LowerSwitch.cpp revision 327952
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LowerSwitch transformation rewrites switch instructions with a sequence
11// of branches, which allows targets to get away with not implementing the
12// switch instruction until it is convenient.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/InstrTypes.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Value.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <iterator>
38#include <limits>
39#include <vector>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "lower-switch"
44
45namespace {
46
47  struct IntRange {
48    int64_t Low, High;
49  };
50
51} // end anonymous namespace
52
53// Return true iff R is covered by Ranges.
54static bool IsInRanges(const IntRange &R,
55                       const std::vector<IntRange> &Ranges) {
56  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
57
58  // Find the first range whose High field is >= R.High,
59  // then check if the Low field is <= R.Low. If so, we
60  // have a Range that covers R.
61  auto I = std::lower_bound(
62      Ranges.begin(), Ranges.end(), R,
63      [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
64  return I != Ranges.end() && I->Low <= R.Low;
65}
66
67namespace {
68
69  /// Replace all SwitchInst instructions with chained branch instructions.
70  class LowerSwitch : public FunctionPass {
71  public:
72    // Pass identification, replacement for typeid
73    static char ID;
74
75    LowerSwitch() : FunctionPass(ID) {
76      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
77    }
78
79    bool runOnFunction(Function &F) override;
80
81    struct CaseRange {
82      ConstantInt* Low;
83      ConstantInt* High;
84      BasicBlock* BB;
85
86      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
87          : Low(low), High(high), BB(bb) {}
88    };
89
90    using CaseVector = std::vector<CaseRange>;
91    using CaseItr = std::vector<CaseRange>::iterator;
92
93  private:
94    void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
95
96    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
97                              ConstantInt *LowerBound, ConstantInt *UpperBound,
98                              Value *Val, BasicBlock *Predecessor,
99                              BasicBlock *OrigBlock, BasicBlock *Default,
100                              const std::vector<IntRange> &UnreachableRanges);
101    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
102                             BasicBlock *Default);
103    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
104  };
105
106  /// The comparison function for sorting the switch case values in the vector.
107  /// WARNING: Case ranges should be disjoint!
108  struct CaseCmp {
109    bool operator()(const LowerSwitch::CaseRange& C1,
110                    const LowerSwitch::CaseRange& C2) {
111      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
112      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
113      return CI1->getValue().slt(CI2->getValue());
114    }
115  };
116
117} // end anonymous namespace
118
119char LowerSwitch::ID = 0;
120
121// Publicly exposed interface to pass...
122char &llvm::LowerSwitchID = LowerSwitch::ID;
123
124INITIALIZE_PASS(LowerSwitch, "lowerswitch",
125                "Lower SwitchInst's to branches", false, false)
126
127// createLowerSwitchPass - Interface to this file...
128FunctionPass *llvm::createLowerSwitchPass() {
129  return new LowerSwitch();
130}
131
132bool LowerSwitch::runOnFunction(Function &F) {
133  bool Changed = false;
134  SmallPtrSet<BasicBlock*, 8> DeleteList;
135
136  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
137    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
138
139    // If the block is a dead Default block that will be deleted later, don't
140    // waste time processing it.
141    if (DeleteList.count(Cur))
142      continue;
143
144    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
145      Changed = true;
146      processSwitchInst(SI, DeleteList);
147    }
148  }
149
150  for (BasicBlock* BB: DeleteList) {
151    DeleteDeadBlock(BB);
152  }
153
154  return Changed;
155}
156
157/// Used for debugging purposes.
158static raw_ostream& operator<<(raw_ostream &O,
159                               const LowerSwitch::CaseVector &C)
160    LLVM_ATTRIBUTE_USED;
161
162static raw_ostream& operator<<(raw_ostream &O,
163                               const LowerSwitch::CaseVector &C) {
164  O << "[";
165
166  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
167         E = C.end(); B != E; ) {
168    O << *B->Low << " -" << *B->High;
169    if (++B != E) O << ", ";
170  }
171
172  return O << "]";
173}
174
175/// \brief Update the first occurrence of the "switch statement" BB in the PHI
176/// node with the "new" BB. The other occurrences will:
177///
178/// 1) Be updated by subsequent calls to this function.  Switch statements may
179/// have more than one outcoming edge into the same BB if they all have the same
180/// value. When the switch statement is converted these incoming edges are now
181/// coming from multiple BBs.
