LowerSwitch.cpp revision 344779
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LowerSwitch transformation rewrites switch instructions with a sequence
11// of branches, which allows targets to get away with not implementing the
12// switch instruction until it is convenient.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/InstrTypes.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Value.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Transforms/Utils.h"
33#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <iterator>
38#include <limits>
39#include <vector>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "lower-switch"
44
45namespace {
46
47  struct IntRange {
48    int64_t Low, High;
49  };
50
51} // end anonymous namespace
52
53// Return true iff R is covered by Ranges.
54static bool IsInRanges(const IntRange &R,
55                       const std::vector<IntRange> &Ranges) {
56  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
57
58  // Find the first range whose High field is >= R.High,
59  // then check if the Low field is <= R.Low. If so, we
60  // have a Range that covers R.
61  auto I = std::lower_bound(
62      Ranges.begin(), Ranges.end(), R,
63      [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
64  return I != Ranges.end() && I->Low <= R.Low;
65}
66
67namespace {
68
69  /// Replace all SwitchInst instructions with chained branch instructions.
70  class LowerSwitch : public FunctionPass {
71  public:
72    // Pass identification, replacement for typeid
73    static char ID;
74
75    LowerSwitch() : FunctionPass(ID) {
76      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
77    }
78
79    bool runOnFunction(Function &F) override;
80
81    struct CaseRange {
82      ConstantInt* Low;
83      ConstantInt* High;
84      BasicBlock* BB;
85
86      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
87          : Low(low), High(high), BB(bb) {}
88    };
89
90    using CaseVector = std::vector<CaseRange>;
91    using CaseItr = std::vector<CaseRange>::iterator;
92
93  private:
94    void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
95
96    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
97                              ConstantInt *LowerBound, ConstantInt *UpperBound,
98                              Value *Val, BasicBlock *Predecessor,
99                              BasicBlock *OrigBlock, BasicBlock *Default,
100                              const std::vector<IntRange> &UnreachableRanges);
101    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
102                             BasicBlock *Default);
103    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
104  };
105
106  /// The comparison function for sorting the switch case values in the vector.
107  /// WARNING: Case ranges should be disjoint!
108  struct CaseCmp {
109    bool operator()(const LowerSwitch::CaseRange& C1,
110                    const LowerSwitch::CaseRange& C2) {
111      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
112      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
113      return CI1->getValue().slt(CI2->getValue());
114    }
115  };
116
117} // end anonymous namespace
118
119char LowerSwitch::ID = 0;
120
121// Publicly exposed interface to pass...
122char &llvm::LowerSwitchID = LowerSwitch::ID;
123
124INITIALIZE_PASS(LowerSwitch, "lowerswitch",
125                "Lower SwitchInst's to branches", false, false)
126
127// createLowerSwitchPass - Interface to this file...
128FunctionPass *llvm::createLowerSwitchPass() {
129  return new LowerSwitch();
130}
131
132bool LowerSwitch::runOnFunction(Function &F) {
133  bool Changed = false;
134  SmallPtrSet<BasicBlock*, 8> DeleteList;
135
136  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
137    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
138
139    // If the block is a dead Default block that will be deleted later, don't
140    // waste time processing it.
141    if (DeleteList.count(Cur))
142      continue;
143
144    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
145      Changed = true;
146      processSwitchInst(SI, DeleteList);
147    }
148  }
149
150  for (BasicBlock* BB: DeleteList) {
151    DeleteDeadBlock(BB);
152  }
153
154  return Changed;
155}
156
157/// Used for debugging purposes.
158LLVM_ATTRIBUTE_USED
159static raw_ostream &operator<<(raw_ostream &O,
160                               const LowerSwitch::CaseVector &C) {
161  O << "[";
162
163  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
164         E = C.end(); B != E; ) {
165    O << *B->Low << " -" << *B->High;
166    if (++B != E) O << ", ";
167  }
168
169  return O << "]";
170}
171
172/// Update the first occurrence of the "switch statement" BB in the PHI
173/// node with the "new" BB. The other occurrences will:
174///
175/// 1) Be updated by subsequent calls to this function.  Switch statements may
176/// have more than one outcoming edge into the same BB if they all have the same
177/// value. When the switch statement is converted these incoming edges are now
178/// coming from multiple BBs.
179/// 2) Removed if subsequent incoming values now share the same case, i.e.,
180/// multiple outcome edges are condensed into one. This is necessary to keep the
181/// number of phi values equal to the number of branches to SuccBB.
