1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The LowerSwitch transformation rewrites switch instructions with a sequence
10// of branches, which allows targets to get away with not implementing the
11// switch instruction until it is convenient.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/ConstantRange.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Value.h"
30#include "llvm/InitializePasses.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/KnownBits.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Transforms/Utils.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <limits>
44#include <vector>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "lower-switch"
49
50namespace {
51
52  struct IntRange {
53    int64_t Low, High;
54  };
55
56} // end anonymous namespace
57
58// Return true iff R is covered by Ranges.
59static bool IsInRanges(const IntRange &R,
60                       const std::vector<IntRange> &Ranges) {
61  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
62
63  // Find the first range whose High field is >= R.High,
64  // then check if the Low field is <= R.Low. If so, we
65  // have a Range that covers R.
66  auto I = llvm::lower_bound(
67      Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
68  return I != Ranges.end() && I->Low <= R.Low;
69}
70
71namespace {
72
73  /// Replace all SwitchInst instructions with chained branch instructions.
74  class LowerSwitch : public FunctionPass {
75  public:
76    // Pass identification, replacement for typeid
77    static char ID;
78
79    LowerSwitch() : FunctionPass(ID) {
80      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
81    }
82
83    bool runOnFunction(Function &F) override;
84
85    void getAnalysisUsage(AnalysisUsage &AU) const override {
86      AU.addRequired<LazyValueInfoWrapperPass>();
87    }
88
89    struct CaseRange {
90      ConstantInt* Low;
91      ConstantInt* High;
92      BasicBlock* BB;
93
94      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
95          : Low(low), High(high), BB(bb) {}
96    };
97
98    using CaseVector = std::vector<CaseRange>;
99    using CaseItr = std::vector<CaseRange>::iterator;
100
101  private:
102    void processSwitchInst(SwitchInst *SI,
103                           SmallPtrSetImpl<BasicBlock *> &DeleteList,
104                           AssumptionCache *AC, LazyValueInfo *LVI);
105
106    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
107                              ConstantInt *LowerBound, ConstantInt *UpperBound,
108                              Value *Val, BasicBlock *Predecessor,
109                              BasicBlock *OrigBlock, BasicBlock *Default,
110                              const std::vector<IntRange> &UnreachableRanges);
111    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val,
112                             ConstantInt *LowerBound, ConstantInt *UpperBound,
113                             BasicBlock *OrigBlock, BasicBlock *Default);
114    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
115  };
116
117  /// The comparison function for sorting the switch case values in the vector.
118  /// WARNING: Case ranges should be disjoint!
119  struct CaseCmp {
120    bool operator()(const LowerSwitch::CaseRange& C1,
121                    const LowerSwitch::CaseRange& C2) {
122      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
123      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
124      return CI1->getValue().slt(CI2->getValue());
125    }
126  };
127
128} // end anonymous namespace
129
130char LowerSwitch::ID = 0;
131
132// Publicly exposed interface to pass...
133char &llvm::LowerSwitchID = LowerSwitch::ID;
134
135INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch",
136                      "Lower SwitchInst's to branches", false, false)
137INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
138INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
139INITIALIZE_PASS_END(LowerSwitch, "lowerswitch",
140                    "Lower SwitchInst's to branches", false, false)
141
142// createLowerSwitchPass - Interface to this file...
143FunctionPass *llvm::createLowerSwitchPass() {
144  return new LowerSwitch();
145}
146
147bool LowerSwitch::runOnFunction(Function &F) {
148  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
149  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
150  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
151  // Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not
152  // preserve it and it becomes stale (when available) pretty much immediately.
153  // Currently the DominatorTree is only used by LowerSwitch indirectly via LVI
154  // and computeKnownBits to refine isValidAssumeForContext's results. Given
155  // that the latter can handle some of the simple cases w/o a DominatorTree,
156  // it's easier to refrain from using the tree than to keep it up to date.