182/// 2) Removed if subsequent incoming values now share the same case, i.e.,
183/// multiple outcome edges are condensed into one. This is necessary to keep the
184/// number of phi values equal to the number of branches to SuccBB.
185static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
186                    unsigned NumMergedCases) {
187  for (BasicBlock::iterator I = SuccBB->begin(),
188                            IE = SuccBB->getFirstNonPHI()->getIterator();
189       I != IE; ++I) {
190    PHINode *PN = cast<PHINode>(I);
191
192    // Only update the first occurrence.
193    unsigned Idx = 0, E = PN->getNumIncomingValues();
194    unsigned LocalNumMergedCases = NumMergedCases;
195    for (; Idx != E; ++Idx) {
196      if (PN->getIncomingBlock(Idx) == OrigBB) {
197        PN->setIncomingBlock(Idx, NewBB);
198        break;
199      }
200    }
201
202    // Remove additional occurrences coming from condensed cases and keep the
203    // number of incoming values equal to the number of branches to SuccBB.
204    SmallVector<unsigned, 8> Indices;
205    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
206      if (PN->getIncomingBlock(Idx) == OrigBB) {
207        Indices.push_back(Idx);
208        LocalNumMergedCases--;
209      }
210    // Remove incoming values in the reverse order to prevent invalidating
211    // *successive* index.
212    for (unsigned III : llvm::reverse(Indices))
213      PN->removeIncomingValue(III);
214  }
215}
216
217/// Convert the switch statement into a binary lookup of the case values.
218/// The function recursively builds this tree. LowerBound and UpperBound are
219/// used to keep track of the bounds for Val that have already been checked by
220/// a block emitted by one of the previous calls to switchConvert in the call
221/// stack.
222BasicBlock *
223LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
224                           ConstantInt *UpperBound, Value *Val,
225                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
226                           BasicBlock *Default,
227                           const std::vector<IntRange> &UnreachableRanges) {
228  unsigned Size = End - Begin;
229
230  if (Size == 1) {
231    // Check if the Case Range is perfectly squeezed in between
232    // already checked Upper and Lower bounds. If it is then we can avoid
233    // emitting the code that checks if the value actually falls in the range
234    // because the bounds already tell us so.
235    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
236      unsigned NumMergedCases = 0;
237      if (LowerBound && UpperBound)
238        NumMergedCases =
239            UpperBound->getSExtValue() - LowerBound->getSExtValue();
240      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
241      return Begin->BB;
242    }
243    return newLeafBlock(*Begin, Val, OrigBlock, Default);
244  }
245
246  unsigned Mid = Size / 2;
247  std::vector<CaseRange> LHS(Begin, Begin + Mid);
248  DEBUG(dbgs() << "LHS: " << LHS << "\n");
249  std::vector<CaseRange> RHS(Begin + Mid, End);
250  DEBUG(dbgs() << "RHS: " << RHS << "\n");
251
252  CaseRange &Pivot = *(Begin + Mid);
253  DEBUG(dbgs() << "Pivot ==> "
254               << Pivot.Low->getValue()
255               << " -" << Pivot.High->getValue() << "\n");
256
257  // NewLowerBound here should never be the integer minimal value.
258  // This is because it is computed from a case range that is never
259  // the smallest, so there is always a case range that has at least
260  // a smaller value.
261  ConstantInt *NewLowerBound = Pivot.Low;
262
263  // Because NewLowerBound is never the smallest representable integer
264  // it is safe here to subtract one.
265  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
266                                                NewLowerBound->getValue() - 1);
267
268  if (!UnreachableRanges.empty()) {
269    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
270    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
271    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
272    IntRange Gap = { GapLow, GapHigh };
273    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
274      NewUpperBound = LHS.back().High;
275  }
276
277  DEBUG(dbgs() << "LHS Bounds ==> ";
278        if (LowerBound) {
279          dbgs() << LowerBound->getSExtValue();
280        } else {
281          dbgs() << "NONE";
282        }
283        dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
284        dbgs() << "RHS Bounds ==> ";
285        dbgs() << NewLowerBound->getSExtValue() << " - ";
286        if (UpperBound) {
287          dbgs() << UpperBound->getSExtValue() << "\n";
288        } else {
289          dbgs() << "NONE\n";
290        });
291
292  // Create a new node that checks if the value is < pivot. Go to the
293  // left branch if it is and right branch if not.
