1//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------===//
8//
9// This file implements the PredicateInfo class.
10//
11//===----------------------------------------------------------------===//
12
13#include "llvm/Transforms/Utils/PredicateInfo.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/DepthFirstIterator.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/IR/AssemblyAnnotationWriter.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/IR/InstIterator.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/PatternMatch.h"
33#include "llvm/InitializePasses.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/DebugCounter.h"
36#include "llvm/Support/FormattedStream.h"
37#include "llvm/Transforms/Utils.h"
38#include <algorithm>
39#define DEBUG_TYPE "predicateinfo"
40using namespace llvm;
41using namespace PatternMatch;
42using namespace llvm::PredicateInfoClasses;
43
44INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45                      "PredicateInfo Printer", false, false)
46INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49                    "PredicateInfo Printer", false, false)
50static cl::opt<bool> VerifyPredicateInfo(
51    "verify-predicateinfo", cl::init(false), cl::Hidden,
52    cl::desc("Verify PredicateInfo in legacy printer pass."));
53DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54              "Controls which variables are renamed with predicateinfo");
55
56namespace {
57// Given a predicate info that is a type of branching terminator, get the
58// branching block.
59const BasicBlock *getBranchBlock(const PredicateBase *PB) {
60  assert(isa<PredicateWithEdge>(PB) &&
61         "Only branches and switches should have PHIOnly defs that "
62         "require branch blocks.");
63  return cast<PredicateWithEdge>(PB)->From;
64}
65
66// Given a predicate info that is a type of branching terminator, get the
67// branching terminator.
68static Instruction *getBranchTerminator(const PredicateBase *PB) {
69  assert(isa<PredicateWithEdge>(PB) &&
70         "Not a predicate info type we know how to get a terminator from.");
71  return cast<PredicateWithEdge>(PB)->From->getTerminator();
72}
73
74// Given a predicate info that is a type of branching terminator, get the
75// edge this predicate info represents
76const std::pair<BasicBlock *, BasicBlock *>
77getBlockEdge(const PredicateBase *PB) {
78  assert(isa<PredicateWithEdge>(PB) &&
79         "Not a predicate info type we know how to get an edge from.");
80  const auto *PEdge = cast<PredicateWithEdge>(PB);
81  return std::make_pair(PEdge->From, PEdge->To);
82}
83}
84
85namespace llvm {
86namespace PredicateInfoClasses {
87enum LocalNum {
88  // Operations that must appear first in the block.
89  LN_First,
90  // Operations that are somewhere in the middle of the block, and are sorted on
91  // demand.
92  LN_Middle,
93  // Operations that must appear last in a block, like successor phi node uses.
94  LN_Last
95};
96
97// Associate global and local DFS info with defs and uses, so we can sort them
98// into a global domination ordering.
99struct ValueDFS {
100  int DFSIn = 0;
101  int DFSOut = 0;
102  unsigned int LocalNum = LN_Middle;
103  // Only one of Def or Use will be set.
104  Value *Def = nullptr;
105  Use *U = nullptr;
106  // Neither PInfo nor EdgeOnly participate in the ordering
107  PredicateBase *PInfo = nullptr;
108  bool EdgeOnly = false;
109};
110
111// Perform a strict weak ordering on instructions and arguments.
112static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
113                             const Value *B) {
114  auto *ArgA = dyn_cast_or_null<Argument>(A);
115  auto *ArgB = dyn_cast_or_null<Argument>(B);
116  if (ArgA && !ArgB)
117    return true;
118  if (ArgB && !ArgA)
119    return false;
120  if (ArgA && ArgB)
121    return ArgA->getArgNo() < ArgB->getArgNo();
122  return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
123}
124
125// This compares ValueDFS structures, creating OrderedBasicBlocks where
126// necessary to compare uses/defs in the same block.  Doing so allows us to walk
127// the minimum number of instructions necessary to compute our def/use ordering.
