LowerSwitch.cpp revision 360660
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The LowerSwitch transformation rewrites switch instructions with a sequence
10// of branches, which allows targets to get away with not implementing the
11// switch instruction until it is convenient.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/ConstantRange.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Value.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/KnownBits.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Utils.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include <algorithm>
39#include <cassert>
40#include <cstdint>
41#include <iterator>
42#include <limits>
43#include <vector>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "lower-switch"
48
49namespace {
50
51  struct IntRange {
52    int64_t Low, High;
53  };
54
55} // end anonymous namespace
56
57// Return true iff R is covered by Ranges.
58static bool IsInRanges(const IntRange &R,
59                       const std::vector<IntRange> &Ranges) {
60  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
61
62  // Find the first range whose High field is >= R.High,
63  // then check if the Low field is <= R.Low. If so, we
64  // have a Range that covers R.
65  auto I = llvm::lower_bound(
66      Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
67  return I != Ranges.end() && I->Low <= R.Low;
68}
69
70namespace {
71
72  /// Replace all SwitchInst instructions with chained branch instructions.
73  class LowerSwitch : public FunctionPass {
74  public:
75    // Pass identification, replacement for typeid
76    static char ID;
77
78    LowerSwitch() : FunctionPass(ID) {
79      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
80    }
81
82    bool runOnFunction(Function &F) override;
83
84    void getAnalysisUsage(AnalysisUsage &AU) const override {
85      AU.addRequired<LazyValueInfoWrapperPass>();
86    }
87
88    struct CaseRange {
89      ConstantInt* Low;
90      ConstantInt* High;
91      BasicBlock* BB;
92
93      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
94          : Low(low), High(high), BB(bb) {}
95    };
96
97    using CaseVector = std::vector<CaseRange>;
98    using CaseItr = std::vector<CaseRange>::iterator;
99
100  private:
101    void processSwitchInst(SwitchInst *SI,
102                           SmallPtrSetImpl<BasicBlock *> &DeleteList,
103                           AssumptionCache *AC, LazyValueInfo *LVI);
104
105    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
106                              ConstantInt *LowerBound, ConstantInt *UpperBound,
107                              Value *Val, BasicBlock *Predecessor,
108                              BasicBlock *OrigBlock, BasicBlock *Default,
109                              const std::vector<IntRange> &UnreachableRanges);
110    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val,
111                             ConstantInt *LowerBound, ConstantInt *UpperBound,
112                             BasicBlock *OrigBlock, BasicBlock *Default);
113    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
114  };
115
116  /// The comparison function for sorting the switch case values in the vector.
117  /// WARNING: Case ranges should be disjoint!
118  struct CaseCmp {
119    bool operator()(const LowerSwitch::CaseRange& C1,
120                    const LowerSwitch::CaseRange& C2) {
121      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
122      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
123      return CI1->getValue().slt(CI2->getValue());
124    }
125  };
126
127} // end anonymous namespace
128
129char LowerSwitch::ID = 0;
130
131// Publicly exposed interface to pass...
132char &llvm::LowerSwitchID = LowerSwitch::ID;
133
134INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch",
135                      "Lower SwitchInst's to branches", false, false)
136INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
137INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
138INITIALIZE_PASS_END(LowerSwitch, "lowerswitch",
139                    "Lower SwitchInst's to branches", false, false)
140
141// createLowerSwitchPass - Interface to this file...
142FunctionPass *llvm::createLowerSwitchPass() {
143  return new LowerSwitch();
144}
145
146bool LowerSwitch::runOnFunction(Function &F) {
147  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
148  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
149  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
150  // Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not
151  // preserve it and it becomes stale (when available) pretty much immediately.
152  // Currently the DominatorTree is only used by LowerSwitch indirectly via LVI
153  // and computeKnownBits to refine isValidAssumeForContext's results. Given
154  // that the latter can handle some of the simple cases w/o a DominatorTree,
155  // it's easier to refrain from using the tree than to keep it up to date.
