which blocks need PHI
600    // nodes and see if we can optimize out some work by avoiding insertion of
601    // dead phi nodes.
602
603    // Unique the set of defining blocks for efficient lookup.
604    SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
605                                            Info.DefiningBlocks.end());
606
607    // Determine which blocks the value is live in.  These are blocks which lead
608    // to uses.
609    SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
610    ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
611
612    // At this point, we're committed to promoting the alloca using IDF's, and
613    // the standard SSA construction algorithm.  Determine which blocks need phi
614    // nodes and see if we can optimize out some work by avoiding insertion of
615    // dead phi nodes.
616    IDF.setLiveInBlocks(LiveInBlocks);
617    IDF.setDefiningBlocks(DefBlocks);
618    SmallVector<BasicBlock *, 32> PHIBlocks;
619    IDF.calculate(PHIBlocks);
620    llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
621      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
622    });
623
624    unsigned CurrentVersion = 0;
625    for (BasicBlock *BB : PHIBlocks)
626      QueuePhiNode(BB, AllocaNum, CurrentVersion);
627  }
628
629  if (Allocas.empty())
630    return; // All of the allocas must have been trivial!
631
632  LBI.clear();
633
634  // Set the incoming values for the basic block to be null values for all of
635  // the alloca's.  We do this in case there is a load of a value that has not
636  // been stored yet.  In this case, it will get this null value.
637  RenamePassData::ValVector Values(Allocas.size());
638  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
639    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
640
641  // When handling debug info, treat all incoming values as if they have unknown
642  // locations until proven otherwise.
643  RenamePassData::LocationVector Locations(Allocas.size());
644
645  // Walks all basic blocks in the function performing the SSA rename algorithm
646  // and inserting the phi nodes we marked as necessary
647  std::vector<RenamePassData> RenamePassWorkList;
648  RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
649                                  std::move(Locations));
650  do {
651    RenamePassData RPD = std::move(RenamePassWorkList.back());
652    RenamePassWorkList.pop_back();
653    // RenamePass may add new worklist entries.
654    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
655  } while (!RenamePassWorkList.empty());
656
657  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
658  Visited.clear();
659
660  // Remove the allocas themselves from the function.
661  for (Instruction *A : Allocas) {
662    // If there are any uses of the alloca instructions left, they must be in
663    // unreachable basic blocks that were not processed by walking the dominator
664    // tree. Just delete the users now.
665    if (!A->use_empty())
666      A->replaceAllUsesWith(UndefValue::get(A->getType()));
667    A->eraseFromParent();
668  }
669
670  // Remove alloca's dbg.declare instrinsics from the function.
671  for (auto &Declares : AllocaDbgDeclares)
672    for (auto *DII : Declares)
673      DII->eraseFromParent();
674
675  // Loop over all of the PHI nodes and see if there are any that we can get
676  // rid of because they merge all of the same incoming values.  This can
677  // happen due to undef values coming into the PHI nodes.  This process is
678  // iterative, because eliminating one PHI node can cause others to be removed.
679  bool EliminatedAPHI = true;
680  while (EliminatedAPHI) {
681    EliminatedAPHI = false;
682
683    // Iterating over NewPhiNodes is deterministic, so it is safe to try to
684    // simplify and RAUW them as we go.  If it was not, we could add uses to
685    // the values we replace with in a non-deterministic order, thus creating
686    // non-deterministic def->use chains.
687    for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
688             I = NewPhiNodes.begin(),
689             E = NewPhiNodes.end();
690         I != E;) {
691      PHINode *PN = I->second;
692
693      // If this PHI node merges one value and/or undefs, get the value.
694      if (Value *V = SimplifyInstruction(PN, SQ)) {
695        PN->replaceAllUsesWith(V);
696        PN->eraseFromParent();
697        NewPhiNodes.erase(I++);
698        EliminatedAPHI = true;
699        continue;
700      }
701      ++I;
702    }
703  }
704
705  // At this point, the renamer has added entries to PHI nodes for all reachable
706  // code.  Unfortunately, there may be unreachable blocks which the renamer
707  // hasn't traversed.  If this is the case, the PHI nodes may not
708  // have incoming values for all predecessors.  Loop over all PHI nodes we have
709  // created, inserting undef values if they are missing any incoming values.
710  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
711           I = NewPhiNodes.begin(),
712           E = NewPhiNodes.end();
713       I != E; ++I) {
714    // We want to do this once per basic block.  As such, only process a block
715    // when we find the PHI that is the first entry in the block.