128struct ValueDFS_Compare {
129  DominatorTree &DT;
130  OrderedInstructions &OI;
131  ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI)
132      : DT(DT), OI(OI) {}
133
134  bool operator()(const ValueDFS &A, const ValueDFS &B) const {
135    if (&A == &B)
136      return false;
137    // The only case we can't directly compare them is when they in the same
138    // block, and both have localnum == middle.  In that case, we have to use
139    // comesbefore to see what the real ordering is, because they are in the
140    // same basic block.
141
142    assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
143           "Equal DFS-in numbers imply equal out numbers");
144    bool SameBlock = A.DFSIn == B.DFSIn;
145
146    // We want to put the def that will get used for a given set of phi uses,
147    // before those phi uses.
148    // So we sort by edge, then by def.
149    // Note that only phi nodes uses and defs can come last.
150    if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
151      return comparePHIRelated(A, B);
152
153    bool isADef = A.Def;
154    bool isBDef = B.Def;
155    if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
156      return std::tie(A.DFSIn, A.LocalNum, isADef) <
157             std::tie(B.DFSIn, B.LocalNum, isBDef);
158    return localComesBefore(A, B);
159  }
160
161  // For a phi use, or a non-materialized def, return the edge it represents.
162  const std::pair<BasicBlock *, BasicBlock *>
163  getBlockEdge(const ValueDFS &VD) const {
164    if (!VD.Def && VD.U) {
165      auto *PHI = cast<PHINode>(VD.U->getUser());
166      return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
167    }
168    // This is really a non-materialized def.
169    return ::getBlockEdge(VD.PInfo);
170  }
171
172  // For two phi related values, return the ordering.
173  bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
174    BasicBlock *ASrc, *ADest, *BSrc, *BDest;
175    std::tie(ASrc, ADest) = getBlockEdge(A);
176    std::tie(BSrc, BDest) = getBlockEdge(B);
177
178#ifndef NDEBUG
179    // This function should only be used for values in the same BB, check that.
180    DomTreeNode *DomASrc = DT.getNode(ASrc);
181    DomTreeNode *DomBSrc = DT.getNode(BSrc);
182    assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
183           "DFS numbers for A should match the ones of the source block");
184    assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
185           "DFS numbers for B should match the ones of the source block");
186    assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
187#endif
188    (void)ASrc;
189    (void)BSrc;
190
191    // Use DFS numbers to compare destination blocks, to guarantee a
192    // deterministic order.
193    DomTreeNode *DomADest = DT.getNode(ADest);
194    DomTreeNode *DomBDest = DT.getNode(BDest);
195    unsigned AIn = DomADest->getDFSNumIn();
196    unsigned BIn = DomBDest->getDFSNumIn();
197    bool isADef = A.Def;
198    bool isBDef = B.Def;
199    assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
200           "Def and U cannot be set at the same time");
201    // Now sort by edge destination and then defs before uses.
202    return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
203  }
204
205  // Get the definition of an instruction that occurs in the middle of a block.
206  Value *getMiddleDef(const ValueDFS &VD) const {
207    if (VD.Def)
208      return VD.Def;
209    // It's possible for the defs and uses to be null.  For branches, the local
210    // numbering will say the placed predicaeinfos should go first (IE
211    // LN_beginning), so we won't be in this function. For assumes, we will end
212    // up here, beause we need to order the def we will place relative to the
213    // assume.  So for the purpose of ordering, we pretend the def is the assume
214    // because that is where we will insert the info.
215    if (!VD.U) {
216      assert(VD.PInfo &&
217             "No def, no use, and no predicateinfo should not occur");
218      assert(isa<PredicateAssume>(VD.PInfo) &&
219             "Middle of block should only occur for assumes");
220      return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
221    }
222    return nullptr;
223  }
224
225  // Return either the Def, if it's not null, or the user of the Use, if the def
226  // is null.
227  const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
228    if (Def)
229      return cast<Instruction>(Def);
230    return cast<Instruction>(U->getUser());
231  }
232
233  // This performs the necessary local basic block ordering checks to tell
234  // whether A comes before B, where both are in the same basic block.