156  LVI->disableDT();
157
158  bool Changed = false;
159  SmallPtrSet<BasicBlock*, 8> DeleteList;
160
161  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
162    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
163
164    // If the block is a dead Default block that will be deleted later, don't
165    // waste time processing it.
166    if (DeleteList.count(Cur))
167      continue;
168
169    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
170      Changed = true;
171      processSwitchInst(SI, DeleteList, AC, LVI);
172    }
173  }
174
175  for (BasicBlock* BB: DeleteList) {
176    LVI->eraseBlock(BB);
177    DeleteDeadBlock(BB);
178  }
179
180  return Changed;
181}
182
183/// Used for debugging purposes.
184LLVM_ATTRIBUTE_USED
185static raw_ostream &operator<<(raw_ostream &O,
186                               const LowerSwitch::CaseVector &C) {
187  O << "[";
188
189  for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end();
190       B != E;) {
191    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
192    if (++B != E)
193      O << ", ";
194  }
195
196  return O << "]";
197}
198
199/// Update the first occurrence of the "switch statement" BB in the PHI
200/// node with the "new" BB. The other occurrences will:
201///
202/// 1) Be updated by subsequent calls to this function.  Switch statements may
203/// have more than one outcoming edge into the same BB if they all have the same
204/// value. When the switch statement is converted these incoming edges are now
205/// coming from multiple BBs.
206/// 2) Removed if subsequent incoming values now share the same case, i.e.,
207/// multiple outcome edges are condensed into one. This is necessary to keep the
208/// number of phi values equal to the number of branches to SuccBB.
209static void
210fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
211        const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
212  for (BasicBlock::iterator I = SuccBB->begin(),
213                            IE = SuccBB->getFirstNonPHI()->getIterator();
214       I != IE; ++I) {
215    PHINode *PN = cast<PHINode>(I);
216
217    // Only update the first occurrence.
218    unsigned Idx = 0, E = PN->getNumIncomingValues();
219    unsigned LocalNumMergedCases = NumMergedCases;
220    for (; Idx != E; ++Idx) {
221      if (PN->getIncomingBlock(Idx) == OrigBB) {
222        PN->setIncomingBlock(Idx, NewBB);
223        break;
224      }
225    }
226
227    // Remove additional occurrences coming from condensed cases and keep the
228    // number of incoming values equal to the number of branches to SuccBB.
229    SmallVector<unsigned, 8> Indices;
230    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
231      if (PN->getIncomingBlock(Idx) == OrigBB) {
232        Indices.push_back(Idx);
233        LocalNumMergedCases--;
234      }
235    // Remove incoming values in the reverse order to prevent invalidating
236    // *successive* index.
237    for (unsigned III : llvm::reverse(Indices))
238      PN->removeIncomingValue(III);
239  }
240}
241
242/// Convert the switch statement into a binary lookup of the case values.
243/// The function recursively builds this tree. LowerBound and UpperBound are
244/// used to keep track of the bounds for Val that have already been checked by
245/// a block emitted by one of the previous calls to switchConvert in the call
246/// stack.
247BasicBlock *
248LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
249                           ConstantInt *UpperBound, Value *Val,
250                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
251                           BasicBlock *Default,
252                           const std::vector<IntRange> &UnreachableRanges) {
253  assert(LowerBound && UpperBound && "Bounds must be initialized");
254  unsigned Size = End - Begin;
255
256  if (Size == 1) {
257    // Check if the Case Range is perfectly squeezed in between
258    // already checked Upper and Lower bounds. If it is then we can avoid
259    // emitting the code that checks if the value actually falls in the range
260    // because the bounds already tell us so.
261    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
262      unsigned NumMergedCases = 0;
263      NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
264      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
265      return Begin->BB;
266    }
267    return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
268                        Default);
269  }
270
271  unsigned Mid = Size / 2;
272  std::vector<CaseRange> LHS(Begin, Begin + Mid);
273  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
274  std::vector<CaseRange> RHS(Begin + Mid, End);
275  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
276
277  CaseRange &Pivot = *(Begin + Mid);
278  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
279                    << Pivot.High->getValue() << "]\n");
280
281  // NewLowerBound here should never be the integer minimal value.