716    PHINode *SomePHI = I->second;
717    BasicBlock *BB = SomePHI->getParent();
718    if (&BB->front() != SomePHI)
719      continue;
720
721    // Only do work here if there the PHI nodes are missing incoming values.  We
722    // know that all PHI nodes that were inserted in a block will have the same
723    // number of incoming values, so we can just check any of them.
724    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
725      continue;
726
727    // Get the preds for BB.
728    SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
729
730    // Ok, now we know that all of the PHI nodes are missing entries for some
731    // basic blocks.  Start by sorting the incoming predecessors for efficient
732    // access.
733    auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
734      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
735    };
736    llvm::sort(Preds, CompareBBNumbers);
737
738    // Now we loop through all BB's which have entries in SomePHI and remove
739    // them from the Preds list.
740    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
741      // Do a log(n) search of the Preds list for the entry we want.
742      SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
743          Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
744      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
745             "PHI node has entry for a block which is not a predecessor!");
746
747      // Remove the entry
748      Preds.erase(EntIt);
749    }
750
751    // At this point, the blocks left in the preds list must have dummy
752    // entries inserted into every PHI nodes for the block.  Update all the phi
753    // nodes in this block that we are inserting (there could be phis before
754    // mem2reg runs).
755    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
756    BasicBlock::iterator BBI = BB->begin();
757    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
758           SomePHI->getNumIncomingValues() == NumBadPreds) {
759      Value *UndefVal = UndefValue::get(SomePHI->getType());
760      for (BasicBlock *Pred : Preds)
761        SomePHI->addIncoming(UndefVal, Pred);
762    }
763  }
764
765  NewPhiNodes.clear();
766}
767
768/// Determine which blocks the value is live in.
769///
770/// These are blocks which lead to uses.  Knowing this allows us to avoid
771/// inserting PHI nodes into blocks which don't lead to uses (thus, the
772/// inserted phi nodes would be dead).
773void PromoteMem2Reg::ComputeLiveInBlocks(
774    AllocaInst *AI, AllocaInfo &Info,
775    const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
776    SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
777  // To determine liveness, we must iterate through the predecessors of blocks
778  // where the def is live.  Blocks are added to the worklist if we need to
779  // check their predecessors.  Start with all the using blocks.
780  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
781                                                    Info.UsingBlocks.end());
782
783  // If any of the using blocks is also a definition block, check to see if the
784  // definition occurs before or after the use.  If it happens before the use,
785  // the value isn't really live-in.
786  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
787    BasicBlock *BB = LiveInBlockWorklist[i];
788    if (!DefBlocks.count(BB))
789      continue;
790
791    // Okay, this is a block that both uses and defines the value.  If the first
792    // reference to the alloca is a def (store), then we know it isn't live-in.
793    for (BasicBlock::iterator I = BB->begin();; ++I) {
794      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
795        if (SI->getOperand(1) != AI)
796          continue;
797
798        // We found a store to the alloca before a load.  The alloca is not
799        // actually live-in here.
800        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
801        LiveInBlockWorklist.pop_back();
802        --i;
803        --e;
804        break;
805      }
806
807      if (LoadInst *LI = dyn_cast<LoadInst>(I))
808        // Okay, we found a load before a store to the alloca.  It is actually
809        // live into this block.
810        if (LI->getOperand(0) == AI)
811          break;
812    }
813  }
814
815  // Now that we have a set of blocks where the phi is live-in, recursively add
816  // their predecessors until we find the full region the value is live.
817  while (!LiveInBlockWorklist.empty()) {
818    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
819
820    // The block really is live in here, insert it into the set.  If already in
821    // the set, then it has already been processed.
822    if (!LiveInBlocks.insert(BB).second)
823      continue;
824
825    // Since the value is live into BB, it is either defined in a predecessor or
826    // live into it to.  Add the preds to the worklist unless they are a
827    // defining block.
828    for (BasicBlock *P : predecessors(BB)) {
829      // The value is not live into a predecessor if it defines the value.
830      if (DefBlocks.count(P))
831        continue;
832
833      // Otherwise it is, add to the worklist.
834      LiveInBlockWorklist.push_back(P);
835    }
836  }
837}
838
839/// Queue a phi-node to be added to a basic-block for a specific Alloca.
840///
841/// Returns true if there wasn't already a phi-node for that variable
842bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
843                                  unsigned &Version) {
844  // Look up the basic-block in question.
845  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
846
847  // If the BB already has a phi node added for the i'th alloca then we're done!
848  if (PN)
849    return false;
850
851  // Create a PhiNode using the dereferenced type... and add the phi-node to the
852  // BasicBlock.
853  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
854                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
855                       &BB->front());
856  ++NumPHIInsert;
857  PhiToAllocaMap[PN] = AllocaNo;
858  return true;
859}
860
861/// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
862/// create a merged location incorporating \p DL, or to set \p DL directly.