235  bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
236    auto *ADef = getMiddleDef(A);
237    auto *BDef = getMiddleDef(B);
238
239    // See if we have real values or uses. If we have real values, we are
240    // guaranteed they are instructions or arguments. No matter what, we are
241    // guaranteed they are in the same block if they are instructions.
242    auto *ArgA = dyn_cast_or_null<Argument>(ADef);
243    auto *ArgB = dyn_cast_or_null<Argument>(BDef);
244
245    if (ArgA || ArgB)
246      return valueComesBefore(OI, ArgA, ArgB);
247
248    auto *AInst = getDefOrUser(ADef, A.U);
249    auto *BInst = getDefOrUser(BDef, B.U);
250    return valueComesBefore(OI, AInst, BInst);
251  }
252};
253
254} // namespace PredicateInfoClasses
255
256bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
257                                   const ValueDFS &VDUse) const {
258  if (Stack.empty())
259    return false;
260  // If it's a phi only use, make sure it's for this phi node edge, and that the
261  // use is in a phi node.  If it's anything else, and the top of the stack is
262  // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
263  // the defs they must go with so that we can know it's time to pop the stack
264  // when we hit the end of the phi uses for a given def.
265  if (Stack.back().EdgeOnly) {
266    if (!VDUse.U)
267      return false;
268    auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
269    if (!PHI)
270      return false;
271    // Check edge
272    BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
273    if (EdgePred != getBranchBlock(Stack.back().PInfo))
274      return false;
275
276    // Use dominates, which knows how to handle edge dominance.
277    return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
278  }
279
280  return (VDUse.DFSIn >= Stack.back().DFSIn &&
281          VDUse.DFSOut <= Stack.back().DFSOut);
282}
283
284void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
285                                          const ValueDFS &VD) {
286  while (!Stack.empty() && !stackIsInScope(Stack, VD))
287    Stack.pop_back();
288}
289
290// Convert the uses of Op into a vector of uses, associating global and local
291// DFS info with each one.
292void PredicateInfo::convertUsesToDFSOrdered(
293    Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
294  for (auto &U : Op->uses()) {
295    if (auto *I = dyn_cast<Instruction>(U.getUser())) {
296      ValueDFS VD;
297      // Put the phi node uses in the incoming block.
298      BasicBlock *IBlock;
299      if (auto *PN = dyn_cast<PHINode>(I)) {
300        IBlock = PN->getIncomingBlock(U);
301        // Make phi node users appear last in the incoming block
302        // they are from.
303        VD.LocalNum = LN_Last;
304      } else {
305        // If it's not a phi node use, it is somewhere in the middle of the
306        // block.
307        IBlock = I->getParent();
308        VD.LocalNum = LN_Middle;
309      }
310      DomTreeNode *DomNode = DT.getNode(IBlock);
311      // It's possible our use is in an unreachable block. Skip it if so.
312      if (!DomNode)
313        continue;
314      VD.DFSIn = DomNode->getDFSNumIn();
315      VD.DFSOut = DomNode->getDFSNumOut();
316      VD.U = &U;
317      DFSOrderedSet.push_back(VD);
318    }
319  }
320}
321
322// Collect relevant operations from Comparison that we may want to insert copies
323// for.
324void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
325  auto *Op0 = Comparison->getOperand(0);
326  auto *Op1 = Comparison->getOperand(1);
327  if (Op0 == Op1)
328    return;
329  CmpOperands.push_back(Comparison);
330  // Only want real values, not constants.  Additionally, operands with one use
331  // are only being used in the comparison, which means they will not be useful
332  // for us to consider for predicateinfo.
333  //
334  if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
335    CmpOperands.push_back(Op0);
336  if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
337    CmpOperands.push_back(Op1);
338}
339
340// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
341void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
342                               PredicateBase *PB) {
343  auto &OperandInfo = getOrCreateValueInfo(Op);
344  if (OperandInfo.Infos.empty())
345    OpsToRename.push_back(Op);
346  AllInfos.push_back(PB);
347  OperandInfo.Infos.push_back(PB);
348}
349
350// Process an assume instruction and place relevant operations we want to rename
351// into OpsToRename.