157  LVI->disableDT();
158
159  bool Changed = false;
160  SmallPtrSet<BasicBlock*, 8> DeleteList;
161
162  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
163    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
164
165    // If the block is a dead Default block that will be deleted later, don't
166    // waste time processing it.
167    if (DeleteList.count(Cur))
168      continue;
169
170    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
171      Changed = true;
172      processSwitchInst(SI, DeleteList, AC, LVI);
173    }
174  }
175
176  for (BasicBlock* BB: DeleteList) {
177    LVI->eraseBlock(BB);
178    DeleteDeadBlock(BB);
179  }
180
181  return Changed;
182}
183
184/// Used for debugging purposes.
185LLVM_ATTRIBUTE_USED
186static raw_ostream &operator<<(raw_ostream &O,
187                               const LowerSwitch::CaseVector &C) {
188  O << "[";
189
190  for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end();
191       B != E;) {
192    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
193    if (++B != E)
194      O << ", ";
195  }
196
197  return O << "]";
198}
199
200/// Update the first occurrence of the "switch statement" BB in the PHI
201/// node with the "new" BB. The other occurrences will:
202///
203/// 1) Be updated by subsequent calls to this function.  Switch statements may
204/// have more than one outcoming edge into the same BB if they all have the same
205/// value. When the switch statement is converted these incoming edges are now
206/// coming from multiple BBs.
207/// 2) Removed if subsequent incoming values now share the same case, i.e.,
208/// multiple outcome edges are condensed into one. This is necessary to keep the
209/// number of phi values equal to the number of branches to SuccBB.
210static void
211fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
212        const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
213  for (BasicBlock::iterator I = SuccBB->begin(),
214                            IE = SuccBB->getFirstNonPHI()->getIterator();
215       I != IE; ++I) {
216    PHINode *PN = cast<PHINode>(I);
217
218    // Only update the first occurrence.
219    unsigned Idx = 0, E = PN->getNumIncomingValues();
220    unsigned LocalNumMergedCases = NumMergedCases;
221    for (; Idx != E; ++Idx) {
222      if (PN->getIncomingBlock(Idx) == OrigBB) {
223        PN->setIncomingBlock(Idx, NewBB);
224        break;
225      }
226    }
227
228    // Remove additional occurrences coming from condensed cases and keep the
229    // number of incoming values equal to the number of branches to SuccBB.
230    SmallVector<unsigned, 8> Indices;
231    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
232      if (PN->getIncomingBlock(Idx) == OrigBB) {
233        Indices.push_back(Idx);
234        LocalNumMergedCases--;
235      }
236    // Remove incoming values in the reverse order to prevent invalidating
237    // *successive* index.
238    for (unsigned III : llvm::reverse(Indices))
239      PN->removeIncomingValue(III);
240  }
241}
242
243/// Convert the switch statement into a binary lookup of the case values.
244/// The function recursively builds this tree. LowerBound and UpperBound are
245/// used to keep track of the bounds for Val that have already been checked by
246/// a block emitted by one of the previous calls to switchConvert in the call
247/// stack.
248BasicBlock *
249LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
250                           ConstantInt *UpperBound, Value *Val,
251                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
252                           BasicBlock *Default,
253                           const std::vector<IntRange> &UnreachableRanges) {
254  assert(LowerBound && UpperBound && "Bounds must be initialized");
255  unsigned Size = End - Begin;
256
257  if (Size == 1) {
258    // Check if the Case Range is perfectly squeezed in between
259    // already checked Upper and Lower bounds. If it is then we can avoid
260    // emitting the code that checks if the value actually falls in the range
261    // because the bounds already tell us so.
262    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
263      unsigned NumMergedCases = 0;
264      NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
265      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
266      return Begin->BB;
267    }
268    return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
269                        Default);
270  }
271
272  unsigned Mid = Size / 2;
273  std::vector<CaseRange> LHS(Begin, Begin + Mid);
274  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
275  std::vector<CaseRange> RHS(Begin + Mid, End);
276  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
277
278  CaseRange &Pivot = *(Begin + Mid);
279  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
280                    << Pivot.High->getValue() << "]\n");
281
282  // NewLowerBound here should never be the integer minimal value.