282  // This is because it is computed from a case range that is never
283  // the smallest, so there is always a case range that has at least
284  // a smaller value.
285  ConstantInt *NewLowerBound = Pivot.Low;
286
287  // Because NewLowerBound is never the smallest representable integer
288  // it is safe here to subtract one.
289  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
290                                                NewLowerBound->getValue() - 1);
291
292  if (!UnreachableRanges.empty()) {
293    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
294    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
295    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
296    IntRange Gap = { GapLow, GapHigh };
297    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
298      NewUpperBound = LHS.back().High;
299  }
300
301  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
302                    << NewUpperBound->getSExtValue() << "]\n"
303                    << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
304                    << ", " << UpperBound->getSExtValue() << "]\n");
305
306  // Create a new node that checks if the value is < pivot. Go to the
307  // left branch if it is and right branch if not.
308  Function* F = OrigBlock->getParent();
309  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
310
311  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
312                                Val, Pivot.Low, "Pivot");
313
314  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
315                                      NewUpperBound, Val, NewNode, OrigBlock,
316                                      Default, UnreachableRanges);
317  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
318                                      UpperBound, Val, NewNode, OrigBlock,
319                                      Default, UnreachableRanges);
320
321  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
322  NewNode->getInstList().push_back(Comp);
323
324  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
325  return NewNode;
326}
327
328/// Create a new leaf block for the binary lookup tree. It checks if the
329/// switch's value == the case's value. If not, then it jumps to the default
330/// branch. At this point in the tree, the value can't be another valid case
331/// value, so the jump to the "default" branch is warranted.
332BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val,
333                                      ConstantInt *LowerBound,
334                                      ConstantInt *UpperBound,
335                                      BasicBlock *OrigBlock,
336                                      BasicBlock *Default) {
337  Function* F = OrigBlock->getParent();
338  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
339  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
340
341  // Emit comparison
342  ICmpInst* Comp = nullptr;
343  if (Leaf.Low == Leaf.High) {
344    // Make the seteq instruction...
345    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
346                        Leaf.Low, "SwitchLeaf");
347  } else {
348    // Make range comparison
349    if (Leaf.Low == LowerBound) {
350      // Val >= Min && Val <= Hi --> Val <= Hi
351      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
352                          "SwitchLeaf");
353    } else if (Leaf.High == UpperBound) {
354      // Val <= Max && Val >= Lo --> Val >= Lo
355      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
356                          "SwitchLeaf");
357    } else if (Leaf.Low->isZero()) {
358      // Val >= 0 && Val <= Hi --> Val <=u Hi
359      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
360                          "SwitchLeaf");
361    } else {
362      // Emit V-Lo <=u Hi-Lo
363      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
364      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
365                                                   Val->getName()+".off",
366                                                   NewLeaf);
367      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
368      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
369                          "SwitchLeaf");
370    }
371  }
372
373  // Make the conditional branch...
374  BasicBlock* Succ = Leaf.BB;
375  BranchInst::Create(Succ, Default, Comp, NewLeaf);
376
377  // If there were any PHI nodes in this successor, rewrite one entry
378  // from OrigBlock to come from NewLeaf.
379  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
380    PHINode* PN = cast<PHINode>(I);
381    // Remove all but one incoming entries from the cluster
382    uint64_t Range = Leaf.High->getSExtValue() -
383                     Leaf.Low->getSExtValue();
384    for (uint64_t j = 0; j < Range; ++j) {
385      PN->removeIncomingValue(OrigBlock);
386    }
387
388    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
389    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
390    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
391  }
392
393  return NewLeaf;
394}
395
396/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
397/// \post \p Cases wouldn't contain references to \p SI's default BB.