352void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
353                                  SmallVectorImpl<Value *> &OpsToRename) {
354  // See if we have a comparison we support
355  SmallVector<Value *, 8> CmpOperands;
356  SmallVector<Value *, 2> ConditionsToProcess;
357  CmpInst::Predicate Pred;
358  Value *Operand = II->getOperand(0);
359  if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
360              m_Cmp(Pred, m_Value(), m_Value()))
361          .match(II->getOperand(0))) {
362    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
363    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
364    ConditionsToProcess.push_back(Operand);
365  } else if (isa<CmpInst>(Operand)) {
366
367    ConditionsToProcess.push_back(Operand);
368  }
369  for (auto Cond : ConditionsToProcess) {
370    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
371      collectCmpOps(Cmp, CmpOperands);
372      // Now add our copy infos for our operands
373      for (auto *Op : CmpOperands) {
374        auto *PA = new PredicateAssume(Op, II, Cmp);
375        addInfoFor(OpsToRename, Op, PA);
376      }
377      CmpOperands.clear();
378    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
379      // Otherwise, it should be an AND.
380      assert(BinOp->getOpcode() == Instruction::And &&
381             "Should have been an AND");
382      auto *PA = new PredicateAssume(BinOp, II, BinOp);
383      addInfoFor(OpsToRename, BinOp, PA);
384    } else {
385      llvm_unreachable("Unknown type of condition");
386    }
387  }
388}
389
390// Process a block terminating branch, and place relevant operations to be
391// renamed into OpsToRename.
392void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
393                                  SmallVectorImpl<Value *> &OpsToRename) {
394  BasicBlock *FirstBB = BI->getSuccessor(0);
395  BasicBlock *SecondBB = BI->getSuccessor(1);
396  SmallVector<BasicBlock *, 2> SuccsToProcess;
397  SuccsToProcess.push_back(FirstBB);
398  SuccsToProcess.push_back(SecondBB);
399  SmallVector<Value *, 2> ConditionsToProcess;
400
401  auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
402    for (auto *Succ : SuccsToProcess) {
403      // Don't try to insert on a self-edge. This is mainly because we will
404      // eliminate during renaming anyway.
405      if (Succ == BranchBB)
406        continue;
407      bool TakenEdge = (Succ == FirstBB);
408      // For and, only insert on the true edge
409      // For or, only insert on the false edge
410      if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
411        continue;
412      PredicateBase *PB =
413          new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
414      addInfoFor(OpsToRename, Op, PB);
415      if (!Succ->getSinglePredecessor())
416        EdgeUsesOnly.insert({BranchBB, Succ});
417    }
418  };
419
420  // Match combinations of conditions.
421  CmpInst::Predicate Pred;
422  bool isAnd = false;
423  bool isOr = false;
424  SmallVector<Value *, 8> CmpOperands;
425  if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
426                                      m_Cmp(Pred, m_Value(), m_Value()))) ||
427      match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
428                                     m_Cmp(Pred, m_Value(), m_Value())))) {
429    auto *BinOp = cast<BinaryOperator>(BI->getCondition());
430    if (BinOp->getOpcode() == Instruction::And)
431      isAnd = true;
432    else if (BinOp->getOpcode() == Instruction::Or)
433      isOr = true;
434    ConditionsToProcess.push_back(BinOp->getOperand(0));
435    ConditionsToProcess.push_back(BinOp->getOperand(1));
436    ConditionsToProcess.push_back(BI->getCondition());
437  } else if (isa<CmpInst>(BI->getCondition())) {
438    ConditionsToProcess.push_back(BI->getCondition());
439  }
440  for (auto Cond : ConditionsToProcess) {
441    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
442      collectCmpOps(Cmp, CmpOperands);
443      // Now add our copy infos for our operands
444      for (auto *Op : CmpOperands)
445        InsertHelper(Op, isAnd, isOr, Cmp);
446    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
447      // This must be an AND or an OR.