283  // This is because it is computed from a case range that is never
284  // the smallest, so there is always a case range that has at least
285  // a smaller value.
286  ConstantInt *NewLowerBound = Pivot.Low;
287
288  // Because NewLowerBound is never the smallest representable integer
289  // it is safe here to subtract one.
290  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
291                                                NewLowerBound->getValue() - 1);
292
293  if (!UnreachableRanges.empty()) {
294    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
295    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
296    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
297    IntRange Gap = { GapLow, GapHigh };
298    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
299      NewUpperBound = LHS.back().High;
300  }
301
302  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
303                    << NewUpperBound->getSExtValue() << "]\n"
304                    << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
305                    << ", " << UpperBound->getSExtValue() << "]\n");
306
307  // Create a new node that checks if the value is < pivot. Go to the
308  // left branch if it is and right branch if not.
309  Function* F = OrigBlock->getParent();
310  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
311
312  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
313                                Val, Pivot.Low, "Pivot");
314
315  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
316                                      NewUpperBound, Val, NewNode, OrigBlock,
317                                      Default, UnreachableRanges);
318  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
319                                      UpperBound, Val, NewNode, OrigBlock,
320                                      Default, UnreachableRanges);
321
322  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
323  NewNode->getInstList().push_back(Comp);
324
325  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
326  return NewNode;
327}
328
329/// Create a new leaf block for the binary lookup tree. It checks if the
330/// switch's value == the case's value. If not, then it jumps to the default
331/// branch. At this point in the tree, the value can't be another valid case
332/// value, so the jump to the "default" branch is warranted.
333BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val,
334                                      ConstantInt *LowerBound,
335                                      ConstantInt *UpperBound,
336                                      BasicBlock *OrigBlock,
337                                      BasicBlock *Default) {
338  Function* F = OrigBlock->getParent();
339  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
340  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
341
342  // Emit comparison
343  ICmpInst* Comp = nullptr;
344  if (Leaf.Low == Leaf.High) {
345    // Make the seteq instruction...
346    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
347                        Leaf.Low, "SwitchLeaf");
348  } else {
349    // Make range comparison
350    if (Leaf.Low == LowerBound) {
351      // Val >= Min && Val <= Hi --> Val <= Hi
352      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
353                          "SwitchLeaf");
354    } else if (Leaf.High == UpperBound) {
355      // Val <= Max && Val >= Lo --> Val >= Lo
356      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
357                          "SwitchLeaf");
358    } else if (Leaf.Low->isZero()) {
359      // Val >= 0 && Val <= Hi --> Val <=u Hi
360      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
361                          "SwitchLeaf");
362    } else {
363      // Emit V-Lo <=u Hi-Lo
364      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
365      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
366                                                   Val->getName()+".off",
367                                                   NewLeaf);
368      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
369      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
370                          "SwitchLeaf");
371    }
372  }
373
374  // Make the conditional branch...
375  BasicBlock* Succ = Leaf.BB;
376  BranchInst::Create(Succ, Default, Comp, NewLeaf);
377
378  // If there were any PHI nodes in this successor, rewrite one entry
379  // from OrigBlock to come from NewLeaf.
380  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
381    PHINode* PN = cast<PHINode>(I);
382    // Remove all but one incoming entries from the cluster
383    uint64_t Range = Leaf.High->getSExtValue() -
384                     Leaf.Low->getSExtValue();
385    for (uint64_t j = 0; j < Range; ++j) {
386      PN->removeIncomingValue(OrigBlock);
387    }
388
389    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
390    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
391    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
392  }
393
394  return NewLeaf;
395}
396
397/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
398/// \post \p Cases wouldn't contain references to \p SI's default BB.