182static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
183                    unsigned NumMergedCases) {
184  for (BasicBlock::iterator I = SuccBB->begin(),
185                            IE = SuccBB->getFirstNonPHI()->getIterator();
186       I != IE; ++I) {
187    PHINode *PN = cast<PHINode>(I);
188
189    // Only update the first occurrence.
190    unsigned Idx = 0, E = PN->getNumIncomingValues();
191    unsigned LocalNumMergedCases = NumMergedCases;
192    for (; Idx != E; ++Idx) {
193      if (PN->getIncomingBlock(Idx) == OrigBB) {
194        PN->setIncomingBlock(Idx, NewBB);
195        break;
196      }
197    }
198
199    // Remove additional occurrences coming from condensed cases and keep the
200    // number of incoming values equal to the number of branches to SuccBB.
201    SmallVector<unsigned, 8> Indices;
202    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
203      if (PN->getIncomingBlock(Idx) == OrigBB) {
204        Indices.push_back(Idx);
205        LocalNumMergedCases--;
206      }
207    // Remove incoming values in the reverse order to prevent invalidating
208    // *successive* index.
209    for (unsigned III : llvm::reverse(Indices))
210      PN->removeIncomingValue(III);
211  }
212}
213
214/// Convert the switch statement into a binary lookup of the case values.
215/// The function recursively builds this tree. LowerBound and UpperBound are
216/// used to keep track of the bounds for Val that have already been checked by
217/// a block emitted by one of the previous calls to switchConvert in the call
218/// stack.
219BasicBlock *
220LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
221                           ConstantInt *UpperBound, Value *Val,
222                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
223                           BasicBlock *Default,
224                           const std::vector<IntRange> &UnreachableRanges) {
225  unsigned Size = End - Begin;
226
227  if (Size == 1) {
228    // Check if the Case Range is perfectly squeezed in between
229    // already checked Upper and Lower bounds. If it is then we can avoid
230    // emitting the code that checks if the value actually falls in the range
231    // because the bounds already tell us so.
232    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
233      unsigned NumMergedCases = 0;
234      if (LowerBound && UpperBound)
235        NumMergedCases =
236            UpperBound->getSExtValue() - LowerBound->getSExtValue();
237      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
238      return Begin->BB;
239    }
240    return newLeafBlock(*Begin, Val, OrigBlock, Default);
241  }
242
243  unsigned Mid = Size / 2;
244  std::vector<CaseRange> LHS(Begin, Begin + Mid);
245  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
246  std::vector<CaseRange> RHS(Begin + Mid, End);
247  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
248
249  CaseRange &Pivot = *(Begin + Mid);
250  LLVM_DEBUG(dbgs() << "Pivot ==> " << Pivot.Low->getValue() << " -"
251                    << Pivot.High->getValue() << "\n");
252
253  // NewLowerBound here should never be the integer minimal value.
254  // This is because it is computed from a case range that is never
255  // the smallest, so there is always a case range that has at least
256  // a smaller value.
257  ConstantInt *NewLowerBound = Pivot.Low;
258
259  // Because NewLowerBound is never the smallest representable integer
260  // it is safe here to subtract one.
261  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
262                                                NewLowerBound->getValue() - 1);
263
264  if (!UnreachableRanges.empty()) {
265    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
266    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
267    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
268    IntRange Gap = { GapLow, GapHigh };
269    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
270      NewUpperBound = LHS.back().High;
271  }
272
273  LLVM_DEBUG(dbgs() << "LHS Bounds ==> "; if (LowerBound) {
274    dbgs() << LowerBound->getSExtValue();
275  } else { dbgs() << "NONE"; } dbgs() << " - "
276                                      << NewUpperBound->getSExtValue() << "\n";
277             dbgs() << "RHS Bounds ==> ";
278             dbgs() << NewLowerBound->getSExtValue() << " - "; if (UpperBound) {
279               dbgs() << UpperBound->getSExtValue() << "\n";
280             } else { dbgs() << "NONE\n"; });
281
282  // Create a new node that checks if the value is < pivot. Go to the
283  // left branch if it is and right branch if not.