448      assert((BinOp->getOpcode() == Instruction::And ||
449              BinOp->getOpcode() == Instruction::Or) &&
450             "Should have been an AND or an OR");
451      // The actual value of the binop is not subject to the same restrictions
452      // as the comparison. It's either true or false on the true/false branch.
453      InsertHelper(BinOp, false, false, BinOp);
454    } else {
455      llvm_unreachable("Unknown type of condition");
456    }
457    CmpOperands.clear();
458  }
459}
460// Process a block terminating switch, and place relevant operations to be
461// renamed into OpsToRename.
462void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
463                                  SmallVectorImpl<Value *> &OpsToRename) {
464  Value *Op = SI->getCondition();
465  if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
466    return;
467
468  // Remember how many outgoing edges there are to every successor.
469  SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
470  for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
471    BasicBlock *TargetBlock = SI->getSuccessor(i);
472    ++SwitchEdges[TargetBlock];
473  }
474
475  // Now propagate info for each case value
476  for (auto C : SI->cases()) {
477    BasicBlock *TargetBlock = C.getCaseSuccessor();
478    if (SwitchEdges.lookup(TargetBlock) == 1) {
479      PredicateSwitch *PS = new PredicateSwitch(
480          Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
481      addInfoFor(OpsToRename, Op, PS);
482      if (!TargetBlock->getSinglePredecessor())
483        EdgeUsesOnly.insert({BranchBB, TargetBlock});
484    }
485  }
486}
487
488// Build predicate info for our function
489void PredicateInfo::buildPredicateInfo() {
490  DT.updateDFSNumbers();
491  // Collect operands to rename from all conditional branch terminators, as well
492  // as assume statements.
493  SmallVector<Value *, 8> OpsToRename;
494  for (auto DTN : depth_first(DT.getRootNode())) {
495    BasicBlock *BranchBB = DTN->getBlock();
496    if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
497      if (!BI->isConditional())
498        continue;
499      // Can't insert conditional information if they all go to the same place.
500      if (BI->getSuccessor(0) == BI->getSuccessor(1))
501        continue;
502      processBranch(BI, BranchBB, OpsToRename);
503    } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
504      processSwitch(SI, BranchBB, OpsToRename);
505    }
506  }
507  for (auto &Assume : AC.assumptions()) {
508    if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
509      if (DT.isReachableFromEntry(II->getParent()))
510        processAssume(II, II->getParent(), OpsToRename);
511  }
512  // Now rename all our operations.
513  renameUses(OpsToRename);
514}
515
516// Create a ssa_copy declaration with custom mangling, because
517// Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
518// all unnamed types get mangled to the same string. We use the pointer
519// to the type as name here, as it guarantees unique names for different
520// types and we remove the declarations when destroying PredicateInfo.
521// It is a workaround for PR38117, because solving it in a fully general way is
522// tricky (FIXME).
523static Function *getCopyDeclaration(Module *M, Type *Ty) {
524  std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
525  return cast<Function>(
526      M->getOrInsertFunction(Name,
527                             getType(M->getContext(), Intrinsic::ssa_copy, Ty))
528          .getCallee());
529}
530
531// Given the renaming stack, make all the operands currently on the stack real
532// by inserting them into the IR.  Return the last operation's value.
533Value *PredicateInfo::materializeStack(unsigned int &Counter,
534                                       ValueDFSStack &RenameStack,
535                                       Value *OrigOp) {
536  // Find the first thing we have to materialize
537  auto RevIter = RenameStack.rbegin();
538  for (; RevIter != RenameStack.rend(); ++RevIter)
539    if (RevIter->Def)
540      break;
541
542  size_t Start = RevIter - RenameStack.rbegin();
543  // The maximum number of things we should be trying to materialize at once
544  // right now is 4, depending on if we had an assume, a branch, and both used
545  // and of conditions.