398/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
399unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
400  unsigned NumSimpleCases = 0;
401
402  // Start with "simple" cases
403  for (auto Case : SI->cases()) {
404    if (Case.getCaseSuccessor() == SI->getDefaultDest())
405      continue;
406    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
407                              Case.getCaseSuccessor()));
408    ++NumSimpleCases;
409  }
410
411  llvm::sort(Cases, CaseCmp());
412
413  // Merge case into clusters
414  if (Cases.size() >= 2) {
415    CaseItr I = Cases.begin();
416    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
417      int64_t nextValue = J->Low->getSExtValue();
418      int64_t currentValue = I->High->getSExtValue();
419      BasicBlock* nextBB = J->BB;
420      BasicBlock* currentBB = I->BB;
421
422      // If the two neighboring cases go to the same destination, merge them
423      // into a single case.
424      assert(nextValue > currentValue && "Cases should be strictly ascending");
425      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
426        I->High = J->High;
427        // FIXME: Combine branch weights.
428      } else if (++I != J) {
429        *I = *J;
430      }
431    }
432    Cases.erase(std::next(I), Cases.end());
433  }
434
435  return NumSimpleCases;
436}
437
438/// Replace the specified switch instruction with a sequence of chained if-then
439/// insts in a balanced binary search.
440void LowerSwitch::processSwitchInst(SwitchInst *SI,
441                                    SmallPtrSetImpl<BasicBlock *> &DeleteList,
442                                    AssumptionCache *AC, LazyValueInfo *LVI) {
443  BasicBlock *OrigBlock = SI->getParent();
444  Function *F = OrigBlock->getParent();
445  Value *Val = SI->getCondition();  // The value we are switching on...
446  BasicBlock* Default = SI->getDefaultDest();
447
448  // Don't handle unreachable blocks. If there are successors with phis, this
449  // would leave them behind with missing predecessors.
450  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
451      OrigBlock->getSinglePredecessor() == OrigBlock) {
452    DeleteList.insert(OrigBlock);
453    return;
454  }
455
456  // Prepare cases vector.
457  CaseVector Cases;
458  const unsigned NumSimpleCases = Clusterify(Cases, SI);
459  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
460                    << ". Total non-default cases: " << NumSimpleCases
461                    << "\nCase clusters: " << Cases << "\n");
462
463  // If there is only the default destination, just branch.
464  if (Cases.empty()) {
465    BranchInst::Create(Default, OrigBlock);
466    // Remove all the references from Default's PHIs to OrigBlock, but one.
467    fixPhis(Default, OrigBlock, OrigBlock);
468    SI->eraseFromParent();
469    return;
470  }
471
472  ConstantInt *LowerBound = nullptr;
473  ConstantInt *UpperBound = nullptr;
474  bool DefaultIsUnreachableFromSwitch = false;
475
476  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
477    // Make the bounds tightly fitted around the case value range, because we
478    // know that the value passed to the switch must be exactly one of the case
479    // values.
480    LowerBound = Cases.front().Low;
481    UpperBound = Cases.back().High;
482    DefaultIsUnreachableFromSwitch = true;
483  } else {
484    // Constraining the range of the value being switched over helps eliminating
485    // unreachable BBs and minimizing the number of `add` instructions
486    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
487    // LowerSwitch isn't as good, and also much more expensive in terms of
488    // compile time for the following reasons:
489    // 1. it processes many kinds of instructions, not just switches;
490    // 2. even if limited to icmp instructions only, it will have to process
491    //    roughly C icmp's per switch, where C is the number of cases in the
492    //    switch, while LowerSwitch only needs to call LVI once per switch.
493    const DataLayout &DL = F->getParent()->getDataLayout();
494    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
495    // TODO Shouldn't this create a signed range?
496    ConstantRange KnownBitsRange =
497        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
498    const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI);
499    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
500    // We delegate removal of unreachable non-default cases to other passes. In
501    // the unlikely event that some of them survived, we just conservatively
502    // maintain the invariant that all the cases lie between the bounds. This
503    // may, however, still render the default case effectively unreachable.