399/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
400unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
401  unsigned NumSimpleCases = 0;
402
403  // Start with "simple" cases
404  for (auto Case : SI->cases()) {
405    if (Case.getCaseSuccessor() == SI->getDefaultDest())
406      continue;
407    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
408                              Case.getCaseSuccessor()));
409    ++NumSimpleCases;
410  }
411
412  llvm::sort(Cases, CaseCmp());
413
414  // Merge case into clusters
415  if (Cases.size() >= 2) {
416    CaseItr I = Cases.begin();
417    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
418      int64_t nextValue = J->Low->getSExtValue();
419      int64_t currentValue = I->High->getSExtValue();
420      BasicBlock* nextBB = J->BB;
421      BasicBlock* currentBB = I->BB;
422
423      // If the two neighboring cases go to the same destination, merge them
424      // into a single case.
425      assert(nextValue > currentValue && "Cases should be strictly ascending");
426      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
427        I->High = J->High;
428        // FIXME: Combine branch weights.
429      } else if (++I != J) {
430        *I = *J;
431      }
432    }
433    Cases.erase(std::next(I), Cases.end());
434  }
435
436  return NumSimpleCases;
437}
438
439/// Replace the specified switch instruction with a sequence of chained if-then
440/// insts in a balanced binary search.
441void LowerSwitch::processSwitchInst(SwitchInst *SI,
442                                    SmallPtrSetImpl<BasicBlock *> &DeleteList,
443                                    AssumptionCache *AC, LazyValueInfo *LVI) {
444  BasicBlock *OrigBlock = SI->getParent();
445  Function *F = OrigBlock->getParent();
446  Value *Val = SI->getCondition();  // The value we are switching on...
447  BasicBlock* Default = SI->getDefaultDest();
448
449  // Don't handle unreachable blocks. If there are successors with phis, this
450  // would leave them behind with missing predecessors.
451  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
452      OrigBlock->getSinglePredecessor() == OrigBlock) {
453    DeleteList.insert(OrigBlock);
454    return;
455  }
456
457  // Prepare cases vector.
458  CaseVector Cases;
459  const unsigned NumSimpleCases = Clusterify(Cases, SI);
460  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
461                    << ". Total non-default cases: " << NumSimpleCases
462                    << "\nCase clusters: " << Cases << "\n");
463
464  // If there is only the default destination, just branch.
465  if (Cases.empty()) {
466    BranchInst::Create(Default, OrigBlock);
467    // Remove all the references from Default's PHIs to OrigBlock, but one.
468    fixPhis(Default, OrigBlock, OrigBlock);
469    SI->eraseFromParent();
470    return;
471  }
472
473  ConstantInt *LowerBound = nullptr;
474  ConstantInt *UpperBound = nullptr;
475  bool DefaultIsUnreachableFromSwitch = false;
476
477  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
478    // Make the bounds tightly fitted around the case value range, because we
479    // know that the value passed to the switch must be exactly one of the case
480    // values.
481    LowerBound = Cases.front().Low;
482    UpperBound = Cases.back().High;
483    DefaultIsUnreachableFromSwitch = true;
484  } else {
485    // Constraining the range of the value being switched over helps eliminating
486    // unreachable BBs and minimizing the number of `add` instructions
487    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
488    // LowerSwitch isn't as good, and also much more expensive in terms of
489    // compile time for the following reasons:
490    // 1. it processes many kinds of instructions, not just switches;
491    // 2. even if limited to icmp instructions only, it will have to process
492    //    roughly C icmp's per switch, where C is the number of cases in the
493    //    switch, while LowerSwitch only needs to call LVI once per switch.
494    const DataLayout &DL = F->getParent()->getDataLayout();
495    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
496    // TODO Shouldn't this create a signed range?
497    ConstantRange KnownBitsRange =
498        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
499    const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI);
500    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
501    // We delegate removal of unreachable non-default cases to other passes. In
502    // the unlikely event that some of them survived, we just conservatively
503    // maintain the invariant that all the cases lie between the bounds. This
504    // may, however, still render the default case effectively unreachable.