546  for (auto RenameIter = RenameStack.end() - Start;
547       RenameIter != RenameStack.end(); ++RenameIter) {
548    auto *Op =
549        RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
550    ValueDFS &Result = *RenameIter;
551    auto *ValInfo = Result.PInfo;
552    // For edge predicates, we can just place the operand in the block before
553    // the terminator.  For assume, we have to place it right before the assume
554    // to ensure we dominate all of our uses.  Always insert right before the
555    // relevant instruction (terminator, assume), so that we insert in proper
556    // order in the case of multiple predicateinfo in the same block.
557    if (isa<PredicateWithEdge>(ValInfo)) {
558      IRBuilder<> B(getBranchTerminator(ValInfo));
559      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
560      if (IF->users().empty())
561        CreatedDeclarations.insert(IF);
562      CallInst *PIC =
563          B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
564      PredicateMap.insert({PIC, ValInfo});
565      Result.Def = PIC;
566    } else {
567      auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
568      assert(PAssume &&
569             "Should not have gotten here without it being an assume");
570      IRBuilder<> B(PAssume->AssumeInst);
571      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
572      if (IF->users().empty())
573        CreatedDeclarations.insert(IF);
574      CallInst *PIC = B.CreateCall(IF, Op);
575      PredicateMap.insert({PIC, ValInfo});
576      Result.Def = PIC;
577    }
578  }
579  return RenameStack.back().Def;
580}
581
582// Instead of the standard SSA renaming algorithm, which is O(Number of
583// instructions), and walks the entire dominator tree, we walk only the defs +
584// uses.  The standard SSA renaming algorithm does not really rely on the
585// dominator tree except to order the stack push/pops of the renaming stacks, so
586// that defs end up getting pushed before hitting the correct uses.  This does
587// not require the dominator tree, only the *order* of the dominator tree. The
588// complete and correct ordering of the defs and uses, in dominator tree is
589// contained in the DFS numbering of the dominator tree. So we sort the defs and
590// uses into the DFS ordering, and then just use the renaming stack as per
591// normal, pushing when we hit a def (which is a predicateinfo instruction),
592// popping when we are out of the dfs scope for that def, and replacing any uses
593// with top of stack if it exists.  In order to handle liveness without
594// propagating liveness info, we don't actually insert the predicateinfo
595// instruction def until we see a use that it would dominate.  Once we see such
596// a use, we materialize the predicateinfo instruction in the right place and
597// use it.
598//
599// TODO: Use this algorithm to perform fast single-variable renaming in
600// promotememtoreg and memoryssa.
601void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
602  ValueDFS_Compare Compare(DT, OI);
603  // Compute liveness, and rename in O(uses) per Op.
604  for (auto *Op : OpsToRename) {
605    LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
606    unsigned Counter = 0;
607    SmallVector<ValueDFS, 16> OrderedUses;
608    const auto &ValueInfo = getValueInfo(Op);
609    // Insert the possible copies into the def/use list.
610    // They will become real copies if we find a real use for them, and never
611    // created otherwise.
612    for (auto &PossibleCopy : ValueInfo.Infos) {
613      ValueDFS VD;
614      // Determine where we are going to place the copy by the copy type.
615      // The predicate info for branches always come first, they will get
616      // materialized in the split block at the top of the block.
617      // The predicate info for assumes will be somewhere in the middle,
618      // it will get materialized in front of the assume.
619      if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
620        VD.LocalNum = LN_Middle;
621        DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
622        if (!DomNode)
623          continue;
624        VD.DFSIn = DomNode->getDFSNumIn();
625        VD.DFSOut = DomNode->getDFSNumOut();
626        VD.PInfo = PossibleCopy;
627        OrderedUses.push_back(VD);
628      } else if (isa<PredicateWithEdge>(PossibleCopy)) {
629        // If we can only do phi uses, we treat it like it's in the branch
630        // block, and handle it specially. We know that it goes last, and only
631        // dominate phi uses.
632        auto BlockEdge = getBlockEdge(PossibleCopy);
633        if (EdgeUsesOnly.count(BlockEdge)) {
634          VD.LocalNum = LN_Last;
635          auto *DomNode = DT.getNode(BlockEdge.first);
636          if (DomNode) {
637            VD.DFSIn = DomNode->getDFSNumIn();
638            VD.DFSOut = DomNode->getDFSNumOut();
639            VD.PInfo = PossibleCopy;
640            VD.EdgeOnly = true;
641            OrderedUses.push_back(VD);
642          }
643        } else {
644          // Otherwise, we are in the split block (even though we perform
645          // insertion in the branch block).