504    APInt Low = Cases.front().Low->getValue();
505    APInt High = Cases.back().High->getValue();
506    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
507    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
508
509    LowerBound = ConstantInt::get(SI->getContext(), Min);
510    UpperBound = ConstantInt::get(SI->getContext(), Max);
511    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
512  }
513
514  std::vector<IntRange> UnreachableRanges;
515
516  if (DefaultIsUnreachableFromSwitch) {
517    DenseMap<BasicBlock *, unsigned> Popularity;
518    unsigned MaxPop = 0;
519    BasicBlock *PopSucc = nullptr;
520
521    IntRange R = {std::numeric_limits<int64_t>::min(),
522                  std::numeric_limits<int64_t>::max()};
523    UnreachableRanges.push_back(R);
524    for (const auto &I : Cases) {
525      int64_t Low = I.Low->getSExtValue();
526      int64_t High = I.High->getSExtValue();
527
528      IntRange &LastRange = UnreachableRanges.back();
529      if (LastRange.Low == Low) {
530        // There is nothing left of the previous range.
531        UnreachableRanges.pop_back();
532      } else {
533        // Terminate the previous range.
534        assert(Low > LastRange.Low);
535        LastRange.High = Low - 1;
536      }
537      if (High != std::numeric_limits<int64_t>::max()) {
538        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
539        UnreachableRanges.push_back(R);
540      }
541
542      // Count popularity.
543      int64_t N = High - Low + 1;
544      unsigned &Pop = Popularity[I.BB];
545      if ((Pop += N) > MaxPop) {
546        MaxPop = Pop;
547        PopSucc = I.BB;
548      }
549    }
550#ifndef NDEBUG
551    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
552    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
553         I != E; ++I) {
554      assert(I->Low <= I->High);
555      auto Next = I + 1;
556      if (Next != E) {
557        assert(Next->Low > I->High);
558      }
559    }
560#endif
561
562    // As the default block in the switch is unreachable, update the PHI nodes
563    // (remove all of the references to the default block) to reflect this.
564    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
565    for (unsigned I = 0; I < NumDefaultEdges; ++I)
566      Default->removePredecessor(OrigBlock);
567
568    // Use the most popular block as the new default, reducing the number of
569    // cases.
570    assert(MaxPop > 0 && PopSucc);
571    Default = PopSucc;
572    Cases.erase(
573        llvm::remove_if(
574            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
575        Cases.end());
576
577    // If there are no cases left, just branch.
578    if (Cases.empty()) {
579      BranchInst::Create(Default, OrigBlock);
580      SI->eraseFromParent();
581      // As all the cases have been replaced with a single branch, only keep
582      // one entry in the PHI nodes.
583      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
584        PopSucc->removePredecessor(OrigBlock);
585      return;
586    }
587
588    // If the condition was a PHI node with the switch block as a predecessor
589    // removing predecessors may have caused the condition to be erased.
590    // Getting the condition value again here protects against that.
591    Val = SI->getCondition();
592  }
593
594  // Create a new, empty default block so that the new hierarchy of
595  // if-then statements go to this and the PHI nodes are happy.
596  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
597  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
598  BranchInst::Create(Default, NewDefault);
599
600  BasicBlock *SwitchBlock =
601      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
602                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
603
604  // If there are entries in any PHI nodes for the default edge, make sure
605  // to update them as well.
606  fixPhis(Default, OrigBlock, NewDefault);
607
608  // Branch to our shiny new if-then stuff...
609  BranchInst::Create(SwitchBlock, OrigBlock);
610
611  // We are now done with the switch instruction, delete it.
612  BasicBlock *OldDefault = SI->getDefaultDest();
613  OrigBlock->getInstList().erase(SI);
614
615  // If the Default block has no more predecessors just add it to DeleteList.
616  if (pred_begin(OldDefault) == pred_end(OldDefault))
617    DeleteList.insert(OldDefault);
618}
619