294  Function* F = OrigBlock->getParent();
295  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
296
297  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
298                                Val, Pivot.Low, "Pivot");
299
300  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
301                                      NewUpperBound, Val, NewNode, OrigBlock,
302                                      Default, UnreachableRanges);
303  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
304                                      UpperBound, Val, NewNode, OrigBlock,
305                                      Default, UnreachableRanges);
306
307  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
308  NewNode->getInstList().push_back(Comp);
309
310  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
311  return NewNode;
312}
313
314/// Create a new leaf block for the binary lookup tree. It checks if the
315/// switch's value == the case's value. If not, then it jumps to the default
316/// branch. At this point in the tree, the value can't be another valid case
317/// value, so the jump to the "default" branch is warranted.
318BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
319                                      BasicBlock* OrigBlock,
320                                      BasicBlock* Default) {
321  Function* F = OrigBlock->getParent();
322  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
323  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
324
325  // Emit comparison
326  ICmpInst* Comp = nullptr;
327  if (Leaf.Low == Leaf.High) {
328    // Make the seteq instruction...
329    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
330                        Leaf.Low, "SwitchLeaf");
331  } else {
332    // Make range comparison
333    if (Leaf.Low->isMinValue(true /*isSigned*/)) {
334      // Val >= Min && Val <= Hi --> Val <= Hi
335      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
336                          "SwitchLeaf");
337    } else if (Leaf.Low->isZero()) {
338      // Val >= 0 && Val <= Hi --> Val <=u Hi
339      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
340                          "SwitchLeaf");
341    } else {
342      // Emit V-Lo <=u Hi-Lo
343      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
344      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
345                                                   Val->getName()+".off",
346                                                   NewLeaf);
347      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
348      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
349                          "SwitchLeaf");
350    }
351  }
352
353  // Make the conditional branch...
354  BasicBlock* Succ = Leaf.BB;
355  BranchInst::Create(Succ, Default, Comp, NewLeaf);
356
357  // If there were any PHI nodes in this successor, rewrite one entry
358  // from OrigBlock to come from NewLeaf.
359  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
360    PHINode* PN = cast<PHINode>(I);
361    // Remove all but one incoming entries from the cluster
362    uint64_t Range = Leaf.High->getSExtValue() -
363                     Leaf.Low->getSExtValue();
364    for (uint64_t j = 0; j < Range; ++j) {
365      PN->removeIncomingValue(OrigBlock);
366    }
367
368    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
369    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
370    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
371  }
372
373  return NewLeaf;
374}
375
376/// Transform simple list of Cases into list of CaseRange's.
377unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
378  unsigned numCmps = 0;
379
380  // Start with "simple" cases
381  for (auto Case : SI->cases())
382    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
383                              Case.getCaseSuccessor()));
384
385  std::sort(Cases.begin(), Cases.end(), CaseCmp());
386
387  // Merge case into clusters
388  if (Cases.size() >= 2) {
389    CaseItr I = Cases.begin();
390    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
391      int64_t nextValue = J->Low->getSExtValue();
392      int64_t currentValue = I->High->getSExtValue();
393      BasicBlock* nextBB = J->BB;
394      BasicBlock* currentBB = I->BB;
395
396      // If the two neighboring cases go to the same destination, merge them
397      // into a single case.
398      assert(nextValue > currentValue && "Cases should be strictly ascending");
399      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
400        I->High = J->High;
401        // FIXME: Combine branch weights.
402      } else if (++I != J) {
403        *I = *J;
404      }
405    }
406    Cases.erase(std::next(I), Cases.end());
407  }
408
409  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
410    if (I->Low != I->High)
411      // A range counts double, since it requires two compares.
412      ++numCmps;
413  }
414
415  return numCmps;
416}
417
418/// Replace the specified switch instruction with a sequence of chained if-then
419/// insts in a balanced binary search.