646          // Insert a possible copy at the split block and before the branch.
647          VD.LocalNum = LN_First;
648          auto *DomNode = DT.getNode(BlockEdge.second);
649          if (DomNode) {
650            VD.DFSIn = DomNode->getDFSNumIn();
651            VD.DFSOut = DomNode->getDFSNumOut();
652            VD.PInfo = PossibleCopy;
653            OrderedUses.push_back(VD);
654          }
655        }
656      }
657    }
658
659    convertUsesToDFSOrdered(Op, OrderedUses);
660    // Here we require a stable sort because we do not bother to try to
661    // assign an order to the operands the uses represent. Thus, two
662    // uses in the same instruction do not have a strict sort order
663    // currently and will be considered equal. We could get rid of the
664    // stable sort by creating one if we wanted.
665    llvm::stable_sort(OrderedUses, Compare);
666    SmallVector<ValueDFS, 8> RenameStack;
667    // For each use, sorted into dfs order, push values and replaces uses with
668    // top of stack, which will represent the reaching def.
669    for (auto &VD : OrderedUses) {
670      // We currently do not materialize copy over copy, but we should decide if
671      // we want to.
672      bool PossibleCopy = VD.PInfo != nullptr;
673      if (RenameStack.empty()) {
674        LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
675      } else {
676        LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
677                          << RenameStack.back().DFSIn << ","
678                          << RenameStack.back().DFSOut << ")\n");
679      }
680
681      LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
682                        << VD.DFSOut << ")\n");
683
684      bool ShouldPush = (VD.Def || PossibleCopy);
685      bool OutOfScope = !stackIsInScope(RenameStack, VD);
686      if (OutOfScope || ShouldPush) {
687        // Sync to our current scope.
688        popStackUntilDFSScope(RenameStack, VD);
689        if (ShouldPush) {
690          RenameStack.push_back(VD);
691        }
692      }
693      // If we get to this point, and the stack is empty we must have a use
694      // with no renaming needed, just skip it.
695      if (RenameStack.empty())
696        continue;
697      // Skip values, only want to rename the uses
698      if (VD.Def || PossibleCopy)
699        continue;
700      if (!DebugCounter::shouldExecute(RenameCounter)) {
701        LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
702        continue;
703      }
704      ValueDFS &Result = RenameStack.back();
705
706      // If the possible copy dominates something, materialize our stack up to
707      // this point. This ensures every comparison that affects our operation
708      // ends up with predicateinfo.
709      if (!Result.Def)
710        Result.Def = materializeStack(Counter, RenameStack, Op);
711
712      LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
713                        << *VD.U->get() << " in " << *(VD.U->getUser())
714                        << "\n");
715      assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
716             "Predicateinfo def should have dominated this use");
717      VD.U->set(Result.Def);
718    }
719  }
720}
721
722PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
723  auto OIN = ValueInfoNums.find(Operand);
724  if (OIN == ValueInfoNums.end()) {
725    // This will grow it
726    ValueInfos.resize(ValueInfos.size() + 1);
727    // This will use the new size and give us a 0 based number of the info
728    auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
729    assert(InsertResult.second && "Value info number already existed?");
730    return ValueInfos[InsertResult.first->second];
731  }
732  return ValueInfos[OIN->second];
733}
734
735const PredicateInfo::ValueInfo &
736PredicateInfo::getValueInfo(Value *Operand) const {
737  auto OINI = ValueInfoNums.lookup(Operand);
738  assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
739  assert(OINI < ValueInfos.size() &&
740         "Value Info Number greater than size of Value Info Table");
741  return ValueInfos[OINI];
742}
743
744PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
745                             AssumptionCache &AC)
746    : F(F), DT(DT), AC(AC), OI(&DT) {
747  // Push an empty operand info so that we can detect 0 as not finding one
748  ValueInfos.resize(1);
749  buildPredicateInfo();
750}
751
752// Remove all declarations we created . The PredicateInfo consumers are
753// responsible for remove the ssa_copy calls created.