863static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
864                                           bool ApplyMergedLoc) {
865  if (ApplyMergedLoc)
866    PN->applyMergedLocation(PN->getDebugLoc(), DL);
867  else
868    PN->setDebugLoc(DL);
869}
870
871/// Recursively traverse the CFG of the function, renaming loads and
872/// stores to the allocas which we are promoting.
873///
874/// IncomingVals indicates what value each Alloca contains on exit from the
875/// predecessor block Pred.
876void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
877                                RenamePassData::ValVector &IncomingVals,
878                                RenamePassData::LocationVector &IncomingLocs,
879                                std::vector<RenamePassData> &Worklist) {
880NextIteration:
881  // If we are inserting any phi nodes into this BB, they will already be in the
882  // block.
883  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
884    // If we have PHI nodes to update, compute the number of edges from Pred to
885    // BB.
886    if (PhiToAllocaMap.count(APN)) {
887      // We want to be able to distinguish between PHI nodes being inserted by
888      // this invocation of mem2reg from those phi nodes that already existed in
889      // the IR before mem2reg was run.  We determine that APN is being inserted
890      // because it is missing incoming edges.  All other PHI nodes being
891      // inserted by this pass of mem2reg will have the same number of incoming
892      // operands so far.  Remember this count.
893      unsigned NewPHINumOperands = APN->getNumOperands();
894
895      unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
896      assert(NumEdges && "Must be at least one edge from Pred to BB!");
897
898      // Add entries for all the phis.
899      BasicBlock::iterator PNI = BB->begin();
900      do {
901        unsigned AllocaNo = PhiToAllocaMap[APN];
902
903        // Update the location of the phi node.
904        updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
905                                       APN->getNumIncomingValues() > 0);
906
907        // Add N incoming values to the PHI node.
908        for (unsigned i = 0; i != NumEdges; ++i)
909          APN->addIncoming(IncomingVals[AllocaNo], Pred);
910
911        // The currently active variable for this block is now the PHI.
912        IncomingVals[AllocaNo] = APN;
913        for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
914          ConvertDebugDeclareToDebugValue(DII, APN, DIB);
915
916        // Get the next phi node.
917        ++PNI;
918        APN = dyn_cast<PHINode>(PNI);
919        if (!APN)
920          break;
921
922        // Verify that it is missing entries.  If not, it is not being inserted
923        // by this mem2reg invocation so we want to ignore it.
924      } while (APN->getNumOperands() == NewPHINumOperands);
925    }
926  }
927
928  // Don't revisit blocks.
929  if (!Visited.insert(BB).second)
930    return;
931
932  for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
933    Instruction *I = &*II++; // get the instruction, increment iterator
934
935    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
936      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
937      if (!Src)
938        continue;
939
940      DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
941      if (AI == AllocaLookup.end())
942        continue;
943
944      Value *V = IncomingVals[AI->second];
945
946      // If the load was marked as nonnull we don't want to lose
947      // that information when we erase this Load. So we preserve
948      // it with an assume.
949      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
950          !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
951        addAssumeNonNull(AC, LI);
952
953      // Anything using the load now uses the current value.
954      LI->replaceAllUsesWith(V);
955      BB->getInstList().erase(LI);
956    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
957      // Delete this instruction and mark the name as the current holder of the
958      // value
959      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
960      if (!Dest)
961        continue;
962
963      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
964      if (ai == AllocaLookup.end())
965        continue;
966
967      // what value were we writing?
968      unsigned AllocaNo = ai->second;
969      IncomingVals[AllocaNo] = SI->getOperand(0);
970
971      // Record debuginfo for the store before removing it.
972      IncomingLocs[AllocaNo] = SI->getDebugLoc();
973      for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
974        ConvertDebugDeclareToDebugValue(DII, SI, DIB);
975      BB->getInstList().erase(SI);
976    }
977  }
978
979  // 'Recurse' to our successors.
980  succ_iterator I = succ_begin(BB), E = succ_end(BB);
981  if (I == E)
982    return;
983
984  // Keep track of the successors so we don't visit the same successor twice
985  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
986
987  // Handle the first successor without using the worklist.
988  VisitedSuccs.insert(*I);
989  Pred = BB;
990  BB = *I;
991  ++I;
992
993  for (; I != E; ++I)
994    if (VisitedSuccs.insert(*I).second)
995      Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
996
997  goto NextIteration;
998}
999
1000void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1001                           AssumptionCache *AC) {
1002  // If there is nothing to do, bail out...
1003  if (Allocas.empty())
1004    return;
1005
1006  PromoteMem2Reg(Allocas, DT, AC).run();
1007}
1008