420void LowerSwitch::processSwitchInst(SwitchInst *SI,
421                                    SmallPtrSetImpl<BasicBlock*> &DeleteList) {
422  BasicBlock *CurBlock = SI->getParent();
423  BasicBlock *OrigBlock = CurBlock;
424  Function *F = CurBlock->getParent();
425  Value *Val = SI->getCondition();  // The value we are switching on...
426  BasicBlock* Default = SI->getDefaultDest();
427
428  // Don't handle unreachable blocks. If there are successors with phis, this
429  // would leave them behind with missing predecessors.
430  if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) ||
431      CurBlock->getSinglePredecessor() == CurBlock) {
432    DeleteList.insert(CurBlock);
433    return;
434  }
435
436  // If there is only the default destination, just branch.
437  if (!SI->getNumCases()) {
438    BranchInst::Create(Default, CurBlock);
439    SI->eraseFromParent();
440    return;
441  }
442
443  // Prepare cases vector.
444  CaseVector Cases;
445  unsigned numCmps = Clusterify(Cases, SI);
446  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
447               << ". Total compares: " << numCmps << "\n");
448  DEBUG(dbgs() << "Cases: " << Cases << "\n");
449  (void)numCmps;
450
451  ConstantInt *LowerBound = nullptr;
452  ConstantInt *UpperBound = nullptr;
453  std::vector<IntRange> UnreachableRanges;
454
455  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
456    // Make the bounds tightly fitted around the case value range, because we
457    // know that the value passed to the switch must be exactly one of the case
458    // values.
459    assert(!Cases.empty());
460    LowerBound = Cases.front().Low;
461    UpperBound = Cases.back().High;
462
463    DenseMap<BasicBlock *, unsigned> Popularity;
464    unsigned MaxPop = 0;
465    BasicBlock *PopSucc = nullptr;
466
467    IntRange R = {std::numeric_limits<int64_t>::min(),
468                  std::numeric_limits<int64_t>::max()};
469    UnreachableRanges.push_back(R);
470    for (const auto &I : Cases) {
471      int64_t Low = I.Low->getSExtValue();
472      int64_t High = I.High->getSExtValue();
473
474      IntRange &LastRange = UnreachableRanges.back();
475      if (LastRange.Low == Low) {
476        // There is nothing left of the previous range.
477        UnreachableRanges.pop_back();
478      } else {
479        // Terminate the previous range.
480        assert(Low > LastRange.Low);
481        LastRange.High = Low - 1;
482      }
483      if (High != std::numeric_limits<int64_t>::max()) {
484        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
485        UnreachableRanges.push_back(R);
486      }
487
488      // Count popularity.
489      int64_t N = High - Low + 1;
490      unsigned &Pop = Popularity[I.BB];
491      if ((Pop += N) > MaxPop) {
492        MaxPop = Pop;
493        PopSucc = I.BB;
494      }
495    }
496#ifndef NDEBUG
497    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
498    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
499         I != E; ++I) {
500      assert(I->Low <= I->High);
501      auto Next = I + 1;
502      if (Next != E) {
503        assert(Next->Low > I->High);
504      }
505    }
506#endif
507
508    // Use the most popular block as the new default, reducing the number of
509    // cases.
510    assert(MaxPop > 0 && PopSucc);
511    Default = PopSucc;
512    Cases.erase(
513        llvm::remove_if(
514            Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
515        Cases.end());
516
517    // If there are no cases left, just branch.
518    if (Cases.empty()) {
519      BranchInst::Create(Default, CurBlock);
520      SI->eraseFromParent();
521      return;
522    }
523  }
524
525  // Create a new, empty default block so that the new hierarchy of
526  // if-then statements go to this and the PHI nodes are happy.
527  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
528  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
529  BranchInst::Create(Default, NewDefault);
530
531  // If there is an entry in any PHI nodes for the default edge, make sure
532  // to update them as well.
533  for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
534    PHINode *PN = cast<PHINode>(I);
535    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
536    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
537    PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
538  }
539
540  BasicBlock *SwitchBlock =
541      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
542                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
543
544  // Branch to our shiny new if-then stuff...
545  BranchInst::Create(SwitchBlock, OrigBlock);
546
547  // We are now done with the switch instruction, delete it.
548  BasicBlock *OldDefault = SI->getDefaultDest();
549  CurBlock->getInstList().erase(SI);
550
551  // If the Default block has no more predecessors just add it to DeleteList.
552  if (pred_begin(OldDefault) == pred_end(OldDefault))
553    DeleteList.insert(OldDefault);
554}
555