754PredicateInfo::~PredicateInfo() {
755  // Collect function pointers in set first, as SmallSet uses a SmallVector
756  // internally and we have to remove the asserting value handles first.
757  SmallPtrSet<Function *, 20> FunctionPtrs;
758  for (auto &F : CreatedDeclarations)
759    FunctionPtrs.insert(&*F);
760  CreatedDeclarations.clear();
761
762  for (Function *F : FunctionPtrs) {
763    assert(F->user_begin() == F->user_end() &&
764           "PredicateInfo consumer did not remove all SSA copies.");
765    F->eraseFromParent();
766  }
767}
768
769void PredicateInfo::verifyPredicateInfo() const {}
770
771char PredicateInfoPrinterLegacyPass::ID = 0;
772
773PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
774    : FunctionPass(ID) {
775  initializePredicateInfoPrinterLegacyPassPass(
776      *PassRegistry::getPassRegistry());
777}
778
779void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
780  AU.setPreservesAll();
781  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
782  AU.addRequired<AssumptionCacheTracker>();
783}
784
785// Replace ssa_copy calls created by PredicateInfo with their operand.
786static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
787  for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
788    Instruction *Inst = &*I++;
789    const auto *PI = PredInfo.getPredicateInfoFor(Inst);
790    auto *II = dyn_cast<IntrinsicInst>(Inst);
791    if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
792      continue;
793
794    Inst->replaceAllUsesWith(II->getOperand(0));
795    Inst->eraseFromParent();
796  }
797}
798
799bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
800  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
801  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
802  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
803  PredInfo->print(dbgs());
804  if (VerifyPredicateInfo)
805    PredInfo->verifyPredicateInfo();
806
807  replaceCreatedSSACopys(*PredInfo, F);
808  return false;
809}
810
811PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
812                                                FunctionAnalysisManager &AM) {
813  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
814  auto &AC = AM.getResult<AssumptionAnalysis>(F);
815  OS << "PredicateInfo for function: " << F.getName() << "\n";
816  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
817  PredInfo->print(OS);
818
819  replaceCreatedSSACopys(*PredInfo, F);
820  return PreservedAnalyses::all();
821}
822
823/// An assembly annotator class to print PredicateInfo information in
824/// comments.
825class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
826  friend class PredicateInfo;
827  const PredicateInfo *PredInfo;
828
829public:
830  PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
831
832  virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
833                                        formatted_raw_ostream &OS) {}
834
835  virtual void emitInstructionAnnot(const Instruction *I,
836                                    formatted_raw_ostream &OS) {
837    if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
838      OS << "; Has predicate info\n";
839      if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
840        OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
841           << " Comparison:" << *PB->Condition << " Edge: [";
842        PB->From->printAsOperand(OS);
843        OS << ",";
844        PB->To->printAsOperand(OS);
845        OS << "] }\n";
846      } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
847        OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
848           << " Switch:" << *PS->Switch << " Edge: [";
849        PS->From->printAsOperand(OS);
850        OS << ",";
851        PS->To->printAsOperand(OS);
852        OS << "] }\n";
853      } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
854        OS << "; assume predicate info {"
855           << " Comparison:" << *PA->Condition << " }\n";
856      }
857    }
858  }
859};
860
861void PredicateInfo::print(raw_ostream &OS) const {
862  PredicateInfoAnnotatedWriter Writer(this);
863  F.print(OS, &Writer);
864}
865
866void PredicateInfo::dump() const {
867  PredicateInfoAnnotatedWriter Writer(this);
868  F.print(dbgs(), &Writer);
869}
870
871PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
872                                                 FunctionAnalysisManager &AM) {
873  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
874  auto &AC = AM.getResult<AssumptionAnalysis>(F);
875  std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
876
877  return PreservedAnalyses::all();
878}
879}
880