284  Function* F = OrigBlock->getParent();
285  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
286
287  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
288                                Val, Pivot.Low, "Pivot");
289
290  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
291                                      NewUpperBound, Val, NewNode, OrigBlock,
292                                      Default, UnreachableRanges);
293  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
294                                      UpperBound, Val, NewNode, OrigBlock,
295                                      Default, UnreachableRanges);
296
297  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
298  NewNode->getInstList().push_back(Comp);
299
300  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
301  return NewNode;
302}
303
304/// Create a new leaf block for the binary lookup tree. It checks if the
305/// switch's value == the case's value. If not, then it jumps to the default
306/// branch. At this point in the tree, the value can't be another valid case
307/// value, so the jump to the "default" branch is warranted.
308BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
309                                      BasicBlock* OrigBlock,
310                                      BasicBlock* Default) {
311  Function* F = OrigBlock->getParent();
312  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
313  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
314
315  // Emit comparison
316  ICmpInst* Comp = nullptr;
317  if (Leaf.Low == Leaf.High) {
318    // Make the seteq instruction...
319    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
320                        Leaf.Low, "SwitchLeaf");
321  } else {
322    // Make range comparison
323    if (Leaf.Low->isMinValue(true /*isSigned*/)) {
324      // Val >= Min && Val <= Hi --> Val <= Hi
325      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
326                          "SwitchLeaf");
327    } else if (Leaf.Low->isZero()) {
328      // Val >= 0 && Val <= Hi --> Val <=u Hi
329      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
330                          "SwitchLeaf");
331    } else {
332      // Emit V-Lo <=u Hi-Lo
333      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
334      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
335                                                   Val->getName()+".off",
336                                                   NewLeaf);
337      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
338      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
339                          "SwitchLeaf");
340    }
341  }
342
343  // Make the conditional branch...
344  BasicBlock* Succ = Leaf.BB;
345  BranchInst::Create(Succ, Default, Comp, NewLeaf);
346
347  // If there were any PHI nodes in this successor, rewrite one entry
348  // from OrigBlock to come from NewLeaf.
349  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
350    PHINode* PN = cast<PHINode>(I);
351    // Remove all but one incoming entries from the cluster
352    uint64_t Range = Leaf.High->getSExtValue() -
353                     Leaf.Low->getSExtValue();
354    for (uint64_t j = 0; j < Range; ++j) {
355      PN->removeIncomingValue(OrigBlock);
356    }
357
358    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
359    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
360    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
361  }
362
363  return NewLeaf;
364}
365
366/// Transform simple list of Cases into list of CaseRange's.
367unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
368  unsigned numCmps = 0;
369
370  // Start with "simple" cases
371  for (auto Case : SI->cases())
372    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
373                              Case.getCaseSuccessor()));
374
375  llvm::sort(Cases, CaseCmp());
376
377  // Merge case into clusters
378  if (Cases.size() >= 2) {
379    CaseItr I = Cases.begin();
380    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
381      int64_t nextValue = J->Low->getSExtValue();
382      int64_t currentValue = I->High->getSExtValue();
383      BasicBlock* nextBB = J->BB;
384      BasicBlock* currentBB = I->BB;
385
386      // If the two neighboring cases go to the same destination, merge them
387      // into a single case.
388      assert(nextValue > currentValue && "Cases should be strictly ascending");
389      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
390        I->High = J->High;
391        // FIXME: Combine branch weights.
392      } else if (++I != J) {
393        *I = *J;
394      }
395    }
396    Cases.erase(std::next(I), Cases.end());
397  }
398
399  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
400    if (I->Low != I->High)
401      // A range counts double, since it requires two compares.
402      ++numCmps;
403  }
404
405  return numCmps;
406}
407
408/// Replace the specified switch instruction with a sequence of chained if-then
409/// insts in a balanced binary search.
410void LowerSwitch::processSwitchInst(SwitchInst *SI,
411                                    SmallPtrSetImpl<BasicBlock*> &DeleteList) {
412  BasicBlock *CurBlock = SI->getParent();
413  BasicBlock *OrigBlock = CurBlock;
414  Function *F = CurBlock->getParent();
415  Value *Val = SI->getCondition();  // The value we are switching on...
416  BasicBlock* Default = SI->getDefaultDest();
417
418  // Don't handle unreachable blocks. If there are successors with phis, this
419  // would leave them behind with missing predecessors.
420  if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) ||
421      CurBlock->getSinglePredecessor() == CurBlock) {
422    DeleteList.insert(CurBlock);
423    return;
424  }
425
426  // If there is only the default destination, just branch.