505    APInt Low = Cases.front().Low->getValue();
506    APInt High = Cases.back().High->getValue();
507    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
508    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
509
510    LowerBound = ConstantInt::get(SI->getContext(), Min);
511    UpperBound = ConstantInt::get(SI->getContext(), Max);
512    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
513  }
514
515  std::vector<IntRange> UnreachableRanges;
516
517  if (DefaultIsUnreachableFromSwitch) {
518    DenseMap<BasicBlock *, unsigned> Popularity;
519    unsigned MaxPop = 0;
520    BasicBlock *PopSucc = nullptr;
521
522    IntRange R = {std::numeric_limits<int64_t>::min(),
523                  std::numeric_limits<int64_t>::max()};
524    UnreachableRanges.push_back(R);
525    for (const auto &I : Cases) {
526      int64_t Low = I.Low->getSExtValue();
527      int64_t High = I.High->getSExtValue();
528
529      IntRange &LastRange = UnreachableRanges.back();
530      if (LastRange.Low == Low) {
531        // There is nothing left of the previous range.
532        UnreachableRanges.pop_back();
533      } else {
534        // Terminate the previous range.
535        assert(Low > LastRange.Low);
536        LastRange.High = Low - 1;
537      }
538      if (High != std::numeric_limits<int64_t>::max()) {
539        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
540        UnreachableRanges.push_back(R);
541      }
542
543      // Count popularity.
544      int64_t N = High - Low + 1;
545      unsigned &Pop = Popularity[I.BB];
546      if ((Pop += N) > MaxPop) {
547        MaxPop = Pop;
548        PopSucc = I.BB;
549      }
550    }
551#ifndef NDEBUG
552    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
553    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
554         I != E; ++I) {
555      assert(I->Low <= I->High);
556      auto Next = I + 1;
557      if (Next != E) {
558        assert(Next->Low > I->High);
559      }
560    }
561#endif
562
563    // As the default block in the switch is unreachable, update the PHI nodes
564    // (remove all of the references to the default block) to reflect this.
565    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
566    for (unsigned I = 0; I < NumDefaultEdges; ++I)
567      Default->removePredecessor(OrigBlock);
568
569    // Use the most popular block as the new default, reducing the number of
570    // cases.
571    assert(MaxPop > 0 && PopSucc);
572    Default = PopSucc;
573    Cases.erase(
574        llvm::remove_if(
575            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
576        Cases.end());
577
578    // If there are no cases left, just branch.
579    if (Cases.empty()) {
580      BranchInst::Create(Default, OrigBlock);
581      SI->eraseFromParent();
582      // As all the cases have been replaced with a single branch, only keep
583      // one entry in the PHI nodes.
584      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
585        PopSucc->removePredecessor(OrigBlock);
586      return;
587    }
588
589    // If the condition was a PHI node with the switch block as a predecessor
590    // removing predecessors may have caused the condition to be erased.
591    // Getting the condition value again here protects against that.
592    Val = SI->getCondition();
593  }
594
595  // Create a new, empty default block so that the new hierarchy of
596  // if-then statements go to this and the PHI nodes are happy.
597  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
598  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
599  BranchInst::Create(Default, NewDefault);
600
601  BasicBlock *SwitchBlock =
602      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
603                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
604
605  // If there are entries in any PHI nodes for the default edge, make sure
606  // to update them as well.
607  fixPhis(Default, OrigBlock, NewDefault);
608
609  // Branch to our shiny new if-then stuff...
610  BranchInst::Create(SwitchBlock, OrigBlock);
611
612  // We are now done with the switch instruction, delete it.
613  BasicBlock *OldDefault = SI->getDefaultDest();
614  OrigBlock->getInstList().erase(SI);
615
616  // If the Default block has no more predecessors just add it to DeleteList.
617  if (pred_begin(OldDefault) == pred_end(OldDefault))
618    DeleteList.insert(OldDefault);
619}
620