427  if (!SI->getNumCases()) {
428    BranchInst::Create(Default, CurBlock);
429    SI->eraseFromParent();
430    return;
431  }
432
433  // Prepare cases vector.
434  CaseVector Cases;
435  unsigned numCmps = Clusterify(Cases, SI);
436  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
437                    << ". Total compares: " << numCmps << "\n");
438  LLVM_DEBUG(dbgs() << "Cases: " << Cases << "\n");
439  (void)numCmps;
440
441  ConstantInt *LowerBound = nullptr;
442  ConstantInt *UpperBound = nullptr;
443  std::vector<IntRange> UnreachableRanges;
444
445  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
446    // Make the bounds tightly fitted around the case value range, because we
447    // know that the value passed to the switch must be exactly one of the case
448    // values.
449    assert(!Cases.empty());
450    LowerBound = Cases.front().Low;
451    UpperBound = Cases.back().High;
452
453    DenseMap<BasicBlock *, unsigned> Popularity;
454    unsigned MaxPop = 0;
455    BasicBlock *PopSucc = nullptr;
456
457    IntRange R = {std::numeric_limits<int64_t>::min(),
458                  std::numeric_limits<int64_t>::max()};
459    UnreachableRanges.push_back(R);
460    for (const auto &I : Cases) {
461      int64_t Low = I.Low->getSExtValue();
462      int64_t High = I.High->getSExtValue();
463
464      IntRange &LastRange = UnreachableRanges.back();
465      if (LastRange.Low == Low) {
466        // There is nothing left of the previous range.
467        UnreachableRanges.pop_back();
468      } else {
469        // Terminate the previous range.
470        assert(Low > LastRange.Low);
471        LastRange.High = Low - 1;
472      }
473      if (High != std::numeric_limits<int64_t>::max()) {
474        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
475        UnreachableRanges.push_back(R);
476      }
477
478      // Count popularity.
479      int64_t N = High - Low + 1;
480      unsigned &Pop = Popularity[I.BB];
481      if ((Pop += N) > MaxPop) {
482        MaxPop = Pop;
483        PopSucc = I.BB;
484      }
485    }
486#ifndef NDEBUG
487    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
488    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
489         I != E; ++I) {
490      assert(I->Low <= I->High);
491      auto Next = I + 1;
492      if (Next != E) {
493        assert(Next->Low > I->High);
494      }
495    }
496#endif
497
498    // As the default block in the switch is unreachable, update the PHI nodes
499    // (remove the entry to the default block) to reflect this.
500    Default->removePredecessor(OrigBlock);
501
502    // Use the most popular block as the new default, reducing the number of
503    // cases.
504    assert(MaxPop > 0 && PopSucc);
505    Default = PopSucc;
506    Cases.erase(
507        llvm::remove_if(
508            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
509        Cases.end());
510
511    // If there are no cases left, just branch.
512    if (Cases.empty()) {
513      BranchInst::Create(Default, CurBlock);
514      SI->eraseFromParent();
515      // As all the cases have been replaced with a single branch, only keep
516      // one entry in the PHI nodes.
517      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
518        PopSucc->removePredecessor(OrigBlock);
519      return;
520    }
521  }
522
523  unsigned NrOfDefaults = (SI->getDefaultDest() == Default) ? 1 : 0;
524  for (const auto &Case : SI->cases())
525    if (Case.getCaseSuccessor() == Default)
526      NrOfDefaults++;
527
528  // Create a new, empty default block so that the new hierarchy of
529  // if-then statements go to this and the PHI nodes are happy.
530  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
531  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
532  BranchInst::Create(Default, NewDefault);
533
534  BasicBlock *SwitchBlock =
535      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
536                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
537
538  // If there are entries in any PHI nodes for the default edge, make sure
539  // to update them as well.
540  fixPhis(Default, OrigBlock, NewDefault, NrOfDefaults);
541
542  // Branch to our shiny new if-then stuff...
543  BranchInst::Create(SwitchBlock, OrigBlock);
544
545  // We are now done with the switch instruction, delete it.
546  BasicBlock *OldDefault = SI->getDefaultDest();
547  CurBlock->getInstList().erase(SI);
548
549  // If the Default block has no more predecessors just add it to DeleteList.
550  if (pred_begin(OldDefault) == pred_end(OldDefault))
551    DeleteList.insert(OldDefault);
552}
553